1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 /* 32 * IEEE 802.11 protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/if_private.h> 50 #include <net/ethernet.h> /* XXX for ether_sprintf */ 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_adhoc.h> 54 #include <net80211/ieee80211_sta.h> 55 #include <net80211/ieee80211_hostap.h> 56 #include <net80211/ieee80211_wds.h> 57 #ifdef IEEE80211_SUPPORT_MESH 58 #include <net80211/ieee80211_mesh.h> 59 #endif 60 #include <net80211/ieee80211_monitor.h> 61 #include <net80211/ieee80211_input.h> 62 63 /* XXX tunables */ 64 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 65 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 66 67 const char *mgt_subtype_name[] = { 68 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 69 "probe_req", "probe_resp", "timing_adv", "reserved#7", 70 "beacon", "atim", "disassoc", "auth", 71 "deauth", "action", "action_noack", "reserved#15" 72 }; 73 const char *ctl_subtype_name[] = { 74 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 75 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 76 "bar", "ba", "ps_poll", "rts", 77 "cts", "ack", "cf_end", "cf_end_ack" 78 }; 79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 80 "IBSS", /* IEEE80211_M_IBSS */ 81 "STA", /* IEEE80211_M_STA */ 82 "WDS", /* IEEE80211_M_WDS */ 83 "AHDEMO", /* IEEE80211_M_AHDEMO */ 84 "HOSTAP", /* IEEE80211_M_HOSTAP */ 85 "MONITOR", /* IEEE80211_M_MONITOR */ 86 "MBSS" /* IEEE80211_M_MBSS */ 87 }; 88 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 89 "INIT", /* IEEE80211_S_INIT */ 90 "SCAN", /* IEEE80211_S_SCAN */ 91 "AUTH", /* IEEE80211_S_AUTH */ 92 "ASSOC", /* IEEE80211_S_ASSOC */ 93 "CAC", /* IEEE80211_S_CAC */ 94 "RUN", /* IEEE80211_S_RUN */ 95 "CSA", /* IEEE80211_S_CSA */ 96 "SLEEP", /* IEEE80211_S_SLEEP */ 97 }; 98 const char *ieee80211_wme_acnames[] = { 99 "WME_AC_BE", 100 "WME_AC_BK", 101 "WME_AC_VI", 102 "WME_AC_VO", 103 "WME_UPSD", 104 }; 105 106 /* 107 * Reason code descriptions were (mostly) obtained from 108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 109 */ 110 const char * 111 ieee80211_reason_to_string(uint16_t reason) 112 { 113 switch (reason) { 114 case IEEE80211_REASON_UNSPECIFIED: 115 return ("unspecified"); 116 case IEEE80211_REASON_AUTH_EXPIRE: 117 return ("previous authentication is expired"); 118 case IEEE80211_REASON_AUTH_LEAVE: 119 return ("sending STA is leaving/has left IBSS or ESS"); 120 case IEEE80211_REASON_ASSOC_EXPIRE: 121 return ("disassociated due to inactivity"); 122 case IEEE80211_REASON_ASSOC_TOOMANY: 123 return ("too many associated STAs"); 124 case IEEE80211_REASON_NOT_AUTHED: 125 return ("class 2 frame received from nonauthenticated STA"); 126 case IEEE80211_REASON_NOT_ASSOCED: 127 return ("class 3 frame received from nonassociated STA"); 128 case IEEE80211_REASON_ASSOC_LEAVE: 129 return ("sending STA is leaving/has left BSS"); 130 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 131 return ("STA requesting (re)association is not authenticated"); 132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 133 return ("information in the Power Capability element is " 134 "unacceptable"); 135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 136 return ("information in the Supported Channels element is " 137 "unacceptable"); 138 case IEEE80211_REASON_IE_INVALID: 139 return ("invalid element"); 140 case IEEE80211_REASON_MIC_FAILURE: 141 return ("MIC failure"); 142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 143 return ("4-Way handshake timeout"); 144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 145 return ("group key update timeout"); 146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 147 return ("element in 4-Way handshake different from " 148 "(re)association request/probe response/beacon frame"); 149 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 150 return ("invalid group cipher"); 151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 152 return ("invalid pairwise cipher"); 153 case IEEE80211_REASON_AKMP_INVALID: 154 return ("invalid AKMP"); 155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 156 return ("unsupported version in RSN IE"); 157 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 