1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_wlan.h" 32 33 #ifdef IEEE80211_SUPPORT_SUPERG 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/bpf.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_input.h> 52 #include <net80211/ieee80211_phy.h> 53 #include <net80211/ieee80211_superg.h> 54 55 /* 56 * Atheros fast-frame encapsulation format. 57 * FF max payload: 58 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: 59 * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 60 * = 3066 61 */ 62 /* fast frame header is 32-bits */ 63 #define ATH_FF_PROTO 0x0000003f /* protocol */ 64 #define ATH_FF_PROTO_S 0 65 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ 66 #define ATH_FF_FTYPE_S 6 67 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ 68 #define ATH_FF_HLEN32_S 8 69 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ 70 #define ATH_FF_SEQNUM_S 10 71 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ 72 #define ATH_FF_OFFSET_S 21 73 74 #define ATH_FF_MAX_HDR_PAD 4 75 #define ATH_FF_MAX_SEP_PAD 6 76 #define ATH_FF_MAX_HDR 30 77 78 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ 79 #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ 80 #define ATH_FF_SNAP_ORGCODE_0 0x00 81 #define ATH_FF_SNAP_ORGCODE_1 0x03 82 #define ATH_FF_SNAP_ORGCODE_2 0x7f 83 84 #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ 85 #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ 86 #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ 87 88 #define ETHER_HEADER_COPY(dst, src) \ 89 memcpy(dst, src, sizeof(struct ether_header)) 90 91 static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ 92 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, 93 &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); 94 static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ 95 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, 96 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 97 &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", 98 "max hold time for fast-frame staging (ms)"); 99 100 static void 101 ff_age_all(void *arg, int npending) 102 { 103 struct ieee80211com *ic = arg; 104 105 /* XXX cache timer value somewhere (racy) */ 106 ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1); 107 } 108 109 void 110 ieee80211_superg_attach(struct ieee80211com *ic) 111 { 112 struct ieee80211_superg *sg; 113 114 IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); 115 116 sg = (struct ieee80211_superg *) IEEE80211_MALLOC( 117 sizeof(struct ieee80211_superg), M_80211_VAP, 118 IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 119 if (sg == NULL) { 120 printf("%s: cannot allocate SuperG state block\n", 121 __func__); 122 return; 123 } 124 TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic); 125 ic->ic_superg = sg; 126 127 /* 128 * Default to not being so aggressive for FF/AMSDU 129 * aging, otherwise we may hold a frame around 130 * for way too long before we expire it out. 131 */ 132 ieee80211_ffagemax = msecs_to_ticks(2); 133 } 134 135 void 136 ieee80211_superg_detach(struct ieee80211com *ic) 137 { 138 139 if (ic->ic_superg != NULL) { 140 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 141 142 while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0) 143 taskqueue_drain_timeout(ic->ic_tq, qtask); 144 IEEE80211_FREE(ic->ic_superg, M_80211_VAP); 145 ic->ic_superg = NULL; 146 } 147 IEEE80211_FF_LOCK_DESTROY(ic); 148 } 149 150 void 151 ieee80211_superg_vattach(struct ieee80211vap *vap) 152 { 153 struct ieee80211com *ic = vap->iv_ic; 154 155 if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ 156 vap->iv_caps &= ~IEEE80211_C_FF; 157 if (vap->iv_caps & IEEE80211_C_FF) 158 vap->iv_flags |= IEEE80211_F_FF; 159 /* NB: we only implement sta mode */ 160 if (vap->iv_opmode == IEEE80211_M_STA && 161 (vap->iv_caps & IEEE80211_C_TURBOP)) 162 vap->iv_flags |= IEEE80211_F_TURBOP; 163 } 164 165 void 166 ieee80211_superg_vdetach(struct ieee80211vap *vap) 167 { 168 } 169 170 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 171 /* 172 * Add a WME information element to a frame. 