1 /* 2 * ng_base.c 3 */ 4 5 /*- 6 * Copyright (c) 1996-1999 Whistle Communications, Inc. 7 * All rights reserved. 8 * 9 * Subject to the following obligations and disclaimer of warranty, use and 10 * redistribution of this software, in source or object code forms, with or 11 * without modifications are expressly permitted by Whistle Communications; 12 * provided, however, that: 13 * 1. Any and all reproductions of the source or object code must include the 14 * copyright notice above and the following disclaimer of warranties; and 15 * 2. No rights are granted, in any manner or form, to use Whistle 16 * Communications, Inc. trademarks, including the mark "WHISTLE 17 * COMMUNICATIONS" on advertising, endorsements, or otherwise except as 18 * such appears in the above copyright notice or in the software. 19 * 20 * THIS SOFTWARE IS BEING PROVIDED BY WHISTLE COMMUNICATIONS "AS IS", AND 21 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, WHISTLE COMMUNICATIONS MAKES NO 22 * REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS SOFTWARE, 23 * INCLUDING WITHOUT LIMITATION, ANY AND ALL IMPLIED WARRANTIES OF 24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 25 * WHISTLE COMMUNICATIONS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY 26 * REPRESENTATIONS REGARDING THE USE OF, OR THE RESULTS OF THE USE OF THIS 27 * SOFTWARE IN TERMS OF ITS CORRECTNESS, ACCURACY, RELIABILITY OR OTHERWISE. 28 * IN NO EVENT SHALL WHISTLE COMMUNICATIONS BE LIABLE FOR ANY DAMAGES 29 * RESULTING FROM OR ARISING OUT OF ANY USE OF THIS SOFTWARE, INCLUDING 30 * WITHOUT LIMITATION, ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, 31 * PUNITIVE, OR CONSEQUENTIAL DAMAGES, PROCUREMENT OF SUBSTITUTE GOODS OR 32 * SERVICES, LOSS OF USE, DATA OR PROFITS, HOWEVER CAUSED AND UNDER ANY 33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 35 * THIS SOFTWARE, EVEN IF WHISTLE COMMUNICATIONS IS ADVISED OF THE POSSIBILITY 36 * OF SUCH DAMAGE. 37 * 38 * Authors: Julian Elischer <julian@freebsd.org> 39 * Archie Cobbs <archie@freebsd.org> 40 * 41 * $FreeBSD$ 42 * $Whistle: ng_base.c,v 1.39 1999/01/28 23:54:53 julian Exp $ 43 */ 44 45 /* 46 * This file implements the base netgraph code. 47 */ 48 49 #include <sys/param.h> 50 #include <sys/systm.h> 51 #include <sys/ctype.h> 52 #include <sys/errno.h> 53 #include <sys/kdb.h> 54 #include <sys/kernel.h> 55 #include <sys/ktr.h> 56 #include <sys/limits.h> 57 #include <sys/malloc.h> 58 #include <sys/mbuf.h> 59 #include <sys/queue.h> 60 #include <sys/sysctl.h> 61 #include <sys/syslog.h> 62 #include <sys/refcount.h> 63 64 #include <net/netisr.h> 65 66 #include <netgraph/ng_message.h> 67 #include <netgraph/netgraph.h> 68 #include <netgraph/ng_parse.h> 69 70 MODULE_VERSION(netgraph, NG_ABI_VERSION); 71 72 /* List of all active nodes */ 73 static LIST_HEAD(, ng_node) ng_nodelist; 74 static struct mtx ng_nodelist_mtx; 75 76 /* Mutex to protect topology events. */ 77 static struct mtx ng_topo_mtx; 78 79 #ifdef NETGRAPH_DEBUG 80 static struct mtx ngq_mtx; /* protects the queue item list */ 81 82 static SLIST_HEAD(, ng_node) ng_allnodes; 83 static LIST_HEAD(, ng_node) ng_freenodes; /* in debug, we never free() them */ 84 static SLIST_HEAD(, ng_hook) ng_allhooks; 85 static LIST_HEAD(, ng_hook) ng_freehooks; /* in debug, we never free() them */ 86 87 static void ng_dumpitems(void); 88 static void ng_dumpnodes(void); 89 static void ng_dumphooks(void); 90 91 #endif /* NETGRAPH_DEBUG */ 92 /* 93 * DEAD versions of the structures. 94 * In order to avoid races, it is sometimes neccesary to point 95 * at SOMETHING even though theoretically, the current entity is 96 * INVALID. Use these to avoid these races. 97 */ 98 struct ng_type ng_deadtype = { 99 NG_ABI_VERSION, 100 "dead", 101 NULL, /* modevent */ 102 NULL, /* constructor */ 103 NULL, /* rcvmsg */ 104 NULL, /* shutdown */ 105 NULL, /* newhook */ 106 NULL, /* findhook */ 107 NULL, /* connect */ 108 NULL, /* rcvdata */ 109 NULL, /* disconnect */ 110 NULL, /* cmdlist */ 111 }; 112 113 struct ng_node ng_deadnode = { 114 "dead", 115 &ng_deadtype, 116 NGF_INVALID, 117 1, /* refs */ 118 0, /* numhooks */ 119 NULL, /* private */ 120 0, /* ID */ 121 LIST_HEAD_INITIALIZER(ng_deadnode.hooks), 122 {}, /* all_nodes list entry */ 123 {}, /* id hashtable list entry */ 124 {}, /* workqueue entry */ 125 { 0, 126 {}, /* should never use! (should hang) */ 127 NULL, 128 &ng_deadnode.nd_input_queue.queue, 129 &ng_deadnode 130 }, 131 #ifdef NETGRAPH_DEBUG 132 ND_MAGIC, 133 __FILE__, 134 __LINE__, 135 {NULL} 136 #endif /* NETGRAPH_DEBUG */ 137 }; 138 139 struct ng_hook ng_deadhook = { 140 "dead", 141 NULL, /* private */ 142 HK_INVALID | HK_DEAD, 143 1, /* refs always >= 1 */ 144 0, /* undefined data link type */ 145 &ng_deadhook, /* Peer is self */ 146 &ng_deadnode, /* attached to deadnode */ 147 {}, /* hooks list */ 148 NULL, /* override rcvmsg() */ 149 NULL, /* override rcvdata() */ 150 #ifdef NETGRAPH_DEBUG 151 HK_MAGIC, 152 __FILE__, 153 __LINE__, 154 {NULL} 155 #endif /* NETGRAPH_DEBUG */ 156 }; 157 158 /* 159 * END DEAD STRUCTURES 160 */ 161 /* List nodes with unallocated work */ 162 static TAILQ_HEAD(, ng_node) ng_worklist = TAILQ_HEAD_INITIALIZER(ng_worklist); 163 static struct mtx ng_worklist_mtx; /* MUST LOCK NODE FIRST */ 164 165 /* List of installed types */ 166 static LIST_HEAD(, ng_type) ng_typelist; 167 static struct mtx ng_typelist_mtx; 168 169 /* Hash related definitions */ 170 /* XXX Don't need to initialise them because it's a LIST */ 171 #define NG_ID_HASH_SIZE 32 /* most systems wont need even this many */ 172 static LIST_HEAD(, ng_node) ng_ID_hash[NG_ID_HASH_SIZE]; 173 static struct mtx ng_idhash_mtx; 174 /* Method to find a node.. used twice so do it here */ 175 #define NG_IDHASH_FN(ID) ((ID) % (NG_ID_HASH_SIZE)) 176 #define NG_IDHASH_FIND(ID, node) \ 177 do { \ 178 mtx_assert(&ng_idhash_mtx, MA_OWNED); \ 179 LIST_FOREACH(node, &ng_ID_hash[NG_IDHASH_FN(ID)], \ 180 nd_idnodes) { \ 181 if (NG_NODE_IS_VALID(node) \ 182 && (NG_NODE_ID(node) == ID)) { \ 183 break; \ 184 } \ 185 } \ 186 } while (0) 187 188 189 /* Internal functions */ 190 static int ng_add_hook(node_p node, const char *name, hook_p * hookp); 191 static int ng_generic_msg(node_p here, item_p item, hook_p lasthook); 192 static ng_ID_t ng_decodeidname(const char *name); 193 static int ngb_mod_event(module_t mod, int event, void *data); 194 static void ng_worklist_remove(node_p node); 195 static void ngintr(void); 196 static int ng_apply_item(node_p node, item_p item, int rw); 197 static void ng_flush_input_queue(struct ng_queue * ngq); 198 static void ng_setisr(node_p node); 199 static node_p ng_ID2noderef(ng_ID_t ID); 200 static int ng_con_nodes(item_p item, node_p node, const char *name, 201 node_p node2, const char *name2); 202 static int ng_con_part2(node_p node, item_p item, hook_p hook); 203 static int ng_con_part3(node_p node, item_p item, hook_p hook); 204 static int ng_mkpeer(node_p node, const char *name, 205 const char *name2, char *type); 206 207 /* Imported, these used to be externally visible, some may go back. */ 208 void ng_destroy_hook(hook_p hook); 209 node_p ng_name2noderef(node_p node, const char *name); 210 int ng_path2noderef(node_p here, const char *path, 211 node_p *dest, hook_p *lasthook); 212 int ng_make_node(const char *type, node_p *nodepp); 213 int ng_path_parse(char *addr, char **node, char **path, char **hook); 214 void ng_rmnode(node_p node, hook_p dummy1, void *dummy2, int dummy3); 215 void ng_unname(node_p node); 216 217 218 /* Our own netgraph malloc type */ 219 MALLOC_DEFINE(M_NETGRAPH, "netgraph", "netgraph structures and ctrl messages"); 220 MALLOC_DEFINE(M_NETGRAPH_HOOK, "netgraph_hook", "netgraph hook structures"); 221 MALLOC_DEFINE(M_NETGRAPH_NODE, "netgraph_node", "netgraph node structures"); 222 MALLOC_DEFINE(M_NETGRAPH_ITEM, "netgraph_item", "netgraph item structures"); 223 MALLOC_DEFINE(M_NETGRAPH_MSG, "netgraph_msg", "netgraph name storage"); 224 225 /* Should not be visible outside this file */ 226 227 #define _NG_ALLOC_HOOK(hook) \ 228 MALLOC(hook, hook_p, sizeof(*hook), M_NETGRAPH_HOOK, M_NOWAIT | M_ZERO) 229 #define _NG_ALLOC_NODE(node) \ 230 MALLOC(node, node_p, sizeof(*node), M_NETGRAPH_NODE, M_NOWAIT | M_ZERO) 231 232 #define NG_QUEUE_LOCK_INIT(n) \ 233 mtx_init(&(n)->q_mtx, "ng_node", NULL, MTX_DEF) 234 #define NG_QUEUE_LOCK(n) \ 235 mtx_lock(&(n)->q_mtx) 236 #define NG_QUEUE_UNLOCK(n) \ 237 mtx_unlock(&(n)->q_mtx) 238 #define NG_WORKLIST_LOCK_INIT() \ 239 mtx_init(&ng_worklist_mtx, "ng_worklist", NULL, MTX_DEF) 240 #define NG_WORKLIST_LOCK() \ 241 mtx_lock(&ng_worklist_mtx) 242 #define NG_WORKLIST_UNLOCK() \ 243 mtx_unlock(&ng_worklist_mtx) 244 245 #ifdef NETGRAPH_DEBUG /*----------------------------------------------*/ 246 /* 247 * In debug mode: 248 * In an attempt to help track reference count screwups 249 * we do not free objects back to the malloc system, but keep them 250 * in a local cache where we can examine them and keep information safely 251 * after they have been freed. 252 * We use this scheme for nodes and hooks, and to some extent for items. 253 */ 254 static __inline hook_p 255 ng_alloc_hook(void) 256 { 257 hook_p hook; 258 SLIST_ENTRY(ng_hook) temp; 259 mtx_lock(&ng_nodelist_mtx); 260 hook = LIST_FIRST(&ng_freehooks); 261 if (hook) { 262 LIST_REMOVE(hook, hk_hooks); 263 bcopy(&hook->hk_all, &temp, sizeof(temp)); 264 bzero(hook, sizeof(struct ng_hook)); 265 bcopy(&temp, &hook->hk_all, sizeof(temp)); 266 mtx_unlock(&ng_nodelist_mtx); 267 hook->hk_magic = HK_MAGIC; 268 } else { 269 mtx_unlock(&ng_nodelist_mtx); 270 _NG_ALLOC_HOOK(hook); 271 if (hook) { 272 hook->hk_magic = HK_MAGIC; 273 mtx_lock(&ng_nodelist_mtx); 274 SLIST_INSERT_HEAD(&ng_allhooks, hook, hk_all); 275 mtx_unlock(&ng_nodelist_mtx); 276 } 277 } 278 return (hook); 279 } 280 281 static __inline node_p 282 ng_alloc_node(void) 283 { 284 node_p node; 285 SLIST_ENTRY(ng_node) temp; 286 mtx_lock(&ng_nodelist_mtx); 287 node = LIST_FIRST(&ng_freenodes); 288 if (node) { 289 LIST_REMOVE(node, nd_nodes); 290 bcopy(&node->nd_all, &temp, sizeof(temp)); 291 bzero(node, sizeof(struct ng_node)); 292 bcopy(&temp, &node->nd_all, sizeof(temp)); 293 mtx_unlock(&ng_nodelist_mtx); 294 node->nd_magic = ND_MAGIC; 295 } else { 296 mtx_unlock(&ng_nodelist_mtx); 297 _NG_ALLOC_NODE(node); 298 if (node) { 299 node->nd_magic = ND_MAGIC; 300 mtx_lock(&ng_nodelist_mtx); 301 SLIST_INSERT_HEAD(&ng_allnodes, node, nd_all); 302 mtx_unlock(&ng_nodelist_mtx); 303 } 304 } 305 return (node); 306 } 307 308 #define NG_ALLOC_HOOK(hook) do { (hook) = ng_alloc_hook(); } while (0) 309 #define NG_ALLOC_NODE(node) do { (node) = ng_alloc_node(); } while (0) 310 311 312 #define NG_FREE_HOOK(hook) \ 313 do { \ 314 mtx_lock(&ng_nodelist_mtx); \ 315 LIST_INSERT_HEAD(&ng_freehooks, hook, hk_hooks); \ 316 hook->hk_magic = 0; \ 317 mtx_unlock(&ng_nodelist_mtx); \ 318 } while (0) 319 320 #define NG_FREE_NODE(node) \ 321 do { \ 322 mtx_lock(&ng_nodelist_mtx); \ 323 LIST_INSERT_HEAD(&ng_freenodes, node, nd_nodes); \ 324 node->nd_magic = 0; \ 325 mtx_unlock(&ng_nodelist_mtx); \ 326 } while (0) 327 328 #else /* NETGRAPH_DEBUG */ /*----------------------------------------------*/ 329 330 #define NG_ALLOC_HOOK(hook) _NG_ALLOC_HOOK(hook) 331 #define NG_ALLOC_NODE(node) _NG_ALLOC_NODE(node) 332 333 #define NG_FREE_HOOK(hook) do { FREE((hook), M_NETGRAPH_HOOK); } while (0) 334 #define NG_FREE_NODE(node) do { FREE((node), M_NETGRAPH_NODE); } while (0) 335 336 #endif /* NETGRAPH_DEBUG */ /*----------------------------------------------*/ 337 338 /* Set this to kdb_enter("X") to catch all errors as they occur */ 339 #ifndef TRAP_ERROR 340 #define TRAP_ERROR() 341 #endif 342 343 static ng_ID_t nextID = 1; 344 345 #ifdef INVARIANTS 346 #define CHECK_DATA_MBUF(m) do { \ 347 struct mbuf *n; \ 348 int total; \ 349 \ 350 M_ASSERTPKTHDR(m); \ 351 for (total = 0, n = (m); n != NULL; n = n->m_next) { \ 352 total += n->m_len; \ 353 if (n->m_nextpkt != NULL) \ 354 panic("%s: m_nextpkt", __func__); \ 355 } \ 356 \ 357 if ((m)->m_pkthdr.len != total) { \ 358 panic("%s: %d != %d", \ 359 __func__, (m)->m_pkthdr.len, total); \ 360 } \ 361 } while (0) 362 #else 363 #define CHECK_DATA_MBUF(m) 364 #endif 365 366 #define ERROUT(x) do { error = (x); goto done; } while (0) 367 368 /************************************************************************ 369 Parse type definitions for generic messages 370 ************************************************************************/ 371 372 /* Handy structure parse type defining macro */ 373 #define DEFINE_PARSE_STRUCT_TYPE(lo, up, args) \ 374 static const struct ng_parse_struct_field \ 375 ng_ ## lo ## _type_fields[] = NG_GENERIC_ ## up ## _INFO args; \ 376 static const struct ng_parse_type ng_generic_ ## lo ## _type = { \ 377 &ng_parse_struct_type, \ 378 &ng_ ## lo ## _type_fields \ 379 } 380 381 DEFINE_PARSE_STRUCT_TYPE(mkpeer, MKPEER, ()); 382 DEFINE_PARSE_STRUCT_TYPE(connect, CONNECT, ()); 383 DEFINE_PARSE_STRUCT_TYPE(name, NAME, ()); 384 DEFINE_PARSE_STRUCT_TYPE(rmhook, RMHOOK, ()); 385 DEFINE_PARSE_STRUCT_TYPE(nodeinfo, NODEINFO, ()); 386 DEFINE_PARSE_STRUCT_TYPE(typeinfo, TYPEINFO, ()); 387 DEFINE_PARSE_STRUCT_TYPE(linkinfo, LINKINFO, (&ng_generic_nodeinfo_type)); 388 389 /* Get length of an array when the length is stored as a 32 bit 390 value immediately preceding the array -- as with struct namelist 391 and struct typelist. */ 392 static int 393 ng_generic_list_getLength(const struct ng_parse_type *type, 394 const u_char *start, const u_char *buf) 395 { 396 return *((const u_int32_t *)(buf - 4)); 397 } 398 399 /* Get length of the array of struct linkinfo inside a struct hooklist */ 400 static int 401 ng_generic_linkinfo_getLength(const struct ng_parse_type *type, 402 const u_char *start, const u_char *buf) 403 { 404 const struct hooklist *hl = (const struct hooklist *)start; 405 406 return hl->nodeinfo.hooks; 407 } 408 409 /* Array type for a variable length array of struct namelist */ 410 static const struct ng_parse_array_info ng_nodeinfoarray_type_info = { 411 &ng_generic_nodeinfo_type, 412 &ng_generic_list_getLength 413 }; 414 static const struct ng_parse_type ng_generic_nodeinfoarray_type = { 415 &ng_parse_array_type, 416 &ng_nodeinfoarray_type_info 417 }; 418 419 /* Array type for a variable length array of struct typelist */ 420 static const struct ng_parse_array_info ng_typeinfoarray_type_info = { 421 &ng_generic_typeinfo_type, 422 &ng_generic_list_getLength 423 }; 424 static const struct ng_parse_type ng_generic_typeinfoarray_type = { 425 &ng_parse_array_type, 426 &ng_typeinfoarray_type_info 427 }; 428 429 /* Array type for array of struct linkinfo in struct hooklist */ 430 static const struct ng_parse_array_info ng_generic_linkinfo_array_type_info = { 431 &ng_generic_linkinfo_type, 432 &ng_generic_linkinfo_getLength 433 }; 434 static const struct ng_parse_type ng_generic_linkinfo_array_type = { 435 &ng_parse_array_type, 436 &ng_generic_linkinfo_array_type_info 437 }; 438 439 DEFINE_PARSE_STRUCT_TYPE(typelist, TYPELIST, (&ng_generic_nodeinfoarray_type)); 440 DEFINE_PARSE_STRUCT_TYPE(hooklist, HOOKLIST, 441 (&ng_generic_nodeinfo_type, &ng_generic_linkinfo_array_type)); 442 DEFINE_PARSE_STRUCT_TYPE(listnodes, LISTNODES, 443 (&ng_generic_nodeinfoarray_type)); 444 445 /* List of commands and how to convert arguments to/from ASCII */ 446 static const struct ng_cmdlist ng_generic_cmds[] = { 447 { 448 NGM_GENERIC_COOKIE, 449 NGM_SHUTDOWN, 450 "shutdown", 451 NULL, 452 NULL 453 }, 454 { 455 NGM_GENERIC_COOKIE, 456 NGM_MKPEER, 457 "mkpeer", 458 &ng_generic_mkpeer_type, 459 NULL 460 }, 461 { 462 NGM_GENERIC_COOKIE, 463 NGM_CONNECT, 464 "connect", 465 &ng_generic_connect_type, 466 NULL 467 }, 468 { 469 NGM_GENERIC_COOKIE, 470 NGM_NAME, 471 "name", 472 &ng_generic_name_type, 473 NULL 474 }, 475 { 476 NGM_GENERIC_COOKIE, 477 NGM_RMHOOK, 478 "rmhook", 479 &ng_generic_rmhook_type, 480 NULL 481 }, 482 { 483 NGM_GENERIC_COOKIE, 484 NGM_NODEINFO, 485 "nodeinfo", 486 NULL, 487 &ng_generic_nodeinfo_type 488 }, 489 { 490 NGM_GENERIC_COOKIE, 491 NGM_LISTHOOKS, 492 "listhooks", 493 NULL, 494 &ng_generic_hooklist_type 495 }, 496 { 497 NGM_GENERIC_COOKIE, 498 NGM_LISTNAMES, 499 "listnames", 500 NULL, 501 &ng_generic_listnodes_type /* same as NGM_LISTNODES */ 502 }, 503 { 504 NGM_GENERIC_COOKIE, 505 NGM_LISTNODES, 506 "listnodes", 507 NULL, 508 &ng_generic_listnodes_type 509 }, 510 { 511 NGM_GENERIC_COOKIE, 512 NGM_LISTTYPES, 513 "listtypes", 514 NULL, 515 &ng_generic_typeinfo_type 516 }, 517 { 518 NGM_GENERIC_COOKIE, 519 NGM_TEXT_CONFIG, 520 "textconfig", 521 NULL, 522 &ng_parse_string_type 523 }, 524 { 525 NGM_GENERIC_COOKIE, 526 NGM_TEXT_STATUS, 527 "textstatus", 528 NULL, 529 &ng_parse_string_type 530 }, 531 { 532 NGM_GENERIC_COOKIE, 533 NGM_ASCII2BINARY, 534 "ascii2binary", 535 &ng_parse_ng_mesg_type, 536 &ng_parse_ng_mesg_type 537 }, 538 { 539 NGM_GENERIC_COOKIE, 540 NGM_BINARY2ASCII, 541 "binary2ascii", 542 &ng_parse_ng_mesg_type, 543 &ng_parse_ng_mesg_type 544 }, 545 { 0 } 546 }; 547 548 /************************************************************************ 549 Node routines 550 ************************************************************************/ 551 552 /* 553 * Instantiate a node of the requested type 554 */ 555 int 556 ng_make_node(const char *typename, node_p *nodepp) 557 { 558 struct ng_type *type; 559 int error; 560 561 /* Check that the type makes sense */ 562 if (typename == NULL) { 563 TRAP_ERROR(); 564 return (EINVAL); 565 } 566 567 /* Locate the node type. If we fail we return. Do not try to load 568 * module. 569 */ 570 if ((type = ng_findtype(typename)) == NULL) 571 return (ENXIO); 572 573 /* 574 * If we have a constructor, then make the node and 575 * call the constructor to do type specific initialisation. 576 */ 577 if (type->constructor != NULL) { 578 if ((error = ng_make_node_common(type, nodepp)) == 0) { 579 if ((error = ((*type->constructor)(*nodepp)) != 0)) { 580 NG_NODE_UNREF(*nodepp); 581 } 582 } 583 } else { 584 /* 585 * Node has no constructor. We cannot ask for one 586 * to be made. It must be brought into existence by 587 * some external agency. The external agency should 588 * call ng_make_node_common() directly to get the 589 * netgraph part initialised. 590 */ 591 TRAP_ERROR(); 592 error = EINVAL; 593 } 594 return (error); 595 } 596 597 /* 598 * Generic node creation. Called by node initialisation for externally 599 * instantiated nodes (e.g. hardware, sockets, etc ). 600 * The returned node has a reference count of 1. 601 */ 602 int 603 ng_make_node_common(struct ng_type *type, node_p *nodepp) 604 { 605 node_p node; 606 607 /* Require the node type to have been already installed */ 608 if (ng_findtype(type->name) == NULL) { 609 TRAP_ERROR(); 610 return (EINVAL); 611 } 612 613 /* Make a node and try attach it to the type */ 614 NG_ALLOC_NODE(node); 615 if (node == NULL) { 616 TRAP_ERROR(); 617 return (ENOMEM); 618 } 619 node->nd_type = type; 620 NG_NODE_REF(node); /* note reference */ 621 type->refs++; 622 623 NG_QUEUE_LOCK_INIT(&node->nd_input_queue); 624 node->nd_input_queue.queue = NULL; 625 node->nd_input_queue.last = &node->nd_input_queue.queue; 626 node->nd_input_queue.q_flags = 0; 627 node->nd_input_queue.q_node = node; 628 629 /* Initialize hook list for new node */ 630 LIST_INIT(&node->nd_hooks); 631 632 /* Link us into the node linked list */ 633 mtx_lock(&ng_nodelist_mtx); 634 LIST_INSERT_HEAD(&ng_nodelist, node, nd_nodes); 635 mtx_unlock(&ng_nodelist_mtx); 636 637 638 /* get an ID and put us in the hash chain */ 639 mtx_lock(&ng_idhash_mtx); 640 for (;;) { /* wrap protection, even if silly */ 641 node_p node2 = NULL; 642 node->nd_ID = nextID++; /* 137/second for 1 year before wrap */ 643 644 /* Is there a problem with the new number? */ 645 NG_IDHASH_FIND(node->nd_ID, node2); /* already taken? */ 646 if ((node->nd_ID != 0) && (node2 == NULL)) { 647 break; 648 } 649 } 650 LIST_INSERT_HEAD(&ng_ID_hash[NG_IDHASH_FN(node->nd_ID)], 651 node, nd_idnodes); 652 mtx_unlock(&ng_idhash_mtx); 653 654 /* Done */ 655 *nodepp = node; 656 return (0); 657 } 658 659 /* 660 * Forceably start the shutdown process on a node. Either call 661 * its shutdown method, or do the default shutdown if there is 662 * no type-specific method. 663 * 664 * We can only be called from a shutdown message, so we know we have 665 * a writer lock, and therefore exclusive access. It also means 666 * that we should not be on the work queue, but we check anyhow. 667 * 668 * Persistent node types must have a type-specific method which 669 * allocates a new node in which case, this one is irretrievably going away, 670 * or cleans up anything it needs, and just makes the node valid again, 671 * in which case we allow the node to survive. 672 * 673 * XXX We need to think of how to tell a persistent node that we 674 * REALLY need to go away because the hardware has gone or we 675 * are rebooting.... etc. 676 */ 677 void 678 ng_rmnode(node_p node, hook_p dummy1, void *dummy2, int dummy3) 679 { 680 hook_p hook; 681 682 /* Check if it's already shutting down */ 683 if ((node->nd_flags & NGF_CLOSING) != 0) 684 return; 685 686 if (node == &ng_deadnode) { 687 printf ("shutdown called on deadnode\n"); 688 return; 689 } 690 691 /* Add an extra reference so it doesn't go away during this */ 692 NG_NODE_REF(node); 693 694 /* 695 * Mark it invalid so any newcomers know not to try use it 696 * Also add our own mark so we can't recurse 697 * note that NGF_INVALID does not do this as it's also set during 698 * creation 699 */ 700 node->nd_flags |= NGF_INVALID|NGF_CLOSING; 701 702 /* If node has its pre-shutdown method, then call it first*/ 703 if (node->nd_type && node->nd_type->close) 704 (*node->nd_type->close)(node); 705 706 /* Notify all remaining connected nodes to disconnect */ 707 while ((hook = LIST_FIRST(&node->nd_hooks)) != NULL) 708 ng_destroy_hook(hook); 709 710 /* 711 * Drain the input queue forceably. 712 * it has no hooks so what's it going to do, bleed on someone? 713 * Theoretically we came here from a queue entry that was added 714 * Just before the queue was closed, so it should be empty anyway. 715 * Also removes us from worklist if needed. 716 */ 717 ng_flush_input_queue(&node->nd_input_queue); 718 719 /* Ask the type if it has anything to do in this case */ 720 if (node->nd_type && node->nd_type->shutdown) { 721 (*node->nd_type->shutdown)(node); 722 if (NG_NODE_IS_VALID(node)) { 723 /* 724 * Well, blow me down if the node code hasn't declared 725 * that it doesn't want to die. 726 * Presumably it is a persistant node. 727 * If we REALLY want it to go away, 728 * e.g. hardware going away, 729 * Our caller should set NGF_REALLY_DIE in nd_flags. 730 */ 731 node->nd_flags &= ~(NGF_INVALID|NGF_CLOSING); 732 NG_NODE_UNREF(node); /* Assume they still have theirs */ 733 return; 734 } 735 } else { /* do the default thing */ 736 NG_NODE_UNREF(node); 737 } 738 739 ng_unname(node); /* basically a NOP these days */ 740 741 /* 742 * Remove extra reference, possibly the last 743 * Possible other holders of references may include 744 * timeout callouts, but theoretically the node's supposed to 745 * have cancelled them. Possibly hardware dependencies may 746 * force a driver to 'linger' with a reference. 747 */ 748 NG_NODE_UNREF(node); 749 } 750 751 /* 752 * Remove a reference to the node, possibly the last. 753 * deadnode always acts as it it were the last. 754 */ 755 int 756 ng_unref_node(node_p node) 757 { 758 int v; 759 760 if (node == &ng_deadnode) { 761 return (0); 762 } 763 764 do { 765 v = node->nd_refs - 1; 766 } while (! atomic_cmpset_int(&node->nd_refs, v + 1, v)); 767 768 if (v == 0) { /* we were the last */ 769 770 mtx_lock(&ng_nodelist_mtx); 771 node->nd_type->refs--; /* XXX maybe should get types lock? */ 772 LIST_REMOVE(node, nd_nodes); 773 mtx_unlock(&ng_nodelist_mtx); 774 775 mtx_lock(&ng_idhash_mtx); 776 LIST_REMOVE(node, nd_idnodes); 777 mtx_unlock(&ng_idhash_mtx); 778 779 mtx_destroy(&node->nd_input_queue.q_mtx); 780 NG_FREE_NODE(node); 781 } 782 return (v); 783 } 784 785 /************************************************************************ 786 Node ID handling 787 ************************************************************************/ 788 static node_p 789 ng_ID2noderef(ng_ID_t ID) 790 { 791 node_p node; 792 mtx_lock(&ng_idhash_mtx); 793 NG_IDHASH_FIND(ID, node); 794 if(node) 795 NG_NODE_REF(node); 796 mtx_unlock(&ng_idhash_mtx); 797 return(node); 798 } 799 800 ng_ID_t 801 ng_node2ID(node_p node) 802 { 803 return (node ? NG_NODE_ID(node) : 0); 804 } 805 806 /************************************************************************ 807 Node name handling 808 ************************************************************************/ 809 810 /* 811 * Assign a node a name. Once assigned, the name cannot be changed. 812 */ 813 int 814 ng_name_node(node_p node, const char *name) 815 { 816 int i; 817 node_p node2; 818 819 /* Check the name is valid */ 820 for (i = 0; i < NG_NODESIZ; i++) { 821 if (name[i] == '\0' || name[i] == '.' || name[i] == ':') 822 break; 823 } 824 if (i == 0 || name[i] != '\0') { 825 TRAP_ERROR(); 826 return (EINVAL); 827 } 828 if (ng_decodeidname(name) != 0) { /* valid IDs not allowed here */ 829 TRAP_ERROR(); 830 return (EINVAL); 831 } 832 833 /* Check the name isn't already being used */ 834 if ((node2 = ng_name2noderef(node, name)) != NULL) { 835 NG_NODE_UNREF(node2); 836 TRAP_ERROR(); 837 return (EADDRINUSE); 838 } 839 840 /* copy it */ 841 strlcpy(NG_NODE_NAME(node), name, NG_NODESIZ); 842 843 return (0); 844 } 845 846 /* 847 * Find a node by absolute name. The name should NOT end with ':' 848 * The name "." means "this node" and "[xxx]" means "the node 849 * with ID (ie, at address) xxx". 850 * 851 * Returns the node if found, else NULL. 852 * Eventually should add something faster than a sequential search. 853 * Note it acquires a reference on the node so you can be sure it's still 854 * there. 855 */ 856 node_p 857 ng_name2noderef(node_p here, const char *name) 858 { 859 node_p node; 860 ng_ID_t temp; 861 862 /* "." means "this node" */ 863 if (strcmp(name, ".") == 0) { 864 NG_NODE_REF(here); 865 return(here); 866 } 867 868 /* Check for name-by-ID */ 869 if ((temp = ng_decodeidname(name)) != 0) { 870 return (ng_ID2noderef(temp)); 871 } 872 873 /* Find node by name */ 874 mtx_lock(&ng_nodelist_mtx); 875 LIST_FOREACH(node, &ng_nodelist, nd_nodes) { 876 if (NG_NODE_IS_VALID(node) 877 && NG_NODE_HAS_NAME(node) 878 && (strcmp(NG_NODE_NAME(node), name) == 0)) { 879 break; 880 } 881 } 882 if (node) 883 NG_NODE_REF(node); 884 mtx_unlock(&ng_nodelist_mtx); 885 return (node); 886 } 887 888 /* 889 * Decode an ID name, eg. "[f03034de]". Returns 0 if the 890 * string is not valid, otherwise returns the value. 891 */ 892 static ng_ID_t 893 ng_decodeidname(const char *name) 894 { 895 const int len = strlen(name); 896 char *eptr; 897 u_long val; 898 899 /* Check for proper length, brackets, no leading junk */ 900 if ((len < 3) 901 || (name[0] != '[') 902 || (name[len - 1] != ']') 903 || (!isxdigit(name[1]))) { 904 return ((ng_ID_t)0); 905 } 906 907 /* Decode number */ 908 val = strtoul(name + 1, &eptr, 16); 909 if ((eptr - name != len - 1) 910 || (val == ULONG_MAX) 911 || (val == 0)) { 912 return ((ng_ID_t)0); 913 } 914 return (ng_ID_t)val; 915 } 916 917 /* 918 * Remove a name from a node. This should only be called 919 * when shutting down and removing the node. 920 * IF we allow name changing this may be more resurrected. 921 */ 922 void 923 ng_unname(node_p node) 924 { 925 } 926 927 /************************************************************************ 928 Hook routines 929 Names are not optional. Hooks are always connected, except for a 930 brief moment within these routines. On invalidation or during creation 931 they are connected to the 'dead' hook. 932 ************************************************************************/ 933 934 /* 935 * Remove a hook reference 936 */ 937 void 938 ng_unref_hook(hook_p hook) 939 { 940 int v; 941 942 if (hook == &ng_deadhook) { 943 return; 944 } 945 do { 946 v = hook->hk_refs; 947 } while (! atomic_cmpset_int(&hook->hk_refs, v, v - 1)); 948 949 if (v == 1) { /* we were the last */ 950 if (_NG_HOOK_NODE(hook)) { /* it'll probably be ng_deadnode */ 951 _NG_NODE_UNREF((_NG_HOOK_NODE(hook))); 952 hook->hk_node = NULL; 953 } 954 NG_FREE_HOOK(hook); 955 } 956 } 957 958 /* 959 * Add an unconnected hook to a node. Only used internally. 