1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 #include "opt_wlan.h" 32 33 #ifdef IEEE80211_SUPPORT_SUPERG 34 35 #include <sys/param.h> 36 #include <sys/systm.h> 37 #include <sys/mbuf.h> 38 #include <sys/kernel.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/if.h> 44 #include <net/if_var.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/bpf.h> 48 #include <net/ethernet.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_input.h> 52 #include <net80211/ieee80211_phy.h> 53 #include <net80211/ieee80211_superg.h> 54 55 /* 56 * Atheros fast-frame encapsulation format. 57 * FF max payload: 58 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: 59 * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 60 * = 3066 61 */ 62 /* fast frame header is 32-bits */ 63 #define ATH_FF_PROTO 0x0000003f /* protocol */ 64 #define ATH_FF_PROTO_S 0 65 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ 66 #define ATH_FF_FTYPE_S 6 67 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ 68 #define ATH_FF_HLEN32_S 8 69 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ 70 #define ATH_FF_SEQNUM_S 10 71 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ 72 #define ATH_FF_OFFSET_S 21 73 74 #define ATH_FF_MAX_HDR_PAD 4 75 #define ATH_FF_MAX_SEP_PAD 6 76 #define ATH_FF_MAX_HDR 30 77 78 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ 79 #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ 80 #define ATH_FF_SNAP_ORGCODE_0 0x00 81 #define ATH_FF_SNAP_ORGCODE_1 0x03 82 #define ATH_FF_SNAP_ORGCODE_2 0x7f 83 84 #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ 85 #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ 86 #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ 87 88 #define ETHER_HEADER_COPY(dst, src) \ 89 memcpy(dst, src, sizeof(struct ether_header)) 90 91 static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ 92 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, 93 &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); 94 static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ 95 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, 96 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 97 &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", 98 "max hold time for fast-frame staging (ms)"); 99 100 static void 101 ff_age_all(void *arg, int npending) 102 { 103 struct ieee80211com *ic = arg; 104 105 /* XXX cache timer value somewhere (racy) */ 106 ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1); 107 } 108 109 void 110 ieee80211_superg_attach(struct ieee80211com *ic) 111 { 112 struct ieee80211_superg *sg; 113 114 IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); 115 116 sg = (struct ieee80211_superg *) IEEE80211_MALLOC( 117 sizeof(struct ieee80211_superg), M_80211_VAP, 118 IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 119 if (sg == NULL) { 120 printf("%s: cannot allocate SuperG state block\n", 121 __func__); 122 return; 123 } 124 TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic); 125 ic->ic_superg = sg; 126 127 /* 128 * Default to not being so aggressive for FF/AMSDU 129 * aging, otherwise we may hold a frame around 130 * for way too long before we expire it out. 131 */ 132 ieee80211_ffagemax = msecs_to_ticks(2); 133 } 134 135 void 136 ieee80211_superg_detach(struct ieee80211com *ic) 137 { 138 139 if (ic->ic_superg != NULL) { 140 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 141 142 while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0) 143 taskqueue_drain_timeout(ic->ic_tq, qtask); 144 IEEE80211_FREE(ic->ic_superg, M_80211_VAP); 145 ic->ic_superg = NULL; 146 } 147 IEEE80211_FF_LOCK_DESTROY(ic); 148 } 149 150 void 151 ieee80211_superg_vattach(struct ieee80211vap *vap) 152 { 153 struct ieee80211com *ic = vap->iv_ic; 154 155 if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ 156 vap->iv_caps &= ~IEEE80211_C_FF; 157 if (vap->iv_caps & IEEE80211_C_FF) 158 vap->iv_flags |= IEEE80211_F_FF; 159 /* NB: we only implement sta mode */ 160 if (vap->iv_opmode == IEEE80211_M_STA && 161 (vap->iv_caps & IEEE80211_C_TURBOP)) 162 vap->iv_flags |= IEEE80211_F_TURBOP; 163 } 164 165 void 166 ieee80211_superg_vdetach(struct ieee80211vap *vap) 167 { 168 } 169 170 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 171 /* 172 * Add a WME information element to a frame. 