xref: /freebsd/sys/net80211/ieee80211_proto.c (revision f37852c17391fdf0e8309bcf684384dd0d854e43)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * Copyright (c) 2012 IEEE
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>		/* XXX for ether_sprintf */
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_adhoc.h>
53 #include <net80211/ieee80211_sta.h>
54 #include <net80211/ieee80211_hostap.h>
55 #include <net80211/ieee80211_wds.h>
56 #ifdef IEEE80211_SUPPORT_MESH
57 #include <net80211/ieee80211_mesh.h>
58 #endif
59 #include <net80211/ieee80211_monitor.h>
60 #include <net80211/ieee80211_input.h>
61 
62 /* XXX tunables */
63 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
64 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
65 
66 const char *mgt_subtype_name[] = {
67 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
68 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
69 	"beacon",	"atim",		"disassoc",	"auth",
70 	"deauth",	"action",	"action_noack",	"reserved#15"
71 };
72 const char *ctl_subtype_name[] = {
73 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
74 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
75 	"bar",		"ba",		"ps_poll",	"rts",
76 	"cts",		"ack",		"cf_end",	"cf_end_ack"
77 };
78 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
79 	"IBSS",		/* IEEE80211_M_IBSS */
80 	"STA",		/* IEEE80211_M_STA */
81 	"WDS",		/* IEEE80211_M_WDS */
82 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
83 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
84 	"MONITOR",	/* IEEE80211_M_MONITOR */
85 	"MBSS"		/* IEEE80211_M_MBSS */
86 };
87 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
88 	"INIT",		/* IEEE80211_S_INIT */
89 	"SCAN",		/* IEEE80211_S_SCAN */
90 	"AUTH",		/* IEEE80211_S_AUTH */
91 	"ASSOC",	/* IEEE80211_S_ASSOC */
92 	"CAC",		/* IEEE80211_S_CAC */
93 	"RUN",		/* IEEE80211_S_RUN */
94 	"CSA",		/* IEEE80211_S_CSA */
95 	"SLEEP",	/* IEEE80211_S_SLEEP */
96 };
97 const char *ieee80211_wme_acnames[] = {
98 	"WME_AC_BE",
99 	"WME_AC_BK",
100 	"WME_AC_VI",
101 	"WME_AC_VO",
102 	"WME_UPSD",
103 };
104 
105 
106 /*
107  * Reason code descriptions were (mostly) obtained from
108  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109  */
110 const char *
111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 	switch (reason) {
114 	case IEEE80211_REASON_UNSPECIFIED:
115 		return ("unspecified");
116 	case IEEE80211_REASON_AUTH_EXPIRE:
117 		return ("previous authentication is expired");
118 	case IEEE80211_REASON_AUTH_LEAVE:
119 		return ("sending STA is leaving/has left IBSS or ESS");
120 	case IEEE80211_REASON_ASSOC_EXPIRE:
121 		return ("disassociated due to inactivity");
122 	case IEEE80211_REASON_ASSOC_TOOMANY:
123 		return ("too many associated STAs");
124 	case IEEE80211_REASON_NOT_AUTHED:
125 		return ("class 2 frame received from nonauthenticated STA");
126 	case IEEE80211_REASON_NOT_ASSOCED:
127 		return ("class 3 frame received from nonassociated STA");
128 	case IEEE80211_REASON_ASSOC_LEAVE:
129 		return ("sending STA is leaving/has left BSS");
130 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 		return ("STA requesting (re)association is not authenticated");
132 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 		return ("information in the Power Capability element is "
134 			"unacceptable");
135 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 		return ("information in the Supported Channels element is "
137 			"unacceptable");
138 	case IEEE80211_REASON_IE_INVALID:
139 		return ("invalid element");
140 	case IEEE80211_REASON_MIC_FAILURE:
141 		return ("MIC failure");
142 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 		return ("4-Way handshake timeout");
144 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 		return ("group key update timeout");
146 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 		return ("element in 4-Way handshake different from "
148 			"(re)association request/probe response/beacon frame");
149 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 		return ("invalid group cipher");
151 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 		return ("invalid pairwise cipher");
153 	case IEEE80211_REASON_AKMP_INVALID:
154 		return ("invalid AKMP");
155 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 		return ("unsupported version in RSN IE");
157 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 		return ("invalid capabilities in RSN IE");
159 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 		return ("IEEE 802.1X authentication failed");
161 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 		return ("cipher suite rejected because of the security "
163 			"policy");
164 	case IEEE80211_REASON_UNSPECIFIED_QOS:
165 		return ("unspecified (QoS-related)");
166 	case IEEE80211_REASON_INSUFFICIENT_BW:
167 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 	case IEEE80211_REASON_TOOMANY_FRAMES:
169 		return ("too many frames need to be acknowledged");
170 	case IEEE80211_REASON_OUTSIDE_TXOP:
171 		return ("STA is transmitting outside the limits of its TXOPs");
172 	case IEEE80211_REASON_LEAVING_QBSS:
173 		return ("requested from peer STA (the STA is "
174 			"resetting/leaving the BSS)");
175 	case IEEE80211_REASON_BAD_MECHANISM:
176 		return ("requested from peer STA (it does not want to use "
177 			"the mechanism)");
178 	case IEEE80211_REASON_SETUP_NEEDED:
179 		return ("requested from peer STA (setup is required for the "
180 			"used mechanism)");
181 	case IEEE80211_REASON_TIMEOUT:
182 		return ("requested from peer STA (timeout)");
183 	case IEEE80211_REASON_PEER_LINK_CANCELED:
184 		return ("SME cancels the mesh peering instance (not related "
185 			"to the maximum number of peer mesh STAs)");
186 	case IEEE80211_REASON_MESH_MAX_PEERS:
187 		return ("maximum number of peer mesh STAs was reached");
188 	case IEEE80211_REASON_MESH_CPVIOLATION:
189 		return ("the received information violates the Mesh "
190 			"Configuration policy configured in the mesh STA "
191 			"profile");
192 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 		return ("the mesh STA has received a Mesh Peering Close "
194 			"message requesting to close the mesh peering");
195 	case IEEE80211_REASON_MESH_MAX_RETRIES:
196 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 			"Peering Open messages, without receiving a Mesh "
198 			"Peering Confirm message");
199 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 		return ("the confirmTimer for the mesh peering instance times "
201 			"out");
202 	case IEEE80211_REASON_MESH_INVALID_GTK:
203 		return ("the mesh STA fails to unwrap the GTK or the values "
204 			"in the wrapped contents do not match");
205 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 		return ("the mesh STA receives inconsistent information about "
207 			"the mesh parameters between Mesh Peering Management "
208 			"frames");
209 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 		return ("the mesh STA fails the authenticated mesh peering "
211 			"exchange because due to failure in selecting "
212 			"pairwise/group ciphersuite");
213 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 		return ("the mesh STA does not have proxy information for "
215 			"this external destination");
216 	case IEEE80211_REASON_MESH_PERR_NO_FI:
217 		return ("the mesh STA does not have forwarding information "
218 			"for this destination");
219 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 		return ("the mesh STA determines that the link to the next "
221 			"hop of an active path in its forwarding information "
222 			"is no longer usable");
223 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 		return ("the MAC address of the STA already exists in the "
225 			"mesh BSS");
226 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 		return ("the mesh STA performs channel switch to meet "
228 			"regulatory requirements");
229 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 		return ("the mesh STA performs channel switch with "
231 			"unspecified reason");
232 	default:
233 		return ("reserved/unknown");
234 	}
235 }
236 
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void vap_update_wme(void *, int);
245 static void restart_vaps(void *, int);
246 static void ieee80211_newstate_cb(void *, int);
247 
248 static int
249 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
250 	const struct ieee80211_bpf_params *params)
251 {
252 
253 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
254 	m_freem(m);
255 	return ENETDOWN;
256 }
257 
258 void
259 ieee80211_proto_attach(struct ieee80211com *ic)
260 {
261 	uint8_t hdrlen;
262 
263 	/* override the 802.3 setting */
264 	hdrlen = ic->ic_headroom
265 		+ sizeof(struct ieee80211_qosframe_addr4)
266 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
267 		+ IEEE80211_WEP_EXTIVLEN;
268 	/* XXX no way to recalculate on ifdetach */
269 	if (ALIGN(hdrlen) > max_linkhdr) {
270 		/* XXX sanity check... */
271 		max_linkhdr = ALIGN(hdrlen);
272 		max_hdr = max_linkhdr + max_protohdr;
273 		max_datalen = MHLEN - max_hdr;
274 	}
275 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
276 
277 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
278 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
279 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
280 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
281 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
282 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
283 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
284 
285 	ic->ic_wme.wme_hipri_switch_hysteresis =
286 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
287 
288 	/* initialize management frame handlers */
289 	ic->ic_send_mgmt = ieee80211_send_mgmt;
290 	ic->ic_raw_xmit = null_raw_xmit;
291 
292 	ieee80211_adhoc_attach(ic);
293 	ieee80211_sta_attach(ic);
294 	ieee80211_wds_attach(ic);
295 	ieee80211_hostap_attach(ic);
296 #ifdef IEEE80211_SUPPORT_MESH
297 	ieee80211_mesh_attach(ic);
298 #endif
299 	ieee80211_monitor_attach(ic);
300 }
301 
302 void
303 ieee80211_proto_detach(struct ieee80211com *ic)
304 {
305 	ieee80211_monitor_detach(ic);
306 #ifdef IEEE80211_SUPPORT_MESH
307 	ieee80211_mesh_detach(ic);
308 #endif
309 	ieee80211_hostap_detach(ic);
310 	ieee80211_wds_detach(ic);
311 	ieee80211_adhoc_detach(ic);
312 	ieee80211_sta_detach(ic);
313 }
314 
315 static void
316 null_update_beacon(struct ieee80211vap *vap, int item)
317 {
318 }
319 
320 void
321 ieee80211_proto_vattach(struct ieee80211vap *vap)
322 {
323 	struct ieee80211com *ic = vap->iv_ic;
324 	struct ifnet *ifp = vap->iv_ifp;
325 	int i;
326 
327 	/* override the 802.3 setting */
328 	ifp->if_hdrlen = ic->ic_headroom
329                 + sizeof(struct ieee80211_qosframe_addr4)
330                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
331                 + IEEE80211_WEP_EXTIVLEN;
332 
333 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
334 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
335 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
336 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
337 	callout_init(&vap->iv_mgtsend, 1);
338 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
339 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
340 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
341 	/*
342 	 * Install default tx rate handling: no fixed rate, lowest
343 	 * supported rate for mgmt and multicast frames.  Default
344 	 * max retry count.  These settings can be changed by the
345 	 * driver and/or user applications.