960 * Assumes node is locked. (XXX not yet true ) 961 */ 962 static int 963 ng_add_hook(node_p node, const char *name, hook_p *hookp) 964 { 965 hook_p hook; 966 int error = 0; 967 968 /* Check that the given name is good */ 969 if (name == NULL) { 970 TRAP_ERROR(); 971 return (EINVAL); 972 } 973 if (ng_findhook(node, name) != NULL) { 974 TRAP_ERROR(); 975 return (EEXIST); 976 } 977 978 /* Allocate the hook and link it up */ 979 NG_ALLOC_HOOK(hook); 980 if (hook == NULL) { 981 TRAP_ERROR(); 982 return (ENOMEM); 983 } 984 hook->hk_refs = 1; /* add a reference for us to return */ 985 hook->hk_flags = HK_INVALID; 986 hook->hk_peer = &ng_deadhook; /* start off this way */ 987 hook->hk_node = node; 988 NG_NODE_REF(node); /* each hook counts as a reference */ 989 990 /* Set hook name */ 991 strlcpy(NG_HOOK_NAME(hook), name, NG_HOOKSIZ); 992 993 /* 994 * Check if the node type code has something to say about it 995 * If it fails, the unref of the hook will also unref the node. 996 */ 997 if (node->nd_type->newhook != NULL) { 998 if ((error = (*node->nd_type->newhook)(node, hook, name))) { 999 NG_HOOK_UNREF(hook); /* this frees the hook */ 1000 return (error); 1001 } 1002 } 1003 /* 1004 * The 'type' agrees so far, so go ahead and link it in. 1005 * We'll ask again later when we actually connect the hooks. 1006 */ 1007 LIST_INSERT_HEAD(&node->nd_hooks, hook, hk_hooks); 1008 node->nd_numhooks++; 1009 NG_HOOK_REF(hook); /* one for the node */ 1010 1011 if (hookp) 1012 *hookp = hook; 1013 return (0); 1014 } 1015 1016 /* 1017 * Find a hook 1018 * 1019 * Node types may supply their own optimized routines for finding 1020 * hooks. If none is supplied, we just do a linear search. 1021 * XXX Possibly we should add a reference to the hook? 1022 */ 1023 hook_p 1024 ng_findhook(node_p node, const char *name) 1025 { 1026 hook_p hook; 1027 1028 if (node->nd_type->findhook != NULL) 1029 return (*node->nd_type->findhook)(node, name); 1030 LIST_FOREACH(hook, &node->nd_hooks, hk_hooks) { 1031 if (NG_HOOK_IS_VALID(hook) 1032 && (strcmp(NG_HOOK_NAME(hook), name) == 0)) 1033 return (hook); 1034 } 1035 return (NULL); 1036 } 1037 1038 /* 1039 * Destroy a hook 1040 * 1041 * As hooks are always attached, this really destroys two hooks. 1042 * The one given, and the one attached to it. Disconnect the hooks 1043 * from each other first. We reconnect the peer hook to the 'dead' 1044 * hook so that it can still exist after we depart. We then 1045 * send the peer its own destroy message. This ensures that we only 1046 * interact with the peer's structures when it is locked processing that 1047 * message. We hold a reference to the peer hook so we are guaranteed that 1048 * the peer hook and node are still going to exist until 1049 * we are finished there as the hook holds a ref on the node. 1050 * We run this same code again on the peer hook, but that time it is already 1051 * attached to the 'dead' hook. 1052 * 1053 * This routine is called at all stages of hook creation 1054 * on error detection and must be able to handle any such stage. 1055 */ 1056 void 1057 ng_destroy_hook(hook_p hook) 1058 { 1059 hook_p peer; 1060 node_p node; 1061 1062 if (hook == &ng_deadhook) { /* better safe than sorry */ 1063 printf("ng_destroy_hook called on deadhook\n"); 1064 return; 1065 } 1066 1067 /* 1068 * Protect divorce process with mutex, to avoid races on 1069 * simultaneous disconnect. 1070 */ 1071 mtx_lock(&ng_topo_mtx); 1072 1073 hook->hk_flags |= HK_INVALID; 1074 1075 peer = NG_HOOK_PEER(hook); 1076 node = NG_HOOK_NODE(hook); 1077 1078 if (peer && (peer != &ng_deadhook)) { 1079 /* 1080 * Set the peer to point to ng_deadhook 1081 * from this moment on we are effectively independent it. 1082 * send it an rmhook message of it's own. 1083 */ 1084 peer->hk_peer = &ng_deadhook; /* They no longer know us */ 1085 hook->hk_peer = &ng_deadhook; /* Nor us, them */ 1086 if (NG_HOOK_NODE(peer) == &ng_deadnode) { 1087 /* 1088 * If it's already divorced from a node, 1089 * just free it. 1090 */ 1091 mtx_unlock(&ng_topo_mtx); 1092 } else { 1093 mtx_unlock(&ng_topo_mtx); 1094 ng_rmhook_self(peer); /* Send it a surprise */ 1095 } 1096 NG_HOOK_UNREF(peer); /* account for peer link */ 1097 NG_HOOK_UNREF(hook); /* account for peer link */ 1098 } else 1099 mtx_unlock(&ng_topo_mtx); 1100 1101 mtx_assert(&ng_topo_mtx, MA_NOTOWNED); 1102 1103 /* 1104 * Remove the hook from the node's list to avoid possible recursion 1105 * in case the disconnection results in node shutdown. 1106 */ 1107 if (node == &ng_deadnode) { /* happens if called from ng_con_nodes() */ 1108 return; 1109 } 1110 LIST_REMOVE(hook, hk_hooks); 1111 node->nd_numhooks--; 1112 if (node->nd_type->disconnect) { 1113 /* 1114 * The type handler may elect to destroy the node so don't 1115 * trust its existence after this point. (except 1116 * that we still hold a reference on it. (which we 1117 * inherrited from the hook we are destroying) 1118 */ 1119 (*node->nd_type->disconnect) (hook); 1120 } 1121 1122 /* 1123 * Note that because we will point to ng_deadnode, the original node 1124 * is not decremented automatically so we do that manually. 1125 */ 1126 _NG_HOOK_NODE(hook) = &ng_deadnode; 1127 NG_NODE_UNREF(node); /* We no longer point to it so adjust count */ 1128 NG_HOOK_UNREF(hook); /* Account for linkage (in list) to node */ 1129 } 1130 1131 /* 1132 * Take two hooks on a node and merge the connection so that the given node 1133 * is effectively bypassed. 1134 */ 1135 int 1136 ng_bypass(hook_p hook1, hook_p hook2) 1137 { 1138 if (hook1->hk_node != hook2->hk_node) { 1139 TRAP_ERROR(); 1140 return (EINVAL); 1141 } 1142 hook1->hk_peer->hk_peer = hook2->hk_peer; 1143 hook2->hk_peer->hk_peer = hook1->hk_peer; 1144 1145 hook1->hk_peer = &ng_deadhook; 1146 hook2->hk_peer = &ng_deadhook; 1147 1148 NG_HOOK_UNREF(hook1); 1149 NG_HOOK_UNREF(hook2); 1150 1151 /* XXX If we ever cache methods on hooks update them as well */ 1152 ng_destroy_hook(hook1); 1153 ng_destroy_hook(hook2); 1154 return (0); 1155 } 1156 1157 /* 1158 * Install a new netgraph type 1159 */ 1160 int 1161 ng_newtype(struct ng_type *tp) 1162 { 1163 const size_t namelen = strlen(tp->name); 1164 1165 /* Check version and type name fields */ 1166 if ((tp->version != NG_ABI_VERSION) 1167 || (namelen == 0) 1168 || (namelen >= NG_TYPESIZ)) { 1169 TRAP_ERROR(); 1170 if (tp->version != NG_ABI_VERSION) { 1171 printf("Netgraph: Node type rejected. ABI mismatch. Suggest recompile\n"); 1172 } 1173 return (EINVAL); 1174 } 1175 1176 /* Check for name collision */ 1177 if (ng_findtype(tp->name) != NULL) { 1178 TRAP_ERROR(); 1179 return (EEXIST); 1180 } 1181 1182 1183 /* Link in new type */ 1184 mtx_lock(&ng_typelist_mtx); 1185 LIST_INSERT_HEAD(&ng_typelist, tp, types); 1186 tp->refs = 1; /* first ref is linked list */ 1187 mtx_unlock(&ng_typelist_mtx); 1188 return (0); 1189 } 1190 1191 /* 1192 * unlink a netgraph type 1193 * If no examples exist 1194 */ 1195 int 1196 ng_rmtype(struct ng_type *tp) 1197 { 1198 /* Check for name collision */ 1199 if (tp->refs != 1) { 1200 TRAP_ERROR(); 1201 return (EBUSY); 1202 } 1203 1204 /* Unlink type */ 1205 mtx_lock(&ng_typelist_mtx); 1206 LIST_REMOVE(tp, types); 1207 mtx_unlock(&ng_typelist_mtx); 1208 return (0); 1209 } 1210 1211 /* 1212 * Look for a type of the name given 1213 */ 1214 struct ng_type * 1215 ng_findtype(const char *typename) 1216 { 1217 struct ng_type *type; 1218 1219 mtx_lock(&ng_typelist_mtx); 1220 LIST_FOREACH(type, &ng_typelist, types) { 1221 if (strcmp(type->name, typename) == 0) 1222 break; 1223 } 1224 mtx_unlock(&ng_typelist_mtx); 1225 return (type); 1226 } 1227 1228 /************************************************************************ 1229 Composite routines 1230 ************************************************************************/ 1231 /* 1232 * Connect two nodes using the specified hooks, using queued functions. 1233 */ 1234 static int 1235 ng_con_part3(node_p node, item_p item, hook_p hook) 1236 { 1237 int error = 0; 1238 1239 /* 1240 * When we run, we know that the node 'node' is locked for us. 1241 * Our caller has a reference on the hook. 1242 * Our caller has a reference on the node. 1243 * (In this case our caller is ng_apply_item() ). 1244 * The peer hook has a reference on the hook. 1245 * We are all set up except for the final call to the node, and 1246 * the clearing of the INVALID flag. 1247 */ 1248 if (NG_HOOK_NODE(hook) == &ng_deadnode) { 1249 /* 1250 * The node must have been freed again since we last visited 1251 * here. ng_destry_hook() has this effect but nothing else does. 1252 * We should just release our references and 1253 * free anything we can think of. 1254 * Since we know it's been destroyed, and it's our caller 1255 * that holds the references, just return. 1256 */ 1257 ERROUT(ENOENT); 1258 } 1259 if (hook->hk_node->nd_type->connect) { 1260 if ((error = (*hook->hk_node->nd_type->connect) (hook))) { 1261 ng_destroy_hook(hook); /* also zaps peer */ 1262 printf("failed in ng_con_part3()\n"); 1263 ERROUT(error); 1264 } 1265 } 1266 /* 1267 * XXX this is wrong for SMP. Possibly we need 1268 * to separate out 'create' and 'invalid' flags. 1269 * should only set flags on hooks we have locked under our node. 1270 */ 1271 hook->hk_flags &= ~HK_INVALID; 1272 done: 1273 NG_FREE_ITEM(item); 1274 return (error); 1275 } 1276 1277 static int 1278 ng_con_part2(node_p node, item_p item, hook_p hook) 1279 { 1280 hook_p peer; 1281 int error = 0; 1282 1283 /* 1284 * When we run, we know that the node 'node' is locked for us. 1285 * Our caller has a reference on the hook. 1286 * Our caller has a reference on the node. 1287 * (In this case our caller is ng_apply_item() ). 1288 * The peer hook has a reference on the hook. 1289 * our node pointer points to the 'dead' node. 1290 * First check the hook name is unique. 1291 * Should not happen because we checked before queueing this. 1292 */ 1293 if (ng_findhook(node, NG_HOOK_NAME(hook)) != NULL) { 1294 TRAP_ERROR(); 1295 ng_destroy_hook(hook); /* should destroy peer too */ 1296 printf("failed in ng_con_part2()\n"); 1297 ERROUT(EEXIST); 1298 } 1299 /* 1300 * Check if the node type code has something to say about it 1301 * If it fails, the unref of the hook will also unref the attached node, 1302 * however since that node is 'ng_deadnode' this will do nothing. 1303 * The peer hook will also be destroyed. 1304 */ 1305 if (node->nd_type->newhook != NULL) { 1306 if ((error = (*node->nd_type->newhook)(node, hook, 1307 hook->hk_name))) { 1308 ng_destroy_hook(hook); /* should destroy peer too */ 1309 printf("failed in ng_con_part2()\n"); 1310 ERROUT(error); 1311 } 1312 } 1313 1314 /* 1315 * The 'type' agrees so far, so go ahead and link it in. 1316 * We'll ask again later when we actually connect the hooks. 1317 */ 1318 hook->hk_node = node; /* just overwrite ng_deadnode */ 1319 NG_NODE_REF(node); /* each hook counts as a reference */ 1320 LIST_INSERT_HEAD(&node->nd_hooks, hook, hk_hooks); 1321 node->nd_numhooks++; 1322 NG_HOOK_REF(hook); /* one for the node */ 1323 1324 /* 1325 * We now have a symmetrical situation, where both hooks have been 1326 * linked to their nodes, the newhook methods have been called 1327 * And the references are all correct. The hooks are still marked 1328 * as invalid, as we have not called the 'connect' methods 1329 * yet. 1330 * We can call the local one immediately as we have the 1331 * node locked, but we need to queue the remote one. 1332 */ 1333 if (hook->hk_node->nd_type->connect) { 1334 if ((error = (*hook->hk_node->nd_type->connect) (hook))) { 1335 ng_destroy_hook(hook); /* also zaps peer */ 1336 printf("failed in ng_con_part2(A)\n"); 1337 ERROUT(error); 1338 } 1339 } 1340 1341 /* 1342 * Acquire topo mutex to avoid race with ng_destroy_hook(). 1343 */ 1344 mtx_lock(&ng_topo_mtx); 1345 peer = hook->hk_peer; 1346 if (peer == &ng_deadhook) { 1347 mtx_unlock(&ng_topo_mtx); 1348 printf("failed in ng_con_part2(B)\n"); 1349 ng_destroy_hook(hook); 1350 ERROUT(ENOENT); 1351 } 1352 mtx_unlock(&ng_topo_mtx); 1353 1354 if ((error = ng_send_fn2(peer->hk_node, peer, item, &ng_con_part3, 1355 NULL, 0, NG_REUSE_ITEM))) { 1356 printf("failed in ng_con_part2(C)\n"); 1357 ng_destroy_hook(hook); /* also zaps peer */ 1358 return (error); /* item was consumed. */ 1359 } 1360 hook->hk_flags &= ~HK_INVALID; /* need both to be able to work */ 1361 return (0); /* item was consumed. */ 1362 done: 1363 NG_FREE_ITEM(item); 1364 return (error); 1365 } 1366 1367 /* 1368 * Connect this node with another node. We assume that this node is 1369 * currently locked, as we are only called from an NGM_CONNECT message. 1370 */ 1371 static int 1372 ng_con_nodes(item_p item, node_p node, const char *name, 1373 node_p node2, const char *name2) 1374 { 1375 int error; 1376 hook_p hook; 1377 hook_p hook2; 1378 1379 if (ng_findhook(node2, name2) != NULL) { 1380 return(EEXIST); 1381 } 1382 if ((error = ng_add_hook(node, name, &hook))) /* gives us a ref */ 1383 return (error); 1384 /* Allocate the other hook and link it up */ 1385 NG_ALLOC_HOOK(hook2); 1386 if (hook2 == NULL) { 1387 TRAP_ERROR(); 1388 ng_destroy_hook(hook); /* XXX check ref counts so far */ 1389 NG_HOOK_UNREF(hook); /* including our ref */ 1390 return (ENOMEM); 1391 } 1392 hook2->hk_refs = 1; /* start with a reference for us. */ 1393 hook2->hk_flags = HK_INVALID; 1394 hook2->hk_peer = hook; /* Link the two together */ 1395 hook->hk_peer = hook2; 1396 NG_HOOK_REF(hook); /* Add a ref for the peer to each*/ 1397 NG_HOOK_REF(hook2); 1398 hook2->hk_node = &ng_deadnode; 1399 strlcpy(NG_HOOK_NAME(hook2), name2, NG_HOOKSIZ); 1400 1401 /* 1402 * Queue the function above. 1403 * Procesing continues in that function in the lock context of 1404 * the other node. 1405 */ 1406 if ((error = ng_send_fn2(node2, hook2, item, &ng_con_part2, NULL, 0, 1407 NG_NOFLAGS))) { 1408 printf("failed in ng_con_nodes(): %d\n", error); 1409 ng_destroy_hook(hook); /* also zaps peer */ 1410 } 1411 1412 NG_HOOK_UNREF(hook); /* Let each hook go if it wants to */ 1413 NG_HOOK_UNREF(hook2); 1414 return (error); 1415 } 1416 1417 /* 1418 * Make a peer and connect. 1419 * We assume that the local node is locked. 