1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 #include "opt_wlan.h" 30 31 #ifdef IEEE80211_SUPPORT_SUPERG 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/endian.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_var.h> 43 #include <net/if_llc.h> 44 #include <net/if_media.h> 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_input.h> 50 #include <net80211/ieee80211_phy.h> 51 #include <net80211/ieee80211_superg.h> 52 53 /* 54 * Atheros fast-frame encapsulation format. 55 * FF max payload: 56 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: 57 * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 58 * = 3066 59 */ 60 /* fast frame header is 32-bits */ 61 #define ATH_FF_PROTO 0x0000003f /* protocol */ 62 #define ATH_FF_PROTO_S 0 63 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ 64 #define ATH_FF_FTYPE_S 6 65 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ 66 #define ATH_FF_HLEN32_S 8 67 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ 68 #define ATH_FF_SEQNUM_S 10 69 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ 70 #define ATH_FF_OFFSET_S 21 71 72 #define ATH_FF_MAX_HDR_PAD 4 73 #define ATH_FF_MAX_SEP_PAD 6 74 #define ATH_FF_MAX_HDR 30 75 76 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ 77 #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ 78 #define ATH_FF_SNAP_ORGCODE_0 0x00 79 #define ATH_FF_SNAP_ORGCODE_1 0x03 80 #define ATH_FF_SNAP_ORGCODE_2 0x7f 81 82 #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ 83 #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ 84 #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ 85 86 #define ETHER_HEADER_COPY(dst, src) \ 87 memcpy(dst, src, sizeof(struct ether_header)) 88 89 static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ 90 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, 91 &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); 92 static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ 93 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, 94 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, 95 &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", 96 "max hold time for fast-frame staging (ms)"); 97 98 static void 99 ff_age_all(void *arg, int npending) 100 { 101 struct ieee80211com *ic = arg; 102 103 /* XXX cache timer value somewhere (racy) */ 104 ieee80211_ff_age_all(ic, ieee80211_ffagemax + 1); 105 } 106 107 void 108 ieee80211_superg_attach(struct ieee80211com *ic) 109 { 110 struct ieee80211_superg *sg; 111 112 IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); 113 114 sg = (struct ieee80211_superg *) IEEE80211_MALLOC( 115 sizeof(struct ieee80211_superg), M_80211_VAP, 116 IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 117 if (sg == NULL) { 118 printf("%s: cannot allocate SuperG state block\n", 119 __func__); 120 return; 121 } 122 TIMEOUT_TASK_INIT(ic->ic_tq, &sg->ff_qtimer, 0, ff_age_all, ic); 123 ic->ic_superg = sg; 124 125 /* 126 * Default to not being so aggressive for FF/AMSDU 127 * aging, otherwise we may hold a frame around 128 * for way too long before we expire it out. 129 */ 130 ieee80211_ffagemax = msecs_to_ticks(2); 131 } 132 133 void 134 ieee80211_superg_detach(struct ieee80211com *ic) 135 { 136 137 if (ic->ic_superg != NULL) { 138 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 139 140 while (taskqueue_cancel_timeout(ic->ic_tq, qtask, NULL) != 0) 141 taskqueue_drain_timeout(ic->ic_tq, qtask); 142 IEEE80211_FREE(ic->ic_superg, M_80211_VAP); 143 ic->ic_superg = NULL; 144 } 145 IEEE80211_FF_LOCK_DESTROY(ic); 146 } 147 148 void 149 ieee80211_superg_vattach(struct ieee80211vap *vap) 150 { 151 struct ieee80211com *ic = vap->iv_ic; 152 153 if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ 154 vap->iv_caps &= ~IEEE80211_C_FF; 155 if (vap->iv_caps & IEEE80211_C_FF) 156 vap->iv_flags |= IEEE80211_F_FF; 157 /* NB: we only implement sta mode */ 158 if (vap->iv_opmode == IEEE80211_M_STA && 159 (vap->iv_caps & IEEE80211_C_TURBOP)) 160 vap->iv_flags |= IEEE80211_F_TURBOP; 161 } 162 163 void 164 ieee80211_superg_vdetach(struct ieee80211vap *vap) 165 { 166 } 167 168 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 169 /* 170 * Add a WME information element to a frame. 