xref: /freebsd/sys/net80211/ieee80211_proto.c (revision f4f8f02054f3abb6ceb84aefcdecc78d5c8b462f)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>		/* XXX for ether_sprintf */
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_adhoc.h>
50 #include <net80211/ieee80211_sta.h>
51 #include <net80211/ieee80211_hostap.h>
52 #include <net80211/ieee80211_wds.h>
53 #include <net80211/ieee80211_monitor.h>
54 #include <net80211/ieee80211_input.h>
55 
56 /* XXX tunables */
57 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
58 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
59 
60 const char *ieee80211_mgt_subtype_name[] = {
61 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
62 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
63 	"beacon",	"atim",		"disassoc",	"auth",
64 	"deauth",	"action",	"reserved#14",	"reserved#15"
65 };
66 const char *ieee80211_ctl_subtype_name[] = {
67 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
68 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
69 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
70 	"cts",		"ack",		"cf_end",	"cf_end_ack"
71 };
72 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
73 	"IBSS",		/* IEEE80211_M_IBSS */
74 	"STA",		/* IEEE80211_M_STA */
75 	"WDS",		/* IEEE80211_M_WDS */
76 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
77 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
78 	"MONITOR"	/* IEEE80211_M_MONITOR */
79 };
80 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
81 	"INIT",		/* IEEE80211_S_INIT */
82 	"SCAN",		/* IEEE80211_S_SCAN */
83 	"AUTH",		/* IEEE80211_S_AUTH */
84 	"ASSOC",	/* IEEE80211_S_ASSOC */
85 	"CAC",		/* IEEE80211_S_CAC */
86 	"RUN",		/* IEEE80211_S_RUN */
87 	"CSA",		/* IEEE80211_S_CSA */
88 	"SLEEP",	/* IEEE80211_S_SLEEP */
89 };
90 const char *ieee80211_wme_acnames[] = {
91 	"WME_AC_BE",
92 	"WME_AC_BK",
93 	"WME_AC_VI",
94 	"WME_AC_VO",
95 	"WME_UPSD",
96 };
97 
98 static void beacon_miss(void *, int);
99 static void beacon_swmiss(void *, int);
100 static void parent_updown(void *, int);
101 static void update_mcast(void *, int);
102 static void update_promisc(void *, int);
103 static void update_channel(void *, int);
104 static void ieee80211_newstate_cb(void *, int);
105 static int ieee80211_new_state_locked(struct ieee80211vap *,
106 	enum ieee80211_state, int);
107 
108 static int
109 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
110 	const struct ieee80211_bpf_params *params)
111 {
112 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
113 
114 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
115 	m_freem(m);
116 	return ENETDOWN;
117 }
118 
119 void
120 ieee80211_proto_attach(struct ieee80211com *ic)
121 {
122 	struct ifnet *ifp = ic->ic_ifp;
123 
124 	/* override the 802.3 setting */
125 	ifp->if_hdrlen = ic->ic_headroom
126 		+ sizeof(struct ieee80211_qosframe_addr4)
127 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
128 		+ IEEE80211_WEP_EXTIVLEN;
129 	/* XXX no way to recalculate on ifdetach */
130 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
131 		/* XXX sanity check... */
132 		max_linkhdr = ALIGN(ifp->if_hdrlen);
133 		max_hdr = max_linkhdr + max_protohdr;
134 		max_datalen = MHLEN - max_hdr;
135 	}
136 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
137 
138 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
139 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
140 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
141 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
142 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
143 
144 	ic->ic_wme.wme_hipri_switch_hysteresis =
145 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
146 
147 	/* initialize management frame handlers */
148 	ic->ic_send_mgmt = ieee80211_send_mgmt;
149 	ic->ic_raw_xmit = null_raw_xmit;
150 
151 	ieee80211_adhoc_attach(ic);
152 	ieee80211_sta_attach(ic);
153 	ieee80211_wds_attach(ic);
154 	ieee80211_hostap_attach(ic);
155 	ieee80211_monitor_attach(ic);
156 }
157 
158 void
159 ieee80211_proto_detach(struct ieee80211com *ic)
160 {
161 	ieee80211_monitor_detach(ic);
162 	ieee80211_hostap_detach(ic);
163 	ieee80211_wds_detach(ic);
164 	ieee80211_adhoc_detach(ic);
165 	ieee80211_sta_detach(ic);
166 }
167 
168 static void
169 null_update_beacon(struct ieee80211vap *vap, int item)
170 {
171 }
172 
173 void
174 ieee80211_proto_vattach(struct ieee80211vap *vap)
175 {
176 	struct ieee80211com *ic = vap->iv_ic;
177 	struct ifnet *ifp = vap->iv_ifp;
178 	int i;
179 
180 	/* override the 802.3 setting */
181 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
182 
183 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
184 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
185 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
186 	callout_init(&vap->iv_swbmiss, CALLOUT_MPSAFE);
187 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
188 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
189 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
190 	/*
191 	 * Install default tx rate handling: no fixed rate, lowest
192 	 * supported rate for mgmt and multicast frames.  Default
193 	 * max retry count.  These settings can be changed by the
194 	 * driver and/or user applications.
195 	 */
196 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
197 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
198 
199 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
200 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
201 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
202 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
203 		} else {
204 			vap->iv_txparms[i].mgmtrate =
205 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
206 			vap->iv_txparms[i].mcastrate =
207 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
208 		}
209 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
210 	}
211 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
212 
213 	vap->iv_update_beacon = null_update_beacon;
214 	vap->iv_deliver_data = ieee80211_deliver_data;
215 
216 	/* attach support for operating mode */
217 	ic->ic_vattach[vap->iv_opmode](vap);
218 }
219 
220 void
221 ieee80211_proto_vdetach(struct ieee80211vap *vap)
222 {
223 #define	FREEAPPIE(ie) do { \
224 	if (ie != NULL) \
225 		free(ie, M_80211_NODE_IE); \
226 } while (0)
227 	/*
228 	 * Detach operating mode module.
229 	 */
230 	if (vap->iv_opdetach != NULL)
231 		vap->iv_opdetach(vap);
232 	/*
233 	 * This should not be needed as we detach when reseting
234 	 * the state but be conservative here since the
235 	 * authenticator may do things like spawn kernel threads.
236 	 */
237 	if (vap->iv_auth->ia_detach != NULL)
238 		vap->iv_auth->ia_detach(vap);
239 	/*
240 	 * Detach any ACL'ator.
241 	 */
242 	if (vap->iv_acl != NULL)
243 		vap->iv_acl->iac_detach(vap);
244 
245 	FREEAPPIE(vap->iv_appie_beacon);
246 	FREEAPPIE(vap->iv_appie_probereq);
247 	FREEAPPIE(vap->iv_appie_proberesp);
248 	FREEAPPIE(vap->iv_appie_assocreq);
249 	FREEAPPIE(vap->iv_appie_assocresp);
250 	FREEAPPIE(vap->iv_appie_wpa);
251 #undef FREEAPPIE
252 }
253 
254 /*
255  * Simple-minded authenticator module support.
