1 /*- 2 * Copyright (c) 2017 Adrian Chadd <adrian@FreeBSD.org> 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 /* 27 * IEEE 802.11ac-2013 protocol support. 28 */ 29 30 #include "opt_inet.h" 31 #include "opt_wlan.h" 32 33 #include <sys/param.h> 34 #include <sys/kernel.h> 35 #include <sys/malloc.h> 36 #include <sys/systm.h> 37 #include <sys/endian.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_var.h> 43 #include <net/if_media.h> 44 #include <net/ethernet.h> 45 46 #include <net80211/ieee80211_var.h> 47 #include <net80211/ieee80211_action.h> 48 #include <net80211/ieee80211_input.h> 49 #include <net80211/ieee80211_vht.h> 50 51 #define ADDSHORT(frm, v) do { \ 52 frm[0] = (v) & 0xff; \ 53 frm[1] = (v) >> 8; \ 54 frm += 2; \ 55 } while (0) 56 #define ADDWORD(frm, v) do { \ 57 frm[0] = (v) & 0xff; \ 58 frm[1] = ((v) >> 8) & 0xff; \ 59 frm[2] = ((v) >> 16) & 0xff; \ 60 frm[3] = ((v) >> 24) & 0xff; \ 61 frm += 4; \ 62 } while (0) 63 64 /* 65 * Immediate TODO: 66 * 67 * + handle WLAN_ACTION_VHT_OPMODE_NOTIF and other VHT action frames 68 * + ensure vhtinfo/vhtcap parameters correctly use the negotiated 69 * capabilities and ratesets 70 * + group ID management operation 71 */ 72 73 /* 74 * XXX TODO: handle WLAN_ACTION_VHT_OPMODE_NOTIF 75 * 76 * Look at mac80211/vht.c:ieee80211_vht_handle_opmode() for further details. 77 */ 78 79 static int 80 vht_recv_action_placeholder(struct ieee80211_node *ni, 81 const struct ieee80211_frame *wh, 82 const uint8_t *frm, const uint8_t *efrm) 83 { 84 85 #ifdef IEEE80211_DEBUG 86 ieee80211_note(ni->ni_vap, "%s: called; fc=0x%.2x/0x%.2x", 87 __func__, wh->i_fc[0], wh->i_fc[1]); 88 #endif 89 return (0); 90 } 91 92 static int 93 vht_send_action_placeholder(struct ieee80211_node *ni, 94 int category, int action, void *arg0) 95 { 96 97 #ifdef IEEE80211_DEBUG 98 ieee80211_note(ni->ni_vap, "%s: called; category=%d, action=%d", 99 __func__, category, action); 100 #endif 101 return (EINVAL); 102 } 103 104 static void 105 ieee80211_vht_init(void) 106 { 107 108 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, 109 WLAN_ACTION_VHT_COMPRESSED_BF, vht_recv_action_placeholder); 110 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, 111 WLAN_ACTION_VHT_GROUPID_MGMT, vht_recv_action_placeholder); 112 ieee80211_recv_action_register(IEEE80211_ACTION_CAT_VHT, 113 WLAN_ACTION_VHT_OPMODE_NOTIF, vht_recv_action_placeholder); 114 115 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, 116 WLAN_ACTION_VHT_COMPRESSED_BF, vht_send_action_placeholder); 117 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, 118 WLAN_ACTION_VHT_GROUPID_MGMT, vht_send_action_placeholder); 119 ieee80211_send_action_register(IEEE80211_ACTION_CAT_VHT, 120 WLAN_ACTION_VHT_OPMODE_NOTIF, vht_send_action_placeholder); 121 } 122 123 SYSINIT(wlan_vht, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_vht_init, NULL); 124 125 void 126 ieee80211_vht_attach(struct ieee80211com *ic) 127 { 128 } 129 130 void 131 ieee80211_vht_detach(struct ieee80211com *ic) 132 { 133 } 134 135 void 136 ieee80211_vht_vattach(struct ieee80211vap *vap) 137 { 138 struct ieee80211com *ic = vap->iv_ic; 139 140 if (! IEEE80211_CONF_VHT(ic)) 141 return; 142 143 vap->iv_vht_cap.vht_cap_info = ic->ic_vht_cap.vht_cap_info; 144 vap->iv_vhtextcaps = ic->ic_vhtextcaps; 145 146 /* XXX assume VHT80 support; should really check vhtcaps */ 147 vap->iv_vht_flags = 148 IEEE80211_FVHT_VHT 149 | IEEE80211_FVHT_USEVHT40 150 | IEEE80211_FVHT_USEVHT80; 151 if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(vap->iv_vht_cap.vht_cap_info)) 152 vap->iv_vht_flags |= IEEE80211_FVHT_USEVHT160; 153 if (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(vap->iv_vht_cap.vht_cap_info)) 154 vap->iv_vht_flags |= IEEE80211_FVHT_USEVHT80P80; 155 156 memcpy(&vap->iv_vht_cap.supp_mcs, &ic->ic_vht_cap.supp_mcs, 157 sizeof(struct ieee80211_vht_mcs_info)); 158 } 159 160 void 161 ieee80211_vht_vdetach(struct ieee80211vap *vap) 162 { 163 } 164 165 #if 0 166 static void 167 vht_announce(struct ieee80211com *ic, enum ieee80211_phymode mode) 168 { 169 } 170 #endif 171 172 static int 173 vht_mcs_to_num(int m) 174 { 175 176 switch (m) { 177 case IEEE80211_VHT_MCS_SUPPORT_0_7: 178 return (7); 179 case IEEE80211_VHT_MCS_SUPPORT_0_8: 180 return (8); 181 case IEEE80211_VHT_MCS_SUPPORT_0_9: 182 return (9); 183 default: 184 return (0); 185 } 186 } 187 188 void 189 ieee80211_vht_announce(struct ieee80211com *ic) 190 { 191 int i, tx, rx; 192 193 if (! IEEE80211_CONF_VHT(ic)) 194 return; 195 196 /* Channel width */ 197 ic_printf(ic, "[VHT] Channel Widths: 20MHz, 40MHz, 80MHz%s%s\n", 198 (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160MHZ(ic->ic_vht_cap.vht_cap_info)) ? 