1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> /* XXX for ether_sprintf */ 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_adhoc.h> 51 #include <net80211/ieee80211_sta.h> 52 #include <net80211/ieee80211_hostap.h> 53 #include <net80211/ieee80211_wds.h> 54 #ifdef IEEE80211_SUPPORT_MESH 55 #include <net80211/ieee80211_mesh.h> 56 #endif 57 #include <net80211/ieee80211_monitor.h> 58 #include <net80211/ieee80211_input.h> 59 60 /* XXX tunables */ 61 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 62 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 63 64 const char *ieee80211_mgt_subtype_name[] = { 65 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 66 "probe_req", "probe_resp", "reserved#6", "reserved#7", 67 "beacon", "atim", "disassoc", "auth", 68 "deauth", "action", "action_noack", "reserved#15" 69 }; 70 const char *ieee80211_ctl_subtype_name[] = { 71 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 72 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 73 "reserved#8", "reserved#9", "ps_poll", "rts", 74 "cts", "ack", "cf_end", "cf_end_ack" 75 }; 76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 77 "IBSS", /* IEEE80211_M_IBSS */ 78 "STA", /* IEEE80211_M_STA */ 79 "WDS", /* IEEE80211_M_WDS */ 80 "AHDEMO", /* IEEE80211_M_AHDEMO */ 81 "HOSTAP", /* IEEE80211_M_HOSTAP */ 82 "MONITOR", /* IEEE80211_M_MONITOR */ 83 "MBSS" /* IEEE80211_M_MBSS */ 84 }; 85 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 86 "INIT", /* IEEE80211_S_INIT */ 87 "SCAN", /* IEEE80211_S_SCAN */ 88 "AUTH", /* IEEE80211_S_AUTH */ 89 "ASSOC", /* IEEE80211_S_ASSOC */ 90 "CAC", /* IEEE80211_S_CAC */ 91 "RUN", /* IEEE80211_S_RUN */ 92 "CSA", /* IEEE80211_S_CSA */ 93 "SLEEP", /* IEEE80211_S_SLEEP */ 94 }; 95 const char *ieee80211_wme_acnames[] = { 96 "WME_AC_BE", 97 "WME_AC_BK", 98 "WME_AC_VI", 99 "WME_AC_VO", 100 "WME_UPSD", 101 }; 102 103 static void beacon_miss(void *, int); 104 static void beacon_swmiss(void *, int); 105 static void parent_updown(void *, int); 106 static void update_mcast(void *, int); 107 static void update_promisc(void *, int); 108 static void update_channel(void *, int); 109 static void update_chw(void *, int); 110 static void ieee80211_newstate_cb(void *, int); 111 112 static int 113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 114 const struct ieee80211_bpf_params *params) 115 { 116 117 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 118 m_freem(m); 119 return ENETDOWN; 120 } 121 122 void 123 ieee80211_proto_attach(struct ieee80211com *ic) 124 { 125 struct ifnet *ifp = ic->ic_ifp; 126 127 /* override the 802.3 setting */ 128 ifp->if_hdrlen = ic->ic_headroom 129 + sizeof(struct ieee80211_qosframe_addr4) 130 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 131 + IEEE80211_WEP_EXTIVLEN; 132 /* XXX no way to recalculate on ifdetach */ 133 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) { 134 /* XXX sanity check... */ 135 max_linkhdr = ALIGN(ifp->if_hdrlen); 136 max_hdr = max_linkhdr + max_protohdr; 137 max_datalen = MHLEN - max_hdr; 138 } 139 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 140 141 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp); 142 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 143 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 144 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 145 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 146 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 147 148 ic->ic_wme.wme_hipri_switch_hysteresis = 149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 150 151 /* initialize management frame handlers */ 152 ic->ic_send_mgmt = ieee80211_send_mgmt; 153 ic->ic_raw_xmit = null_raw_xmit; 154 155 ieee80211_adhoc_attach(ic); 156 ieee80211_sta_attach(ic); 157 ieee80211_wds_attach(ic); 158 ieee80211_hostap_attach(ic); 159 #ifdef IEEE80211_SUPPORT_MESH 160 ieee80211_mesh_attach(ic); 161 #endif 162 ieee80211_monitor_attach(ic); 163 } 164 165 void 166 ieee80211_proto_detach(struct ieee80211com *ic) 167 { 168 ieee80211_monitor_detach(ic); 169 #ifdef IEEE80211_SUPPORT_MESH 170 ieee80211_mesh_detach(ic); 171 #endif 172 ieee80211_hostap_detach(ic); 173 ieee80211_wds_detach(ic); 174 ieee80211_adhoc_detach(ic); 175 ieee80211_sta_detach(ic); 176 } 177 178 static void 179 null_update_beacon(struct ieee80211vap *vap, int item) 180 { 181 } 182 183 void 184 ieee80211_proto_vattach(struct ieee80211vap *vap) 185 { 186 struct ieee80211com *ic = vap->iv_ic; 187 struct ifnet *ifp = vap->iv_ifp; 188 int i; 189 190 /* override the 802.3 setting */ 191 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen; 192 193 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 194 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 195 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 196 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 197 callout_init(&vap->iv_mgtsend, 1); 198 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 199 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 200 /* 201 * Install default tx rate handling: no fixed rate, lowest 202 * supported rate for mgmt and multicast frames. Default 203 * max retry count. These settings can be changed by the 204 * driver and/or user applications. 205 */ 206 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 207 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 208 209 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 210 211 /* 212 * Setting the management rate to MCS 0 assumes that the 213 * BSS Basic rate set is empty and the BSS Basic MCS set 214 * is not. 215 * 216 * Since we're not checking this, default to the lowest 217 * defined rate for this mode. 218 * 219 * At least one 11n AP (DLINK DIR-825) is reported to drop 220 * some MCS management traffic (eg BA response frames.) 221 * 222 * See also: 9.6.0 of the 802.11n-2009 specification. 223 */ 224 #ifdef NOTYET 225 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 226 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 227 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 228 } else { 229 vap->iv_txparms[i].mgmtrate = 230 rs->rs_rates[0] & IEEE80211_RATE_VAL; 231 vap->iv_txparms[i].mcastrate = 232 rs->rs_rates[0] & IEEE80211_RATE_VAL; 233 } 234 #endif 235 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 236 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 237 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 238 } 239 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 240 241 vap->iv_update_beacon = null_update_beacon; 242 vap->iv_deliver_data = ieee80211_deliver_data; 243 244 /* attach support for operating mode */ 245 ic->ic_vattach[vap->iv_opmode](vap); 246 } 247 248 void 249 ieee80211_proto_vdetach(struct ieee80211vap *vap) 250 { 251 #define FREEAPPIE(ie) do { \ 252 if (ie != NULL) \ 253 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 254 } while (0) 255 /* 256 * Detach operating mode module. 257 */ 258 if (vap->iv_opdetach != NULL) 259 vap->iv_opdetach(vap); 260 /* 261 * This should not be needed as we detach when reseting 262 * the state but be conservative here since the 263 * authenticator may do things like spawn kernel threads. 264 */ 265 if (vap->iv_auth->ia_detach != NULL) 266 vap->iv_auth->ia_detach(vap); 267 /* 268 * Detach any ACL'ator. 269 */ 270 if (vap->iv_acl != NULL) 271 vap->iv_acl->iac_detach(vap); 272 273 FREEAPPIE(vap->iv_appie_beacon); 274 FREEAPPIE(vap->iv_appie_probereq); 275 FREEAPPIE(vap->iv_appie_proberesp); 276 FREEAPPIE(vap->iv_appie_assocreq); 277 FREEAPPIE(vap->iv_appie_assocresp); 278 FREEAPPIE(vap->iv_appie_wpa); 279 #undef FREEAPPIE 280 } 281 282 /* 283 * Simple-minded authenticator module support. 