xref: /freebsd/sys/net80211/ieee80211_proto.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>		/* XXX for ether_sprintf */
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_adhoc.h>
51 #include <net80211/ieee80211_sta.h>
52 #include <net80211/ieee80211_hostap.h>
53 #include <net80211/ieee80211_wds.h>
54 #ifdef IEEE80211_SUPPORT_MESH
55 #include <net80211/ieee80211_mesh.h>
56 #endif
57 #include <net80211/ieee80211_monitor.h>
58 #include <net80211/ieee80211_input.h>
59 
60 /* XXX tunables */
61 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
62 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
63 
64 const char *ieee80211_mgt_subtype_name[] = {
65 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
66 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
67 	"beacon",	"atim",		"disassoc",	"auth",
68 	"deauth",	"action",	"action_noack",	"reserved#15"
69 };
70 const char *ieee80211_ctl_subtype_name[] = {
71 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
72 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
73 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
74 	"cts",		"ack",		"cf_end",	"cf_end_ack"
75 };
76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
77 	"IBSS",		/* IEEE80211_M_IBSS */
78 	"STA",		/* IEEE80211_M_STA */
79 	"WDS",		/* IEEE80211_M_WDS */
80 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
81 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
82 	"MONITOR",	/* IEEE80211_M_MONITOR */
83 	"MBSS"		/* IEEE80211_M_MBSS */
84 };
85 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
86 	"INIT",		/* IEEE80211_S_INIT */
87 	"SCAN",		/* IEEE80211_S_SCAN */
88 	"AUTH",		/* IEEE80211_S_AUTH */
89 	"ASSOC",	/* IEEE80211_S_ASSOC */
90 	"CAC",		/* IEEE80211_S_CAC */
91 	"RUN",		/* IEEE80211_S_RUN */
92 	"CSA",		/* IEEE80211_S_CSA */
93 	"SLEEP",	/* IEEE80211_S_SLEEP */
94 };
95 const char *ieee80211_wme_acnames[] = {
96 	"WME_AC_BE",
97 	"WME_AC_BK",
98 	"WME_AC_VI",
99 	"WME_AC_VO",
100 	"WME_UPSD",
101 };
102 
103 static void beacon_miss(void *, int);
104 static void beacon_swmiss(void *, int);
105 static void parent_updown(void *, int);
106 static void update_mcast(void *, int);
107 static void update_promisc(void *, int);
108 static void update_channel(void *, int);
109 static void update_chw(void *, int);
110 static void ieee80211_newstate_cb(void *, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 
117 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
118 	m_freem(m);
119 	return ENETDOWN;
120 }
121 
122 void
123 ieee80211_proto_attach(struct ieee80211com *ic)
124 {
125 	struct ifnet *ifp = ic->ic_ifp;
126 
127 	/* override the 802.3 setting */
128 	ifp->if_hdrlen = ic->ic_headroom
129 		+ sizeof(struct ieee80211_qosframe_addr4)
130 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131 		+ IEEE80211_WEP_EXTIVLEN;
132 	/* XXX no way to recalculate on ifdetach */
133 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
134 		/* XXX sanity check... */
135 		max_linkhdr = ALIGN(ifp->if_hdrlen);
136 		max_hdr = max_linkhdr + max_protohdr;
137 		max_datalen = MHLEN - max_hdr;
138 	}
139 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
140 
141 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
142 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
143 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
144 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
145 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
146 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
192 
193 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
194 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
195 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
196 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
197 	callout_init(&vap->iv_mgtsend, 1);
198 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
199 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
200 	/*
201 	 * Install default tx rate handling: no fixed rate, lowest
202 	 * supported rate for mgmt and multicast frames.  Default
203 	 * max retry count.  These settings can be changed by the
204 	 * driver and/or user applications.
205 	 */
206 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
207 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
208 
209 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
210 
211 		/*
212 		 * Setting the management rate to MCS 0 assumes that the
213 		 * BSS Basic rate set is empty and the BSS Basic MCS set
214 		 * is not.
215 		 *
216 		 * Since we're not checking this, default to the lowest
217 		 * defined rate for this mode.
218 		 *
219 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
220 		 * some MCS management traffic (eg BA response frames.)
221 		 *
222 		 * See also: 9.6.0 of the 802.11n-2009 specification.
223 		 */
224 #ifdef	NOTYET
225 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
226 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
227 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
228 		} else {
229 			vap->iv_txparms[i].mgmtrate =
230 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
231 			vap->iv_txparms[i].mcastrate =
232 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233 		}
234 #endif
235 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
236 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
237 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
238 	}
239 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
240 
241 	vap->iv_update_beacon = null_update_beacon;
242 	vap->iv_deliver_data = ieee80211_deliver_data;
243 
244 	/* attach support for operating mode */
245 	ic->ic_vattach[vap->iv_opmode](vap);
246 }
247 
248 void
249 ieee80211_proto_vdetach(struct ieee80211vap *vap)
250 {
251 #define	FREEAPPIE(ie) do { \
252 	if (ie != NULL) \
253 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
254 } while (0)
255 	/*
256 	 * Detach operating mode module.
257 	 */
258 	if (vap->iv_opdetach != NULL)
259 		vap->iv_opdetach(vap);
260 	/*
261 	 * This should not be needed as we detach when reseting
262 	 * the state but be conservative here since the
263 	 * authenticator may do things like spawn kernel threads.
264 	 */
265 	if (vap->iv_auth->ia_detach != NULL)
266 		vap->iv_auth->ia_detach(vap);
267 	/*
268 	 * Detach any ACL'ator.
269 	 */
270 	if (vap->iv_acl != NULL)
271 		vap->iv_acl->iac_detach(vap);
272 
273 	FREEAPPIE(vap->iv_appie_beacon);
274 	FREEAPPIE(vap->iv_appie_probereq);
275 	FREEAPPIE(vap->iv_appie_proberesp);
276 	FREEAPPIE(vap->iv_appie_assocreq);
277 	FREEAPPIE(vap->iv_appie_assocresp);
278 	FREEAPPIE(vap->iv_appie_wpa);
279 #undef FREEAPPIE
280 }
281 
282 /*
283  * Simple-minded authenticator module support.
284  */
285 
286 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
287 /* XXX well-known names */
288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
289 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
290 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
291 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
292 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
293 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
294 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
295 };
296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
297 
298 static const struct ieee80211_authenticator auth_internal = {
299 	.ia_name		= "wlan_internal",
300 	.ia_attach		= NULL,
301 	.ia_detach		= NULL,
302 	.ia_node_join		= NULL,
303 	.ia_node_leave		= NULL,
304 };
305 
306 /*
307  * Setup internal authenticators once; they are never unregistered.
308  */
309 static void
310 ieee80211_auth_setup(void)
311 {
312 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
313 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
314 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
315 }
316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
317 
318 const struct ieee80211_authenticator *
319 ieee80211_authenticator_get(int auth)
320 {
321 	if (auth >= IEEE80211_AUTH_MAX)
322 		return NULL;
323 	if (authenticators[auth] == NULL)
324 		ieee80211_load_module(auth_modnames[auth]);
325 	return authenticators[auth];
326 }
327 
328 void
329 ieee80211_authenticator_register(int type,
330 	const struct ieee80211_authenticator *auth)
331 {
332 	if (type >= IEEE80211_AUTH_MAX)
333 		return;
334 	authenticators[type] = auth;
335 }
336 
337 void
338 ieee80211_authenticator_unregister(int type)
339 {
340 
341 	if (type >= IEEE80211_AUTH_MAX)
342 		return;
343 	authenticators[type] = NULL;
344 }
345 
346 /*
347  * Very simple-minded ACL module support.