256  */
257 
258 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
259 /* XXX well-known names */
260 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
261 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
262 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
263 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
264 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
265 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
266 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
267 };
268 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
269 
270 static const struct ieee80211_authenticator auth_internal = {
271 	.ia_name		= "wlan_internal",
272 	.ia_attach		= NULL,
273 	.ia_detach		= NULL,
274 	.ia_node_join		= NULL,
275 	.ia_node_leave		= NULL,
276 };
277 
278 /*
279  * Setup internal authenticators once; they are never unregistered.
280  */
281 static void
282 ieee80211_auth_setup(void)
283 {
284 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
285 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
286 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
287 }
288 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
289 
290 const struct ieee80211_authenticator *
291 ieee80211_authenticator_get(int auth)
292 {
293 	if (auth >= IEEE80211_AUTH_MAX)
294 		return NULL;
295 	if (authenticators[auth] == NULL)
296 		ieee80211_load_module(auth_modnames[auth]);
297 	return authenticators[auth];
298 }
299 
300 void
301 ieee80211_authenticator_register(int type,
302 	const struct ieee80211_authenticator *auth)
303 {
304 	if (type >= IEEE80211_AUTH_MAX)
305 		return;
306 	authenticators[type] = auth;
307 }
308 
309 void
310 ieee80211_authenticator_unregister(int type)
311 {
312 
313 	if (type >= IEEE80211_AUTH_MAX)
314 		return;
315 	authenticators[type] = NULL;
316 }
317 
318 /*
319  * Very simple-minded ACL module support.
320  */
321 /* XXX just one for now */
322 static	const struct ieee80211_aclator *acl = NULL;
323 
324 void
325 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
326 {
327 	printf("wlan: %s acl policy registered\n", iac->iac_name);
328 	acl = iac;
329 }
330 
331 void
332 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
333 {
334 	if (acl == iac)
335 		acl = NULL;
336 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
337 }
338 
339 const struct ieee80211_aclator *
340 ieee80211_aclator_get(const char *name)
341 {
342 	if (acl == NULL)
343 		ieee80211_load_module("wlan_acl");
344 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
345 }
346 
347 void
348 ieee80211_print_essid(const uint8_t *essid, int len)
349 {
350 	const uint8_t *p;
351 	int i;
352 
353 	if (len > IEEE80211_NWID_LEN)
354 		len = IEEE80211_NWID_LEN;
355 	/* determine printable or not */
356 	for (i = 0, p = essid; i < len; i++, p++) {
357 		if (*p < ' ' || *p > 0x7e)
358 			break;
359 	}
360 	if (i == len) {
361 		printf("\"");
362 		for (i = 0, p = essid; i < len; i++, p++)
363 			printf("%c", *p);
364 		printf("\"");
365 	} else {
366 		printf("0x");
367 		for (i = 0, p = essid; i < len; i++, p++)
368 			printf("%02x", *p);
369 	}
370 }
371 
372 void
373 ieee80211_dump_pkt(struct ieee80211com *ic,
374 	const uint8_t *buf, int len, int rate, int rssi)
375 {
376 	const struct ieee80211_frame *wh;
377 	int i;
378 
379 	wh = (const struct ieee80211_frame *)buf;
380 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
381 	case IEEE80211_FC1_DIR_NODS:
382 		printf("NODS %s", ether_sprintf(wh->i_addr2));
383 		printf("->%s", ether_sprintf(wh->i_addr1));
384 		printf("(%s)", ether_sprintf(wh->i_addr3));
385 		break;
386 	case IEEE80211_FC1_DIR_TODS:
387 		printf("TODS %s", ether_sprintf(wh->i_addr2));
388 		printf("->%s", ether_sprintf(wh->i_addr3));
389 		printf("(%s)", ether_sprintf(wh->i_addr1));
390 		break;
391 	case IEEE80211_FC1_DIR_FROMDS:
392 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
393 		printf("->%s", ether_sprintf(wh->i_addr1));
394 		printf("(%s)", ether_sprintf(wh->i_addr2));
395 		break;
396 	case IEEE80211_FC1_DIR_DSTODS:
397 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
398 		printf("->%s", ether_sprintf(wh->i_addr3));
399 		printf("(%s", ether_sprintf(wh->i_addr2));
400 		printf("->%s)", ether_sprintf(wh->i_addr1));
401 		break;
402 	}
403 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
404 	case IEEE80211_FC0_TYPE_DATA:
405 		printf(" data");
406 		break;
407 	case IEEE80211_FC0_TYPE_MGT:
408 		printf(" %s", ieee80211_mgt_subtype_name[
409 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
410 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
411 		break;
412 	default:
413 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
414 		break;
415 	}
416 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
417 		const struct ieee80211_qosframe *qwh =
418 			(const struct ieee80211_qosframe *)buf;
419 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
420 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
421 	}
422 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
423 		int off;
424 
425 		off = ieee80211_anyhdrspace(ic, wh);
426 		printf(" WEP [IV %.02x %.02x %.02x",
427 			buf[off+0], buf[off+1], buf[off+2]);
428 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
429 			printf(" %.02x %.02x %.02x",
430 				buf[off+4], buf[off+5], buf[off+6]);
431 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
432 	}
433 	if (rate >= 0)
434 		printf(" %dM", rate / 2);
435 	if (rssi >= 0)
436 		printf(" +%d", rssi);
437 	printf("\n");
438 	if (len > 0) {
439 		for (i = 0; i < len; i++) {
440 			if ((i & 1) == 0)
441 				printf(" ");
442 			printf("%02x", buf[i]);
443 		}
444 		printf("\n");
445 	}
446 }
447 
448 static __inline int
449 findrix(const struct ieee80211_rateset *rs, int r)
450 {
451 	int i;
452 
453 	for (i = 0; i < rs->rs_nrates; i++)
454 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
455 			return i;
456 	return -1;
457 }
458 
459 int
460 ieee80211_fix_rate(struct ieee80211_node *ni,
461 	struct ieee80211_rateset *nrs, int flags)
462 {
463 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
464 	struct ieee80211vap *vap = ni->ni_vap;
465 	struct ieee80211com *ic = ni->ni_ic;
466 	int i, j, rix, error;
467 	int okrate, badrate, fixedrate, ucastrate;
468 	const struct ieee80211_rateset *srs;
469 	uint8_t r;
470 
471 	error = 0;
472 	okrate = badrate = 0;
473 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
474 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
475 		/*
476 		 * Workaround awkwardness with fixed rate.  We are called
477 		 * to check both the legacy rate set and the HT rate set
478 		 * but we must apply any legacy fixed rate check only to the
479 		 * legacy rate set and vice versa.  We cannot tell what type
480 		 * of rate set we've been given (legacy or HT) but we can
481 		 * distinguish the fixed rate type (MCS have 0x80 set).
482 		 * So to deal with this the caller communicates whether to
483 		 * check MCS or legacy rate using the flags and we use the
484 		 * type of any fixed rate to avoid applying an MCS to a
485 		 * legacy rate and vice versa.
