xref: /freebsd/sys/net80211/ieee80211_proto.c (revision f5e9c916afed4a948fe5c03bfaee038d165e12ab)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/kernel.h>
40 #include <sys/malloc.h>
41 
42 #include <sys/socket.h>
43 #include <sys/sockio.h>
44 
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_media.h>
48 #include <net/ethernet.h>		/* XXX for ether_sprintf */
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_adhoc.h>
52 #include <net80211/ieee80211_sta.h>
53 #include <net80211/ieee80211_hostap.h>
54 #include <net80211/ieee80211_wds.h>
55 #ifdef IEEE80211_SUPPORT_MESH
56 #include <net80211/ieee80211_mesh.h>
57 #endif
58 #include <net80211/ieee80211_monitor.h>
59 #include <net80211/ieee80211_input.h>
60 
61 /* XXX tunables */
62 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
63 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
64 
65 const char *ieee80211_mgt_subtype_name[] = {
66 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
67 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
68 	"beacon",	"atim",		"disassoc",	"auth",
69 	"deauth",	"action",	"action_noack",	"reserved#15"
70 };
71 const char *ieee80211_ctl_subtype_name[] = {
72 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
73 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
74 	"bar",		"ba",		"ps_poll",	"rts",
75 	"cts",		"ack",		"cf_end",	"cf_end_ack"
76 };
77 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
78 	"IBSS",		/* IEEE80211_M_IBSS */
79 	"STA",		/* IEEE80211_M_STA */
80 	"WDS",		/* IEEE80211_M_WDS */
81 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
82 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
83 	"MONITOR",	/* IEEE80211_M_MONITOR */
84 	"MBSS"		/* IEEE80211_M_MBSS */
85 };
86 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
87 	"INIT",		/* IEEE80211_S_INIT */
88 	"SCAN",		/* IEEE80211_S_SCAN */
89 	"AUTH",		/* IEEE80211_S_AUTH */
90 	"ASSOC",	/* IEEE80211_S_ASSOC */
91 	"CAC",		/* IEEE80211_S_CAC */
92 	"RUN",		/* IEEE80211_S_RUN */
93 	"CSA",		/* IEEE80211_S_CSA */
94 	"SLEEP",	/* IEEE80211_S_SLEEP */
95 };
96 const char *ieee80211_wme_acnames[] = {
97 	"WME_AC_BE",
98 	"WME_AC_BK",
99 	"WME_AC_VI",
100 	"WME_AC_VO",
101 	"WME_UPSD",
102 };
103 
104 static void beacon_miss(void *, int);
105 static void beacon_swmiss(void *, int);
106 static void parent_updown(void *, int);
107 static void update_mcast(void *, int);
108 static void update_promisc(void *, int);
109 static void update_channel(void *, int);
110 static void update_chw(void *, int);
111 static void update_wme(void *, int);
112 static void restart_vaps(void *, int);
113 static void ieee80211_newstate_cb(void *, int);
114 
115 static int
116 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
117 	const struct ieee80211_bpf_params *params)
118 {
119 
120 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
121 	m_freem(m);
122 	return ENETDOWN;
123 }
124 
125 void
126 ieee80211_proto_attach(struct ieee80211com *ic)
127 {
128 	uint8_t hdrlen;
129 
130 	/* override the 802.3 setting */
131 	hdrlen = ic->ic_headroom
132 		+ sizeof(struct ieee80211_qosframe_addr4)
133 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
134 		+ IEEE80211_WEP_EXTIVLEN;
135 	/* XXX no way to recalculate on ifdetach */
136 	if (ALIGN(hdrlen) > max_linkhdr) {
137 		/* XXX sanity check... */
138 		max_linkhdr = ALIGN(hdrlen);
139 		max_hdr = max_linkhdr + max_protohdr;
140 		max_datalen = MHLEN - max_hdr;
141 	}
142 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
143 
144 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
145 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
146 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
147 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
148 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
149 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
150 	TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic);
151 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
152 
153 	ic->ic_wme.wme_hipri_switch_hysteresis =
154 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
155 
156 	/* initialize management frame handlers */
157 	ic->ic_send_mgmt = ieee80211_send_mgmt;
158 	ic->ic_raw_xmit = null_raw_xmit;
159 
160 	ieee80211_adhoc_attach(ic);
161 	ieee80211_sta_attach(ic);
162 	ieee80211_wds_attach(ic);
163 	ieee80211_hostap_attach(ic);
164 #ifdef IEEE80211_SUPPORT_MESH
165 	ieee80211_mesh_attach(ic);
166 #endif
167 	ieee80211_monitor_attach(ic);
168 }
169 
170 void
171 ieee80211_proto_detach(struct ieee80211com *ic)
172 {
173 	ieee80211_monitor_detach(ic);
174 #ifdef IEEE80211_SUPPORT_MESH
175 	ieee80211_mesh_detach(ic);
176 #endif
177 	ieee80211_hostap_detach(ic);
178 	ieee80211_wds_detach(ic);
179 	ieee80211_adhoc_detach(ic);
180 	ieee80211_sta_detach(ic);
181 }
182 
183 static void
184 null_update_beacon(struct ieee80211vap *vap, int item)
185 {
186 }
187 
188 void
189 ieee80211_proto_vattach(struct ieee80211vap *vap)
190 {
191 	struct ieee80211com *ic = vap->iv_ic;
192 	struct ifnet *ifp = vap->iv_ifp;
193 	int i;
194 
195 	/* override the 802.3 setting */
196 	ifp->if_hdrlen = ic->ic_headroom
197                 + sizeof(struct ieee80211_qosframe_addr4)
198                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
199                 + IEEE80211_WEP_EXTIVLEN;
200 
201 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
202 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
203 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
204 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
205 	callout_init(&vap->iv_mgtsend, 1);
206 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
207 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
208 	/*
209 	 * Install default tx rate handling: no fixed rate, lowest
210 	 * supported rate for mgmt and multicast frames.  Default
211 	 * max retry count.  These settings can be changed by the
212 	 * driver and/or user applications.
213 	 */
214 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
215 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
216 
217 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
218 
219 		/*
220 		 * Setting the management rate to MCS 0 assumes that the
221 		 * BSS Basic rate set is empty and the BSS Basic MCS set
222 		 * is not.
223 		 *
224 		 * Since we're not checking this, default to the lowest
225 		 * defined rate for this mode.
226 		 *
227 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
228 		 * some MCS management traffic (eg BA response frames.)
229 		 *
230 		 * See also: 9.6.0 of the 802.11n-2009 specification.
231 		 */
232 #ifdef	NOTYET
233 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
234 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
235 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
236 		} else {
237 			vap->iv_txparms[i].mgmtrate =
238 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
239 			vap->iv_txparms[i].mcastrate =
240 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
241 		}
242 #endif
243 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
244 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
245 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
246 	}
247 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
248 
249 	vap->iv_update_beacon = null_update_beacon;
250 	vap->iv_deliver_data = ieee80211_deliver_data;
251 
252 	/* attach support for operating mode */
253 	ic->ic_vattach[vap->iv_opmode](vap);
254 }
255 
256 void
257 ieee80211_proto_vdetach(struct ieee80211vap *vap)
258 {
259 #define	FREEAPPIE(ie) do { \
260 	if (ie != NULL) \
261 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
262 } while (0)
263 	/*
264 	 * Detach operating mode module.
265 	 */
266 	if (vap->iv_opdetach != NULL)
267 		vap->iv_opdetach(vap);
268 	/*
269 	 * This should not be needed as we detach when reseting
270 	 * the state but be conservative here since the
271 	 * authenticator may do things like spawn kernel threads.
272 	 */
273 	if (vap->iv_auth->ia_detach != NULL)
274 		vap->iv_auth->ia_detach(vap);
275 	/*
276 	 * Detach any ACL'ator.