171 */ 172 uint8_t * 173 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) 174 { 175 static const struct ieee80211_ath_ie info = { 176 .ath_id = IEEE80211_ELEMID_VENDOR, 177 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 178 .ath_oui = { ATH_OUI_BYTES }, 179 .ath_oui_type = ATH_OUI_TYPE, 180 .ath_oui_subtype= ATH_OUI_SUBTYPE, 181 .ath_version = ATH_OUI_VERSION, 182 }; 183 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 184 185 memcpy(frm, &info, sizeof(info)); 186 ath->ath_capability = caps; 187 if (defkeyix != IEEE80211_KEYIX_NONE) { 188 ath->ath_defkeyix[0] = (defkeyix & 0xff); 189 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 190 } else { 191 ath->ath_defkeyix[0] = 0xff; 192 ath->ath_defkeyix[1] = 0x7f; 193 } 194 return frm + sizeof(info); 195 } 196 #undef ATH_OUI_BYTES 197 198 uint8_t * 199 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) 200 { 201 const struct ieee80211vap *vap = bss->ni_vap; 202 203 return ieee80211_add_ath(frm, 204 vap->iv_flags & IEEE80211_F_ATHEROS, 205 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 206 bss->ni_authmode != IEEE80211_AUTH_8021X) ? 207 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 208 } 209 210 void 211 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) 212 { 213 const struct ieee80211_ath_ie *ath = 214 (const struct ieee80211_ath_ie *) ie; 215 216 ni->ni_ath_flags = ath->ath_capability; 217 ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); 218 } 219 220 int 221 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, 222 const struct ieee80211_frame *wh) 223 { 224 struct ieee80211vap *vap = ni->ni_vap; 225 const struct ieee80211_ath_ie *ath; 226 u_int len = frm[1]; 227 int capschanged; 228 uint16_t defkeyix; 229 230 if (len < sizeof(struct ieee80211_ath_ie)-2) { 231 IEEE80211_DISCARD_IE(vap, 232 IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, 233 wh, "Atheros", "too short, len %u", len); 234 return -1; 235 } 236 ath = (const struct ieee80211_ath_ie *)frm; 237 capschanged = (ni->ni_ath_flags != ath->ath_capability); 238 defkeyix = le16dec(ath->ath_defkeyix); 239 if (capschanged || defkeyix != ni->ni_ath_defkeyix) { 240 ni->ni_ath_flags = ath->ath_capability; 241 ni->ni_ath_defkeyix = defkeyix; 242 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 243 "ath ie change: new caps 0x%x defkeyix 0x%x", 244 ni->ni_ath_flags, ni->ni_ath_defkeyix); 245 } 246 if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { 247 uint16_t curflags, newflags; 248 249 /* 250 * Check for turbo mode switch. Calculate flags 251 * for the new mode and effect the switch. 252 */ 253 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; 254 /* NB: BOOST is not in ic_flags, so get it from the ie */ 255 if (ath->ath_capability & ATHEROS_CAP_BOOST) 256 newflags |= IEEE80211_CHAN_TURBO; 257 else 258 newflags &= ~IEEE80211_CHAN_TURBO; 259 if (newflags != curflags) 260 ieee80211_dturbo_switch(vap, newflags); 261 } 262 return capschanged; 263 } 264 265 /* 266 * Decap the encapsulated frame pair and dispatch the first 267 * for delivery. The second frame is returned for delivery 268 * via the normal path. 269 */ 270 struct mbuf * 271 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) 272 { 273 #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) 274 struct ieee80211vap *vap = ni->ni_vap; 275 struct llc *llc; 276 uint32_t ath; 277 struct mbuf *n; 278 int framelen; 279 280 /* NB: we assume caller does this check for us */ 281 KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), 282 ("ff not negotiated")); 283 /* 284 * Check for fast-frame tunnel encapsulation. 