486 		 */
487 		if (ucastrate & 0x80) {
488 			if (flags & IEEE80211_F_DOFRATE)
489 				flags &= ~IEEE80211_F_DOFRATE;
490 		} else if ((ucastrate & 0x80) == 0) {
491 			if (flags & IEEE80211_F_DOFMCS)
492 				flags &= ~IEEE80211_F_DOFMCS;
493 		}
494 		/* NB: required to make MCS match below work */
495 		ucastrate &= IEEE80211_RATE_VAL;
496 	}
497 	fixedrate = IEEE80211_FIXED_RATE_NONE;
498 	/*
499 	 * XXX we are called to process both MCS and legacy rates;
500 	 * we must use the appropriate basic rate set or chaos will
501 	 * ensue; for now callers that want MCS must supply
502 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
503 	 * function so there are two variants, one for MCS and one
504 	 * for legacy rates.
505 	 */
506 	if (flags & IEEE80211_F_DOBRS)
507 		srs = (const struct ieee80211_rateset *)
508 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
509 	else
510 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
511 	for (i = 0; i < nrs->rs_nrates; ) {
512 		if (flags & IEEE80211_F_DOSORT) {
513 			/*
514 			 * Sort rates.
515 			 */
516 			for (j = i + 1; j < nrs->rs_nrates; j++) {
517 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
518 					r = nrs->rs_rates[i];
519 					nrs->rs_rates[i] = nrs->rs_rates[j];
520 					nrs->rs_rates[j] = r;
521 				}
522 			}
523 		}
524 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
525 		badrate = r;
526 		/*
527 		 * Check for fixed rate.
528 		 */
529 		if (r == ucastrate)
530 			fixedrate = r;
531 		/*
532 		 * Check against supported rates.
533 		 */
534 		rix = findrix(srs, r);
535 		if (flags & IEEE80211_F_DONEGO) {
536 			if (rix < 0) {
537 				/*
538 				 * A rate in the node's rate set is not
539 				 * supported.  If this is a basic rate and we
540 				 * are operating as a STA then this is an error.
541 				 * Otherwise we just discard/ignore the rate.
542 				 */
543 				if ((flags & IEEE80211_F_JOIN) &&
544 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
545 					error++;
546 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
547 				/*
548 				 * Overwrite with the supported rate
549 				 * value so any basic rate bit is set.
550 				 */
551 				nrs->rs_rates[i] = srs->rs_rates[rix];
552 			}
553 		}
554 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
555 			/*
556 			 * Delete unacceptable rates.
557 			 */
558 			nrs->rs_nrates--;
559 			for (j = i; j < nrs->rs_nrates; j++)
560 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
561 			nrs->rs_rates[j] = 0;
562 			continue;
563 		}
564 		if (rix >= 0)
565 			okrate = nrs->rs_rates[i];
566 		i++;
567 	}
568 	if (okrate == 0 || error != 0 ||
569 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
570 	     fixedrate != ucastrate)) {
571 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
572 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
573 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
574 		return badrate | IEEE80211_RATE_BASIC;
575 	} else
576 		return RV(okrate);
577 #undef RV
578 }
579 
580 /*
581  * Reset 11g-related state.
582  */
583 void
584 ieee80211_reset_erp(struct ieee80211com *ic)
585 {
586 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
587 	ic->ic_nonerpsta = 0;
588 	ic->ic_longslotsta = 0;
589 	/*
590 	 * Short slot time is enabled only when operating in 11g
591 	 * and not in an IBSS.  We must also honor whether or not
592 	 * the driver is capable of doing it.
593 	 */
594 	ieee80211_set_shortslottime(ic,
595 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
596 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
597 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
598 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
599 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
600 	/*
601 	 * Set short preamble and ERP barker-preamble flags.
602 	 */
603 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
604 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
605 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
606 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
607 	} else {
608 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
609 		ic->ic_flags |= IEEE80211_F_USEBARKER;
610 	}
611 }
612 
613 /*
614  * Set the short slot time state and notify the driver.
615  */
616 void
617 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
618 {
619 	if (onoff)
620 		ic->ic_flags |= IEEE80211_F_SHSLOT;
621 	else
622 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
623 	/* notify driver */
624 	if (ic->ic_updateslot != NULL)
625 		ic->ic_updateslot(ic->ic_ifp);
626 }
627 
628 /*
629  * Check if the specified rate set supports ERP.
630  * NB: the rate set is assumed to be sorted.
631  */
632 int
633 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
634 {
635 #define N(a)	(sizeof(a) / sizeof(a[0]))
636 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
637 	int i, j;
638 
639 	if (rs->rs_nrates < N(rates))
640 		return 0;
641 	for (i = 0; i < N(rates); i++) {
642 		for (j = 0; j < rs->rs_nrates; j++) {
643 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
644 			if (rates[i] == r)
645 				goto next;
646 			if (r > rates[i])
647 				return 0;
648 		}
649 		return 0;
650 	next:
651 		;
652 	}
653 	return 1;
654 #undef N
655 }
656 
657 /*
658  * Mark the basic rates for the rate table based on the
659  * operating mode.  For real 11g we mark all the 11b rates
660  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
661  * 11b rates.  There's also a pseudo 11a-mode used to mark only
662  * the basic OFDM rates.
663  */
664 static void
665 setbasicrates(struct ieee80211_rateset *rs,
666     enum ieee80211_phymode mode, int add)
667 {
668 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
669 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
670 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
671 					    /* NB: mixed b/g */
672 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
673 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
674 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
675 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
676 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
677 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
678 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
679 					    /* NB: mixed b/g */
680 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
681 	};
682 	int i, j;
683 
684 	for (i = 0; i < rs->rs_nrates; i++) {
685 		if (!add)
686 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
687 		for (j = 0; j < basic[mode].rs_nrates; j++)
688 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
689 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
690 				break;
691 			}
692 	}
693 }
694 
695 /*
696  * Set the basic rates in a rate set.
697  */
698 void
699 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
700     enum ieee80211_phymode mode)
701 {
702 	setbasicrates(rs, mode, 0);
703 }
704 
705 /*
706  * Add basic rates to a rate set.
707  */
708 void
709 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
710     enum ieee80211_phymode mode)
711 {
712 	setbasicrates(rs, mode, 1);
713 }
714 
715 /*
716  * WME protocol support.
717  *
718  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
719  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
720  * Draft 2.0 Test Plan (Appendix D).
721  *
722  * Static/Dynamic Turbo mode settings come from Atheros.