284 */ 285 286 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 287 /* XXX well-known names */ 288 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 289 "wlan_internal", /* IEEE80211_AUTH_NONE */ 290 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 291 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 292 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 293 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 294 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 295 }; 296 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 297 298 static const struct ieee80211_authenticator auth_internal = { 299 .ia_name = "wlan_internal", 300 .ia_attach = NULL, 301 .ia_detach = NULL, 302 .ia_node_join = NULL, 303 .ia_node_leave = NULL, 304 }; 305 306 /* 307 * Setup internal authenticators once; they are never unregistered. 308 */ 309 static void 310 ieee80211_auth_setup(void) 311 { 312 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 313 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 314 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 315 } 316 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 317 318 const struct ieee80211_authenticator * 319 ieee80211_authenticator_get(int auth) 320 { 321 if (auth >= IEEE80211_AUTH_MAX) 322 return NULL; 323 if (authenticators[auth] == NULL) 324 ieee80211_load_module(auth_modnames[auth]); 325 return authenticators[auth]; 326 } 327 328 void 329 ieee80211_authenticator_register(int type, 330 const struct ieee80211_authenticator *auth) 331 { 332 if (type >= IEEE80211_AUTH_MAX) 333 return; 334 authenticators[type] = auth; 335 } 336 337 void 338 ieee80211_authenticator_unregister(int type) 339 { 340 341 if (type >= IEEE80211_AUTH_MAX) 342 return; 343 authenticators[type] = NULL; 344 } 345 346 /* 347 * Very simple-minded ACL module support. 348 */ 349 /* XXX just one for now */ 350 static const struct ieee80211_aclator *acl = NULL; 351 352 void 353 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 354 { 355 printf("wlan: %s acl policy registered\n", iac->iac_name); 356 acl = iac; 357 } 358 359 void 360 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 361 { 362 if (acl == iac) 363 acl = NULL; 364 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 365 } 366 367 const struct ieee80211_aclator * 368 ieee80211_aclator_get(const char *name) 369 { 370 if (acl == NULL) 371 ieee80211_load_module("wlan_acl"); 372 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 373 } 374 375 void 376 ieee80211_print_essid(const uint8_t *essid, int len) 377 { 378 const uint8_t *p; 379 int i; 380 381 if (len > IEEE80211_NWID_LEN) 382 len = IEEE80211_NWID_LEN; 383 /* determine printable or not */ 384 for (i = 0, p = essid; i < len; i++, p++) { 385 if (*p < ' ' || *p > 0x7e) 386 break; 387 } 388 if (i == len) { 389 printf("\""); 390 for (i = 0, p = essid; i < len; i++, p++) 391 printf("%c", *p); 392 printf("\""); 393 } else { 394 printf("0x"); 395 for (i = 0, p = essid; i < len; i++, p++) 396 printf("%02x", *p); 397 } 398 } 399 400 void 401 ieee80211_dump_pkt(struct ieee80211com *ic, 402 const uint8_t *buf, int len, int rate, int rssi) 403 { 404 const struct ieee80211_frame *wh; 405 int i; 406 407 wh = (const struct ieee80211_frame *)buf; 408 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 409 case IEEE80211_FC1_DIR_NODS: 410 printf("NODS %s", ether_sprintf(wh->i_addr2)); 411 printf("->%s", ether_sprintf(wh->i_addr1)); 412 printf("(%s)", ether_sprintf(wh->i_addr3)); 413 break; 414 case IEEE80211_FC1_DIR_TODS: 415 printf("TODS %s", ether_sprintf(wh->i_addr2)); 416 printf("->%s", ether_sprintf(wh->i_addr3)); 417 printf("(%s)", ether_sprintf(wh->i_addr1)); 418 break; 419 case IEEE80211_FC1_DIR_FROMDS: 420 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 421 printf("->%s", ether_sprintf(wh->i_addr1)); 422 printf("(%s)", ether_sprintf(wh->i_addr2)); 423 break; 424 case IEEE80211_FC1_DIR_DSTODS: 425 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 426 printf("->%s", ether_sprintf(wh->i_addr3)); 427 printf("(%s", ether_sprintf(wh->i_addr2)); 428 printf("->%s)", ether_sprintf(wh->i_addr1)); 429 break; 430 } 431 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 432 case IEEE80211_FC0_TYPE_DATA: 433 printf(" data"); 434 break; 435 case IEEE80211_FC0_TYPE_MGT: 436 printf(" %s", ieee80211_mgt_subtype_name[ 437 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 438 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 439 break; 440 default: 441 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 442 break; 443 } 444 if (IEEE80211_QOS_HAS_SEQ(wh)) { 445 const struct ieee80211_qosframe *qwh = 446 (const struct ieee80211_qosframe *)buf; 447 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 448 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 449 } 450 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 451 int off; 452 453 off = ieee80211_anyhdrspace(ic, wh); 454 printf(" WEP [IV %.02x %.02x %.02x", 455 buf[off+0], buf[off+1], buf[off+2]); 456 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 457 printf(" %.02x %.02x %.02x", 458 buf[off+4], buf[off+5], buf[off+6]); 459 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 460 } 461 if (rate >= 0) 462 printf(" %dM", rate / 2); 463 if (rssi >= 0) 464 printf(" +%d", rssi); 465 printf("\n"); 466 if (len > 0) { 467 for (i = 0; i < len; i++) { 468 if ((i & 1) == 0) 469 printf(" "); 470 printf("%02x", buf[i]); 471 } 472 printf("\n"); 473 } 474 } 475 476 static __inline int 477 findrix(const struct ieee80211_rateset *rs, int r) 478 { 479 int i; 480 481 for (i = 0; i < rs->rs_nrates; i++) 482 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 483 return i; 484 return -1; 485 } 486 487 int 488 ieee80211_fix_rate(struct ieee80211_node *ni, 489 struct ieee80211_rateset *nrs, int flags) 490 { 491 #define RV(v) ((v) & IEEE80211_RATE_VAL) 492 struct ieee80211vap *vap = ni->ni_vap; 493 struct ieee80211com *ic = ni->ni_ic; 494 int i, j, rix, error; 495 int okrate, badrate, fixedrate, ucastrate; 496 const struct ieee80211_rateset *srs; 497 uint8_t r; 498 499 error = 0; 500 okrate = badrate = 0; 501 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 502 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 503 /* 504 * Workaround awkwardness with fixed rate. We are called 505 * to check both the legacy rate set and the HT rate set 506 * but we must apply any legacy fixed rate check only to the 507 * legacy rate set and vice versa. We cannot tell what type 508 * of rate set we've been given (legacy or HT) but we can 509 * distinguish the fixed rate type (MCS have 0x80 set). 510 * So to deal with this the caller communicates whether to 511 * check MCS or legacy rate using the flags and we use the 512 * type of any fixed rate to avoid applying an MCS to a 513 * legacy rate and vice versa. 514 */ 515 if (ucastrate & 0x80) { 516 if (flags & IEEE80211_F_DOFRATE) 517 flags &= ~IEEE80211_F_DOFRATE; 518 } else if ((ucastrate & 0x80) == 0) { 519 if (flags & IEEE80211_F_DOFMCS) 520 flags &= ~IEEE80211_F_DOFMCS; 521 } 522 /* NB: required to make MCS match below work */ 523 ucastrate &= IEEE80211_RATE_VAL; 524 } 525 fixedrate = IEEE80211_FIXED_RATE_NONE; 526 /* 527 * XXX we are called to process both MCS and legacy rates; 528 * we must use the appropriate basic rate set or chaos will 529 * ensue; for now callers that want MCS must supply 530 * IEEE80211_F_DOBRS; at some point we'll need to split this 531 * function so there are two variants, one for MCS and one 532 * for legacy rates. 533 */ 534 if (flags & IEEE80211_F_DOBRS) 535 srs = (const struct ieee80211_rateset *) 536 ieee80211_get_suphtrates(ic, ni->ni_chan); 537 else 538 srs = ieee80211_get_suprates(ic, ni->ni_chan); 539 for (i = 0; i < nrs->rs_nrates; ) { 540 if (flags & IEEE80211_F_DOSORT) { 541 /* 542 * Sort rates. 543 */ 544 for (j = i + 1; j < nrs->rs_nrates; j++) { 545 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 546 r = nrs->rs_rates[i]; 547 nrs->rs_rates[i] = nrs->rs_rates[j]; 548 nrs->rs_rates[j] = r; 549 } 550 } 551 } 552 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 553 badrate = r; 554 /* 555 * Check for fixed rate. 556 */ 557 if (r == ucastrate) 558 fixedrate = r; 559 /* 560 * Check against supported rates. 