1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 * 26 * $FreeBSD$ 27 */ 28 #ifndef _NET80211_IEEE80211_PROTO_H_ 29 #define _NET80211_IEEE80211_PROTO_H_ 30 31 /* 32 * 802.11 protocol implementation definitions. 33 */ 34 35 enum ieee80211_state { 36 IEEE80211_S_INIT = 0, /* default state */ 37 IEEE80211_S_SCAN = 1, /* scanning */ 38 IEEE80211_S_AUTH = 2, /* try to authenticate */ 39 IEEE80211_S_ASSOC = 3, /* try to assoc */ 40 IEEE80211_S_CAC = 4, /* doing channel availability check */ 41 IEEE80211_S_RUN = 5, /* operational (e.g. associated) */ 42 IEEE80211_S_CSA = 6, /* channel switch announce pending */ 43 IEEE80211_S_SLEEP = 7, /* power save */ 44 }; 45 #define IEEE80211_S_MAX (IEEE80211_S_SLEEP+1) 46 47 #define IEEE80211_SEND_MGMT(_ni,_type,_arg) \ 48 ((*(_ni)->ni_ic->ic_send_mgmt)(_ni, _type, _arg)) 49 50 extern const char *ieee80211_mgt_subtype_name[]; 51 extern const char *ieee80211_phymode_name[IEEE80211_MODE_MAX]; 52 extern const int ieee80211_opcap[IEEE80211_OPMODE_MAX]; 53 54 void ieee80211_proto_attach(struct ieee80211com *); 55 void ieee80211_proto_detach(struct ieee80211com *); 56 void ieee80211_proto_vattach(struct ieee80211vap *); 57 void ieee80211_proto_vdetach(struct ieee80211vap *); 58 59 void ieee80211_syncifflag_locked(struct ieee80211com *, int flag); 60 void ieee80211_syncflag(struct ieee80211vap *, int flag); 61 void ieee80211_syncflag_ht(struct ieee80211vap *, int flag); 62 void ieee80211_syncflag_ext(struct ieee80211vap *, int flag); 63 64 #define IEEE80211_R_NF 0x0000001 /* global NF value valid */ 65 #define IEEE80211_R_RSSI 0x0000002 /* global RSSI value valid */ 66 #define IEEE80211_R_C_CHAIN 0x0000004 /* RX chain count valid */ 67 #define IEEE80211_R_C_NF 0x0000008 /* per-chain NF value valid */ 68 #define IEEE80211_R_C_RSSI 0x0000010 /* per-chain RSSI value valid */ 69 #define IEEE80211_R_C_EVM 0x0000020 /* per-chain EVM valid */ 70 #define IEEE80211_R_C_HT40 0x0000040 /* RX'ed packet is 40mhz, pilots 4,5 valid */ 71 72 struct ieee80211_rx_stats { 73 uint32_t r_flags; /* IEEE80211_R_* flags */ 74 uint8_t c_chain; /* number of RX chains involved */ 75 int16_t c_nf_ctl[IEEE80211_MAX_CHAINS]; /* per-chain NF */ 76 int16_t c_nf_ext[IEEE80211_MAX_CHAINS]; /* per-chain NF */ 77 int16_t c_rssi_ctl[IEEE80211_MAX_CHAINS]; /* per-chain RSSI */ 78 int16_t c_rssi_ext[IEEE80211_MAX_CHAINS]; /* per-chain RSSI */ 79 uint8_t nf; /* global NF */ 80 uint8_t rssi; /* global RSSI */ 81 uint8_t evm[IEEE80211_MAX_CHAINS][IEEE80211_MAX_EVM_PILOTS]; 82 /* per-chain, per-pilot EVM values */ 83 }; 84 85 #define ieee80211_input(ni, m, rssi, nf) \ 86 ((ni)->ni_vap->iv_input(ni, m, rssi, nf)) 87 int ieee80211_input_all(struct ieee80211com *, struct mbuf *, int, int); 88 89 int ieee80211_input_mimo(struct ieee80211_node *, struct mbuf *, 90 struct ieee80211_rx_stats *); 91 int ieee80211_input_mimo_all(struct ieee80211com *, struct mbuf *, 92 struct ieee80211_rx_stats *); 93 94 struct ieee80211_bpf_params; 95 int ieee80211_mgmt_output(struct ieee80211_node *, struct mbuf *, int, 96 struct ieee80211_bpf_params *); 97 int ieee80211_raw_xmit(struct ieee80211_node *, struct mbuf *, 98 const struct ieee80211_bpf_params *); 99 int ieee80211_output(struct ifnet *, struct mbuf *, 100 struct sockaddr *, struct route *ro); 101 void ieee80211_send_setup(struct ieee80211_node *, struct mbuf *, int, int, 102 const uint8_t [IEEE80211_ADDR_LEN], const