173 */ 174 uint8_t * 175 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) 176 { 177 static const struct ieee80211_ath_ie info = { 178 .ath_id = IEEE80211_ELEMID_VENDOR, 179 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 180 .ath_oui = { ATH_OUI_BYTES }, 181 .ath_oui_type = ATH_OUI_TYPE, 182 .ath_oui_subtype= ATH_OUI_SUBTYPE, 183 .ath_version = ATH_OUI_VERSION, 184 }; 185 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 186 187 memcpy(frm, &info, sizeof(info)); 188 ath->ath_capability = caps; 189 if (defkeyix != IEEE80211_KEYIX_NONE) { 190 ath->ath_defkeyix[0] = (defkeyix & 0xff); 191 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 192 } else { 193 ath->ath_defkeyix[0] = 0xff; 194 ath->ath_defkeyix[1] = 0x7f; 195 } 196 return frm + sizeof(info); 197 } 198 #undef ATH_OUI_BYTES 199 200 uint8_t * 201 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) 202 { 203 const struct ieee80211vap *vap = bss->ni_vap; 204 205 return ieee80211_add_ath(frm, 206 vap->iv_flags & IEEE80211_F_ATHEROS, 207 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 208 bss->ni_authmode != IEEE80211_AUTH_8021X) ? 209 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 210 } 211 212 void 213 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) 214 { 215 const struct ieee80211_ath_ie *ath = 216 (const struct ieee80211_ath_ie *) ie; 217 218 ni->ni_ath_flags = ath->ath_capability; 219 ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); 220 } 221 222 int 223 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, 224 const struct ieee80211_frame *wh) 225 { 226 struct ieee80211vap *vap = ni->ni_vap; 227 const struct ieee80211_ath_ie *ath; 228 u_int len = frm[1]; 229 int capschanged; 230 uint16_t defkeyix; 231 232 if (len < sizeof(struct ieee80211_ath_ie)-2) { 233 IEEE80211_DISCARD_IE(vap, 234 IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, 235 wh, "Atheros", "too short, len %u", len); 236 return -1; 237 } 238 ath = (const struct ieee80211_ath_ie *)frm; 239 capschanged = (ni->ni_ath_flags != ath->ath_capability); 240 defkeyix = le16dec(ath->ath_defkeyix); 241 if (capschanged || defkeyix != ni->ni_ath_defkeyix) { 242 ni->ni_ath_flags = ath->ath_capability; 243 ni->ni_ath_defkeyix = defkeyix; 244 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 245 "ath ie change: new caps 0x%x defkeyix 0x%x", 246 ni->ni_ath_flags, ni->ni_ath_defkeyix); 247 } 248 if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { 249 uint16_t curflags, newflags; 250 251 /* 252 * Check for turbo mode switch. Calculate flags 253 * for the new mode and effect the switch. 254 */ 255 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; 256 /* NB: BOOST is not in ic_flags, so get it from the ie */ 257 if (ath->ath_capability & ATHEROS_CAP_BOOST) 258 newflags |= IEEE80211_CHAN_TURBO; 259 else 260 newflags &= ~IEEE80211_CHAN_TURBO; 261 if (newflags != curflags) 262 ieee80211_dturbo_switch(vap, newflags); 263 } 264 return capschanged; 265 } 266 267 /* 268 * Decap the encapsulated frame pair and dispatch the first 269 * for delivery. The second frame is returned for delivery 270 * via the normal path. 271 */ 272 struct mbuf * 273 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) 274 { 275 #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) 276 #define MS(x,f) (((x) & f) >> f##_S) 277 struct ieee80211vap *vap = ni->ni_vap; 278 struct llc *llc; 279 uint32_t ath; 280 struct mbuf *n; 281 int framelen; 282 283 /* NB: we assume caller does this check for us */ 284 KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), 285 ("ff not negotiated")); 286 /* 287 * Check for fast-frame tunnel encapsulation. 