1 /*- 2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_wlan.h" 30 31 #ifdef IEEE80211_SUPPORT_SUPERG 32 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/endian.h> 38 39 #include <sys/socket.h> 40 41 #include <net/if.h> 42 #include <net/if_var.h> 43 #include <net/if_llc.h> 44 #include <net/if_media.h> 45 #include <net/bpf.h> 46 #include <net/ethernet.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_input.h> 50 #include <net80211/ieee80211_phy.h> 51 #include <net80211/ieee80211_superg.h> 52 53 /* 54 * Atheros fast-frame encapsulation format. 55 * FF max payload: 56 * 802.2 + FFHDR + HPAD + 802.3 + 802.2 + 1500 + SPAD + 802.3 + 802.2 + 1500: 57 * 8 + 4 + 4 + 14 + 8 + 1500 + 6 + 14 + 8 + 1500 58 * = 3066 59 */ 60 /* fast frame header is 32-bits */ 61 #define ATH_FF_PROTO 0x0000003f /* protocol */ 62 #define ATH_FF_PROTO_S 0 63 #define ATH_FF_FTYPE 0x000000c0 /* frame type */ 64 #define ATH_FF_FTYPE_S 6 65 #define ATH_FF_HLEN32 0x00000300 /* optional hdr length */ 66 #define ATH_FF_HLEN32_S 8 67 #define ATH_FF_SEQNUM 0x001ffc00 /* sequence number */ 68 #define ATH_FF_SEQNUM_S 10 69 #define ATH_FF_OFFSET 0xffe00000 /* offset to 2nd payload */ 70 #define ATH_FF_OFFSET_S 21 71 72 #define ATH_FF_MAX_HDR_PAD 4 73 #define ATH_FF_MAX_SEP_PAD 6 74 #define ATH_FF_MAX_HDR 30 75 76 #define ATH_FF_PROTO_L2TUNNEL 0 /* L2 tunnel protocol */ 77 #define ATH_FF_ETH_TYPE 0x88bd /* Ether type for encapsulated frames */ 78 #define ATH_FF_SNAP_ORGCODE_0 0x00 79 #define ATH_FF_SNAP_ORGCODE_1 0x03 80 #define ATH_FF_SNAP_ORGCODE_2 0x7f 81 82 #define ATH_FF_TXQMIN 2 /* min txq depth for staging */ 83 #define ATH_FF_TXQMAX 50 /* maximum # of queued frames allowed */ 84 #define ATH_FF_STAGEMAX 5 /* max waiting period for staged frame*/ 85 86 #define ETHER_HEADER_COPY(dst, src) \ 87 memcpy(dst, src, sizeof(struct ether_header)) 88 89 static int ieee80211_ffppsmin = 2; /* pps threshold for ff aggregation */ 90 SYSCTL_INT(_net_wlan, OID_AUTO, ffppsmin, CTLFLAG_RW, 91 &ieee80211_ffppsmin, 0, "min packet rate before fast-frame staging"); 92 static int ieee80211_ffagemax = -1; /* max time frames held on stage q */ 93 SYSCTL_PROC(_net_wlan, OID_AUTO, ffagemax, CTLTYPE_INT | CTLFLAG_RW, 94 &ieee80211_ffagemax, 0, ieee80211_sysctl_msecs_ticks, "I", 95 "max hold time for fast-frame staging (ms)"); 96 97 void 98 ieee80211_superg_attach(struct ieee80211com *ic) 99 { 100 struct ieee80211_superg *sg; 101 102 IEEE80211_FF_LOCK_INIT(ic, ic->ic_name); 103 104 sg = (struct ieee80211_superg *) IEEE80211_MALLOC( 105 sizeof(struct ieee80211_superg), M_80211_VAP, 106 IEEE80211_M_NOWAIT | IEEE80211_M_ZERO); 107 if (sg == NULL) { 108 printf("%s: cannot allocate SuperG state block\n", 109 __func__); 110 return; 111 } 112 ic->ic_superg = sg; 113 114 /* 115 * Default to not being so aggressive for FF/AMSDU 116 * aging, otherwise we may hold a frame around 117 * for way too long before we expire it out. 118 */ 119 ieee80211_ffagemax = msecs_to_ticks(2); 120 } 121 122 void 123 ieee80211_superg_detach(struct ieee80211com *ic) 124 { 125 IEEE80211_FF_LOCK_DESTROY(ic); 126 127 if (ic->ic_superg != NULL) { 128 IEEE80211_FREE(ic->ic_superg, M_80211_VAP); 129 ic->ic_superg = NULL; 130 } 131 } 132 133 void 134 ieee80211_superg_vattach(struct ieee80211vap *vap) 135 { 136 struct ieee80211com *ic = vap->iv_ic; 137 138 if (ic->ic_superg == NULL) /* NB: can't do fast-frames w/o state */ 139 vap->iv_caps &= ~IEEE80211_C_FF; 140 if (vap->iv_caps & IEEE80211_C_FF) 141 vap->iv_flags |= IEEE80211_F_FF; 142 /* NB: we only implement sta mode */ 143 if (vap->iv_opmode == IEEE80211_M_STA && 144 (vap->iv_caps & IEEE80211_C_TURBOP)) 145 vap->iv_flags |= IEEE80211_F_TURBOP; 146 } 147 148 void 149 ieee80211_superg_vdetach(struct ieee80211vap *vap) 150 { 151 } 152 153 #define ATH_OUI_BYTES 0x00, 0x03, 0x7f 154 /* 155 * Add a WME information element to a frame. 