173 */ 174 uint8_t * 175 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) 176 { 177 static const struct ieee80211_ath_ie info = { 178 .ath_id = IEEE80211_ELEMID_VENDOR, 179 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 180 .ath_oui = { ATH_OUI_BYTES }, 181 .ath_oui_type = ATH_OUI_TYPE, 182 .ath_oui_subtype= ATH_OUI_SUBTYPE, 183 .ath_version = ATH_OUI_VERSION, 184 }; 185 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 186 187 memcpy(frm, &info, sizeof(info)); 188 ath->ath_capability = caps; 189 if (defkeyix != IEEE80211_KEYIX_NONE) { 190 ath->ath_defkeyix[0] = (defkeyix & 0xff); 191 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 192 } else { 193 ath->ath_defkeyix[0] = 0xff; 194 ath->ath_defkeyix[1] = 0x7f; 195 } 196 return frm + sizeof(info); 197 } 198 #undef ATH_OUI_BYTES 199 200 uint8_t * 201 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) 202 { 203 const struct ieee80211vap *vap = bss->ni_vap; 204 205 return ieee80211_add_ath(frm, 206 vap->iv_flags & IEEE80211_F_ATHEROS, 207 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 208 bss->ni_authmode != IEEE80211_AUTH_8021X) ? 209 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 210 } 211 212 void 213 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) 214 { 215 const struct ieee80211_ath_ie *ath = 216 (const struct ieee80211_ath_ie *) ie; 217 218 ni->ni_ath_flags = ath->ath_capability; 219 ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); 220 } 221 222 int 223 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, 224 const struct ieee80211_frame *wh) 225 { 226 struct ieee80211vap *vap = ni->ni_vap; 227 const struct ieee80211_ath_ie *ath; 228 u_int len = frm[1]; 229 int capschanged; 230 uint16_t defkeyix; 231 232 if (len < sizeof(struct ieee80211_ath_ie)-2) { 233 IEEE80211_DISCARD_IE(vap, 234 IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, 235 wh, "Atheros", "too short, len %u", len); 236 return -1; 237 } 238 ath = (const struct ieee80211_ath_ie *)frm; 239 capschanged = (ni->ni_ath_flags != ath->ath_capability); 240 defkeyix = le16dec(ath->ath_defkeyix); 241 if (capschanged || defkeyix != ni->ni_ath_defkeyix) { 242 ni->ni_ath_flags = ath->ath_capability; 243 ni->ni_ath_defkeyix = defkeyix; 244 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 245 "ath ie change: new caps 0x%x defkeyix 0x%x", 246 ni->ni_ath_flags, ni->ni_ath_defkeyix); 247 } 248 if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { 249 uint16_t curflags, newflags; 250 251 /* 252 * Check for turbo mode switch. Calculate flags 253 * for the new mode and effect the switch. 254 */ 255 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; 256 /* NB: BOOST is not in ic_flags, so get it from the ie */ 257 if (ath->ath_capability & ATHEROS_CAP_BOOST) 258 newflags |= IEEE80211_CHAN_TURBO; 259 else 260 newflags &= ~IEEE80211_CHAN_TURBO; 261 if (newflags != curflags) 262 ieee80211_dturbo_switch(vap, newflags); 263 } 264 return capschanged; 265 } 266 267 /* 268 * Decap the encapsulated frame pair and dispatch the first 269 * for delivery. The second frame is returned for delivery 270 * via the normal path. 271 */ 272 struct mbuf * 273 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) 274 { 275 #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) 276 struct ieee80211vap *vap = ni->ni_vap; 277 struct llc *llc; 278 uint32_t ath; 279 struct mbuf *n; 280 int framelen; 281 282 /* NB: we assume caller does this check for us */ 283 KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), 284 ("ff not negotiated")); 285 /* 286 * Check for fast-frame tunnel encapsulation. 