561 */ 562 rix = findrix(srs, r); 563 if (flags & IEEE80211_F_DONEGO) { 564 if (rix < 0) { 565 /* 566 * A rate in the node's rate set is not 567 * supported. If this is a basic rate and we 568 * are operating as a STA then this is an error. 569 * Otherwise we just discard/ignore the rate. 570 */ 571 if ((flags & IEEE80211_F_JOIN) && 572 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 573 error++; 574 } else if ((flags & IEEE80211_F_JOIN) == 0) { 575 /* 576 * Overwrite with the supported rate 577 * value so any basic rate bit is set. 578 */ 579 nrs->rs_rates[i] = srs->rs_rates[rix]; 580 } 581 } 582 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 583 /* 584 * Delete unacceptable rates. 585 */ 586 nrs->rs_nrates--; 587 for (j = i; j < nrs->rs_nrates; j++) 588 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 589 nrs->rs_rates[j] = 0; 590 continue; 591 } 592 if (rix >= 0) 593 okrate = nrs->rs_rates[i]; 594 i++; 595 } 596 if (okrate == 0 || error != 0 || 597 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 598 fixedrate != ucastrate)) { 599 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 600 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 601 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 602 return badrate | IEEE80211_RATE_BASIC; 603 } else 604 return RV(okrate); 605 #undef RV 606 } 607 608 /* 609 * Reset 11g-related state. 610 */ 611 void 612 ieee80211_reset_erp(struct ieee80211com *ic) 613 { 614 ic->ic_flags &= ~IEEE80211_F_USEPROT; 615 ic->ic_nonerpsta = 0; 616 ic->ic_longslotsta = 0; 617 /* 618 * Short slot time is enabled only when operating in 11g 619 * and not in an IBSS. We must also honor whether or not 620 * the driver is capable of doing it. 621 */ 622 ieee80211_set_shortslottime(ic, 623 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 624 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 625 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 626 ic->ic_opmode == IEEE80211_M_HOSTAP && 627 (ic->ic_caps & IEEE80211_C_SHSLOT))); 628 /* 629 * Set short preamble and ERP barker-preamble flags. 630 */ 631 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 632 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 633 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 634 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 635 } else { 636 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 637 ic->ic_flags |= IEEE80211_F_USEBARKER; 638 } 639 } 640 641 /* 642 * Set the short slot time state and notify the driver. 643 */ 644 void 645 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 646 { 647 if (onoff) 648 ic->ic_flags |= IEEE80211_F_SHSLOT; 649 else 650 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 651 /* notify driver */ 652 if (ic->ic_updateslot != NULL) 653 ic->ic_updateslot(ic); 654 } 655 656 /* 657 * Check if the specified rate set supports ERP. 658 * NB: the rate set is assumed to be sorted. 659 */ 660 int 661 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 662 { 663 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 664 int i, j; 665 666 if (rs->rs_nrates < nitems(rates)) 667 return 0; 668 for (i = 0; i < nitems(rates); i++) { 669 for (j = 0; j < rs->rs_nrates; j++) { 670 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 671 if (rates[i] == r) 672 goto next; 673 if (r > rates[i]) 674 return 0; 675 } 676 return 0; 677 next: 678 ; 679 } 680 return 1; 681 } 682 683 /* 684 * Mark the basic rates for the rate table based on the 685 * operating mode. For real 11g we mark all the 11b rates 686 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 687 * 11b rates. There's also a pseudo 11a-mode used to mark only 688 * the basic OFDM rates. 689 */ 690 static void 691 setbasicrates(struct ieee80211_rateset *rs, 692 enum ieee80211_phymode mode, int add) 693 { 694 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 695 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 696 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 697 /* NB: mixed b/g */ 698 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 699 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 700 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 701 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 702 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 703 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 704 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 705 /* NB: mixed b/g */ 706 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 707 }; 708 int i, j; 709 710 for (i = 0; i < rs->rs_nrates; i++) { 711 if (!add) 712 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 713 for (j = 0; j < basic[mode].rs_nrates; j++) 714 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 715 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 716 break; 717 } 718 } 719 } 720 721 /* 722 * Set the basic rates in a rate set. 723 */ 724 void 725 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 726 enum ieee80211_phymode mode) 727 { 728 setbasicrates(rs, mode, 0); 729 } 730 731 /* 732 * Add basic rates to a rate set. 733 */ 734 void 735 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 736 enum ieee80211_phymode mode) 737 { 738 setbasicrates(rs, mode, 1); 739 } 740 741 /* 742 * WME protocol support. 743 * 744 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 745 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 746 * Draft 2.0 Test Plan (Appendix D). 747 * 748 * Static/Dynamic Turbo mode settings come from Atheros. 749 */ 750 typedef struct phyParamType { 751 uint8_t aifsn; 752 uint8_t logcwmin; 753 uint8_t logcwmax; 754 uint16_t txopLimit; 755 uint8_t acm; 756 } paramType; 757 758 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 759 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 760 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 761 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 762 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 763 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 765 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 766 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 767 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 768 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 769 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 770 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 771 }; 772 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 773 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 774 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 775 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 776 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 777 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 779 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 780 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 781 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 782 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 783 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 784 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 785 }; 786 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 787 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 788 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 789 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 790 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 791 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 792 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 793 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 794 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 795 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 796 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 797 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 798 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 799 }; 800 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 801 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 