uint8_t [IEEE80211_ADDR_LEN], 103 const uint8_t [IEEE80211_ADDR_LEN]); 104 void ieee80211_start(struct ifnet *); 105 int ieee80211_send_nulldata(struct ieee80211_node *); 106 int ieee80211_classify(struct ieee80211_node *, struct mbuf *m); 107 struct mbuf *ieee80211_mbuf_adjust(struct ieee80211vap *, int, 108 struct ieee80211_key *, struct mbuf *); 109 struct mbuf *ieee80211_encap(struct ieee80211vap *, struct ieee80211_node *, 110 struct mbuf *); 111 int ieee80211_send_mgmt(struct ieee80211_node *, int, int); 112 struct ieee80211_appie; 113 int ieee80211_send_probereq(struct ieee80211_node *ni, 114 const uint8_t sa[IEEE80211_ADDR_LEN], 115 const uint8_t da[IEEE80211_ADDR_LEN], 116 const uint8_t bssid[IEEE80211_ADDR_LEN], 117 const uint8_t *ssid, size_t ssidlen); 118 /* 119 * The formation of ProbeResponse frames requires guidance to 120 * deal with legacy clients. When the client is identified as 121 * "legacy 11b" ieee80211_send_proberesp is passed this token. 122 */ 123 #define IEEE80211_SEND_LEGACY_11B 0x1 /* legacy 11b client */ 124 #define IEEE80211_SEND_LEGACY_11 0x2 /* other legacy client */ 125 #define IEEE80211_SEND_LEGACY 0x3 /* any legacy client */ 126 struct mbuf *ieee80211_alloc_proberesp(struct ieee80211_node *, int); 127 int ieee80211_send_proberesp(struct ieee80211vap *, 128 const uint8_t da[IEEE80211_ADDR_LEN], int); 129 struct mbuf *ieee80211_alloc_rts(struct ieee80211com *ic, 130 const uint8_t [IEEE80211_ADDR_LEN], 131 const uint8_t [IEEE80211_ADDR_LEN], uint16_t); 132 struct mbuf *ieee80211_alloc_cts(struct ieee80211com *, 133 const uint8_t [IEEE80211_ADDR_LEN], uint16_t); 134 135 uint8_t *ieee80211_add_rates(uint8_t *, const struct ieee80211_rateset *); 136 uint8_t *ieee80211_add_xrates(uint8_t *, const struct ieee80211_rateset *); 137 uint16_t ieee80211_getcapinfo(struct ieee80211vap *, 138 struct ieee80211_channel *); 139 140 void ieee80211_reset_erp(struct ieee80211com *); 141 void ieee80211_set_shortslottime(struct ieee80211com *, int onoff); 142 int ieee80211_iserp_rateset(const struct ieee80211_rateset *); 143 void ieee80211_setbasicrates(struct ieee80211_rateset *, 144 enum ieee80211_phymode); 145 void ieee80211_addbasicrates(struct ieee80211_rateset *, 146 enum ieee80211_phymode); 147 148 /* 149 * Return the size of the 802.11 header for a management or data frame. 150 */ 151 static __inline int 152 ieee80211_hdrsize(const void *data) 153 { 154 const struct ieee80211_frame *wh = data; 155 int size = sizeof(struct ieee80211_frame); 156 157 /* NB: we don't handle control frames */ 158 KASSERT((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL, 159 ("%s: control frame", __func__)); 160 if (IEEE80211_IS_DSTODS(wh)) 161 size += IEEE80211_ADDR_LEN; 162 if (IEEE80211_QOS_HAS_SEQ(wh)) 163 size += sizeof(uint16_t); 164 return size; 165 } 166 167 /* 168 * Like ieee80211_hdrsize, but handles any type of frame. 169 */ 170 static __inline int 171 ieee80211_anyhdrsize(const void *data) 172 { 173 const struct ieee80211_frame *wh = data; 174 175 if ((wh->i_fc[0]&IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_CTL) { 176 switch (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) { 177 case IEEE80211_FC0_SUBTYPE_CTS: 178 case IEEE80211_FC0_SUBTYPE_ACK: 179 return sizeof(struct ieee80211_frame_ack); 180 case IEEE80211_FC0_SUBTYPE_BAR: 181 return sizeof(struct ieee80211_frame_bar); 182 } 183 return sizeof(struct ieee80211_frame_min); 184 } else 185 return ieee80211_hdrsize(data); 186 } 187 188 /* 189 * Template for an in-kernel authenticator. Authenticators 190 * register with the protocol code and are typically loaded 191 * as separate modules as needed. One special authenticator 192 * is xauth; it intercepts requests so that protocols like 193 * WPA can be handled in user space. 