158 return ("invalid capabilities in RSN IE"); 159 case IEEE80211_REASON_802_1X_AUTH_FAILED: 160 return ("IEEE 802.1X authentication failed"); 161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 162 return ("cipher suite rejected because of the security " 163 "policy"); 164 case IEEE80211_REASON_UNSPECIFIED_QOS: 165 return ("unspecified (QoS-related)"); 166 case IEEE80211_REASON_INSUFFICIENT_BW: 167 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 168 case IEEE80211_REASON_TOOMANY_FRAMES: 169 return ("too many frames need to be acknowledged"); 170 case IEEE80211_REASON_OUTSIDE_TXOP: 171 return ("STA is transmitting outside the limits of its TXOPs"); 172 case IEEE80211_REASON_LEAVING_QBSS: 173 return ("requested from peer STA (the STA is " 174 "resetting/leaving the BSS)"); 175 case IEEE80211_REASON_BAD_MECHANISM: 176 return ("requested from peer STA (it does not want to use " 177 "the mechanism)"); 178 case IEEE80211_REASON_SETUP_NEEDED: 179 return ("requested from peer STA (setup is required for the " 180 "used mechanism)"); 181 case IEEE80211_REASON_TIMEOUT: 182 return ("requested from peer STA (timeout)"); 183 case IEEE80211_REASON_PEER_LINK_CANCELED: 184 return ("SME cancels the mesh peering instance (not related " 185 "to the maximum number of peer mesh STAs)"); 186 case IEEE80211_REASON_MESH_MAX_PEERS: 187 return ("maximum number of peer mesh STAs was reached"); 188 case IEEE80211_REASON_MESH_CPVIOLATION: 189 return ("the received information violates the Mesh " 190 "Configuration policy configured in the mesh STA " 191 "profile"); 192 case IEEE80211_REASON_MESH_CLOSE_RCVD: 193 return ("the mesh STA has received a Mesh Peering Close " 194 "message requesting to close the mesh peering"); 195 case IEEE80211_REASON_MESH_MAX_RETRIES: 196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 197 "Peering Open messages, without receiving a Mesh " 198 "Peering Confirm message"); 199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 200 return ("the confirmTimer for the mesh peering instance times " 201 "out"); 202 case IEEE80211_REASON_MESH_INVALID_GTK: 203 return ("the mesh STA fails to unwrap the GTK or the values " 204 "in the wrapped contents do not match"); 205 case IEEE80211_REASON_MESH_INCONS_PARAMS: 206 return ("the mesh STA receives inconsistent information about " 207 "the mesh parameters between Mesh Peering Management " 208 "frames"); 209 case IEEE80211_REASON_MESH_INVALID_SECURITY: 210 return ("the mesh STA fails the authenticated mesh peering " 211 "exchange because due to failure in selecting " 212 "pairwise/group ciphersuite"); 213 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 214 return ("the mesh STA does not have proxy information for " 215 "this external destination"); 216 case IEEE80211_REASON_MESH_PERR_NO_FI: 217 return ("the mesh STA does not have forwarding information " 218 "for this destination"); 219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 220 return ("the mesh STA determines that the link to the next " 221 "hop of an active path in its forwarding information " 222 "is no longer usable"); 223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 224 return ("the MAC address of the STA already exists in the " 225 "mesh BSS"); 226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 227 return ("the mesh STA performs channel switch to meet " 228 "regulatory requirements"); 229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 230 return ("the mesh STA performs channel switch with " 231 "unspecified reason"); 232 default: 233 return ("reserved/unknown"); 234 } 235 } 236 237 static void beacon_miss(void *, int); 238 static void beacon_swmiss(void *, int); 239 static void parent_updown(void *, int); 240 static void update_mcast(void *, int); 241 static void update_promisc(void *, int); 242 static void update_channel(void *, int); 243 static void update_chw(void *, int); 244 static void vap_update_wme(void *, int); 245 static void vap_update_slot(void *, int); 246 static void restart_vaps(void *, int); 247 static void vap_update_erp_protmode(void *, int); 248 static void vap_update_preamble(void *, int); 249 static void vap_update_ht_protmode(void *, int); 250 static void