1420 * The new node probably doesn't need a lock until 1421 * it has a hook, because it cannot really have any work until then, 1422 * but we should think about it a bit more. 1423 * 1424 * The problem may come if the other node also fires up 1425 * some hardware or a timer or some other source of activation, 1426 * also it may already get a command msg via it's ID. 1427 * 1428 * We could use the same method as ng_con_nodes() but we'd have 1429 * to add ability to remove the node when failing. (Not hard, just 1430 * make arg1 point to the node to remove). 1431 * Unless of course we just ignore failure to connect and leave 1432 * an unconnected node? 1433 */ 1434 static int 1435 ng_mkpeer(node_p node, const char *name, const char *name2, char *type) 1436 { 1437 node_p node2; 1438 hook_p hook1, hook2; 1439 int error; 1440 1441 if ((error = ng_make_node(type, &node2))) { 1442 return (error); 1443 } 1444 1445 if ((error = ng_add_hook(node, name, &hook1))) { /* gives us a ref */ 1446 ng_rmnode(node2, NULL, NULL, 0); 1447 return (error); 1448 } 1449 1450 if ((error = ng_add_hook(node2, name2, &hook2))) { 1451 ng_rmnode(node2, NULL, NULL, 0); 1452 ng_destroy_hook(hook1); 1453 NG_HOOK_UNREF(hook1); 1454 return (error); 1455 } 1456 1457 /* 1458 * Actually link the two hooks together. 1459 */ 1460 hook1->hk_peer = hook2; 1461 hook2->hk_peer = hook1; 1462 1463 /* Each hook is referenced by the other */ 1464 NG_HOOK_REF(hook1); 1465 NG_HOOK_REF(hook2); 1466 1467 /* Give each node the opportunity to veto the pending connection */ 1468 if (hook1->hk_node->nd_type->connect) { 1469 error = (*hook1->hk_node->nd_type->connect) (hook1); 1470 } 1471 1472 if ((error == 0) && hook2->hk_node->nd_type->connect) { 1473 error = (*hook2->hk_node->nd_type->connect) (hook2); 1474 1475 } 1476 1477 /* 1478 * drop the references we were holding on the two hooks. 1479 */ 1480 if (error) { 1481 ng_destroy_hook(hook2); /* also zaps hook1 */ 1482 ng_rmnode(node2, NULL, NULL, 0); 1483 } else { 1484 /* As a last act, allow the hooks to be used */ 1485 hook1->hk_flags &= ~HK_INVALID; 1486 hook2->hk_flags &= ~HK_INVALID; 1487 } 1488 NG_HOOK_UNREF(hook1); 1489 NG_HOOK_UNREF(hook2); 1490 return (error); 1491 } 1492 1493 /************************************************************************ 1494 Utility routines to send self messages 1495 ************************************************************************/ 1496 1497 /* Shut this node down as soon as everyone is clear of it */ 1498 /* Should add arg "immediately" to jump the queue */ 1499 int 1500 ng_rmnode_self(node_p node) 1501 { 1502 int error; 1503 1504 if (node == &ng_deadnode) 1505 return (0); 1506 node->nd_flags |= NGF_INVALID; 1507 if (node->nd_flags & NGF_CLOSING) 1508 return (0); 1509 1510 error = ng_send_fn(node, NULL, &ng_rmnode, NULL, 0); 1511 return (error); 1512 } 1513 1514 static void 1515 ng_rmhook_part2(node_p node, hook_p hook, void *arg1, int arg2) 1516 { 1517 ng_destroy_hook(hook); 1518 return ; 1519 } 1520 1521 int 1522 ng_rmhook_self(hook_p hook) 1523 { 1524 int error; 1525 node_p node = NG_HOOK_NODE(hook); 1526 1527 if (node == &ng_deadnode) 1528 return (0); 1529 1530 error = ng_send_fn(node, hook, &ng_rmhook_part2, NULL, 0); 1531 return (error); 1532 } 1533 1534 /*********************************************************************** 1535 * Parse and verify a string of the form: <NODE:><PATH> 1536 * 1537 * Such a string can refer to a specific node or a specific hook 1538 * on a specific node, depending on how you look at it. In the 1539 * latter case, the PATH component must not end in a dot. 1540 * 1541 * Both <NODE:> and <PATH> are optional. The <PATH> is a string 1542 * of hook names separated by dots. This breaks out the original 1543 * string, setting *nodep to "NODE" (or NULL if none) and *pathp 1544 * to "PATH" (or NULL if degenerate). Also, *hookp will point to 1545 * the final hook component of <PATH>, if any, otherwise NULL. 1546 * 1547 * This returns -1 if the path is malformed. The char ** are optional. 1548 ***********************************************************************/ 1549 int 1550 ng_path_parse(char *addr, char **nodep, char **pathp, char **hookp) 1551 { 1552 char *node, *path, *hook; 1553 int k; 1554 1555 /* 1556 * Extract absolute NODE, if any 1557 */ 1558 for (path = addr; *path && *path != ':'; path++); 1559 if (*path) { 1560 node = addr; /* Here's the NODE */ 1561 *path++ = '\0'; /* Here's the PATH */ 1562 1563 /* Node name must not be empty */ 1564 if (!*node) 1565 return -1; 1566 1567 /* A name of "." is OK; otherwise '.' not allowed */ 1568 if (strcmp(node, ".") != 0) { 1569 for (k = 0; node[k]; k++) 1570 if (node[k] == '.') 1571 return -1; 1572 } 1573 } else { 1574 node = NULL; /* No absolute NODE */ 1575 path = addr; /* Here's the PATH */ 1576 } 1577 1578 /* Snoop for illegal characters in PATH */ 1579 for (k = 0; path[k]; k++) 1580 if (path[k] == ':') 1581 return -1; 1582 1583 /* Check for no repeated dots in PATH */ 1584 for (k = 0; path[k]; k++) 1585 if (path[k] == '.' && path[k + 1] == '.') 1586 return -1; 1587 1588 /* Remove extra (degenerate) dots from beginning or end of PATH */ 1589 if (path[0] == '.') 1590 path++; 1591 if (*path && path[strlen(path) - 1] == '.') 1592 path[strlen(path) - 1] = 0; 1593 1594 /* If PATH has a dot, then we're not talking about a hook */ 1595 if (*path) { 1596 for (hook = path, k = 0; path[k]; k++) 1597 if (path[k] == '.') { 1598 hook = NULL; 1599 break; 1600 } 1601 } else 1602 path = hook = NULL; 1603 1604 /* Done */ 1605 if (nodep) 1606 *nodep = node; 1607 if (pathp) 1608 *pathp = path; 1609 if (hookp) 1610 *hookp = hook; 1611 return (0); 1612 } 1613 1614 /* 1615 * Given a path, which may be absolute or relative, and a starting node, 1616 * return the destination node. 1617 */ 1618 int 1619 ng_path2noderef(node_p here, const char *address, 1620 node_p *destp, hook_p *lasthook) 1621 { 1622 char fullpath[NG_PATHSIZ]; 1623 char *nodename, *path, pbuf[2]; 1624 node_p node, oldnode; 1625 char *cp; 1626 hook_p hook = NULL; 1627 1628 /* Initialize */ 1629 if (destp == NULL) { 1630 TRAP_ERROR(); 1631 return EINVAL; 1632 } 1633 *destp = NULL; 1634 1635 /* Make a writable copy of address for ng_path_parse() */ 1636 strncpy(fullpath, address, sizeof(fullpath) - 1); 1637 fullpath[sizeof(fullpath) - 1] = '\0'; 1638 1639 /* Parse out node and sequence of hooks */ 1640 if (ng_path_parse(fullpath, &nodename, &path, NULL) < 0) { 1641 TRAP_ERROR(); 1642 return EINVAL; 1643 } 1644 if (path == NULL) { 1645 pbuf[0] = '.'; /* Needs to be writable */ 1646 pbuf[1] = '\0'; 1647 path = pbuf; 1648 } 1649 1650 /* 1651 * For an absolute address, jump to the starting node. 1652 * Note that this holds a reference on the node for us. 1653 * Don't forget to drop the reference if we don't need it. 1654 */ 1655 if (nodename) { 1656 node = ng_name2noderef(here, nodename); 1657 if (node == NULL) { 1658 TRAP_ERROR(); 1659 return (ENOENT); 1660 } 1661 } else { 1662 if (here == NULL) { 1663 TRAP_ERROR(); 1664 return (EINVAL); 1665 } 1666 node = here; 1667 NG_NODE_REF(node); 1668 } 1669 1670 /* 1671 * Now follow the sequence of hooks 1672 * XXX 1673 * We actually cannot guarantee that the sequence 1674 * is not being demolished as we crawl along it 1675 * without extra-ordinary locking etc. 1676 * So this is a bit dodgy to say the least. 1677 * We can probably hold up some things by holding 1678 * the nodelist mutex for the time of this 1679 * crawl if we wanted.. At least that way we wouldn't have to 1680 * worry about the nodes disappearing, but the hooks would still 1681 * be a problem. 1682 */ 1683 for (cp = path; node != NULL && *cp != '\0'; ) { 1684 char *segment; 1685 1686 /* 1687 * Break out the next path segment. Replace the dot we just 1688 * found with a NUL; "cp" points to the next segment (or the 1689 * NUL at the end). 1690 */ 1691 for (segment = cp; *cp != '\0'; cp++) { 1692 if (*cp == '.') { 1693 *cp++ = '\0'; 1694 break; 1695 } 1696 } 1697 1698 /* Empty segment */ 1699 if (*segment == '\0') 1700 continue; 1701 1702 /* We have a segment, so look for a hook by that name */ 1703 hook = ng_findhook(node, segment); 1704 1705 /* Can't get there from here... */ 1706 if (hook == NULL 1707 || NG_HOOK_PEER(hook) == NULL 1708 || NG_HOOK_NOT_VALID(hook) 1709 || NG_HOOK_NOT_VALID(NG_HOOK_PEER(hook))) { 1710 TRAP_ERROR(); 1711 NG_NODE_UNREF(node); 1712 #if 0 1713 printf("hooknotvalid %s %s %d %d %d %d ", 1714 path, 1715 segment, 1716 hook == NULL, 1717 NG_HOOK_PEER(hook) == NULL, 1718 NG_HOOK_NOT_VALID(hook), 1719 NG_HOOK_NOT_VALID(NG_HOOK_PEER(hook))); 1720 #endif 1721 return (ENOENT); 1722 } 1723 1724 /* 1725 * Hop on over to the next node 1726 * XXX 1727 * Big race conditions here as hooks and nodes go away 1728 * *** Idea.. store an ng_ID_t in each hook and use that 1729 * instead of the direct hook in this crawl? 1730 */ 1731 oldnode = node; 1732 if ((node = NG_PEER_NODE(hook))) 1733 NG_NODE_REF(node); /* XXX RACE */ 1734 NG_NODE_UNREF(oldnode); /* XXX another race */ 1735 if (NG_NODE_NOT_VALID(node)) { 1736 NG_NODE_UNREF(node); /* XXX more races */ 1737 node = NULL; 1738 } 1739 } 1740 1741 /* If node somehow missing, fail here (probably this is not needed) */ 1742 if (node == NULL) { 1743 TRAP_ERROR(); 1744 return (ENXIO); 1745 } 1746 1747 /* Done */ 1748 *destp = node; 1749 if (lasthook != NULL) 1750 *lasthook = (hook ? NG_HOOK_PEER(hook) : NULL); 1751 return (0); 1752 } 1753 1754 /***************************************************************\ 1755 * Input queue handling. 1756 * All activities are submitted to the node via the input queue 1757 * which implements a multiple-reader/single-writer gate. 1758 * Items which cannot be handled immediately are queued. 1759 * 1760 * read-write queue locking inline functions * 1761 \***************************************************************/ 1762 1763 static __inline item_p ng_dequeue(struct ng_queue * ngq, int *rw); 1764 static __inline item_p ng_acquire_read(struct ng_queue * ngq, 1765 item_p item); 1766 static __inline item_p ng_acquire_write(struct ng_queue * ngq, 1767 item_p item); 1768 static __inline void ng_leave_read(struct ng_queue * ngq); 1769 static __inline void ng_leave_write(struct ng_queue * ngq); 1770 static __inline void ng_queue_rw(struct ng_queue * ngq, 1771 item_p item, int rw); 1772 1773 /* 1774 * Definition of the bits fields in the ng_queue flag word. 1775 * Defined here rather than in netgraph.h because no-one should fiddle 1776 * with them. 1777 * 1778 * The ordering here may be important! don't shuffle these. 1779 */ 1780 /*- 1781 Safety Barrier--------+ (adjustable to suit taste) (not used yet) 1782 | 1783 V 1784 +-------+-------+-------+-------+-------+-------+-------+-------+ 1785 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 1786 | |A|c|t|i|v|e| |R|e|a|d|e|r| |C|o|u|n|t| | | | | | | | | |P|A| 1787 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |O|W| 1788 +-------+-------+-------+-------+-------+-------+-------+-------+ 1789 \___________________________ ____________________________/ | | 1790 V | | 1791 [active reader count] | | 1792 | | 1793 Operation Pending -------------------------------+ | 1794 | 1795 Active Writer ---------------------------------------+ 1796 1797 1798 */ 1799 #define WRITER_ACTIVE 0x00000001 1800 #define OP_PENDING 0x00000002 1801 #define READER_INCREMENT 0x00000004 1802 #define READER_MASK 0xfffffffc /* Not valid if WRITER_ACTIVE is set */ 1803 #define SAFETY_BARRIER 0x00100000 /* 128K items queued should be enough */ 1804 1805 /* Defines of more elaborate states on the queue */ 1806 /* Mask of bits a new read cares about */ 1807 #define NGQ_RMASK (WRITER_ACTIVE|OP_PENDING) 1808 1809 /* Mask of bits a new write cares about */ 1810 #define NGQ_WMASK (NGQ_RMASK|READER_MASK) 1811 1812 /* Test to decide if there is something on the queue. */ 1813 #define QUEUE_ACTIVE(QP) ((QP)->q_flags & OP_PENDING) 1814 1815 /* How to decide what the next queued item is. */ 1816 #define HEAD_IS_READER(QP) NGI_QUEUED_READER((QP)->queue) 1817 #define HEAD_IS_WRITER(QP) NGI_QUEUED_WRITER((QP)->queue) /* notused */ 1818 1819 /* Read the status to decide if the next item on the queue can now run. */ 1820 #define QUEUED_READER_CAN_PROCEED(QP) \ 1821 (((QP)->q_flags & (NGQ_RMASK & ~OP_PENDING)) == 0) 1822 #define QUEUED_WRITER_CAN_PROCEED(QP) \ 1823 (((QP)->q_flags & (NGQ_WMASK & ~OP_PENDING)) == 0) 1824 1825 /* Is there a chance of getting ANY work off the queue? */ 1826 #define NEXT_QUEUED_ITEM_CAN_PROCEED(QP) \ 1827 (QUEUE_ACTIVE(QP) && \ 1828 ((HEAD_IS_READER(QP)) ? QUEUED_READER_CAN_PROCEED(QP) : \ 1829 QUEUED_WRITER_CAN_PROCEED(QP))) 1830 1831 1832 #define NGQRW_R 0 1833 #define NGQRW_W 1 1834 1835 /* 1836 * Taking into account the current state of the queue and node, possibly take 1837 * the next entry off the queue and return it. Return NULL if there was 1838 * nothing we could return, either because there really was nothing there, or 1839 * because the node was in a state where it cannot yet process the next item 1840 * on the queue. 1841 * 1842 * This MUST MUST MUST be called with the mutex held. 1843 */ 1844 static __inline item_p 1845 ng_dequeue(struct ng_queue *ngq, int *rw) 1846 { 1847 item_p item; 1848 u_int add_arg; 1849 1850 mtx_assert(&ngq->q_mtx, MA_OWNED); 1851 /* 1852 * If there is nothing queued, then just return. 1853 * No point in continuing. 1854 * XXXGL: assert this? 1855 */ 1856 if (!QUEUE_ACTIVE(ngq)) { 1857 CTR4(KTR_NET, "%20s: node [%x] (%p) queue empty; " 1858 "queue flags 0x%lx", __func__, 1859 ngq->q_node->nd_ID, ngq->q_node, ngq->q_flags); 1860 return (NULL); 1861 } 1862 1863 /* 1864 * From here, we can assume there is a head item. 1865 * We need to find out what it is and if it can be dequeued, given 1866 * the current state of the node. 1867 */ 1868 if (HEAD_IS_READER(ngq)) { 1869 if (!QUEUED_READER_CAN_PROCEED(ngq)) { 1870 /* 1871 * It's a reader but we can't use it. 1872 * We are stalled so make sure we don't 1873 * get called again until something changes. 1874 */ 1875 ng_worklist_remove(ngq->q_node); 1876 CTR4(KTR_NET, "%20s: node [%x] (%p) queued reader " 1877 "can't proceed; queue flags 0x%lx", __func__, 1878 ngq->q_node->nd_ID, ngq->q_node, ngq->q_flags); 1879 return (NULL); 1880 } 1881 /* 1882 * Head of queue is a reader and we have no write active. 1883 * We don't care how many readers are already active. 1884 * Add the correct increment for the reader count. 