802 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 803 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 804 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 805 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 806 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 807 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 808 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 809 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 810 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 811 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 812 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 813 }; 814 815 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 816 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 817 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 818 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 819 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 820 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 822 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 823 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 824 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 825 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 826 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 827 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 828 }; 829 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 830 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 831 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 832 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 833 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 834 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 835 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 836 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 837 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 838 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 839 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 840 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 841 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 842 }; 843 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 844 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 845 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 846 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 847 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 848 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 849 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 850 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 851 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 852 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 853 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 854 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 855 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 856 }; 857 858 static void 859 _setifsparams(struct wmeParams *wmep, const paramType *phy) 860 { 861 wmep->wmep_aifsn = phy->aifsn; 862 wmep->wmep_logcwmin = phy->logcwmin; 863 wmep->wmep_logcwmax = phy->logcwmax; 864 wmep->wmep_txopLimit = phy->txopLimit; 865 } 866 867 static void 868 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 869 struct wmeParams *wmep, const paramType *phy) 870 { 871 wmep->wmep_acm = phy->acm; 872 _setifsparams(wmep, phy); 873 874 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 875 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 876 ieee80211_wme_acnames[ac], type, 877 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 878 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 879 } 880 881 static void 882 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 883 { 884 struct ieee80211com *ic = vap->iv_ic; 885 struct ieee80211_wme_state *wme = &ic->ic_wme; 886 const paramType *pPhyParam, *pBssPhyParam; 887 struct wmeParams *wmep; 888 enum ieee80211_phymode mode; 889 int i; 890 891 IEEE80211_LOCK_ASSERT(ic); 892 893 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 894 return; 895 896 /* 897 * Clear the wme cap_info field so a qoscount from a previous 898 * vap doesn't confuse later code which only parses the beacon 899 * field and updates hardware when said field changes. 900 * Otherwise the hardware is programmed with defaults, not what 901 * the beacon actually announces. 902 */ 903 wme->wme_wmeChanParams.cap_info = 0; 904 905 /* 906 * Select mode; we can be called early in which case we 907 * always use auto mode. We know we'll be called when 908 * entering the RUN state with bsschan setup properly 909 * so state will eventually get set correctly 910 */ 911 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 912 mode = ieee80211_chan2mode(ic->ic_bsschan); 913 else 914 mode = IEEE80211_MODE_AUTO; 915 for (i = 0; i < WME_NUM_AC; i++) { 916 switch (i) { 917 case WME_AC_BK: 918 pPhyParam = &phyParamForAC_BK[mode]; 919 pBssPhyParam = &phyParamForAC_BK[mode]; 920 break; 921 case WME_AC_VI: 922 pPhyParam = &phyParamForAC_VI[mode]; 923 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 924 break; 925 case WME_AC_VO: 926 pPhyParam = &phyParamForAC_VO[mode]; 927 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 928 break; 929 case WME_AC_BE: 930 default: 931 pPhyParam = &phyParamForAC_BE[mode]; 932 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 933 break; 934 } 935 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 936 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 937 setwmeparams(vap, "chan", i, wmep, pPhyParam); 938 } else { 939 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 940 } 941 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 942 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 943 } 944 /* NB: check ic_bss to avoid NULL deref on initial attach */ 945 if (vap->iv_bss != NULL) { 946 /* 947 * Calculate agressive mode switching threshold based 948 * on beacon interval. This doesn't need locking since 949 * we're only called before entering the RUN state at 950 * which point we start sending beacon frames. 951 */ 952 wme->wme_hipri_switch_thresh = 953 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 954 wme->wme_flags &= ~WME_F_AGGRMODE; 955 ieee80211_wme_updateparams(vap); 956 } 957 } 958 959 void 960 ieee80211_wme_initparams(struct ieee80211vap *vap) 961 { 962 struct ieee80211com *ic = vap->iv_ic; 963 964 IEEE80211_LOCK(ic); 965 ieee80211_wme_initparams_locked(vap); 966 IEEE80211_UNLOCK(ic); 967 } 968 969 /* 970 * Update WME parameters for ourself and the BSS. 971 */ 972 void 973 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 974 { 975 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 976 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 977 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 978 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 979 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 980 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 981 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 982 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 983 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 984 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 985 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 986 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 987 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 988 }; 989 struct ieee80211com *ic = vap->iv_ic; 990 struct ieee80211_wme_state *wme = &ic->ic_wme; 991 const struct wmeParams *wmep; 992 struct wmeParams *chanp, *bssp; 993 enum ieee80211_phymode mode; 994 int i; 995 int do_aggrmode = 0; 996 997 /* 998 * Set up the channel access parameters for the physical 999 * device. First populate the configured settings. 