285 */ 286 if (m->m_pkthdr.len < 3*FF_LLC_SIZE) 287 return m; 288 if (m->m_len < FF_LLC_SIZE && 289 (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { 290 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 291 ni->ni_macaddr, "fast-frame", 292 "%s", "m_pullup(llc) failed"); 293 vap->iv_stats.is_rx_tooshort++; 294 return NULL; 295 } 296 llc = (struct llc *)(mtod(m, uint8_t *) + 297 sizeof(struct ether_header)); 298 if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) 299 return m; 300 m_adj(m, FF_LLC_SIZE); 301 m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); 302 if (_IEEE80211_MASKSHIFT(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { 303 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 304 ni->ni_macaddr, "fast-frame", 305 "unsupport tunnel protocol, header 0x%x", ath); 306 vap->iv_stats.is_ff_badhdr++; 307 m_freem(m); 308 return NULL; 309 } 310 /* NB: skip header and alignment padding */ 311 m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); 312 313 vap->iv_stats.is_ff_decap++; 314 315 /* 316 * Decap the first frame, bust it apart from the 317 * second and deliver; then decap the second frame 318 * and return it to the caller for normal delivery. 319 */ 320 m = ieee80211_decap1(m, &framelen); 321 if (m == NULL) { 322 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 323 ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); 324 vap->iv_stats.is_ff_tooshort++; 325 return NULL; 326 } 327 n = m_split(m, framelen, IEEE80211_M_NOWAIT); 328 if (n == NULL) { 329 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 330 ni->ni_macaddr, "fast-frame", 331 "%s", "unable to split encapsulated frames"); 332 vap->iv_stats.is_ff_split++; 333 m_freem(m); /* NB: must reclaim */ 334 return NULL; 335 } 336 /* XXX not right for WDS */ 337 vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ 338 339 /* 340 * Decap second frame. 341 */ 342 m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ 343 n = ieee80211_decap1(n, &framelen); 344 if (n == NULL) { 345 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 346 ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); 347 vap->iv_stats.is_ff_tooshort++; 348 } 349 /* XXX verify framelen against mbuf contents */ 350 return n; /* 2nd delivered by caller */ 351 #undef FF_LLC_SIZE 352 } 353 354 /* 355 * Fast frame encapsulation. There must be two packets 356 * chained with m_nextpkt. We do header adjustment for 357 * each, add the tunnel encapsulation, and then concatenate 358 * the mbuf chains to form a single frame for transmission. 359 */ 360 struct mbuf * 361 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 362 struct ieee80211_key *key) 363 { 364 struct mbuf *m2; 365 struct ether_header eh1, eh2; 366 struct llc *llc; 367 struct mbuf *m; 368 int pad; 369 370 m2 = m1->m_nextpkt; 371 if (m2 == NULL) { 372 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 373 "%s: only one frame\n", __func__); 374 goto bad; 375 } 376 m1->m_nextpkt = NULL; 377 378 /* 379 * Adjust to include 802.11 header requirement. 380 */ 381 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 382 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 383 m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); 384 if (m1 == NULL) { 385 printf("%s: failed initial mbuf_adjust\n", __func__); 386 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 387 m_freem(m2); 388 goto bad; 389 } 390 391 /* 392 * Copy second frame's Ethernet header out of line 393 * and adjust for possible padding in case there isn't room 394 * at the end of first frame. 