1885 */ 1886 add_arg = READER_INCREMENT; 1887 *rw = NGQRW_R; 1888 } else if (QUEUED_WRITER_CAN_PROCEED(ngq)) { 1889 /* 1890 * There is a pending write, no readers and no active writer. 1891 * This means we can go ahead with the pending writer. Note 1892 * the fact that we now have a writer, ready for when we take 1893 * it off the queue. 1894 * 1895 * We don't need to worry about a possible collision with the 1896 * fasttrack reader. 1897 * 1898 * The fasttrack thread may take a long time to discover that we 1899 * are running so we would have an inconsistent state in the 1900 * flags for a while. Since we ignore the reader count 1901 * entirely when the WRITER_ACTIVE flag is set, this should 1902 * not matter (in fact it is defined that way). If it tests 1903 * the flag before this operation, the OP_PENDING flag 1904 * will make it fail, and if it tests it later, the 1905 * WRITER_ACTIVE flag will do the same. If it is SO slow that 1906 * we have actually completed the operation, and neither flag 1907 * is set by the time that it tests the flags, then it is 1908 * actually ok for it to continue. If it completes and we've 1909 * finished and the read pending is set it still fails. 1910 * 1911 * So we can just ignore it, as long as we can ensure that the 1912 * transition from WRITE_PENDING state to the WRITER_ACTIVE 1913 * state is atomic. 1914 * 1915 * After failing, first it will be held back by the mutex, then 1916 * when it can proceed, it will queue its request, then it 1917 * would arrive at this function. Usually it will have to 1918 * leave empty handed because the ACTIVE WRITER bit will be 1919 * set. 1920 * 1921 * Adjust the flags for the new active writer. 1922 */ 1923 add_arg = WRITER_ACTIVE; 1924 *rw = NGQRW_W; 1925 /* 1926 * We want to write "active writer, no readers " Now go make 1927 * it true. In fact there may be a number in the readers 1928 * count but we know it is not true and will be fixed soon. 1929 * We will fix the flags for the next pending entry in a 1930 * moment. 1931 */ 1932 } else { 1933 /* 1934 * We can't dequeue anything.. return and say so. Probably we 1935 * have a write pending and the readers count is non zero. If 1936 * we got here because a reader hit us just at the wrong 1937 * moment with the fasttrack code, and put us in a strange 1938 * state, then it will be coming through in just a moment, 1939 * (just as soon as we release the mutex) and keep things 1940 * moving. 1941 * Make sure we remove ourselves from the work queue. It 1942 * would be a waste of effort to do all this again. 1943 */ 1944 ng_worklist_remove(ngq->q_node); 1945 CTR4(KTR_NET, "%20s: node [%x] (%p) can't dequeue anything; " 1946 "queue flags 0x%lx", __func__, 1947 ngq->q_node->nd_ID, ngq->q_node, ngq->q_flags); 1948 return (NULL); 1949 } 1950 1951 /* 1952 * Now we dequeue the request (whatever it may be) and correct the 1953 * pending flags and the next and last pointers. 1954 */ 1955 item = ngq->queue; 1956 ngq->queue = item->el_next; 1957 CTR6(KTR_NET, "%20s: node [%x] (%p) dequeued item %p with flags 0x%lx; " 1958 "queue flags 0x%lx", __func__, 1959 ngq->q_node->nd_ID,ngq->q_node, item, item->el_flags, ngq->q_flags); 1960 if (ngq->last == &(item->el_next)) { 1961 /* 1962 * that was the last entry in the queue so set the 'last 1963 * pointer up correctly and make sure the pending flag is 1964 * clear. 1965 */ 1966 add_arg += -OP_PENDING; 1967 ngq->last = &(ngq->queue); 1968 /* 1969 * Whatever flag was set will be cleared and 1970 * the new acive field will be set by the add as well, 1971 * so we don't need to change add_arg. 1972 * But we know we don't need to be on the work list. 1973 */ 1974 atomic_add_long(&ngq->q_flags, add_arg); 1975 ng_worklist_remove(ngq->q_node); 1976 } else { 1977 /* 1978 * Since there is still something on the queue 1979 * we don't need to change the PENDING flag. 1980 */ 1981 atomic_add_long(&ngq->q_flags, add_arg); 1982 /* 1983 * If we see more doable work, make sure we are 1984 * on the work queue. 1985 */ 1986 if (NEXT_QUEUED_ITEM_CAN_PROCEED(ngq)) { 1987 ng_setisr(ngq->q_node); 1988 } 1989 } 1990 CTR6(KTR_NET, "%20s: node [%x] (%p) returning item %p as %s; " 1991 "queue flags 0x%lx", __func__, 1992 ngq->q_node->nd_ID, ngq->q_node, item, *rw ? "WRITER" : "READER" , 1993 ngq->q_flags); 1994 return (item); 1995 } 1996 1997 /* 1998 * Queue a packet to be picked up by someone else. 1999 * We really don't care who, but we can't or don't want to hang around 2000 * to process it ourselves. We are probably an interrupt routine.. 2001 * If the queue could be run, flag the netisr handler to start. 2002 */ 2003 static __inline void 2004 ng_queue_rw(struct ng_queue * ngq, item_p item, int rw) 2005 { 2006 mtx_assert(&ngq->q_mtx, MA_OWNED); 2007 2008 if (rw == NGQRW_W) 2009 NGI_SET_WRITER(item); 2010 else 2011 NGI_SET_READER(item); 2012 item->el_next = NULL; /* maybe not needed */ 2013 *ngq->last = item; 2014 CTR5(KTR_NET, "%20s: node [%x] (%p) queued item %p as %s", __func__, 2015 ngq->q_node->nd_ID, ngq->q_node, item, rw ? "WRITER" : "READER" ); 2016 /* 2017 * If it was the first item in the queue then we need to 2018 * set the last pointer and the type flags. 2019 */ 2020 if (ngq->last == &(ngq->queue)) { 2021 atomic_add_long(&ngq->q_flags, OP_PENDING); 2022 CTR3(KTR_NET, "%20s: node [%x] (%p) set OP_PENDING", __func__, 2023 ngq->q_node->nd_ID, ngq->q_node); 2024 } 2025 2026 ngq->last = &(item->el_next); 2027 /* 2028 * We can take the worklist lock with the node locked 2029 * BUT NOT THE REVERSE! 2030 */ 2031 if (NEXT_QUEUED_ITEM_CAN_PROCEED(ngq)) 2032 ng_setisr(ngq->q_node); 2033 } 2034 2035 2036 /* 2037 * This function 'cheats' in that it first tries to 'grab' the use of the 2038 * node, without going through the mutex. We can do this becasue of the 2039 * semantics of the lock. The semantics include a clause that says that the 2040 * value of the readers count is invalid if the WRITER_ACTIVE flag is set. It 2041 * also says that the WRITER_ACTIVE flag cannot be set if the readers count 2042 * is not zero. Note that this talks about what is valid to SET the 2043 * WRITER_ACTIVE flag, because from the moment it is set, the value if the 2044 * reader count is immaterial, and not valid. The two 'pending' flags have a 2045 * similar effect, in that If they are orthogonal to the two active fields in 2046 * how they are set, but if either is set, the attempted 'grab' need to be 2047 * backed out because there is earlier work, and we maintain ordering in the 2048 * queue. The result of this is that the reader request can try obtain use of 2049 * the node with only a single atomic addition, and without any of the mutex 2050 * overhead. If this fails the operation degenerates to the same as for other 2051 * cases. 2052 * 2053 */ 2054 static __inline item_p 2055 ng_acquire_read(struct ng_queue *ngq, item_p item) 2056 { 2057 KASSERT(ngq != &ng_deadnode.nd_input_queue, 2058 ("%s: working on deadnode", __func__)); 2059 2060 /* ######### Hack alert ######### */ 2061 atomic_add_long(&ngq->q_flags, READER_INCREMENT); 2062 if ((ngq->q_flags & NGQ_RMASK) == 0) { 2063 /* Successfully grabbed node */ 2064 CTR4(KTR_NET, "%20s: node [%x] (%p) fast acquired item %p", 2065 __func__, ngq->q_node->nd_ID, ngq->q_node, item); 2066 return (item); 2067 } 2068 /* undo the damage if we didn't succeed */ 2069 atomic_subtract_long(&ngq->q_flags, READER_INCREMENT); 2070 2071 /* ######### End Hack alert ######### */ 2072 NG_QUEUE_LOCK(ngq); 2073 /* 2074 * Try again. Another processor (or interrupt for that matter) may 2075 * have removed the last queued item that was stopping us from 2076 * running, between the previous test, and the moment that we took 2077 * the mutex. (Or maybe a writer completed.) 2078 * Even if another fast-track reader hits during this period 2079 * we don't care as multiple readers is OK. 2080 */ 2081 if ((ngq->q_flags & NGQ_RMASK) == 0) { 2082 atomic_add_long(&ngq->q_flags, READER_INCREMENT); 2083 NG_QUEUE_UNLOCK(ngq); 2084 CTR4(KTR_NET, "%20s: node [%x] (%p) slow acquired item %p", 2085 __func__, ngq->q_node->nd_ID, ngq->q_node, item); 2086 return (item); 2087 } 2088 2089 /* 2090 * and queue the request for later. 2091 */ 2092 ng_queue_rw(ngq, item, NGQRW_R); 2093 NG_QUEUE_UNLOCK(ngq); 2094 2095 return (NULL); 2096 } 2097 2098 static __inline item_p 2099 ng_acquire_write(struct ng_queue *ngq, item_p item) 2100 { 2101 KASSERT(ngq != &ng_deadnode.nd_input_queue, 2102 ("%s: working on deadnode", __func__)); 2103 2104 restart: 2105 NG_QUEUE_LOCK(ngq); 2106 /* 2107 * If there are no readers, no writer, and no pending packets, then 2108 * we can just go ahead. In all other situations we need to queue the 2109 * request 2110 */ 2111 if ((ngq->q_flags & NGQ_WMASK) == 0) { 2112 /* collision could happen *HERE* */ 2113 atomic_add_long(&ngq->q_flags, WRITER_ACTIVE); 2114 NG_QUEUE_UNLOCK(ngq); 2115 if (ngq->q_flags & READER_MASK) { 2116 /* Collision with fast-track reader */ 2117 atomic_subtract_long(&ngq->q_flags, WRITER_ACTIVE); 2118 goto restart; 2119 } 2120 CTR4(KTR_NET, "%20s: node [%x] (%p) acquired item %p", 2121 __func__, ngq->q_node->nd_ID, ngq->q_node, item); 2122 return (item); 2123 } 2124 2125 /* 2126 * and queue the request for later. 2127 */ 2128 ng_queue_rw(ngq, item, NGQRW_W); 2129 NG_QUEUE_UNLOCK(ngq); 2130 2131 return (NULL); 2132 } 2133 2134 #if 0 2135 static __inline item_p 2136 ng_upgrade_write(struct ng_queue *ngq, item_p item) 2137 { 2138 KASSERT(ngq != &ng_deadnode.nd_input_queue, 2139 ("%s: working on deadnode", __func__)); 2140 2141 NGI_SET_WRITER(item); 2142 2143 mtx_lock_spin(&(ngq->q_mtx)); 2144 2145 /* 2146 * There will never be no readers as we are there ourselves. 2147 * Set the WRITER_ACTIVE flags ASAP to block out fast track readers. 2148 * The caller we are running from will call ng_leave_read() 2149 * soon, so we must account for that. We must leave again with the 2150 * READER lock. If we find other readers, then 2151 * queue the request for later. However "later" may be rignt now 2152 * if there are no readers. We don't really care if there are queued 2153 * items as we will bypass them anyhow. 2154 */ 2155 atomic_add_long(&ngq->q_flags, WRITER_ACTIVE - READER_INCREMENT); 2156 if (ngq->q_flags & (NGQ_WMASK & ~OP_PENDING) == WRITER_ACTIVE) { 2157 mtx_unlock_spin(&(ngq->q_mtx)); 2158 2159 /* It's just us, act on the item. */ 2160 /* will NOT drop writer lock when done */ 2161 ng_apply_item(node, item, 0); 2162 2163 /* 2164 * Having acted on the item, atomically 2165 * down grade back to READER and finish up 2166 */ 2167 atomic_add_long(&ngq->q_flags, 2168 READER_INCREMENT - WRITER_ACTIVE); 2169 2170 /* Our caller will call ng_leave_read() */ 2171 return; 2172 } 2173 /* 2174 * It's not just us active, so queue us AT THE HEAD. 2175 * "Why?" I hear you ask. 2176 * Put us at the head of the queue as we've already been 2177 * through it once. If there is nothing else waiting, 2178 * set the correct flags. 2179 */ 2180 if ((item->el_next = ngq->queue) == NULL) { 2181 /* 2182 * Set up the "last" pointer. 2183 * We are the only (and thus last) item 2184 */ 2185 ngq->last = &(item->el_next); 2186 2187 /* We've gone from, 0 to 1 item in the queue */ 2188 atomic_add_long(&ngq->q_flags, OP_PENDING); 2189 2190 CTR3(KTR_NET, "%20s: node [%x] (%p) set OP_PENDING", __func__, 2191 ngq->q_node->nd_ID, ngq->q_node); 2192 }; 2193 ngq->queue = item; 2194 CTR5(KTR_NET, "%20s: node [%x] (%p) requeued item %p as WRITER", 2195 __func__, ngq->q_node->nd_ID, ngq->q_node, item ); 2196 2197 /* Reverse what we did above. That downgrades us back to reader */ 2198 atomic_add_long(&ngq->q_flags, READER_INCREMENT - WRITER_ACTIVE); 2199 if (NEXT_QUEUED_ITEM_CAN_PROCEED(ngq)) 2200 ng_setisr(ngq->q_node); 2201 mtx_unlock_spin(&(ngq->q_mtx)); 2202 2203 return; 2204 } 2205 2206 #endif 2207 2208 static __inline void 2209 ng_leave_read(struct ng_queue *ngq) 2210 { 2211 atomic_subtract_long(&ngq->q_flags, READER_INCREMENT); 2212 } 2213 2214 static __inline void 2215 ng_leave_write(struct ng_queue *ngq) 2216 { 2217 atomic_subtract_long(&ngq->q_flags, WRITER_ACTIVE); 2218 } 2219 2220 static void 2221 ng_flush_input_queue(struct ng_queue * ngq) 2222 { 2223 item_p item; 2224 2225 NG_QUEUE_LOCK(ngq); 2226 while (ngq->queue) { 2227 item = ngq->queue; 2228 ngq->queue = item->el_next; 2229 if (ngq->last == &(item->el_next)) { 2230 ngq->last = &(ngq->queue); 2231 atomic_add_long(&ngq->q_flags, -OP_PENDING); 2232 } 2233 NG_QUEUE_UNLOCK(ngq); 2234 2235 /* If the item is supplying a callback, call it with an error */ 2236 if (item->apply != NULL && 2237 refcount_release(&item->apply->refs)) { 2238 (*item->apply->apply)(item->apply->context, ENOENT); 2239 } 2240 NG_FREE_ITEM(item); 2241 NG_QUEUE_LOCK(ngq); 2242 } 2243 /* 2244 * Take us off the work queue if we are there. 2245 * We definately have no work to be done. 2246 */ 2247 ng_worklist_remove(ngq->q_node); 2248 NG_QUEUE_UNLOCK(ngq); 2249 } 2250 2251 /*********************************************************************** 2252 * Externally visible method for sending or queueing messages or data. 2253 ***********************************************************************/ 2254 2255 /* 2256 * The module code should have filled out the item correctly by this stage: 2257 * Common: 2258 * reference to destination node. 2259 * Reference to destination rcv hook if relevant. 2260 * apply pointer must be or NULL or reference valid struct ng_apply_info. 2261 * Data: 2262 * pointer to mbuf 2263 * Control_Message: 2264 * pointer to msg. 2265 * ID of original sender node. (return address) 2266 * Function: 2267 * Function pointer 2268 * void * argument 2269 * integer argument 2270 * 2271 * The nodes have several routines and macros to help with this task: 2272 */ 2273 2274 int 2275 ng_snd_item(item_p item, int flags) 2276 { 2277 hook_p hook; 2278 node_p node; 2279 int queue, rw; 2280 struct ng_queue *ngq; 2281 int error = 0; 2282 2283 if (item == NULL) { 2284 TRAP_ERROR(); 2285 return (EINVAL); /* failed to get queue element */ 2286 } 2287 2288 #ifdef NETGRAPH_DEBUG 2289 _ngi_check(item, __FILE__, __LINE__); 2290 #endif 2291 2292 if (item->apply) 2293 refcount_acquire(&item->apply->refs); 2294 2295 hook = NGI_HOOK(item); 2296 node = NGI_NODE(item); 2297 ngq = &node->nd_input_queue; 2298 if (node == NULL) { 2299 TRAP_ERROR(); 2300 ERROUT(EINVAL); /* No address */ 2301 } 2302 2303 queue = (flags & NG_QUEUE) ? 