346 	 */
347 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
348 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
349 
350 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
351 
352 		/*
353 		 * Setting the management rate to MCS 0 assumes that the
354 		 * BSS Basic rate set is empty and the BSS Basic MCS set
355 		 * is not.
356 		 *
357 		 * Since we're not checking this, default to the lowest
358 		 * defined rate for this mode.
359 		 *
360 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
361 		 * some MCS management traffic (eg BA response frames.)
362 		 *
363 		 * See also: 9.6.0 of the 802.11n-2009 specification.
364 		 */
365 #ifdef	NOTYET
366 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
367 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
368 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
369 		} else {
370 			vap->iv_txparms[i].mgmtrate =
371 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
372 			vap->iv_txparms[i].mcastrate =
373 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
374 		}
375 #endif
376 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
377 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
378 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
379 	}
380 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
381 
382 	vap->iv_update_beacon = null_update_beacon;
383 	vap->iv_deliver_data = ieee80211_deliver_data;
384 
385 	/* attach support for operating mode */
386 	ic->ic_vattach[vap->iv_opmode](vap);
387 }
388 
389 void
390 ieee80211_proto_vdetach(struct ieee80211vap *vap)
391 {
392 #define	FREEAPPIE(ie) do { \
393 	if (ie != NULL) \
394 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
395 } while (0)
396 	/*
397 	 * Detach operating mode module.
398 	 */
399 	if (vap->iv_opdetach != NULL)
400 		vap->iv_opdetach(vap);
401 	/*
402 	 * This should not be needed as we detach when reseting
403 	 * the state but be conservative here since the
404 	 * authenticator may do things like spawn kernel threads.
405 	 */
406 	if (vap->iv_auth->ia_detach != NULL)
407 		vap->iv_auth->ia_detach(vap);
408 	/*
409 	 * Detach any ACL'ator.
410 	 */
411 	if (vap->iv_acl != NULL)
412 		vap->iv_acl->iac_detach(vap);
413 
414 	FREEAPPIE(vap->iv_appie_beacon);
415 	FREEAPPIE(vap->iv_appie_probereq);
416 	FREEAPPIE(vap->iv_appie_proberesp);
417 	FREEAPPIE(vap->iv_appie_assocreq);
418 	FREEAPPIE(vap->iv_appie_assocresp);
419 	FREEAPPIE(vap->iv_appie_wpa);
420 #undef FREEAPPIE
421 }
422 
423 /*
424  * Simple-minded authenticator module support.
425  */
426 
427 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
428 /* XXX well-known names */
429 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
430 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
431 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
432 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
433 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
434 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
435 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
436 };
437 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
438 
439 static const struct ieee80211_authenticator auth_internal = {
440 	.ia_name		= "wlan_internal",
441 	.ia_attach		= NULL,
442 	.ia_detach		= NULL,
443 	.ia_node_join		= NULL,
444 	.ia_node_leave		= NULL,
445 };
446 
447 /*
448  * Setup internal authenticators once; they are never unregistered.
449  */
450 static void
451 ieee80211_auth_setup(void)
452 {
453 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
454 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
455 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
456 }
457 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
458 
459 const struct ieee80211_authenticator *
460 ieee80211_authenticator_get(int auth)
461 {
462 	if (auth >= IEEE80211_AUTH_MAX)
463 		return NULL;
464 	if (authenticators[auth] == NULL)
465 		ieee80211_load_module(auth_modnames[auth]);
466 	return authenticators[auth];
467 }
468 
469 void
470 ieee80211_authenticator_register(int type,
471 	const struct ieee80211_authenticator *auth)
472 {
473 	if (type >= IEEE80211_AUTH_MAX)
474 		return;
475 	authenticators[type] = auth;
476 }
477 
478 void
479 ieee80211_authenticator_unregister(int type)
480 {
481 
482 	if (type >= IEEE80211_AUTH_MAX)
483 		return;
484 	authenticators[type] = NULL;
485 }
486 
487 /*
488  * Very simple-minded ACL module support.