723  */
724 typedef struct phyParamType {
725 	uint8_t		aifsn;
726 	uint8_t		logcwmin;
727 	uint8_t		logcwmax;
728 	uint16_t	txopLimit;
729 	uint8_t 	acm;
730 } paramType;
731 
732 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
733 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
734 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
735 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
736 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
737 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
738 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
739 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
740 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
741 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
742 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
743 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
744 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
745 };
746 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
747 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
748 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
749 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
750 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
751 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
752 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
753 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
754 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
755 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
756 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
757 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
758 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
759 };
760 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
761 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
762 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
763 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
764 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
765 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
766 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
767 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
768 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
769 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
770 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
771 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
772 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
773 };
774 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
775 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
776 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
777 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
778 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
779 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
780 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
781 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
782 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
783 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
784 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
785 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
786 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
787 };
788 
789 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
790 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
791 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
792 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
793 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
794 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
795 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
796 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
797 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
798 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
799 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
800 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
801 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
802 };
803 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
804 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
805 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
806 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
807 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
808 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
809 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
810 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
811 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
812 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
813 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
814 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
815 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
816 };
817 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
818 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
819 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
820 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
821 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
822 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
823 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
824 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
825 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
826 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
827 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
828 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
829 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
830 };
831 
832 static void
833 _setifsparams(struct wmeParams *wmep, const paramType *phy)
834 {
835 	wmep->wmep_aifsn = phy->aifsn;
836 	wmep->wmep_logcwmin = phy->logcwmin;
837 	wmep->wmep_logcwmax = phy->logcwmax;
838 	wmep->wmep_txopLimit = phy->txopLimit;
839 }
840 
841 static void
842 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
843 	struct wmeParams *wmep, const paramType *phy)
844 {
845 	wmep->wmep_acm = phy->acm;
846 	_setifsparams(wmep, phy);
847 
848 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
849 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
850 	    ieee80211_wme_acnames[ac], type,
851 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
852 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
853 }
854 
855 static void
856 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
857 {
858 	struct ieee80211com *ic = vap->iv_ic;
859 	struct ieee80211_wme_state *wme = &ic->ic_wme;
860 	const paramType *pPhyParam, *pBssPhyParam;
861 	struct wmeParams *wmep;
862 	enum ieee80211_phymode mode;
863 	int i;
864 
865 	IEEE80211_LOCK_ASSERT(ic);
866 
867 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
868 		return;
869 
870 	/*
871 	 * Select mode; we can be called early in which case we
872 	 * always use auto mode.  We know we'll be called when
873 	 * entering the RUN state with bsschan setup properly
874 	 * so state will eventually get set correctly
875 	 */
876 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
877 		mode = ieee80211_chan2mode(ic->ic_bsschan);
878 	else
879 		mode = IEEE80211_MODE_AUTO;
880 	for (i = 0; i < WME_NUM_AC; i++) {
881 		switch (i) {
882 		case WME_AC_BK:
883 			pPhyParam = &phyParamForAC_BK[mode];
884 			pBssPhyParam = &phyParamForAC_BK[mode];
885 			break;
886 		case WME_AC_VI:
887 			pPhyParam = &phyParamForAC_VI[mode];
888 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
889 			break;
890 		case WME_AC_VO:
891 			pPhyParam = &phyParamForAC_VO[mode];
892 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
893 			break;
894 		case WME_AC_BE:
895 		default:
896 			pPhyParam = &phyParamForAC_BE[mode];
897 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
898 			break;
899 		}
900 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
901 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
902 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
903 		} else {
904 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
905 		}
906 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
907 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
908 	}
909 	/* NB: check ic_bss to avoid NULL deref on initial attach */
910 	if (vap->iv_bss != NULL) {
911 		/*
912 		 * Calculate agressive mode switching threshold based
913 		 * on beacon interval.  This doesn't need locking since
914 		 * we're only called before entering the RUN state at
915 		 * which point we start sending beacon frames.
916 		 */
917 		wme->wme_hipri_switch_thresh =
918 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
919 		wme->wme_flags &= ~WME_F_AGGRMODE;
920 		ieee80211_wme_updateparams(vap);
921 	}
922 }
923 
924 void
925 ieee80211_wme_initparams(struct ieee80211vap *vap)
926 {
927 	struct ieee80211com *ic = vap->iv_ic;
928 
929 	IEEE80211_LOCK(ic);
930 	ieee80211_wme_initparams_locked(vap);
931 	IEEE80211_UNLOCK(ic);
932 }
933 
934 /*
935  * Update WME parameters for ourself and the BSS.
936  */
937 void
938 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
939 {
940 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
941 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
942 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
943 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
944 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
945 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
946 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
947 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
948 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
949 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
950 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
951 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
952 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
953 	};
954 	struct ieee80211com *ic = vap->iv_ic;
955 	struct ieee80211_wme_state *wme = &ic->ic_wme;
956 	const struct wmeParams *wmep;
957 	struct wmeParams *chanp, *bssp;
958 	enum ieee80211_phymode mode;
959 	int i;
960 
961        	/*
962 	 * Set up the channel access parameters for the physical
963 	 * device.  First populate the configured settings.
964 	 */
965 	for (i = 0; i < WME_NUM_AC; i++) {
966 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
967 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
968 		chanp->wmep_aifsn = wmep->wmep_aifsn;
969 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
970 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
971 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
972 
973 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
974 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
975 		chanp->wmep_aifsn = wmep->wmep_aifsn;
976 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
977 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
978 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
979 	}
980 
981 	/*
982 	 * Select mode; we can be called early in which case we
983 	 * always use auto mode.  We know we'll be called when
984 	 * entering the RUN state with bsschan setup properly
985 	 * so state will eventually get set correctly
986 	 */
987 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
988 		mode = ieee80211_chan2mode(ic->ic_bsschan);
989 	else
990 		mode = IEEE80211_MODE_AUTO;
991 
992 	/*
993 	 * This implements agressive mode as found in certain
994 	 * vendors' AP's.  When there is significant high
995 	 * priority (VI/VO) traffic in the BSS throttle back BE
996 	 * traffic by using conservative parameters.  Otherwise
997 	 * BE uses agressive params to optimize performance of
998 	 * legacy/non-QoS traffic.
999 	 */
1000         if ((vap->iv_opmode == IEEE80211_M_HOSTAP &&
1001 	     (wme->wme_flags & WME_F_AGGRMODE) != 0) ||
1002 	    (vap->iv_opmode == IEEE80211_M_STA &&
1003 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0) ||
1004 	    (vap->iv_flags & IEEE80211_F_WME) == 0) {
1005 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1006 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1007 
1008 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1009 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1010 		    aggrParam[mode].logcwmin;
1011 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1012 		    aggrParam[mode].logcwmax;
1013 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1014 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1015 			aggrParam[mode].txopLimit : 0;
1016 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1017 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1018 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1019 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1020 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1021 	}
1022 
1023 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1024 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1025 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1026 		    [IEEE80211_MODE_AUTO]	= 3,
1027 		    [IEEE80211_MODE_11A]	= 3,
1028 		    [IEEE80211_MODE_11B]	= 4,
1029 		    [IEEE80211_MODE_11G]	= 3,
1030 		    [IEEE80211_MODE_FH]		= 4,
1031 		    [IEEE80211_MODE_TURBO_A]	= 3,
1032 		    [IEEE80211_MODE_TURBO_G]	= 3,
1033 		    [IEEE80211_MODE_STURBO_A]	= 3,
1034 		    [IEEE80211_MODE_HALF]	= 3,
1035 		    [IEEE80211_MODE_QUARTER]	= 3,
1036 		    [IEEE80211_MODE_11NA]	= 3,
1037 		    [IEEE80211_MODE_11NG]	= 3,
1038 		};
1039 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1040 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1041 
1042 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1043 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1044 		    "update %s (chan+bss) logcwmin %u\n",
1045 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1046     	}
1047 	if (vap->iv_opmode == IEEE80211_M_HOSTAP) {	/* XXX ibss? */
1048 		/*
1049 		 * Arrange for a beacon update and bump the parameter
1050 		 * set number so associated stations load the new values.