277 	 */
278 	if (vap->iv_acl != NULL)
279 		vap->iv_acl->iac_detach(vap);
280 
281 	FREEAPPIE(vap->iv_appie_beacon);
282 	FREEAPPIE(vap->iv_appie_probereq);
283 	FREEAPPIE(vap->iv_appie_proberesp);
284 	FREEAPPIE(vap->iv_appie_assocreq);
285 	FREEAPPIE(vap->iv_appie_assocresp);
286 	FREEAPPIE(vap->iv_appie_wpa);
287 #undef FREEAPPIE
288 }
289 
290 /*
291  * Simple-minded authenticator module support.
292  */
293 
294 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
295 /* XXX well-known names */
296 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
297 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
298 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
299 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
300 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
301 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
302 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
303 };
304 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
305 
306 static const struct ieee80211_authenticator auth_internal = {
307 	.ia_name		= "wlan_internal",
308 	.ia_attach		= NULL,
309 	.ia_detach		= NULL,
310 	.ia_node_join		= NULL,
311 	.ia_node_leave		= NULL,
312 };
313 
314 /*
315  * Setup internal authenticators once; they are never unregistered.
316  */
317 static void
318 ieee80211_auth_setup(void)
319 {
320 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
321 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
322 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
323 }
324 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
325 
326 const struct ieee80211_authenticator *
327 ieee80211_authenticator_get(int auth)
328 {
329 	if (auth >= IEEE80211_AUTH_MAX)
330 		return NULL;
331 	if (authenticators[auth] == NULL)
332 		ieee80211_load_module(auth_modnames[auth]);
333 	return authenticators[auth];
334 }
335 
336 void
337 ieee80211_authenticator_register(int type,
338 	const struct ieee80211_authenticator *auth)
339 {
340 	if (type >= IEEE80211_AUTH_MAX)
341 		return;
342 	authenticators[type] = auth;
343 }
344 
345 void
346 ieee80211_authenticator_unregister(int type)
347 {
348 
349 	if (type >= IEEE80211_AUTH_MAX)
350 		return;
351 	authenticators[type] = NULL;
352 }
353 
354 /*
355  * Very simple-minded ACL module support.
356  */
357 /* XXX just one for now */
358 static	const struct ieee80211_aclator *acl = NULL;
359 
360 void
361 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
362 {
363 	printf("wlan: %s acl policy registered\n", iac->iac_name);
364 	acl = iac;
365 }
366 
367 void
368 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
369 {
370 	if (acl == iac)
371 		acl = NULL;
372 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
373 }
374 
375 const struct ieee80211_aclator *
376 ieee80211_aclator_get(const char *name)
377 {
378 	if (acl == NULL)
379 		ieee80211_load_module("wlan_acl");
380 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
381 }
382 
383 void
384 ieee80211_print_essid(const uint8_t *essid, int len)
385 {
386 	const uint8_t *p;
387 	int i;
388 
389 	if (len > IEEE80211_NWID_LEN)
390 		len = IEEE80211_NWID_LEN;
391 	/* determine printable or not */
392 	for (i = 0, p = essid; i < len; i++, p++) {
393 		if (*p < ' ' || *p > 0x7e)
394 			break;
395 	}
396 	if (i == len) {
397 		printf("\"");
398 		for (i = 0, p = essid; i < len; i++, p++)
399 			printf("%c", *p);
400 		printf("\"");
401 	} else {
402 		printf("0x");
403 		for (i = 0, p = essid; i < len; i++, p++)
404 			printf("%02x", *p);
405 	}
406 }
407 
408 void
409 ieee80211_dump_pkt(struct ieee80211com *ic,
410 	const uint8_t *buf, int len, int rate, int rssi)
411 {
412 	const struct ieee80211_frame *wh;
413 	int i;
414 
415 	wh = (const struct ieee80211_frame *)buf;
416 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
417 	case IEEE80211_FC1_DIR_NODS:
418 		printf("NODS %s", ether_sprintf(wh->i_addr2));
419 		printf("->%s", ether_sprintf(wh->i_addr1));
420 		printf("(%s)", ether_sprintf(wh->i_addr3));
421 		break;
422 	case IEEE80211_FC1_DIR_TODS:
423 		printf("TODS %s", ether_sprintf(wh->i_addr2));
424 		printf("->%s", ether_sprintf(wh->i_addr3));
425 		printf("(%s)", ether_sprintf(wh->i_addr1));
426 		break;
427 	case IEEE80211_FC1_DIR_FROMDS:
428 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
429 		printf("->%s", ether_sprintf(wh->i_addr1));
430 		printf("(%s)", ether_sprintf(wh->i_addr2));
431 		break;
432 	case IEEE80211_FC1_DIR_DSTODS:
433 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
434 		printf("->%s", ether_sprintf(wh->i_addr3));
435 		printf("(%s", ether_sprintf(wh->i_addr2));
436 		printf("->%s)", ether_sprintf(wh->i_addr1));
437 		break;
438 	}
439 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
440 	case IEEE80211_FC0_TYPE_DATA:
441 		printf(" data");
442 		break;
443 	case IEEE80211_FC0_TYPE_MGT:
444 		printf(" %s", ieee80211_mgt_subtype_name[
445 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
446 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
447 		break;
448 	default:
449 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
450 		break;
451 	}
452 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
453 		const struct ieee80211_qosframe *qwh =
454 			(const struct ieee80211_qosframe *)buf;
455 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
456 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
457 	}
458 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
459 		int off;
460 
461 		off = ieee80211_anyhdrspace(ic, wh);
462 		printf(" WEP [IV %.02x %.02x %.02x",
463 			buf[off+0], buf[off+1], buf[off+2]);
464 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
465 			printf(" %.02x %.02x %.02x",
466 				buf[off+4], buf[off+5], buf[off+6]);
467 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
468 	}
469 	if (rate >= 0)
470 		printf(" %dM", rate / 2);
471 	if (rssi >= 0)
472 		printf(" +%d", rssi);
473 	printf("\n");
474 	if (len > 0) {
475 		for (i = 0; i < len; i++) {
476 			if ((i & 1) == 0)
477 				printf(" ");
478 			printf("%02x", buf[i]);
479 		}
480 		printf("\n");
481 	}
482 }
483 
484 static __inline int
485 findrix(const struct ieee80211_rateset *rs, int r)
486 {
487 	int i;
488 
489 	for (i = 0; i < rs->rs_nrates; i++)
490 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
491 			return i;
492 	return -1;
493 }
494 
495 int
496 ieee80211_fix_rate(struct ieee80211_node *ni,
497 	struct ieee80211_rateset *nrs, int flags)
498 {
499 	struct ieee80211vap *vap = ni->ni_vap;
500 	struct ieee80211com *ic = ni->ni_ic;
501 	int i, j, rix, error;
502 	int okrate, badrate, fixedrate, ucastrate;
503 	const struct ieee80211_rateset *srs;
504 	uint8_t r;
505 
506 	error = 0;
507 	okrate = badrate = 0;
508 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
509 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
510 		/*
511 		 * Workaround awkwardness with fixed rate.  We are called
512 		 * to check both the legacy rate set and the HT rate set
513 		 * but we must apply any legacy fixed rate check only to the
514 		 * legacy rate set and vice versa.  We cannot tell what type
515 		 * of rate set we've been given (legacy or HT) but we can
516 		 * distinguish the fixed rate type (MCS have 0x80 set).
517 		 * So to deal with this the caller communicates whether to
518 		 * check MCS or legacy rate using the flags and we use the
519 		 * type of any fixed rate to avoid applying an MCS to a
520 		 * legacy rate and vice versa.