288 */ 289 if (m->m_pkthdr.len < 3*FF_LLC_SIZE) 290 return m; 291 if (m->m_len < FF_LLC_SIZE && 292 (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { 293 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 294 ni->ni_macaddr, "fast-frame", 295 "%s", "m_pullup(llc) failed"); 296 vap->iv_stats.is_rx_tooshort++; 297 return NULL; 298 } 299 llc = (struct llc *)(mtod(m, uint8_t *) + 300 sizeof(struct ether_header)); 301 if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) 302 return m; 303 m_adj(m, FF_LLC_SIZE); 304 m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); 305 if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { 306 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 307 ni->ni_macaddr, "fast-frame", 308 "unsupport tunnel protocol, header 0x%x", ath); 309 vap->iv_stats.is_ff_badhdr++; 310 m_freem(m); 311 return NULL; 312 } 313 /* NB: skip header and alignment padding */ 314 m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); 315 316 vap->iv_stats.is_ff_decap++; 317 318 /* 319 * Decap the first frame, bust it apart from the 320 * second and deliver; then decap the second frame 321 * and return it to the caller for normal delivery. 322 */ 323 m = ieee80211_decap1(m, &framelen); 324 if (m == NULL) { 325 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 326 ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); 327 vap->iv_stats.is_ff_tooshort++; 328 return NULL; 329 } 330 n = m_split(m, framelen, M_NOWAIT); 331 if (n == NULL) { 332 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 333 ni->ni_macaddr, "fast-frame", 334 "%s", "unable to split encapsulated frames"); 335 vap->iv_stats.is_ff_split++; 336 m_freem(m); /* NB: must reclaim */ 337 return NULL; 338 } 339 /* XXX not right for WDS */ 340 vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ 341 342 /* 343 * Decap second frame. 344 */ 345 m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ 346 n = ieee80211_decap1(n, &framelen); 347 if (n == NULL) { 348 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 349 ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); 350 vap->iv_stats.is_ff_tooshort++; 351 } 352 /* XXX verify framelen against mbuf contents */ 353 return n; /* 2nd delivered by caller */ 354 #undef MS 355 #undef FF_LLC_SIZE 356 } 357 358 /* 359 * Fast frame encapsulation. There must be two packets 360 * chained with m_nextpkt. We do header adjustment for 361 * each, add the tunnel encapsulation, and then concatenate 362 * the mbuf chains to form a single frame for transmission. 363 */ 364 struct mbuf * 365 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 366 struct ieee80211_key *key) 367 { 368 struct mbuf *m2; 369 struct ether_header eh1, eh2; 370 struct llc *llc; 371 struct mbuf *m; 372 int pad; 373 374 m2 = m1->m_nextpkt; 375 if (m2 == NULL) { 376 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 377 "%s: only one frame\n", __func__); 378 goto bad; 379 } 380 m1->m_nextpkt = NULL; 381 382 /* 383 * Adjust to include 802.11 header requirement. 384 */ 385 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 386 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 387 m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); 388 if (m1 == NULL) { 389 printf("%s: failed initial mbuf_adjust\n", __func__); 390 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 391 m_freem(m2); 392 goto bad; 393 } 394 395 /* 396 * Copy second frame's Ethernet header out of line 397 * and adjust for possible padding in case there isn't room 398 * at the end of first frame. 