287 */ 288 if (m->m_pkthdr.len < 3*FF_LLC_SIZE) 289 return m; 290 if (m->m_len < FF_LLC_SIZE && 291 (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { 292 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 293 ni->ni_macaddr, "fast-frame", 294 "%s", "m_pullup(llc) failed"); 295 vap->iv_stats.is_rx_tooshort++; 296 return NULL; 297 } 298 llc = (struct llc *)(mtod(m, uint8_t *) + 299 sizeof(struct ether_header)); 300 if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) 301 return m; 302 m_adj(m, FF_LLC_SIZE); 303 m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); 304 if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { 305 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 306 ni->ni_macaddr, "fast-frame", 307 "unsupport tunnel protocol, header 0x%x", ath); 308 vap->iv_stats.is_ff_badhdr++; 309 m_freem(m); 310 return NULL; 311 } 312 /* NB: skip header and alignment padding */ 313 m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); 314 315 vap->iv_stats.is_ff_decap++; 316 317 /* 318 * Decap the first frame, bust it apart from the 319 * second and deliver; then decap the second frame 320 * and return it to the caller for normal delivery. 321 */ 322 m = ieee80211_decap1(m, &framelen); 323 if (m == NULL) { 324 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 325 ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); 326 vap->iv_stats.is_ff_tooshort++; 327 return NULL; 328 } 329 n = m_split(m, framelen, M_NOWAIT); 330 if (n == NULL) { 331 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 332 ni->ni_macaddr, "fast-frame", 333 "%s", "unable to split encapsulated frames"); 334 vap->iv_stats.is_ff_split++; 335 m_freem(m); /* NB: must reclaim */ 336 return NULL; 337 } 338 /* XXX not right for WDS */ 339 vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ 340 341 /* 342 * Decap second frame. 343 */ 344 m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ 345 n = ieee80211_decap1(n, &framelen); 346 if (n == NULL) { 347 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 348 ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); 349 vap->iv_stats.is_ff_tooshort++; 350 } 351 /* XXX verify framelen against mbuf contents */ 352 return n; /* 2nd delivered by caller */ 353 #undef FF_LLC_SIZE 354 } 355 356 /* 357 * Fast frame encapsulation. There must be two packets 358 * chained with m_nextpkt. We do header adjustment for 359 * each, add the tunnel encapsulation, and then concatenate 360 * the mbuf chains to form a single frame for transmission. 361 */ 362 struct mbuf * 363 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 364 struct ieee80211_key *key) 365 { 366 struct mbuf *m2; 367 struct ether_header eh1, eh2; 368 struct llc *llc; 369 struct mbuf *m; 370 int pad; 371 372 m2 = m1->m_nextpkt; 373 if (m2 == NULL) { 374 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 375 "%s: only one frame\n", __func__); 376 goto bad; 377 } 378 m1->m_nextpkt = NULL; 379 380 /* 381 * Adjust to include 802.11 header requirement. 382 */ 383 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 384 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 385 m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); 386 if (m1 == NULL) { 387 printf("%s: failed initial mbuf_adjust\n", __func__); 388 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 389 m_freem(m2); 390 goto bad; 391 } 392 393 /* 394 * Copy second frame's Ethernet header out of line 395 * and adjust for possible padding in case there isn't room 396 * at the end of first frame. 397 */ 398 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 399 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 400 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 401 if (m2 == NULL) { 402 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 403 printf("%s: failed second \n", __func__); 404 goto bad; 405 } 406 407 /* 408 * Now do tunnel encapsulation. First, each 409 * frame gets a standard encapsulation. 