156 */ 157 uint8_t * 158 ieee80211_add_ath(uint8_t *frm, uint8_t caps, ieee80211_keyix defkeyix) 159 { 160 static const struct ieee80211_ath_ie info = { 161 .ath_id = IEEE80211_ELEMID_VENDOR, 162 .ath_len = sizeof(struct ieee80211_ath_ie) - 2, 163 .ath_oui = { ATH_OUI_BYTES }, 164 .ath_oui_type = ATH_OUI_TYPE, 165 .ath_oui_subtype= ATH_OUI_SUBTYPE, 166 .ath_version = ATH_OUI_VERSION, 167 }; 168 struct ieee80211_ath_ie *ath = (struct ieee80211_ath_ie *) frm; 169 170 memcpy(frm, &info, sizeof(info)); 171 ath->ath_capability = caps; 172 if (defkeyix != IEEE80211_KEYIX_NONE) { 173 ath->ath_defkeyix[0] = (defkeyix & 0xff); 174 ath->ath_defkeyix[1] = ((defkeyix >> 8) & 0xff); 175 } else { 176 ath->ath_defkeyix[0] = 0xff; 177 ath->ath_defkeyix[1] = 0x7f; 178 } 179 return frm + sizeof(info); 180 } 181 #undef ATH_OUI_BYTES 182 183 uint8_t * 184 ieee80211_add_athcaps(uint8_t *frm, const struct ieee80211_node *bss) 185 { 186 const struct ieee80211vap *vap = bss->ni_vap; 187 188 return ieee80211_add_ath(frm, 189 vap->iv_flags & IEEE80211_F_ATHEROS, 190 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 191 bss->ni_authmode != IEEE80211_AUTH_8021X) ? 192 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 193 } 194 195 void 196 ieee80211_parse_ath(struct ieee80211_node *ni, uint8_t *ie) 197 { 198 const struct ieee80211_ath_ie *ath = 199 (const struct ieee80211_ath_ie *) ie; 200 201 ni->ni_ath_flags = ath->ath_capability; 202 ni->ni_ath_defkeyix = le16dec(&ath->ath_defkeyix); 203 } 204 205 int 206 ieee80211_parse_athparams(struct ieee80211_node *ni, uint8_t *frm, 207 const struct ieee80211_frame *wh) 208 { 209 struct ieee80211vap *vap = ni->ni_vap; 210 const struct ieee80211_ath_ie *ath; 211 u_int len = frm[1]; 212 int capschanged; 213 uint16_t defkeyix; 214 215 if (len < sizeof(struct ieee80211_ath_ie)-2) { 216 IEEE80211_DISCARD_IE(vap, 217 IEEE80211_MSG_ELEMID | IEEE80211_MSG_SUPERG, 218 wh, "Atheros", "too short, len %u", len); 219 return -1; 220 } 221 ath = (const struct ieee80211_ath_ie *)frm; 222 capschanged = (ni->ni_ath_flags != ath->ath_capability); 223 defkeyix = le16dec(ath->ath_defkeyix); 224 if (capschanged || defkeyix != ni->ni_ath_defkeyix) { 225 ni->ni_ath_flags = ath->ath_capability; 226 ni->ni_ath_defkeyix = defkeyix; 227 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 228 "ath ie change: new caps 0x%x defkeyix 0x%x", 229 ni->ni_ath_flags, ni->ni_ath_defkeyix); 230 } 231 if (IEEE80211_ATH_CAP(vap, ni, ATHEROS_CAP_TURBO_PRIME)) { 232 uint16_t curflags, newflags; 233 234 /* 235 * Check for turbo mode switch. Calculate flags 236 * for the new mode and effect the switch. 237 */ 238 newflags = curflags = vap->iv_ic->ic_bsschan->ic_flags; 239 /* NB: BOOST is not in ic_flags, so get it from the ie */ 240 if (ath->ath_capability & ATHEROS_CAP_BOOST) 241 newflags |= IEEE80211_CHAN_TURBO; 242 else 243 newflags &= ~IEEE80211_CHAN_TURBO; 244 if (newflags != curflags) 245 ieee80211_dturbo_switch(vap, newflags); 246 } 247 return capschanged; 248 } 249 250 /* 251 * Decap the encapsulated frame pair and dispatch the first 252 * for delivery. The second frame is returned for delivery 253 * via the normal path. 254 */ 255 struct mbuf * 256 ieee80211_ff_decap(struct ieee80211_node *ni, struct mbuf *m) 257 { 258 #define FF_LLC_SIZE (sizeof(struct ether_header) + sizeof(struct llc)) 259 #define MS(x,f) (((x) & f) >> f##_S) 260 struct ieee80211vap *vap = ni->ni_vap; 261 struct llc *llc; 262 uint32_t ath; 263 struct mbuf *n; 264 int framelen; 265 266 /* NB: we assume caller does this check for us */ 267 KASSERT(IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF), 268 ("ff not negotiated")); 269 /* 270 * Check for fast-frame tunnel encapsulation. 