199 ", 160MHz" : "", 200 (IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_IS_160_80P80MHZ(ic->ic_vht_cap.vht_cap_info)) ? 201 ", 80+80MHz" : ""); 202 /* Features */ 203 ic_printf(ic, "[VHT] Features: %b\n", ic->ic_vht_cap.vht_cap_info, 204 IEEE80211_VHTCAP_BITS); 205 206 /* For now, just 5GHz VHT. Worry about 2GHz VHT later */ 207 for (i = 0; i < 8; i++) { 208 /* Each stream is 2 bits */ 209 tx = (ic->ic_vht_cap.supp_mcs.tx_mcs_map >> (2*i)) & 0x3; 210 rx = (ic->ic_vht_cap.supp_mcs.rx_mcs_map >> (2*i)) & 0x3; 211 if (tx == 3 && rx == 3) 212 continue; 213 ic_printf(ic, "[VHT] NSS %d: TX MCS 0..%d, RX MCS 0..%d\n", 214 i + 1, vht_mcs_to_num(tx), vht_mcs_to_num(rx)); 215 } 216 } 217 218 void 219 ieee80211_vht_node_init(struct ieee80211_node *ni) 220 { 221 222 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 223 "%s: called", __func__); 224 ni->ni_flags |= IEEE80211_NODE_VHT; 225 } 226 227 void 228 ieee80211_vht_node_cleanup(struct ieee80211_node *ni) 229 { 230 231 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 232 "%s: called", __func__); 233 ni->ni_flags &= ~IEEE80211_NODE_VHT; 234 ni->ni_vhtcap = 0; 235 bzero(&ni->ni_vht_mcsinfo, sizeof(struct ieee80211_vht_mcs_info)); 236 } 237 238 /* 239 * Parse an 802.11ac VHT operation IE. 240 * 241 * 802.11-2020 9.4.2.158 (VHT Operation element) 242 */ 243 void 244 ieee80211_parse_vhtopmode(struct ieee80211_node *ni, const uint8_t *ie) 245 { 246 /* vht operation */ 247 ni->ni_vht_chanwidth = ie[2]; 248 ni->ni_vht_chan1 = ie[3]; 249 ni->ni_vht_chan2 = ie[4]; 250 ni->ni_vht_basicmcs = le16dec(ie + 5); 251 252 #if 0 253 printf("%s: chan1=%d, chan2=%d, chanwidth=%d, basicmcs=0x%04x\n", 254 __func__, ni->ni_vht_chan1, ni->ni_vht_chan2, ni->ni_vht_chanwidth, 255 ni->ni_vht_basicmcs); 256 #endif 257 } 258 259 /* 260 * Parse an 802.11ac VHT capability IE. 261 * 262 * 802.11-2020 9.4.2.157 (VHT Capabilities element) 263 */ 264 void 265 ieee80211_parse_vhtcap(struct ieee80211_node *ni, const uint8_t *ie) 266 { 267 268 /* vht capability */ 269 ni->ni_vhtcap = le32dec(ie + 2); 270 271 /* suppmcs */ 272 ni->ni_vht_mcsinfo.rx_mcs_map = le16dec(ie + 6); 273 ni->ni_vht_mcsinfo.rx_highest = le16dec(ie + 8); 274 ni->ni_vht_mcsinfo.tx_mcs_map = le16dec(ie + 10); 275 ni->ni_vht_mcsinfo.tx_highest = le16dec(ie + 12); 276 } 277 278 int 279 ieee80211_vht_updateparams(struct ieee80211_node *ni, 280 const uint8_t *vhtcap_ie, 281 const uint8_t *vhtop_ie) 282 { 283 284 //printf("%s: called\n", __func__); 285 286 ieee80211_parse_vhtcap(ni, vhtcap_ie); 287 ieee80211_parse_vhtopmode(ni, vhtop_ie); 288 return (0); 289 } 290 291 /** 292 * @brief calculate the supported MCS rates for this node 293 * 294 * This is called once a node has finished association / 295 * joined a BSS. The vhtcap / vhtop IEs are from the 296 * peer. The transmit rate tables need to be combined 297 * together to setup the list of available rates. 298 * 299 * This must be called after the ieee80211_node VHT fields 300 * have been parsed / populated by either ieee80211_vht_updateparams() or 301 * ieee80211_parse_vhtcap(), 302 * 303 * This does not take into account the channel bandwidth, 304 * which (a) may change during operation, and (b) depends 305 * upon packet to packet rate transmission selection. 306 * There are various rate combinations which are not 307 * available in various channel widths and those will 308 * need to be masked off separately. 309 * 310 * (See 802.11-2020 21.5 Parameters for VHT-MCSs for the 311 * tables and supported rates.) 312 * 313 * ALSO: i need to do some filtering based on the HT set too. 314 * (That should be done here too, and in the negotiation, sigh.) 315 * (See 802.11-2016 10.7.12.3 Additional rate selection constraints 316 * for VHT PPDUs) 317 * 318 * @param ni struct ieee80211_node to configure 319 */ 320 void 321 ieee80211_setup_vht_rates(struct ieee80211_node *ni) 322 { 323 struct ieee80211vap *vap = ni->ni_vap; 324 uint32_t val, val1, val2; 325 uint16_t tx_mcs_map = 0; 326 int i; 327 328 /* 329 * Merge our tx_mcs_map with the peer rx_mcs_map to determine what 330 * can be actually transmitted to the peer. 331 */ 332 333 for (i = 0; i < 8; i++) { 334 /* 335 * Merge the two together; remember that 0..2 is in order 336 * of increasing MCS support, but 3 equals 337 * IEEE80211_VHT_MCS_NOT_SUPPORTED so must "win". 