521 		 */
522 		if (ucastrate & 0x80) {
523 			if (flags & IEEE80211_F_DOFRATE)
524 				flags &= ~IEEE80211_F_DOFRATE;
525 		} else if ((ucastrate & 0x80) == 0) {
526 			if (flags & IEEE80211_F_DOFMCS)
527 				flags &= ~IEEE80211_F_DOFMCS;
528 		}
529 		/* NB: required to make MCS match below work */
530 		ucastrate &= IEEE80211_RATE_VAL;
531 	}
532 	fixedrate = IEEE80211_FIXED_RATE_NONE;
533 	/*
534 	 * XXX we are called to process both MCS and legacy rates;
535 	 * we must use the appropriate basic rate set or chaos will
536 	 * ensue; for now callers that want MCS must supply
537 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
538 	 * function so there are two variants, one for MCS and one
539 	 * for legacy rates.
540 	 */
541 	if (flags & IEEE80211_F_DOBRS)
542 		srs = (const struct ieee80211_rateset *)
543 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
544 	else
545 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
546 	for (i = 0; i < nrs->rs_nrates; ) {
547 		if (flags & IEEE80211_F_DOSORT) {
548 			/*
549 			 * Sort rates.
550 			 */
551 			for (j = i + 1; j < nrs->rs_nrates; j++) {
552 				if (IEEE80211_RV(nrs->rs_rates[i]) >
553 				    IEEE80211_RV(nrs->rs_rates[j])) {
554 					r = nrs->rs_rates[i];
555 					nrs->rs_rates[i] = nrs->rs_rates[j];
556 					nrs->rs_rates[j] = r;
557 				}
558 			}
559 		}
560 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
561 		badrate = r;
562 		/*
563 		 * Check for fixed rate.
564 		 */
565 		if (r == ucastrate)
566 			fixedrate = r;
567 		/*
568 		 * Check against supported rates.
569 		 */
570 		rix = findrix(srs, r);
571 		if (flags & IEEE80211_F_DONEGO) {
572 			if (rix < 0) {
573 				/*
574 				 * A rate in the node's rate set is not
575 				 * supported.  If this is a basic rate and we
576 				 * are operating as a STA then this is an error.
577 				 * Otherwise we just discard/ignore the rate.
578 				 */
579 				if ((flags & IEEE80211_F_JOIN) &&
580 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
581 					error++;
582 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
583 				/*
584 				 * Overwrite with the supported rate
585 				 * value so any basic rate bit is set.
586 				 */
587 				nrs->rs_rates[i] = srs->rs_rates[rix];
588 			}
589 		}
590 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
591 			/*
592 			 * Delete unacceptable rates.
593 			 */
594 			nrs->rs_nrates--;
595 			for (j = i; j < nrs->rs_nrates; j++)
596 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
597 			nrs->rs_rates[j] = 0;
598 			continue;
599 		}
600 		if (rix >= 0)
601 			okrate = nrs->rs_rates[i];
602 		i++;
603 	}
604 	if (okrate == 0 || error != 0 ||
605 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
606 	     fixedrate != ucastrate)) {
607 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
608 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
609 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
610 		return badrate | IEEE80211_RATE_BASIC;
611 	} else
612 		return IEEE80211_RV(okrate);
613 }
614 
615 /*
616  * Reset 11g-related state.
617  */
618 void
619 ieee80211_reset_erp(struct ieee80211com *ic)
620 {
621 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
622 	ic->ic_nonerpsta = 0;
623 	ic->ic_longslotsta = 0;
624 	/*
625 	 * Short slot time is enabled only when operating in 11g
626 	 * and not in an IBSS.  We must also honor whether or not
627 	 * the driver is capable of doing it.
628 	 */
629 	ieee80211_set_shortslottime(ic,
630 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
631 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
632 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
633 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
634 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
635 	/*
636 	 * Set short preamble and ERP barker-preamble flags.
637 	 */
638 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
639 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
640 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
641 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
642 	} else {
643 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
644 		ic->ic_flags |= IEEE80211_F_USEBARKER;
645 	}
646 }
647 
648 /*
649  * Set the short slot time state and notify the driver.
650  */
651 void
652 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
653 {
654 	if (onoff)
655 		ic->ic_flags |= IEEE80211_F_SHSLOT;
656 	else
657 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
658 	/* notify driver */
659 	if (ic->ic_updateslot != NULL)
660 		ic->ic_updateslot(ic);
661 }
662 
663 /*
664  * Check if the specified rate set supports ERP.
665  * NB: the rate set is assumed to be sorted.
666  */
667 int
668 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
669 {
670 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
671 	int i, j;
672 
673 	if (rs->rs_nrates < nitems(rates))
674 		return 0;
675 	for (i = 0; i < nitems(rates); i++) {
676 		for (j = 0; j < rs->rs_nrates; j++) {
677 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
678 			if (rates[i] == r)
679 				goto next;
680 			if (r > rates[i])
681 				return 0;
682 		}
683 		return 0;
684 	next:
685 		;
686 	}
687 	return 1;
688 }
689 
690 /*
691  * Mark the basic rates for the rate table based on the
692  * operating mode.  For real 11g we mark all the 11b rates
693  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
694  * 11b rates.  There's also a pseudo 11a-mode used to mark only
695  * the basic OFDM rates.
696  */
697 static void
698 setbasicrates(struct ieee80211_rateset *rs,
699     enum ieee80211_phymode mode, int add)
700 {
701 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
702 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
703 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
704 					    /* NB: mixed b/g */
705 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
706 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
707 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
708 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
709 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
710 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
711 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
712 					    /* NB: mixed b/g */
713 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
714 	};
715 	int i, j;
716 
717 	for (i = 0; i < rs->rs_nrates; i++) {
718 		if (!add)
719 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
720 		for (j = 0; j < basic[mode].rs_nrates; j++)
721 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
722 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
723 				break;
724 			}
725 	}
726 }
727 
728 /*
729  * Set the basic rates in a rate set.
730  */
731 void
732 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
733     enum ieee80211_phymode mode)
734 {
735 	setbasicrates(rs, mode, 0);
736 }
737 
738 /*
739  * Add basic rates to a rate set.
740  */
741 void
742 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
743     enum ieee80211_phymode mode)
744 {
745 	setbasicrates(rs, mode, 1);
746 }
747 
748 /*
749  * WME protocol support.
750  *
751  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
752  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
753  * Draft 2.0 Test Plan (Appendix D).
754  *
755  * Static/Dynamic Turbo mode settings come from Atheros.
756  */
757 typedef struct phyParamType {
758 	uint8_t		aifsn;
759 	uint8_t		logcwmin;
760 	uint8_t		logcwmax;
761 	uint16_t	txopLimit;
762 	uint8_t 	acm;
763 } paramType;
764 
765 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
766 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
767 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
768 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
769 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
772 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
773 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
774 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
775 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
776 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
777 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
778 };
779 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
780 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
781 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
782 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
783 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
786 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
787 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
788 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
789 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
790 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
791 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
792 };
793 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
794 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
795 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
796 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
797 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
799 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
800 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
801 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
802 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
803 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
804 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
805 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
806 };
807 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
808 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
809 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
810 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
811 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
813 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
814 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
815 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
816 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
817 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
818 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
819 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
820 };
821 
822 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
823 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
824 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
825 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
826 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
829 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
830 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
831 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
832 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
833 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
834 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
835 };
836 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
837 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
838 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
839 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
840 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
842 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
843 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
844 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
845 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
846 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
847 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
848 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
849 };
850 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
851 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
852 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
853 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
854 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
856 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
857 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
858 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
859 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
860 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
861 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
862 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
863 };
864 
865 static void
866 _setifsparams(struct wmeParams *wmep, const paramType *phy)
867 {
868 	wmep->wmep_aifsn = phy->aifsn;
869 	wmep->wmep_logcwmin = phy->logcwmin;
870 	wmep->wmep_logcwmax = phy->logcwmax;
871 	wmep->wmep_txopLimit = phy->txopLimit;
872 }
873 
874 static void
875 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
876 	struct wmeParams *wmep, const paramType *phy)
877 {
878 	wmep->wmep_acm = phy->acm;
879 	_setifsparams(wmep, phy);
880 
881 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
882 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
883 	    ieee80211_wme_acnames[ac], type,
884 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
885 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
886 }
887 
888 static void
889 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
890 {
891 	struct ieee80211com *ic = vap->iv_ic;
892 	struct ieee80211_wme_state *wme = &ic->ic_wme;
893 	const paramType *pPhyParam, *pBssPhyParam;
894 	struct wmeParams *wmep;
895 	enum ieee80211_phymode mode;
896 	int i;
897 
898 	IEEE80211_LOCK_ASSERT(ic);
899 
900 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
901 		return;
902 
903 	/*
904 	 * Clear the wme cap_info field so a qoscount from a previous
905 	 * vap doesn't confuse later code which only parses the beacon
906 	 * field and updates hardware when said field changes.