194 */ 195 struct ieee80211_authenticator { 196 const char *ia_name; /* printable name */ 197 int (*ia_attach)(struct ieee80211vap *); 198 void (*ia_detach)(struct ieee80211vap *); 199 void (*ia_node_join)(struct ieee80211_node *); 200 void (*ia_node_leave)(struct ieee80211_node *); 201 }; 202 void ieee80211_authenticator_register(int type, 203 const struct ieee80211_authenticator *); 204 void ieee80211_authenticator_unregister(int type); 205 const struct ieee80211_authenticator *ieee80211_authenticator_get(int auth); 206 207 struct ieee80211req; 208 /* 209 * Template for an MAC ACL policy module. Such modules 210 * register with the protocol code and are passed the sender's 211 * address of each received auth frame for validation. 212 */ 213 struct ieee80211_aclator { 214 const char *iac_name; /* printable name */ 215 int (*iac_attach)(struct ieee80211vap *); 216 void (*iac_detach)(struct ieee80211vap *); 217 int (*iac_check)(struct ieee80211vap *, 218 const uint8_t mac[IEEE80211_ADDR_LEN]); 219 int (*iac_add)(struct ieee80211vap *, 220 const uint8_t mac[IEEE80211_ADDR_LEN]); 221 int (*iac_remove)(struct ieee80211vap *, 222 const uint8_t mac[IEEE80211_ADDR_LEN]); 223 int (*iac_flush)(struct ieee80211vap *); 224 int (*iac_setpolicy)(struct ieee80211vap *, int); 225 int (*iac_getpolicy)(struct ieee80211vap *); 226 int (*iac_setioctl)(struct ieee80211vap *, struct ieee80211req *); 227 int (*iac_getioctl)(struct ieee80211vap *, struct ieee80211req *); 228 }; 229 void ieee80211_aclator_register(const struct ieee80211_aclator *); 230 void ieee80211_aclator_unregister(const struct ieee80211_aclator *); 231 const struct ieee80211_aclator *ieee80211_aclator_get(const char *name); 232 233 /* flags for ieee80211_fix_rate() */ 234 #define IEEE80211_F_DOSORT 0x00000001 /* sort rate list */ 235 #define IEEE80211_F_DOFRATE 0x00000002 /* use fixed legacy rate */ 236 #define IEEE80211_F_DONEGO 0x00000004 /* calc negotiated rate */ 237 #define IEEE80211_F_DODEL 0x00000008 /* delete ignore rate */ 238 #define IEEE80211_F_DOBRS 0x00000010 /* check basic rate set */ 239 #define IEEE80211_F_JOIN 0x00000020 /* sta joining our bss */ 240 #define IEEE80211_F_DOFMCS 0x00000040 /* use fixed HT rate */ 241 int ieee80211_fix_rate(struct ieee80211_node *, 242 struct ieee80211_rateset *, int); 243 244 /* 245 * WME/WMM support. 246 */ 247 struct wmeParams { 248 uint8_t wmep_acm; 249 uint8_t wmep_aifsn; 250 uint8_t wmep_logcwmin; /* log2(cwmin) */ 251 uint8_t wmep_logcwmax; /* log2(cwmax) */ 252 uint8_t wmep_txopLimit; 253 uint8_t wmep_noackPolicy; /* 0 (ack), 1 (no ack) */ 254 }; 255 #define IEEE80211_TXOP_TO_US(_txop) ((_txop)<<5) 256 #define IEEE80211_US_TO_TXOP(_us) ((_us)>>5) 257 258 struct chanAccParams { 259 uint8_t cap_info; /* version of the current set */ 260 struct wmeParams cap_wmeParams[WME_NUM_AC]; 261 }; 262 263 struct ieee80211_wme_state { 264 u_int wme_flags; 265 #define WME_F_AGGRMODE 0x00000001 /* STATUS: WME agressive mode */ 266 u_int wme_hipri_traffic; /* VI/VO