489  */
490 /* XXX just one for now */
491 static	const struct ieee80211_aclator *acl = NULL;
492 
493 void
494 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
495 {
496 	printf("wlan: %s acl policy registered\n", iac->iac_name);
497 	acl = iac;
498 }
499 
500 void
501 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
502 {
503 	if (acl == iac)
504 		acl = NULL;
505 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
506 }
507 
508 const struct ieee80211_aclator *
509 ieee80211_aclator_get(const char *name)
510 {
511 	if (acl == NULL)
512 		ieee80211_load_module("wlan_acl");
513 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
514 }
515 
516 void
517 ieee80211_print_essid(const uint8_t *essid, int len)
518 {
519 	const uint8_t *p;
520 	int i;
521 
522 	if (len > IEEE80211_NWID_LEN)
523 		len = IEEE80211_NWID_LEN;
524 	/* determine printable or not */
525 	for (i = 0, p = essid; i < len; i++, p++) {
526 		if (*p < ' ' || *p > 0x7e)
527 			break;
528 	}
529 	if (i == len) {
530 		printf("\"");
531 		for (i = 0, p = essid; i < len; i++, p++)
532 			printf("%c", *p);
533 		printf("\"");
534 	} else {
535 		printf("0x");
536 		for (i = 0, p = essid; i < len; i++, p++)
537 			printf("%02x", *p);
538 	}
539 }
540 
541 void
542 ieee80211_dump_pkt(struct ieee80211com *ic,
543 	const uint8_t *buf, int len, int rate, int rssi)
544 {
545 	const struct ieee80211_frame *wh;
546 	int i;
547 
548 	wh = (const struct ieee80211_frame *)buf;
549 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
550 	case IEEE80211_FC1_DIR_NODS:
551 		printf("NODS %s", ether_sprintf(wh->i_addr2));
552 		printf("->%s", ether_sprintf(wh->i_addr1));
553 		printf("(%s)", ether_sprintf(wh->i_addr3));
554 		break;
555 	case IEEE80211_FC1_DIR_TODS:
556 		printf("TODS %s", ether_sprintf(wh->i_addr2));
557 		printf("->%s", ether_sprintf(wh->i_addr3));
558 		printf("(%s)", ether_sprintf(wh->i_addr1));
559 		break;
560 	case IEEE80211_FC1_DIR_FROMDS:
561 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
562 		printf("->%s", ether_sprintf(wh->i_addr1));
563 		printf("(%s)", ether_sprintf(wh->i_addr2));
564 		break;
565 	case IEEE80211_FC1_DIR_DSTODS:
566 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
567 		printf("->%s", ether_sprintf(wh->i_addr3));
568 		printf("(%s", ether_sprintf(wh->i_addr2));
569 		printf("->%s)", ether_sprintf(wh->i_addr1));
570 		break;
571 	}
572 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
573 	case IEEE80211_FC0_TYPE_DATA:
574 		printf(" data");
575 		break;
576 	case IEEE80211_FC0_TYPE_MGT:
577 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
578 		break;
579 	default:
580 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
581 		break;
582 	}
583 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
584 		const struct ieee80211_qosframe *qwh =
585 			(const struct ieee80211_qosframe *)buf;
586 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
587 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
588 	}
589 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
590 		int off;
591 
592 		off = ieee80211_anyhdrspace(ic, wh);
593 		printf(" WEP [IV %.02x %.02x %.02x",
594 			buf[off+0], buf[off+1], buf[off+2]);
595 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
596 			printf(" %.02x %.02x %.02x",
597 				buf[off+4], buf[off+5], buf[off+6]);
598 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
599 	}
600 	if (rate >= 0)
601 		printf(" %dM", rate / 2);
602 	if (rssi >= 0)
603 		printf(" +%d", rssi);
604 	printf("\n");
605 	if (len > 0) {
606 		for (i = 0; i < len; i++) {
607 			if ((i & 1) == 0)
608 				printf(" ");
609 			printf("%02x", buf[i]);
610 		}
611 		printf("\n");
612 	}
613 }
614 
615 static __inline int
616 findrix(const struct ieee80211_rateset *rs, int r)
617 {
618 	int i;
619 
620 	for (i = 0; i < rs->rs_nrates; i++)
621 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
622 			return i;
623 	return -1;
624 }
625 
626 int
627 ieee80211_fix_rate(struct ieee80211_node *ni,
628 	struct ieee80211_rateset *nrs, int flags)
629 {
630 	struct ieee80211vap *vap = ni->ni_vap;
631 	struct ieee80211com *ic = ni->ni_ic;
632 	int i, j, rix, error;
633 	int okrate, badrate, fixedrate, ucastrate;
634 	const struct ieee80211_rateset *srs;
635 	uint8_t r;
636 
637 	error = 0;
638 	okrate = badrate = 0;
639 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
640 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
641 		/*
642 		 * Workaround awkwardness with fixed rate.  We are called
643 		 * to check both the legacy rate set and the HT rate set
644 		 * but we must apply any legacy fixed rate check only to the
645 		 * legacy rate set and vice versa.  We cannot tell what type
646 		 * of rate set we've been given (legacy or HT) but we can
647 		 * distinguish the fixed rate type (MCS have 0x80 set).
648 		 * So to deal with this the caller communicates whether to
649 		 * check MCS or legacy rate using the flags and we use the
650 		 * type of any fixed rate to avoid applying an MCS to a
651 		 * legacy rate and vice versa.
652 		 */
653 		if (ucastrate & 0x80) {
654 			if (flags & IEEE80211_F_DOFRATE)
655 				flags &= ~IEEE80211_F_DOFRATE;
656 		} else if ((ucastrate & 0x80) == 0) {
657 			if (flags & IEEE80211_F_DOFMCS)
658 				flags &= ~IEEE80211_F_DOFMCS;
659 		}
660 		/* NB: required to make MCS match below work */
661 		ucastrate &= IEEE80211_RATE_VAL;
662 	}
663 	fixedrate = IEEE80211_FIXED_RATE_NONE;
664 	/*
665 	 * XXX we are called to process both MCS and legacy rates;
666 	 * we must use the appropriate basic rate set or chaos will
667 	 * ensue; for now callers that want MCS must supply
668 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
669 	 * function so there are two variants, one for MCS and one
670 	 * for legacy rates.
671 	 */
672 	if (flags & IEEE80211_F_DOBRS)
673 		srs = (const struct ieee80211_rateset *)
674 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
675 	else
676 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
677 	for (i = 0; i < nrs->rs_nrates; ) {
678 		if (flags & IEEE80211_F_DOSORT) {
679 			/*
680 			 * Sort rates.
681 			 */
682 			for (j = i + 1; j < nrs->rs_nrates; j++) {
683 				if (IEEE80211_RV(nrs->rs_rates[i]) >
684 				    IEEE80211_RV(nrs->rs_rates[j])) {
685 					r = nrs->rs_rates[i];
686 					nrs->rs_rates[i] = nrs->rs_rates[j];
687 					nrs->rs_rates[j] = r;
688 				}
689 			}
690 		}
691 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
692 		badrate = r;
693 		/*
694 		 * Check for fixed rate.
695 		 */
696 		if (r == ucastrate)
697 			fixedrate = r;
698 		/*
699 		 * Check against supported rates.
700 		 */
701 		rix = findrix(srs, r);
702 		if (flags & IEEE80211_F_DONEGO) {
703 			if (rix < 0) {
704 				/*
705 				 * A rate in the node's rate set is not
706 				 * supported.  If this is a basic rate and we
707 				 * are operating as a STA then this is an error.
708 				 * Otherwise we just discard/ignore the rate.
709 				 */
710 				if ((flags & IEEE80211_F_JOIN) &&
711 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
712 					error++;
713 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
714 				/*
715 				 * Overwrite with the supported rate
716 				 * value so any basic rate bit is set.
717 				 */
718 				nrs->rs_rates[i] = srs->rs_rates[rix];
719 			}
720 		}
721 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
722 			/*
723 			 * Delete unacceptable rates.
724 			 */
725 			nrs->rs_nrates--;
726 			for (j = i; j < nrs->rs_nrates; j++)
727 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
728 			nrs->rs_rates[j] = 0;
729 			continue;
730 		}
731 		if (rix >= 0)
732 			okrate = nrs->rs_rates[i];
733 		i++;
734 	}
735 	if (okrate == 0 || error != 0 ||
736 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
737 	     fixedrate != ucastrate)) {
738 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
739 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
740 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
741 		return badrate | IEEE80211_RATE_BASIC;
742 	} else
743 		return IEEE80211_RV(okrate);
744 }
745 
746 /*
747  * Reset 11g-related state.
748  */
749 void
750 ieee80211_reset_erp(struct ieee80211com *ic)
751 {
752 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
753 	ic->ic_nonerpsta = 0;
754 	ic->ic_longslotsta = 0;
755 	/*
756 	 * Short slot time is enabled only when operating in 11g
757 	 * and not in an IBSS.  We must also honor whether or not
758 	 * the driver is capable of doing it.
759 	 */
760 	ieee80211_set_shortslottime(ic,
761 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
762 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
763 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
764 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
765 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
766 	/*
767 	 * Set short preamble and ERP barker-preamble flags.
768 	 */
769 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
770 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
771 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
772 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
773 	} else {
774 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
775 		ic->ic_flags |= IEEE80211_F_USEBARKER;
776 	}
777 }
778 
779 /*
780  * Set the short slot time state and notify the driver.
781  */
782 void
783 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
784 {
785 	if (onoff)
786 		ic->ic_flags |= IEEE80211_F_SHSLOT;
787 	else
788 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
789 	/* notify driver */
790 	if (ic->ic_updateslot != NULL)
791 		ic->ic_updateslot(ic);
792 }
793 
794 /*
795  * Check if the specified rate set supports ERP.
796  * NB: the rate set is assumed to be sorted.
797  */
798 int
799 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
800 {
801 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
802 	int i, j;
803 
804 	if (rs->rs_nrates < nitems(rates))
805 		return 0;
806 	for (i = 0; i < nitems(rates); i++) {
807 		for (j = 0; j < rs->rs_nrates; j++) {
808 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
809 			if (rates[i] == r)
810 				goto next;
811 			if (r > rates[i])
812 				return 0;
813 		}
814 		return 0;
815 	next:
816 		;
817 	}
818 	return 1;
819 }
820 
821 /*
822  * Mark the basic rates for the rate table based on the
823  * operating mode.  For real 11g we mark all the 11b rates
824  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
825  * 11b rates.  There's also a pseudo 11a-mode used to mark only
826  * the basic OFDM rates.