348  */
349 /* XXX just one for now */
350 static	const struct ieee80211_aclator *acl = NULL;
351 
352 void
353 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
354 {
355 	printf("wlan: %s acl policy registered\n", iac->iac_name);
356 	acl = iac;
357 }
358 
359 void
360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
361 {
362 	if (acl == iac)
363 		acl = NULL;
364 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
365 }
366 
367 const struct ieee80211_aclator *
368 ieee80211_aclator_get(const char *name)
369 {
370 	if (acl == NULL)
371 		ieee80211_load_module("wlan_acl");
372 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
373 }
374 
375 void
376 ieee80211_print_essid(const uint8_t *essid, int len)
377 {
378 	const uint8_t *p;
379 	int i;
380 
381 	if (len > IEEE80211_NWID_LEN)
382 		len = IEEE80211_NWID_LEN;
383 	/* determine printable or not */
384 	for (i = 0, p = essid; i < len; i++, p++) {
385 		if (*p < ' ' || *p > 0x7e)
386 			break;
387 	}
388 	if (i == len) {
389 		printf("\"");
390 		for (i = 0, p = essid; i < len; i++, p++)
391 			printf("%c", *p);
392 		printf("\"");
393 	} else {
394 		printf("0x");
395 		for (i = 0, p = essid; i < len; i++, p++)
396 			printf("%02x", *p);
397 	}
398 }
399 
400 void
401 ieee80211_dump_pkt(struct ieee80211com *ic,
402 	const uint8_t *buf, int len, int rate, int rssi)
403 {
404 	const struct ieee80211_frame *wh;
405 	int i;
406 
407 	wh = (const struct ieee80211_frame *)buf;
408 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
409 	case IEEE80211_FC1_DIR_NODS:
410 		printf("NODS %s", ether_sprintf(wh->i_addr2));
411 		printf("->%s", ether_sprintf(wh->i_addr1));
412 		printf("(%s)", ether_sprintf(wh->i_addr3));
413 		break;
414 	case IEEE80211_FC1_DIR_TODS:
415 		printf("TODS %s", ether_sprintf(wh->i_addr2));
416 		printf("->%s", ether_sprintf(wh->i_addr3));
417 		printf("(%s)", ether_sprintf(wh->i_addr1));
418 		break;
419 	case IEEE80211_FC1_DIR_FROMDS:
420 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
421 		printf("->%s", ether_sprintf(wh->i_addr1));
422 		printf("(%s)", ether_sprintf(wh->i_addr2));
423 		break;
424 	case IEEE80211_FC1_DIR_DSTODS:
425 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
426 		printf("->%s", ether_sprintf(wh->i_addr3));
427 		printf("(%s", ether_sprintf(wh->i_addr2));
428 		printf("->%s)", ether_sprintf(wh->i_addr1));
429 		break;
430 	}
431 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
432 	case IEEE80211_FC0_TYPE_DATA:
433 		printf(" data");
434 		break;
435 	case IEEE80211_FC0_TYPE_MGT:
436 		printf(" %s", ieee80211_mgt_subtype_name[
437 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
438 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
439 		break;
440 	default:
441 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
442 		break;
443 	}
444 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
445 		const struct ieee80211_qosframe *qwh =
446 			(const struct ieee80211_qosframe *)buf;
447 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
448 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
449 	}
450 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
451 		int off;
452 
453 		off = ieee80211_anyhdrspace(ic, wh);
454 		printf(" WEP [IV %.02x %.02x %.02x",
455 			buf[off+0], buf[off+1], buf[off+2]);
456 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
457 			printf(" %.02x %.02x %.02x",
458 				buf[off+4], buf[off+5], buf[off+6]);
459 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
460 	}
461 	if (rate >= 0)
462 		printf(" %dM", rate / 2);
463 	if (rssi >= 0)
464 		printf(" +%d", rssi);
465 	printf("\n");
466 	if (len > 0) {
467 		for (i = 0; i < len; i++) {
468 			if ((i & 1) == 0)
469 				printf(" ");
470 			printf("%02x", buf[i]);
471 		}
472 		printf("\n");
473 	}
474 }
475 
476 static __inline int
477 findrix(const struct ieee80211_rateset *rs, int r)
478 {
479 	int i;
480 
481 	for (i = 0; i < rs->rs_nrates; i++)
482 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
483 			return i;
484 	return -1;
485 }
486 
487 int
488 ieee80211_fix_rate(struct ieee80211_node *ni,
489 	struct ieee80211_rateset *nrs, int flags)
490 {
491 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
492 	struct ieee80211vap *vap = ni->ni_vap;
493 	struct ieee80211com *ic = ni->ni_ic;
494 	int i, j, rix, error;
495 	int okrate, badrate, fixedrate, ucastrate;
496 	const struct ieee80211_rateset *srs;
497 	uint8_t r;
498 
499 	error = 0;
500 	okrate = badrate = 0;
501 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
502 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
503 		/*
504 		 * Workaround awkwardness with fixed rate.  We are called
505 		 * to check both the legacy rate set and the HT rate set
506 		 * but we must apply any legacy fixed rate check only to the
507 		 * legacy rate set and vice versa.  We cannot tell what type
508 		 * of rate set we've been given (legacy or HT) but we can
509 		 * distinguish the fixed rate type (MCS have 0x80 set).
510 		 * So to deal with this the caller communicates whether to
511 		 * check MCS or legacy rate using the flags and we use the
512 		 * type of any fixed rate to avoid applying an MCS to a
513 		 * legacy rate and vice versa.
514 		 */
515 		if (ucastrate & 0x80) {
516 			if (flags & IEEE80211_F_DOFRATE)
517 				flags &= ~IEEE80211_F_DOFRATE;
518 		} else if ((ucastrate & 0x80) == 0) {
519 			if (flags & IEEE80211_F_DOFMCS)
520 				flags &= ~IEEE80211_F_DOFMCS;
521 		}
522 		/* NB: required to make MCS match below work */
523 		ucastrate &= IEEE80211_RATE_VAL;
524 	}
525 	fixedrate = IEEE80211_FIXED_RATE_NONE;
526 	/*
527 	 * XXX we are called to process both MCS and legacy rates;
528 	 * we must use the appropriate basic rate set or chaos will
529 	 * ensue; for now callers that want MCS must supply
530 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
531 	 * function so there are two variants, one for MCS and one
532 	 * for legacy rates.
533 	 */
534 	if (flags & IEEE80211_F_DOBRS)
535 		srs = (const struct ieee80211_rateset *)
536 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
537 	else
538 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
539 	for (i = 0; i < nrs->rs_nrates; ) {
540 		if (flags & IEEE80211_F_DOSORT) {
541 			/*
542 			 * Sort rates.