frames in beacon interval */ 267 u_int wme_hipri_switch_thresh;/* agressive mode switch thresh */ 268 u_int wme_hipri_switch_hysteresis;/* agressive mode switch hysteresis */ 269 270 struct wmeParams wme_params[4]; /* from assoc resp for each AC*/ 271 struct chanAccParams wme_wmeChanParams; /* WME params applied to self */ 272 struct chanAccParams wme_wmeBssChanParams;/* WME params bcast to stations */ 273 struct chanAccParams wme_chanParams; /* params applied to self */ 274 struct chanAccParams wme_bssChanParams; /* params bcast to stations */ 275 276 int (*wme_update)(struct ieee80211com *); 277 }; 278 279 void ieee80211_wme_initparams(struct ieee80211vap *); 280 void ieee80211_wme_updateparams(struct ieee80211vap *); 281 void ieee80211_wme_updateparams_locked(struct ieee80211vap *); 282 283 /* 284 * Return the WME TID from a QoS frame. If no TID 285 * is present return the index for the "non-QoS" entry. 286 */ 287 static __inline uint8_t 288 ieee80211_gettid(const struct ieee80211_frame *wh) 289 { 290 uint8_t tid; 291 292 if (IEEE80211_QOS_HAS_SEQ(wh)) { 293 if (IEEE80211_IS_DSTODS(wh)) 294 tid = ((const struct ieee80211_qosframe_addr4 *)wh)-> 295 i_qos[0]; 296 else 297 tid = ((const struct ieee80211_qosframe *)wh)->i_qos[0]; 298 tid &= IEEE80211_QOS_TID; 299 } else 300 tid = IEEE80211_NONQOS_TID; 301 return tid; 302 } 303 304 void ieee80211_waitfor_parent(struct ieee80211com *); 305 void ieee80211_start_locked(struct ieee80211vap *); 306 void ieee80211_init(void *); 307 void ieee80211_start_all(struct ieee80211com *); 308 void ieee80211_stop_locked(struct ieee80211vap *); 309 void ieee80211_stop(struct ieee80211vap *); 310 void ieee80211_stop_all(struct ieee80211com *); 311 void ieee80211_suspend_all(struct ieee80211com *); 312 void ieee80211_resume_all(struct ieee80211com *); 313 void ieee80211_dturbo_switch(struct ieee80211vap *, int newflags); 314 void ieee80211_swbmiss(void *arg); 315 void ieee80211_beacon_miss(struct ieee80211com *); 316 int ieee80211_new_state(struct ieee80211vap *, enum ieee80211_state, int); 317 void ieee80211_print_essid(const uint8_t *, int); 318 void ieee80211_dump_pkt(struct ieee80211com *, 319 const uint8_t *, int, int, int); 320 321 extern const char *ieee80211_opmode_name[]; 322 extern const char *ieee80211_state_name[IEEE80211_S_MAX]; 323 extern const char *ieee80211_wme_acnames[]; 324 325 /* 326 * Beacon frames constructed by ieee80211_beacon_alloc 327 * have the following structure filled in so drivers 328 * can update the frame later w/ minimal overhead. 329 */ 330 struct ieee80211_beacon_offsets { 331 uint8_t bo_flags[4]; /* update/state flags */ 332 uint16_t *bo_caps; /* capabilities */ 333 uint8_t *bo_cfp; /* start of CFParms element */ 334 uint8_t *bo_tim; /* start of atim/dtim */ 335 uint8_t *bo_wme; /* start of WME parameters */ 336 uint8_t *bo_tdma; /* start of TDMA parameters */ 337 uint8_t *bo_tim_trailer;/* start of fixed-size trailer */ 338 uint16_t bo_tim_len; /* atim/dtim length in bytes */ 339 uint16_t bo_tim_trailer_len;/* tim trailer length in bytes */ 340 uint8_t *bo_erp; /* start of ERP element */ 341 uint8_t *bo_htinfo; /* start of HT info element */ 342 uint8_t *bo_ath; /* start of ATH parameters */ 343 uint8_t *bo_appie; /* start of AppIE element */ 344 uint16_t bo_appie_len; /* AppIE length in bytes */ 345 uint16_t bo_csa_trailer_len; 346 uint8_t *bo_csa; /* start of CSA