395 */ 396 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 397 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 398 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 399 if (m2 == NULL) { 400 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 401 printf("%s: failed second \n", __func__); 402 goto bad; 403 } 404 405 /* 406 * Now do tunnel encapsulation. First, each 407 * frame gets a standard encapsulation. 408 */ 409 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 410 if (m1 == NULL) 411 goto bad; 412 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 413 if (m2 == NULL) 414 goto bad; 415 416 /* 417 * Pad leading frame to a 4-byte boundary. If there 418 * is space at the end of the first frame, put it 419 * there; otherwise prepend to the front of the second 420 * frame. We know doing the second will always work 421 * because we reserve space above. We prefer appending 422 * as this typically has better DMA alignment properties. 423 */ 424 for (m = m1; m->m_next != NULL; m = m->m_next) 425 ; 426 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 427 if (pad) { 428 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 429 m2->m_data -= pad; 430 m2->m_len += pad; 431 m2->m_pkthdr.len += pad; 432 } else { /* append to first */ 433 m->m_len += pad; 434 m1->m_pkthdr.len += pad; 435 } 436 } 437 438 /* 439 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the 440 * QoS header. 441 * 442 * XXX optimize by prepending together 443 */ 444 m->m_next = m2; /* NB: last mbuf from above */ 445 m1->m_pkthdr.len += m2->m_pkthdr.len; 446 M_PREPEND(m1, sizeof(uint32_t)+2, IEEE80211_M_NOWAIT); 447 if (m1 == NULL) { /* XXX cannot happen */ 448 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 449 "%s: no space for tunnel header\n", __func__); 450 vap->iv_stats.is_tx_nobuf++; 451 return NULL; 452 } 453 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 454 455 M_PREPEND(m1, sizeof(struct llc), IEEE80211_M_NOWAIT); 456 if (m1 == NULL) { /* XXX cannot happen */ 457 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 458 "%s: no space for llc header\n", __func__); 459 vap->iv_stats.is_tx_nobuf++; 460 return NULL; 461 } 462 llc = mtod(m1, struct llc *); 463 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 464 llc->llc_control = LLC_UI; 465 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 466 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 467 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 468 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 469 470 vap->iv_stats.is_ff_encap++; 471 472 return m1; 473 bad: 474 vap->iv_stats.is_ff_encapfail++; 475 if (m1 != NULL) 476 m_freem(m1); 477 if (m2 != NULL) 478 m_freem(m2); 479 return NULL; 480 } 481 482 /* 483 * A-MSDU encapsulation. 484 * 485 * This assumes just two frames for now, since we're borrowing the 486 * same queuing code and infrastructure as fast-frames. 487 * 488 * There must be two packets chained with m_nextpkt. 489 * We do header adjustment for each, and then concatenate the mbuf chains 490 * to form a single frame for transmission. 491 */ 492 struct mbuf * 493 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 494 struct ieee80211_key *key) 495 { 496 struct mbuf *m2; 497 struct ether_header eh1, eh2; 498 struct mbuf *m; 499 int pad; 500 501 m2 = m1->m_nextpkt; 502 if (m2 == NULL) { 503 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 504 "%s: only one frame\n", __func__); 505 goto bad; 506 } 507 m1->m_nextpkt = NULL; 508 509 /* 510 * Include A-MSDU header in adjusting header layout. 511 */ 512 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 513 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 514 m1 = ieee80211_mbuf_adjust(vap, 515 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 516 sizeof(struct ether_header), 517 key, m1); 518 if (m1 == NULL) { 519 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 520 m_freem(m2); 521 goto bad; 522 } 523 524 /* 525 * Copy second frame's Ethernet header out of line 526 * and adjust for encapsulation headers. Note that 527 * we make room for padding in case there isn't room 528 * at the end of first frame. 