271 */ 272 if (m->m_pkthdr.len < 3*FF_LLC_SIZE) 273 return m; 274 if (m->m_len < FF_LLC_SIZE && 275 (m = m_pullup(m, FF_LLC_SIZE)) == NULL) { 276 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 277 ni->ni_macaddr, "fast-frame", 278 "%s", "m_pullup(llc) failed"); 279 vap->iv_stats.is_rx_tooshort++; 280 return NULL; 281 } 282 llc = (struct llc *)(mtod(m, uint8_t *) + 283 sizeof(struct ether_header)); 284 if (llc->llc_snap.ether_type != htons(ATH_FF_ETH_TYPE)) 285 return m; 286 m_adj(m, FF_LLC_SIZE); 287 m_copydata(m, 0, sizeof(uint32_t), (caddr_t) &ath); 288 if (MS(ath, ATH_FF_PROTO) != ATH_FF_PROTO_L2TUNNEL) { 289 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 290 ni->ni_macaddr, "fast-frame", 291 "unsupport tunnel protocol, header 0x%x", ath); 292 vap->iv_stats.is_ff_badhdr++; 293 m_freem(m); 294 return NULL; 295 } 296 /* NB: skip header and alignment padding */ 297 m_adj(m, roundup(sizeof(uint32_t) - 2, 4) + 2); 298 299 vap->iv_stats.is_ff_decap++; 300 301 /* 302 * Decap the first frame, bust it apart from the 303 * second and deliver; then decap the second frame 304 * and return it to the caller for normal delivery. 305 */ 306 m = ieee80211_decap1(m, &framelen); 307 if (m == NULL) { 308 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 309 ni->ni_macaddr, "fast-frame", "%s", "first decap failed"); 310 vap->iv_stats.is_ff_tooshort++; 311 return NULL; 312 } 313 n = m_split(m, framelen, M_NOWAIT); 314 if (n == NULL) { 315 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 316 ni->ni_macaddr, "fast-frame", 317 "%s", "unable to split encapsulated frames"); 318 vap->iv_stats.is_ff_split++; 319 m_freem(m); /* NB: must reclaim */ 320 return NULL; 321 } 322 /* XXX not right for WDS */ 323 vap->iv_deliver_data(vap, ni, m); /* 1st of pair */ 324 325 /* 326 * Decap second frame. 327 */ 328 m_adj(n, roundup2(framelen, 4) - framelen); /* padding */ 329 n = ieee80211_decap1(n, &framelen); 330 if (n == NULL) { 331 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_ANY, 332 ni->ni_macaddr, "fast-frame", "%s", "second decap failed"); 333 vap->iv_stats.is_ff_tooshort++; 334 } 335 /* XXX verify framelen against mbuf contents */ 336 return n; /* 2nd delivered by caller */ 337 #undef MS 338 #undef FF_LLC_SIZE 339 } 340 341 /* 342 * Fast frame encapsulation. There must be two packets 343 * chained with m_nextpkt. We do header adjustment for 344 * each, add the tunnel encapsulation, and then concatenate 345 * the mbuf chains to form a single frame for transmission. 346 */ 347 struct mbuf * 348 ieee80211_ff_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 349 struct ieee80211_key *key) 350 { 351 struct mbuf *m2; 352 struct ether_header eh1, eh2; 353 struct llc *llc; 354 struct mbuf *m; 355 int pad; 356 357 m2 = m1->m_nextpkt; 358 if (m2 == NULL) { 359 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 360 "%s: only one frame\n", __func__); 361 goto bad; 362 } 363 m1->m_nextpkt = NULL; 364 365 /* 366 * Adjust to include 802.11 header requirement. 367 */ 368 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 369 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 370 m1 = ieee80211_mbuf_adjust(vap, hdrspace, key, m1); 371 if (m1 == NULL) { 372 printf("%s: failed initial mbuf_adjust\n", __func__); 373 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 374 m_freem(m2); 375 goto bad; 376 } 377 378 /* 379 * Copy second frame's Ethernet header out of line 380 * and adjust for possible padding in case there isn't room 381 * at the end of first frame. 382 */ 383 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 384 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 385 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 386 if (m2 == NULL) { 387 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 388 printf("%s: failed second \n", __func__); 389 goto bad; 390 } 391 392 /* 393 * Now do tunnel encapsulation. First, each 394 * frame gets a standard encapsulation. 