543 			 */
544 			for (j = i + 1; j < nrs->rs_nrates; j++) {
545 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
546 					r = nrs->rs_rates[i];
547 					nrs->rs_rates[i] = nrs->rs_rates[j];
548 					nrs->rs_rates[j] = r;
549 				}
550 			}
551 		}
552 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
553 		badrate = r;
554 		/*
555 		 * Check for fixed rate.
556 		 */
557 		if (r == ucastrate)
558 			fixedrate = r;
559 		/*
560 		 * Check against supported rates.
561 		 */
562 		rix = findrix(srs, r);
563 		if (flags & IEEE80211_F_DONEGO) {
564 			if (rix < 0) {
565 				/*
566 				 * A rate in the node's rate set is not
567 				 * supported.  If this is a basic rate and we
568 				 * are operating as a STA then this is an error.
569 				 * Otherwise we just discard/ignore the rate.
570 				 */
571 				if ((flags & IEEE80211_F_JOIN) &&
572 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
573 					error++;
574 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
575 				/*
576 				 * Overwrite with the supported rate
577 				 * value so any basic rate bit is set.
578 				 */
579 				nrs->rs_rates[i] = srs->rs_rates[rix];
580 			}
581 		}
582 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
583 			/*
584 			 * Delete unacceptable rates.
585 			 */
586 			nrs->rs_nrates--;
587 			for (j = i; j < nrs->rs_nrates; j++)
588 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
589 			nrs->rs_rates[j] = 0;
590 			continue;
591 		}
592 		if (rix >= 0)
593 			okrate = nrs->rs_rates[i];
594 		i++;
595 	}
596 	if (okrate == 0 || error != 0 ||
597 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
598 	     fixedrate != ucastrate)) {
599 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
600 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
601 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
602 		return badrate | IEEE80211_RATE_BASIC;
603 	} else
604 		return RV(okrate);
605 #undef RV
606 }
607 
608 /*
609  * Reset 11g-related state.
610  */
611 void
612 ieee80211_reset_erp(struct ieee80211com *ic)
613 {
614 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
615 	ic->ic_nonerpsta = 0;
616 	ic->ic_longslotsta = 0;
617 	/*
618 	 * Short slot time is enabled only when operating in 11g
619 	 * and not in an IBSS.  We must also honor whether or not
620 	 * the driver is capable of doing it.
621 	 */
622 	ieee80211_set_shortslottime(ic,
623 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
624 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
625 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
626 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
627 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
628 	/*
629 	 * Set short preamble and ERP barker-preamble flags.
630 	 */
631 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
632 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
633 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
634 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
635 	} else {
636 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
637 		ic->ic_flags |= IEEE80211_F_USEBARKER;
638 	}
639 }
640 
641 /*
642  * Set the short slot time state and notify the driver.
643  */
644 void
645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
646 {
647 	if (onoff)
648 		ic->ic_flags |= IEEE80211_F_SHSLOT;
649 	else
650 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
651 	/* notify driver */
652 	if (ic->ic_updateslot != NULL)
653 		ic->ic_updateslot(ic);
654 }
655 
656 /*
657  * Check if the specified rate set supports ERP.
658  * NB: the rate set is assumed to be sorted.
659  */
660 int
661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
662 {
663 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
664 	int i, j;
665 
666 	if (rs->rs_nrates < nitems(rates))
667 		return 0;
668 	for (i = 0; i < nitems(rates); i++) {
669 		for (j = 0; j < rs->rs_nrates; j++) {
670 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
671 			if (rates[i] == r)
672 				goto next;
673 			if (r > rates[i])
674 				return 0;
675 		}
676 		return 0;
677 	next:
678 		;
679 	}
680 	return 1;
681 }
682 
683 /*
684  * Mark the basic rates for the rate table based on the
685  * operating mode.  For real 11g we mark all the 11b rates
686  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
687  * 11b rates.  There's also a pseudo 11a-mode used to mark only
688  * the basic OFDM rates.
689  */
690 static void
691 setbasicrates(struct ieee80211_rateset *rs,
692     enum ieee80211_phymode mode, int add)
693 {
694 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
695 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
696 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
697 					    /* NB: mixed b/g */
698 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
699 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
700 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
701 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
702 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
703 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
704 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
705 					    /* NB: mixed b/g */
706 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
707 	};
708 	int i, j;
709 
710 	for (i = 0; i < rs->rs_nrates; i++) {
711 		if (!add)
712 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
713 		for (j = 0; j < basic[mode].rs_nrates; j++)
714 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
715 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
716 				break;
717 			}
718 	}
719 }
720 
721 /*
722  * Set the basic rates in a rate set.
723  */
724 void
725 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
726     enum ieee80211_phymode mode)
727 {
728 	setbasicrates(rs, mode, 0);
729 }
730 
731 /*
732  * Add basic rates to a rate set.
733  */
734 void
735 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
736     enum ieee80211_phymode mode)
737 {
738 	setbasicrates(rs, mode, 1);
739 }
740 
741 /*
742  * WME protocol support.
743  *
744  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
745  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
746  * Draft 2.0 Test Plan (Appendix D).
747  *
748  * Static/Dynamic Turbo mode settings come from Atheros.
749  */
750 typedef struct phyParamType {
751 	uint8_t		aifsn;
752 	uint8_t		logcwmin;
753 	uint8_t		logcwmax;
754 	uint16_t	txopLimit;
755 	uint8_t 	acm;
756 } paramType;
757 
758 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
759 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
760 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
761 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
762 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
765 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
766 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
767 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
768 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
769 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
771 };
772 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
773 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
774 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
775 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
776 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
779 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
780 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
781 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
782 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
783 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
785 };
786 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
787 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
788 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
789 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
790 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
791 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
792 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
793 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
794 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
795 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
796 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
797 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
799 };
800 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
801 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
802 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
803 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
804 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
805 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
806 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
807 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
808 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
809 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
810 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
811 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
813 };
814 
815 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
816 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
817 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
818 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
819 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
822 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
823 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
824 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
825 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
826 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
828 };
829 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
830 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
831 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
832 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
833 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
834 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
835 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
836 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
837 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
838 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
839 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
840 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
842 };
843 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
844 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
845 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
846 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
847 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
848 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
849 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
850 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
851 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
852 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
853 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
854 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
856 };
857 
858 static void
859 _setifsparams(struct wmeParams *wmep, const paramType *phy)
860 {
861 	wmep->wmep_aifsn = phy->aifsn;
862 	wmep->wmep_logcwmin = phy->logcwmin;
863 	wmep->wmep_logcwmax = phy->logcwmax;
864 	wmep->wmep_txopLimit = phy->txopLimit;
865 }
866 
867 static void
868 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
869 	struct wmeParams *wmep, const paramType *phy)
870 {
871 	wmep->wmep_acm = phy->acm;
872 	_setifsparams(wmep, phy);
873 
874 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
875 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
876 	    ieee80211_wme_acnames[ac], type,
877 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
878 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
879 }
880 
881 static void
882 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
883 {
884 	struct ieee80211com *ic = vap->iv_ic;
885 	struct ieee80211_wme_state *wme = &ic->ic_wme;
886 	const paramType *pPhyParam, *pBssPhyParam;
887 	struct wmeParams *wmep;
888 	enum ieee80211_phymode mode;
889 	int i;
890 
891 	IEEE80211_LOCK_ASSERT(ic);
892 
893 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
894 		return;
895 
896 	/*
897 	 * Clear the wme cap_info field so a qoscount from a previous
898 	 * vap doesn't confuse later code which only parses the beacon
899 	 * field and updates hardware when said field changes.