410 */ 411 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 412 if (m1 == NULL) 413 goto bad; 414 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 415 if (m2 == NULL) 416 goto bad; 417 418 /* 419 * Pad leading frame to a 4-byte boundary. If there 420 * is space at the end of the first frame, put it 421 * there; otherwise prepend to the front of the second 422 * frame. We know doing the second will always work 423 * because we reserve space above. We prefer appending 424 * as this typically has better DMA alignment properties. 425 */ 426 for (m = m1; m->m_next != NULL; m = m->m_next) 427 ; 428 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 429 if (pad) { 430 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 431 m2->m_data -= pad; 432 m2->m_len += pad; 433 m2->m_pkthdr.len += pad; 434 } else { /* append to first */ 435 m->m_len += pad; 436 m1->m_pkthdr.len += pad; 437 } 438 } 439 440 /* 441 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the 442 * QoS header. 443 * 444 * XXX optimize by prepending together 445 */ 446 m->m_next = m2; /* NB: last mbuf from above */ 447 m1->m_pkthdr.len += m2->m_pkthdr.len; 448 M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); 449 if (m1 == NULL) { /* XXX cannot happen */ 450 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 451 "%s: no space for tunnel header\n", __func__); 452 vap->iv_stats.is_tx_nobuf++; 453 return NULL; 454 } 455 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 456 457 M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); 458 if (m1 == NULL) { /* XXX cannot happen */ 459 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 460 "%s: no space for llc header\n", __func__); 461 vap->iv_stats.is_tx_nobuf++; 462 return NULL; 463 } 464 llc = mtod(m1, struct llc *); 465 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 466 llc->llc_control = LLC_UI; 467 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 468 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 469 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 470 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 471 472 vap->iv_stats.is_ff_encap++; 473 474 return m1; 475 bad: 476 vap->iv_stats.is_ff_encapfail++; 477 if (m1 != NULL) 478 m_freem(m1); 479 if (m2 != NULL) 480 m_freem(m2); 481 return NULL; 482 } 483 484 /* 485 * A-MSDU encapsulation. 486 * 487 * This assumes just two frames for now, since we're borrowing the 488 * same queuing code and infrastructure as fast-frames. 489 * 490 * There must be two packets chained with m_nextpkt. 491 * We do header adjustment for each, and then concatenate the mbuf chains 492 * to form a single frame for transmission. 493 */ 494 struct mbuf * 495 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 496 struct ieee80211_key *key) 497 { 498 struct mbuf *m2; 499 struct ether_header eh1, eh2; 500 struct mbuf *m; 501 int pad; 502 503 m2 = m1->m_nextpkt; 504 if (m2 == NULL) { 505 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 506 "%s: only one frame\n", __func__); 507 goto bad; 508 } 509 m1->m_nextpkt = NULL; 510 511 /* 512 * Include A-MSDU header in adjusting header layout. 513 */ 514 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 515 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 516 m1 = ieee80211_mbuf_adjust(vap, 517 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 518 sizeof(struct ether_header), 519 key, m1); 520 if (m1 == NULL) { 521 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 522 m_freem(m2); 523 goto bad; 524 } 525 526 /* 527 * Copy second frame's Ethernet header out of line 528 * and adjust for encapsulation headers. Note that 529 * we make room for padding in case there isn't room 530 * at the end of first frame. 