395 */ 396 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 397 if (m1 == NULL) 398 goto bad; 399 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 400 if (m2 == NULL) 401 goto bad; 402 403 /* 404 * Pad leading frame to a 4-byte boundary. If there 405 * is space at the end of the first frame, put it 406 * there; otherwise prepend to the front of the second 407 * frame. We know doing the second will always work 408 * because we reserve space above. We prefer appending 409 * as this typically has better DMA alignment properties. 410 */ 411 for (m = m1; m->m_next != NULL; m = m->m_next) 412 ; 413 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 414 if (pad) { 415 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 416 m2->m_data -= pad; 417 m2->m_len += pad; 418 m2->m_pkthdr.len += pad; 419 } else { /* append to first */ 420 m->m_len += pad; 421 m1->m_pkthdr.len += pad; 422 } 423 } 424 425 /* 426 * A-MSDU's are just appended; the "I'm A-MSDU!" bit is in the 427 * QoS header. 428 * 429 * XXX optimize by prepending together 430 */ 431 m->m_next = m2; /* NB: last mbuf from above */ 432 m1->m_pkthdr.len += m2->m_pkthdr.len; 433 M_PREPEND(m1, sizeof(uint32_t)+2, M_NOWAIT); 434 if (m1 == NULL) { /* XXX cannot happen */ 435 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 436 "%s: no space for tunnel header\n", __func__); 437 vap->iv_stats.is_tx_nobuf++; 438 return NULL; 439 } 440 memset(mtod(m1, void *), 0, sizeof(uint32_t)+2); 441 442 M_PREPEND(m1, sizeof(struct llc), M_NOWAIT); 443 if (m1 == NULL) { /* XXX cannot happen */ 444 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 445 "%s: no space for llc header\n", __func__); 446 vap->iv_stats.is_tx_nobuf++; 447 return NULL; 448 } 449 llc = mtod(m1, struct llc *); 450 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 451 llc->llc_control = LLC_UI; 452 llc->llc_snap.org_code[0] = ATH_FF_SNAP_ORGCODE_0; 453 llc->llc_snap.org_code[1] = ATH_FF_SNAP_ORGCODE_1; 454 llc->llc_snap.org_code[2] = ATH_FF_SNAP_ORGCODE_2; 455 llc->llc_snap.ether_type = htons(ATH_FF_ETH_TYPE); 456 457 vap->iv_stats.is_ff_encap++; 458 459 return m1; 460 bad: 461 vap->iv_stats.is_ff_encapfail++; 462 if (m1 != NULL) 463 m_freem(m1); 464 if (m2 != NULL) 465 m_freem(m2); 466 return NULL; 467 } 468 469 /* 470 * A-MSDU encapsulation. 471 * 472 * This assumes just two frames for now, since we're borrowing the 473 * same queuing code and infrastructure as fast-frames. 474 * 475 * There must be two packets chained with m_nextpkt. 476 * We do header adjustment for each, and then concatenate the mbuf chains 477 * to form a single frame for transmission. 478 */ 479 struct mbuf * 480 ieee80211_amsdu_encap(struct ieee80211vap *vap, struct mbuf *m1, int hdrspace, 481 struct ieee80211_key *key) 482 { 483 struct mbuf *m2; 484 struct ether_header eh1, eh2; 485 struct mbuf *m; 486 int pad; 487 488 m2 = m1->m_nextpkt; 489 if (m2 == NULL) { 490 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 491 "%s: only one frame\n", __func__); 492 goto bad; 493 } 494 m1->m_nextpkt = NULL; 495 496 /* 497 * Include A-MSDU header in adjusting header layout. 498 */ 499 KASSERT(m1->m_len >= sizeof(eh1), ("no ethernet header!")); 500 ETHER_HEADER_COPY(&eh1, mtod(m1, caddr_t)); 501 m1 = ieee80211_mbuf_adjust(vap, 502 hdrspace + sizeof(struct llc) + sizeof(uint32_t) + 503 sizeof(struct ether_header), 504 key, m1); 505 if (m1 == NULL) { 506 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 507 m_freem(m2); 508 goto bad; 509 } 510 511 /* 512 * Copy second frame's Ethernet header out of line 513 * and adjust for encapsulation headers. Note that 514 * we make room for padding in case there isn't room 515 * at the end of first frame. 