529 */ 530 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 531 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 532 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 533 if (m2 == NULL) { 534 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 535 goto bad; 536 } 537 538 /* 539 * Now do tunnel encapsulation. First, each 540 * frame gets a standard encapsulation. 541 */ 542 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 543 if (m1 == NULL) 544 goto bad; 545 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 546 if (m2 == NULL) 547 goto bad; 548 549 /* 550 * Pad leading frame to a 4-byte boundary. If there 551 * is space at the end of the first frame, put it 552 * there; otherwise prepend to the front of the second 553 * frame. We know doing the second will always work 554 * because we reserve space above. We prefer appending 555 * as this typically has better DMA alignment properties. 556 */ 557 for (m = m1; m->m_next != NULL; m = m->m_next) 558 ; 559 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 560 if (pad) { 561 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 562 m2->m_data -= pad; 563 m2->m_len += pad; 564 m2->m_pkthdr.len += pad; 565 } else { /* append to first */ 566 m->m_len += pad; 567 m1->m_pkthdr.len += pad; 568 } 569 } 570 571 /* 572 * Now, stick 'em together. 573 */ 574 m->m_next = m2; /* NB: last mbuf from above */ 575 m1->m_pkthdr.len += m2->m_pkthdr.len; 576 577 vap->iv_stats.is_amsdu_encap++; 578 579 return m1; 580 bad: 581 vap->iv_stats.is_amsdu_encapfail++; 582 if (m1 != NULL) 583 m_freem(m1); 584 if (m2 != NULL) 585 m_freem(m2); 586 return NULL; 587 } 588 589 static void 590 ff_transmit(struct ieee80211_node *ni, struct mbuf *m) 591 { 592 struct ieee80211vap *vap = ni->ni_vap; 593 struct ieee80211com *ic = ni->ni_ic; 594 595 IEEE80211_TX_LOCK_ASSERT(ic); 596 597 /* encap and xmit */ 598 m = ieee80211_encap(vap, ni, m); 599 if (m != NULL) 600 (void) ieee80211_parent_xmitpkt(ic, m); 601 else 602 ieee80211_free_node(ni); 603 } 604 605 /* 606 * Flush frames to device; note we re-use the linked list 607 * the frames were stored on and use the sentinel (unchanged) 608 * which may be non-NULL. 609 */ 610 static void 611 ff_flush(struct mbuf *head, struct mbuf *last) 612 { 613 struct mbuf *m, *next; 614 struct ieee80211_node *ni; 615 struct ieee80211vap *vap; 616 617 for (m = head; m != last; m = next) { 618 next = m->m_nextpkt; 619 m->m_nextpkt = NULL; 620 621 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 622 vap = ni->ni_vap; 623 624 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 625 "%s: flush frame, age %u", __func__, M_AGE_GET(m)); 626 vap->iv_stats.is_ff_flush++; 627 628 ff_transmit(ni, m); 629 } 630 } 631 632 /* 633 * Age frames on the staging queue. 634 */ 635 void 636 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, 637 int quanta) 638 { 639 struct mbuf *m, *head; 640 struct ieee80211_node *ni; 641 642 IEEE80211_FF_LOCK(ic); 643 if (sq->depth == 0) { 644 IEEE80211_FF_UNLOCK(ic); 645 return; /* nothing to do */ 646 } 647 648 KASSERT(sq->head != NULL, ("stageq empty")); 649 650 head = sq->head; 651 while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { 652 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 653 654 /* clear staging ref to frame */ 655 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 656 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); 657 ni->ni_tx_superg[tid] = NULL; 658 659 sq->head = m->m_nextpkt; 660 sq->depth--; 661 } 662 if (m == NULL) 663 sq->tail = NULL; 664 else 665 M_AGE_SUB(m, quanta); 666 IEEE80211_FF_UNLOCK(ic); 667 668 IEEE80211_TX_LOCK(ic); 669 ff_flush(head, m); 670 IEEE80211_TX_UNLOCK(ic); 671 } 672 673 static void 674 