1000 */ 1001 for (i = 0; i < WME_NUM_AC; i++) { 1002 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1003 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1004 chanp->wmep_aifsn = wmep->wmep_aifsn; 1005 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1006 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1007 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1008 1009 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1010 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1011 chanp->wmep_aifsn = wmep->wmep_aifsn; 1012 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1013 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1014 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1015 } 1016 1017 /* 1018 * Select mode; we can be called early in which case we 1019 * always use auto mode. We know we'll be called when 1020 * entering the RUN state with bsschan setup properly 1021 * so state will eventually get set correctly 1022 */ 1023 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1024 mode = ieee80211_chan2mode(ic->ic_bsschan); 1025 else 1026 mode = IEEE80211_MODE_AUTO; 1027 1028 /* 1029 * This implements agressive mode as found in certain 1030 * vendors' AP's. When there is significant high 1031 * priority (VI/VO) traffic in the BSS throttle back BE 1032 * traffic by using conservative parameters. Otherwise 1033 * BE uses agressive params to optimize performance of 1034 * legacy/non-QoS traffic. 1035 */ 1036 1037 /* Hostap? Only if aggressive mode is enabled */ 1038 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1039 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1040 do_aggrmode = 1; 1041 1042 /* 1043 * Station? Only if we're in a non-QoS BSS. 1044 */ 1045 else if ((vap->iv_opmode == IEEE80211_M_STA && 1046 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1047 do_aggrmode = 1; 1048 1049 /* 1050 * IBSS? Only if we we have WME enabled. 1051 */ 1052 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1053 (vap->iv_flags & IEEE80211_F_WME)) 1054 do_aggrmode = 1; 1055 1056 /* 1057 * If WME is disabled on this VAP, default to aggressive mode 1058 * regardless of the configuration. 1059 */ 1060 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1061 do_aggrmode = 1; 1062 1063 /* XXX WDS? */ 1064 1065 /* XXX MBSS? */ 1066 1067 if (do_aggrmode) { 1068 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1069 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1070 1071 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1072 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1073 aggrParam[mode].logcwmin; 1074 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1075 aggrParam[mode].logcwmax; 1076 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1077 (vap->iv_flags & IEEE80211_F_BURST) ? 1078 aggrParam[mode].txopLimit : 0; 1079 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1080 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1081 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1082 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1083 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1084 } 1085 1086 1087 /* 1088 * Change the contention window based on the number of associated 1089 * stations. If the number of associated stations is 1 and 1090 * aggressive mode is enabled, lower the contention window even 1091 * further. 1092 */ 1093 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1094 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1095 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1096 [IEEE80211_MODE_AUTO] = 3, 1097 [IEEE80211_MODE_11A] = 3, 1098 [IEEE80211_MODE_11B] = 4, 1099 [IEEE80211_MODE_11G] = 3, 1100 [IEEE80211_MODE_FH] = 4, 1101 [IEEE80211_MODE_TURBO_A] = 3, 1102 [IEEE80211_MODE_TURBO_G] = 3, 1103 [IEEE80211_MODE_STURBO_A] = 3, 1104 [IEEE80211_MODE_HALF] = 3, 1105 [IEEE80211_MODE_QUARTER] = 3, 1106 [IEEE80211_MODE_11NA] = 3, 1107 [IEEE80211_MODE_11NG] = 3, 1108 }; 1109 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1110 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1111 1112 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1113 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1114 "update %s (chan+bss) logcwmin %u\n", 1115 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1116 } 1117 1118 /* 1119 * Arrange for the beacon update. 1120 * 1121 * XXX what about MBSS, WDS? 1122 */ 1123 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1124 || vap->iv_opmode == IEEE80211_M_IBSS) { 1125 /* 1126 * Arrange for a beacon update and bump the parameter 1127 * set number so associated stations load the new values. 1128 */ 1129 wme->wme_bssChanParams.cap_info = 1130 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1131 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1132 } 1133 1134 wme->wme_update(ic); 1135 1136 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1137 "%s: WME params updated, cap_info 0x%x\n", __func__, 1138 vap->iv_opmode == IEEE80211_M_STA ? 1139 wme->wme_wmeChanParams.cap_info : 1140 wme->wme_bssChanParams.cap_info); 1141 } 1142 1143 void 1144 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1145 { 1146 struct ieee80211com *ic = vap->iv_ic; 1147 1148 if (ic->ic_caps & IEEE80211_C_WME) { 1149 IEEE80211_LOCK(ic); 1150 ieee80211_wme_updateparams_locked(vap); 1151 IEEE80211_UNLOCK(ic); 1152 } 1153 } 1154 1155 static void 1156 parent_updown(void *arg, int npending) 1157 { 1158 struct ifnet *parent = arg; 1159 1160 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL); 1161 } 1162 1163 static void 1164 update_mcast(void *arg, int npending) 1165 { 1166 struct ieee80211com *ic = arg; 1167 1168 ic->ic_update_mcast(ic); 1169 } 1170 1171 static void 1172 update_promisc(void *arg, int npending) 1173 { 1174 struct ieee80211com *ic = arg; 1175 1176 ic->ic_update_promisc(ic); 1177 } 1178 1179 static void 1180 update_channel(void *arg, int npending) 1181 { 1182 struct ieee80211com *ic = arg; 1183 1184 ic->ic_set_channel(ic); 1185 ieee80211_radiotap_chan_change(ic); 1186 } 1187 1188 static void 1189 update_chw(void *arg, int npending) 1190 { 1191 struct ieee80211com *ic = arg; 1192 1193 /* 1194 * XXX should we defer the channel width _config_ update until now? 1195 */ 1196 ic->ic_update_chw(ic); 1197 } 1198 1199 /* 1200 * Block until the parent is in a known state. This is 1201 * used after any operations that dispatch a task (e.g. 1202 * to auto-configure the parent device up/down). 1203 */ 1204 void 1205 ieee80211_waitfor_parent(struct ieee80211com *ic) 1206 { 1207 taskqueue_block(ic->ic_tq); 1208 ieee80211_draintask(ic, &ic->ic_parent_task); 1209 ieee80211_draintask(ic, &ic->ic_mcast_task); 1210 ieee80211_draintask(ic, &ic->ic_promisc_task); 1211 ieee80211_draintask(ic, &ic->ic_chan_task); 1212 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1213 ieee80211_draintask(ic, &ic->ic_chw_task); 1214 taskqueue_unblock(ic->ic_tq); 1215 } 1216 1217 /* 1218 * Start a vap running. If this is the first vap to be 1219 * set running on the underlying device then we 1220 * automatically bring the device up. 1221 */ 1222 void 1223 ieee80211_start_locked(struct ieee80211vap *vap) 1224 { 1225 struct ifnet *ifp = vap->iv_ifp; 1226 struct ieee80211com *ic = vap->iv_ic; 1227 struct ifnet *parent = ic->ic_ifp; 1228 1229 IEEE80211_LOCK_ASSERT(ic); 1230 1231 IEEE80211_DPRINTF(vap, 1232 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1233 "start running, %d vaps running\n", ic->ic_nrunning); 1234 1235 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1236 /* 1237 * Mark us running. Note that it's ok to do this first; 1238 * if we need to bring the parent device up we defer that 1239 * to avoid dropping the com lock. We expect the device 1240 * to respond to being marked up by calling back into us 1241 * through ieee80211_start_all at which point we'll come 1242 * back in here and complete the work. 1243 */ 1244 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1245 /* 1246 * We are not running; if this we are the first vap 1247 * to be brought up auto-up the parent if necessary. 