516 */ 517 KASSERT(m2->m_len >= sizeof(eh2), ("no ethernet header!")); 518 ETHER_HEADER_COPY(&eh2, mtod(m2, caddr_t)); 519 m2 = ieee80211_mbuf_adjust(vap, 4, NULL, m2); 520 if (m2 == NULL) { 521 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 522 goto bad; 523 } 524 525 /* 526 * Now do tunnel encapsulation. First, each 527 * frame gets a standard encapsulation. 528 */ 529 m1 = ieee80211_ff_encap1(vap, m1, &eh1); 530 if (m1 == NULL) 531 goto bad; 532 m2 = ieee80211_ff_encap1(vap, m2, &eh2); 533 if (m2 == NULL) 534 goto bad; 535 536 /* 537 * Pad leading frame to a 4-byte boundary. If there 538 * is space at the end of the first frame, put it 539 * there; otherwise prepend to the front of the second 540 * frame. We know doing the second will always work 541 * because we reserve space above. We prefer appending 542 * as this typically has better DMA alignment properties. 543 */ 544 for (m = m1; m->m_next != NULL; m = m->m_next) 545 ; 546 pad = roundup2(m1->m_pkthdr.len, 4) - m1->m_pkthdr.len; 547 if (pad) { 548 if (M_TRAILINGSPACE(m) < pad) { /* prepend to second */ 549 m2->m_data -= pad; 550 m2->m_len += pad; 551 m2->m_pkthdr.len += pad; 552 } else { /* append to first */ 553 m->m_len += pad; 554 m1->m_pkthdr.len += pad; 555 } 556 } 557 558 /* 559 * Now, stick 'em together. 560 */ 561 m->m_next = m2; /* NB: last mbuf from above */ 562 m1->m_pkthdr.len += m2->m_pkthdr.len; 563 564 vap->iv_stats.is_amsdu_encap++; 565 566 return m1; 567 bad: 568 vap->iv_stats.is_amsdu_encapfail++; 569 if (m1 != NULL) 570 m_freem(m1); 571 if (m2 != NULL) 572 m_freem(m2); 573 return NULL; 574 } 575 576 577 static void 578 ff_transmit(struct ieee80211_node *ni, struct mbuf *m) 579 { 580 struct ieee80211vap *vap = ni->ni_vap; 581 struct ieee80211com *ic = ni->ni_ic; 582 583 IEEE80211_TX_LOCK_ASSERT(ic); 584 585 /* encap and xmit */ 586 m = ieee80211_encap(vap, ni, m); 587 if (m != NULL) 588 (void) ieee80211_parent_xmitpkt(ic, m); 589 else 590 ieee80211_free_node(ni); 591 } 592 593 /* 594 * Flush frames to device; note we re-use the linked list 595 * the frames were stored on and use the sentinel (unchanged) 596 * which may be non-NULL. 597 */ 598 static void 599 ff_flush(struct mbuf *head, struct mbuf *last) 600 { 601 struct mbuf *m, *next; 602 struct ieee80211_node *ni; 603 struct ieee80211vap *vap; 604 605 for (m = head; m != last; m = next) { 606 next = m->m_nextpkt; 607 m->m_nextpkt = NULL; 608 609 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 610 vap = ni->ni_vap; 611 612 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 613 "%s: flush frame, age %u", __func__, M_AGE_GET(m)); 614 vap->iv_stats.is_ff_flush++; 615 616 ff_transmit(ni, m); 617 } 618 } 619 620 /* 621 * Age frames on the staging queue. 622 */ 623 void 624 ieee80211_ff_age(struct ieee80211com *ic, struct ieee80211_stageq *sq, 625 int quanta) 626 { 627 struct mbuf *m, *head; 628 struct ieee80211_node *ni; 629 630 IEEE80211_FF_LOCK(ic); 631 if (sq->depth == 0) { 632 IEEE80211_FF_UNLOCK(ic); 633 return; /* nothing to do */ 634 } 635 636 KASSERT(sq->head != NULL, ("stageq empty")); 637 638 head = sq->head; 639 while ((m = sq->head) != NULL && M_AGE_GET(m) < quanta) { 640 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 641 642 /* clear staging ref to frame */ 643 ni = (struct ieee80211_node *) m->m_pkthdr.rcvif; 644 KASSERT(ni->ni_tx_superg[tid] == m, ("staging queue empty")); 645 ni->ni_tx_superg[tid] = NULL; 646 647 sq->head = m->m_nextpkt; 648 sq->depth--; 649 } 650 if (m == NULL) 651 sq->tail = NULL; 652 else 653 M_AGE_SUB(m, quanta); 654 IEEE80211_FF_UNLOCK(ic); 655 656 IEEE80211_TX_LOCK(ic); 657 ff_flush(head, m); 658 IEEE80211_TX_UNLOCK(ic); 659 } 660 661 static void 662 stageq_add(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *m) 663 { 664 int age = ieee80211_ffagemax; 665 666 IEEE80211_FF_LOCK_ASSERT(ic); 667 668 if (sq->tail != NULL) { 669 sq->tail->m_nextpkt = m; 670 