531 */ 532 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 533 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 534 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 535 if (m2 == NULL) { 536 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 537 goto bad; 538 } 539 540 /* 541 * Now do tunnel encapsulation. First, each 542 * frame gets a standard encapsulation. 543 */ 544 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 545 if (m1 == NULL) 546 goto bad; 547 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 548 if (m2 == NULL) 549 goto bad; 550 551 /* 552 * Pad leading frame to a 4-byte boundary. If there 553 * is space at the end of the first frame, put it 554 * there; otherwise prepend to the front of the second 555 * frame. We know doing the second will always work 556 * because we reserve space above. We prefer appending 557 * as this typically has better DMA alignment properties. 558 */ 559 for (m = m1; m->m_next != NULL; m = m->m_next) 560 ; 561 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 562 if (pad) { 563 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 564 m2->m_data -= pad; 565 m2->m_len += pad; 566 m2->m_pkthdr.len += pad; 567 } else { /* append to first */ 568 m->m_len += pad; 569 m1->m_pkthdr.len += pad; 570 } 571 } 572 573 /* 574 * Now, stick 'em together. 575 */ 576 m->m_next = m2; /* NB: last mbuf from above */ 577 m1->m_pkthdr.len += m2->m_pkthdr.len; 578 579 vap->iv_stats.is_amsdu_encap++; 580 581 return m1; 582 bad: 583 vap->iv_stats.is_amsdu_encapfail++; 584 if (m1 != NULL) 585 m_freem(m1); 586 if (m2 != NULL) 587 m_freem(m2); 588 return NULL; 589 } 590 591 static void 592 ff_transmit(struct ieee80211_node *ni, struct mbuf *m) 593 { 594 struct ieee80211vap *vap = ni->ni_vap; 595 struct ieee80211com *ic = ni->ni_ic; 596 597 IEEE80211_TX_LOCK_ASSERT(ic); 598 599 /* encap and xmit */ 600 m = ieee80211_encap(vap, ni, m); 601 if (m != NULL) 602 (void) ieee80211_parent_xmitpkt(ic, m); 603 else 604 ieee80211_free_node(ni); 605 } 606 607 /* 608 * Flush frames to device; note we re-use the linked list 609 * the frames were stored on and use the sentinel (unchanged) 610 * which may be non-NULL. 611 */ 612 static void 613 ff_flush(struct mbuf *head, struct mbuf *last) 614 { 615 struct mbuf *m, *next; 616 struct ieee80211_node *ni; 617 struct ieee80211vap *vap; 618 619 for (m = head; m != last; m = next) { 620 next = m->m_nextpkt; 621 m->m_nextpkt = NULL; 622 623 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 624 vap = ni->ni_vap; 625 626 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 627 "%s: flush frame, age %u", __func__, M_AGE_GET(m)); 628 vap->iv_stats.is_ff_flush++; 629 630 ff_transmit(ni, m); 631 } 632 } 633 634 /* 635 * Age frames on the staging queue. 636 */ 637 void 638 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, 639 int quanta) 640 { 641 struct mbuf *m, *head; 642 struct ieee80211_node *ni; 643 644 IEEE80211_FF_LOCK(ic); 645 if (sq->depth == 0) { 646 IEEE80211_FF_UNLOCK(ic); 647 return; /* nothing to do */ 648 } 649 650 KASSERT(sq->head != NULL, ("stageq empty")); 651 652 head = sq->head; 653 while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { 654 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 655 656 /* clear staging ref to frame */ 657 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 658 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); 659 ni->ni_tx_superg[tid] = NULL; 660 661 sq->head = m->m_nextpkt; 662 sq->depth--; 663 } 664 if (m == NULL) 665 sq->tail = NULL; 666 else 667 M_AGE_SUB(m, quanta); 668 IEEE80211_FF_UNLOCK(ic); 669 670 IEEE80211_TX_LOCK(ic); 671 ff_flush(head, m); 672 IEEE80211_TX_UNLOCK(ic); 673 } 674 675 static void 676 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) 677 { 678 int age = ieee80211_ffagemax; 679 680 IEEE80211_FF_LOCK_ASSERT(ic); 681 682 if (sq->tail != NULL) { 683 sq->tail->m_nextpkt = m; 684 age -= M_AGE_GET(sq->head); 685 } else { 686 sq->head = m; 687 688 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 689 taskqueue_enqueue_timeout(ic->ic_tq, qtask, age); 690 } 691 KASSERT(age >= 0, ("age %d", age)); 692 M_AGE_SET(m, age); 693 m->m_nextpkt = NULL; 694 sq->tail = m; 695 sq->depth++; 696 } 697 698 static void 699 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) 700 { 701 struct mbuf *m, *mprev; 702 703 IEEE80211_FF_LOCK_ASSERT(ic); 704 705 mprev = NULL; 706 for (m = sq->head; m != NULL; m = m->m_nextpkt) { 707 if (m == mstaged) { 708 if (mprev == NULL) 709 sq->head = m->m_nextpkt; 710 else 711 mprev->m_nextpkt = m->m_nextpkt; 712 if (sq->tail == m) 713 sq->tail = mprev; 714 sq->depth--; 715 return; 716 } 717 mprev = m; 718 } 719 printf("%s: packet not found\n", __func__); 720 } 721 722 static uint32_t 723 ff_approx_txtime(struct ieee80211_node *ni, 724 const struct mbuf *m1, const struct mbuf *m2) 725 { 726 struct ieee80211com *ic = ni->ni_ic; 727 struct ieee80211vap *vap = ni->ni_vap; 728 uint32_t framelen; 729 uint32_t frame_time; 730 731 /* 732 * Approximate the frame length to be transmitted. A swag to add 733 * the following maximal values to the skb payload: 734 * - 32: 802.11 encap + CRC 735 * - 24: encryption overhead (if wep bit) 736 * - 4 + 6: fast-frame header and padding 737 * - 16: 2 LLC FF tunnel headers 738 * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) 739 */ 740 framelen = m1->m_pkthdr.len + 32 + 741 ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; 742 if (vap->iv_flags & IEEE80211_F_PRIVACY) 743 framelen += 24; 744 if (m2 != NULL) 745 framelen += m2->m_pkthdr.len; 746 747 /* 748 * For now, we assume non-shortgi, 20MHz, just because I want to 749 * at least test 802.11n. 750 */ 751 if (ni->ni_txrate & IEEE80211_RATE_MCS) 752 frame_time = ieee80211_compute_duration_ht(framelen, 753 ni->ni_txrate, 754 IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 755 0, /* isht40 */ 756 0); /* isshortgi */ 757 else 758 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, 759 ni->ni_txrate, 0); 760 return (frame_time); 761 } 762 763 /* 764 * Check if the supplied frame can be partnered with an existing 765 * or pending frame. Return a reference to any frame that should be 766 * sent on return; otherwise return NULL. 767 */ 768 struct mbuf * 769 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) 770 { 771 struct ieee80211vap *vap = ni->ni_vap; 772 struct ieee80211com *ic = ni->ni_ic; 773 struct ieee80211_superg *sg = ic->ic_superg; 774 const int pri = M_WME_GETAC(m); 775 struct ieee80211_stageq *sq; 776 struct ieee80211_tx_ampdu *tap; 777 struct mbuf *mstaged; 778 uint32_t txtime, limit; 779 780 IEEE80211_TX_UNLOCK_ASSERT(ic); 781 782 IEEE80211_LOCK(ic); 783 limit = IEEE80211_TXOP_TO_US( 784 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 785 IEEE80211_UNLOCK(ic); 786 787 /* 788 * Check if the supplied frame can be aggregated. 789 * 790 * NB: we allow EAPOL frames to be aggregated with other ucast traffic. 791 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 792 * be aggregated with other types of frames when encryption is on? 793 */ 794 IEEE80211_FF_LOCK(ic); 795 tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; 796 mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; 797 /* XXX NOTE: reusing packet counter state from A-MPDU */ 798 /* 799 * XXX NOTE: this means we're double-counting; it should just 800 * be done in ieee80211_output.c once for both superg and A-MPDU. 801 */ 802 ieee80211_txampdu_count_packet(tap); 803 804 /* 805 * When not in station mode never aggregate a multicast 806 * frame; this insures, for example, that a combined frame 807 * does not require multiple encryption keys. 808 */ 809 if (vap->iv_opmode != IEEE80211_M_STA && 810 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { 811 /* XXX flush staged frame? */ 812 IEEE80211_FF_UNLOCK(ic); 813 return m; 814 } 815 /* 816 * If there is no frame to combine with and the pps is 817 * too low; then do not attempt to aggregate this frame. 