1248 */ 1249 if (ic->ic_nrunning++ == 0 && 1250 (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1251 IEEE80211_DPRINTF(vap, 1252 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1253 "%s: up parent %s\n", __func__, parent->if_xname); 1254 parent->if_flags |= IFF_UP; 1255 ieee80211_runtask(ic, &ic->ic_parent_task); 1256 return; 1257 } 1258 } 1259 /* 1260 * If the parent is up and running, then kick the 1261 * 802.11 state machine as appropriate. 1262 */ 1263 if ((parent->if_drv_flags & IFF_DRV_RUNNING) && 1264 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1265 if (vap->iv_opmode == IEEE80211_M_STA) { 1266 #if 0 1267 /* XXX bypasses scan too easily; disable for now */ 1268 /* 1269 * Try to be intelligent about clocking the state 1270 * machine. If we're currently in RUN state then 1271 * we should be able to apply any new state/parameters 1272 * simply by re-associating. Otherwise we need to 1273 * re-scan to select an appropriate ap. 1274 */ 1275 if (vap->iv_state >= IEEE80211_S_RUN) 1276 ieee80211_new_state_locked(vap, 1277 IEEE80211_S_ASSOC, 1); 1278 else 1279 #endif 1280 ieee80211_new_state_locked(vap, 1281 IEEE80211_S_SCAN, 0); 1282 } else { 1283 /* 1284 * For monitor+wds mode there's nothing to do but 1285 * start running. Otherwise if this is the first 1286 * vap to be brought up, start a scan which may be 1287 * preempted if the station is locked to a particular 1288 * channel. 1289 */ 1290 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1291 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1292 vap->iv_opmode == IEEE80211_M_WDS) 1293 ieee80211_new_state_locked(vap, 1294 IEEE80211_S_RUN, -1); 1295 else 1296 ieee80211_new_state_locked(vap, 1297 IEEE80211_S_SCAN, 0); 1298 } 1299 } 1300 } 1301 1302 /* 1303 * Start a single vap. 1304 */ 1305 void 1306 ieee80211_init(void *arg) 1307 { 1308 struct ieee80211vap *vap = arg; 1309 1310 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1311 "%s\n", __func__); 1312 1313 IEEE80211_LOCK(vap->iv_ic); 1314 ieee80211_start_locked(vap); 1315 IEEE80211_UNLOCK(vap->iv_ic); 1316 } 1317 1318 /* 1319 * Start all runnable vap's on a device. 1320 */ 1321 void 1322 ieee80211_start_all(struct ieee80211com *ic) 1323 { 1324 struct ieee80211vap *vap; 1325 1326 IEEE80211_LOCK(ic); 1327 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1328 struct ifnet *ifp = vap->iv_ifp; 1329 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1330 ieee80211_start_locked(vap); 1331 } 1332 IEEE80211_UNLOCK(ic); 1333 } 1334 1335 /* 1336 * Stop a vap. We force it down using the state machine 1337 * then mark it's ifnet not running. If this is the last 1338 * vap running on the underlying device then we close it 1339 * too to insure it will be properly initialized when the 1340 * next vap is brought up. 1341 */ 1342 void 1343 ieee80211_stop_locked(struct ieee80211vap *vap) 1344 { 1345 struct ieee80211com *ic = vap->iv_ic; 1346 struct ifnet *ifp = vap->iv_ifp; 1347 struct ifnet *parent = ic->ic_ifp; 1348 1349 IEEE80211_LOCK_ASSERT(ic); 1350 1351 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1352 "stop running, %d vaps running\n", ic->ic_nrunning); 1353 1354 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1355 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1356 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1357 if (--ic->ic_nrunning == 0 && 1358 (parent->if_drv_flags & IFF_DRV_RUNNING)) { 1359 IEEE80211_DPRINTF(vap, 1360 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1361 "down parent %s\n", parent->if_xname); 1362 parent->if_flags &= ~IFF_UP; 1363 ieee80211_runtask(ic, &ic->ic_parent_task); 1364 } 1365 } 1366 } 1367 1368 void 1369 ieee80211_stop(struct ieee80211vap *vap) 1370 { 1371 struct ieee80211com *ic = vap->iv_ic; 1372 1373 IEEE80211_LOCK(ic); 1374 ieee80211_stop_locked(vap); 1375 IEEE80211_UNLOCK(ic); 1376 } 1377 1378 /* 1379 * Stop all vap's running on a device. 1380 */ 1381 void 1382 ieee80211_stop_all(struct ieee80211com *ic) 1383 { 1384 struct ieee80211vap *vap; 1385 1386 IEEE80211_LOCK(ic); 1387 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1388 struct ifnet *ifp = vap->iv_ifp; 1389 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1390 ieee80211_stop_locked(vap); 1391 } 1392 IEEE80211_UNLOCK(ic); 1393 1394 ieee80211_waitfor_parent(ic); 1395 } 1396 1397 /* 1398 * Stop all vap's running on a device and arrange 1399 * for those that were running to be resumed. 1400 */ 1401 void 1402 ieee80211_suspend_all(struct ieee80211com *ic) 1403 { 1404 struct ieee80211vap *vap; 1405 1406 IEEE80211_LOCK(ic); 1407 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1408 struct ifnet *ifp = vap->iv_ifp; 1409 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1410 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1411 ieee80211_stop_locked(vap); 1412 } 1413 } 1414 IEEE80211_UNLOCK(ic); 1415 1416 ieee80211_waitfor_parent(ic); 1417 } 1418 1419 /* 1420 * Start all vap's marked for resume. 1421 */ 1422 void 1423 ieee80211_resume_all(struct ieee80211com *ic) 1424 { 1425 struct ieee80211vap *vap; 1426 1427 IEEE80211_LOCK(ic); 1428 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1429 struct ifnet *ifp = vap->iv_ifp; 1430 if (!IFNET_IS_UP_RUNNING(ifp) && 1431 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1432 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1433 ieee80211_start_locked(vap); 1434 } 1435 } 1436 IEEE80211_UNLOCK(ic); 1437 } 1438 1439 void 1440 ieee80211_beacon_miss(struct ieee80211com *ic) 1441 { 1442 IEEE80211_LOCK(ic); 1443 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1444 /* Process in a taskq, the handler may reenter the driver */ 1445 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1446 } 1447 IEEE80211_UNLOCK(ic); 1448 } 1449 1450 static void 1451 beacon_miss(void *arg, int npending) 1452 { 1453 struct ieee80211com *ic = arg; 1454 struct ieee80211vap *vap; 1455 1456 IEEE80211_LOCK(ic); 1457 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1458 /* 1459 * We only pass events through for sta vap's in RUN state; 1460 * may be too restrictive but for now this saves all the 1461 * handlers duplicating these checks. 1462 */ 1463 if (vap->iv_opmode == IEEE80211_M_STA && 1464 vap->iv_state >= IEEE80211_S_RUN && 1465 vap->iv_bmiss != NULL) 1466 vap->iv_bmiss(vap); 1467 } 1468 IEEE80211_UNLOCK(ic); 1469 } 1470 1471 static void 1472 beacon_swmiss(void *arg, int npending) 1473 { 1474 struct ieee80211vap *vap = arg; 1475 struct ieee80211com *ic = vap->iv_ic; 1476 1477 IEEE80211_LOCK(ic); 1478 if (vap->iv_state == IEEE80211_S_RUN) { 1479 /* XXX Call multiple times if npending > zero? */ 1480 vap->iv_bmiss(vap); 1481 } 1482 IEEE80211_UNLOCK(ic); 1483 } 1484 1485 /* 1486 * Software beacon miss handling. Check if any beacons 1487 * were received in the last period. If not post a 1488 * beacon miss; otherwise reset the counter. 1489 */ 1490 void 1491 ieee80211_swbmiss(void *arg) 1492 { 1493 struct ieee80211vap *vap = arg; 1494 struct ieee80211com *ic = vap->iv_ic; 1495 1496 IEEE80211_LOCK_ASSERT(ic); 1497 1498 /* XXX sleep state? */ 1499 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1500 ("wrong state %d", vap->iv_state)); 1501 1502 if (ic->ic_flags & IEEE80211_F_SCAN) { 1503 /* 1504 * If scanning just ignore and reset state. If we get a 1505 * bmiss after coming out of scan because we haven't had 1506 * time to receive a beacon then we should probe the AP 1507 * before posting a real bmiss (unless iv_bmiss_max has 1508 * been artifiically lowered). A cleaner solution might 1509 * be to disable the timer on scan start/end but to handle 1510 * case of multiple sta vap's we'd need to disable the 1511 * timers of all affected vap's. 1512 */ 1513 vap->iv_swbmiss_count = 0; 1514 } else if (vap->iv_swbmiss_count == 0) { 1515 if (vap->iv_bmiss != NULL) 1516 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1517 } else 1518 vap->iv_swbmiss_count = 0; 1519 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1520 ieee80211_swbmiss, vap); 1521 } 1522 1523 /* 1524 * Start an 802.11h channel switch. We record the parameters, 1525 * mark the operation pending, notify each vap through the 1526 * beacon update mechanism so it can update the beacon frame 1527 * contents, and then switch vap's to CSA state to block outbound 1528 * traffic. Devices that handle CSA directly can use the state 1529 * switch to do the right thing so long as they call 1530 * ieee80211_csa_completeswitch when it's time to complete the 1531 * channel change. Devices that depend on the net80211 layer can 1532 * use ieee80211_beacon_update to handle the countdown and the 1533 * channel switch. 