ieee80211_newstate_cb(void *, int); 251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 252 struct ieee80211_node *); 253 254 static int 255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 256 const struct ieee80211_bpf_params *params) 257 { 258 259 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 260 m_freem(m); 261 return ENETDOWN; 262 } 263 264 void 265 ieee80211_proto_attach(struct ieee80211com *ic) 266 { 267 uint8_t hdrlen; 268 269 /* override the 802.3 setting */ 270 hdrlen = ic->ic_headroom 271 + sizeof(struct ieee80211_qosframe_addr4) 272 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 273 + IEEE80211_WEP_EXTIVLEN; 274 /* XXX no way to recalculate on ifdetach */ 275 max_linkhdr_grow(ALIGN(hdrlen)); 276 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 277 278 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 279 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 280 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 281 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 282 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 283 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 284 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 285 286 ic->ic_wme.wme_hipri_switch_hysteresis = 287 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 288 289 /* initialize management frame handlers */ 290 ic->ic_send_mgmt = ieee80211_send_mgmt; 291 ic->ic_raw_xmit = null_raw_xmit; 292 293 ieee80211_adhoc_attach(ic); 294 ieee80211_sta_attach(ic); 295 ieee80211_wds_attach(ic); 296 ieee80211_hostap_attach(ic); 297 #ifdef IEEE80211_SUPPORT_MESH 298 ieee80211_mesh_attach(ic); 299 #endif 300 ieee80211_monitor_attach(ic); 301 } 302 303 void 304 ieee80211_proto_detach(struct ieee80211com *ic) 305 { 306 ieee80211_monitor_detach(ic); 307 #ifdef IEEE80211_SUPPORT_MESH 308 ieee80211_mesh_detach(ic); 309 #endif 310 ieee80211_hostap_detach(ic); 311 ieee80211_wds_detach(ic); 312 ieee80211_adhoc_detach(ic); 313 ieee80211_sta_detach(ic); 314 } 315 316 static void 317 null_update_beacon(struct ieee80211vap *vap, int item) 318 { 319 } 320 321 void 322 ieee80211_proto_vattach(struct ieee80211vap *vap) 323 { 324 struct ieee80211com *ic = vap->iv_ic; 325 struct ifnet *ifp = vap->iv_ifp; 326 int i; 327 328 /* override the 802.3 setting */ 329 ifp->if_hdrlen = ic->ic_headroom 330 + sizeof(struct ieee80211_qosframe_addr4) 331 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 332 + IEEE80211_WEP_EXTIVLEN; 333 334 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 335 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 336 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 337 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 338 callout_init(&vap->iv_mgtsend, 1); 339 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 340 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 341 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 342 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 343 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 344 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 345 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 346 /* 347 * Install default tx rate handling: no fixed rate, lowest 348 * supported rate for mgmt and multicast frames. Default 349 * max retry count. These settings can be changed by the 350 * driver and/or user applications. 351 */ 352 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 353 if (isclr(ic->ic_modecaps, i)) 354 continue; 355 356 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 357 358 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 359 360 /* 361 * Setting the management rate to MCS 0 assumes that the 362 * BSS Basic rate set is empty and the BSS Basic MCS set 363 * is not. 364 * 365 * Since we're not checking this, default to the lowest 366 * defined rate for this mode. 367 * 368 * At least one 11n AP (DLINK DIR-825) is reported to drop 369 * some MCS management traffic (eg BA response frames.) 370 * 371 * See also: 9.6.0 of the 802.11n-2009 specification. 