818 */ 819 if (mstaged == NULL && 820 ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { 821 IEEE80211_FF_UNLOCK(ic); 822 return m; 823 } 824 sq = &sg->ff_stageq[pri]; 825 /* 826 * Check the txop limit to insure the aggregate fits. 827 */ 828 if (limit != 0 && 829 (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { 830 /* 831 * Aggregate too long, return to the caller for direct 832 * transmission. In addition, flush any pending frame 833 * before sending this one. 834 */ 835 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 836 "%s: txtime %u exceeds txop limit %u\n", 837 __func__, txtime, limit); 838 839 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 840 if (mstaged != NULL) 841 stageq_remove(ic, sq, mstaged); 842 IEEE80211_FF_UNLOCK(ic); 843 844 if (mstaged != NULL) { 845 IEEE80211_TX_LOCK(ic); 846 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 847 "%s: flush staged frame", __func__); 848 /* encap and xmit */ 849 ff_transmit(ni, mstaged); 850 IEEE80211_TX_UNLOCK(ic); 851 } 852 return m; /* NB: original frame */ 853 } 854 /* 855 * An aggregation candidate. If there's a frame to partner 856 * with then combine and return for processing. Otherwise 857 * save this frame and wait for a partner to show up (or 858 * the frame to be flushed). Note that staged frames also 859 * hold their node reference. 860 */ 861 if (mstaged != NULL) { 862 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 863 stageq_remove(ic, sq, mstaged); 864 IEEE80211_FF_UNLOCK(ic); 865 866 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 867 "%s: aggregate fast-frame", __func__); 868 /* 869 * Release the node reference; we only need 870 * the one already in mstaged. 871 */ 872 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, 873 ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); 874 ieee80211_free_node(ni); 875 876 m->m_nextpkt = NULL; 877 mstaged->m_nextpkt = m; 878 mstaged->m_flags |= M_FF; /* NB: mark for encap work */ 879 } else { 880 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, 881 ("ni_tx_superg[]: %p", 882 ni->ni_tx_superg[WME_AC_TO_TID(pri)])); 883 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; 884 885 stageq_add(ic, sq, m); 886 IEEE80211_FF_UNLOCK(ic); 887 888 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 889 "%s: stage frame, %u queued", __func__, sq->depth); 890 /* NB: mstaged is NULL */ 891 } 892 return mstaged; 893 } 894 895 struct mbuf * 896 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) 897 { 898 /* 899 * XXX TODO: actually enforce the node support 900 * and HTCAP requirements for the maximum A-MSDU 901 * size. 902 */ 903 904 /* First: software A-MSDU transmit? */ 905 if (! ieee80211_amsdu_tx_ok(ni)) 906 return (m); 907 908 /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ 909 if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) 910 return (m); 911 912 /* Next - needs to be a data frame, non-broadcast, etc */ 913 if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 914 return (m); 915 916 return (ieee80211_ff_check(ni, m)); 917 } 918 919 void 920 ieee80211_ff_node_init(struct ieee80211_node *ni) 921 { 922 /* 923 * Clean FF state on re-associate. This handles the case 924 * where a station leaves w/o notifying us and then returns 925 * before node is reaped for inactivity. 