1051 		 */
1052 		wme->wme_bssChanParams.cap_info =
1053 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1054 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1055 	}
1056 
1057 	wme->wme_update(ic);
1058 
1059 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1060 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1061 	    vap->iv_opmode == IEEE80211_M_STA ?
1062 		wme->wme_wmeChanParams.cap_info :
1063 		wme->wme_bssChanParams.cap_info);
1064 }
1065 
1066 void
1067 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1068 {
1069 	struct ieee80211com *ic = vap->iv_ic;
1070 
1071 	if (ic->ic_caps & IEEE80211_C_WME) {
1072 		IEEE80211_LOCK(ic);
1073 		ieee80211_wme_updateparams_locked(vap);
1074 		IEEE80211_UNLOCK(ic);
1075 	}
1076 }
1077 
1078 static void
1079 parent_updown(void *arg, int npending)
1080 {
1081 	struct ifnet *parent = arg;
1082 
1083 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1084 }
1085 
1086 static void
1087 update_mcast(void *arg, int npending)
1088 {
1089 	struct ieee80211com *ic = arg;
1090 	struct ifnet *parent = ic->ic_ifp;
1091 
1092 	ic->ic_update_mcast(parent);
1093 }
1094 
1095 static void
1096 update_promisc(void *arg, int npending)
1097 {
1098 	struct ieee80211com *ic = arg;
1099 	struct ifnet *parent = ic->ic_ifp;
1100 
1101 	ic->ic_update_promisc(parent);
1102 }
1103 
1104 static void
1105 update_channel(void *arg, int npending)
1106 {
1107 	struct ieee80211com *ic = arg;
1108 
1109 	ic->ic_set_channel(ic);
1110 }
1111 
1112 /*
1113  * Block until the parent is in a known state.  This is
1114  * used after any operations that dispatch a task (e.g.
1115  * to auto-configure the parent device up/down).
1116  */
1117 void
1118 ieee80211_waitfor_parent(struct ieee80211com *ic)
1119 {
1120 	taskqueue_block(ic->ic_tq);
1121 	ieee80211_draintask(ic, &ic->ic_parent_task);
1122 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1123 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1124 	ieee80211_draintask(ic, &ic->ic_chan_task);
1125 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1126 	taskqueue_unblock(ic->ic_tq);
1127 }
1128 
1129 /*
1130  * Start a vap running.  If this is the first vap to be
1131  * set running on the underlying device then we
1132  * automatically bring the device up.
1133  */
1134 void
1135 ieee80211_start_locked(struct ieee80211vap *vap)
1136 {
1137 	struct ifnet *ifp = vap->iv_ifp;
1138 	struct ieee80211com *ic = vap->iv_ic;
1139 	struct ifnet *parent = ic->ic_ifp;
1140 
1141 	IEEE80211_LOCK_ASSERT(ic);
1142 
1143 	IEEE80211_DPRINTF(vap,
1144 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1145 		"start running, %d vaps running\n", ic->ic_nrunning);
1146 
1147 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1148 		/*
1149 		 * Mark us running.  Note that it's ok to do this first;
1150 		 * if we need to bring the parent device up we defer that
1151 		 * to avoid dropping the com lock.  We expect the device
1152 		 * to respond to being marked up by calling back into us
1153 		 * through ieee80211_start_all at which point we'll come
1154 		 * back in here and complete the work.
1155 		 */
1156 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1157 		/*
1158 		 * We are not running; if this we are the first vap
1159 		 * to be brought up auto-up the parent if necessary.
1160 		 */
1161 		if (ic->ic_nrunning++ == 0 &&
1162 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1163 			IEEE80211_DPRINTF(vap,
1164 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1165 			    "%s: up parent %s\n", __func__, parent->if_xname);
1166 			parent->if_flags |= IFF_UP;
1167 			ieee80211_runtask(ic, &ic->ic_parent_task);
1168 			return;
1169 		}
1170 	}
1171 	/*
1172 	 * If the parent is up and running, then kick the
1173 	 * 802.11 state machine as appropriate.
1174 	 */
1175 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1176 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1177 		if (vap->iv_opmode == IEEE80211_M_STA) {
1178 #if 0
1179 			/* XXX bypasses scan too easily; disable for now */
1180 			/*
1181 			 * Try to be intelligent about clocking the state
1182 			 * machine.  If we're currently in RUN state then
1183 			 * we should be able to apply any new state/parameters
1184 			 * simply by re-associating.  Otherwise we need to
1185 			 * re-scan to select an appropriate ap.
1186 			 */
1187 			if (vap->iv_state >= IEEE80211_S_RUN)
1188 				ieee80211_new_state_locked(vap,
1189 				    IEEE80211_S_ASSOC, 1);
1190 			else
1191 #endif
1192 				ieee80211_new_state_locked(vap,
1193 				    IEEE80211_S_SCAN, 0);
1194 		} else {
1195 			/*
1196 			 * For monitor+wds mode there's nothing to do but
1197 			 * start running.  Otherwise if this is the first
1198 			 * vap to be brought up, start a scan which may be
1199 			 * preempted if the station is locked to a particular
1200 			 * channel.
1201 			 */
1202 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1203 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1204 			    vap->iv_opmode == IEEE80211_M_WDS)
1205 				ieee80211_new_state_locked(vap,
1206 				    IEEE80211_S_RUN, -1);
1207 			else
1208 				ieee80211_new_state_locked(vap,
1209 				    IEEE80211_S_SCAN, 0);
1210 		}
1211 	}
1212 }
1213 
1214 /*
1215  * Start a single vap.
1216  */
1217 void
1218 ieee80211_init(void *arg)
1219 {
1220 	struct ieee80211vap *vap = arg;
1221 
1222 	/*
1223 	 * This routine is publicly accessible through the vap's
1224 	 * if_init method so guard against calls during detach.
1225 	 * ieee80211_vap_detach null's the backpointer before
1226 	 * tearing down state to signal any callback should be
1227 	 * rejected/ignored.
1228 	 */
1229 	if (vap != NULL) {
1230 		IEEE80211_DPRINTF(vap,
1231 		    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1232 		    "%s\n", __func__);
1233 
1234 		IEEE80211_LOCK(vap->iv_ic);
1235 		ieee80211_start_locked(vap);
1236 		IEEE80211_UNLOCK(vap->iv_ic);
1237 	}
1238 }
1239 
1240 /*
1241  * Start all runnable vap's on a device.