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) 675 { 676 int age = ieee80211_ffagemax; 677 678 IEEE80211_FF_LOCK_ASSERT(ic); 679 680 if (sq->tail != NULL) { 681 sq->tail->m_nextpkt = m; 682 age -= M_AGE_GET(sq->head); 683 } else { 684 sq->head = m; 685 686 struct timeout_task *qtask = &ic->ic_superg->ff_qtimer; 687 taskqueue_enqueue_timeout(ic->ic_tq, qtask, age); 688 } 689 KASSERT(age >= 0, ("age %d", age)); 690 M_AGE_SET(m, age); 691 m->m_nextpkt = NULL; 692 sq->tail = m; 693 sq->depth++; 694 } 695 696 static void 697 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) 698 { 699 struct mbuf *m, *mprev; 700 701 IEEE80211_FF_LOCK_ASSERT(ic); 702 703 mprev = NULL; 704 for (m = sq->head; m != NULL; m = m->m_nextpkt) { 705 if (m == mstaged) { 706 if (mprev == NULL) 707 sq->head = m->m_nextpkt; 708 else 709 mprev->m_nextpkt = m->m_nextpkt; 710 if (sq->tail == m) 711 sq->tail = mprev; 712 sq->depth--; 713 return; 714 } 715 mprev = m; 716 } 717 printf("%s: packet not found\n", __func__); 718 } 719 720 static uint32_t 721 ff_approx_txtime(struct ieee80211_node *ni, 722 const struct mbuf *m1, const struct mbuf *m2) 723 { 724 struct ieee80211com *ic = ni->ni_ic; 725 struct ieee80211vap *vap = ni->ni_vap; 726 uint32_t framelen; 727 uint32_t frame_time; 728 729 /* 730 * Approximate the frame length to be transmitted. A swag to add 731 * the following maximal values to the skb payload: 732 * - 32: 802.11 encap + CRC 733 * - 24: encryption overhead (if wep bit) 734 * - 4 + 6: fast-frame header and padding 735 * - 16: 2 LLC FF tunnel headers 736 * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) 737 */ 738 framelen = m1->m_pkthdr.len + 32 + 739 ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; 740 if (vap->iv_flags & IEEE80211_F_PRIVACY) 741 framelen += 24; 742 if (m2 != NULL) 743 framelen += m2->m_pkthdr.len; 744 745 /* 746 * For now, we assume non-shortgi, 20MHz, just because I want to 747 * at least test 802.11n. 748 */ 749 if (ni->ni_txrate & IEEE80211_RATE_MCS) 750 frame_time = ieee80211_compute_duration_ht(framelen, 751 ni->ni_txrate, 752 IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 753 0, /* isht40 */ 754 0); /* isshortgi */ 755 else 756 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, 757 ni->ni_txrate, 0); 758 return (frame_time); 759 } 760 761 /* 762 * Check if the supplied frame can be partnered with an existing 763 * or pending frame. Return a reference to any frame that should be 764 * sent on return; otherwise return NULL. 765 */ 766 struct mbuf * 767 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) 768 { 769 struct ieee80211vap *vap = ni->ni_vap; 770 struct ieee80211com *ic = ni->ni_ic; 771 struct ieee80211_superg *sg = ic->ic_superg; 772 const int pri = M_WME_GETAC(m); 773 struct ieee80211_stageq *sq; 774 struct ieee80211_tx_ampdu *tap; 775 struct mbuf *mstaged; 776 uint32_t txtime, limit; 777 778 IEEE80211_TX_UNLOCK_ASSERT(ic); 779 780 IEEE80211_LOCK(ic); 781 limit = IEEE80211_TXOP_TO_US( 782 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 783 IEEE80211_UNLOCK(ic); 784 785 /* 786 * Check if the supplied frame can be aggregated. 787 * 788 * NB: we allow EAPOL frames to be aggregated with other ucast traffic. 789 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 790 * be aggregated with other types of frames when encryption is on? 791 */ 792 IEEE80211_FF_LOCK(ic); 793 tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; 794 mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; 795 /* XXX NOTE: reusing packet counter state from A-MPDU */ 796 /* 797 * XXX NOTE: this means we're double-counting; it should just 798 * be done in ieee80211_output.c once for both superg and A-MPDU. 799 */ 800 ieee80211_txampdu_count_packet(tap); 801 802 /* 803 * When not in station mode never aggregate a multicast 804 * frame; this insures, for example, that a combined frame 805 * does not require multiple encryption keys. 806 */ 807 if (vap->iv_opmode != IEEE80211_M_STA && 808 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { 809 /* XXX flush staged frame? */ 810 IEEE80211_FF_UNLOCK(ic); 811 return m; 812 } 813 /* 814 * If there is no frame to combine with and the pps is 815 * too low; then do not attempt to aggregate this frame. 