907 	 * Otherwise the hardware is programmed with defaults, not what
908 	 * the beacon actually announces.
909 	 */
910 	wme->wme_wmeChanParams.cap_info = 0;
911 
912 	/*
913 	 * Select mode; we can be called early in which case we
914 	 * always use auto mode.  We know we'll be called when
915 	 * entering the RUN state with bsschan setup properly
916 	 * so state will eventually get set correctly
917 	 */
918 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
919 		mode = ieee80211_chan2mode(ic->ic_bsschan);
920 	else
921 		mode = IEEE80211_MODE_AUTO;
922 	for (i = 0; i < WME_NUM_AC; i++) {
923 		switch (i) {
924 		case WME_AC_BK:
925 			pPhyParam = &phyParamForAC_BK[mode];
926 			pBssPhyParam = &phyParamForAC_BK[mode];
927 			break;
928 		case WME_AC_VI:
929 			pPhyParam = &phyParamForAC_VI[mode];
930 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
931 			break;
932 		case WME_AC_VO:
933 			pPhyParam = &phyParamForAC_VO[mode];
934 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
935 			break;
936 		case WME_AC_BE:
937 		default:
938 			pPhyParam = &phyParamForAC_BE[mode];
939 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
940 			break;
941 		}
942 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
943 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
944 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
945 		} else {
946 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
947 		}
948 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
949 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
950 	}
951 	/* NB: check ic_bss to avoid NULL deref on initial attach */
952 	if (vap->iv_bss != NULL) {
953 		/*
954 		 * Calculate agressive mode switching threshold based
955 		 * on beacon interval.  This doesn't need locking since
956 		 * we're only called before entering the RUN state at
957 		 * which point we start sending beacon frames.
958 		 */
959 		wme->wme_hipri_switch_thresh =
960 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
961 		wme->wme_flags &= ~WME_F_AGGRMODE;
962 		ieee80211_wme_updateparams(vap);
963 	}
964 }
965 
966 void
967 ieee80211_wme_initparams(struct ieee80211vap *vap)
968 {
969 	struct ieee80211com *ic = vap->iv_ic;
970 
971 	IEEE80211_LOCK(ic);
972 	ieee80211_wme_initparams_locked(vap);
973 	IEEE80211_UNLOCK(ic);
974 }
975 
976 /*
977  * Update WME parameters for ourself and the BSS.
978  */
979 void
980 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
981 {
982 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
983 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
984 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
985 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
986 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
987 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
988 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
989 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
990 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
991 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
992 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
993 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
994 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
995 	};
996 	struct ieee80211com *ic = vap->iv_ic;
997 	struct ieee80211_wme_state *wme = &ic->ic_wme;
998 	const struct wmeParams *wmep;
999 	struct wmeParams *chanp, *bssp;
1000 	enum ieee80211_phymode mode;
1001 	int i;
1002 	int do_aggrmode = 0;
1003 
1004        	/*
1005 	 * Set up the channel access parameters for the physical
1006 	 * device.  First populate the configured settings.
1007 	 */
1008 	for (i = 0; i < WME_NUM_AC; i++) {
1009 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1010 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1011 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1012 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1013 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1014 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1015 
1016 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1017 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1018 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1019 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1020 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1021 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1022 	}
1023 
1024 	/*
1025 	 * Select mode; we can be called early in which case we
1026 	 * always use auto mode.  We know we'll be called when
1027 	 * entering the RUN state with bsschan setup properly
1028 	 * so state will eventually get set correctly
1029 	 */
1030 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1031 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1032 	else
1033 		mode = IEEE80211_MODE_AUTO;
1034 
1035 	/*
1036 	 * This implements agressive mode as found in certain
1037 	 * vendors' AP's.  When there is significant high
1038 	 * priority (VI/VO) traffic in the BSS throttle back BE
1039 	 * traffic by using conservative parameters.  Otherwise
1040 	 * BE uses agressive params to optimize performance of
1041 	 * legacy/non-QoS traffic.
1042 	 */
1043 
1044 	/* Hostap? Only if aggressive mode is enabled */
1045         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1046 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1047 		do_aggrmode = 1;
1048 
1049 	/*
1050 	 * Station? Only if we're in a non-QoS BSS.
1051 	 */
1052 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1053 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1054 		do_aggrmode = 1;
1055 
1056 	/*
1057 	 * IBSS? Only if we we have WME enabled.
1058 	 */
1059 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1060 	    (vap->iv_flags & IEEE80211_F_WME))
1061 		do_aggrmode = 1;
1062 
1063 	/*
1064 	 * If WME is disabled on this VAP, default to aggressive mode
1065 	 * regardless of the configuration.
1066 	 */
1067 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1068 		do_aggrmode = 1;
1069 
1070 	/* XXX WDS? */
1071 
1072 	/* XXX MBSS? */
1073 
1074 	if (do_aggrmode) {
1075 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1076 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1077 
1078 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1079 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1080 		    aggrParam[mode].logcwmin;
1081 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1082 		    aggrParam[mode].logcwmax;
1083 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1084 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1085 			aggrParam[mode].txopLimit : 0;
1086 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1087 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1088 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1089 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1090 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1091 	}
1092 
1093 
1094 	/*
1095 	 * Change the contention window based on the number of associated
1096 	 * stations.  If the number of associated stations is 1 and
1097 	 * aggressive mode is enabled, lower the contention window even
1098 	 * further.
1099 	 */
1100 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1101 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1102 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1103 		    [IEEE80211_MODE_AUTO]	= 3,
1104 		    [IEEE80211_MODE_11A]	= 3,
1105 		    [IEEE80211_MODE_11B]	= 4,
1106 		    [IEEE80211_MODE_11G]	= 3,
1107 		    [IEEE80211_MODE_FH]		= 4,
1108 		    [IEEE80211_MODE_TURBO_A]	= 3,
1109 		    [IEEE80211_MODE_TURBO_G]	= 3,
1110 		    [IEEE80211_MODE_STURBO_A]	= 3,
1111 		    [IEEE80211_MODE_HALF]	= 3,
1112 		    [IEEE80211_MODE_QUARTER]	= 3,
1113 		    [IEEE80211_MODE_11NA]	= 3,
1114 		    [IEEE80211_MODE_11NG]	= 3,
1115 		};
1116 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1117 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1118 
1119 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1120 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1121 		    "update %s (chan+bss) logcwmin %u\n",
1122 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1123 	}
1124 
1125 	/*
1126 	 * Arrange for the beacon update.
1127 	 *
1128 	 * XXX what about MBSS, WDS?
1129 	 */
1130 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1131 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1132 		/*
1133 		 * Arrange for a beacon update and bump the parameter
1134 		 * set number so associated stations load the new values.
1135 		 */
1136 		wme->wme_bssChanParams.cap_info =
1137 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1138 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1139 	}
1140 
1141 	/* schedule the deferred WME update */
1142 	ieee80211_runtask(ic, &ic->ic_wme_task);
1143 
1144 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1145 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1146 	    vap->iv_opmode == IEEE80211_M_STA ?