372 */ 373 #ifdef NOTYET 374 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 375 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 376 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 377 } else { 378 vap->iv_txparms[i].mgmtrate = 379 rs->rs_rates[0] & IEEE80211_RATE_VAL; 380 vap->iv_txparms[i].mcastrate = 381 rs->rs_rates[0] & IEEE80211_RATE_VAL; 382 } 383 #endif 384 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 385 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 387 } 388 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 389 390 vap->iv_update_beacon = null_update_beacon; 391 vap->iv_deliver_data = ieee80211_deliver_data; 392 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 393 vap->iv_update_bss = vap_update_bss; 394 395 /* attach support for operating mode */ 396 ic->ic_vattach[vap->iv_opmode](vap); 397 } 398 399 void 400 ieee80211_proto_vdetach(struct ieee80211vap *vap) 401 { 402 #define FREEAPPIE(ie) do { \ 403 if (ie != NULL) \ 404 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 405 } while (0) 406 /* 407 * Detach operating mode module. 408 */ 409 if (vap->iv_opdetach != NULL) 410 vap->iv_opdetach(vap); 411 /* 412 * This should not be needed as we detach when reseting 413 * the state but be conservative here since the 414 * authenticator may do things like spawn kernel threads. 415 */ 416 if (vap->iv_auth->ia_detach != NULL) 417 vap->iv_auth->ia_detach(vap); 418 /* 419 * Detach any ACL'ator. 420 */ 421 if (vap->iv_acl != NULL) 422 vap->iv_acl->iac_detach(vap); 423 424 FREEAPPIE(vap->iv_appie_beacon); 425 FREEAPPIE(vap->iv_appie_probereq); 426 FREEAPPIE(vap->iv_appie_proberesp); 427 FREEAPPIE(vap->iv_appie_assocreq); 428 FREEAPPIE(vap->iv_appie_assocresp); 429 FREEAPPIE(vap->iv_appie_wpa); 430 #undef FREEAPPIE 431 } 432 433 /* 434 * Simple-minded authenticator module support. 435 */ 436 437 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 438 /* XXX well-known names */ 439 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 440 "wlan_internal", /* IEEE80211_AUTH_NONE */ 441 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 442 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 443 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 444 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 445 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 446 }; 447 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 448 449 static const struct ieee80211_authenticator auth_internal = { 450 .ia_name = "wlan_internal", 451 .ia_attach = NULL, 452 .ia_detach = NULL, 453 .ia_node_join = NULL, 454 .ia_node_leave = NULL, 455 }; 456 457 /* 458 * Setup internal authenticators once; they are never unregistered. 459 */ 460 static void 461 ieee80211_auth_setup(void) 462 { 463 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 464 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 465 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 466 } 467 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 468 469 const struct ieee80211_authenticator * 470 ieee80211_authenticator_get(int auth) 471 { 472 if (auth >= IEEE80211_AUTH_MAX) 473 return NULL; 474 if (authenticators[auth] == NULL) 475 ieee80211_load_module(auth_modnames[auth]); 476 return authenticators[auth]; 477 } 478 479 void 480 ieee80211_authenticator_register(int type, 481 const struct ieee80211_authenticator *auth) 482 { 483 if (type >= IEEE80211_AUTH_MAX) 484 return; 485 authenticators[type] = auth; 486 } 487 488 void 489 ieee80211_authenticator_unregister(int type) 490 { 491 492 if (type >= IEEE80211_AUTH_MAX) 493 return; 494 authenticators[type] = NULL; 495 } 496 497 /* 498 * Very simple-minded ACL module support. 499 */ 500 /* XXX just one for now */ 501 static const struct ieee80211_aclator *acl = NULL; 502 503 void 504 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 505 { 506 printf("wlan: %s acl policy registered\n", iac->iac_name); 507 acl = iac; 508 } 509 510 void 511 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 512 { 513 if (acl == iac) 514 acl = NULL; 515 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 516 } 517 518 const struct ieee80211_aclator * 519 ieee80211_aclator_get(const char *name) 520 { 521 if (acl == NULL) 522 ieee80211_load_module("wlan_acl"); 523 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 524 } 525 526 void 527 ieee80211_print_essid(const uint8_t *essid, int