827  */
828 static void
829 setbasicrates(struct ieee80211_rateset *rs,
830     enum ieee80211_phymode mode, int add)
831 {
832 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
833 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
834 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
835 					    /* NB: mixed b/g */
836 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
837 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
838 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
839 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
840 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
841 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
842 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
843 					    /* NB: mixed b/g */
844 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
845 					    /* NB: mixed b/g */
846 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
847 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
848 	};
849 	int i, j;
850 
851 	for (i = 0; i < rs->rs_nrates; i++) {
852 		if (!add)
853 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
854 		for (j = 0; j < basic[mode].rs_nrates; j++)
855 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
856 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
857 				break;
858 			}
859 	}
860 }
861 
862 /*
863  * Set the basic rates in a rate set.
864  */
865 void
866 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
867     enum ieee80211_phymode mode)
868 {
869 	setbasicrates(rs, mode, 0);
870 }
871 
872 /*
873  * Add basic rates to a rate set.
874  */
875 void
876 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
877     enum ieee80211_phymode mode)
878 {
879 	setbasicrates(rs, mode, 1);
880 }
881 
882 /*
883  * WME protocol support.
884  *
885  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
886  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
887  * Draft 2.0 Test Plan (Appendix D).
888  *
889  * Static/Dynamic Turbo mode settings come from Atheros.
890  */
891 typedef struct phyParamType {
892 	uint8_t		aifsn;
893 	uint8_t		logcwmin;
894 	uint8_t		logcwmax;
895 	uint16_t	txopLimit;
896 	uint8_t 	acm;
897 } paramType;
898 
899 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
900 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
901 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
902 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
903 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
904 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
905 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
906 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
907 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
908 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
909 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
910 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
911 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
912 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
913 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
914 };
915 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
916 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
917 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
918 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
919 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
920 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
921 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
922 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
923 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
924 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
925 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
926 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
927 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
928 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
929 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
930 };
931 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
932 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
933 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
934 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
935 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
936 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
937 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
938 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
939 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
940 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
941 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
942 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
943 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
944 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
945 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
946 };
947 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
948 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
949 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
950 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
951 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
952 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
953 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
954 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
955 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
956 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
957 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
958 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
959 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
960 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
961 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
962 };
963 
964 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
965 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
966 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
967 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
968 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
969 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
970 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
971 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
972 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
973 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
974 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
975 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
976 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
977 };
978 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
979 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
980 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
981 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
982 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
983 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
984 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
985 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
986 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
987 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
988 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
989 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
990 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
991 };
992 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
993 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
994 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
995 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
996 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
997 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
998 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
999 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1000 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1001 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1002 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1003 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1004 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1005 };
1006 
1007 static void
1008 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1009 {
1010 	wmep->wmep_aifsn = phy->aifsn;
1011 	wmep->wmep_logcwmin = phy->logcwmin;
1012 	wmep->wmep_logcwmax = phy->logcwmax;
1013 	wmep->wmep_txopLimit = phy->txopLimit;
1014 }
1015 
1016 static void
1017 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1018 	struct wmeParams *wmep, const paramType *phy)
1019 {
1020 	wmep->wmep_acm = phy->acm;
1021 	_setifsparams(wmep, phy);
1022 
1023 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1024 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1025 	    ieee80211_wme_acnames[ac], type,
1026 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1027 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1028 }
1029 
1030 static void
1031 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1032 {
1033 	struct ieee80211com *ic = vap->iv_ic;
1034 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1035 	const paramType *pPhyParam, *pBssPhyParam;
1036 	struct wmeParams *wmep;
1037 	enum ieee80211_phymode mode;
1038 	int i;
1039 
1040 	IEEE80211_LOCK_ASSERT(ic);
1041 
1042 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1043 		return;
1044 
1045 	/*
1046 	 * Clear the wme cap_info field so a qoscount from a previous
1047 	 * vap doesn't confuse later code which only parses the beacon
1048 	 * field and updates hardware when said field changes.
1049 	 * Otherwise the hardware is programmed with defaults, not what
1050 	 * the beacon actually announces.
1051 	 */
1052 	wme->wme_wmeChanParams.cap_info = 0;
1053 
1054 	/*
1055 	 * Select mode; we can be called early in which case we
1056 	 * always use auto mode.  We know we'll be called when
1057 	 * entering the RUN state with bsschan setup properly
1058 	 * so state will eventually get set correctly
1059 	 */
1060 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1061 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1062 	else
1063 		mode = IEEE80211_MODE_AUTO;
1064 	for (i = 0; i < WME_NUM_AC; i++) {
1065 		switch (i) {
1066 		case WME_AC_BK:
1067 			pPhyParam = &phyParamForAC_BK[mode];
1068 			pBssPhyParam = &phyParamForAC_BK[mode];
1069 			break;
1070 		case WME_AC_VI:
1071 			pPhyParam = &phyParamForAC_VI[mode];
1072 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1073 			break;
1074 		case WME_AC_VO:
1075 			pPhyParam = &phyParamForAC_VO[mode];
1076 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1077 			break;
1078 		case WME_AC_BE:
1079 		default:
1080 			pPhyParam = &phyParamForAC_BE[mode];
1081 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1082 			break;
1083 		}
1084 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1085 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1086 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1087 		} else {
1088 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1089 		}
1090 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1091 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1092 	}
1093 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1094 	if (vap->iv_bss != NULL) {
1095 		/*
1096 		 * Calculate aggressive mode switching threshold based
1097 		 * on beacon interval.  This doesn't need locking since
1098 		 * we're only called before entering the RUN state at
1099 		 * which point we start sending beacon frames.
1100 		 */
1101 		wme->wme_hipri_switch_thresh =
1102 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1103 		wme->wme_flags &= ~WME_F_AGGRMODE;
1104 		ieee80211_wme_updateparams(vap);
1105 	}
1106 }
1107 
1108 void
1109 ieee80211_wme_initparams(struct ieee80211vap *vap)
1110 {
1111 	struct ieee80211com *ic = vap->iv_ic;
1112 
1113 	IEEE80211_LOCK(ic);
1114 	ieee80211_wme_initparams_locked(vap);
1115 	IEEE80211_UNLOCK(ic);
1116 }
1117 
1118 /*
1119  * Update WME parameters for ourself and the BSS.
1120  */
1121 void
1122 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1123 {
1124 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1125 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1126 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1127 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1128 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1129 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1130 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1131 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1132 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1133 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1134 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1135 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1136 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1137 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1138 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1139 	};
1140 	struct ieee80211com *ic = vap->iv_ic;
1141 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1142 	const struct wmeParams *wmep;
1143 	struct wmeParams *chanp, *bssp;
1144 	enum ieee80211_phymode mode;
1145 	int i;
1146 	int do_aggrmode = 0;
1147 
1148        	/*
1149 	 * Set up the channel access parameters for the physical
1150 	 * device.  First populate the configured settings.
1151 	 */
1152 	for (i = 0; i < WME_NUM_AC; i++) {
1153 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1154 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1155 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1156 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1157 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1158 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1159 
1160 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1161 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1162 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1163 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1164 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1165 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1166 	}
1167 
1168 	/*
1169 	 * Select mode; we can be called early in which case we
1170 	 * always use auto mode.  We know we'll be called when
1171 	 * entering the RUN state with bsschan setup properly
1172 	 * so state will eventually get set correctly
1173 	 */
1174 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1175 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1176 	else
1177 		mode = IEEE80211_MODE_AUTO;
1178 
1179 	/*
1180 	 * This implements aggressive mode as found in certain
1181 	 * vendors' AP's.  When there is significant high
1182 	 * priority (VI/VO) traffic in the BSS throttle back BE
1183 	 * traffic by using conservative parameters.  Otherwise
1184 	 * BE uses aggressive params to optimize performance of
1185 	 * legacy/non-QoS traffic.
1186 	 */
1187 
1188 	/* Hostap? Only if aggressive mode is enabled */
1189         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1190 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1191 		do_aggrmode = 1;
1192 
1193 	/*
1194 	 * Station? Only if we're in a non-QoS BSS.
1195 	 */
1196 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1197 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1198 		do_aggrmode = 1;
1199 
1200 	/*
1201 	 * IBSS? Only if we we have WME enabled.
1202 	 */
1203 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1204 	    (vap->iv_flags & IEEE80211_F_WME))
1205 		do_aggrmode = 1;
1206 
1207 	/*
1208 	 * If WME is disabled on this VAP, default to aggressive mode
1209 	 * regardless of the configuration.