338 */ 339 val1 = (vap->iv_vht_cap.supp_mcs.tx_mcs_map >> (i*2)) & 0x3; 340 val2 = (ni->ni_vht_mcsinfo.rx_mcs_map >> (i*2)) & 0x3; 341 val = MIN(val1, val2); 342 if (val1 == IEEE80211_VHT_MCS_NOT_SUPPORTED || 343 val2 == IEEE80211_VHT_MCS_NOT_SUPPORTED) 344 val = IEEE80211_VHT_MCS_NOT_SUPPORTED; 345 tx_mcs_map |= (val << (i*2)); 346 } 347 348 /* Store the TX MCS map somewhere in the node that can be used */ 349 ni->ni_vht_tx_map = tx_mcs_map; 350 } 351 352 void 353 ieee80211_vht_timeout(struct ieee80211vap *vap) 354 { 355 } 356 357 void 358 ieee80211_vht_node_join(struct ieee80211_node *ni) 359 { 360 361 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 362 "%s: called", __func__); 363 } 364 365 void 366 ieee80211_vht_node_leave(struct ieee80211_node *ni) 367 { 368 369 IEEE80211_NOTE(ni->ni_vap, IEEE80211_MSG_11N, ni, 370 "%s: called", __func__); 371 } 372 373 /* 374 * Calculate the VHTCAP IE for a given node. 375 * 376 * This includes calculating the capability intersection based on the 377 * current operating mode and intersection of the TX/RX MCS maps. 378 * 379 * The standard only makes it clear about MCS rate negotiation 380 * and MCS basic rates (which must be a subset of the general 381 * negotiated rates). It doesn't make it clear that the AP should 382 * figure out the minimum functional overlap with the STA and 383 * support that. 384 * 385 * Note: this is in host order, not in 802.11 endian order. 386 * 387 * TODO: ensure I re-read 9.7.11 Rate Selection for VHT STAs. 388 * 389 * TODO: investigate what we should negotiate for MU-MIMO beamforming 390 * options. 391 * 392 * opmode is '1' for "vhtcap as if I'm a STA", 0 otherwise. 393 */ 394 void 395 ieee80211_vht_get_vhtcap_ie(struct ieee80211_node *ni, 396 struct ieee80211_vht_cap *vhtcap, int opmode) 397 { 398 struct ieee80211vap *vap = ni->ni_vap; 399 // struct ieee80211com *ic = vap->iv_ic; 400 uint32_t val, val1, val2; 401 uint32_t new_vhtcap; 402 int i; 403 404 /* 405 * Capabilities - it depends on whether we are a station 406 * or not. 407 */ 408 new_vhtcap = 0; 409 410 /* 411 * Station - use our desired configuration based on 412 * local config, local device bits and the already-learnt 413 * vhtcap/vhtinfo IE in the node. 414 */ 415 416 /* Limit MPDU size to the smaller of the two */ 417 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 418 IEEE80211_VHTCAP_MAX_MPDU_MASK); 419 if (opmode == 1) { 420 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 421 IEEE80211_VHTCAP_MAX_MPDU_MASK); 422 } 423 val = MIN(val1, val2); 424 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_MAX_MPDU_MASK); 425 426 /* Limit supp channel config */ 427 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 428 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); 429 if (opmode == 1) { 430 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 431 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); 432 } 433 if ((val2 == 2) && 434 ((vap->iv_vht_flags & IEEE80211_FVHT_USEVHT80P80) == 0)) 435 val2 = 1; 436 if ((val2 == 1) && 437 ((vap->iv_vht_flags & IEEE80211_FVHT_USEVHT160) == 0)) 438 val2 = 0; 439 val = MIN(val1, val2); 440 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 441 IEEE80211_VHTCAP_SUPP_CHAN_WIDTH_MASK); 442 443 /* RX LDPC */ 444 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 445 IEEE80211_VHTCAP_RXLDPC); 446 if (opmode == 1) { 447 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 448 IEEE80211_VHTCAP_RXLDPC); 449 } 450 val = MIN(val1, val2); 451 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXLDPC); 452 453 /* Short-GI 80 */ 454 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 455 IEEE80211_VHTCAP_SHORT_GI_80); 456 if (opmode == 1) { 457 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 458 IEEE80211_VHTCAP_SHORT_GI_80); 459 } 460 val = MIN(val1, val2); 461 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_80); 462 463 /* Short-GI 160 */ 464 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 465 IEEE80211_VHTCAP_SHORT_GI_160); 466 if (opmode == 1) { 467 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 468 IEEE80211_VHTCAP_SHORT_GI_160); 469 } 470 val = MIN(val1, val2); 471 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_SHORT_GI_160); 472 473 /* 474 * STBC is slightly more complicated. 