900 	 * Otherwise the hardware is programmed with defaults, not what
901 	 * the beacon actually announces.
902 	 */
903 	wme->wme_wmeChanParams.cap_info = 0;
904 
905 	/*
906 	 * Select mode; we can be called early in which case we
907 	 * always use auto mode.  We know we'll be called when
908 	 * entering the RUN state with bsschan setup properly
909 	 * so state will eventually get set correctly
910 	 */
911 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
912 		mode = ieee80211_chan2mode(ic->ic_bsschan);
913 	else
914 		mode = IEEE80211_MODE_AUTO;
915 	for (i = 0; i < WME_NUM_AC; i++) {
916 		switch (i) {
917 		case WME_AC_BK:
918 			pPhyParam = &phyParamForAC_BK[mode];
919 			pBssPhyParam = &phyParamForAC_BK[mode];
920 			break;
921 		case WME_AC_VI:
922 			pPhyParam = &phyParamForAC_VI[mode];
923 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
924 			break;
925 		case WME_AC_VO:
926 			pPhyParam = &phyParamForAC_VO[mode];
927 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
928 			break;
929 		case WME_AC_BE:
930 		default:
931 			pPhyParam = &phyParamForAC_BE[mode];
932 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
933 			break;
934 		}
935 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
936 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
937 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
938 		} else {
939 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
940 		}
941 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
942 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
943 	}
944 	/* NB: check ic_bss to avoid NULL deref on initial attach */
945 	if (vap->iv_bss != NULL) {
946 		/*
947 		 * Calculate agressive mode switching threshold based
948 		 * on beacon interval.  This doesn't need locking since
949 		 * we're only called before entering the RUN state at
950 		 * which point we start sending beacon frames.
951 		 */
952 		wme->wme_hipri_switch_thresh =
953 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
954 		wme->wme_flags &= ~WME_F_AGGRMODE;
955 		ieee80211_wme_updateparams(vap);
956 	}
957 }
958 
959 void
960 ieee80211_wme_initparams(struct ieee80211vap *vap)
961 {
962 	struct ieee80211com *ic = vap->iv_ic;
963 
964 	IEEE80211_LOCK(ic);
965 	ieee80211_wme_initparams_locked(vap);
966 	IEEE80211_UNLOCK(ic);
967 }
968 
969 /*
970  * Update WME parameters for ourself and the BSS.
971  */
972 void
973 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
974 {
975 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
976 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
977 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
978 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
979 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
980 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
981 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
982 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
983 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
984 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
985 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
986 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
987 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
988 	};
989 	struct ieee80211com *ic = vap->iv_ic;
990 	struct ieee80211_wme_state *wme = &ic->ic_wme;
991 	const struct wmeParams *wmep;
992 	struct wmeParams *chanp, *bssp;
993 	enum ieee80211_phymode mode;
994 	int i;
995 	int do_aggrmode = 0;
996 
997        	/*
998 	 * Set up the channel access parameters for the physical
999 	 * device.  First populate the configured settings.
1000 	 */
1001 	for (i = 0; i < WME_NUM_AC; i++) {
1002 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1003 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1004 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1005 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1006 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1007 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1008 
1009 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1010 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1011 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1012 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1013 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1014 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1015 	}
1016 
1017 	/*
1018 	 * Select mode; we can be called early in which case we
1019 	 * always use auto mode.  We know we'll be called when
1020 	 * entering the RUN state with bsschan setup properly
1021 	 * so state will eventually get set correctly
1022 	 */
1023 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1024 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1025 	else
1026 		mode = IEEE80211_MODE_AUTO;
1027 
1028 	/*
1029 	 * This implements agressive mode as found in certain
1030 	 * vendors' AP's.  When there is significant high
1031 	 * priority (VI/VO) traffic in the BSS throttle back BE
1032 	 * traffic by using conservative parameters.  Otherwise
1033 	 * BE uses agressive params to optimize performance of
1034 	 * legacy/non-QoS traffic.
1035 	 */
1036 
1037 	/* Hostap? Only if aggressive mode is enabled */
1038         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1039 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1040 		do_aggrmode = 1;
1041 
1042 	/*
1043 	 * Station? Only if we're in a non-QoS BSS.
1044 	 */
1045 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1046 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1047 		do_aggrmode = 1;
1048 
1049 	/*
1050 	 * IBSS? Only if we we have WME enabled.
1051 	 */
1052 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1053 	    (vap->iv_flags & IEEE80211_F_WME))
1054 		do_aggrmode = 1;
1055 
1056 	/*
1057 	 * If WME is disabled on this VAP, default to aggressive mode
1058 	 * regardless of the configuration.
1059 	 */
1060 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1061 		do_aggrmode = 1;
1062 
1063 	/* XXX WDS? */
1064 
1065 	/* XXX MBSS? */
1066 
1067 	if (do_aggrmode) {
1068 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1069 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1070 
1071 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1072 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1073 		    aggrParam[mode].logcwmin;
1074 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1075 		    aggrParam[mode].logcwmax;
1076 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1077 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1078 			aggrParam[mode].txopLimit : 0;
1079 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1080 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1081 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1082 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1083 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1084 	}
1085 
1086 
1087 	/*
1088 	 * Change the contention window based on the number of associated
1089 	 * stations.  If the number of associated stations is 1 and
1090 	 * aggressive mode is enabled, lower the contention window even
1091 	 * further.
1092 	 */
1093 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1094 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1095 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1096 		    [IEEE80211_MODE_AUTO]	= 3,
1097 		    [IEEE80211_MODE_11A]	= 3,
1098 		    [IEEE80211_MODE_11B]	= 4,
1099 		    [IEEE80211_MODE_11G]	= 3,
1100 		    [IEEE80211_MODE_FH]		= 4,
1101 		    [IEEE80211_MODE_TURBO_A]	= 3,
1102 		    [IEEE80211_MODE_TURBO_G]	= 3,
1103 		    [IEEE80211_MODE_STURBO_A]	= 3,
1104 		    [IEEE80211_MODE_HALF]	= 3,
1105 		    [IEEE80211_MODE_QUARTER]	= 3,
1106 		    [IEEE80211_MODE_11NA]	= 3,
1107 		    [IEEE80211_MODE_11NG]	= 3,
1108 		};
1109 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1110 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1111 
1112 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1113 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1114 		    "update %s (chan+bss) logcwmin %u\n",
1115 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1116 	}
1117 
1118 	/*
1119 	 * Arrange for the beacon update.
1120 	 *
1121 	 * XXX what about MBSS, WDS?
1122 	 */
1123 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1124 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1125 		/*
1126 		 * Arrange for a beacon update and bump the parameter
1127 		 * set number so associated stations load the new values.
1128 		 */
1129 		wme->wme_bssChanParams.cap_info =
1130 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1131 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1132 	}
1133 
1134 	wme->wme_update(ic);
1135 
1136 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1137 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1138 	    vap->iv_opmode == IEEE80211_M_STA ?