1242  */
1243 void
1244 ieee80211_start_all(struct ieee80211com *ic)
1245 {
1246 	struct ieee80211vap *vap;
1247 
1248 	IEEE80211_LOCK(ic);
1249 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1250 		struct ifnet *ifp = vap->iv_ifp;
1251 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1252 			ieee80211_start_locked(vap);
1253 	}
1254 	IEEE80211_UNLOCK(ic);
1255 }
1256 
1257 /*
1258  * Stop a vap.  We force it down using the state machine
1259  * then mark it's ifnet not running.  If this is the last
1260  * vap running on the underlying device then we close it
1261  * too to insure it will be properly initialized when the
1262  * next vap is brought up.
1263  */
1264 void
1265 ieee80211_stop_locked(struct ieee80211vap *vap)
1266 {
1267 	struct ieee80211com *ic = vap->iv_ic;
1268 	struct ifnet *ifp = vap->iv_ifp;
1269 	struct ifnet *parent = ic->ic_ifp;
1270 
1271 	IEEE80211_LOCK_ASSERT(ic);
1272 
1273 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1274 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1275 
1276 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1277 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1278 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1279 		if (--ic->ic_nrunning == 0 &&
1280 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1281 			IEEE80211_DPRINTF(vap,
1282 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1283 			    "down parent %s\n", parent->if_xname);
1284 			parent->if_flags &= ~IFF_UP;
1285 			ieee80211_runtask(ic, &ic->ic_parent_task);
1286 		}
1287 	}
1288 }
1289 
1290 void
1291 ieee80211_stop(struct ieee80211vap *vap)
1292 {
1293 	struct ieee80211com *ic = vap->iv_ic;
1294 
1295 	IEEE80211_LOCK(ic);
1296 	ieee80211_stop_locked(vap);
1297 	IEEE80211_UNLOCK(ic);
1298 }
1299 
1300 /*
1301  * Stop all vap's running on a device.
1302  */
1303 void
1304 ieee80211_stop_all(struct ieee80211com *ic)
1305 {
1306 	struct ieee80211vap *vap;
1307 
1308 	IEEE80211_LOCK(ic);
1309 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1310 		struct ifnet *ifp = vap->iv_ifp;
1311 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1312 			ieee80211_stop_locked(vap);
1313 	}
1314 	IEEE80211_UNLOCK(ic);
1315 
1316 	ieee80211_waitfor_parent(ic);
1317 }
1318 
1319 /*
1320  * Stop all vap's running on a device and arrange
1321  * for those that were running to be resumed.
1322  */
1323 void
1324 ieee80211_suspend_all(struct ieee80211com *ic)
1325 {
1326 	struct ieee80211vap *vap;
1327 
1328 	IEEE80211_LOCK(ic);
1329 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1330 		struct ifnet *ifp = vap->iv_ifp;
1331 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1332 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1333 			ieee80211_stop_locked(vap);
1334 		}
1335 	}
1336 	IEEE80211_UNLOCK(ic);
1337 
1338 	ieee80211_waitfor_parent(ic);
1339 }
1340 
1341 /*
1342  * Start all vap's marked for resume.
1343  */
1344 void
1345 ieee80211_resume_all(struct ieee80211com *ic)
1346 {
1347 	struct ieee80211vap *vap;
1348 
1349 	IEEE80211_LOCK(ic);
1350 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1351 		struct ifnet *ifp = vap->iv_ifp;
1352 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1353 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1354 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1355 			ieee80211_start_locked(vap);
1356 		}
1357 	}
1358 	IEEE80211_UNLOCK(ic);
1359 }
1360 
1361 void
1362 ieee80211_beacon_miss(struct ieee80211com *ic)
1363 {
1364 	IEEE80211_LOCK(ic);
1365 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1366 		/* Process in a taskq, the handler may reenter the driver */
1367 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1368 	}
1369 	IEEE80211_UNLOCK(ic);
1370 }
1371 
1372 static void
1373 beacon_miss(void *arg, int npending)
1374 {
1375 	struct ieee80211com *ic = arg;
1376 	struct ieee80211vap *vap;
1377 
1378 	/* XXX locking */
1379 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1380 		/*
1381 		 * We only pass events through for sta vap's in RUN state;
1382 		 * may be too restrictive but for now this saves all the
1383 		 * handlers duplicating these checks.
1384 		 */
1385 		if (vap->iv_opmode == IEEE80211_M_STA &&
1386 		    vap->iv_state == IEEE80211_S_RUN &&
1387 		    vap->iv_bmiss != NULL)
1388 			vap->iv_bmiss(vap);
1389 	}
1390 }
1391 
1392 static void
1393 beacon_swmiss(void *arg, int npending)
1394 {
1395 	struct ieee80211vap *vap = arg;
1396 
1397 	if (vap->iv_state != IEEE80211_S_RUN)
1398 		return;
1399 
1400 	/* XXX Call multiple times if npending > zero? */
1401 	vap->iv_bmiss(vap);
1402 }
1403 
1404 /*
1405  * Software beacon miss handling.  Check if any beacons
1406  * were received in the last period.  If not post a
1407  * beacon miss; otherwise reset the counter.
1408  */
1409 void
1410 ieee80211_swbmiss(void *arg)
1411 {
1412 	struct ieee80211vap *vap = arg;
1413 	struct ieee80211com *ic = vap->iv_ic;
1414 
1415 	/* XXX sleep state? */
1416 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1417 	    ("wrong state %d", vap->iv_state));
1418 
1419 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1420 		/*
1421 		 * If scanning just ignore and reset state.  If we get a
1422 		 * bmiss after coming out of scan because we haven't had
1423 		 * time to receive a beacon then we should probe the AP
1424 		 * before posting a real bmiss (unless iv_bmiss_max has
1425 		 * been artifiically lowered).  A cleaner solution might
1426 		 * be to disable the timer on scan start/end but to handle
1427 		 * case of multiple sta vap's we'd need to disable the
1428 		 * timers of all affected vap's.
1429 		 */
1430 		vap->iv_swbmiss_count = 0;
1431 	} else if (vap->iv_swbmiss_count == 0) {
1432 		if (vap->iv_bmiss != NULL)
1433 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1434 		if (vap->iv_bmiss_count == 0)	/* don't re-arm timer */
1435 			return;
1436 	} else
1437 		vap->iv_swbmiss_count = 0;
1438 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1439 		ieee80211_swbmiss, vap);
1440 }
1441 
1442 /*
1443  * Start an 802.11h channel switch.  We record the parameters,
1444  * mark the operation pending, notify each vap through the
1445  * beacon update mechanism so it can update the beacon frame
1446  * contents, and then switch vap's to CSA state to block outbound
1447  * traffic.  Devices that handle CSA directly can use the state
1448  * switch to do the right thing so long as they call
1449  * ieee80211_csa_completeswitch when it's time to complete the
1450  * channel change.  Devices that depend on the net80211 layer can
1451  * use ieee80211_beacon_update to handle the countdown and the
1452  * channel switch.