475 * 476 * In non-STA mode, we just announce our capabilities and that 477 * is that. 478 * 479 * In STA mode, we should calculate our capabilities based on 480 * local capabilities /and/ what the remote says. So: 481 * 482 * + Only TX STBC if we support it and the remote supports RX STBC; 483 * + Only announce RX STBC if we support it and the remote supports 484 * TX STBC; 485 * + RX STBC should be the minimum of local and remote RX STBC; 486 */ 487 488 /* TX STBC */ 489 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 490 IEEE80211_VHTCAP_TXSTBC); 491 if (opmode == 1) { 492 /* STA mode - enable it only if node RXSTBC is non-zero */ 493 val2 = !! _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 494 IEEE80211_VHTCAP_RXSTBC_MASK); 495 } 496 val = MIN(val1, val2); 497 if ((vap->iv_vht_flags & IEEE80211_FVHT_STBC_TX) == 0) 498 val = 0; 499 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_TXSTBC); 500 501 /* RX STBC1..4 */ 502 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 503 IEEE80211_VHTCAP_RXSTBC_MASK); 504 if (opmode == 1) { 505 /* STA mode - enable it only if node TXSTBC is non-zero */ 506 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 507 IEEE80211_VHTCAP_TXSTBC); 508 } 509 val = MIN(val1, val2); 510 if ((vap->iv_vht_flags & IEEE80211_FVHT_STBC_RX) == 0) 511 val = 0; 512 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_RXSTBC_MASK); 513 514 /* 515 * Finally - if RXSTBC is 0, then don't enable TXSTBC. 516 * Strictly speaking a device can TXSTBC and not RXSTBC, but 517 * it would be silly. 518 */ 519 if (val == 0) 520 new_vhtcap &= ~IEEE80211_VHTCAP_TXSTBC; 521 522 /* 523 * Some of these fields require other fields to exist. 524 * So before using it, the parent field needs to be checked 525 * otherwise the overridden value may be wrong. 526 * 527 * For example, if SU beamformee is set to 0, then BF STS 528 * needs to be 0. 529 */ 530 531 /* SU Beamformer capable */ 532 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 533 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); 534 if (opmode == 1) { 535 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 536 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); 537 } 538 val = MIN(val1, val2); 539 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 540 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); 541 542 /* SU Beamformee capable */ 543 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 544 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); 545 if (opmode == 1) { 546 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 547 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); 548 } 549 val = MIN(val1, val2); 550 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 551 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); 552 553 /* Beamformee STS capability - only if SU beamformee capable */ 554 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 555 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); 556 if (opmode == 1) { 557 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 558 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); 559 } 560 val = MIN(val1, val2); 561 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0) 562 val = 0; 563 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 564 IEEE80211_VHTCAP_BEAMFORMEE_STS_MASK); 565 566 /* Sounding dimensions - only if SU beamformer capable */ 567 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 568 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); 569 if (opmode == 1) 570 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 571 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); 572 val = MIN(val1, val2); 573 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0) 574 val = 0; 575 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 576 IEEE80211_VHTCAP_SOUNDING_DIMENSIONS_MASK); 577 578 /* 579 * MU Beamformer capable - only if SU BFF capable, MU BFF capable 580 * and STA (not AP) 