1147 		wme->wme_wmeChanParams.cap_info :
1148 		wme->wme_bssChanParams.cap_info);
1149 }
1150 
1151 void
1152 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1153 {
1154 	struct ieee80211com *ic = vap->iv_ic;
1155 
1156 	if (ic->ic_caps & IEEE80211_C_WME) {
1157 		IEEE80211_LOCK(ic);
1158 		ieee80211_wme_updateparams_locked(vap);
1159 		IEEE80211_UNLOCK(ic);
1160 	}
1161 }
1162 
1163 static void
1164 parent_updown(void *arg, int npending)
1165 {
1166 	struct ieee80211com *ic = arg;
1167 
1168 	ic->ic_parent(ic);
1169 }
1170 
1171 static void
1172 update_mcast(void *arg, int npending)
1173 {
1174 	struct ieee80211com *ic = arg;
1175 
1176 	ic->ic_update_mcast(ic);
1177 }
1178 
1179 static void
1180 update_promisc(void *arg, int npending)
1181 {
1182 	struct ieee80211com *ic = arg;
1183 
1184 	ic->ic_update_promisc(ic);
1185 }
1186 
1187 static void
1188 update_channel(void *arg, int npending)
1189 {
1190 	struct ieee80211com *ic = arg;
1191 
1192 	ic->ic_set_channel(ic);
1193 	ieee80211_radiotap_chan_change(ic);
1194 }
1195 
1196 static void
1197 update_chw(void *arg, int npending)
1198 {
1199 	struct ieee80211com *ic = arg;
1200 
1201 	/*
1202 	 * XXX should we defer the channel width _config_ update until now?
1203 	 */
1204 	ic->ic_update_chw(ic);
1205 }
1206 
1207 static void
1208 update_wme(void *arg, int npending)
1209 {
1210 	struct ieee80211com *ic = arg;
1211 
1212 	/*
1213 	 * XXX should we defer the WME configuration update until now?
1214 	 */
1215 	ic->ic_wme.wme_update(ic);
1216 }
1217 
1218 static void
1219 restart_vaps(void *arg, int npending)
1220 {
1221 	struct ieee80211com *ic = arg;
1222 
1223 	ieee80211_suspend_all(ic);
1224 	ieee80211_resume_all(ic);
1225 }
1226 
1227 /*
1228  * Block until the parent is in a known state.  This is
1229  * used after any operations that dispatch a task (e.g.
1230  * to auto-configure the parent device up/down).
1231  */
1232 void
1233 ieee80211_waitfor_parent(struct ieee80211com *ic)
1234 {
1235 	taskqueue_block(ic->ic_tq);
1236 	ieee80211_draintask(ic, &ic->ic_parent_task);
1237 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1238 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1239 	ieee80211_draintask(ic, &ic->ic_chan_task);
1240 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1241 	ieee80211_draintask(ic, &ic->ic_chw_task);
1242 	ieee80211_draintask(ic, &ic->ic_wme_task);
1243 	taskqueue_unblock(ic->ic_tq);
1244 }
1245 
1246 /*
1247  * Check to see whether the current channel needs reset.
1248  *
1249  * Some devices don't handle being given an invalid channel
1250  * in their operating mode very well (eg wpi(4) will throw a
1251  * firmware exception.)
1252  *
1253  * Return 0 if we're ok, 1 if the channel needs to be reset.
1254  *
1255  * See PR kern/202502.
1256  */
1257 static int
1258 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1259 {
1260 	struct ieee80211com *ic = vap->iv_ic;
1261 
1262 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1263 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1264 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1265 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1266 		return (1);
1267 	return (0);
1268 }
1269 
1270 /*
1271  * Reset the curchan to a known good state.
1272  */
1273 static void
1274 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1275 {
1276 	struct ieee80211com *ic = vap->iv_ic;
1277 
1278 	ic->ic_curchan = &ic->ic_channels[0];
1279 }
1280 
1281 /*
1282  * Start a vap running.  If this is the first vap to be
1283  * set running on the underlying device then we
1284  * automatically bring the device up.
1285  */
1286 void
1287 ieee80211_start_locked(struct ieee80211vap *vap)
1288 {
1289 	struct ifnet *ifp = vap->iv_ifp;
1290 	struct ieee80211com *ic = vap->iv_ic;
1291 
1292 	IEEE80211_LOCK_ASSERT(ic);
1293 
1294 	IEEE80211_DPRINTF(vap,
1295 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1296 		"start running, %d vaps running\n", ic->ic_nrunning);
1297 
1298 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1299 		/*
1300 		 * Mark us running.  Note that it's ok to do this first;
1301 		 * if we need to bring the parent device up we defer that
1302 		 * to avoid dropping the com lock.  We expect the device
1303 		 * to respond to being marked up by calling back into us
1304 		 * through ieee80211_start_all at which point we'll come
1305 		 * back in here and complete the work.
1306 		 */
1307 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1308 		/*
1309 		 * We are not running; if this we are the first vap
1310 		 * to be brought up auto-up the parent if necessary.
1311 		 */
1312 		if (ic->ic_nrunning++ == 0) {
1313 
1314 			/* reset the channel to a known good channel */
1315 			if (ieee80211_start_check_reset_chan(vap))
1316 				ieee80211_start_reset_chan(vap);
1317 
1318 			IEEE80211_DPRINTF(vap,
1319 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1320 			    "%s: up parent %s\n", __func__, ic->ic_name);
1321 			ieee80211_runtask(ic, &ic->ic_parent_task);
1322 			return;
1323 		}
1324 	}
1325 	/*
1326 	 * If the parent is up and running, then kick the
1327 	 * 802.11 state machine as appropriate.
1328 	 */
1329 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1330 		if (vap->iv_opmode == IEEE80211_M_STA) {
1331 #if 0
1332 			/* XXX bypasses scan too easily; disable for now */
1333 			/*
1334 			 * Try to be intelligent about clocking the state
1335 			 * machine.  If we're currently in RUN state then
1336 			 * we should be able to apply any new state/parameters
1337 			 * simply by re-associating.  Otherwise we need to
1338 			 * re-scan to select an appropriate ap.
1339 			 */
1340 			if (vap->iv_state >= IEEE80211_S_RUN)
1341 				ieee80211_new_state_locked(vap,
1342 				    IEEE80211_S_ASSOC, 1);
1343 			else
1344 #endif
1345 				ieee80211_new_state_locked(vap,
1346 				    IEEE80211_S_SCAN, 0);
1347 		} else {
1348 			/*
1349 			 * For monitor+wds mode there's nothing to do but
1350 			 * start running.  Otherwise if this is the first
1351 			 * vap to be brought up, start a scan which may be
1352 			 * preempted if the station is locked to a particular
1353 			 * channel.
1354 			 */
1355 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1356 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1357 			    vap->iv_opmode == IEEE80211_M_WDS)
1358 				ieee80211_new_state_locked(vap,
1359 				    IEEE80211_S_RUN, -1);
1360 			else
1361 				ieee80211_new_state_locked(vap,
1362 				    IEEE80211_S_SCAN, 0);
1363 		}
1364 	}
1365 }
1366 
1367 /*
1368  * Start a single vap.
1369  */
1370 void
1371 ieee80211_init(void *arg)
1372 {
1373 	struct ieee80211vap *vap = arg;
1374 
1375 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1376 	    "%s\n", __func__);
1377 
1378 	IEEE80211_LOCK(vap->iv_ic);
1379 	ieee80211_start_locked(vap);
1380 	IEEE80211_UNLOCK(vap->iv_ic);
1381 }
1382 
1383 /*
1384  * Start all runnable vap's on a device.