399 */ 400 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 401 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 402 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 403 if (m2 == NULL) { 404 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 405 printf("%s: failed second \n", __func__); 406 goto bad; 407 } 408 409 /* 410 * Now do tunnel encapsulation. First, each 411 * frame gets a standard encapsulation. 412 */ 413 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 414 if (m1 == NULL) 415 goto bad; 416 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 417 if (m2 == NULL) 418 goto bad; 419 420 /* 421 * Pad leading frame to a 4-byte boundary. If there 422 * is space at the end of the first frame, put it 423 * there; otherwise prepend to the front of the second 424 * frame. We know doing the second will always work 425 * because we reserve space above. We prefer appending 426 * as this typically has better DMA alignment properties. 427 */ 428 for (m = m1; m->m_next != NULL; m = m->m_next) 429 ; 430 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 431 if (pad) { 432 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 433 m2->m_data -= pad; 434 m2->m_len += pad; 435 m2->m_pkthdr.len += pad; 436 } else { /* append to first */ 437 m->m_len += pad; 438 m1->m_pkthdr.len += pad; 439 } 440 } 441 442 /* 443 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the 444 * QoS header. 445 * 446 * XXX optimize by prepending together 447 */ 448 m->m_next = m2; /* NB: last mbuf from above */ 449 m1->m_pkthdr.len += m2->m_pkthdr.len; 450 M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); 451 if (m1 == NULL) { /* XXX cannot happen */ 452 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 453 "%s: no space for tunnel header\n", __func__); 454 vap->iv_stats.is_tx_nobuf++; 455 return NULL; 456 } 457 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 458 459 M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); 460 if (m1 == NULL) { /* XXX cannot happen */ 461 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 462 "%s: no space for llc header\n", __func__); 463 vap->iv_stats.is_tx_nobuf++; 464 return NULL; 465 } 466 llc = mtod(m1, struct llc *); 467 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 468 llc->llc_control = LLC_UI; 469 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 470 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 471 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 472 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 473 474 vap->iv_stats.is_ff_encap++; 475 476 return m1; 477 bad: 478 vap->iv_stats.is_ff_encapfail++; 479 if (m1 != NULL) 480 m_freem(m1); 481 if (m2 != NULL) 482 m_freem(m2); 483 return NULL; 484 } 485 486 /* 487 * A-MSDU encapsulation. 488 * 489 * This assumes just two frames for now, since we're borrowing the 490 * same queuing code and infrastructure as fast-frames. 491 * 492 * There must be two packets chained with m_nextpkt. 493 * We do header adjustment for each, and then concatenate the mbuf chains 494 * to form a single frame for transmission. 495 */ 496 struct mbuf * 497 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 498 struct ieee80211_key *key) 499 { 500 struct mbuf *m2; 501 struct ether_header eh1, eh2; 502 struct mbuf *m; 503 int pad; 504 505 m2 = m1->m_nextpkt; 506 if (m2 == NULL) { 507 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 508 "%s: only one frame\n", __func__); 509 goto bad; 510 } 511 m1->m_nextpkt = NULL; 512 513 /* 514 * Include A-MSDU header in adjusting header layout. 515 */ 516 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 517 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 518 m1 = ieee80211_mbuf_adjust(vap, 519 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 520 sizeof(struct ether_header), 521 key, m1); 522 if (m1 == NULL) { 523 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 524 m_freem(m2); 525 goto bad; 526 } 527 528 /* 529 * Copy second frame's Ethernet header out of line 530 * and adjust for encapsulation headers. Note that 531 * we make room for padding in case there isn't room 532 * at the end of first frame. 