1210 	 */
1211 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1212 		do_aggrmode = 1;
1213 
1214 	/* XXX WDS? */
1215 
1216 	/* XXX MBSS? */
1217 
1218 	if (do_aggrmode) {
1219 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1220 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1221 
1222 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1223 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1224 		    aggrParam[mode].logcwmin;
1225 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1226 		    aggrParam[mode].logcwmax;
1227 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1228 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1229 			aggrParam[mode].txopLimit : 0;
1230 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1231 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1232 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1233 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1234 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1235 	}
1236 
1237 
1238 	/*
1239 	 * Change the contention window based on the number of associated
1240 	 * stations.  If the number of associated stations is 1 and
1241 	 * aggressive mode is enabled, lower the contention window even
1242 	 * further.
1243 	 */
1244 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1245 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1246 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1247 		    [IEEE80211_MODE_AUTO]	= 3,
1248 		    [IEEE80211_MODE_11A]	= 3,
1249 		    [IEEE80211_MODE_11B]	= 4,
1250 		    [IEEE80211_MODE_11G]	= 3,
1251 		    [IEEE80211_MODE_FH]		= 4,
1252 		    [IEEE80211_MODE_TURBO_A]	= 3,
1253 		    [IEEE80211_MODE_TURBO_G]	= 3,
1254 		    [IEEE80211_MODE_STURBO_A]	= 3,
1255 		    [IEEE80211_MODE_HALF]	= 3,
1256 		    [IEEE80211_MODE_QUARTER]	= 3,
1257 		    [IEEE80211_MODE_11NA]	= 3,
1258 		    [IEEE80211_MODE_11NG]	= 3,
1259 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1260 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1261 		};
1262 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1263 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1264 
1265 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1266 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1267 		    "update %s (chan+bss) logcwmin %u\n",
1268 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1269 	}
1270 
1271 	/*
1272 	 * Arrange for the beacon update.
1273 	 *
1274 	 * XXX what about MBSS, WDS?
1275 	 */
1276 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1277 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1278 		/*
1279 		 * Arrange for a beacon update and bump the parameter
1280 		 * set number so associated stations load the new values.
1281 		 */
1282 		wme->wme_bssChanParams.cap_info =
1283 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1284 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1285 	}
1286 
1287 	/* schedule the deferred WME update */
1288 	ieee80211_runtask(ic, &vap->iv_wme_task);
1289 
1290 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1291 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1292 	    vap->iv_opmode == IEEE80211_M_STA ?
1293 		wme->wme_wmeChanParams.cap_info :
1294 		wme->wme_bssChanParams.cap_info);
1295 }
1296 
1297 void
1298 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1299 {
1300 	struct ieee80211com *ic = vap->iv_ic;
1301 
1302 	if (ic->ic_caps & IEEE80211_C_WME) {
1303 		IEEE80211_LOCK(ic);
1304 		ieee80211_wme_updateparams_locked(vap);
1305 		IEEE80211_UNLOCK(ic);
1306 	}
1307 }
1308 
1309 void
1310 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1311 {
1312 
1313 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1314 }
1315 
1316 void
1317 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1318 {
1319 
1320 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1321 }
1322 
1323 static void
1324 parent_updown(void *arg, int npending)
1325 {
1326 	struct ieee80211com *ic = arg;
1327 
1328 	ic->ic_parent(ic);
1329 }
1330 
1331 static void
1332 update_mcast(void *arg, int npending)
1333 {
1334 	struct ieee80211com *ic = arg;
1335 
1336 	ic->ic_update_mcast(ic);
1337 }
1338 
1339 static void
1340 update_promisc(void *arg, int npending)
1341 {
1342 	struct ieee80211com *ic = arg;
1343 
1344 	ic->ic_update_promisc(ic);
1345 }
1346 
1347 static void
1348 update_channel(void *arg, int npending)
1349 {
1350 	struct ieee80211com *ic = arg;
1351 
1352 	ic->ic_set_channel(ic);
1353 	ieee80211_radiotap_chan_change(ic);
1354 }
1355 
1356 static void
1357 update_chw(void *arg, int npending)
1358 {
1359 	struct ieee80211com *ic = arg;
1360 
1361 	/*
1362 	 * XXX should we defer the channel width _config_ update until now?
1363 	 */
1364 	ic->ic_update_chw(ic);
1365 }
1366 
1367 /*
1368  * Deferred WME update.
1369  *
1370  * In preparation for per-VAP WME configuration, call the VAP
1371  * method if the VAP requires it.  Otherwise, just call the
1372  * older global method.  There isn't a per-VAP WME configuration
1373  * just yet so for now just use the global configuration.
1374  */
1375 static void
1376 vap_update_wme(void *arg, int npending)
1377 {
1378 	struct ieee80211vap *vap = arg;
1379 	struct ieee80211com *ic = vap->iv_ic;
1380 
1381 	if (vap->iv_wme_update != NULL)
1382 		vap->iv_wme_update(vap,
1383 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1384 	else
1385 		ic->ic_wme.wme_update(ic);
1386 }
1387 
1388 static void
1389 restart_vaps(void *arg, int npending)
1390 {
1391 	struct ieee80211com *ic = arg;
1392 
1393 	ieee80211_suspend_all(ic);
1394 	ieee80211_resume_all(ic);
1395 }
1396 
1397 /*
1398  * Block until the parent is in a known state.  This is
1399  * used after any operations that dispatch a task (e.g.
1400  * to auto-configure the parent device up/down).
1401  */
1402 void
1403 ieee80211_waitfor_parent(struct ieee80211com *ic)
1404 {
1405 	taskqueue_block(ic->ic_tq);
1406 	ieee80211_draintask(ic, &ic->ic_parent_task);
1407 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1408 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1409 	ieee80211_draintask(ic, &ic->ic_chan_task);
1410 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1411 	ieee80211_draintask(ic, &ic->ic_chw_task);
1412 	taskqueue_unblock(ic->ic_tq);
1413 }
1414 
1415 /*
1416  * Check to see whether the current channel needs reset.
1417  *
1418  * Some devices don't handle being given an invalid channel
1419  * in their operating mode very well (eg wpi(4) will throw a
1420  * firmware exception.)
1421  *
1422  * Return 0 if we're ok, 1 if the channel needs to be reset.
1423  *
1424  * See PR kern/202502.
1425  */
1426 static int
1427 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1428 {
1429 	struct ieee80211com *ic = vap->iv_ic;
1430 
1431 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1432 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1433 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1434 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1435 		return (1);
1436 	return (0);
1437 }
1438 
1439 /*
1440  * Reset the curchan to a known good state.
1441  */
1442 static void
1443 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1444 {
1445 	struct ieee80211com *ic = vap->iv_ic;
1446 
1447 	ic->ic_curchan = &ic->ic_channels[0];
1448 }
1449 
1450 /*
1451  * Start a vap running.  If this is the first vap to be
1452  * set running on the underlying device then we
1453  * automatically bring the device up.
1454  */
1455 void
1456 ieee80211_start_locked(struct ieee80211vap *vap)
1457 {
1458 	struct ifnet *ifp = vap->iv_ifp;
1459 	struct ieee80211com *ic = vap->iv_ic;
1460 
1461 	IEEE80211_LOCK_ASSERT(ic);
1462 
1463 	IEEE80211_DPRINTF(vap,
1464 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1465 		"start running, %d vaps running\n", ic->ic_nrunning);
1466 
1467 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1468 		/*
1469 		 * Mark us running.  Note that it's ok to do this first;
1470 		 * if we need to bring the parent device up we defer that
1471 		 * to avoid dropping the com lock.  We expect the device
1472 		 * to respond to being marked up by calling back into us
1473 		 * through ieee80211_start_all at which point we'll come
1474 		 * back in here and complete the work.
1475 		 */
1476 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1477 		/*
1478 		 * We are not running; if this we are the first vap
1479 		 * to be brought up auto-up the parent if necessary.
1480 		 */
1481 		if (ic->ic_nrunning++ == 0) {
1482 
1483 			/* reset the channel to a known good channel */
1484 			if (ieee80211_start_check_reset_chan(vap))
1485 				ieee80211_start_reset_chan(vap);
1486 
1487 			IEEE80211_DPRINTF(vap,
1488 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1489 			    "%s: up parent %s\n", __func__, ic->ic_name);
1490 			ieee80211_runtask(ic, &ic->ic_parent_task);
1491 			return;
1492 		}
1493 	}
1494 	/*
1495 	 * If the parent is up and running, then kick the
1496 	 * 802.11 state machine as appropriate.