926 */ 927 ieee80211_ff_node_cleanup(ni); 928 } 929 930 void 931 ieee80211_ff_node_cleanup(struct ieee80211_node *ni) 932 { 933 struct ieee80211com *ic = ni->ni_ic; 934 struct ieee80211_superg *sg = ic->ic_superg; 935 struct mbuf *m, *next_m, *head; 936 int tid; 937 938 IEEE80211_FF_LOCK(ic); 939 head = NULL; 940 for (tid = 0; tid < WME_NUM_TID; tid++) { 941 int ac = TID_TO_WME_AC(tid); 942 /* 943 * XXX Initialise the packet counter. 944 * 945 * This may be double-work for 11n stations; 946 * but without it we never setup things. 947 */ 948 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); 949 m = ni->ni_tx_superg[tid]; 950 if (m != NULL) { 951 ni->ni_tx_superg[tid] = NULL; 952 stageq_remove(ic, &sg->ff_stageq[ac], m); 953 m->m_nextpkt = head; 954 head = m; 955 } 956 } 957 IEEE80211_FF_UNLOCK(ic); 958 959 /* 960 * Free mbufs, taking care to not dereference the mbuf after 961 * we free it (hence grabbing m_nextpkt before we free it.) 962 */ 963 m = head; 964 while (m != NULL) { 965 next_m = m->m_nextpkt; 966 m_freem(m); 967 ieee80211_free_node(ni); 968 m = next_m; 969 } 970 } 971 972 /* 973 * Switch between turbo and non-turbo operating modes. 974 * Use the specified channel flags to locate the new 975 * channel, update 802.11 state, and then call back into 976 * the driver to effect the change. 977 */ 978 void 979 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) 980 { 981 struct ieee80211com *ic = vap->iv_ic; 982 struct ieee80211_channel *chan; 983 984 chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); 985 if (chan == NULL) { /* XXX should not happen */ 986 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 987 "%s: no channel with freq %u flags 0x%x\n", 988 __func__, ic->ic_bsschan->ic_freq, newflags); 989 return; 990 } 991 992 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 993 "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, 994 ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], 995 ieee80211_phymode_name[ieee80211_chan2mode(chan)], 996 chan->ic_freq, chan->ic_flags); 997 998 ic->ic_bsschan = chan; 999 ic->ic_prevchan = ic->ic_curchan; 1000 ic->ic_curchan = chan; 1001 ic->ic_rt = ieee80211_get_ratetable(chan); 1002 ic->ic_set_channel(ic); 1003 ieee80211_radiotap_chan_change(ic); 1004 /* NB: do not need to reset ERP state 'cuz we're in sta mode */ 1005 } 1006 1007 /* 1008 * Return the current ``state'' of an Atheros capbility. 1009 * If associated in station mode report the negotiated 1010 * setting. Otherwise report the current setting. 1011 */ 1012 static int 1013 getathcap(struct ieee80211vap *vap, int cap) 1014 { 1015 if (vap->iv_opmode == IEEE80211_M_STA && 1016 vap->iv_state == IEEE80211_S_RUN) 1017 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; 1018 else 1019 return (vap->iv_flags & cap) != 0; 1020 } 1021 1022 static int 1023 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1024 { 1025 switch (ireq->i_type) { 1026 case IEEE80211_IOC_FF: 1027 ireq->i_val = getathcap(vap, IEEE80211_F_FF); 1028 break; 1029 case IEEE80211_IOC_TURBOP: 1030 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); 1031 break; 1032 default: 1033 return ENOSYS; 1034 } 1035 return 0; 1036 } 1037 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); 1038 1039 static int 1040 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1041 { 1042 switch (ireq->i_type) { 1043 case IEEE80211_IOC_FF: 1044 if (ireq->i_val) { 1045 if ((vap->iv_caps & IEEE80211_C_FF) == 0) 1046 return EOPNOTSUPP; 1047 vap->iv_flags |= IEEE80211_F_FF; 1048 } else 1049 vap->iv_flags &= ~IEEE80211_F_FF; 1050 return ENETRESET; 1051 case IEEE80211_IOC_TURBOP: 1052 if (ireq->i_val) { 1053 if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) 1054 return EOPNOTSUPP; 1055 vap->iv_flags |= IEEE80211_F_TURBOP; 1056 } else 1057 vap->iv_flags &= ~IEEE80211_F_TURBOP; 1058 return ENETRESET; 1059 default: 1060 return ENOSYS; 1061 } 1062 } 1063 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); 1064 1065 #endif /* IEEE80211_SUPPORT_SUPERG */ 1066