1534 */ 1535 void 1536 ieee80211_csa_startswitch(struct ieee80211com *ic, 1537 struct ieee80211_channel *c, int mode, int count) 1538 { 1539 struct ieee80211vap *vap; 1540 1541 IEEE80211_LOCK_ASSERT(ic); 1542 1543 ic->ic_csa_newchan = c; 1544 ic->ic_csa_mode = mode; 1545 ic->ic_csa_count = count; 1546 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1547 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1548 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1549 vap->iv_opmode == IEEE80211_M_IBSS || 1550 vap->iv_opmode == IEEE80211_M_MBSS) 1551 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1552 /* switch to CSA state to block outbound traffic */ 1553 if (vap->iv_state == IEEE80211_S_RUN) 1554 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1555 } 1556 ieee80211_notify_csa(ic, c, mode, count); 1557 } 1558 1559 /* 1560 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1561 * This is called by both the completion and cancellation functions 1562 * so each VAP is placed back in the RUN state and can thus transmit. 1563 */ 1564 static void 1565 csa_completeswitch(struct ieee80211com *ic) 1566 { 1567 struct ieee80211vap *vap; 1568 1569 ic->ic_csa_newchan = NULL; 1570 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1571 1572 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1573 if (vap->iv_state == IEEE80211_S_CSA) 1574 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1575 } 1576 1577 /* 1578 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1579 * We clear state and move all vap's in CSA state to RUN state 1580 * so they can again transmit. 1581 * 1582 * Although this may not be completely correct, update the BSS channel 1583 * for each VAP to the newly configured channel. The setcurchan sets 1584 * the current operating channel for the interface (so the radio does 1585 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1586 * reported information via ioctl. 1587 */ 1588 void 1589 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1590 { 1591 struct ieee80211vap *vap; 1592 1593 IEEE80211_LOCK_ASSERT(ic); 1594 1595 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1596 1597 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1598 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1599 if (vap->iv_state == IEEE80211_S_CSA) 1600 vap->iv_bss->ni_chan = ic->ic_curchan; 1601 1602 csa_completeswitch(ic); 1603 } 1604 1605 /* 1606 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1607 * We clear state and move all vap's in CSA state to RUN state 1608 * so they can again transmit. 1609 */ 1610 void 1611 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1612 { 1613 IEEE80211_LOCK_ASSERT(ic); 1614 1615 csa_completeswitch(ic); 1616 } 1617 1618 /* 1619 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1620 * We clear state and move all vap's in CAC state to RUN state. 1621 */ 1622 void 1623 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1624 { 1625 struct ieee80211com *ic = vap0->iv_ic; 1626 struct ieee80211vap *vap; 1627 1628 IEEE80211_LOCK(ic); 1629 /* 1630 * Complete CAC state change for lead vap first; then 1631 * clock all the other vap's waiting. 1632 */ 1633 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1634 ("wrong state %d", vap0->iv_state)); 1635 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1636 1637 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1638 if (vap->iv_state == IEEE80211_S_CAC) 1639 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1640 IEEE80211_UNLOCK(ic); 1641 } 1642 1643 /* 1644 * Force all vap's other than the specified vap to the INIT state 1645 * and mark them as waiting for a scan to complete. These vaps 1646 * will be brought up when the scan completes and the scanning vap 1647 * reaches RUN state by wakeupwaiting. 1648 */ 1649 static void 1650 markwaiting(struct ieee80211vap *vap0) 1651 { 1652 struct ieee80211com *ic = vap0->iv_ic; 1653 struct ieee80211vap *vap; 1654 1655 IEEE80211_LOCK_ASSERT(ic); 1656 1657 /* 1658 * A vap list entry can not disappear since we are running on the 1659 * taskqueue and a vap destroy will queue and drain another state 1660 * change task. 1661 */ 1662 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1663 if (vap == vap0) 1664 continue; 1665 if (vap->iv_state != IEEE80211_S_INIT) { 1666 /* NB: iv_newstate may drop the lock */ 1667 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1668 IEEE80211_LOCK_ASSERT(ic); 1669 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1670 } 1671 } 1672 } 1673 1674 /* 1675 * Wakeup all vap's waiting for a scan to complete. This is the 1676 * companion to markwaiting (above) and is used to coordinate 1677 * multiple vaps scanning. 1678 * This is called from the state taskqueue. 1679 */ 1680 static void 1681 wakeupwaiting(struct ieee80211vap *vap0) 1682 { 1683 struct ieee80211com *ic = vap0->iv_ic; 1684 struct ieee80211vap *vap; 1685 1686 IEEE80211_LOCK_ASSERT(ic); 1687 1688 /* 1689 * A vap list entry can not disappear since we are running on the 1690 * taskqueue and a vap destroy will queue and drain another state 1691 * change task. 1692 */ 1693 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1694 if (vap == vap0) 1695 continue; 1696 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1697 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1698 /* NB: sta's cannot go INIT->RUN */ 1699 /* NB: iv_newstate may drop the lock */ 1700 vap->iv_newstate(vap, 1701 vap->iv_opmode == IEEE80211_M_STA ? 1702 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1703 IEEE80211_LOCK_ASSERT(ic); 1704 } 1705 } 1706 } 1707 1708 /* 1709 * Handle post state change work common to all operating modes. 1710 */ 1711 static void 1712 ieee80211_newstate_cb(void *xvap, int npending) 1713 { 1714 struct ieee80211vap *vap = xvap; 1715 struct ieee80211com *ic = vap->iv_ic; 1716 enum ieee80211_state nstate, ostate; 1717 int arg, rc; 1718 1719 IEEE80211_LOCK(ic); 1720 nstate = vap->iv_nstate; 1721 arg = vap->iv_nstate_arg; 1722 1723 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1724 /* 1725 * We have been requested to drop back to the INIT before 1726 * proceeding to the new state. 1727 */ 1728 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1729 "%s: %s -> %s arg %d\n", __func__, 1730 ieee80211_state_name[vap->iv_state], 1731 ieee80211_state_name[IEEE80211_S_INIT], arg); 1732 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1733 IEEE80211_LOCK_ASSERT(ic); 1734 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1735 } 1736 1737 ostate = vap->iv_state; 1738 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1739 /* 1740 * SCAN was forced; e.g. on beacon miss. Force other running 1741 * vap's to INIT state and mark them as waiting for the scan to 1742 * complete. This insures they don't interfere with our 1743 * scanning. Since we are single threaded the vaps can not 1744 * transition again while we are executing. 