element */ 347 uint8_t *bo_meshconf; /* start of MESHCONF element */ 348 uint8_t *bo_spare[3]; 349 }; 350 struct mbuf *ieee80211_beacon_alloc(struct ieee80211_node *, 351 struct ieee80211_beacon_offsets *); 352 353 /* 354 * Beacon frame updates are signaled through calls to iv_update_beacon 355 * with one of the IEEE80211_BEACON_* tokens defined below. For devices 356 * that construct beacon frames on the host this can trigger a rebuild 357 * or defer the processing. For devices that offload beacon frame 358 * handling this callback can be used to signal a rebuild. The bo_flags 359 * array in the ieee80211_beacon_offsets structure is intended to record 360 * deferred processing requirements; ieee80211_beacon_update uses the 361 * state to optimize work. Since this structure is owned by the driver 362 * and not visible to the 802.11 layer drivers must supply an iv_update_beacon 363 * callback that marks the flag bits and schedules (as necessary) an update. 364 */ 365 enum { 366 IEEE80211_BEACON_CAPS = 0, /* capabilities */ 367 IEEE80211_BEACON_TIM = 1, /* DTIM/ATIM */ 368 IEEE80211_BEACON_WME = 2, 369 IEEE80211_BEACON_ERP = 3, /* Extended Rate Phy */ 370 IEEE80211_BEACON_HTINFO = 4, /* HT Information */ 371 IEEE80211_BEACON_APPIE = 5, /* Application IE's */ 372 IEEE80211_BEACON_CFP = 6, /* CFParms */ 373 IEEE80211_BEACON_CSA = 7, /* Channel Switch Announcement */ 374 IEEE80211_BEACON_TDMA = 9, /* TDMA Info */ 375 IEEE80211_BEACON_ATH = 10, /* ATH parameters */ 376 IEEE80211_BEACON_MESHCONF = 11, /* Mesh Configuration */ 377 }; 378 int ieee80211_beacon_update(struct ieee80211_node *, 379 struct ieee80211_beacon_offsets *, struct mbuf *, int mcast); 380 381 void ieee80211_csa_startswitch(struct ieee80211com *, 382 struct ieee80211_channel *, int mode, int count); 383 void ieee80211_csa_completeswitch(struct ieee80211com *); 384 void ieee80211_csa_cancelswitch(struct ieee80211com *); 385 void ieee80211_cac_completeswitch(struct ieee80211vap *); 386 387 /* 388 * Notification methods called from the 802.11 state machine. 389 * Note that while these are defined here, their implementation 390 * is OS-specific. 391 */ 392 void ieee80211_notify_node_join(struct ieee80211_node *, int newassoc); 393 void ieee80211_notify_node_leave(struct ieee80211_node *); 394 void ieee80211_notify_scan_done(struct ieee80211vap *); 395 void ieee80211_notify_wds_discover(struct ieee80211_node *); 396 void ieee80211_notify_csa(struct ieee80211com *, 397 const struct ieee80211_channel *, int mode, int count); 398 void ieee80211_notify_radar(struct ieee80211com *, 399 const struct ieee80211_channel *); 400 enum ieee80211_notify_cac_event { 401 IEEE80211_NOTIFY_CAC_START = 0, /* CAC timer started */ 402 IEEE80211_NOTIFY_CAC_STOP = 1, /* CAC intentionally stopped */ 403 IEEE80211_NOTIFY_CAC_RADAR = 2, /* CAC stopped due to radar detectio */ 404 IEEE80211_NOTIFY_CAC_EXPIRE = 3, /* CAC expired w/o radar */ 405 }; 406 void ieee80211_notify_cac(struct ieee80211com *, 407 const struct ieee80211_channel *, 408 enum ieee80211_notify_cac_event); 409 void ieee80211_notify_node_deauth(struct ieee80211_node *); 410 void ieee80211_notify_node_auth(struct ieee80211_node *); 411 void ieee80211_notify_country(struct ieee80211vap *, const uint8_t [], 412 const uint8_t cc[2]); 413 void ieee80211_notify_radio(struct ieee80211com *, int); 414 #endif /* _NET80211_IEEE80211_PROTO_H_ */ 415