1453  */
1454 void
1455 ieee80211_csa_startswitch(struct ieee80211com *ic,
1456 	struct ieee80211_channel *c, int mode, int count)
1457 {
1458 	struct ieee80211vap *vap;
1459 
1460 	IEEE80211_LOCK_ASSERT(ic);
1461 
1462 	ic->ic_csa_newchan = c;
1463 	ic->ic_csa_count = count;
1464 	/* XXX record mode? */
1465 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1466 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1467 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1468 		    vap->iv_opmode == IEEE80211_M_IBSS)
1469 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1470 		/* switch to CSA state to block outbound traffic */
1471 		if (vap->iv_state == IEEE80211_S_RUN)
1472 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1473 	}
1474 	ieee80211_notify_csa(ic, c, mode, count);
1475 }
1476 
1477 /*
1478  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1479  * We clear state and move all vap's in CSA state to RUN state
1480  * so they can again transmit.
1481  */
1482 void
1483 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1484 {
1485 	struct ieee80211vap *vap;
1486 
1487 	IEEE80211_LOCK_ASSERT(ic);
1488 
1489 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1490 
1491 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1492 	ic->ic_csa_newchan = NULL;
1493 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1494 
1495 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1496 		if (vap->iv_state == IEEE80211_S_CSA)
1497 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1498 }
1499 
1500 /*
1501  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1502  * We clear state and move all vap's in CAC state to RUN state.
1503  */
1504 void
1505 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1506 {
1507 	struct ieee80211com *ic = vap0->iv_ic;
1508 	struct ieee80211vap *vap;
1509 
1510 	IEEE80211_LOCK(ic);
1511 	/*
1512 	 * Complete CAC state change for lead vap first; then
1513 	 * clock all the other vap's waiting.
1514 	 */
1515 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1516 	    ("wrong state %d", vap0->iv_state));
1517 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1518 
1519 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1520 		if (vap->iv_state == IEEE80211_S_CAC)
1521 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1522 	IEEE80211_UNLOCK(ic);
1523 }
1524 
1525 /*
1526  * Force all vap's other than the specified vap to the INIT state
1527  * and mark them as waiting for a scan to complete.  These vaps
1528  * will be brought up when the scan completes and the scanning vap
1529  * reaches RUN state by wakeupwaiting.
1530  */
1531 static void
1532 markwaiting(struct ieee80211vap *vap0)
1533 {
1534 	struct ieee80211com *ic = vap0->iv_ic;
1535 	struct ieee80211vap *vap;
1536 
1537 	IEEE80211_LOCK_ASSERT(ic);
1538 
1539 	/*
1540 	 * A vap list entry can not disappear since we are running on the
1541 	 * taskqueue and a vap destroy will queue and drain another state
1542 	 * change task.
1543 	 */
1544 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1545 		if (vap == vap0)
1546 			continue;
1547 		if (vap->iv_state != IEEE80211_S_INIT) {
1548 			/* NB: iv_newstate may drop the lock */
1549 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1550 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1551 		}
1552 	}
1553 }
1554 
1555 /*
1556  * Wakeup all vap's waiting for a scan to complete.  This is the
1557  * companion to markwaiting (above) and is used to coordinate
1558  * multiple vaps scanning.
1559  * This is called from the state taskqueue.
1560  */
1561 static void
1562 wakeupwaiting(struct ieee80211vap *vap0)
1563 {
1564 	struct ieee80211com *ic = vap0->iv_ic;
1565 	struct ieee80211vap *vap;
1566 
1567 	IEEE80211_LOCK_ASSERT(ic);
1568 
1569 	/*
1570 	 * A vap list entry can not disappear since we are running on the
1571 	 * taskqueue and a vap destroy will queue and drain another state
1572 	 * change task.
1573 	 */
1574 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1575 		if (vap == vap0)
1576 			continue;
1577 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1578 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1579 			/* NB: sta's cannot go INIT->RUN */
1580 			/* NB: iv_newstate may drop the lock */
1581 			vap->iv_newstate(vap,
1582 			    vap->iv_opmode == IEEE80211_M_STA ?
1583 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1584 		}
1585 	}
1586 }
1587 
1588 /*
1589  * Handle post state change work common to all operating modes.
1590  */
1591 static void
1592 ieee80211_newstate_cb(void *xvap, int npending)
1593 {
1594 	struct ieee80211vap *vap = xvap;
1595 	struct ieee80211com *ic = vap->iv_ic;
1596 	enum ieee80211_state nstate, ostate;
1597 	int arg, rc;
1598 
1599 	IEEE80211_LOCK(ic);
1600 	nstate = vap->iv_nstate;
1601 	arg = vap->iv_nstate_arg;
1602 
1603 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1604 		/*
1605 		 * We have been requested to drop back to the INIT before
1606 		 * proceeding to the new state.
1607 		 */
1608 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1609 		    "%s: %s -> %s arg %d\n", __func__,
1610 		    ieee80211_state_name[vap->iv_state],
1611 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1612 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1613 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1614 	}
1615 
1616 	ostate = vap->iv_state;
1617 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1618 		/*
1619 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1620 		 * vap's to INIT state and mark them as waiting for the scan to
1621 		 * complete.  This insures they don't interfere with our
1622 		 * scanning.  Since we are single threaded the vaps can not
1623 		 * transition again while we are executing.
1624 		 *
1625 		 * XXX not always right, assumes ap follows sta
1626 		 */
1627 		markwaiting(vap);
1628 	}
1629 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1630 	    "%s: %s -> %s arg %d\n", __func__,
1631 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1632 
1633 	rc = vap->iv_newstate(vap, nstate, arg);
1634 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1635 	if (rc != 0) {
1636 		/* State transition failed */
1637 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1638 		KASSERT(nstate != IEEE80211_S_INIT,
1639 		    ("INIT state change failed"));
1640 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1641 		    "%s: %s returned error %d\n", __func__,
1642 		    ieee80211_state_name[nstate], rc);
1643 		goto done;
1644 	}
1645 
1646 	/* No actual transition, skip post processing */
1647 	if (ostate == nstate)
1648 		goto done;
1649 
1650 	if (nstate == IEEE80211_S_RUN) {
1651 		/*
1652 		 * OACTIVE may be set on the vap if the upper layer
1653 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1654 		 * RUN state.  Clear it and restart xmit.
1655 		 *
1656 		 * Note this can also happen as a result of SLEEP->RUN
1657 		 * (i.e. coming out of power save mode).
1658 		 */
1659 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1660 		if_start(vap->iv_ifp);
1661 
1662 		/* bring up any vaps waiting on us */
1663 		wakeupwaiting(vap);
1664 	} else if (nstate == IEEE80211_S_INIT) {
1665 		/*
1666 		 * Flush the scan cache if we did the last scan (XXX?)
1667 		 * and flush any frames on send queues from this vap.
1668 		 * Note the mgt q is used only for legacy drivers and
1669 		 * will go away shortly.