1497 	 */
1498 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1499 		if (vap->iv_opmode == IEEE80211_M_STA) {
1500 #if 0
1501 			/* XXX bypasses scan too easily; disable for now */
1502 			/*
1503 			 * Try to be intelligent about clocking the state
1504 			 * machine.  If we're currently in RUN state then
1505 			 * we should be able to apply any new state/parameters
1506 			 * simply by re-associating.  Otherwise we need to
1507 			 * re-scan to select an appropriate ap.
1508 			 */
1509 			if (vap->iv_state >= IEEE80211_S_RUN)
1510 				ieee80211_new_state_locked(vap,
1511 				    IEEE80211_S_ASSOC, 1);
1512 			else
1513 #endif
1514 				ieee80211_new_state_locked(vap,
1515 				    IEEE80211_S_SCAN, 0);
1516 		} else {
1517 			/*
1518 			 * For monitor+wds mode there's nothing to do but
1519 			 * start running.  Otherwise if this is the first
1520 			 * vap to be brought up, start a scan which may be
1521 			 * preempted if the station is locked to a particular
1522 			 * channel.
1523 			 */
1524 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1525 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1526 			    vap->iv_opmode == IEEE80211_M_WDS)
1527 				ieee80211_new_state_locked(vap,
1528 				    IEEE80211_S_RUN, -1);
1529 			else
1530 				ieee80211_new_state_locked(vap,
1531 				    IEEE80211_S_SCAN, 0);
1532 		}
1533 	}
1534 }
1535 
1536 /*
1537  * Start a single vap.
1538  */
1539 void
1540 ieee80211_init(void *arg)
1541 {
1542 	struct ieee80211vap *vap = arg;
1543 
1544 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1545 	    "%s\n", __func__);
1546 
1547 	IEEE80211_LOCK(vap->iv_ic);
1548 	ieee80211_start_locked(vap);
1549 	IEEE80211_UNLOCK(vap->iv_ic);
1550 }
1551 
1552 /*
1553  * Start all runnable vap's on a device.
1554  */
1555 void
1556 ieee80211_start_all(struct ieee80211com *ic)
1557 {
1558 	struct ieee80211vap *vap;
1559 
1560 	IEEE80211_LOCK(ic);
1561 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1562 		struct ifnet *ifp = vap->iv_ifp;
1563 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1564 			ieee80211_start_locked(vap);
1565 	}
1566 	IEEE80211_UNLOCK(ic);
1567 }
1568 
1569 /*
1570  * Stop a vap.  We force it down using the state machine
1571  * then mark it's ifnet not running.  If this is the last
1572  * vap running on the underlying device then we close it
1573  * too to insure it will be properly initialized when the
1574  * next vap is brought up.
1575  */
1576 void
1577 ieee80211_stop_locked(struct ieee80211vap *vap)
1578 {
1579 	struct ieee80211com *ic = vap->iv_ic;
1580 	struct ifnet *ifp = vap->iv_ifp;
1581 
1582 	IEEE80211_LOCK_ASSERT(ic);
1583 
1584 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1585 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1586 
1587 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1588 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1589 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1590 		if (--ic->ic_nrunning == 0) {
1591 			IEEE80211_DPRINTF(vap,
1592 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1593 			    "down parent %s\n", ic->ic_name);
1594 			ieee80211_runtask(ic, &ic->ic_parent_task);
1595 		}
1596 	}
1597 }
1598 
1599 void
1600 ieee80211_stop(struct ieee80211vap *vap)
1601 {
1602 	struct ieee80211com *ic = vap->iv_ic;
1603 
1604 	IEEE80211_LOCK(ic);
1605 	ieee80211_stop_locked(vap);
1606 	IEEE80211_UNLOCK(ic);
1607 }
1608 
1609 /*
1610  * Stop all vap's running on a device.
1611  */
1612 void
1613 ieee80211_stop_all(struct ieee80211com *ic)
1614 {
1615 	struct ieee80211vap *vap;
1616 
1617 	IEEE80211_LOCK(ic);
1618 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1619 		struct ifnet *ifp = vap->iv_ifp;
1620 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1621 			ieee80211_stop_locked(vap);
1622 	}
1623 	IEEE80211_UNLOCK(ic);
1624 
1625 	ieee80211_waitfor_parent(ic);
1626 }
1627 
1628 /*
1629  * Stop all vap's running on a device and arrange
1630  * for those that were running to be resumed.
1631  */
1632 void
1633 ieee80211_suspend_all(struct ieee80211com *ic)
1634 {
1635 	struct ieee80211vap *vap;
1636 
1637 	IEEE80211_LOCK(ic);
1638 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1639 		struct ifnet *ifp = vap->iv_ifp;
1640 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1641 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1642 			ieee80211_stop_locked(vap);
1643 		}
1644 	}
1645 	IEEE80211_UNLOCK(ic);
1646 
1647 	ieee80211_waitfor_parent(ic);
1648 }
1649 
1650 /*
1651  * Start all vap's marked for resume.
1652  */
1653 void
1654 ieee80211_resume_all(struct ieee80211com *ic)
1655 {
1656 	struct ieee80211vap *vap;
1657 
1658 	IEEE80211_LOCK(ic);
1659 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1660 		struct ifnet *ifp = vap->iv_ifp;
1661 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1662 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1663 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1664 			ieee80211_start_locked(vap);
1665 		}
1666 	}
1667 	IEEE80211_UNLOCK(ic);
1668 }
1669 
1670 /*
1671  * Restart all vap's running on a device.
1672  */
1673 void
1674 ieee80211_restart_all(struct ieee80211com *ic)
1675 {
1676 	/*
1677 	 * NB: do not use ieee80211_runtask here, we will
1678 	 * block & drain net80211 taskqueue.
1679 	 */
1680 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1681 }
1682 
1683 void
1684 ieee80211_beacon_miss(struct ieee80211com *ic)
1685 {
1686 	IEEE80211_LOCK(ic);
1687 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1688 		/* Process in a taskq, the handler may reenter the driver */
1689 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1690 	}
1691 	IEEE80211_UNLOCK(ic);
1692 }
1693 
1694 static void
1695 beacon_miss(void *arg, int npending)
1696 {
1697 	struct ieee80211com *ic = arg;
1698 	struct ieee80211vap *vap;
1699 
1700 	IEEE80211_LOCK(ic);
1701 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1702 		/*
1703 		 * We only pass events through for sta vap's in RUN+ state;
1704 		 * may be too restrictive but for now this saves all the
1705 		 * handlers duplicating these checks.
1706 		 */
1707 		if (vap->iv_opmode == IEEE80211_M_STA &&
1708 		    vap->iv_state >= IEEE80211_S_RUN &&
1709 		    vap->iv_bmiss != NULL)
1710 			vap->iv_bmiss(vap);
1711 	}
1712 	IEEE80211_UNLOCK(ic);
1713 }
1714 
1715 static void
1716 beacon_swmiss(void *arg, int npending)
1717 {
1718 	struct ieee80211vap *vap = arg;
1719 	struct ieee80211com *ic = vap->iv_ic;
1720 
1721 	IEEE80211_LOCK(ic);
1722 	if (vap->iv_state >= IEEE80211_S_RUN) {
1723 		/* XXX Call multiple times if npending > zero? */
1724 		vap->iv_bmiss(vap);
1725 	}
1726 	IEEE80211_UNLOCK(ic);
1727 }
1728 
1729 /*
1730  * Software beacon miss handling.  Check if any beacons
1731  * were received in the last period.  If not post a
1732  * beacon miss; otherwise reset the counter.
1733  */
1734 void
1735 ieee80211_swbmiss(void *arg)
1736 {
1737 	struct ieee80211vap *vap = arg;
1738 	struct ieee80211com *ic = vap->iv_ic;
1739 
1740 	IEEE80211_LOCK_ASSERT(ic);
1741 
1742 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1743 	    ("wrong state %d", vap->iv_state));
1744 
1745 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1746 		/*
1747 		 * If scanning just ignore and reset state.  If we get a
1748 		 * bmiss after coming out of scan because we haven't had
1749 		 * time to receive a beacon then we should probe the AP
1750 		 * before posting a real bmiss (unless iv_bmiss_max has
1751 		 * been artifiically lowered).  A cleaner solution might
1752 		 * be to disable the timer on scan start/end but to handle
1753 		 * case of multiple sta vap's we'd need to disable the
1754 		 * timers of all affected vap's.