1385  */
1386 void
1387 ieee80211_start_all(struct ieee80211com *ic)
1388 {
1389 	struct ieee80211vap *vap;
1390 
1391 	IEEE80211_LOCK(ic);
1392 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1393 		struct ifnet *ifp = vap->iv_ifp;
1394 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1395 			ieee80211_start_locked(vap);
1396 	}
1397 	IEEE80211_UNLOCK(ic);
1398 }
1399 
1400 /*
1401  * Stop a vap.  We force it down using the state machine
1402  * then mark it's ifnet not running.  If this is the last
1403  * vap running on the underlying device then we close it
1404  * too to insure it will be properly initialized when the
1405  * next vap is brought up.
1406  */
1407 void
1408 ieee80211_stop_locked(struct ieee80211vap *vap)
1409 {
1410 	struct ieee80211com *ic = vap->iv_ic;
1411 	struct ifnet *ifp = vap->iv_ifp;
1412 
1413 	IEEE80211_LOCK_ASSERT(ic);
1414 
1415 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1416 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1417 
1418 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1419 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1420 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1421 		if (--ic->ic_nrunning == 0) {
1422 			IEEE80211_DPRINTF(vap,
1423 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1424 			    "down parent %s\n", ic->ic_name);
1425 			ieee80211_runtask(ic, &ic->ic_parent_task);
1426 		}
1427 	}
1428 }
1429 
1430 void
1431 ieee80211_stop(struct ieee80211vap *vap)
1432 {
1433 	struct ieee80211com *ic = vap->iv_ic;
1434 
1435 	IEEE80211_LOCK(ic);
1436 	ieee80211_stop_locked(vap);
1437 	IEEE80211_UNLOCK(ic);
1438 }
1439 
1440 /*
1441  * Stop all vap's running on a device.
1442  */
1443 void
1444 ieee80211_stop_all(struct ieee80211com *ic)
1445 {
1446 	struct ieee80211vap *vap;
1447 
1448 	IEEE80211_LOCK(ic);
1449 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1450 		struct ifnet *ifp = vap->iv_ifp;
1451 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1452 			ieee80211_stop_locked(vap);
1453 	}
1454 	IEEE80211_UNLOCK(ic);
1455 
1456 	ieee80211_waitfor_parent(ic);
1457 }
1458 
1459 /*
1460  * Stop all vap's running on a device and arrange
1461  * for those that were running to be resumed.
1462  */
1463 void
1464 ieee80211_suspend_all(struct ieee80211com *ic)
1465 {
1466 	struct ieee80211vap *vap;
1467 
1468 	IEEE80211_LOCK(ic);
1469 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1470 		struct ifnet *ifp = vap->iv_ifp;
1471 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1472 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1473 			ieee80211_stop_locked(vap);
1474 		}
1475 	}
1476 	IEEE80211_UNLOCK(ic);
1477 
1478 	ieee80211_waitfor_parent(ic);
1479 }
1480 
1481 /*
1482  * Start all vap's marked for resume.
1483  */
1484 void
1485 ieee80211_resume_all(struct ieee80211com *ic)
1486 {
1487 	struct ieee80211vap *vap;
1488 
1489 	IEEE80211_LOCK(ic);
1490 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1491 		struct ifnet *ifp = vap->iv_ifp;
1492 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1493 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1494 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1495 			ieee80211_start_locked(vap);
1496 		}
1497 	}
1498 	IEEE80211_UNLOCK(ic);
1499 }
1500 
1501 /*
1502  * Restart all vap's running on a device.
1503  */
1504 void
1505 ieee80211_restart_all(struct ieee80211com *ic)
1506 {
1507 	/*
1508 	 * NB: do not use ieee80211_runtask here, we will
1509 	 * block & drain net80211 taskqueue.
1510 	 */
1511 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1512 }
1513 
1514 void
1515 ieee80211_beacon_miss(struct ieee80211com *ic)
1516 {
1517 	IEEE80211_LOCK(ic);
1518 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1519 		/* Process in a taskq, the handler may reenter the driver */
1520 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1521 	}
1522 	IEEE80211_UNLOCK(ic);
1523 }
1524 
1525 static void
1526 beacon_miss(void *arg, int npending)
1527 {
1528 	struct ieee80211com *ic = arg;
1529 	struct ieee80211vap *vap;
1530 
1531 	IEEE80211_LOCK(ic);
1532 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1533 		/*
1534 		 * We only pass events through for sta vap's in RUN state;
1535 		 * may be too restrictive but for now this saves all the
1536 		 * handlers duplicating these checks.
1537 		 */
1538 		if (vap->iv_opmode == IEEE80211_M_STA &&
1539 		    vap->iv_state >= IEEE80211_S_RUN &&
1540 		    vap->iv_bmiss != NULL)
1541 			vap->iv_bmiss(vap);
1542 	}
1543 	IEEE80211_UNLOCK(ic);
1544 }
1545 
1546 static void
1547 beacon_swmiss(void *arg, int npending)
1548 {
1549 	struct ieee80211vap *vap = arg;
1550 	struct ieee80211com *ic = vap->iv_ic;
1551 
1552 	IEEE80211_LOCK(ic);
1553 	if (vap->iv_state == IEEE80211_S_RUN) {
1554 		/* XXX Call multiple times if npending > zero? */
1555 		vap->iv_bmiss(vap);
1556 	}
1557 	IEEE80211_UNLOCK(ic);
1558 }
1559 
1560 /*
1561  * Software beacon miss handling.  Check if any beacons
1562  * were received in the last period.  If not post a
1563  * beacon miss; otherwise reset the counter.
1564  */
1565 void
1566 ieee80211_swbmiss(void *arg)
1567 {
1568 	struct ieee80211vap *vap = arg;
1569 	struct ieee80211com *ic = vap->iv_ic;
1570 
1571 	IEEE80211_LOCK_ASSERT(ic);
1572 
1573 	/* XXX sleep state? */
1574 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1575 	    ("wrong state %d", vap->iv_state));
1576 
1577 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1578 		/*
1579 		 * If scanning just ignore and reset state.  If we get a
1580 		 * bmiss after coming out of scan because we haven't had
1581 		 * time to receive a beacon then we should probe the AP
1582 		 * before posting a real bmiss (unless iv_bmiss_max has
1583 		 * been artifiically lowered).  A cleaner solution might
1584 		 * be to disable the timer on scan start/end but to handle
1585 		 * case of multiple sta vap's we'd need to disable the
1586 		 * timers of all affected vap's.
1587 		 */
1588 		vap->iv_swbmiss_count = 0;
1589 	} else if (vap->iv_swbmiss_count == 0) {
1590 		if (vap->iv_bmiss != NULL)
1591 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1592 	} else
1593 		vap->iv_swbmiss_count = 0;
1594 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1595 		ieee80211_swbmiss, vap);
1596 }
1597 
1598 /*
1599  * Start an 802.11h channel switch.  We record the parameters,
1600  * mark the operation pending, notify each vap through the
1601  * beacon update mechanism so it can update the beacon frame
1602  * contents, and then switch vap's to CSA state to block outbound
1603  * traffic.  Devices that handle CSA directly can use the state
1604  * switch to do the right thing so long as they call
1605  * ieee80211_csa_completeswitch when it's time to complete the
1606  * channel change.  Devices that depend on the net80211 layer can
1607  * use ieee80211_beacon_update to handle the countdown and the
1608  * channel switch.
1609  */
1610 void
1611 ieee80211_csa_startswitch(struct ieee80211com *ic,
1612 	struct ieee80211_channel *c, int mode, int count)
1613 {
1614 	struct ieee80211vap *vap;
1615 
1616 	IEEE80211_LOCK_ASSERT(ic);
1617 
1618 	ic->ic_csa_newchan = c;
1619 	ic->ic_csa_mode = mode;
1620 	ic->ic_csa_count = count;
1621 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1622 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1623 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1624 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1625 		    vap->iv_opmode == IEEE80211_M_MBSS)
1626 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1627 		/* switch to CSA state to block outbound traffic */
1628 		if (vap->iv_state == IEEE80211_S_RUN)
1629 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1630 	}
1631 	ieee80211_notify_csa(ic, c, mode, count);
1632 }
1633 
1634 /*
1635  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1636  * This is called by both the completion and cancellation functions
1637  * so each VAP is placed back in the RUN state and can thus transmit.