age -= M_AGE_GET(sq->head); 671 } else 672 sq->head = m; 673 KASSERT(age >= 0, ("age %d", age)); 674 M_AGE_SET(m, age); 675 m->m_nextpkt = NULL; 676 sq->tail = m; 677 sq->depth++; 678 } 679 680 static void 681 stageq_remove(struct ieee80211com *ic, struct ieee80211_stageq *sq, struct mbuf *mstaged) 682 { 683 struct mbuf *m, *mprev; 684 685 IEEE80211_FF_LOCK_ASSERT(ic); 686 687 mprev = NULL; 688 for (m = sq->head; m != NULL; m = m->m_nextpkt) { 689 if (m == mstaged) { 690 if (mprev == NULL) 691 sq->head = m->m_nextpkt; 692 else 693 mprev->m_nextpkt = m->m_nextpkt; 694 if (sq->tail == m) 695 sq->tail = mprev; 696 sq->depth--; 697 return; 698 } 699 mprev = m; 700 } 701 printf("%s: packet not found\n", __func__); 702 } 703 704 static uint32_t 705 ff_approx_txtime(struct ieee80211_node *ni, 706 const struct mbuf *m1, const struct mbuf *m2) 707 { 708 struct ieee80211com *ic = ni->ni_ic; 709 struct ieee80211vap *vap = ni->ni_vap; 710 uint32_t framelen; 711 uint32_t frame_time; 712 713 /* 714 * Approximate the frame length to be transmitted. A swag to add 715 * the following maximal values to the skb payload: 716 * - 32: 802.11 encap + CRC 717 * - 24: encryption overhead (if wep bit) 718 * - 4 + 6: fast-frame header and padding 719 * - 16: 2 LLC FF tunnel headers 720 * - 14: 1 802.3 FF tunnel header (mbuf already accounts for 2nd) 721 */ 722 framelen = m1->m_pkthdr.len + 32 + 723 ATH_FF_MAX_HDR_PAD + ATH_FF_MAX_SEP_PAD + ATH_FF_MAX_HDR; 724 if (vap->iv_flags & IEEE80211_F_PRIVACY) 725 framelen += 24; 726 if (m2 != NULL) 727 framelen += m2->m_pkthdr.len; 728 729 /* 730 * For now, we assume non-shortgi, 20MHz, just because I want to 731 * at least test 802.11n. 732 */ 733 if (ni->ni_txrate & IEEE80211_RATE_MCS) 734 frame_time = ieee80211_compute_duration_ht(framelen, 735 ni->ni_txrate, 736 IEEE80211_HT_RC_2_STREAMS(ni->ni_txrate), 737 0, /* isht40 */ 738 0); /* isshortgi */ 739 else 740 frame_time = ieee80211_compute_duration(ic->ic_rt, framelen, 741 ni->ni_txrate, 0); 742 return (frame_time); 743 } 744 745 /* 746 * Check if the supplied frame can be partnered with an existing 747 * or pending frame. Return a reference to any frame that should be 748 * sent on return; otherwise return NULL. 749 */ 750 struct mbuf * 751 ieee80211_ff_check(struct ieee80211_node *ni, struct mbuf *m) 752 { 753 struct ieee80211vap *vap = ni->ni_vap; 754 struct ieee80211com *ic = ni->ni_ic; 755 struct ieee80211_superg *sg = ic->ic_superg; 756 const int pri = M_WME_GETAC(m); 757 struct ieee80211_stageq *sq; 758 struct ieee80211_tx_ampdu *tap; 759 struct mbuf *mstaged; 760 uint32_t txtime, limit; 761 762 IEEE80211_TX_UNLOCK_ASSERT(ic); 763 764 IEEE80211_LOCK(ic); 765 limit = IEEE80211_TXOP_TO_US( 766 ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit); 767 IEEE80211_UNLOCK(ic); 768 769 /* 770 * Check if the supplied frame can be aggregated. 771 * 772 * NB: we allow EAPOL frames to be aggregated with other ucast traffic. 773 * Do 802.1x EAPOL frames proceed in the clear? Then they couldn't 774 * be aggregated with other types of frames when encryption is on? 775 */ 776 IEEE80211_FF_LOCK(ic); 777 tap = &ni->ni_tx_ampdu[WME_AC_TO_TID(pri)]; 778 mstaged = ni->ni_tx_superg[WME_AC_TO_TID(pri)]; 779 /* XXX NOTE: reusing packet counter state from A-MPDU */ 780 /* 781 * XXX NOTE: this means we're double-counting; it should just 782 * be done in ieee80211_output.c once for both superg and A-MPDU. 783 */ 784 ieee80211_txampdu_count_packet(tap); 785 786 /* 787 * When not in station mode never aggregate a multicast 788 * frame; this insures, for example, that a combined frame 789 * does not require multiple encryption keys. 790 */ 791 if (vap->iv_opmode != IEEE80211_M_STA && 792 ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) { 793 /* XXX flush staged frame? */ 794 IEEE80211_FF_UNLOCK(ic); 795 return m; 796 } 797 /* 798 * If there is no frame to combine with and the pps is 799 * too low; then do not attempt to aggregate this frame. 