816 */ 817 if (mstaged == NULL && 818 ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { 819 IEEE80211_FF_UNLOCK(ic); 820 return m; 821 } 822 sq = &sg->ff_stageq[pri]; 823 /* 824 * Check the txop limit to insure the aggregate fits. 825 */ 826 if (limit != 0 && 827 (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { 828 /* 829 * Aggregate too long, return to the caller for direct 830 * transmission. In addition, flush any pending frame 831 * before sending this one. 832 */ 833 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 834 "%s: txtime %u exceeds txop limit %u\n", 835 __func__, txtime, limit); 836 837 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 838 if (mstaged != NULL) 839 stageq_remove(ic, sq, mstaged); 840 IEEE80211_FF_UNLOCK(ic); 841 842 if (mstaged != NULL) { 843 IEEE80211_TX_LOCK(ic); 844 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 845 "%s: flush staged frame", __func__); 846 /* encap and xmit */ 847 ff_transmit(ni, mstaged); 848 IEEE80211_TX_UNLOCK(ic); 849 } 850 return m; /* NB: original frame */ 851 } 852 /* 853 * An aggregation candidate. If there's a frame to partner 854 * with then combine and return for processing. Otherwise 855 * save this frame and wait for a partner to show up (or 856 * the frame to be flushed). Note that staged frames also 857 * hold their node reference. 858 */ 859 if (mstaged != NULL) { 860 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 861 stageq_remove(ic, sq, mstaged); 862 IEEE80211_FF_UNLOCK(ic); 863 864 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 865 "%s: aggregate fast-frame", __func__); 866 /* 867 * Release the node reference; we only need 868 * the one already in mstaged. 869 */ 870 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, 871 ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); 872 ieee80211_free_node(ni); 873 874 m->m_nextpkt = NULL; 875 mstaged->m_nextpkt = m; 876 mstaged->m_flags |= M_FF; /* NB: mark for encap work */ 877 } else { 878 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, 879 ("ni_tx_superg[]: %p", 880 ni->ni_tx_superg[WME_AC_TO_TID(pri)])); 881 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; 882 883 stageq_add(ic, sq, m); 884 IEEE80211_FF_UNLOCK(ic); 885 886 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 887 "%s: stage frame, %u queued", __func__, sq->depth); 888 /* NB: mstaged is NULL */ 889 } 890 return mstaged; 891 } 892 893 struct mbuf * 894 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) 895 { 896 /* 897 * XXX TODO: actually enforce the node support 898 * and HTCAP requirements for the maximum A-MSDU 899 * size. 900 */ 901 902 /* First: software A-MSDU transmit? */ 903 if (! ieee80211_amsdu_tx_ok(ni)) 904 return (m); 905 906 /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ 907 if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) 908 return (m); 909 910 /* Next - needs to be a data frame, non-broadcast, etc */ 911 if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 912 return (m); 913 914 return (ieee80211_ff_check(ni, m)); 915 } 916 917 void 918 ieee80211_ff_node_init(struct ieee80211_node *ni) 919 { 920 /* 921 * Clean FF state on re-associate. This handles the case 922 * where a station leaves w/o notifying us and then returns 923 * before node is reaped for inactivity. 