1139 		wme->wme_wmeChanParams.cap_info :
1140 		wme->wme_bssChanParams.cap_info);
1141 }
1142 
1143 void
1144 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1145 {
1146 	struct ieee80211com *ic = vap->iv_ic;
1147 
1148 	if (ic->ic_caps & IEEE80211_C_WME) {
1149 		IEEE80211_LOCK(ic);
1150 		ieee80211_wme_updateparams_locked(vap);
1151 		IEEE80211_UNLOCK(ic);
1152 	}
1153 }
1154 
1155 static void
1156 parent_updown(void *arg, int npending)
1157 {
1158 	struct ifnet *parent = arg;
1159 
1160 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1161 }
1162 
1163 static void
1164 update_mcast(void *arg, int npending)
1165 {
1166 	struct ieee80211com *ic = arg;
1167 
1168 	ic->ic_update_mcast(ic);
1169 }
1170 
1171 static void
1172 update_promisc(void *arg, int npending)
1173 {
1174 	struct ieee80211com *ic = arg;
1175 
1176 	ic->ic_update_promisc(ic);
1177 }
1178 
1179 static void
1180 update_channel(void *arg, int npending)
1181 {
1182 	struct ieee80211com *ic = arg;
1183 
1184 	ic->ic_set_channel(ic);
1185 	ieee80211_radiotap_chan_change(ic);
1186 }
1187 
1188 static void
1189 update_chw(void *arg, int npending)
1190 {
1191 	struct ieee80211com *ic = arg;
1192 
1193 	/*
1194 	 * XXX should we defer the channel width _config_ update until now?
1195 	 */
1196 	ic->ic_update_chw(ic);
1197 }
1198 
1199 /*
1200  * Block until the parent is in a known state.  This is
1201  * used after any operations that dispatch a task (e.g.
1202  * to auto-configure the parent device up/down).
1203  */
1204 void
1205 ieee80211_waitfor_parent(struct ieee80211com *ic)
1206 {
1207 	taskqueue_block(ic->ic_tq);
1208 	ieee80211_draintask(ic, &ic->ic_parent_task);
1209 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1210 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1211 	ieee80211_draintask(ic, &ic->ic_chan_task);
1212 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1213 	ieee80211_draintask(ic, &ic->ic_chw_task);
1214 	taskqueue_unblock(ic->ic_tq);
1215 }
1216 
1217 /*
1218  * Start a vap running.  If this is the first vap to be
1219  * set running on the underlying device then we
1220  * automatically bring the device up.
1221  */
1222 void
1223 ieee80211_start_locked(struct ieee80211vap *vap)
1224 {
1225 	struct ifnet *ifp = vap->iv_ifp;
1226 	struct ieee80211com *ic = vap->iv_ic;
1227 	struct ifnet *parent = ic->ic_ifp;
1228 
1229 	IEEE80211_LOCK_ASSERT(ic);
1230 
1231 	IEEE80211_DPRINTF(vap,
1232 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1233 		"start running, %d vaps running\n", ic->ic_nrunning);
1234 
1235 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1236 		/*
1237 		 * Mark us running.  Note that it's ok to do this first;
1238 		 * if we need to bring the parent device up we defer that
1239 		 * to avoid dropping the com lock.  We expect the device
1240 		 * to respond to being marked up by calling back into us
1241 		 * through ieee80211_start_all at which point we'll come
1242 		 * back in here and complete the work.
1243 		 */
1244 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1245 		/*
1246 		 * We are not running; if this we are the first vap
1247 		 * to be brought up auto-up the parent if necessary.
1248 		 */
1249 		if (ic->ic_nrunning++ == 0 &&
1250 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1251 			IEEE80211_DPRINTF(vap,
1252 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1253 			    "%s: up parent %s\n", __func__, parent->if_xname);
1254 			parent->if_flags |= IFF_UP;
1255 			ieee80211_runtask(ic, &ic->ic_parent_task);
1256 			return;
1257 		}
1258 	}
1259 	/*
1260 	 * If the parent is up and running, then kick the
1261 	 * 802.11 state machine as appropriate.
1262 	 */
1263 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1264 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1265 		if (vap->iv_opmode == IEEE80211_M_STA) {
1266 #if 0
1267 			/* XXX bypasses scan too easily; disable for now */
1268 			/*
1269 			 * Try to be intelligent about clocking the state
1270 			 * machine.  If we're currently in RUN state then
1271 			 * we should be able to apply any new state/parameters
1272 			 * simply by re-associating.  Otherwise we need to
1273 			 * re-scan to select an appropriate ap.
1274 			 */
1275 			if (vap->iv_state >= IEEE80211_S_RUN)
1276 				ieee80211_new_state_locked(vap,
1277 				    IEEE80211_S_ASSOC, 1);
1278 			else
1279 #endif
1280 				ieee80211_new_state_locked(vap,
1281 				    IEEE80211_S_SCAN, 0);
1282 		} else {
1283 			/*
1284 			 * For monitor+wds mode there's nothing to do but
1285 			 * start running.  Otherwise if this is the first
1286 			 * vap to be brought up, start a scan which may be
1287 			 * preempted if the station is locked to a particular
1288 			 * channel.
1289 			 */
1290 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1291 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1292 			    vap->iv_opmode == IEEE80211_M_WDS)
1293 				ieee80211_new_state_locked(vap,
1294 				    IEEE80211_S_RUN, -1);
1295 			else
1296 				ieee80211_new_state_locked(vap,
1297 				    IEEE80211_S_SCAN, 0);
1298 		}
1299 	}
1300 }
1301 
1302 /*
1303  * Start a single vap.
1304  */
1305 void
1306 ieee80211_init(void *arg)
1307 {
1308 	struct ieee80211vap *vap = arg;
1309 
1310 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1311 	    "%s\n", __func__);
1312 
1313 	IEEE80211_LOCK(vap->iv_ic);
1314 	ieee80211_start_locked(vap);
1315 	IEEE80211_UNLOCK(vap->iv_ic);
1316 }
1317 
1318 /*
1319  * Start all runnable vap's on a device.
1320  */
1321 void
1322 ieee80211_start_all(struct ieee80211com *ic)
1323 {
1324 	struct ieee80211vap *vap;
1325 
1326 	IEEE80211_LOCK(ic);
1327 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1328 		struct ifnet *ifp = vap->iv_ifp;
1329 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1330 			ieee80211_start_locked(vap);
1331 	}
1332 	IEEE80211_UNLOCK(ic);
1333 }
1334 
1335 /*
1336  * Stop a vap.  We force it down using the state machine
1337  * then mark it's ifnet not running.  If this is the last
1338  * vap running on the underlying device then we close it
1339  * too to insure it will be properly initialized when the
1340  * next vap is brought up.