800 */ 801 if (mstaged == NULL && 802 ieee80211_txampdu_getpps(tap) < ieee80211_ffppsmin) { 803 IEEE80211_FF_UNLOCK(ic); 804 return m; 805 } 806 sq = &sg->ff_stageq[pri]; 807 /* 808 * Check the txop limit to insure the aggregate fits. 809 */ 810 if (limit != 0 && 811 (txtime = ff_approx_txtime(ni, m, mstaged)) > limit) { 812 /* 813 * Aggregate too long, return to the caller for direct 814 * transmission. In addition, flush any pending frame 815 * before sending this one. 816 */ 817 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 818 "%s: txtime %u exceeds txop limit %u\n", 819 __func__, txtime, limit); 820 821 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 822 if (mstaged != NULL) 823 stageq_remove(ic, sq, mstaged); 824 IEEE80211_FF_UNLOCK(ic); 825 826 if (mstaged != NULL) { 827 IEEE80211_TX_LOCK(ic); 828 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 829 "%s: flush staged frame", __func__); 830 /* encap and xmit */ 831 ff_transmit(ni, mstaged); 832 IEEE80211_TX_UNLOCK(ic); 833 } 834 return m; /* NB: original frame */ 835 } 836 /* 837 * An aggregation candidate. If there's a frame to partner 838 * with then combine and return for processing. Otherwise 839 * save this frame and wait for a partner to show up (or 840 * the frame to be flushed). Note that staged frames also 841 * hold their node reference. 842 */ 843 if (mstaged != NULL) { 844 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = NULL; 845 stageq_remove(ic, sq, mstaged); 846 IEEE80211_FF_UNLOCK(ic); 847 848 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 849 "%s: aggregate fast-frame", __func__); 850 /* 851 * Release the node reference; we only need 852 * the one already in mstaged. 853 */ 854 KASSERT(mstaged->m_pkthdr.rcvif == (void *)ni, 855 ("rcvif %p ni %p", mstaged->m_pkthdr.rcvif, ni)); 856 ieee80211_free_node(ni); 857 858 m->m_nextpkt = NULL; 859 mstaged->m_nextpkt = m; 860 mstaged->m_flags |= M_FF; /* NB: mark for encap work */ 861 } else { 862 KASSERT(ni->ni_tx_superg[WME_AC_TO_TID(pri)] == NULL, 863 ("ni_tx_superg[]: %p", 864 ni->ni_tx_superg[WME_AC_TO_TID(pri)])); 865 ni->ni_tx_superg[WME_AC_TO_TID(pri)] = m; 866 867 stageq_add(ic, sq, m); 868 IEEE80211_FF_UNLOCK(ic); 869 870 IEEE80211_NOTE(vap, IEEE80211_MSG_SUPERG, ni, 871 "%s: stage frame, %u queued", __func__, sq->depth); 872 /* NB: mstaged is NULL */ 873 } 874 return mstaged; 875 } 876 877 struct mbuf * 878 ieee80211_amsdu_check(struct ieee80211_node *ni, struct mbuf *m) 879 { 880 /* 881 * XXX TODO: actually enforce the node support 882 * and HTCAP requirements for the maximum A-MSDU 883 * size. 884 */ 885 886 /* First: software A-MSDU transmit? */ 887 if (! ieee80211_amsdu_tx_ok(ni)) 888 return (m); 889 890 /* Next - EAPOL? Nope, don't aggregate; we don't QoS encap them */ 891 if (m->m_flags & (M_EAPOL | M_MCAST | M_BCAST)) 892 return (m); 893 894 /* Next - needs to be a data frame, non-broadcast, etc */ 895 if (ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost)) 896 return (m); 897 898 return (ieee80211_ff_check(ni, m)); 899 } 900 901 void 902 ieee80211_ff_node_init(struct ieee80211_node *ni) 903 { 904 /* 905 * Clean FF state on re-associate. This handles the case 906 * where a station leaves w/o notifying us and then returns 907 * before node is reaped for inactivity. 908 */ 909 ieee80211_ff_node_cleanup(ni); 910 } 911 912 /* 913 * Note: this comlock acquisition LORs with the node lock: 914 * 915 * 1: sta_join1 -> NODE_LOCK -> node_free -> node_cleanup -> ff_node_cleanup -> COM_LOCK 916 * 2: TBD 917 */ 918 void 919 ieee80211_ff_node_cleanup(struct ieee80211_node *ni) 920 { 921 struct ieee80211com *ic = ni->ni_ic; 922 struct ieee80211_superg *sg = ic->ic_superg; 923 struct mbuf *m, *next_m, *head; 924 int tid; 925 926 IEEE80211_FF_LOCK(ic); 927 head = NULL; 928 for (tid = 0; tid < WME_NUM_TID; tid++) { 929 int ac = TID_TO_WME_AC(tid); 930 /* 931 * XXX Initialise the packet counter. 