1638  */
1639 static void
1640 csa_completeswitch(struct ieee80211com *ic)
1641 {
1642 	struct ieee80211vap *vap;
1643 
1644 	ic->ic_csa_newchan = NULL;
1645 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1646 
1647 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1648 		if (vap->iv_state == IEEE80211_S_CSA)
1649 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1650 }
1651 
1652 /*
1653  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1654  * We clear state and move all vap's in CSA state to RUN state
1655  * so they can again transmit.
1656  *
1657  * Although this may not be completely correct, update the BSS channel
1658  * for each VAP to the newly configured channel. The setcurchan sets
1659  * the current operating channel for the interface (so the radio does
1660  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1661  * reported information via ioctl.
1662  */
1663 void
1664 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1665 {
1666 	struct ieee80211vap *vap;
1667 
1668 	IEEE80211_LOCK_ASSERT(ic);
1669 
1670 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1671 
1672 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1673 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1674 		if (vap->iv_state == IEEE80211_S_CSA)
1675 			vap->iv_bss->ni_chan = ic->ic_curchan;
1676 
1677 	csa_completeswitch(ic);
1678 }
1679 
1680 /*
1681  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1682  * We clear state and move all vap's in CSA state to RUN state
1683  * so they can again transmit.
1684  */
1685 void
1686 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1687 {
1688 	IEEE80211_LOCK_ASSERT(ic);
1689 
1690 	csa_completeswitch(ic);
1691 }
1692 
1693 /*
1694  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1695  * We clear state and move all vap's in CAC state to RUN state.
1696  */
1697 void
1698 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1699 {
1700 	struct ieee80211com *ic = vap0->iv_ic;
1701 	struct ieee80211vap *vap;
1702 
1703 	IEEE80211_LOCK(ic);
1704 	/*
1705 	 * Complete CAC state change for lead vap first; then
1706 	 * clock all the other vap's waiting.
1707 	 */
1708 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1709 	    ("wrong state %d", vap0->iv_state));
1710 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1711 
1712 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1713 		if (vap->iv_state == IEEE80211_S_CAC)
1714 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1715 	IEEE80211_UNLOCK(ic);
1716 }
1717 
1718 /*
1719  * Force all vap's other than the specified vap to the INIT state
1720  * and mark them as waiting for a scan to complete.  These vaps
1721  * will be brought up when the scan completes and the scanning vap
1722  * reaches RUN state by wakeupwaiting.
1723  */
1724 static void
1725 markwaiting(struct ieee80211vap *vap0)
1726 {
1727 	struct ieee80211com *ic = vap0->iv_ic;
1728 	struct ieee80211vap *vap;
1729 
1730 	IEEE80211_LOCK_ASSERT(ic);
1731 
1732 	/*
1733 	 * A vap list entry can not disappear since we are running on the
1734 	 * taskqueue and a vap destroy will queue and drain another state
1735 	 * change task.
1736 	 */
1737 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1738 		if (vap == vap0)
1739 			continue;
1740 		if (vap->iv_state != IEEE80211_S_INIT) {
1741 			/* NB: iv_newstate may drop the lock */
1742 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1743 			IEEE80211_LOCK_ASSERT(ic);
1744 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1745 		}
1746 	}
1747 }
1748 
1749 /*
1750  * Wakeup all vap's waiting for a scan to complete.  This is the
1751  * companion to markwaiting (above) and is used to coordinate
1752  * multiple vaps scanning.
1753  * This is called from the state taskqueue.
1754  */
1755 static void
1756 wakeupwaiting(struct ieee80211vap *vap0)
1757 {
1758 	struct ieee80211com *ic = vap0->iv_ic;
1759 	struct ieee80211vap *vap;
1760 
1761 	IEEE80211_LOCK_ASSERT(ic);
1762 
1763 	/*
1764 	 * A vap list entry can not disappear since we are running on the
1765 	 * taskqueue and a vap destroy will queue and drain another state
1766 	 * change task.
1767 	 */
1768 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1769 		if (vap == vap0)
1770 			continue;
1771 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1772 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1773 			/* NB: sta's cannot go INIT->RUN */
1774 			/* NB: iv_newstate may drop the lock */
1775 			vap->iv_newstate(vap,
1776 			    vap->iv_opmode == IEEE80211_M_STA ?
1777 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1778 			IEEE80211_LOCK_ASSERT(ic);
1779 		}
1780 	}
1781 }
1782 
1783 /*
1784  * Handle post state change work common to all operating modes.
1785  */
1786 static void
1787 ieee80211_newstate_cb(void *xvap, int npending)
1788 {
1789 	struct ieee80211vap *vap = xvap;
1790 	struct ieee80211com *ic = vap->iv_ic;
1791 	enum ieee80211_state nstate, ostate;
1792 	int arg, rc;
1793 
1794 	IEEE80211_LOCK(ic);
1795 	nstate = vap->iv_nstate;
1796 	arg = vap->iv_nstate_arg;
1797 
1798 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1799 		/*
1800 		 * We have been requested to drop back to the INIT before
1801 		 * proceeding to the new state.
1802 		 */
1803 		/* Deny any state changes while we are here. */
1804 		vap->iv_nstate = IEEE80211_S_INIT;
1805 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1806 		    "%s: %s -> %s arg %d\n", __func__,
1807 		    ieee80211_state_name[vap->iv_state],
1808 		    ieee80211_state_name[vap->iv_nstate], arg);
1809 		vap->iv_newstate(vap, vap->iv_nstate, 0);
1810 		IEEE80211_LOCK_ASSERT(ic);
1811 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1812 		    IEEE80211_FEXT_STATEWAIT);
1813 		/* enqueue new state transition after cancel_scan() task */
1814 		ieee80211_new_state_locked(vap, nstate, arg);
1815 		goto done;
1816 	}
1817 
1818 	ostate = vap->iv_state;
1819 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1820 		/*
1821 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1822 		 * vap's to INIT state and mark them as waiting for the scan to
1823 		 * complete.  This insures they don't interfere with our
1824 		 * scanning.  Since we are single threaded the vaps can not
1825 		 * transition again while we are executing.
1826 		 *
1827 		 * XXX not always right, assumes ap follows sta
1828 		 */
1829 		markwaiting(vap);
1830 	}
1831 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1832 	    "%s: %s -> %s arg %d\n", __func__,
1833 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1834 
1835 	rc = vap->iv_newstate(vap, nstate, arg);
1836 	IEEE80211_LOCK_ASSERT(ic);
1837 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1838 	if (rc != 0) {
1839 		/* State transition failed */
1840 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1841 		KASSERT(nstate != IEEE80211_S_INIT,
1842 		    ("INIT state change failed"));
1843 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1844 		    "%s: %s returned error %d\n", __func__,
1845 		    ieee80211_state_name[nstate], rc);
1846 		goto done;
1847 	}
1848 
1849 	/* No actual transition, skip post processing */
1850 	if (ostate == nstate)
1851 		goto done;
1852 
1853 	if (nstate == IEEE80211_S_RUN) {
1854 		/*
1855 		 * OACTIVE may be set on the vap if the upper layer
1856 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1857 		 * RUN state.  Clear it and restart xmit.
1858 		 *
1859 		 * Note this can also happen as a result of SLEEP->RUN
1860 		 * (i.e. coming out of power save mode).
1861 		 */
1862 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1863 
1864 		/*
1865 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1866 		 */
1867 
1868 		/* bring up any vaps waiting on us */
1869 		wakeupwaiting(vap);
1870 	} else if (nstate == IEEE80211_S_INIT) {
1871 		/*
1872 		 * Flush the scan cache if we did the last scan (XXX?)
1873 		 * and flush any frames on send queues from this vap.