533 */ 534 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 535 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 536 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 537 if (m2 == NULL) { 538 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 539 goto bad; 540 } 541 542 /* 543 * Now do tunnel encapsulation. First, each 544 * frame gets a standard encapsulation. 545 */ 546 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 547 if (m1 == NULL) 548 goto bad; 549 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 550 if (m2 == NULL) 551 goto bad; 552 553 /* 554 * Pad leading frame to a 4-byte boundary. If there 555 * is space at the end of the first frame, put it 556 * there; otherwise prepend to the front of the second 557 * frame. We know doing the second will always work 558 * because we reserve space above. We prefer appending 559 * as this typically has better DMA alignment properties. 560 */ 561 for (m = m1; m->m_next != NULL; m = m->m_next) 562 ; 563 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 564 if (pad) { 565 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 566 m2->m_data -= pad; 567 m2->m_len += pad; 568 m2->m_pkthdr.len += pad; 569 } else { /* append to first */ 570 m->m_len += pad; 571 m1->m_pkthdr.len += pad; 572 } 573 } 574 575 /* 576 * Now, stick 'em together. 577 */ 578 m->m_next = m2; /* NB: last mbuf from above */ 579 m1->m_pkthdr.len += m2->m_pkthdr.len; 580 581 vap->iv_stats.is_amsdu_encap++; 582 583 return m1; 584 bad: 585 vap->iv_stats.is_amsdu_encapfail++; 586 if (m1 != NULL) 587 m_freem(m1); 588 if (m2 != NULL) 589 m_freem(m2); 590 return NULL; 591 } 592 593 static void 594 ff_transmit(struct ieee80211_node *ni, struct mbuf *m) 595 { 596 struct ieee80211vap *vap = ni->ni_vap; 597 struct ieee80211com *ic = ni->ni_ic; 598 599 IEEE80211_TX_LOCK_ASSERT(ic); 600 601 /* encap and xmit */ 602 m = ieee80211_encap(vap, ni, m); 603 if (m != NULL) 604 (void) ieee80211_parent_xmitpkt(ic, m); 605 else 606 ieee80211_free_node(ni); 607 } 608 609 /* 610 * Flush frames to device; note we re-use the linked list 611 * the frames were stored on and use the sentinel (unchanged) 612 * which may be non-NULL. 613 */ 614 static void 615 ff_flush(struct mbuf *head, struct mbuf *last) 616 { 617 struct mbuf *m, *next; 618 struct ieee80211_node *ni; 619 struct ieee80211vap *vap; 620 621 for (m = head; m != last; m = next) { 622 next = m->m_nextpkt; 623 m->m_nextpkt = NULL; 624 625 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 626 vap = ni->ni_vap; 627 628 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 629 "%s: flush frame, age %u", __func__, M_AGE_GET(m)); 630 vap->iv_stats.is_ff_flush++; 631 632 ff_transmit(ni, m); 633 } 634 } 635 636 /* 637 * Age frames on the staging queue. 638 */ 639 void 640 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, 641 int quanta) 642 { 643 struct mbuf *m, *head; 644 struct ieee80211_node *ni; 645 646 IEEE80211_FF_LOCK(ic); 647 if (sq->depth == 0) { 648 IEEE80211_FF_UNLOCK(ic); 649 return; /* nothing to do */ 650 } 651 652 KASSERT(sq->head != NULL, ("stageq empty")); 653 654 head = sq->head; 655 while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { 656 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 657 658 /* clear staging ref to frame */ 659 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 660 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); 661 ni->ni_tx_superg[tid] = NULL; 662 663 sq->head = m->m_nextpkt; 664 sq->depth--; 665 } 666 if (m == NULL) 667 sq->tail = NULL; 668 else 669 M_AGE_SUB(m, quanta); 670 IEEE80211_FF_UNLOCK(ic); 671 672 IEEE80211_TX_LOCK(ic); 673 ff_flush(head, m); 674 IEEE80211_TX_UNLOCK(ic); 