1 : 0; 2304 2305 switch(item->el_flags & NGQF_TYPE) { 2306 case NGQF_DATA: 2307 /* 2308 * DATA MESSAGE 2309 * Delivered to a node via a non-optional hook. 2310 * Both should be present in the item even though 2311 * the node is derivable from the hook. 2312 * References are held on both by the item. 2313 */ 2314 2315 /* Protect nodes from sending NULL pointers 2316 * to each other 2317 */ 2318 if (NGI_M(item) == NULL) 2319 ERROUT(EINVAL); 2320 2321 CHECK_DATA_MBUF(NGI_M(item)); 2322 if (hook == NULL) { 2323 TRAP_ERROR(); 2324 ERROUT(EINVAL); 2325 } 2326 if ((NG_HOOK_NOT_VALID(hook)) 2327 || (NG_NODE_NOT_VALID(NG_HOOK_NODE(hook)))) { 2328 ERROUT(ENOTCONN); 2329 } 2330 if ((hook->hk_flags & HK_QUEUE)) { 2331 queue = 1; 2332 } 2333 break; 2334 case NGQF_MESG: 2335 /* 2336 * CONTROL MESSAGE 2337 * Delivered to a node. 2338 * Hook is optional. 2339 * References are held by the item on the node and 2340 * the hook if it is present. 2341 */ 2342 if (hook && (hook->hk_flags & HK_QUEUE)) { 2343 queue = 1; 2344 } 2345 break; 2346 case NGQF_FN: 2347 case NGQF_FN2: 2348 break; 2349 default: 2350 TRAP_ERROR(); 2351 ERROUT(EINVAL); 2352 } 2353 switch(item->el_flags & NGQF_RW) { 2354 case NGQF_READER: 2355 rw = NGQRW_R; 2356 break; 2357 case NGQF_WRITER: 2358 rw = NGQRW_W; 2359 break; 2360 default: 2361 panic("%s: invalid item flags %lx", __func__, item->el_flags); 2362 } 2363 2364 /* 2365 * If the node specifies single threading, force writer semantics. 2366 * Similarly, the node may say one hook always produces writers. 2367 * These are overrides. 2368 */ 2369 if ((node->nd_flags & NGF_FORCE_WRITER) 2370 || (hook && (hook->hk_flags & HK_FORCE_WRITER))) 2371 rw = NGQRW_W; 2372 2373 if (queue) { 2374 /* Put it on the queue for that node*/ 2375 #ifdef NETGRAPH_DEBUG 2376 _ngi_check(item, __FILE__, __LINE__); 2377 #endif 2378 NG_QUEUE_LOCK(ngq); 2379 ng_queue_rw(ngq, item, rw); 2380 NG_QUEUE_UNLOCK(ngq); 2381 2382 if (flags & NG_PROGRESS) 2383 return (EINPROGRESS); 2384 else 2385 return (0); 2386 } 2387 2388 /* 2389 * We already decided how we will be queueud or treated. 2390 * Try get the appropriate operating permission. 2391 */ 2392 if (rw == NGQRW_R) 2393 item = ng_acquire_read(ngq, item); 2394 else 2395 item = ng_acquire_write(ngq, item); 2396 2397 2398 if (item == NULL) { 2399 if (flags & NG_PROGRESS) 2400 return (EINPROGRESS); 2401 else 2402 return (0); 2403 } 2404 2405 #ifdef NETGRAPH_DEBUG 2406 _ngi_check(item, __FILE__, __LINE__); 2407 #endif 2408 2409 NGI_GET_NODE(item, node); /* zaps stored node */ 2410 2411 error = ng_apply_item(node, item, rw); /* drops r/w lock when done */ 2412 2413 /* 2414 * If the node goes away when we remove the reference, 2415 * whatever we just did caused it.. whatever we do, DO NOT 2416 * access the node again! 2417 */ 2418 if (NG_NODE_UNREF(node) == 0) { 2419 return (error); 2420 } 2421 2422 NG_QUEUE_LOCK(ngq); 2423 if (NEXT_QUEUED_ITEM_CAN_PROCEED(ngq)) 2424 ng_setisr(ngq->q_node); 2425 NG_QUEUE_UNLOCK(ngq); 2426 2427 return (error); 2428 2429 done: 2430 /* Apply callback. */ 2431 if (item->apply != NULL && 2432 refcount_release(&item->apply->refs)) { 2433 (*item->apply->apply)(item->apply->context, error); 2434 } 2435 NG_FREE_ITEM(item); 2436 return (error); 2437 } 2438 2439 /* 2440 * We have an item that was possibly queued somewhere. 2441 * It should contain all the information needed 2442 * to run it on the appropriate node/hook. 2443 * If there is apply pointer and we own the last reference, call apply(). 2444 */ 2445 static int 2446 ng_apply_item(node_p node, item_p item, int rw) 2447 { 2448 hook_p hook; 2449 int error = 0; 2450 ng_rcvdata_t *rcvdata; 2451 ng_rcvmsg_t *rcvmsg; 2452 struct ng_apply_info *apply; 2453 2454 NGI_GET_HOOK(item, hook); /* clears stored hook */ 2455 #ifdef NETGRAPH_DEBUG 2456 _ngi_check(item, __FILE__, __LINE__); 2457 #endif 2458 2459 apply = item->apply; 2460 2461 switch (item->el_flags & NGQF_TYPE) { 2462 case NGQF_DATA: 2463 /* 2464 * Check things are still ok as when we were queued. 2465 */ 2466 if ((hook == NULL) 2467 || NG_HOOK_NOT_VALID(hook) 2468 || NG_NODE_NOT_VALID(node) ) { 2469 error = EIO; 2470 NG_FREE_ITEM(item); 2471 break; 2472 } 2473 /* 2474 * If no receive method, just silently drop it. 2475 * Give preference to the hook over-ride method 2476 */ 2477 if ((!(rcvdata = hook->hk_rcvdata)) 2478 && (!(rcvdata = NG_HOOK_NODE(hook)->nd_type->rcvdata))) { 2479 error = 0; 2480 NG_FREE_ITEM(item); 2481 break; 2482 } 2483 error = (*rcvdata)(hook, item); 2484 break; 2485 case NGQF_MESG: 2486 if (hook) { 2487 if (NG_HOOK_NOT_VALID(hook)) { 2488 /* 2489 * The hook has been zapped then we can't 2490 * use it. Immediately drop its reference. 2491 * The message may not need it. 2492 */ 2493 NG_HOOK_UNREF(hook); 2494 hook = NULL; 2495 } 2496 } 2497 /* 2498 * Similarly, if the node is a zombie there is 2499 * nothing we can do with it, drop everything. 2500 */ 2501 if (NG_NODE_NOT_VALID(node)) { 2502 TRAP_ERROR(); 2503 error = EINVAL; 2504 NG_FREE_ITEM(item); 2505 } else { 2506 /* 2507 * Call the appropriate message handler for the object. 2508 * It is up to the message handler to free the message. 2509 * If it's a generic message, handle it generically, 2510 * otherwise call the type's message handler 2511 * (if it exists) 2512 * XXX (race). Remember that a queued message may 2513 * reference a node or hook that has just been 2514 * invalidated. It will exist as the queue code 2515 * is holding a reference, but.. 2516 */ 2517 2518 struct ng_mesg *msg = NGI_MSG(item); 2519 2520 /* 2521 * check if the generic handler owns it. 2522 */ 2523 if ((msg->header.typecookie == NGM_GENERIC_COOKIE) 2524 && ((msg->header.flags & NGF_RESP) == 0)) { 2525 error = ng_generic_msg(node, item, hook); 2526 break; 2527 } 2528 /* 2529 * Now see if there is a handler (hook or node specific) 2530 * in the target node. If none, silently discard. 2531 */ 2532 if (((!hook) || (!(rcvmsg = hook->hk_rcvmsg))) 2533 && (!(rcvmsg = node->nd_type->rcvmsg))) { 2534 TRAP_ERROR(); 2535 error = 0; 2536 NG_FREE_ITEM(item); 2537 break; 2538 } 2539 error = (*rcvmsg)(node, item, hook); 2540 } 2541 break; 2542 case NGQF_FN: 2543 case NGQF_FN2: 2544 /* 2545 * We have to implicitly trust the hook, 2546 * as some of these are used for system purposes 2547 * where the hook is invalid. In the case of 2548 * the shutdown message we allow it to hit 2549 * even if the node is invalid. 2550 */ 2551 if ((NG_NODE_NOT_VALID(node)) 2552 && (NGI_FN(item) != &ng_rmnode)) { 2553 TRAP_ERROR(); 2554 error = EINVAL; 2555 NG_FREE_ITEM(item); 2556 break; 2557 } 2558 if ((item->el_flags & NGQF_TYPE) == NGQF_FN) { 2559 (*NGI_FN(item))(node, hook, NGI_ARG1(item), 2560 NGI_ARG2(item)); 2561 NG_FREE_ITEM(item); 2562 } else /* it is NGQF_FN2 */ 2563 error = (*NGI_FN2(item))(node, item, hook); 2564 break; 2565 } 2566 /* 2567 * We held references on some of the resources 2568 * that we took from the item. Now that we have 2569 * finished doing everything, drop those references. 2570 */ 2571 if (hook) { 2572 NG_HOOK_UNREF(hook); 2573 } 2574 2575 if (rw == NGQRW_R) { 2576 ng_leave_read(&node->nd_input_queue); 2577 } else { 2578 ng_leave_write(&node->nd_input_queue); 2579 } 2580 2581 /* Apply callback. */ 2582 if (apply != NULL && 2583 refcount_release(&apply->refs)) { 2584 (*apply->apply)(apply->context, error); 2585 } 2586 2587 return (error); 2588 } 2589 2590 /*********************************************************************** 2591 * Implement the 'generic' control messages 2592 ***********************************************************************/ 2593 static int 2594 ng_generic_msg(node_p here, item_p item, hook_p lasthook) 2595 { 2596 int error = 0; 2597 struct ng_mesg *msg; 2598 struct ng_mesg *resp = NULL; 2599 2600 NGI_GET_MSG(item, msg); 2601 if (msg->header.typecookie != NGM_GENERIC_COOKIE) { 2602 TRAP_ERROR(); 2603 error = EINVAL; 2604 goto out; 2605 } 2606 switch (msg->header.cmd) { 2607 case NGM_SHUTDOWN: 2608 ng_rmnode(here, NULL, NULL, 0); 2609 break; 2610 case NGM_MKPEER: 2611 { 2612 struct ngm_mkpeer *const mkp = (struct ngm_mkpeer *) msg->data; 2613 2614 if (msg->header.arglen != sizeof(*mkp)) { 2615 TRAP_ERROR(); 2616 error = EINVAL; 2617 break; 2618 } 2619 mkp->type[sizeof(mkp->type) - 1] = '\0'; 2620 mkp->ourhook[sizeof(mkp->ourhook) - 1] = '\0'; 2621 mkp->peerhook[sizeof(mkp->peerhook) - 1] = '\0'; 2622 error = ng_mkpeer(here, mkp->ourhook, mkp->peerhook, mkp->type); 2623 break; 2624 } 2625 case NGM_CONNECT: 2626 { 2627 struct ngm_connect *const con = 2628 (struct ngm_connect *) msg->data; 2629 node_p node2; 2630 2631 if (msg->header.arglen != sizeof(*con)) { 2632 TRAP_ERROR(); 2633 error = EINVAL; 2634 break; 2635 } 2636 con->path[sizeof(con->path) - 1] = '\0'; 2637 con->ourhook[sizeof(con->ourhook) - 1] = '\0'; 2638 con->peerhook[sizeof(con->peerhook) - 1] = '\0'; 2639 /* Don't forget we get a reference.. */ 2640 error = ng_path2noderef(here, con->path, &node2, NULL); 2641 if (error) 2642 break; 2643 error = ng_con_nodes(item, here, con->ourhook, 2644 node2, con->peerhook); 2645 NG_NODE_UNREF(node2); 2646 break; 2647 } 2648 case NGM_NAME: 2649 { 2650 struct ngm_name *const nam = (struct ngm_name *) msg->data; 2651 2652 if (msg->header.arglen != sizeof(*nam)) { 2653 TRAP_ERROR(); 2654 error = EINVAL; 2655 break; 2656 } 2657 nam->name[sizeof(nam->name) - 1] = '\0'; 2658 error = ng_name_node(here, nam->name); 2659 break; 2660 } 2661 case NGM_RMHOOK: 2662 { 2663 struct ngm_rmhook *const rmh = (struct ngm_rmhook *) msg->data; 2664 hook_p hook; 2665 2666 if (msg->header.arglen != sizeof(*rmh)) { 2667 TRAP_ERROR(); 2668 error = EINVAL; 2669 break; 2670 } 2671 rmh->ourhook[sizeof(rmh->ourhook) - 1] = '\0'; 2672 if ((hook = ng_findhook(here, rmh->ourhook)) != NULL) 2673 ng_destroy_hook(hook); 2674 break; 2675 } 2676 case NGM_NODEINFO: 2677 { 2678 struct nodeinfo *ni; 2679 2680 NG_MKRESPONSE(resp, msg, sizeof(*ni), M_NOWAIT); 2681 if (resp == NULL) { 2682 error = ENOMEM; 2683 break; 2684 } 2685 2686 /* Fill in node info */ 2687 ni = (struct nodeinfo *) resp->data; 2688 if (NG_NODE_HAS_NAME(here)) 2689 strcpy(ni->name, NG_NODE_NAME(here)); 2690 strcpy(ni->type, here->nd_type->name); 2691 ni->id = ng_node2ID(here); 2692 ni->hooks = here->nd_numhooks; 2693 break; 2694 } 2695 case NGM_LISTHOOKS: 2696 { 2697 const int nhooks = here->nd_numhooks; 2698 struct hooklist *hl; 2699 struct nodeinfo *ni; 2700 hook_p hook; 2701 2702 /* Get response struct */ 2703 NG_MKRESPONSE(resp, msg, sizeof(*hl) 2704 + (nhooks * sizeof(struct linkinfo)), M_NOWAIT); 2705 if (resp == NULL) { 2706 error = ENOMEM; 2707 break; 2708 } 2709 hl = (struct hooklist *) resp->data; 2710 ni = &hl->nodeinfo; 2711 2712 /* Fill in node info */ 2713 if (NG_NODE_HAS_NAME(here)) 2714 strcpy(ni->name, NG_NODE_NAME(here)); 2715 strcpy(ni->type, here->nd_type->name); 2716 ni->id = ng_node2ID(here); 2717 2718 /* Cycle through the linked list of hooks */ 2719 ni->hooks = 0; 2720 LIST_FOREACH(hook, &here->nd_hooks, hk_hooks) { 2721 struct linkinfo *const link = &hl->link[ni->hooks]; 2722 2723 if (ni->hooks >= nhooks) { 2724 log(LOG_ERR, "%s: number of %s changed\n", 2725 __func__, "hooks"); 2726 break; 2727 } 2728 if (NG_HOOK_NOT_VALID(hook)) 2729 continue; 2730 strcpy(link->ourhook, NG_HOOK_NAME(hook)); 2731 strcpy(link->peerhook, NG_PEER_HOOK_NAME(hook)); 2732 if (NG_PEER_NODE_NAME(hook)[0] != '\0') 2733 strcpy(link->nodeinfo.name, 2734 NG_PEER_NODE_NAME(hook)); 2735 strcpy(link->nodeinfo.type, 2736 NG_PEER_NODE(hook)->nd_type->name); 2737 link->nodeinfo.id = ng_node2ID(NG_PEER_NODE(hook)); 2738 link->nodeinfo.hooks = NG_PEER_NODE(hook)->nd_numhooks; 2739 ni->hooks++; 2740 } 2741 break; 2742 } 2743 2744 case NGM_LISTNAMES: 2745 case NGM_LISTNODES: 2746 { 2747 const int unnamed = (msg->header.cmd == NGM_LISTNODES); 2748 struct namelist *nl; 2749 node_p node; 2750 int num = 0; 2751 2752 mtx_lock(&ng_nodelist_mtx); 2753 /* Count number of nodes */ 2754 LIST_FOREACH(node, &ng_nodelist, nd_nodes) { 2755 if (NG_NODE_IS_VALID(node) 2756 && (unnamed || NG_NODE_HAS_NAME(node))) { 2757 num++; 2758 } 2759 } 2760 mtx_unlock(&ng_nodelist_mtx); 2761 2762 /* Get response struct */ 2763 NG_MKRESPONSE(resp, msg, sizeof(*nl) 2764 + (num * sizeof(struct nodeinfo)), M_NOWAIT); 2765 if (resp == NULL) { 2766 error = ENOMEM; 2767 break; 2768 } 2769 nl = (struct namelist *) resp->data; 2770 2771 /* Cycle through the linked list of nodes */ 2772 nl->numnames = 0; 2773 mtx_lock(&ng_nodelist_mtx); 2774 LIST_FOREACH(node, &ng_nodelist, nd_nodes) { 2775 struct nodeinfo *const np = &nl->nodeinfo[nl->numnames]; 2776 2777 if (NG_NODE_NOT_VALID(node)) 2778 continue; 2779 if (!unnamed && (! NG_NODE_HAS_NAME(node))) 2780 continue; 2781 if (nl->numnames >= num) { 2782 log(LOG_ERR, "%s: number of %s changed\n", 2783 __func__, "nodes"); 2784 break; 2785 } 2786 if (NG_NODE_HAS_NAME(node)) 2787 strcpy(np->name, NG_NODE_NAME(node)); 2788 strcpy(np->type, node->nd_type->name); 2789 np->id = ng_node2ID(node); 2790 np->hooks = node->nd_numhooks; 2791 nl->numnames++; 2792 } 2793 mtx_unlock(&ng_nodelist_mtx); 2794 break; 2795 } 2796 2797 case NGM_LISTTYPES: 2798 { 2799 struct typelist *tl; 2800 struct ng_type *type; 2801 int num = 0; 2802 2803 mtx_lock(&ng_typelist_mtx); 2804 /* Count number of types */ 2805 LIST_FOREACH(type, &ng_typelist, types) { 2806 num++; 2807 } 2808 mtx_unlock(&ng_typelist_mtx); 2809 2810 /* Get response struct */ 2811 NG_MKRESPONSE(resp, msg, sizeof(*tl) 2812 + (num * sizeof(struct typeinfo)), M_NOWAIT); 2813 if (resp == NULL) { 2814 error = ENOMEM; 2815 break; 2816 } 2817 tl = (struct typelist *) resp->data; 2818 2819 /* Cycle through the linked list of types */ 2820 tl->numtypes = 0; 2821 mtx_lock(&ng_typelist_mtx); 2822 LIST_FOREACH(type, &ng_typelist, types) { 2823 struct typeinfo *const tp = &tl->typeinfo[tl->numtypes]; 2824 2825 if (tl->numtypes >= num) { 2826 log(LOG_ERR, "%s: number of %s changed\n", 2827 __func__, "types"); 2828 break; 2829 } 2830 strcpy(tp->type_name, type->name); 2831 tp->numnodes = type->refs - 1; /* don't count list */ 2832 tl->numtypes++; 2833 } 2834 mtx_unlock(&ng_typelist_mtx); 2835 break; 2836 } 2837 2838 case NGM_BINARY2ASCII: 2839 { 2840 int bufSize = 20 * 1024; /* XXX hard coded constant */ 2841 const struct ng_parse_type *argstype; 2842 const struct ng_cmdlist *c; 2843 struct ng_mesg *binary, *ascii; 2844 2845 /* Data area must contain a valid netgraph message */ 2846 binary = (struct ng_mesg *)msg->data; 2847 if (msg->header.arglen < sizeof(struct ng_mesg) || 2848 (msg->header.arglen - sizeof(struct ng_mesg) < 2849 binary->header.arglen)) { 2850 TRAP_ERROR(); 2851 error = EINVAL; 2852 break; 2853 } 2854 2855 /* Get a response message with lots of room */ 2856 NG_MKRESPONSE(resp, msg, sizeof(*ascii) + bufSize, M_NOWAIT); 2857 if (resp == NULL) { 2858 error = ENOMEM; 2859 break; 2860 } 2861 ascii = (struct ng_mesg *)resp->data; 2862 2863 /* Copy binary message header to response message payload */ 2864 bcopy(binary, ascii, sizeof(*binary)); 2865 2866 /* Find command by matching typecookie and command number */ 2867 for (c = here->nd_type->cmdlist; 2868 c != NULL && c->name != NULL; c++) { 2869 if (binary->header.typecookie == c->cookie 2870 && binary->header.cmd == c->cmd) 2871 break; 2872 } 2873 if (c == NULL || c->name == NULL) { 2874 for (c = ng_generic_cmds; c->name != NULL; c++) { 2875 if (binary->header.typecookie == c->cookie 2876 && binary->header.cmd == c->cmd) 2877 break; 2878 } 2879 if (c->name == NULL) { 2880 NG_FREE_MSG(resp); 2881 error = ENOSYS; 2882 break; 2883 } 2884 } 2885 2886 /* Convert command name to ASCII */ 2887 snprintf(ascii->header.cmdstr, sizeof(ascii->header.cmdstr), 2888 "%s", c->name); 2889 2890 /* Convert command arguments to ASCII */ 2891 argstype = (binary->header.flags & NGF_RESP) ? 