1341  */
1342 void
1343 ieee80211_stop_locked(struct ieee80211vap *vap)
1344 {
1345 	struct ieee80211com *ic = vap->iv_ic;
1346 	struct ifnet *ifp = vap->iv_ifp;
1347 	struct ifnet *parent = ic->ic_ifp;
1348 
1349 	IEEE80211_LOCK_ASSERT(ic);
1350 
1351 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1352 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1353 
1354 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1355 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1356 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1357 		if (--ic->ic_nrunning == 0 &&
1358 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1359 			IEEE80211_DPRINTF(vap,
1360 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1361 			    "down parent %s\n", parent->if_xname);
1362 			parent->if_flags &= ~IFF_UP;
1363 			ieee80211_runtask(ic, &ic->ic_parent_task);
1364 		}
1365 	}
1366 }
1367 
1368 void
1369 ieee80211_stop(struct ieee80211vap *vap)
1370 {
1371 	struct ieee80211com *ic = vap->iv_ic;
1372 
1373 	IEEE80211_LOCK(ic);
1374 	ieee80211_stop_locked(vap);
1375 	IEEE80211_UNLOCK(ic);
1376 }
1377 
1378 /*
1379  * Stop all vap's running on a device.
1380  */
1381 void
1382 ieee80211_stop_all(struct ieee80211com *ic)
1383 {
1384 	struct ieee80211vap *vap;
1385 
1386 	IEEE80211_LOCK(ic);
1387 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1388 		struct ifnet *ifp = vap->iv_ifp;
1389 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1390 			ieee80211_stop_locked(vap);
1391 	}
1392 	IEEE80211_UNLOCK(ic);
1393 
1394 	ieee80211_waitfor_parent(ic);
1395 }
1396 
1397 /*
1398  * Stop all vap's running on a device and arrange
1399  * for those that were running to be resumed.
1400  */
1401 void
1402 ieee80211_suspend_all(struct ieee80211com *ic)
1403 {
1404 	struct ieee80211vap *vap;
1405 
1406 	IEEE80211_LOCK(ic);
1407 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1408 		struct ifnet *ifp = vap->iv_ifp;
1409 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1410 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1411 			ieee80211_stop_locked(vap);
1412 		}
1413 	}
1414 	IEEE80211_UNLOCK(ic);
1415 
1416 	ieee80211_waitfor_parent(ic);
1417 }
1418 
1419 /*
1420  * Start all vap's marked for resume.
1421  */
1422 void
1423 ieee80211_resume_all(struct ieee80211com *ic)
1424 {
1425 	struct ieee80211vap *vap;
1426 
1427 	IEEE80211_LOCK(ic);
1428 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1429 		struct ifnet *ifp = vap->iv_ifp;
1430 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1431 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1432 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1433 			ieee80211_start_locked(vap);
1434 		}
1435 	}
1436 	IEEE80211_UNLOCK(ic);
1437 }
1438 
1439 void
1440 ieee80211_beacon_miss(struct ieee80211com *ic)
1441 {
1442 	IEEE80211_LOCK(ic);
1443 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1444 		/* Process in a taskq, the handler may reenter the driver */
1445 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1446 	}
1447 	IEEE80211_UNLOCK(ic);
1448 }
1449 
1450 static void
1451 beacon_miss(void *arg, int npending)
1452 {
1453 	struct ieee80211com *ic = arg;
1454 	struct ieee80211vap *vap;
1455 
1456 	IEEE80211_LOCK(ic);
1457 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1458 		/*
1459 		 * We only pass events through for sta vap's in RUN state;
1460 		 * may be too restrictive but for now this saves all the
1461 		 * handlers duplicating these checks.
1462 		 */
1463 		if (vap->iv_opmode == IEEE80211_M_STA &&
1464 		    vap->iv_state >= IEEE80211_S_RUN &&
1465 		    vap->iv_bmiss != NULL)
1466 			vap->iv_bmiss(vap);
1467 	}
1468 	IEEE80211_UNLOCK(ic);
1469 }
1470 
1471 static void
1472 beacon_swmiss(void *arg, int npending)
1473 {
1474 	struct ieee80211vap *vap = arg;
1475 	struct ieee80211com *ic = vap->iv_ic;
1476 
1477 	IEEE80211_LOCK(ic);
1478 	if (vap->iv_state == IEEE80211_S_RUN) {
1479 		/* XXX Call multiple times if npending > zero? */
1480 		vap->iv_bmiss(vap);
1481 	}
1482 	IEEE80211_UNLOCK(ic);
1483 }
1484 
1485 /*
1486  * Software beacon miss handling.  Check if any beacons
1487  * were received in the last period.  If not post a
1488  * beacon miss; otherwise reset the counter.
1489  */
1490 void
1491 ieee80211_swbmiss(void *arg)
1492 {
1493 	struct ieee80211vap *vap = arg;
1494 	struct ieee80211com *ic = vap->iv_ic;
1495 
1496 	IEEE80211_LOCK_ASSERT(ic);
1497 
1498 	/* XXX sleep state? */
1499 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1500 	    ("wrong state %d", vap->iv_state));
1501 
1502 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1503 		/*
1504 		 * If scanning just ignore and reset state.  If we get a
1505 		 * bmiss after coming out of scan because we haven't had
1506 		 * time to receive a beacon then we should probe the AP
1507 		 * before posting a real bmiss (unless iv_bmiss_max has
1508 		 * been artifiically lowered).  A cleaner solution might
1509 		 * be to disable the timer on scan start/end but to handle
1510 		 * case of multiple sta vap's we'd need to disable the
1511 		 * timers of all affected vap's.
1512 		 */
1513 		vap->iv_swbmiss_count = 0;
1514 	} else if (vap->iv_swbmiss_count == 0) {
1515 		if (vap->iv_bmiss != NULL)
1516 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1517 	} else
1518 		vap->iv_swbmiss_count = 0;
1519 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1520 		ieee80211_swbmiss, vap);
1521 }
1522 
1523 /*
1524  * Start an 802.11h channel switch.  We record the parameters,
1525  * mark the operation pending, notify each vap through the
1526  * beacon update mechanism so it can update the beacon frame
1527  * contents, and then switch vap's to CSA state to block outbound
1528  * traffic.  Devices that handle CSA directly can use the state
1529  * switch to do the right thing so long as they call
1530  * ieee80211_csa_completeswitch when it's time to complete the
1531  * channel change.  Devices that depend on the net80211 layer can
1532  * use ieee80211_beacon_update to handle the countdown and the
1533  * channel switch.
1534  */
1535 void
1536 ieee80211_csa_startswitch(struct ieee80211com *ic,
1537 	struct ieee80211_channel *c, int mode, int count)
1538 {
1539 	struct ieee80211vap *vap;
1540 
1541 	IEEE80211_LOCK_ASSERT(ic);
1542 
1543 	ic->ic_csa_newchan = c;
1544 	ic->ic_csa_mode = mode;
1545 	ic->ic_csa_count = count;
1546 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1547 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1548 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1549 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1550 		    vap->iv_opmode == IEEE80211_M_MBSS)
1551 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1552 		/* switch to CSA state to block outbound traffic */
1553 		if (vap->iv_state == IEEE80211_S_RUN)
1554 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1555 	}
1556 	ieee80211_notify_csa(ic, c, mode, count);
1557 }
1558 
1559 /*
1560  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1561  * This is called by both the completion and cancellation functions
1562  * so each VAP is placed back in the RUN state and can thus transmit.