675 } 676 677 static void 678 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) 679 { 680 int age = ieee80211_ffagemax; 681 682 IEEE80211_FF_LOCK_ASSERT(ic); 683 684 if (sq->tail != NULL) { 685 sq->tail->m_nextpkt = m; 686 age -= M_AGE_GET(sq->head); 687 } else { 688 sq->head = m; 689 690 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 691 taskqueue_enqueue_timeout(ic->ic_tq, qtask, age); 692 } 693 KASSERT(age >= 0, ("age %d", age)); 694 M_AGE_SET(m, age); 695 m->m_nextpkt = NULL; 696 sq->tail = m; 697 sq->depth++; 698 } 699 700 static void 701 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) 702 { 703 struct mbuf *m, *mprev; 704 705 IEEE80211_FF_LOCK_ASSERT(ic); 706 707 mprev = NULL; 708 for (m = sq->head; m != NULL; m = m->m_nextpkt) { 709 if (m == mstaged) { 710 if (mprev == NULL) 711 sq->head = m->m_nextpkt; 712 else 713 mprev->m_nextpkt = m->m_nextpkt; 714 if (sq->tail == m) 715 sq->tail = mprev; 716 sq->depth--; 717 return; 718 } 719 mprev = m; 720 } 721 printf("%s: packet not found\n", __func__); 722 } 723 724 static uint32_t 725 ff_approx_txtime(struct ieee80211_node *ni, 726 const struct mbuf *m1, const struct mbuf *m2) 727 { 728 struct ieee80211com *ic = ni->ni_ic; 729 struct ieee80211vap *vap = ni->ni_vap; 730 uint32_t framelen; 731 uint32_t frame_time; 732 733 /* 734 * Approximate the frame length to be transmitted. A swag to add 735 * the following maximal values to the skb payload: 736 * - 32: 802.11 encap + CRC 737 * - 24: encryption overhead (if wep bit) 738 * - 4 + 6: fast-frame header and padding 739 * - 16: 2 LLC FF tunnel headers 740 * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) 741 */ 742 framelen = m1->m_pkthdr.len + 32 + 743 ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; 744 if (vap->iv_flags & IEEE80211_F_PRIVACY) 745 framelen += 24; 746 if (m2 != NULL) 747 framelen += m2->m_pkthdr.len; 748 749 /* 750 * For now, we assume non-shortgi, 20MHz, just because I want to 751 * at least test 802.11n. 752 */ 753 if (ni->ni_txrate & IEEE80211_RATE_MCS) 754 frame_time = ieee80211_compute_duration_ht(framelen, 755 ni->ni_txrate, 756 IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 757 0, /* isht40 */ 758 0); /* isshortgi */ 759 else 760 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, 761 ni->ni_txrate, 0); 762 return (frame_time); 763 } 764 765 /* 766 * Check if the supplied frame can be partnered with an existing 767 * or pending frame. Return a reference to any frame that should be 768 * sent on return; otherwise return NULL. 769 */ 770 struct mbuf * 771 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) 772 { 773 struct ieee80211vap *vap = ni->ni_vap; 774 struct ieee80211com *ic = ni->ni_ic; 775 struct ieee80211_superg *sg = ic->ic_superg; 776 const int pri = M_WME_GETAC(m); 777 struct ieee80211_stageq *sq; 778 struct ieee80211_tx_ampdu *tap; 779 struct mbuf *mstaged; 780 uint32_t txtime, limit; 781 782 IEEE80211_TX_UNLOCK_ASSERT(ic); 783 784 IEEE80211_LOCK(ic); 785 limit = IEEE80211_TXOP_TO_US( 786 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 787 IEEE80211_UNLOCK(ic); 788 789 /* 790 * Check if the supplied frame can be aggregated. 791 * 792 * NB: we allow EAPOL frames to be aggregated with other ucast traffic. 793 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 794 * be aggregated with other types of frames when encryption is on? 795 */ 796 IEEE80211_FF_LOCK(ic); 797 tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; 798 mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; 799 /* XXX NOTE: reusing packet counter state from A-MPDU */ 800 /* 801 * XXX NOTE: this means we're double-counting; it should just 802 * be done in ieee80211_output.c once for both superg and A-MPDU. 803 */ 804 ieee80211_txampdu_count_packet(tap); 805 806 /* 807 * When not in station mode never aggregate a multicast 808 * frame; this insures, for example, that a combined frame 809 * does not require multiple encryption keys. 810 */ 811 if (vap->iv_opmode != IEEE80211_M_STA && 812 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { 813 /* XXX flush staged frame? */ 814 IEEE80211_FF_UNLOCK(ic); 815 return m; 816 } 817 /* 818 * If there is no frame to combine with and the pps is 819 * too low; then do not attempt to aggregate this frame. 