581 */ 582 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 583 IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE); 584 if (opmode == 1) 585 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 586 IEEE80211_VHTCAP_MU_BEAMFORMER_CAPABLE); 587 val = MIN(val1, val2); 588 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE) == 0) 589 val = 0; 590 if (opmode != 1) /* Only enable for STA mode */ 591 val = 0; 592 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 593 IEEE80211_VHTCAP_SU_BEAMFORMER_CAPABLE); 594 595 /* 596 * MU Beamformee capable - only if SU BFE capable, MU BFE capable 597 * and AP (not STA) 598 */ 599 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 600 IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE); 601 if (opmode == 1) 602 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 603 IEEE80211_VHTCAP_MU_BEAMFORMEE_CAPABLE); 604 val = MIN(val1, val2); 605 if ((new_vhtcap & IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE) == 0) 606 val = 0; 607 if (opmode != 0) /* Only enable for AP mode */ 608 val = 0; 609 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 610 IEEE80211_VHTCAP_SU_BEAMFORMEE_CAPABLE); 611 612 /* VHT TXOP PS */ 613 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 614 IEEE80211_VHTCAP_VHT_TXOP_PS); 615 if (opmode == 1) 616 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 617 IEEE80211_VHTCAP_VHT_TXOP_PS); 618 val = MIN(val1, val2); 619 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_VHT_TXOP_PS); 620 621 /* HTC_VHT */ 622 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 623 IEEE80211_VHTCAP_HTC_VHT); 624 if (opmode == 1) 625 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 626 IEEE80211_VHTCAP_HTC_VHT); 627 val = MIN(val1, val2); 628 new_vhtcap |= _IEEE80211_SHIFTMASK(val, IEEE80211_VHTCAP_HTC_VHT); 629 630 /* A-MPDU length max */ 631 /* XXX TODO: we need a userland config knob for this */ 632 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 633 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 634 if (opmode == 1) 635 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 636 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 637 val = MIN(val1, val2); 638 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 639 IEEE80211_VHTCAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK); 640 641 /* 642 * Link adaptation is only valid if HTC-VHT capable is 1. 643 * Otherwise, always set it to 0. 644 */ 645 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 646 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); 647 if (opmode == 1) 648 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 649 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); 650 val = MIN(val1, val2); 651 if ((new_vhtcap & IEEE80211_VHTCAP_HTC_VHT) == 0) 652 val = 0; 653 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 654 IEEE80211_VHTCAP_VHT_LINK_ADAPTATION_VHT_MASK); 655 656 /* 657 * The following two options are 0 if the pattern may change, 1 if it 658 * does not change. So, downgrade to the higher value. 659 */ 660 661 /* RX antenna pattern */ 662 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 663 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); 664 if (opmode == 1) 665 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 666 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); 667 val = MAX(val1, val2); 668 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 669 IEEE80211_VHTCAP_RX_ANTENNA_PATTERN); 670 671 /* TX antenna pattern */ 672 val2 = val1 = _IEEE80211_MASKSHIFT(vap->iv_vht_cap.vht_cap_info, 673 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); 674 if (opmode == 1) 675 val2 = _IEEE80211_MASKSHIFT(ni->ni_vhtcap, 676 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); 677 val = MAX(val1, val2); 678 new_vhtcap |= _IEEE80211_SHIFTMASK(val, 679 IEEE80211_VHTCAP_TX_ANTENNA_PATTERN); 680 681 /* 682 * MCS set - again, we announce what we want to use 683 * based on configuration, device capabilities and 684 * already-learnt vhtcap/vhtinfo IE information. 685 */ 686 687 /* MCS set - start with whatever the device supports */ 688 vhtcap->supp_mcs.rx_mcs_map = vap->iv_vht_cap.supp_mcs.rx_mcs_map; 689 vhtcap->supp_mcs.rx_highest = 0; 690 vhtcap->supp_mcs.tx_mcs_map = vap->iv_vht_cap.supp_mcs.tx_mcs_map; 691 vhtcap->supp_mcs.tx_highest = 0; 692 693 vhtcap->vht_cap_info = new_vhtcap; 694 695 /* 696 * Now, if we're a STA, mask off whatever the AP doesn't support. 