924 */ 925 ieee80211_ff_node_cleanup(ni); 926 } 927 928 void 929 ieee80211_ff_node_cleanup(struct ieee80211_node *ni) 930 { 931 struct ieee80211com *ic = ni->ni_ic; 932 struct ieee80211_superg *sg = ic->ic_superg; 933 struct mbuf *m, *next_m, *head; 934 int tid; 935 936 IEEE80211_FF_LOCK(ic); 937 head = NULL; 938 for (tid = 0; tid < WME_NUM_TID; tid++) { 939 int ac = TID_TO_WME_AC(tid); 940 /* 941 * XXX Initialise the packet counter. 942 * 943 * This may be double-work for 11n stations; 944 * but without it we never setup things. 945 */ 946 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); 947 m = ni->ni_tx_superg[tid]; 948 if (m != NULL) { 949 ni->ni_tx_superg[tid] = NULL; 950 stageq_remove(ic, &sg->ff_stageq[ac], m); 951 m->m_nextpkt = head; 952 head = m; 953 } 954 } 955 IEEE80211_FF_UNLOCK(ic); 956 957 /* 958 * Free mbufs, taking care to not dereference the mbuf after 959 * we free it (hence grabbing m_nextpkt before we free it.) 960 */ 961 m = head; 962 while (m != NULL) { 963 next_m = m->m_nextpkt; 964 m_freem(m); 965 ieee80211_free_node(ni); 966 m = next_m; 967 } 968 } 969 970 /* 971 * Switch between turbo and non-turbo operating modes. 972 * Use the specified channel flags to locate the new 973 * channel, update 802.11 state, and then call back into 974 * the driver to effect the change. 975 */ 976 void 977 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) 978 { 979 struct ieee80211com *ic = vap->iv_ic; 980 struct ieee80211_channel *chan; 981 982 chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); 983 if (chan == NULL) { /* XXX should not happen */ 984 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 985 "%s: no channel with freq %u flags 0x%x\n", 986 __func__, ic->ic_bsschan->ic_freq, newflags); 987 return; 988 } 989 990 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 991 "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, 992 ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], 993 ieee80211_phymode_name[ieee80211_chan2mode(chan)], 994 chan->ic_freq, chan->ic_flags); 995 996 ic->ic_bsschan = chan; 997 ic->ic_prevchan = ic->ic_curchan; 998 ic->ic_curchan = chan; 999 ic->ic_rt = ieee80211_get_ratetable(chan); 1000 ic->ic_set_channel(ic); 1001 ieee80211_radiotap_chan_change(ic); 1002 /* NB: do not need to reset ERP state 'cuz we're in sta mode */ 1003 } 1004 1005 /* 1006 * Return the current ``state'' of an Atheros capbility. 1007 * If associated in station mode report the negotiated 1008 * setting. Otherwise report the current setting. 1009 */ 1010 static int 1011 getathcap(struct ieee80211vap *vap, int cap) 1012 { 1013 if (vap->iv_opmode == IEEE80211_M_STA && 1014 vap->iv_state == IEEE80211_S_RUN) 1015 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; 1016 else 1017 return (vap->iv_flags & cap) != 0; 1018 } 1019 1020 static int 1021 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1022 { 1023 switch (ireq->i_type) { 1024 case IEEE80211_IOC_FF: 1025 ireq->i_val = getathcap(vap, IEEE80211_F_FF); 1026 break; 1027 case IEEE80211_IOC_TURBOP: 1028 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); 1029 break; 1030 default: 1031 return ENOSYS; 1032 } 1033 return 0; 1034 } 1035 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); 1036 1037 static int 1038 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1039 { 1040 switch (ireq->i_type) { 1041 case IEEE80211_IOC_FF: 1042 if (ireq->i_val) { 1043 if ((vap->iv_caps & IEEE80211_C_FF) == 0) 1044 return EOPNOTSUPP; 1045 vap->iv_flags |= IEEE80211_F_FF; 1046 } else 1047 vap->iv_flags &= ~IEEE80211_F_FF; 1048 return ENETRESET; 1049 case IEEE80211_IOC_TURBOP: 1050 if (ireq->i_val) { 1051 if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) 1052 return EOPNOTSUPP; 1053 vap->iv_flags |= IEEE80211_F_TURBOP; 1054 } else 1055 vap->iv_flags &= ~IEEE80211_F_TURBOP; 1056 return ENETRESET; 1057 default: 1058 return ENOSYS; 1059 } 1060 } 1061 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); 1062 1063 #endif /* IEEE80211_SUPPORT_SUPERG */ 1064