820 */ 821 if (mstaged == NULL && 822 ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { 823 IEEE80211_FF_UNLOCK(ic); 824 return m; 825 } 826 sq = &sg->ff_stageq[pri]; 827 /* 828 * Check the txop limit to insure the aggregate fits. 829 */ 830 if (limit != 0 && 831 (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { 832 /* 833 * Aggregate too long, return to the caller for direct 834 * transmission. In addition, flush any pending frame 835 * before sending this one. 836 */ 837 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 838 "%s: txtime %u exceeds txop limit %u\n", 839 __func__, txtime, limit); 840 841 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 842 if (mstaged != NULL) 843 stageq_remove(ic, sq, mstaged); 844 IEEE80211_FF_UNLOCK(ic); 845 846 if (mstaged != NULL) { 847 IEEE80211_TX_LOCK(ic); 848 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 849 "%s: flush staged frame", __func__); 850 /* encap and xmit */ 851 ff_transmit(ni, mstaged); 852 IEEE80211_TX_UNLOCK(ic); 853 } 854 return m; /* NB: original frame */ 855 } 856 /* 857 * An aggregation candidate. If there's a frame to partner 858 * with then combine and return for processing. Otherwise 859 * save this frame and wait for a partner to show up (or 860 * the frame to be flushed). Note that staged frames also 861 * hold their node reference. 862 */ 863 if (mstaged != NULL) { 864 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 865 stageq_remove(ic, sq, mstaged); 866 IEEE80211_FF_UNLOCK(ic); 867 868 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 869 "%s: aggregate fast-frame", __func__); 870 /* 871 * Release the node reference; we only need 872 * the one already in mstaged. 873 */ 874 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, 875 ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); 876 ieee80211_free_node(ni); 877 878 m->m_nextpkt = NULL; 879 mstaged->m_nextpkt = m; 880 mstaged->m_flags |= M_FF; /* NB: mark for encap work */ 881 } else { 882 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, 883 ("ni_tx_superg[]: %p", 884 ni->ni_tx_superg[WME_AC_TO_TID(pri)])); 885 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; 886 887 stageq_add(ic, sq, m); 888 IEEE80211_FF_UNLOCK(ic); 889 890 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 891 "%s: stage frame, %u queued", __func__, sq->depth); 892 /* NB: mstaged is NULL */ 893 } 894 return mstaged; 895 } 896 897 struct mbuf * 898 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) 899 { 900 /* 901 * XXX TODO: actually enforce the node support 902 * and HTCAP requirements for the maximum A-MSDU 903 * size. 904 */ 905 906 /* First: software A-MSDU transmit? */ 907 if (! ieee80211_amsdu_tx_ok(ni)) 908 return (m); 909 910 /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ 911 if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) 912 return (m); 913 914 /* Next - needs to be a data frame, non-broadcast, etc */ 915 if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 916 return (m); 917 918 return (ieee80211_ff_check(ni, m)); 919 } 920 921 void 922 ieee80211_ff_node_init(struct ieee80211_node *ni) 923 { 924 /* 925 * Clean FF state on re-associate. This handles the case 926 * where a station leaves w/o notifying us and then returns 927 * before node is reaped for inactivity. 