len) 528 { 529 const uint8_t *p; 530 int i; 531 532 if (len > IEEE80211_NWID_LEN) 533 len = IEEE80211_NWID_LEN; 534 /* determine printable or not */ 535 for (i = 0, p = essid; i < len; i++, p++) { 536 if (*p < ' ' || *p > 0x7e) 537 break; 538 } 539 if (i == len) { 540 printf("\""); 541 for (i = 0, p = essid; i < len; i++, p++) 542 printf("%c", *p); 543 printf("\""); 544 } else { 545 printf("0x"); 546 for (i = 0, p = essid; i < len; i++, p++) 547 printf("%02x", *p); 548 } 549 } 550 551 void 552 ieee80211_dump_pkt(struct ieee80211com *ic, 553 const uint8_t *buf, int len, int rate, int rssi) 554 { 555 const struct ieee80211_frame *wh; 556 int i; 557 558 wh = (const struct ieee80211_frame *)buf; 559 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 560 case IEEE80211_FC1_DIR_NODS: 561 printf("NODS %s", ether_sprintf(wh->i_addr2)); 562 printf("->%s", ether_sprintf(wh->i_addr1)); 563 printf("(%s)", ether_sprintf(wh->i_addr3)); 564 break; 565 case IEEE80211_FC1_DIR_TODS: 566 printf("TODS %s", ether_sprintf(wh->i_addr2)); 567 printf("->%s", ether_sprintf(wh->i_addr3)); 568 printf("(%s)", ether_sprintf(wh->i_addr1)); 569 break; 570 case IEEE80211_FC1_DIR_FROMDS: 571 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 572 printf("->%s", ether_sprintf(wh->i_addr1)); 573 printf("(%s)", ether_sprintf(wh->i_addr2)); 574 break; 575 case IEEE80211_FC1_DIR_DSTODS: 576 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 577 printf("->%s", ether_sprintf(wh->i_addr3)); 578 printf("(%s", ether_sprintf(wh->i_addr2)); 579 printf("->%s)", ether_sprintf(wh->i_addr1)); 580 break; 581 } 582 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 583 case IEEE80211_FC0_TYPE_DATA: 584 printf(" data"); 585 break; 586 case IEEE80211_FC0_TYPE_MGT: 587 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 588 break; 589 default: 590 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 591 break; 592 } 593 if (IEEE80211_QOS_HAS_SEQ(wh)) { 594 const struct ieee80211_qosframe *qwh = 595 (const struct ieee80211_qosframe *)buf; 596 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 597 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 598 } 599 if (IEEE80211_IS_PROTECTED(wh)) { 600 int off; 601 602 off = ieee80211_anyhdrspace(ic, wh); 603 printf(" WEP [IV %.02x %.02x %.02x", 604 buf[off+0], buf[off+1], buf[off+2]); 605 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 606 printf(" %.02x %.02x %.02x", 607 buf[off+4], buf[off+5], buf[off+6]); 608 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 609 } 610 if (rate >= 0) 611 printf(" %dM", rate / 2); 612 if (rssi >= 0) 613 printf(" +%d", rssi); 614 printf("\n"); 615 if (len > 0) { 616 for (i = 0; i < len; i++) { 617 if ((i & 1) == 0) 618 printf(" "); 619 printf("%02x", buf[i]); 620 } 621 printf("\n"); 622 } 623 } 624 625 static __inline int 626 findrix(const struct ieee80211_rateset *rs, int r) 627 { 628 int i; 629 630 for (i = 0; i < rs->rs_nrates; i++) 631 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 632 return i; 633 return -1; 634 } 635 636 int 637 ieee80211_fix_rate(struct ieee80211_node *ni, 638 struct ieee80211_rateset *nrs, int flags) 639 { 640 struct ieee80211vap *vap = ni->ni_vap; 641 struct ieee80211com *ic = ni->ni_ic; 642 int i, j, rix, error; 643 int okrate, badrate, fixedrate, ucastrate; 644 const struct ieee80211_rateset *srs; 645 uint8_t r; 646 647 error = 0; 648 okrate = badrate = 0; 649 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 650 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 651 /* 652 * Workaround awkwardness with fixed rate. We are called 653 * to check both the legacy rate set and the HT rate set 654 * but we must apply any legacy fixed rate check only to the 655 * legacy rate set and vice versa. We cannot tell what type 656 * of rate set we've been given (legacy or HT) but we can 657 * distinguish the fixed rate type (MCS have 0x80 set). 658 * So to deal with this the caller communicates whether to 659 * check MCS or legacy rate using the flags and we use the 660 * type of any fixed rate to avoid applying an MCS to a 661 * legacy rate and vice versa. 