932 * 933 * This may be double-work for 11n stations; 934 * but without it we never setup things. 935 */ 936 ieee80211_txampdu_init_pps(&ni->ni_tx_ampdu[tid]); 937 m = ni->ni_tx_superg[tid]; 938 if (m != NULL) { 939 ni->ni_tx_superg[tid] = NULL; 940 stageq_remove(ic, &sg->ff_stageq[ac], m); 941 m->m_nextpkt = head; 942 head = m; 943 } 944 } 945 IEEE80211_FF_UNLOCK(ic); 946 947 /* 948 * Free mbufs, taking care to not dereference the mbuf after 949 * we free it (hence grabbing m_nextpkt before we free it.) 950 */ 951 m = head; 952 while (m != NULL) { 953 next_m = m->m_nextpkt; 954 m_freem(m); 955 ieee80211_free_node(ni); 956 m = next_m; 957 } 958 } 959 960 /* 961 * Switch between turbo and non-turbo operating modes. 962 * Use the specified channel flags to locate the new 963 * channel, update 802.11 state, and then call back into 964 * the driver to effect the change. 965 */ 966 void 967 ieee80211_dturbo_switch(struct ieee80211vap *vap, int newflags) 968 { 969 struct ieee80211com *ic = vap->iv_ic; 970 struct ieee80211_channel *chan; 971 972 chan = ieee80211_find_channel(ic, ic->ic_bsschan->ic_freq, newflags); 973 if (chan == NULL) { /* XXX should not happen */ 974 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 975 "%s: no channel with freq %u flags 0x%x\n", 976 __func__, ic->ic_bsschan->ic_freq, newflags); 977 return; 978 } 979 980 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 981 "%s: %s -> %s (freq %u flags 0x%x)\n", __func__, 982 ieee80211_phymode_name[ieee80211_chan2mode(ic->ic_bsschan)], 983 ieee80211_phymode_name[ieee80211_chan2mode(chan)], 984 chan->ic_freq, chan->ic_flags); 985 986 ic->ic_bsschan = chan; 987 ic->ic_prevchan = ic->ic_curchan; 988 ic->ic_curchan = chan; 989 ic->ic_rt = ieee80211_get_ratetable(chan); 990 ic->ic_set_channel(ic); 991 ieee80211_radiotap_chan_change(ic); 992 /* NB: do not need to reset ERP state 'cuz we're in sta mode */ 993 } 994 995 /* 996 * Return the current ``state'' of an Atheros capbility. 997 * If associated in station mode report the negotiated 998 * setting. Otherwise report the current setting. 999 */ 1000 static int 1001 getathcap(struct ieee80211vap *vap, int cap) 1002 { 1003 if (vap->iv_opmode == IEEE80211_M_STA && 1004 vap->iv_state == IEEE80211_S_RUN) 1005 return IEEE80211_ATH_CAP(vap, vap->iv_bss, cap) != 0; 1006 else 1007 return (vap->iv_flags & cap) != 0; 1008 } 1009 1010 static int 1011 superg_ioctl_get80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1012 { 1013 switch (ireq->i_type) { 1014 case IEEE80211_IOC_FF: 1015 ireq->i_val = getathcap(vap, IEEE80211_F_FF); 1016 break; 1017 case IEEE80211_IOC_TURBOP: 1018 ireq->i_val = getathcap(vap, IEEE80211_F_TURBOP); 1019 break; 1020 default: 1021 return ENOSYS; 1022 } 1023 return 0; 1024 } 1025 IEEE80211_IOCTL_GET(superg, superg_ioctl_get80211); 1026 1027 static int 1028 superg_ioctl_set80211(struct ieee80211vap *vap, struct ieee80211req *ireq) 1029 { 1030 switch (ireq->i_type) { 1031 case IEEE80211_IOC_FF: 1032 if (ireq->i_val) { 1033 if ((vap->iv_caps & IEEE80211_C_FF) == 0) 1034 return EOPNOTSUPP; 1035 vap->iv_flags |= IEEE80211_F_FF; 1036 } else 1037 vap->iv_flags &= ~IEEE80211_F_FF; 1038 return ENETRESET; 1039 case IEEE80211_IOC_TURBOP: 1040 if (ireq->i_val) { 1041 if ((vap->iv_caps & IEEE80211_C_TURBOP) == 0) 1042 return EOPNOTSUPP; 1043 vap->iv_flags |= IEEE80211_F_TURBOP; 1044 } else 1045 vap->iv_flags &= ~IEEE80211_F_TURBOP; 1046 return ENETRESET; 1047 default: 1048 return ENOSYS; 1049 } 1050 } 1051 IEEE80211_IOCTL_SET(superg, superg_ioctl_set80211); 1052 1053 #endif /* IEEE80211_SUPPORT_SUPERG */ 1054