2892 c->respType : c->mesgType; 2893 if (argstype == NULL) { 2894 *ascii->data = '\0'; 2895 } else { 2896 if ((error = ng_unparse(argstype, 2897 (u_char *)binary->data, 2898 ascii->data, bufSize)) != 0) { 2899 NG_FREE_MSG(resp); 2900 break; 2901 } 2902 } 2903 2904 /* Return the result as struct ng_mesg plus ASCII string */ 2905 bufSize = strlen(ascii->data) + 1; 2906 ascii->header.arglen = bufSize; 2907 resp->header.arglen = sizeof(*ascii) + bufSize; 2908 break; 2909 } 2910 2911 case NGM_ASCII2BINARY: 2912 { 2913 int bufSize = 2000; /* XXX hard coded constant */ 2914 const struct ng_cmdlist *c; 2915 const struct ng_parse_type *argstype; 2916 struct ng_mesg *ascii, *binary; 2917 int off = 0; 2918 2919 /* Data area must contain at least a struct ng_mesg + '\0' */ 2920 ascii = (struct ng_mesg *)msg->data; 2921 if ((msg->header.arglen < sizeof(*ascii) + 1) || 2922 (ascii->header.arglen < 1) || 2923 (msg->header.arglen < sizeof(*ascii) + 2924 ascii->header.arglen)) { 2925 TRAP_ERROR(); 2926 error = EINVAL; 2927 break; 2928 } 2929 ascii->data[ascii->header.arglen - 1] = '\0'; 2930 2931 /* Get a response message with lots of room */ 2932 NG_MKRESPONSE(resp, msg, sizeof(*binary) + bufSize, M_NOWAIT); 2933 if (resp == NULL) { 2934 error = ENOMEM; 2935 break; 2936 } 2937 binary = (struct ng_mesg *)resp->data; 2938 2939 /* Copy ASCII message header to response message payload */ 2940 bcopy(ascii, binary, sizeof(*ascii)); 2941 2942 /* Find command by matching ASCII command string */ 2943 for (c = here->nd_type->cmdlist; 2944 c != NULL && c->name != NULL; c++) { 2945 if (strcmp(ascii->header.cmdstr, c->name) == 0) 2946 break; 2947 } 2948 if (c == NULL || c->name == NULL) { 2949 for (c = ng_generic_cmds; c->name != NULL; c++) { 2950 if (strcmp(ascii->header.cmdstr, c->name) == 0) 2951 break; 2952 } 2953 if (c->name == NULL) { 2954 NG_FREE_MSG(resp); 2955 error = ENOSYS; 2956 break; 2957 } 2958 } 2959 2960 /* Convert command name to binary */ 2961 binary->header.cmd = c->cmd; 2962 binary->header.typecookie = c->cookie; 2963 2964 /* Convert command arguments to binary */ 2965 argstype = (binary->header.flags & NGF_RESP) ? 2966 c->respType : c->mesgType; 2967 if (argstype == NULL) { 2968 bufSize = 0; 2969 } else { 2970 if ((error = ng_parse(argstype, ascii->data, 2971 &off, (u_char *)binary->data, &bufSize)) != 0) { 2972 NG_FREE_MSG(resp); 2973 break; 2974 } 2975 } 2976 2977 /* Return the result */ 2978 binary->header.arglen = bufSize; 2979 resp->header.arglen = sizeof(*binary) + bufSize; 2980 break; 2981 } 2982 2983 case NGM_TEXT_CONFIG: 2984 case NGM_TEXT_STATUS: 2985 /* 2986 * This one is tricky as it passes the command down to the 2987 * actual node, even though it is a generic type command. 2988 * This means we must assume that the item/msg is already freed 2989 * when control passes back to us. 2990 */ 2991 if (here->nd_type->rcvmsg != NULL) { 2992 NGI_MSG(item) = msg; /* put it back as we found it */ 2993 return((*here->nd_type->rcvmsg)(here, item, lasthook)); 2994 } 2995 /* Fall through if rcvmsg not supported */ 2996 default: 2997 TRAP_ERROR(); 2998 error = EINVAL; 2999 } 3000 /* 3001 * Sometimes a generic message may be statically allocated 3002 * to avoid problems with allocating when in tight memeory situations. 3003 * Don't free it if it is so. 3004 * I break them appart here, because erros may cause a free if the item 3005 * in which case we'd be doing it twice. 3006 * they are kept together above, to simplify freeing. 3007 */ 3008 out: 3009 NG_RESPOND_MSG(error, here, item, resp); 3010 if (msg) 3011 NG_FREE_MSG(msg); 3012 return (error); 3013 } 3014 3015 /************************************************************************ 3016 Queue element get/free routines 3017 ************************************************************************/ 3018 3019 uma_zone_t ng_qzone; 3020 static int maxalloc = 512; /* limit the damage of a leak */ 3021 3022 TUNABLE_INT("net.graph.maxalloc", &maxalloc); 3023 SYSCTL_INT(_net_graph, OID_AUTO, maxalloc, CTLFLAG_RDTUN, &maxalloc, 3024 0, "Maximum number of queue items to allocate"); 3025 3026 #ifdef NETGRAPH_DEBUG 3027 static TAILQ_HEAD(, ng_item) ng_itemlist = TAILQ_HEAD_INITIALIZER(ng_itemlist); 3028 static int allocated; /* number of items malloc'd */ 3029 #endif 3030 3031 /* 3032 * Get a queue entry. 3033 * This is usually called when a packet first enters netgraph. 3034 * By definition, this is usually from an interrupt, or from a user. 3035 * Users are not so important, but try be quick for the times that it's 3036 * an interrupt. 3037 */ 3038 static __inline item_p 3039 ng_getqblk(int flags) 3040 { 3041 item_p item = NULL; 3042 int wait; 3043 3044 wait = (flags & NG_WAITOK) ? M_WAITOK : M_NOWAIT; 3045 3046 item = uma_zalloc(ng_qzone, wait | M_ZERO); 3047 3048 #ifdef NETGRAPH_DEBUG 3049 if (item) { 3050 mtx_lock(&ngq_mtx); 3051 TAILQ_INSERT_TAIL(&ng_itemlist, item, all); 3052 allocated++; 3053 mtx_unlock(&ngq_mtx); 3054 } 3055 #endif 3056 3057 return (item); 3058 } 3059 3060 /* 3061 * Release a queue entry 3062 */ 3063 void 3064 ng_free_item(item_p item) 3065 { 3066 /* 3067 * The item may hold resources on it's own. We need to free 3068 * these before we can free the item. What they are depends upon 3069 * what kind of item it is. it is important that nodes zero 3070 * out pointers to resources that they remove from the item 3071 * or we release them again here. 3072 */ 3073 switch (item->el_flags & NGQF_TYPE) { 3074 case NGQF_DATA: 3075 /* If we have an mbuf still attached.. */ 3076 NG_FREE_M(_NGI_M(item)); 3077 break; 3078 case NGQF_MESG: 3079 _NGI_RETADDR(item) = 0; 3080 NG_FREE_MSG(_NGI_MSG(item)); 3081 break; 3082 case NGQF_FN: 3083 case NGQF_FN2: 3084 /* nothing to free really, */ 3085 _NGI_FN(item) = NULL; 3086 _NGI_ARG1(item) = NULL; 3087 _NGI_ARG2(item) = 0; 3088 break; 3089 } 3090 /* If we still have a node or hook referenced... */ 3091 _NGI_CLR_NODE(item); 3092 _NGI_CLR_HOOK(item); 3093 3094 #ifdef NETGRAPH_DEBUG 3095 mtx_lock(&ngq_mtx); 3096 TAILQ_REMOVE(&ng_itemlist, item, all); 3097 allocated--; 3098 mtx_unlock(&ngq_mtx); 3099 #endif 3100 uma_zfree(ng_qzone, item); 3101 } 3102 3103 /************************************************************************ 3104 Module routines 3105 ************************************************************************/ 3106 3107 /* 3108 * Handle the loading/unloading of a netgraph node type module 3109 */ 3110 int 3111 ng_mod_event(module_t mod, int event, void *data) 3112 { 3113 struct ng_type *const type = data; 3114 int s, error = 0; 3115 3116 switch (event) { 3117 case MOD_LOAD: 3118 3119 /* Register new netgraph node type */ 3120 s = splnet(); 3121 if ((error = ng_newtype(type)) != 0) { 3122 splx(s); 3123 break; 3124 } 3125 3126 /* Call type specific code */ 3127 if (type->mod_event != NULL) 3128 if ((error = (*type->mod_event)(mod, event, data))) { 3129 mtx_lock(&ng_typelist_mtx); 3130 type->refs--; /* undo it */ 3131 LIST_REMOVE(type, types); 3132 mtx_unlock(&ng_typelist_mtx); 3133 } 3134 splx(s); 3135 break; 3136 3137 case MOD_UNLOAD: 3138 s = splnet(); 3139 if (type->refs > 1) { /* make sure no nodes exist! */ 3140 error = EBUSY; 3141 } else { 3142 if (type->refs == 0) { 3143 /* failed load, nothing to undo */ 3144 splx(s); 3145 break; 3146 } 3147 if (type->mod_event != NULL) { /* check with type */ 3148 error = (*type->mod_event)(mod, event, data); 3149 if (error != 0) { /* type refuses.. */ 3150 splx(s); 3151 break; 3152 } 3153 } 3154 mtx_lock(&ng_typelist_mtx); 3155 LIST_REMOVE(type, types); 3156 mtx_unlock(&ng_typelist_mtx); 3157 } 3158 splx(s); 3159 break; 3160 3161 default: 3162 if (type->mod_event != NULL) 3163 error = (*type->mod_event)(mod, event, data); 3164 else 3165 error = EOPNOTSUPP; /* XXX ? */ 3166 break; 3167 } 3168 return (error); 3169 } 3170 3171 /* 3172 * Handle loading and unloading for this code. 3173 * The only thing we need to link into is the NETISR strucure. 3174 */ 3175 static int 3176 ngb_mod_event(module_t mod, int event, void *data) 3177 { 3178 int error = 0; 3179 3180 switch (event) { 3181 case MOD_LOAD: 3182 /* Initialize everything. */ 3183 NG_WORKLIST_LOCK_INIT(); 3184 mtx_init(&ng_typelist_mtx, "netgraph types mutex", NULL, 3185 MTX_DEF); 3186 mtx_init(&ng_nodelist_mtx, "netgraph nodelist mutex", NULL, 3187 MTX_DEF); 3188 mtx_init(&ng_idhash_mtx, "netgraph idhash mutex", NULL, 3189 MTX_DEF); 3190 mtx_init(&ng_topo_mtx, "netgraph topology mutex", NULL, 3191 MTX_DEF); 3192 #ifdef NETGRAPH_DEBUG 3193 mtx_init(&ngq_mtx, "netgraph item list mutex", NULL, 3194 MTX_DEF); 3195 #endif 3196 ng_qzone = uma_zcreate("NetGraph items", sizeof(struct ng_item), 3197 NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, 0); 3198 uma_zone_set_max(ng_qzone, maxalloc); 3199 netisr_register(NETISR_NETGRAPH, (netisr_t *)ngintr, NULL, 3200 NETISR_MPSAFE); 3201 break; 3202 case MOD_UNLOAD: 3203 /* You can't unload it because an interface may be using it. */ 3204 error = EBUSY; 3205 break; 3206 default: 3207 error = EOPNOTSUPP; 3208 break; 3209 } 3210 return (error); 3211 } 3212 3213 static moduledata_t netgraph_mod = { 3214 "netgraph", 3215 ngb_mod_event, 3216 (NULL) 3217 }; 3218 DECLARE_MODULE(netgraph, netgraph_mod, SI_SUB_NETGRAPH, SI_ORDER_MIDDLE); 3219 SYSCTL_NODE(_net, OID_AUTO, graph, CTLFLAG_RW, 0, "netgraph Family"); 3220 SYSCTL_INT(_net_graph, OID_AUTO, abi_version, CTLFLAG_RD, 0, NG_ABI_VERSION,""); 3221 SYSCTL_INT(_net_graph, OID_AUTO, msg_version, CTLFLAG_RD, 0, NG_VERSION, ""); 3222 3223 #ifdef NETGRAPH_DEBUG 3224 void 3225 dumphook (hook_p hook, char *file, int line) 3226 { 3227 printf("hook: name %s, %d refs, Last touched:\n", 3228 _NG_HOOK_NAME(hook), hook->hk_refs); 3229 printf(" Last active @ %s, line %d\n", 3230 hook->lastfile, hook->lastline); 3231 if (line) { 3232 printf(" problem discovered at file %s, line %d\n", file, line); 3233 } 3234 } 3235 3236 void 3237 dumpnode(node_p node, char *file, int line) 3238 { 3239 printf("node: ID [%x]: type '%s', %d hooks, flags 0x%x, %d refs, %s:\n", 3240 _NG_NODE_ID(node), node->nd_type->name, 3241 node->nd_numhooks, node->nd_flags, 3242 node->nd_refs, node->nd_name); 3243 printf(" Last active @ %s, line %d\n", 3244 node->lastfile, node->lastline); 3245 if (line) { 3246 printf(" problem discovered at file %s, line %d\n", file, line); 3247 } 3248 } 3249 3250 void 3251 dumpitem(item_p item, char *file, int line) 3252 { 3253 printf(" ACTIVE item, last used at %s, line %d", 3254 item->lastfile, item->lastline); 3255 switch(item->el_flags & NGQF_TYPE) { 3256 case NGQF_DATA: 3257 printf(" - [data]\n"); 3258 break; 3259 case NGQF_MESG: 3260 printf(" - retaddr[%d]:\n", _NGI_RETADDR(item)); 3261 break; 3262 case NGQF_FN: 3263 printf(" - fn@%p (%p, %p, %p, %d (%x))\n", 3264 _NGI_FN(item), 3265 _NGI_NODE(item), 3266 _NGI_HOOK(item), 3267 item->body.fn.fn_arg1, 3268 item->body.fn.fn_arg2, 3269 item->body.fn.fn_arg2); 3270 break; 3271 case NGQF_FN2: 3272 printf(" - fn2@%p (%p, %p, %p, %d (%x))\n", 3273 _NGI_FN2(item), 3274 _NGI_NODE(item), 3275 _NGI_HOOK(item), 3276 item->body.fn.fn_arg1, 3277 item->body.fn.fn_arg2, 3278 item->body.fn.fn_arg2); 3279 break; 3280 } 3281 if (line) { 3282 printf(" problem discovered at file %s, line %d\n", file, line); 3283 if (_NGI_NODE(item)) { 3284 printf("node %p ([%x])\n", 3285 _NGI_NODE(item), ng_node2ID(_NGI_NODE(item))); 3286 } 3287 } 3288 } 3289 3290 static void 3291 ng_dumpitems(void) 3292 { 3293 item_p item; 3294 int i = 1; 3295 TAILQ_FOREACH(item, &ng_itemlist, all) { 3296 printf("[%d] ", i++); 3297 dumpitem(item, NULL, 0); 3298 } 3299 } 3300 3301 static void 3302 ng_dumpnodes(void) 3303 { 3304 node_p node; 3305 int i = 1; 3306 mtx_lock(&ng_nodelist_mtx); 3307 SLIST_FOREACH(node, &ng_allnodes, nd_all) { 3308 printf("[%d] ", i++); 3309 dumpnode(node, NULL, 0); 3310 } 3311 mtx_unlock(&ng_nodelist_mtx); 3312 } 3313 3314 static void 3315 ng_dumphooks(void) 3316 { 3317 hook_p hook; 3318 int i = 1; 3319 mtx_lock(&ng_nodelist_mtx); 3320 SLIST_FOREACH(hook, &ng_allhooks, hk_all) { 3321 printf("[%d] ", i++); 3322 dumphook(hook, NULL, 0); 3323 } 3324 mtx_unlock(&ng_nodelist_mtx); 3325 } 3326 3327 static int 3328 sysctl_debug_ng_dump_items(SYSCTL_HANDLER_ARGS) 3329 { 3330 int error; 3331 int val; 3332 int i; 3333 3334 val = allocated; 3335 i = 1; 3336 error = sysctl_handle_int(oidp, &val, 0, req); 3337 if (error != 0 || req->newptr == NULL) 3338 return (error); 3339 if (val == 42) { 3340 ng_dumpitems(); 3341 ng_dumpnodes(); 3342 ng_dumphooks(); 3343 } 3344 return (0); 3345 } 3346 3347 SYSCTL_PROC(_debug, OID_AUTO, ng_dump_items, CTLTYPE_INT | CTLFLAG_RW, 3348 0, sizeof(int), sysctl_debug_ng_dump_items, "I", "Number of allocated items"); 3349 #endif /* NETGRAPH_DEBUG */ 3350 3351 3352 /*********************************************************************** 3353 * Worklist routines 3354 **********************************************************************/ 3355 /* NETISR thread enters here */ 3356 /* 3357 * Pick a node off the list of nodes with work, 3358 * try get an item to process off it. 3359 * If there are no more, remove the node from the list. 3360 */ 3361 static void 3362 ngintr(void) 3363 { 3364 item_p item; 3365 node_p node = NULL; 3366 3367 for (;;) { 3368 NG_WORKLIST_LOCK(); 3369 node = TAILQ_FIRST(&ng_worklist); 3370 if (!node) { 3371 NG_WORKLIST_UNLOCK(); 3372 break; 3373 } 3374 node->nd_flags &= ~NGF_WORKQ; 3375 TAILQ_REMOVE(&ng_worklist, node, nd_work); 3376 NG_WORKLIST_UNLOCK(); 3377 CTR3(KTR_NET, "%20s: node [%x] (%p) taken off worklist", 3378 __func__, node->nd_ID, node); 3379 /* 3380 * We have the node. We also take over the reference 3381 * that the list had on it. 3382 * Now process as much as you can, until it won't 3383 * let you have another item off the queue. 