662 */ 663 if (ucastrate & 0x80) { 664 if (flags & IEEE80211_F_DOFRATE) 665 flags &= ~IEEE80211_F_DOFRATE; 666 } else if ((ucastrate & 0x80) == 0) { 667 if (flags & IEEE80211_F_DOFMCS) 668 flags &= ~IEEE80211_F_DOFMCS; 669 } 670 /* NB: required to make MCS match below work */ 671 ucastrate &= IEEE80211_RATE_VAL; 672 } 673 fixedrate = IEEE80211_FIXED_RATE_NONE; 674 /* 675 * XXX we are called to process both MCS and legacy rates; 676 * we must use the appropriate basic rate set or chaos will 677 * ensue; for now callers that want MCS must supply 678 * IEEE80211_F_DOBRS; at some point we'll need to split this 679 * function so there are two variants, one for MCS and one 680 * for legacy rates. 681 */ 682 if (flags & IEEE80211_F_DOBRS) 683 srs = (const struct ieee80211_rateset *) 684 ieee80211_get_suphtrates(ic, ni->ni_chan); 685 else 686 srs = ieee80211_get_suprates(ic, ni->ni_chan); 687 for (i = 0; i < nrs->rs_nrates; ) { 688 if (flags & IEEE80211_F_DOSORT) { 689 /* 690 * Sort rates. 691 */ 692 for (j = i + 1; j < nrs->rs_nrates; j++) { 693 if (IEEE80211_RV(nrs->rs_rates[i]) > 694 IEEE80211_RV(nrs->rs_rates[j])) { 695 r = nrs->rs_rates[i]; 696 nrs->rs_rates[i] = nrs->rs_rates[j]; 697 nrs->rs_rates[j] = r; 698 } 699 } 700 } 701 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 702 badrate = r; 703 /* 704 * Check for fixed rate. 705 */ 706 if (r == ucastrate) 707 fixedrate = r; 708 /* 709 * Check against supported rates. 710 */ 711 rix = findrix(srs, r); 712 if (flags & IEEE80211_F_DONEGO) { 713 if (rix < 0) { 714 /* 715 * A rate in the node's rate set is not 716 * supported. If this is a basic rate and we 717 * are operating as a STA then this is an error. 718 * Otherwise we just discard/ignore the rate. 719 */ 720 if ((flags & IEEE80211_F_JOIN) && 721 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 722 error++; 723 } else if ((flags & IEEE80211_F_JOIN) == 0) { 724 /* 725 * Overwrite with the supported rate 726 * value so any basic rate bit is set. 727 */ 728 nrs->rs_rates[i] = srs->rs_rates[rix]; 729 } 730 } 731 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 732 /* 733 * Delete unacceptable rates. 734 */ 735 nrs->rs_nrates--; 736 for (j = i; j < nrs->rs_nrates; j++) 737 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 738 nrs->rs_rates[j] = 0; 739 continue; 740 } 741 if (rix >= 0) 742 okrate = nrs->rs_rates[i]; 743 i++; 744 } 745 if (okrate == 0 || error != 0 || 746 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 747 fixedrate != ucastrate)) { 748 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 749 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 750 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 751 return badrate | IEEE80211_RATE_BASIC; 752 } else 753 return IEEE80211_RV(okrate); 754 } 755 756 /* 757 * Reset 11g-related state. 758 * 759 * This is for per-VAP ERP/11g state. 760 * 761 * Eventually everything in ieee80211_reset_erp() will be 762 * per-VAP and in here. 763 */ 764 void 765 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 766 { 767 struct ieee80211com *ic = vap->iv_ic; 768 769 vap->iv_nonerpsta = 0; 770 vap->iv_longslotsta = 0; 771 772 vap->iv_flags &= ~IEEE80211_F_USEPROT; 773 /* 774 * Set short preamble and ERP barker-preamble flags. 775 */ 776 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 777 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 778 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 779 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 780 } else { 781 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 782 vap->iv_flags |= IEEE80211_F_USEBARKER; 783 } 784 785 /* 786 * Short slot time is enabled only when operating in 11g 787 * and not in an IBSS. We must also honor whether or not 788 * the driver is capable of doing it. 789 */ 790 ieee80211_vap_set_shortslottime(vap, 791 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 792 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 793 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 794 vap->iv_opmode == IEEE80211_M_HOSTAP && 795 (ic->ic_caps & IEEE80211_C_SHSLOT))); 796 } 797 798 /* 799 * Reset 11g-related state. 800 * 801 * Note this resets the global state and a caller should schedule 802 * a re-check of all the VAPs after setup to update said state. 