697 * Ie, we continue to state we can receive whatever we can do, 698 * but we only announce that we will transmit rates that meet 699 * the AP requirement. 700 * 701 * Note: 0 - MCS0..7; 1 - MCS0..8; 2 - MCS0..9; 3 = not supported. 702 * We can't just use MIN() because '3' means "no", so special case it. 703 */ 704 if (opmode) { 705 for (i = 0; i < 8; i++) { 706 val1 = (vhtcap->supp_mcs.tx_mcs_map >> (i*2)) & 0x3; 707 val2 = (ni->ni_vht_mcsinfo.tx_mcs_map >> (i*2)) & 0x3; 708 val = MIN(val1, val2); 709 if (val1 == 3 || val2 == 3) 710 val = 3; 711 vhtcap->supp_mcs.tx_mcs_map &= ~(0x3 << (i*2)); 712 vhtcap->supp_mcs.tx_mcs_map |= (val << (i*2)); 713 } 714 } 715 } 716 717 /* 718 * Add a VHTCAP field. 719 * 720 * If in station mode, we announce what we would like our 721 * desired configuration to be. 722 * 723 * Else, we announce our capabilities based on our current 724 * configuration. 725 */ 726 uint8_t * 727 ieee80211_add_vhtcap(uint8_t *frm, struct ieee80211_node *ni) 728 { 729 struct ieee80211_vht_cap vhtcap; 730 731 ieee80211_vht_get_vhtcap_ie(ni, &vhtcap, 1); 732 733 frm[0] = IEEE80211_ELEMID_VHT_CAP; 734 frm[1] = sizeof(vhtcap); 735 frm += 2; 736 737 /* 32-bit VHT capability */ 738 ADDWORD(frm, vhtcap.vht_cap_info); 739 740 /* suppmcs */ 741 ADDSHORT(frm, vhtcap.supp_mcs.rx_mcs_map); 742 ADDSHORT(frm, vhtcap.supp_mcs.rx_highest); 743 ADDSHORT(frm, vhtcap.supp_mcs.tx_mcs_map); 744 ADDSHORT(frm, vhtcap.supp_mcs.tx_highest); 745 746 return (frm); 747 } 748 749 /* 750 * Non-associated probe requests. Add VHT capabilities based on 751 * the current channel configuration. No BSS yet. 752 */ 753 uint8_t * 754 ieee80211_add_vhtcap_ch(uint8_t *frm, struct ieee80211vap *vap, 755 struct ieee80211_channel *c) 756 { 757 struct ieee80211_vht_cap *vhtcap; 758 759 memset(frm, 0, 2 + sizeof(*vhtcap)); 760 frm[0] = IEEE80211_ELEMID_VHT_CAP; 761 frm[1] = sizeof(*vhtcap); 762 frm += 2; 763 764 /* 32-bit VHT capability */ 765 ADDWORD(frm, vap->iv_vht_cap.vht_cap_info); 766 767 /* supp_mcs */ 768 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.rx_mcs_map); 769 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.rx_highest); 770 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.tx_mcs_map); 771 ADDSHORT(frm, vap->iv_vht_cap.supp_mcs.tx_highest); 772 773 return (frm); 774 } 775 776 static uint8_t 777 ieee80211_vht_get_chwidth_ie(struct ieee80211_channel *c) 778 { 779 780 /* 781 * XXX TODO: look at the node configuration as 782 * well? 783 */ 784 785 if (IEEE80211_IS_CHAN_VHT80P80(c)) 786 return IEEE80211_VHT_CHANWIDTH_80P80MHZ; 787 if (IEEE80211_IS_CHAN_VHT160(c)) 788 return IEEE80211_VHT_CHANWIDTH_160MHZ; 789 if (IEEE80211_IS_CHAN_VHT80(c)) 790 return IEEE80211_VHT_CHANWIDTH_80MHZ; 791 if (IEEE80211_IS_CHAN_VHT40(c)) 792 return IEEE80211_VHT_CHANWIDTH_USE_HT; 793 if (IEEE80211_IS_CHAN_VHT20(c)) 794 return IEEE80211_VHT_CHANWIDTH_USE_HT; 795 796 /* We shouldn't get here */ 797 printf("%s: called on a non-VHT channel (freq=%d, flags=0x%08x\n", 798 __func__, (int) c->ic_freq, c->ic_flags); 799 return IEEE80211_VHT_CHANWIDTH_USE_HT; 800 } 801 802 /* 803 * Note: this just uses the current channel information; 804 * it doesn't use the node info after parsing. 805 * 806 * XXX TODO: need to make the basic MCS set configurable. 807 * XXX TODO: read 802.11-2013 to determine what to set 808 * chwidth to when scanning. I have a feeling 809 * it isn't involved in scanning and we shouldn't 810 * be sending it; and I don't yet know what to set 811 * it to for IBSS or hostap where the peer may be 812 * a completely different channel width to us. 813 */ 814 uint8_t * 815 ieee80211_add_vhtinfo(uint8_t *frm, struct ieee80211_node *ni) 816 { 817 818 frm[0] = IEEE80211_ELEMID_VHT_OPMODE; 819 frm[1] = sizeof(struct ieee80211_vht_operation); 820 frm += 2; 821 822 /* 8-bit chanwidth */ 823 *frm++ = ieee80211_vht_get_chwidth_ie(ni->ni_chan); 824 825 /* 8-bit freq1 */ 826 *frm++ = ni->ni_chan->ic_vht_ch_freq1; 827 828 /* 8-bit freq2 */ 829 *frm++ = ni->ni_chan->ic_vht_ch_freq2; 830 831 /* 16-bit basic MCS set - just MCS0..7 for NSS=1 for now */ 832 ADDSHORT(frm, 0xfffc); 833 834 return (frm); 835 } 836 837 void 838 ieee80211_vht_update_cap(struct ieee80211_node *ni, const uint8_t *vhtcap_ie, 839 const uint8_t *vhtop_ie) 840 { 841 842 ieee80211_parse_vhtcap(ni, vhtcap_ie); 843 ieee80211_parse_vhtopmode(ni, vhtop_ie); 844 } 845 846 static struct ieee80211_channel * 847 findvhtchan(struct ieee80211com *ic, struct ieee80211_channel *c, int vhtflags) 848 { 849 850 return (ieee80211_find_channel(ic, c->ic_freq, 851 (c->ic_flags & ~IEEE80211_CHAN_VHT) | vhtflags)); 852 } 853 854 /* 855 * Handle channel promotion to VHT, similar to ieee80211_ht_adjust_channel(). 