928 */ 929 ieee80211_ff_node_cleanup(ni); 930 } 931 932 void 933 ieee80211_ff_node_cleanup(struct ieee80211_node *ni) 934 { 935 struct ieee80211com *ic = ni->ni_ic; 936 struct ieee80211_superg *sg = ic->ic_superg; 937 struct mbuf *m, *next_m, *head; 938 int tid; 939 940 IEEE80211_FF_LOCK(ic); 941 head = NULL; 942 for (tid = 0; tid < WME_NUM_TID; tid++) { 943 int ac = TID_TO_WME_AC(tid); 944 /* 945 * XXX Initialise the packet counter. 946 * 947 * This may be double-work for 11n stations; 948 * but without it we never setup things. 949 */ 950 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); 951 m = ni->ni_tx_superg[tid]; 952 if (m != NULL) { 953 ni->ni_tx_superg[tid] = NULL; 954 stageq_remove(ic, &sg->ff_stageq[ac], m); 955 m->m_nextpkt = head; 956 head = m; 957 } 958 } 959 IEEE80211_FF_UNLOCK(ic); 960 961 /* 962 * Free mbufs, taking care to not dereference the mbuf after 963 * we free it (hence grabbing m_nextpkt before we free it.) 964 */ 965 m = head; 966 while (m != NULL) { 967 next_m = m->m_nextpkt; 968 m_freem(m); 969 ieee80211_free_node(ni); 970 m = next_m; 971 } 972 } 973 974 /* 975 * Switch between turbo and non-turbo operating modes. 976 * Use the specified channel flags to locate the new 977 * channel, update 802.11 state, and then call back into 978 * the driver to effect the change. 979 */ 980 void 981 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) 982 { 983 struct ieee80211com *ic = vap->iv_ic; 984 struct ieee80211_channel *chan; 985 986 chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); 987 if (chan == NULL) { /* XXX should not happen */ 988 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 989 "%s: no channel with freq %u flags 0x%x\n", 990 __func__, ic->ic_bsschan->ic_freq, newflags); 991 return; 992 } 993 994 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 995 "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, 996 ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], 997 ieee80211_phymode_name[ieee80211_chan2mode(chan)], 998 chan->ic_freq, chan->ic_flags); 999 1000 ic->ic_bsschan = chan; 1001 ic->ic_prevchan = ic->ic_curchan; 1002 ic->ic_curchan = chan; 1003 ic->ic_rt = ieee80211_get_ratetable(chan); 1004 ic->ic_set_channel(ic); 1005 ieee80211_radiotap_chan_change(ic); 1006 /* NB: do not need to reset ERP state 'cuz we're in sta mode */ 1007 } 1008 1009 /* 1010 * Return the current ``state'' of an Atheros capbility. 1011 * If associated in station mode report the negotiated 1012 * setting. Otherwise report the current setting. 1013 */ 1014 static int 1015 getathcap(struct ieee80211vap *vap, int cap) 1016 { 1017 if (vap->iv_opmode == IEEE80211_M_STA && 1018 vap->iv_state == IEEE80211_S_RUN) 1019 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; 1020 else 1021 return (vap->iv_flags & cap) != 0; 1022 } 1023 1024 static int 1025 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1026 { 1027 switch (ireq->i_type) { 1028 case IEEE80211_IOC_FF: 1029 ireq->i_val = getathcap(vap, IEEE80211_F_FF); 1030 break; 1031 case IEEE80211_IOC_TURBOP: 1032 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); 1033 break; 1034 default: 1035 return ENOSYS; 1036 } 1037 return 0; 1038 } 1039 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); 1040 1041 static int 1042 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1043 { 1044 switch (ireq->i_type) { 1045 case IEEE80211_IOC_FF: 1046 if (ireq->i_val) { 1047 if ((vap->iv_caps & IEEE80211_C_FF) == 0) 1048 return EOPNOTSUPP; 1049 vap->iv_flags |= IEEE80211_F_FF; 1050 } else 1051 vap->iv_flags &= ~IEEE80211_F_FF; 1052 return ENETRESET; 1053 case IEEE80211_IOC_TURBOP: 1054 if (ireq->i_val) { 1055 if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) 1056 return EOPNOTSUPP; 1057 vap->iv_flags |= IEEE80211_F_TURBOP; 1058 } else 1059 vap->iv_flags &= ~IEEE80211_F_TURBOP; 1060 return ENETRESET; 1061 default: 1062 return ENOSYS; 1063 } 1064 } 1065 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); 1066 1067 #endif /* IEEE80211_SUPPORT_SUPERG */ 1068