803 */ 804 void 805 ieee80211_reset_erp(struct ieee80211com *ic) 806 { 807 #if 0 808 ic->ic_flags &= ~IEEE80211_F_USEPROT; 809 /* 810 * Set short preamble and ERP barker-preamble flags. 811 */ 812 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 813 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 814 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 815 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 816 } else { 817 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 818 ic->ic_flags |= IEEE80211_F_USEBARKER; 819 } 820 #endif 821 /* XXX TODO: schedule a new per-VAP ERP calculation */ 822 } 823 824 static struct ieee80211_node * 825 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 826 { 827 struct ieee80211_node *obss; 828 829 obss = vap->iv_bss; 830 vap->iv_bss = ni; 831 832 return (obss); 833 } 834 835 /* 836 * Deferred slot time update. 837 * 838 * For per-VAP slot time configuration, call the VAP 839 * method if the VAP requires it. Otherwise, just call the 840 * older global method. 841 * 842 * If the per-VAP method is called then it's expected that 843 * the driver/firmware will take care of turning the per-VAP 844 * flags into slot time configuration. 845 * 846 * If the per-VAP method is not called then the global flags will be 847 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 848 * be set only if all of the vaps will have it set. 849 * 850 * Look at the comments for vap_update_erp_protmode() for more 851 * background; this assumes all VAPs are on the same channel. 852 */ 853 static void 854 vap_update_slot(void *arg, int npending) 855 { 856 struct ieee80211vap *vap = arg; 857 struct ieee80211com *ic = vap->iv_ic; 858 struct ieee80211vap *iv; 859 int num_shslot = 0, num_lgslot = 0; 860 861 /* 862 * Per-VAP path - we've already had the flags updated; 863 * so just notify the driver and move on. 864 */ 865 if (vap->iv_updateslot != NULL) { 866 vap->iv_updateslot(vap); 867 return; 868 } 869 870 /* 871 * Iterate over all of the VAP flags to update the 872 * global flag. 873 * 874 * If all vaps have short slot enabled then flip on 875 * short slot. If any vap has it disabled then 876 * we leave it globally disabled. This should provide 877 * correct behaviour in a multi-BSS scenario where 878 * at least one VAP has short slot disabled for some 879 * reason. 880 */ 881 IEEE80211_LOCK(ic); 882 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 883 if (iv->iv_flags & IEEE80211_F_SHSLOT) 884 num_shslot++; 885 else 886 num_lgslot++; 887 } 888 889 /* 890 * It looks backwards but - if the number of short slot VAPs 891 * is zero then we're not short slot. Else, we have one 892 * or more short slot VAPs and we're checking to see if ANY 893 * of them have short slot disabled. 894 */ 895 if (num_shslot == 0) 896 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 897 else if (num_lgslot == 0) 898 ic->ic_flags |= IEEE80211_F_SHSLOT; 899 IEEE80211_UNLOCK(ic); 900 901 /* 902 * Call the driver with our new global slot time flags. 903 */ 904 if (ic->ic_updateslot != NULL) 905 ic->ic_updateslot(ic); 906 } 907 908 /* 909 * Deferred ERP protmode update. 910 * 911 * This currently calculates the global ERP protection mode flag 912 * based on each of the VAPs. Any VAP with it enabled is enough 913 * for the global flag to be enabled. All VAPs with it disabled 914 * is enough for it to be disabled. 915 * 916 * This may make sense right now for the supported hardware where 917 * net80211 is controlling the single channel configuration, but 918 * offload firmware that's doing channel changes (eg off-channel 919 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 920 * silly looking flag updates. 921 * 922 * Ideally the protection mode calculation is done based on the 923 * channel, and all VAPs using that channel will inherit it. 924 * But until that's what net80211 does, this wil have to do. 925 */ 926 static void 927 vap_update_erp_protmode(void *arg, int npending) 928 { 929 struct ieee80211vap *vap = arg; 930 struct ieee80211com *ic = vap->iv_ic; 931 struct ieee80211vap *iv; 932 int enable_protmode = 0; 933 int non_erp_present = 0; 934 935 /* 936 * Iterate over all of the VAPs to calculate the overlapping 937 * ERP protection mode configuration and ERP present math. 938 * 939 * For now we assume that if a driver can handle this per-VAP 940 * then it'll ignore the ic->ic_protmode variant and instead 941 * will look at the vap related flags. 