856 */ 857 struct ieee80211_channel * 858 ieee80211_vht_adjust_channel(struct ieee80211com *ic, 859 struct ieee80211_channel *chan, int flags) 860 { 861 struct ieee80211_channel *c; 862 863 /* First case - handle channel demotion - if VHT isn't set */ 864 if ((flags & IEEE80211_FVHT_MASK) == 0) { 865 #if 0 866 printf("%s: demoting channel %d/0x%08x\n", __func__, 867 chan->ic_ieee, chan->ic_flags); 868 #endif 869 c = ieee80211_find_channel(ic, chan->ic_freq, 870 chan->ic_flags & ~IEEE80211_CHAN_VHT); 871 if (c == NULL) 872 c = chan; 873 #if 0 874 printf("%s: .. to %d/0x%08x\n", __func__, 875 c->ic_ieee, c->ic_flags); 876 #endif 877 return (c); 878 } 879 880 /* 881 * We can upgrade to VHT - attempt to do so 882 * 883 * Note: we don't clear the HT flags, these are the hints 884 * for HT40U/HT40D when selecting VHT40 or larger channels. 885 */ 886 c = NULL; 887 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT160)) 888 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT160); 889 890 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80P80)) 891 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80P80); 892 893 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT80)) 894 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT80); 895 896 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40)) 897 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40U); 898 if ((c == NULL) && (flags & IEEE80211_FVHT_USEVHT40)) 899 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT40D); 900 /* 901 * If we get here, VHT20 is always possible because we checked 902 * for IEEE80211_FVHT_VHT above. 903 */ 904 if (c == NULL) 905 c = findvhtchan(ic, chan, IEEE80211_CHAN_VHT20); 906 907 if (c != NULL) 908 chan = c; 909 910 #if 0 911 printf("%s: selected %d/0x%08x\n", __func__, c->ic_ieee, c->ic_flags); 912 #endif 913 return (chan); 914 } 915 916 /* 917 * Calculate the VHT operation IE for a given node. 918 * 919 * This includes calculating the suitable channel width/parameters 920 * and basic MCS set. 921 * 922 * TODO: ensure I read 9.7.11 Rate Selection for VHT STAs. 923 * TODO: ensure I read 10.39.7 - BSS Basic VHT-MCS and NSS set operation. 924 */ 925 void 926 ieee80211_vht_get_vhtinfo_ie(struct ieee80211_node *ni, 927 struct ieee80211_vht_operation *vhtop, int opmode) 928 { 929 printf("%s: called; TODO!\n", __func__); 930 } 931 932 /* 933 * Return true if VHT rates can be used for the given node. 934 */ 935 bool 936 ieee80211_vht_check_tx_vht(const struct ieee80211_node *ni) 937 { 938 const struct ieee80211vap *vap; 939 const struct ieee80211_channel *bss_chan; 940 941 if (ni == NULL || ni->ni_chan == IEEE80211_CHAN_ANYC || 942 ni->ni_vap == NULL || ni->ni_vap->iv_bss == NULL) 943 return (false); 944 945 vap = ni->ni_vap; 946 bss_chan = vap->iv_bss->ni_chan; 947 948 if (bss_chan == IEEE80211_CHAN_ANYC) 949 return (false); 950 951 return (IEEE80211_IS_CHAN_VHT(ni->ni_chan)); 952 } 953 954 /* 955 * Return true if VHT40 rates can be transmitted to the given node. 956 * 957 * This verifies that the BSS is VHT40 capable and the current 958 * node channel width is 40MHz. 959 */ 960 static bool 961 ieee80211_vht_check_tx_vht40(const struct ieee80211_node *ni) 962 { 963 struct ieee80211vap *vap; 964 struct ieee80211_channel *bss_chan; 965 966 if (!ieee80211_vht_check_tx_vht(ni)) 967 return (false); 968 969 vap = ni->ni_vap; 970 bss_chan = vap->iv_bss->ni_chan; 971 972 return (IEEE80211_IS_CHAN_VHT40(bss_chan) && 973 IEEE80211_IS_CHAN_VHT40(ni->ni_chan) && 974 (ni->ni_chw == IEEE80211_STA_RX_BW_40)); 975 } 976 977 /* 978 * Return true if VHT80 rates can be transmitted to the given node. 979 * 980 * This verifies that the BSS is VHT80 capable and the current 981 * node channel width is 80MHz. 982 */ 983 static bool 984 ieee80211_vht_check_tx_vht80(const struct ieee80211_node *ni) 985 { 986 struct ieee80211vap *vap; 987 struct ieee80211_channel *bss_chan; 988 989 if (!ieee80211_vht_check_tx_vht(ni)) 990 return (false); 991 992 vap = ni->ni_vap; 993 bss_chan = vap->iv_bss->ni_chan; 994 995 /* 996 * ni_chw represents 20MHz or 40MHz from the HT 997 * TX width action frame / HT channel negotiation. 