1670 		 */
1671 		ieee80211_scan_flush(vap);
1672 
1673 		/* XXX NB: cast for altq */
1674 		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1675 	}
1676 done:
1677 	IEEE80211_UNLOCK(ic);
1678 }
1679 
1680 /*
1681  * Public interface for initiating a state machine change.
1682  * This routine single-threads the request and coordinates
1683  * the scheduling of multiple vaps for the purpose of selecting
1684  * an operating channel.  Specifically the following scenarios
1685  * are handled:
1686  * o only one vap can be selecting a channel so on transition to
1687  *   SCAN state if another vap is already scanning then
1688  *   mark the caller for later processing and return without
1689  *   doing anything (XXX? expectations by caller of synchronous operation)
1690  * o only one vap can be doing CAC of a channel so on transition to
1691  *   CAC state if another vap is already scanning for radar then
1692  *   mark the caller for later processing and return without
1693  *   doing anything (XXX? expectations by caller of synchronous operation)
1694  * o if another vap is already running when a request is made
1695  *   to SCAN then an operating channel has been chosen; bypass
1696  *   the scan and just join the channel
1697  *
1698  * Note that the state change call is done through the iv_newstate
1699  * method pointer so any driver routine gets invoked.  The driver
1700  * will normally call back into operating mode-specific
1701  * ieee80211_newstate routines (below) unless it needs to completely
1702  * bypass the state machine (e.g. because the firmware has it's
1703  * own idea how things should work).  Bypassing the net80211 layer
1704  * is usually a mistake and indicates lack of proper integration
1705  * with the net80211 layer.
1706  */
1707 static int
1708 ieee80211_new_state_locked(struct ieee80211vap *vap,
1709 	enum ieee80211_state nstate, int arg)
1710 {
1711 	struct ieee80211com *ic = vap->iv_ic;
1712 	struct ieee80211vap *vp;
1713 	enum ieee80211_state ostate;
1714 	int nrunning, nscanning;
1715 
1716 	IEEE80211_LOCK_ASSERT(ic);
1717 
1718 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1719 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1720 			/*
1721 			 * XXX The vap is being stopped, do no allow any other
1722 			 * state changes until this is completed.
1723 			 */
1724 			return -1;
1725 		} else if (vap->iv_state != vap->iv_nstate) {
1726 #if 0
1727 			/* Warn if the previous state hasn't completed. */
1728 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1729 			    "%s: pending %s -> %s transition lost\n", __func__,
1730 			    ieee80211_state_name[vap->iv_state],
1731 			    ieee80211_state_name[vap->iv_nstate]);
1732 #else
1733 			/* XXX temporarily enable to identify issues */
1734 			if_printf(vap->iv_ifp,
1735 			    "%s: pending %s -> %s transition lost\n",
1736 			    __func__, ieee80211_state_name[vap->iv_state],
1737 			    ieee80211_state_name[vap->iv_nstate]);
1738 #endif
1739 		}
1740 	}
1741 
1742 	nrunning = nscanning = 0;
1743 	/* XXX can track this state instead of calculating */
1744 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1745 		if (vp != vap) {
1746 			if (vp->iv_state >= IEEE80211_S_RUN)
1747 				nrunning++;
1748 			/* XXX doesn't handle bg scan */
1749 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1750 			else if (vp->iv_state > IEEE80211_S_INIT)
1751 				nscanning++;
1752 		}
1753 	}
1754 	ostate = vap->iv_state;
1755 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1756 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1757 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1758 	    nrunning, nscanning);
1759 	switch (nstate) {
1760 	case IEEE80211_S_SCAN:
1761 		if (ostate == IEEE80211_S_INIT) {
1762 			/*
1763 			 * INIT -> SCAN happens on initial bringup.
1764 			 */
1765 			KASSERT(!(nscanning && nrunning),
1766 			    ("%d scanning and %d running", nscanning, nrunning));
1767 			if (nscanning) {
1768 				/*
1769 				 * Someone is scanning, defer our state
1770 				 * change until the work has completed.
1771 				 */
1772 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1773 				    "%s: defer %s -> %s\n",
1774 				    __func__, ieee80211_state_name[ostate],
1775 				    ieee80211_state_name[nstate]);
1776 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1777 				return 0;
1778 			}
1779 			if (nrunning) {
1780 				/*
1781 				 * Someone is operating; just join the channel
1782 				 * they have chosen.
1783 				 */
1784 				/* XXX kill arg? */
1785 				/* XXX check each opmode, adhoc? */
1786 				if (vap->iv_opmode == IEEE80211_M_STA)
1787 					nstate = IEEE80211_S_SCAN;
1788 				else
1789 					nstate = IEEE80211_S_RUN;
1790 #ifdef IEEE80211_DEBUG
1791 				if (nstate != IEEE80211_S_SCAN) {
1792 					IEEE80211_DPRINTF(vap,
1793 					    IEEE80211_MSG_STATE,
1794 					    "%s: override, now %s -> %s\n",
1795 					    __func__,
1796 					    ieee80211_state_name[ostate],
1797 					    ieee80211_state_name[nstate]);
1798 				}
1799 #endif
1800 			}
1801 		}
1802 		break;
1803 	case IEEE80211_S_RUN:
1804 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1805 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1806 		    nscanning) {
1807 			/*
1808 			 * Legacy WDS with someone else scanning; don't
1809 			 * go online until that completes as we should
1810 			 * follow the other vap to the channel they choose.
1811 			 */
1812 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1813 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1814 			     ieee80211_state_name[ostate],
1815 			     ieee80211_state_name[nstate]);
1816 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1817 			return 0;
1818 		}
1819 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1820 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1821 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1822 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1823 			/*
1824 			 * This is a DFS channel, transition to CAC state
1825 			 * instead of RUN.  This allows us to initiate
1826 			 * Channel Availability Check (CAC) as specified
1827 			 * by 11h/DFS.
1828 			 */
1829 			nstate = IEEE80211_S_CAC;
1830 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1831 			     "%s: override %s -> %s (DFS)\n", __func__,
1832 			     ieee80211_state_name[ostate],
1833 			     ieee80211_state_name[nstate]);
1834 		}
1835 		break;
1836 	case IEEE80211_S_INIT:
1837 		if (ostate == IEEE80211_S_INIT ) {
1838 			/* XXX don't believe this */
1839 			/* INIT -> INIT. nothing to do */
1840 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1841 		}
1842 		/* fall thru... */
1843 	default:
1844 		break;
1845 	}
1846 	/* defer the state change to a thread */
1847 	vap->iv_nstate = nstate;
1848 	vap->iv_nstate_arg = arg;
1849 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1850 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1851 	return EINPROGRESS;
1852 }
1853 
1854 int
1855 ieee80211_new_state(struct ieee80211vap *vap,
1856 	enum ieee80211_state nstate, int arg)
1857 {
1858 	struct ieee80211com *ic = vap->iv_ic;
1859 	int rc;
1860 
1861 	IEEE80211_LOCK(ic);
1862 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1863 	IEEE80211_UNLOCK(ic);
1864 	return rc;
1865 }
1866