1755 		 */
1756 		vap->iv_swbmiss_count = 0;
1757 	} else if (vap->iv_swbmiss_count == 0) {
1758 		if (vap->iv_bmiss != NULL)
1759 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1760 	} else
1761 		vap->iv_swbmiss_count = 0;
1762 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1763 		ieee80211_swbmiss, vap);
1764 }
1765 
1766 /*
1767  * Start an 802.11h channel switch.  We record the parameters,
1768  * mark the operation pending, notify each vap through the
1769  * beacon update mechanism so it can update the beacon frame
1770  * contents, and then switch vap's to CSA state to block outbound
1771  * traffic.  Devices that handle CSA directly can use the state
1772  * switch to do the right thing so long as they call
1773  * ieee80211_csa_completeswitch when it's time to complete the
1774  * channel change.  Devices that depend on the net80211 layer can
1775  * use ieee80211_beacon_update to handle the countdown and the
1776  * channel switch.
1777  */
1778 void
1779 ieee80211_csa_startswitch(struct ieee80211com *ic,
1780 	struct ieee80211_channel *c, int mode, int count)
1781 {
1782 	struct ieee80211vap *vap;
1783 
1784 	IEEE80211_LOCK_ASSERT(ic);
1785 
1786 	ic->ic_csa_newchan = c;
1787 	ic->ic_csa_mode = mode;
1788 	ic->ic_csa_count = count;
1789 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1790 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1791 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1792 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1793 		    vap->iv_opmode == IEEE80211_M_MBSS)
1794 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1795 		/* switch to CSA state to block outbound traffic */
1796 		if (vap->iv_state == IEEE80211_S_RUN)
1797 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1798 	}
1799 	ieee80211_notify_csa(ic, c, mode, count);
1800 }
1801 
1802 /*
1803  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1804  * This is called by both the completion and cancellation functions
1805  * so each VAP is placed back in the RUN state and can thus transmit.
1806  */
1807 static void
1808 csa_completeswitch(struct ieee80211com *ic)
1809 {
1810 	struct ieee80211vap *vap;
1811 
1812 	ic->ic_csa_newchan = NULL;
1813 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1814 
1815 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1816 		if (vap->iv_state == IEEE80211_S_CSA)
1817 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1818 }
1819 
1820 /*
1821  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1822  * We clear state and move all vap's in CSA state to RUN state
1823  * so they can again transmit.
1824  *
1825  * Although this may not be completely correct, update the BSS channel
1826  * for each VAP to the newly configured channel. The setcurchan sets
1827  * the current operating channel for the interface (so the radio does
1828  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1829  * reported information via ioctl.
1830  */
1831 void
1832 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1833 {
1834 	struct ieee80211vap *vap;
1835 
1836 	IEEE80211_LOCK_ASSERT(ic);
1837 
1838 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1839 
1840 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1841 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1842 		if (vap->iv_state == IEEE80211_S_CSA)
1843 			vap->iv_bss->ni_chan = ic->ic_curchan;
1844 
1845 	csa_completeswitch(ic);
1846 }
1847 
1848 /*
1849  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1850  * We clear state and move all vap's in CSA state to RUN state
1851  * so they can again transmit.
1852  */
1853 void
1854 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1855 {
1856 	IEEE80211_LOCK_ASSERT(ic);
1857 
1858 	csa_completeswitch(ic);
1859 }
1860 
1861 /*
1862  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1863  * We clear state and move all vap's in CAC state to RUN state.
1864  */
1865 void
1866 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1867 {
1868 	struct ieee80211com *ic = vap0->iv_ic;
1869 	struct ieee80211vap *vap;
1870 
1871 	IEEE80211_LOCK(ic);
1872 	/*
1873 	 * Complete CAC state change for lead vap first; then
1874 	 * clock all the other vap's waiting.
1875 	 */
1876 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1877 	    ("wrong state %d", vap0->iv_state));
1878 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1879 
1880 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1881 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1882 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1883 	IEEE80211_UNLOCK(ic);
1884 }
1885 
1886 /*
1887  * Force all vap's other than the specified vap to the INIT state
1888  * and mark them as waiting for a scan to complete.  These vaps
1889  * will be brought up when the scan completes and the scanning vap
1890  * reaches RUN state by wakeupwaiting.
1891  */
1892 static void
1893 markwaiting(struct ieee80211vap *vap0)
1894 {
1895 	struct ieee80211com *ic = vap0->iv_ic;
1896 	struct ieee80211vap *vap;
1897 
1898 	IEEE80211_LOCK_ASSERT(ic);
1899 
1900 	/*
1901 	 * A vap list entry can not disappear since we are running on the
1902 	 * taskqueue and a vap destroy will queue and drain another state
1903 	 * change task.
1904 	 */
1905 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1906 		if (vap == vap0)
1907 			continue;
1908 		if (vap->iv_state != IEEE80211_S_INIT) {
1909 			/* NB: iv_newstate may drop the lock */
1910 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1911 			IEEE80211_LOCK_ASSERT(ic);
1912 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1913 		}
1914 	}
1915 }
1916 
1917 /*
1918  * Wakeup all vap's waiting for a scan to complete.  This is the
1919  * companion to markwaiting (above) and is used to coordinate
1920  * multiple vaps scanning.
1921  * This is called from the state taskqueue.
1922  */
1923 static void
1924 wakeupwaiting(struct ieee80211vap *vap0)
1925 {
1926 	struct ieee80211com *ic = vap0->iv_ic;
1927 	struct ieee80211vap *vap;
1928 
1929 	IEEE80211_LOCK_ASSERT(ic);
1930 
1931 	/*
1932 	 * A vap list entry can not disappear since we are running on the
1933 	 * taskqueue and a vap destroy will queue and drain another state
1934 	 * change task.
1935 	 */
1936 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1937 		if (vap == vap0)
1938 			continue;
1939 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1940 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1941 			/* NB: sta's cannot go INIT->RUN */
1942 			/* NB: iv_newstate may drop the lock */
1943 			vap->iv_newstate(vap,
1944 			    vap->iv_opmode == IEEE80211_M_STA ?
1945 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1946 			IEEE80211_LOCK_ASSERT(ic);
1947 		}
1948 	}
1949 }
1950 
1951 /*
1952  * Handle post state change work common to all operating modes.
1953  */
1954 static void
1955 ieee80211_newstate_cb(void *xvap, int npending)
1956 {
1957 	struct ieee80211vap *vap = xvap;
1958 	struct ieee80211com *ic = vap->iv_ic;
1959 	enum ieee80211_state nstate, ostate;
1960 	int arg, rc;
1961 
1962 	IEEE80211_LOCK(ic);
1963 	nstate = vap->iv_nstate;
1964 	arg = vap->iv_nstate_arg;
1965 
1966 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1967 		/*
1968 		 * We have been requested to drop back to the INIT before
1969 		 * proceeding to the new state.
1970 		 */
1971 		/* Deny any state changes while we are here. */
1972 		vap->iv_nstate = IEEE80211_S_INIT;
1973 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1974 		    "%s: %s -> %s arg %d\n", __func__,
1975 		    ieee80211_state_name[vap->iv_state],
1976 		    ieee80211_state_name[vap->iv_nstate], arg);
1977 		vap->iv_newstate(vap, vap->iv_nstate, 0);
1978 		IEEE80211_LOCK_ASSERT(ic);
1979 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1980 		    IEEE80211_FEXT_STATEWAIT);
1981 		/* enqueue new state transition after cancel_scan() task */
1982 		ieee80211_new_state_locked(vap, nstate, arg);
1983 		goto done;
1984 	}
1985 
1986 	ostate = vap->iv_state;
1987 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1988 		/*
1989 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1990 		 * vap's to INIT state and mark them as waiting for the scan to
1991 		 * complete.  This insures they don't interfere with our
1992 		 * scanning.  Since we are single threaded the vaps can not
1993 		 * transition again while we are executing.
1994 		 *
1995 		 * XXX not always right, assumes ap follows sta
1996 		 */
1997 		markwaiting(vap);
1998 	}
1999 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2000 	    "%s: %s -> %s arg %d\n", __func__,
2001 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2002 
2003 	rc = vap->iv_newstate(vap, nstate, arg);
2004 	IEEE80211_LOCK_ASSERT(ic);
2005 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2006 	if (rc != 0) {
2007 		/* State transition failed */
2008 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2009 		KASSERT(nstate != IEEE80211_S_INIT,
2010 		    ("INIT state change failed"));
2011 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2012 		    "%s: %s returned error %d\n", __func__,
2013 		    ieee80211_state_name[nstate], rc);
2014 		goto done;
2015 	}
2016 
2017 	/* No actual transition, skip post processing */
2018 	if (ostate == nstate)
2019 		goto done;
2020 
2021 	if (nstate == IEEE80211_S_RUN) {
2022 		/*
2023 		 * OACTIVE may be set on the vap if the upper layer
2024 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2025 		 * RUN state.  Clear it and restart xmit.