1563  */
1564 static void
1565 csa_completeswitch(struct ieee80211com *ic)
1566 {
1567 	struct ieee80211vap *vap;
1568 
1569 	ic->ic_csa_newchan = NULL;
1570 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1571 
1572 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1573 		if (vap->iv_state == IEEE80211_S_CSA)
1574 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1575 }
1576 
1577 /*
1578  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1579  * We clear state and move all vap's in CSA state to RUN state
1580  * so they can again transmit.
1581  *
1582  * Although this may not be completely correct, update the BSS channel
1583  * for each VAP to the newly configured channel. The setcurchan sets
1584  * the current operating channel for the interface (so the radio does
1585  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1586  * reported information via ioctl.
1587  */
1588 void
1589 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1590 {
1591 	struct ieee80211vap *vap;
1592 
1593 	IEEE80211_LOCK_ASSERT(ic);
1594 
1595 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1596 
1597 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1598 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1599 		if (vap->iv_state == IEEE80211_S_CSA)
1600 			vap->iv_bss->ni_chan = ic->ic_curchan;
1601 
1602 	csa_completeswitch(ic);
1603 }
1604 
1605 /*
1606  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1607  * We clear state and move all vap's in CSA state to RUN state
1608  * so they can again transmit.
1609  */
1610 void
1611 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1612 {
1613 	IEEE80211_LOCK_ASSERT(ic);
1614 
1615 	csa_completeswitch(ic);
1616 }
1617 
1618 /*
1619  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1620  * We clear state and move all vap's in CAC state to RUN state.
1621  */
1622 void
1623 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1624 {
1625 	struct ieee80211com *ic = vap0->iv_ic;
1626 	struct ieee80211vap *vap;
1627 
1628 	IEEE80211_LOCK(ic);
1629 	/*
1630 	 * Complete CAC state change for lead vap first; then
1631 	 * clock all the other vap's waiting.
1632 	 */
1633 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1634 	    ("wrong state %d", vap0->iv_state));
1635 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1636 
1637 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1638 		if (vap->iv_state == IEEE80211_S_CAC)
1639 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1640 	IEEE80211_UNLOCK(ic);
1641 }
1642 
1643 /*
1644  * Force all vap's other than the specified vap to the INIT state
1645  * and mark them as waiting for a scan to complete.  These vaps
1646  * will be brought up when the scan completes and the scanning vap
1647  * reaches RUN state by wakeupwaiting.
1648  */
1649 static void
1650 markwaiting(struct ieee80211vap *vap0)
1651 {
1652 	struct ieee80211com *ic = vap0->iv_ic;
1653 	struct ieee80211vap *vap;
1654 
1655 	IEEE80211_LOCK_ASSERT(ic);
1656 
1657 	/*
1658 	 * A vap list entry can not disappear since we are running on the
1659 	 * taskqueue and a vap destroy will queue and drain another state
1660 	 * change task.
1661 	 */
1662 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1663 		if (vap == vap0)
1664 			continue;
1665 		if (vap->iv_state != IEEE80211_S_INIT) {
1666 			/* NB: iv_newstate may drop the lock */
1667 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1668 			IEEE80211_LOCK_ASSERT(ic);
1669 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1670 		}
1671 	}
1672 }
1673 
1674 /*
1675  * Wakeup all vap's waiting for a scan to complete.  This is the
1676  * companion to markwaiting (above) and is used to coordinate
1677  * multiple vaps scanning.
1678  * This is called from the state taskqueue.
1679  */
1680 static void
1681 wakeupwaiting(struct ieee80211vap *vap0)
1682 {
1683 	struct ieee80211com *ic = vap0->iv_ic;
1684 	struct ieee80211vap *vap;
1685 
1686 	IEEE80211_LOCK_ASSERT(ic);
1687 
1688 	/*
1689 	 * A vap list entry can not disappear since we are running on the
1690 	 * taskqueue and a vap destroy will queue and drain another state
1691 	 * change task.
1692 	 */
1693 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1694 		if (vap == vap0)
1695 			continue;
1696 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1697 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1698 			/* NB: sta's cannot go INIT->RUN */
1699 			/* NB: iv_newstate may drop the lock */
1700 			vap->iv_newstate(vap,
1701 			    vap->iv_opmode == IEEE80211_M_STA ?
1702 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1703 			IEEE80211_LOCK_ASSERT(ic);
1704 		}
1705 	}
1706 }
1707 
1708 /*
1709  * Handle post state change work common to all operating modes.
1710  */
1711 static void
1712 ieee80211_newstate_cb(void *xvap, int npending)
1713 {
1714 	struct ieee80211vap *vap = xvap;
1715 	struct ieee80211com *ic = vap->iv_ic;
1716 	enum ieee80211_state nstate, ostate;
1717 	int arg, rc;
1718 
1719 	IEEE80211_LOCK(ic);
1720 	nstate = vap->iv_nstate;
1721 	arg = vap->iv_nstate_arg;
1722 
1723 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1724 		/*
1725 		 * We have been requested to drop back to the INIT before
1726 		 * proceeding to the new state.
1727 		 */
1728 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1729 		    "%s: %s -> %s arg %d\n", __func__,
1730 		    ieee80211_state_name[vap->iv_state],
1731 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1732 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1733 		IEEE80211_LOCK_ASSERT(ic);
1734 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1735 	}
1736 
1737 	ostate = vap->iv_state;
1738 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1739 		/*
1740 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1741 		 * vap's to INIT state and mark them as waiting for the scan to
1742 		 * complete.  This insures they don't interfere with our
1743 		 * scanning.  Since we are single threaded the vaps can not
1744 		 * transition again while we are executing.
1745 		 *
1746 		 * XXX not always right, assumes ap follows sta
1747 		 */
1748 		markwaiting(vap);
1749 	}
1750 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1751 	    "%s: %s -> %s arg %d\n", __func__,
1752 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1753 
1754 	rc = vap->iv_newstate(vap, nstate, arg);
1755 	IEEE80211_LOCK_ASSERT(ic);
1756 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1757 	if (rc != 0) {
1758 		/* State transition failed */
1759 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1760 		KASSERT(nstate != IEEE80211_S_INIT,
1761 		    ("INIT state change failed"));
1762 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1763 		    "%s: %s returned error %d\n", __func__,
1764 		    ieee80211_state_name[nstate], rc);
1765 		goto done;
1766 	}
1767 
1768 	/* No actual transition, skip post processing */
1769 	if (ostate == nstate)
1770 		goto done;
1771 
1772 	if (nstate == IEEE80211_S_RUN) {
1773 		/*
1774 		 * OACTIVE may be set on the vap if the upper layer
1775 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1776 		 * RUN state.  Clear it and restart xmit.
1777 		 *
1778 		 * Note this can also happen as a result of SLEEP->RUN
1779 		 * (i.e. coming out of power save mode).
1780 		 */
1781 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1782 
1783 		/*
1784 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1785 		 */
1786 
1787 		/* bring up any vaps waiting on us */
1788 		wakeupwaiting(vap);
1789 	} else if (nstate == IEEE80211_S_INIT) {
1790 		/*
1791 		 * Flush the scan cache if we did the last scan (XXX?)
1792 		 * and flush any frames on send queues from this vap.
1793 		 * Note the mgt q is used only for legacy drivers and
1794 		 * will go away shortly.