1745 * 1746 * XXX not always right, assumes ap follows sta 1747 */ 1748 markwaiting(vap); 1749 } 1750 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1751 "%s: %s -> %s arg %d\n", __func__, 1752 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1753 1754 rc = vap->iv_newstate(vap, nstate, arg); 1755 IEEE80211_LOCK_ASSERT(ic); 1756 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1757 if (rc != 0) { 1758 /* State transition failed */ 1759 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1760 KASSERT(nstate != IEEE80211_S_INIT, 1761 ("INIT state change failed")); 1762 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1763 "%s: %s returned error %d\n", __func__, 1764 ieee80211_state_name[nstate], rc); 1765 goto done; 1766 } 1767 1768 /* No actual transition, skip post processing */ 1769 if (ostate == nstate) 1770 goto done; 1771 1772 if (nstate == IEEE80211_S_RUN) { 1773 /* 1774 * OACTIVE may be set on the vap if the upper layer 1775 * tried to transmit (e.g. IPv6 NDP) before we reach 1776 * RUN state. Clear it and restart xmit. 1777 * 1778 * Note this can also happen as a result of SLEEP->RUN 1779 * (i.e. coming out of power save mode). 1780 */ 1781 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1782 1783 /* 1784 * XXX TODO Kick-start a VAP queue - this should be a method! 1785 */ 1786 1787 /* bring up any vaps waiting on us */ 1788 wakeupwaiting(vap); 1789 } else if (nstate == IEEE80211_S_INIT) { 1790 /* 1791 * Flush the scan cache if we did the last scan (XXX?) 1792 * and flush any frames on send queues from this vap. 1793 * Note the mgt q is used only for legacy drivers and 1794 * will go away shortly. 1795 */ 1796 ieee80211_scan_flush(vap); 1797 1798 /* 1799 * XXX TODO: ic/vap queue flush 1800 */ 1801 } 1802 done: 1803 IEEE80211_UNLOCK(ic); 1804 } 1805 1806 /* 1807 * Public interface for initiating a state machine change. 1808 * This routine single-threads the request and coordinates 1809 * the scheduling of multiple vaps for the purpose of selecting 1810 * an operating channel. Specifically the following scenarios 1811 * are handled: 1812 * o only one vap can be selecting a channel so on transition to 1813 * SCAN state if another vap is already scanning then 1814 * mark the caller for later processing and return without 1815 * doing anything (XXX? expectations by caller of synchronous operation) 1816 * o only one vap can be doing CAC of a channel so on transition to 1817 * CAC state if another vap is already scanning for radar then 1818 * mark the caller for later processing and return without 1819 * doing anything (XXX? expectations by caller of synchronous operation) 1820 * o if another vap is already running when a request is made 1821 * to SCAN then an operating channel has been chosen; bypass 1822 * the scan and just join the channel 1823 * 1824 * Note that the state change call is done through the iv_newstate 1825 * method pointer so any driver routine gets invoked. The driver 1826 * will normally call back into operating mode-specific 1827 * ieee80211_newstate routines (below) unless it needs to completely 1828 * bypass the state machine (e.g. because the firmware has it's 1829 * own idea how things should work). Bypassing the net80211 layer 1830 * is usually a mistake and indicates lack of proper integration 1831 * with the net80211 layer. 1832 */ 1833 int 1834 ieee80211_new_state_locked(struct ieee80211vap *vap, 1835 enum ieee80211_state nstate, int arg) 1836 { 1837 struct ieee80211com *ic = vap->iv_ic; 1838 struct ieee80211vap *vp; 1839 enum ieee80211_state ostate; 1840 int nrunning, nscanning; 1841 1842 IEEE80211_LOCK_ASSERT(ic); 1843 1844 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1845 if (vap->iv_nstate == IEEE80211_S_INIT) { 1846 /* 1847 * XXX The vap is being stopped, do no allow any other 1848 * state changes until this is completed. 1849 */ 1850 return -1; 1851 } else if (vap->iv_state != vap->iv_nstate) { 1852 #if 0 1853 /* Warn if the previous state hasn't completed. */ 1854 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1855 "%s: pending %s -> %s transition lost\n", __func__, 1856 ieee80211_state_name[vap->iv_state], 1857 ieee80211_state_name[vap->iv_nstate]); 1858 #else 1859 /* XXX temporarily enable to identify issues */ 1860 if_printf(vap->iv_ifp, 1861 "%s: pending %s -> %s transition lost\n", 1862 __func__, ieee80211_state_name[vap->iv_state], 1863 ieee80211_state_name[vap->iv_nstate]); 1864 #endif 1865 } 1866 } 1867 1868 nrunning = nscanning = 0; 1869 /* XXX can track this state instead of calculating */ 1870 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1871 if (vp != vap) { 1872 if (vp->iv_state >= IEEE80211_S_RUN) 1873 nrunning++; 1874 /* XXX doesn't handle bg scan */ 1875 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1876 else if (vp->iv_state > IEEE80211_S_INIT) 1877 nscanning++; 1878 } 1879 } 1880 ostate = vap->iv_state; 1881 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1882 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1883 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1884 nrunning, nscanning); 1885 switch (nstate) { 1886 case IEEE80211_S_SCAN: 1887 if (ostate == IEEE80211_S_INIT) { 1888 /* 1889 * INIT -> SCAN happens on initial bringup. 1890 */ 1891 KASSERT(!(nscanning && nrunning), 1892 ("%d scanning and %d running", nscanning, nrunning)); 1893 if (nscanning) { 1894 /* 1895 * Someone is scanning, defer our state 1896 * change until the work has completed. 1897 */ 1898 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1899 "%s: defer %s -> %s\n", 1900 __func__, ieee80211_state_name[ostate], 1901 ieee80211_state_name[nstate]); 1902 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1903 return 0; 1904 } 1905 if (nrunning) { 1906 /* 1907 * Someone is operating; just join the channel 1908 * they have chosen. 1909 */ 1910 /* XXX kill arg? */ 1911 /* XXX check each opmode, adhoc? */ 1912 if (vap->iv_opmode == IEEE80211_M_STA) 1913 nstate = IEEE80211_S_SCAN; 1914 else 1915 nstate = IEEE80211_S_RUN; 1916 #ifdef IEEE80211_DEBUG 1917 if (nstate != IEEE80211_S_SCAN) { 1918 IEEE80211_DPRINTF(vap, 1919 IEEE80211_MSG_STATE, 1920 "%s: override, now %s -> %s\n", 1921 __func__, 1922 ieee80211_state_name[ostate], 1923 ieee80211_state_name[nstate]); 1924 } 1925 #endif 1926 } 1927 } 1928 break; 1929 case IEEE80211_S_RUN: 1930 if (vap->iv_opmode == IEEE80211_M_WDS && 1931 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1932 nscanning) { 1933 /* 1934 * Legacy WDS with someone else scanning; don't 1935 * go online until that completes as we should 1936 * follow the other vap to the channel they choose. 1937 */ 1938 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1939 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1940 ieee80211_state_name[ostate], 1941 ieee80211_state_name[nstate]); 1942 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1943 return 0; 1944 } 1945 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1946 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1947 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1948 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1949 /* 1950 * This is a DFS channel, transition to CAC state 1951 * instead of RUN. This allows us to initiate 1952 * Channel Availability Check (CAC) as specified 1953 * by 11h/DFS. 1954 */ 1955 nstate = IEEE80211_S_CAC; 1956 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1957 "%s: override %s -> %s (DFS)\n", __func__, 1958 ieee80211_state_name[ostate], 1959 ieee80211_state_name[nstate]); 1960 } 1961 break; 1962 case IEEE80211_S_INIT: 1963 /* cancel any scan in progress */ 1964 ieee80211_cancel_scan(vap); 1965 if (ostate == IEEE80211_S_INIT ) { 1966 /* XXX don't believe this */ 1967 /* INIT -> INIT. nothing to do */ 1968 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1969 } 1970 /* fall thru... */ 1971 default: 1972 break; 1973 } 1974 /* defer the state change to a thread */ 1975 vap->iv_nstate = nstate; 1976 vap->iv_nstate_arg = arg; 1977 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 1978 ieee80211_runtask(ic, &vap->iv_nstate_task); 1979 return EINPROGRESS; 1980 } 1981 1982 int 1983 ieee80211_new_state(struct ieee80211vap *vap, 1984 enum ieee80211_state nstate, int arg) 1985 { 1986 struct ieee80211com *ic = vap->iv_ic; 1987 int rc; 1988 1989 IEEE80211_LOCK(ic); 1990 rc = ieee80211_new_state_locked(vap, nstate, arg); 1991 IEEE80211_UNLOCK(ic); 1992 return rc; 1993 } 1994