1874 		 * Note the mgt q is used only for legacy drivers and
1875 		 * will go away shortly.
1876 		 */
1877 		ieee80211_scan_flush(vap);
1878 
1879 		/*
1880 		 * XXX TODO: ic/vap queue flush
1881 		 */
1882 	}
1883 done:
1884 	IEEE80211_UNLOCK(ic);
1885 }
1886 
1887 /*
1888  * Public interface for initiating a state machine change.
1889  * This routine single-threads the request and coordinates
1890  * the scheduling of multiple vaps for the purpose of selecting
1891  * an operating channel.  Specifically the following scenarios
1892  * are handled:
1893  * o only one vap can be selecting a channel so on transition to
1894  *   SCAN state if another vap is already scanning then
1895  *   mark the caller for later processing and return without
1896  *   doing anything (XXX? expectations by caller of synchronous operation)
1897  * o only one vap can be doing CAC of a channel so on transition to
1898  *   CAC state if another vap is already scanning for radar then
1899  *   mark the caller for later processing and return without
1900  *   doing anything (XXX? expectations by caller of synchronous operation)
1901  * o if another vap is already running when a request is made
1902  *   to SCAN then an operating channel has been chosen; bypass
1903  *   the scan and just join the channel
1904  *
1905  * Note that the state change call is done through the iv_newstate
1906  * method pointer so any driver routine gets invoked.  The driver
1907  * will normally call back into operating mode-specific
1908  * ieee80211_newstate routines (below) unless it needs to completely
1909  * bypass the state machine (e.g. because the firmware has it's
1910  * own idea how things should work).  Bypassing the net80211 layer
1911  * is usually a mistake and indicates lack of proper integration
1912  * with the net80211 layer.
1913  */
1914 int
1915 ieee80211_new_state_locked(struct ieee80211vap *vap,
1916 	enum ieee80211_state nstate, int arg)
1917 {
1918 	struct ieee80211com *ic = vap->iv_ic;
1919 	struct ieee80211vap *vp;
1920 	enum ieee80211_state ostate;
1921 	int nrunning, nscanning;
1922 
1923 	IEEE80211_LOCK_ASSERT(ic);
1924 
1925 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1926 		if (vap->iv_nstate == IEEE80211_S_INIT ||
1927 		    ((vap->iv_state == IEEE80211_S_INIT ||
1928 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
1929 		    vap->iv_nstate == IEEE80211_S_SCAN &&
1930 		    nstate > IEEE80211_S_SCAN)) {
1931 			/*
1932 			 * XXX The vap is being stopped/started,
1933 			 * do not allow any other state changes
1934 			 * until this is completed.
1935 			 */
1936 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1937 			    "%s: %s -> %s (%s) transition discarded\n",
1938 			    __func__,
1939 			    ieee80211_state_name[vap->iv_state],
1940 			    ieee80211_state_name[nstate],
1941 			    ieee80211_state_name[vap->iv_nstate]);
1942 			return -1;
1943 		} else if (vap->iv_state != vap->iv_nstate) {
1944 #if 0
1945 			/* Warn if the previous state hasn't completed. */
1946 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1947 			    "%s: pending %s -> %s transition lost\n", __func__,
1948 			    ieee80211_state_name[vap->iv_state],
1949 			    ieee80211_state_name[vap->iv_nstate]);
1950 #else
1951 			/* XXX temporarily enable to identify issues */
1952 			if_printf(vap->iv_ifp,
1953 			    "%s: pending %s -> %s transition lost\n",
1954 			    __func__, ieee80211_state_name[vap->iv_state],
1955 			    ieee80211_state_name[vap->iv_nstate]);
1956 #endif
1957 		}
1958 	}
1959 
1960 	nrunning = nscanning = 0;
1961 	/* XXX can track this state instead of calculating */
1962 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1963 		if (vp != vap) {
1964 			if (vp->iv_state >= IEEE80211_S_RUN)
1965 				nrunning++;
1966 			/* XXX doesn't handle bg scan */
1967 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1968 			else if (vp->iv_state > IEEE80211_S_INIT)
1969 				nscanning++;
1970 		}
1971 	}
1972 	ostate = vap->iv_state;
1973 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1974 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1975 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1976 	    nrunning, nscanning);
1977 	switch (nstate) {
1978 	case IEEE80211_S_SCAN:
1979 		if (ostate == IEEE80211_S_INIT) {
1980 			/*
1981 			 * INIT -> SCAN happens on initial bringup.
1982 			 */
1983 			KASSERT(!(nscanning && nrunning),
1984 			    ("%d scanning and %d running", nscanning, nrunning));
1985 			if (nscanning) {
1986 				/*
1987 				 * Someone is scanning, defer our state
1988 				 * change until the work has completed.
1989 				 */
1990 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1991 				    "%s: defer %s -> %s\n",
1992 				    __func__, ieee80211_state_name[ostate],
1993 				    ieee80211_state_name[nstate]);
1994 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1995 				return 0;
1996 			}
1997 			if (nrunning) {
1998 				/*
1999 				 * Someone is operating; just join the channel
2000 				 * they have chosen.
2001 				 */
2002 				/* XXX kill arg? */
2003 				/* XXX check each opmode, adhoc? */
2004 				if (vap->iv_opmode == IEEE80211_M_STA)
2005 					nstate = IEEE80211_S_SCAN;
2006 				else
2007 					nstate = IEEE80211_S_RUN;
2008 #ifdef IEEE80211_DEBUG
2009 				if (nstate != IEEE80211_S_SCAN) {
2010 					IEEE80211_DPRINTF(vap,
2011 					    IEEE80211_MSG_STATE,
2012 					    "%s: override, now %s -> %s\n",
2013 					    __func__,
2014 					    ieee80211_state_name[ostate],
2015 					    ieee80211_state_name[nstate]);
2016 				}
2017 #endif
2018 			}
2019 		}
2020 		break;
2021 	case IEEE80211_S_RUN:
2022 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2023 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2024 		    nscanning) {
2025 			/*
2026 			 * Legacy WDS with someone else scanning; don't
2027 			 * go online until that completes as we should
2028 			 * follow the other vap to the channel they choose.
2029 			 */
2030 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2031 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2032 			     ieee80211_state_name[ostate],
2033 			     ieee80211_state_name[nstate]);
2034 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2035 			return 0;
2036 		}
2037 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2038 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2039 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2040 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2041 			/*
2042 			 * This is a DFS channel, transition to CAC state
2043 			 * instead of RUN.  This allows us to initiate
2044 			 * Channel Availability Check (CAC) as specified
2045 			 * by 11h/DFS.
2046 			 */
2047 			nstate = IEEE80211_S_CAC;
2048 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2049 			     "%s: override %s -> %s (DFS)\n", __func__,
2050 			     ieee80211_state_name[ostate],
2051 			     ieee80211_state_name[nstate]);
2052 		}
2053 		break;
2054 	case IEEE80211_S_INIT:
2055 		/* cancel any scan in progress */
2056 		ieee80211_cancel_scan(vap);
2057 		if (ostate == IEEE80211_S_INIT ) {
2058 			/* XXX don't believe this */
2059 			/* INIT -> INIT. nothing to do */
2060 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2061 		}
2062 		/* fall thru... */
2063 	default:
2064 		break;
2065 	}
2066 	/* defer the state change to a thread */
2067 	vap->iv_nstate = nstate;
2068 	vap->iv_nstate_arg = arg;
2069 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2070 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2071 	return EINPROGRESS;
2072 }
2073 
2074 int
2075 ieee80211_new_state(struct ieee80211vap *vap,
2076 	enum ieee80211_state nstate, int arg)
2077 {
2078 	struct ieee80211com *ic = vap->iv_ic;
2079 	int rc;
2080 
2081 	IEEE80211_LOCK(ic);
2082 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2083 	IEEE80211_UNLOCK(ic);
2084 	return rc;
2085 }
2086