998 * If a HT TX width action frame sets it to 20MHz 999 * then reject doing 80MHz. 1000 */ 1001 return (IEEE80211_IS_CHAN_VHT80(bss_chan) && 1002 IEEE80211_IS_CHAN_VHT80(ni->ni_chan) && 1003 (ni->ni_chw != IEEE80211_STA_RX_BW_20)); 1004 } 1005 1006 /* 1007 * Return true if VHT 160 rates can be transmitted to the given node. 1008 * 1009 * This verifies that the BSS is VHT80+80 or VHT160 capable and the current 1010 * node channel width is 80+80MHz or 160MHz. 1011 */ 1012 static bool 1013 ieee80211_vht_check_tx_vht160(const struct ieee80211_node *ni) 1014 { 1015 struct ieee80211vap *vap; 1016 struct ieee80211_channel *bss_chan; 1017 1018 if (!ieee80211_vht_check_tx_vht(ni)) 1019 return (false); 1020 1021 vap = ni->ni_vap; 1022 bss_chan = vap->iv_bss->ni_chan; 1023 1024 /* 1025 * ni_chw represents 20MHz or 40MHz from the HT 1026 * TX width action frame / HT channel negotiation. 1027 * If a HT TX width action frame sets it to 20MHz 1028 * then reject doing 160MHz. 1029 */ 1030 if (ni->ni_chw == IEEE80211_STA_RX_BW_20) 1031 return (false); 1032 1033 if (IEEE80211_IS_CHAN_VHT160(bss_chan) && 1034 IEEE80211_IS_CHAN_VHT160(ni->ni_chan)) 1035 return (true); 1036 1037 if (IEEE80211_IS_CHAN_VHT80P80(bss_chan) && 1038 IEEE80211_IS_CHAN_VHT80P80(ni->ni_chan)) 1039 return (true); 1040 1041 return (false); 1042 } 1043 1044 /** 1045 * @brief Check if the given transmit bandwidth is available to the given node 1046 * 1047 * This checks that the node and BSS both allow the given bandwidth, 1048 * and that the current node bandwidth (which can dynamically change) 1049 * also allows said bandwidth. 1050 * 1051 * This relies on the channels having the flags for the narrower 1052 * channels as well - eg a VHT160 channel will have the CHAN_VHT80, 1053 * CHAN_VHT40, CHAN_VHT flags also set. 1054 * 1055 * @param ni the ieee80211_node to check 1056 * @param bw the required bandwidth to check 1057 * 1058 * @returns true if it is allowed, false otherwise 1059 */ 1060 bool 1061 ieee80211_vht_check_tx_bw(const struct ieee80211_node *ni, 1062 enum ieee80211_sta_rx_bw bw) 1063 { 1064 1065 switch (bw) { 1066 case IEEE80211_STA_RX_BW_20: 1067 return (ieee80211_vht_check_tx_vht(ni)); 1068 case IEEE80211_STA_RX_BW_40: 1069 return (ieee80211_vht_check_tx_vht40(ni)); 1070 case IEEE80211_STA_RX_BW_80: 1071 return (ieee80211_vht_check_tx_vht80(ni)); 1072 case IEEE80211_STA_RX_BW_160: 1073 return (ieee80211_vht_check_tx_vht160(ni)); 1074 case IEEE80211_STA_RX_BW_320: 1075 return (false); 1076 default: 1077 return (false); 1078 } 1079 } 1080 1081 /** 1082 * @brief Check if the given VHT bw/nss/mcs combination is valid 1083 * for the give node. 1084 * 1085 * This checks whether the given VHT bw/nss/mcs is valid based on 1086 * the negotiated rate mask in the node. 1087 * 1088 * @param ni struct ieee80211_node node to check 1089 * @param bw channel bandwidth to check 1090 * @param nss NSS 1091 * @param mcs MCS 1092 * @returns True if this combination is available, false otherwise. 1093 */ 1094 bool 1095 ieee80211_vht_node_check_tx_valid_mcs(const struct ieee80211_node *ni, 1096 enum ieee80211_sta_rx_bw bw, uint8_t nss, uint8_t mcs) 1097 { 1098 uint8_t mc; 1099 1100 /* Validate arguments */ 1101 if (nss < 1 || nss > 8) 1102 return (false); 1103 if (mcs > 9) 1104 return (false); 1105 1106 /* Check our choice of rate is actually valid */ 1107 if (!ieee80211_phy_vht_validate_mcs(bw, nss, mcs)) 1108 return (false); 1109 1110 /* 1111 * Next, check if the MCS rate is available for the 1112 * given NSS. 1113 */ 1114 mc = ni->ni_vht_tx_map >> (2*(nss-1)) & 0x3; 1115 switch (mc) { 1116 case IEEE80211_VHT_MCS_NOT_SUPPORTED: 1117 /* Not supported at this NSS */ 1118 return (false); 1119 case IEEE80211_VHT_MCS_SUPPORT_0_9: 1120 return (mcs <= 9); 1121 case IEEE80211_VHT_MCS_SUPPORT_0_8: 1122 return (mcs <= 8); 1123 case IEEE80211_VHT_MCS_SUPPORT_0_7: 1124 return (mcs <= 7); 1125 default: 1126 return (false); 1127 } 1128 } 1129