2026 		 *
2027 		 * Note this can also happen as a result of SLEEP->RUN
2028 		 * (i.e. coming out of power save mode).
2029 		 */
2030 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2031 
2032 		/*
2033 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2034 		 */
2035 
2036 		/* bring up any vaps waiting on us */
2037 		wakeupwaiting(vap);
2038 	} else if (nstate == IEEE80211_S_INIT) {
2039 		/*
2040 		 * Flush the scan cache if we did the last scan (XXX?)
2041 		 * and flush any frames on send queues from this vap.
2042 		 * Note the mgt q is used only for legacy drivers and
2043 		 * will go away shortly.
2044 		 */
2045 		ieee80211_scan_flush(vap);
2046 
2047 		/*
2048 		 * XXX TODO: ic/vap queue flush
2049 		 */
2050 	}
2051 done:
2052 	IEEE80211_UNLOCK(ic);
2053 }
2054 
2055 /*
2056  * Public interface for initiating a state machine change.
2057  * This routine single-threads the request and coordinates
2058  * the scheduling of multiple vaps for the purpose of selecting
2059  * an operating channel.  Specifically the following scenarios
2060  * are handled:
2061  * o only one vap can be selecting a channel so on transition to
2062  *   SCAN state if another vap is already scanning then
2063  *   mark the caller for later processing and return without
2064  *   doing anything (XXX? expectations by caller of synchronous operation)
2065  * o only one vap can be doing CAC of a channel so on transition to
2066  *   CAC state if another vap is already scanning for radar then
2067  *   mark the caller for later processing and return without
2068  *   doing anything (XXX? expectations by caller of synchronous operation)
2069  * o if another vap is already running when a request is made
2070  *   to SCAN then an operating channel has been chosen; bypass
2071  *   the scan and just join the channel
2072  *
2073  * Note that the state change call is done through the iv_newstate
2074  * method pointer so any driver routine gets invoked.  The driver
2075  * will normally call back into operating mode-specific
2076  * ieee80211_newstate routines (below) unless it needs to completely
2077  * bypass the state machine (e.g. because the firmware has it's
2078  * own idea how things should work).  Bypassing the net80211 layer
2079  * is usually a mistake and indicates lack of proper integration
2080  * with the net80211 layer.
2081  */
2082 int
2083 ieee80211_new_state_locked(struct ieee80211vap *vap,
2084 	enum ieee80211_state nstate, int arg)
2085 {
2086 	struct ieee80211com *ic = vap->iv_ic;
2087 	struct ieee80211vap *vp;
2088 	enum ieee80211_state ostate;
2089 	int nrunning, nscanning;
2090 
2091 	IEEE80211_LOCK_ASSERT(ic);
2092 
2093 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2094 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2095 		    ((vap->iv_state == IEEE80211_S_INIT ||
2096 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2097 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2098 		    nstate > IEEE80211_S_SCAN)) {
2099 			/*
2100 			 * XXX The vap is being stopped/started,
2101 			 * do not allow any other state changes
2102 			 * until this is completed.
2103 			 */
2104 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2105 			    "%s: %s -> %s (%s) transition discarded\n",
2106 			    __func__,
2107 			    ieee80211_state_name[vap->iv_state],
2108 			    ieee80211_state_name[nstate],
2109 			    ieee80211_state_name[vap->iv_nstate]);
2110 			return -1;
2111 		} else if (vap->iv_state != vap->iv_nstate) {
2112 #if 0
2113 			/* Warn if the previous state hasn't completed. */
2114 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2115 			    "%s: pending %s -> %s transition lost\n", __func__,
2116 			    ieee80211_state_name[vap->iv_state],
2117 			    ieee80211_state_name[vap->iv_nstate]);
2118 #else
2119 			/* XXX temporarily enable to identify issues */
2120 			if_printf(vap->iv_ifp,
2121 			    "%s: pending %s -> %s transition lost\n",
2122 			    __func__, ieee80211_state_name[vap->iv_state],
2123 			    ieee80211_state_name[vap->iv_nstate]);
2124 #endif
2125 		}
2126 	}
2127 
2128 	nrunning = nscanning = 0;
2129 	/* XXX can track this state instead of calculating */
2130 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2131 		if (vp != vap) {
2132 			if (vp->iv_state >= IEEE80211_S_RUN)
2133 				nrunning++;
2134 			/* XXX doesn't handle bg scan */
2135 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2136 			else if (vp->iv_state > IEEE80211_S_INIT)
2137 				nscanning++;
2138 		}
2139 	}
2140 	ostate = vap->iv_state;
2141 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2142 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2143 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2144 	    nrunning, nscanning);
2145 	switch (nstate) {
2146 	case IEEE80211_S_SCAN:
2147 		if (ostate == IEEE80211_S_INIT) {
2148 			/*
2149 			 * INIT -> SCAN happens on initial bringup.
2150 			 */
2151 			KASSERT(!(nscanning && nrunning),
2152 			    ("%d scanning and %d running", nscanning, nrunning));
2153 			if (nscanning) {
2154 				/*
2155 				 * Someone is scanning, defer our state
2156 				 * change until the work has completed.
2157 				 */
2158 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2159 				    "%s: defer %s -> %s\n",
2160 				    __func__, ieee80211_state_name[ostate],
2161 				    ieee80211_state_name[nstate]);
2162 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2163 				return 0;
2164 			}
2165 			if (nrunning) {
2166 				/*
2167 				 * Someone is operating; just join the channel
2168 				 * they have chosen.
2169 				 */
2170 				/* XXX kill arg? */
2171 				/* XXX check each opmode, adhoc? */
2172 				if (vap->iv_opmode == IEEE80211_M_STA)
2173 					nstate = IEEE80211_S_SCAN;
2174 				else
2175 					nstate = IEEE80211_S_RUN;
2176 #ifdef IEEE80211_DEBUG
2177 				if (nstate != IEEE80211_S_SCAN) {
2178 					IEEE80211_DPRINTF(vap,
2179 					    IEEE80211_MSG_STATE,
2180 					    "%s: override, now %s -> %s\n",
2181 					    __func__,
2182 					    ieee80211_state_name[ostate],
2183 					    ieee80211_state_name[nstate]);
2184 				}
2185 #endif
2186 			}
2187 		}
2188 		break;
2189 	case IEEE80211_S_RUN:
2190 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2191 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2192 		    nscanning) {
2193 			/*
2194 			 * Legacy WDS with someone else scanning; don't
2195 			 * go online until that completes as we should
2196 			 * follow the other vap to the channel they choose.
2197 			 */
2198 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2199 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2200 			     ieee80211_state_name[ostate],
2201 			     ieee80211_state_name[nstate]);
2202 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2203 			return 0;
2204 		}
2205 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2206 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2207 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2208 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2209 			/*
2210 			 * This is a DFS channel, transition to CAC state
2211 			 * instead of RUN.  This allows us to initiate
2212 			 * Channel Availability Check (CAC) as specified
2213 			 * by 11h/DFS.
2214 			 */
2215 			nstate = IEEE80211_S_CAC;
2216 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2217 			     "%s: override %s -> %s (DFS)\n", __func__,
2218 			     ieee80211_state_name[ostate],
2219 			     ieee80211_state_name[nstate]);
2220 		}
2221 		break;
2222 	case IEEE80211_S_INIT:
2223 		/* cancel any scan in progress */
2224 		ieee80211_cancel_scan(vap);
2225 		if (ostate == IEEE80211_S_INIT ) {
2226 			/* XXX don't believe this */
2227 			/* INIT -> INIT. nothing to do */
2228 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2229 		}
2230 		/* fall thru... */
2231 	default:
2232 		break;
2233 	}
2234 	/* defer the state change to a thread */
2235 	vap->iv_nstate = nstate;
2236 	vap->iv_nstate_arg = arg;
2237 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2238 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2239 	return EINPROGRESS;
2240 }
2241 
2242 int
2243 ieee80211_new_state(struct ieee80211vap *vap,
2244 	enum ieee80211_state nstate, int arg)
2245 {
2246 	struct ieee80211com *ic = vap->iv_ic;
2247 	int rc;
2248 
2249 	IEEE80211_LOCK(ic);
2250 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2251 	IEEE80211_UNLOCK(ic);
2252 	return rc;
2253 }
2254