3384 * All this time, keep the reference 3385 * that lets us be sure that the node still exists. 3386 * Let the reference go at the last minute. 3387 * ng_dequeue will put us back on the worklist 3388 * if there is more too do. This may be of use if there 3389 * are Multiple Processors and multiple Net threads in the 3390 * future. 3391 */ 3392 for (;;) { 3393 int rw; 3394 3395 NG_QUEUE_LOCK(&node->nd_input_queue); 3396 item = ng_dequeue(&node->nd_input_queue, &rw); 3397 if (item == NULL) { 3398 NG_QUEUE_UNLOCK(&node->nd_input_queue); 3399 break; /* go look for another node */ 3400 } else { 3401 NG_QUEUE_UNLOCK(&node->nd_input_queue); 3402 NGI_GET_NODE(item, node); /* zaps stored node */ 3403 ng_apply_item(node, item, rw); 3404 NG_NODE_UNREF(node); 3405 } 3406 } 3407 NG_NODE_UNREF(node); 3408 } 3409 } 3410 3411 static void 3412 ng_worklist_remove(node_p node) 3413 { 3414 mtx_assert(&node->nd_input_queue.q_mtx, MA_OWNED); 3415 3416 NG_WORKLIST_LOCK(); 3417 if (node->nd_flags & NGF_WORKQ) { 3418 node->nd_flags &= ~NGF_WORKQ; 3419 TAILQ_REMOVE(&ng_worklist, node, nd_work); 3420 NG_WORKLIST_UNLOCK(); 3421 NG_NODE_UNREF(node); 3422 CTR3(KTR_NET, "%20s: node [%x] (%p) removed from worklist", 3423 __func__, node->nd_ID, node); 3424 } else { 3425 NG_WORKLIST_UNLOCK(); 3426 } 3427 } 3428 3429 /* 3430 * XXX 3431 * It's posible that a debugging NG_NODE_REF may need 3432 * to be outside the mutex zone 3433 */ 3434 static void 3435 ng_setisr(node_p node) 3436 { 3437 3438 mtx_assert(&node->nd_input_queue.q_mtx, MA_OWNED); 3439 3440 if ((node->nd_flags & NGF_WORKQ) == 0) { 3441 /* 3442 * If we are not already on the work queue, 3443 * then put us on. 3444 */ 3445 node->nd_flags |= NGF_WORKQ; 3446 NG_WORKLIST_LOCK(); 3447 TAILQ_INSERT_TAIL(&ng_worklist, node, nd_work); 3448 NG_WORKLIST_UNLOCK(); 3449 NG_NODE_REF(node); /* XXX fafe in mutex? */ 3450 CTR3(KTR_NET, "%20s: node [%x] (%p) put on worklist", __func__, 3451 node->nd_ID, node); 3452 } else 3453 CTR3(KTR_NET, "%20s: node [%x] (%p) already on worklist", 3454 __func__, node->nd_ID, node); 3455 schednetisr(NETISR_NETGRAPH); 3456 } 3457 3458 3459 /*********************************************************************** 3460 * Externally useable functions to set up a queue item ready for sending 3461 ***********************************************************************/ 3462 3463 #ifdef NETGRAPH_DEBUG 3464 #define ITEM_DEBUG_CHECKS \ 3465 do { \ 3466 if (NGI_NODE(item) ) { \ 3467 printf("item already has node"); \ 3468 kdb_enter(KDB_WHY_NETGRAPH, "has node"); \ 3469 NGI_CLR_NODE(item); \ 3470 } \ 3471 if (NGI_HOOK(item) ) { \ 3472 printf("item already has hook"); \ 3473 kdb_enter(KDB_WHY_NETGRAPH, "has hook"); \ 3474 NGI_CLR_HOOK(item); \ 3475 } \ 3476 } while (0) 3477 #else 3478 #define ITEM_DEBUG_CHECKS 3479 #endif 3480 3481 /* 3482 * Put mbuf into the item. 3483 * Hook and node references will be removed when the item is dequeued. 3484 * (or equivalent) 3485 * (XXX) Unsafe because no reference held by peer on remote node. 3486 * remote node might go away in this timescale. 3487 * We know the hooks can't go away because that would require getting 3488 * a writer item on both nodes and we must have at least a reader 3489 * here to be able to do this. 3490 * Note that the hook loaded is the REMOTE hook. 3491 * 3492 * This is possibly in the critical path for new data. 3493 */ 3494 item_p 3495 ng_package_data(struct mbuf *m, int flags) 3496 { 3497 item_p item; 3498 3499 if ((item = ng_getqblk(flags)) == NULL) { 3500 NG_FREE_M(m); 3501 return (NULL); 3502 } 3503 ITEM_DEBUG_CHECKS; 3504 item->el_flags = NGQF_DATA | NGQF_READER; 3505 item->el_next = NULL; 3506 NGI_M(item) = m; 3507 return (item); 3508 } 3509 3510 /* 3511 * Allocate a queue item and put items into it.. 3512 * Evaluate the address as this will be needed to queue it and 3513 * to work out what some of the fields should be. 3514 * Hook and node references will be removed when the item is dequeued. 3515 * (or equivalent) 3516 */ 3517 item_p 3518 ng_package_msg(struct ng_mesg *msg, int flags) 3519 { 3520 item_p item; 3521 3522 if ((item = ng_getqblk(flags)) == NULL) { 3523 NG_FREE_MSG(msg); 3524 return (NULL); 3525 } 3526 ITEM_DEBUG_CHECKS; 3527 /* Messages items count as writers unless explicitly exempted. */ 3528 if (msg->header.cmd & NGM_READONLY) 3529 item->el_flags = NGQF_MESG | NGQF_READER; 3530 else 3531 item->el_flags = NGQF_MESG | NGQF_WRITER; 3532 item->el_next = NULL; 3533 /* 3534 * Set the current lasthook into the queue item 3535 */ 3536 NGI_MSG(item) = msg; 3537 NGI_RETADDR(item) = 0; 3538 return (item); 3539 } 3540 3541 3542 3543 #define SET_RETADDR(item, here, retaddr) \ 3544 do { /* Data or fn items don't have retaddrs */ \ 3545 if ((item->el_flags & NGQF_TYPE) == NGQF_MESG) { \ 3546 if (retaddr) { \ 3547 NGI_RETADDR(item) = retaddr; \ 3548 } else { \ 3549 /* \ 3550 * The old return address should be ok. \ 3551 * If there isn't one, use the address \ 3552 * here. \ 3553 */ \ 3554 if (NGI_RETADDR(item) == 0) { \ 3555 NGI_RETADDR(item) \ 3556 = ng_node2ID(here); \ 3557 } \ 3558 } \ 3559 } \ 3560 } while (0) 3561 3562 int 3563 ng_address_hook(node_p here, item_p item, hook_p hook, ng_ID_t retaddr) 3564 { 3565 hook_p peer; 3566 node_p peernode; 3567 ITEM_DEBUG_CHECKS; 3568 /* 3569 * Quick sanity check.. 3570 * Since a hook holds a reference on it's node, once we know 3571 * that the peer is still connected (even if invalid,) we know 3572 * that the peer node is present, though maybe invalid. 3573 */ 3574 if ((hook == NULL) 3575 || NG_HOOK_NOT_VALID(hook) 3576 || (NG_HOOK_PEER(hook) == NULL) 3577 || NG_HOOK_NOT_VALID(NG_HOOK_PEER(hook)) 3578 || NG_NODE_NOT_VALID(NG_PEER_NODE(hook))) { 3579 NG_FREE_ITEM(item); 3580 TRAP_ERROR(); 3581 return (ENETDOWN); 3582 } 3583 3584 /* 3585 * Transfer our interest to the other (peer) end. 3586 */ 3587 peer = NG_HOOK_PEER(hook); 3588 NG_HOOK_REF(peer); 3589 NGI_SET_HOOK(item, peer); 3590 peernode = NG_PEER_NODE(hook); 3591 NG_NODE_REF(peernode); 3592 NGI_SET_NODE(item, peernode); 3593 SET_RETADDR(item, here, retaddr); 3594 return (0); 3595 } 3596 3597 int 3598 ng_address_path(node_p here, item_p item, char *address, ng_ID_t retaddr) 3599 { 3600 node_p dest = NULL; 3601 hook_p hook = NULL; 3602 int error; 3603 3604 ITEM_DEBUG_CHECKS; 3605 /* 3606 * Note that ng_path2noderef increments the reference count 3607 * on the node for us if it finds one. So we don't have to. 3608 */ 3609 error = ng_path2noderef(here, address, &dest, &hook); 3610 if (error) { 3611 NG_FREE_ITEM(item); 3612 return (error); 3613 } 3614 NGI_SET_NODE(item, dest); 3615 if ( hook) { 3616 NG_HOOK_REF(hook); /* don't let it go while on the queue */ 3617 NGI_SET_HOOK(item, hook); 3618 } 3619 SET_RETADDR(item, here, retaddr); 3620 return (0); 3621 } 3622 3623 int 3624 ng_address_ID(node_p here, item_p item, ng_ID_t ID, ng_ID_t retaddr) 3625 { 3626 node_p dest; 3627 3628 ITEM_DEBUG_CHECKS; 3629 /* 3630 * Find the target node. 3631 */ 3632 dest = ng_ID2noderef(ID); /* GETS REFERENCE! */ 3633 if (dest == NULL) { 3634 NG_FREE_ITEM(item); 3635 TRAP_ERROR(); 3636 return(EINVAL); 3637 } 3638 /* Fill out the contents */ 3639 NGI_SET_NODE(item, dest); 3640 NGI_CLR_HOOK(item); 3641 SET_RETADDR(item, here, retaddr); 3642 return (0); 3643 } 3644 3645 /* 3646 * special case to send a message to self (e.g. destroy node) 3647 * Possibly indicate an arrival hook too. 3648 * Useful for removing that hook :-) 3649 */ 3650 item_p 3651 ng_package_msg_self(node_p here, hook_p hook, struct ng_mesg *msg) 3652 { 3653 item_p item; 3654 3655 /* 3656 * Find the target node. 3657 * If there is a HOOK argument, then use that in preference 3658 * to the address. 3659 */ 3660 if ((item = ng_getqblk(NG_NOFLAGS)) == NULL) { 3661 NG_FREE_MSG(msg); 3662 return (NULL); 3663 } 3664 3665 /* Fill out the contents */ 3666 item->el_flags = NGQF_MESG | NGQF_WRITER; 3667 item->el_next = NULL; 3668 NG_NODE_REF(here); 3669 NGI_SET_NODE(item, here); 3670 if (hook) { 3671 NG_HOOK_REF(hook); 3672 NGI_SET_HOOK(item, hook); 3673 } 3674 NGI_MSG(item) = msg; 3675 NGI_RETADDR(item) = ng_node2ID(here); 3676 return (item); 3677 } 3678 3679 /* 3680 * Send ng_item_fn function call to the specified node. 3681 */ 3682 3683 int 3684 ng_send_fn(node_p node, hook_p hook, ng_item_fn *fn, void * arg1, int arg2) 3685 { 3686 3687 return ng_send_fn1(node, hook, fn, arg1, arg2, NG_NOFLAGS); 3688 } 3689 3690 int 3691 ng_send_fn1(node_p node, hook_p hook, ng_item_fn *fn, void * arg1, int arg2, 3692 int flags) 3693 { 3694 item_p item; 3695 3696 if ((item = ng_getqblk(flags)) == NULL) { 3697 return (ENOMEM); 3698 } 3699 item->el_flags = NGQF_FN | NGQF_WRITER; 3700 NG_NODE_REF(node); /* and one for the item */ 3701 NGI_SET_NODE(item, node); 3702 if (hook) { 3703 NG_HOOK_REF(hook); 3704 NGI_SET_HOOK(item, hook); 3705 } 3706 NGI_FN(item) = fn; 3707 NGI_ARG1(item) = arg1; 3708 NGI_ARG2(item) = arg2; 3709 return(ng_snd_item(item, flags)); 3710 } 3711 3712 /* 3713 * Send ng_item_fn2 function call to the specified node. 3714 * 3715 * If an optional pitem parameter is supplied, its apply 3716 * callback will be copied to the new item. If also NG_REUSE_ITEM 3717 * flag is set, no new item will be allocated, but pitem will 3718 * be used. 3719 */ 3720 int 3721 ng_send_fn2(node_p node, hook_p hook, item_p pitem, ng_item_fn2 *fn, void *arg1, 3722 int arg2, int flags) 3723 { 3724 item_p item; 3725 3726 KASSERT((pitem != NULL || (flags & NG_REUSE_ITEM) == 0), 3727 ("%s: NG_REUSE_ITEM but no pitem", __func__)); 3728 3729 /* 3730 * Allocate a new item if no supplied or 3731 * if we can't use supplied one. 3732 */ 3733 if (pitem == NULL || (flags & NG_REUSE_ITEM) == 0) { 3734 if ((item = ng_getqblk(flags)) == NULL) 3735 return (ENOMEM); 3736 } else 3737 item = pitem; 3738 3739 item->el_flags = NGQF_FN2 | NGQF_WRITER; 3740 NG_NODE_REF(node); /* and one for the item */ 3741 NGI_SET_NODE(item, node); 3742 if (hook) { 3743 NG_HOOK_REF(hook); 3744 NGI_SET_HOOK(item, hook); 3745 } 3746 NGI_FN2(item) = fn; 3747 NGI_ARG1(item) = arg1; 3748 NGI_ARG2(item) = arg2; 3749 if (pitem != NULL && (flags & NG_REUSE_ITEM) == 0) 3750 item->apply = pitem->apply; 3751 return(ng_snd_item(item, flags)); 3752 } 3753 3754 /* 3755 * Official timeout routines for Netgraph nodes. 3756 */ 3757 static void 3758 ng_callout_trampoline(void *arg) 3759 { 3760 item_p item = arg; 3761 3762 ng_snd_item(item, 0); 3763 } 3764 3765 3766 int 3767 ng_callout(struct callout *c, node_p node, hook_p hook, int ticks, 3768 ng_item_fn *fn, void * arg1, int arg2) 3769 { 3770 item_p item, oitem; 3771 3772 if ((item = ng_getqblk(NG_NOFLAGS)) == NULL) 3773 return (ENOMEM); 3774 3775 item->el_flags = NGQF_FN | NGQF_WRITER; 3776 NG_NODE_REF(node); /* and one for the item */ 3777 NGI_SET_NODE(item, node); 3778 if (hook) { 3779 NG_HOOK_REF(hook); 3780 NGI_SET_HOOK(item, hook); 3781 } 3782 NGI_FN(item) = fn; 3783 NGI_ARG1(item) = arg1; 3784 NGI_ARG2(item) = arg2; 3785 oitem = c->c_arg; 3786 if (callout_reset(c, ticks, &ng_callout_trampoline, item) == 1 && 3787 oitem != NULL) 3788 NG_FREE_ITEM(oitem); 3789 return (0); 3790 } 3791 3792 /* A special modified version of untimeout() */ 3793 int 3794 ng_uncallout(struct callout *c, node_p node) 3795 { 3796 item_p item; 3797 int rval; 3798 3799 KASSERT(c != NULL, ("ng_uncallout: NULL callout")); 3800 KASSERT(node != NULL, ("ng_uncallout: NULL node")); 3801 3802 rval = callout_stop(c); 3803 item = c->c_arg; 3804 /* Do an extra check */ 3805 if ((rval > 0) && (c->c_func == &ng_callout_trampoline) && 3806 (NGI_NODE(item) == node)) { 3807 /* 3808 * We successfully removed it from the queue before it ran 3809 * So now we need to unreference everything that was 3810 * given extra references. (NG_FREE_ITEM does this). 3811 */ 3812 NG_FREE_ITEM(item); 3813 } 3814 c->c_arg = NULL; 3815 3816 return (rval); 3817 } 3818 3819 /* 3820 * Set the address, if none given, give the node here. 3821 */ 3822 void 3823 ng_replace_retaddr(node_p here, item_p item, ng_ID_t retaddr) 3824 { 3825 if (retaddr) { 3826 NGI_RETADDR(item) = retaddr; 3827 } else { 3828 /* 3829 * The old return address should be ok. 3830 * If there isn't one, use the address here. 3831 */ 3832 NGI_RETADDR(item) = ng_node2ID(here); 3833 } 3834 } 3835 3836 #define TESTING 3837 #ifdef TESTING 3838 /* just test all the macros */ 3839 void 3840 ng_macro_test(item_p item); 3841 void 3842 ng_macro_test(item_p item) 3843 { 3844 node_p node = NULL; 3845 hook_p hook = NULL; 3846 struct mbuf *m; 3847 struct ng_mesg *msg; 3848 ng_ID_t retaddr; 3849 int error; 3850 3851 NGI_GET_M(item, m); 3852 NGI_GET_MSG(item, msg); 3853 retaddr = NGI_RETADDR(item); 3854 NG_SEND_DATA(error, hook, m, NULL); 3855 NG_SEND_DATA_ONLY(error, hook, m); 3856 NG_FWD_NEW_DATA(error, item, hook, m); 3857 NG_FWD_ITEM_HOOK(error, item, hook); 3858 NG_SEND_MSG_HOOK(error, node, msg, hook, retaddr); 3859 NG_SEND_MSG_ID(error, node, msg, retaddr, retaddr); 3860 NG_SEND_MSG_PATH(error, node, msg, ".:", retaddr); 3861 NG_FWD_MSG_HOOK(error, node, item, hook, retaddr); 3862 } 3863 #endif /* TESTING */ 3864 3865