1795 		 */
1796 		ieee80211_scan_flush(vap);
1797 
1798 		/*
1799 		 * XXX TODO: ic/vap queue flush
1800 		 */
1801 	}
1802 done:
1803 	IEEE80211_UNLOCK(ic);
1804 }
1805 
1806 /*
1807  * Public interface for initiating a state machine change.
1808  * This routine single-threads the request and coordinates
1809  * the scheduling of multiple vaps for the purpose of selecting
1810  * an operating channel.  Specifically the following scenarios
1811  * are handled:
1812  * o only one vap can be selecting a channel so on transition to
1813  *   SCAN state if another vap is already scanning then
1814  *   mark the caller for later processing and return without
1815  *   doing anything (XXX? expectations by caller of synchronous operation)
1816  * o only one vap can be doing CAC of a channel so on transition to
1817  *   CAC state if another vap is already scanning for radar then
1818  *   mark the caller for later processing and return without
1819  *   doing anything (XXX? expectations by caller of synchronous operation)
1820  * o if another vap is already running when a request is made
1821  *   to SCAN then an operating channel has been chosen; bypass
1822  *   the scan and just join the channel
1823  *
1824  * Note that the state change call is done through the iv_newstate
1825  * method pointer so any driver routine gets invoked.  The driver
1826  * will normally call back into operating mode-specific
1827  * ieee80211_newstate routines (below) unless it needs to completely
1828  * bypass the state machine (e.g. because the firmware has it's
1829  * own idea how things should work).  Bypassing the net80211 layer
1830  * is usually a mistake and indicates lack of proper integration
1831  * with the net80211 layer.
1832  */
1833 int
1834 ieee80211_new_state_locked(struct ieee80211vap *vap,
1835 	enum ieee80211_state nstate, int arg)
1836 {
1837 	struct ieee80211com *ic = vap->iv_ic;
1838 	struct ieee80211vap *vp;
1839 	enum ieee80211_state ostate;
1840 	int nrunning, nscanning;
1841 
1842 	IEEE80211_LOCK_ASSERT(ic);
1843 
1844 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1845 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1846 			/*
1847 			 * XXX The vap is being stopped, do no allow any other
1848 			 * state changes until this is completed.
1849 			 */
1850 			return -1;
1851 		} else if (vap->iv_state != vap->iv_nstate) {
1852 #if 0
1853 			/* Warn if the previous state hasn't completed. */
1854 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1855 			    "%s: pending %s -> %s transition lost\n", __func__,
1856 			    ieee80211_state_name[vap->iv_state],
1857 			    ieee80211_state_name[vap->iv_nstate]);
1858 #else
1859 			/* XXX temporarily enable to identify issues */
1860 			if_printf(vap->iv_ifp,
1861 			    "%s: pending %s -> %s transition lost\n",
1862 			    __func__, ieee80211_state_name[vap->iv_state],
1863 			    ieee80211_state_name[vap->iv_nstate]);
1864 #endif
1865 		}
1866 	}
1867 
1868 	nrunning = nscanning = 0;
1869 	/* XXX can track this state instead of calculating */
1870 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1871 		if (vp != vap) {
1872 			if (vp->iv_state >= IEEE80211_S_RUN)
1873 				nrunning++;
1874 			/* XXX doesn't handle bg scan */
1875 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1876 			else if (vp->iv_state > IEEE80211_S_INIT)
1877 				nscanning++;
1878 		}
1879 	}
1880 	ostate = vap->iv_state;
1881 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1882 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1883 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1884 	    nrunning, nscanning);
1885 	switch (nstate) {
1886 	case IEEE80211_S_SCAN:
1887 		if (ostate == IEEE80211_S_INIT) {
1888 			/*
1889 			 * INIT -> SCAN happens on initial bringup.
1890 			 */
1891 			KASSERT(!(nscanning && nrunning),
1892 			    ("%d scanning and %d running", nscanning, nrunning));
1893 			if (nscanning) {
1894 				/*
1895 				 * Someone is scanning, defer our state
1896 				 * change until the work has completed.
1897 				 */
1898 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1899 				    "%s: defer %s -> %s\n",
1900 				    __func__, ieee80211_state_name[ostate],
1901 				    ieee80211_state_name[nstate]);
1902 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1903 				return 0;
1904 			}
1905 			if (nrunning) {
1906 				/*
1907 				 * Someone is operating; just join the channel
1908 				 * they have chosen.
1909 				 */
1910 				/* XXX kill arg? */
1911 				/* XXX check each opmode, adhoc? */
1912 				if (vap->iv_opmode == IEEE80211_M_STA)
1913 					nstate = IEEE80211_S_SCAN;
1914 				else
1915 					nstate = IEEE80211_S_RUN;
1916 #ifdef IEEE80211_DEBUG
1917 				if (nstate != IEEE80211_S_SCAN) {
1918 					IEEE80211_DPRINTF(vap,
1919 					    IEEE80211_MSG_STATE,
1920 					    "%s: override, now %s -> %s\n",
1921 					    __func__,
1922 					    ieee80211_state_name[ostate],
1923 					    ieee80211_state_name[nstate]);
1924 				}
1925 #endif
1926 			}
1927 		}
1928 		break;
1929 	case IEEE80211_S_RUN:
1930 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1931 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1932 		    nscanning) {
1933 			/*
1934 			 * Legacy WDS with someone else scanning; don't
1935 			 * go online until that completes as we should
1936 			 * follow the other vap to the channel they choose.
1937 			 */
1938 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1939 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1940 			     ieee80211_state_name[ostate],
1941 			     ieee80211_state_name[nstate]);
1942 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1943 			return 0;
1944 		}
1945 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1946 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1947 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1948 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1949 			/*
1950 			 * This is a DFS channel, transition to CAC state
1951 			 * instead of RUN.  This allows us to initiate
1952 			 * Channel Availability Check (CAC) as specified
1953 			 * by 11h/DFS.
1954 			 */
1955 			nstate = IEEE80211_S_CAC;
1956 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1957 			     "%s: override %s -> %s (DFS)\n", __func__,
1958 			     ieee80211_state_name[ostate],
1959 			     ieee80211_state_name[nstate]);
1960 		}
1961 		break;
1962 	case IEEE80211_S_INIT:
1963 		/* cancel any scan in progress */
1964 		ieee80211_cancel_scan(vap);
1965 		if (ostate == IEEE80211_S_INIT ) {
1966 			/* XXX don't believe this */
1967 			/* INIT -> INIT. nothing to do */
1968 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1969 		}
1970 		/* fall thru... */
1971 	default:
1972 		break;
1973 	}
1974 	/* defer the state change to a thread */
1975 	vap->iv_nstate = nstate;
1976 	vap->iv_nstate_arg = arg;
1977 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1978 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1979 	return EINPROGRESS;
1980 }
1981 
1982 int
1983 ieee80211_new_state(struct ieee80211vap *vap,
1984 	enum ieee80211_state nstate, int arg)
1985 {
1986 	struct ieee80211com *ic = vap->iv_ic;
1987 	int rc;
1988 
1989 	IEEE80211_LOCK(ic);
1990 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1991 	IEEE80211_UNLOCK(ic);
1992 	return rc;
1993 }
1994