942 */ 943 IEEE80211_LOCK(ic); 944 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 945 if (iv->iv_flags & IEEE80211_F_USEPROT) 946 enable_protmode = 1; 947 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 948 non_erp_present = 1; 949 } 950 951 if (enable_protmode) 952 ic->ic_flags |= IEEE80211_F_USEPROT; 953 else 954 ic->ic_flags &= ~IEEE80211_F_USEPROT; 955 956 if (non_erp_present) 957 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 958 else 959 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 960 961 /* Beacon update on all VAPs */ 962 ieee80211_notify_erp_locked(ic); 963 964 IEEE80211_UNLOCK(ic); 965 966 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 967 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 968 __func__, enable_protmode, non_erp_present); 969 970 /* 971 * Now that the global configuration flags are calculated, 972 * notify the VAP about its configuration. 973 * 974 * The global flags will be used when assembling ERP IEs 975 * for multi-VAP operation, even if it's on a different 976 * channel. Yes, that's going to need fixing in the 977 * future. 978 */ 979 if (vap->iv_erp_protmode_update != NULL) 980 vap->iv_erp_protmode_update(vap); 981 } 982 983 /* 984 * Deferred ERP short preamble/barker update. 985 * 986 * All VAPs need to use short preamble for it to be globally 987 * enabled or not. 988 * 989 * Look at the comments for vap_update_erp_protmode() for more 990 * background; this assumes all VAPs are on the same channel. 991 */ 992 static void 993 vap_update_preamble(void *arg, int npending) 994 { 995 struct ieee80211vap *vap = arg; 996 struct ieee80211com *ic = vap->iv_ic; 997 struct ieee80211vap *iv; 998 int barker_count = 0, short_preamble_count = 0, count = 0; 999 1000 /* 1001 * Iterate over all of the VAPs to calculate the overlapping 1002 * short or long preamble configuration. 1003 * 1004 * For now we assume that if a driver can handle this per-VAP 1005 * then it'll ignore the ic->ic_flags variant and instead 1006 * will look at the vap related flags. 1007 */ 1008 IEEE80211_LOCK(ic); 1009 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1010 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1011 barker_count++; 1012 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1013 short_preamble_count++; 1014 count++; 1015 } 1016 1017 /* 1018 * As with vap_update_erp_protmode(), the global flags are 1019 * currently used for beacon IEs. 1020 */ 1021 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1022 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1023 __func__, barker_count, short_preamble_count); 1024 1025 /* 1026 * Only flip on short preamble if all of the VAPs support 1027 * it. 1028 */ 1029 if (barker_count == 0 && short_preamble_count == count) { 1030 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1031 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1032 } else { 1033 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1034 ic->ic_flags |= IEEE80211_F_USEBARKER; 1035 } 1036 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1037 "%s: global barker=%d preamble=%d\n", 1038 __func__, 1039 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1040 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1041 1042 /* Beacon update on all VAPs */ 1043 ieee80211_notify_erp_locked(ic); 1044 1045 IEEE80211_UNLOCK(ic); 1046 1047 /* Driver notification */ 1048 if (vap->iv_erp_protmode_update != NULL) 1049 vap->iv_preamble_update(vap); 1050 } 1051 1052 /* 1053 * Deferred HT protmode update and beacon update. 1054 * 1055 * Look at the comments for vap_update_erp_protmode() for more 1056 * background; this assumes all VAPs are on the same channel. 1057 */ 1058 static void 1059 vap_update_ht_protmode(void *arg, int npending) 1060 { 1061 struct ieee80211vap *vap = arg; 1062 struct ieee80211vap *iv; 1063 struct ieee80211com *ic = vap->iv_ic; 1064 int num_vaps = 0, num_pure = 0; 1065 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1066 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1067 int num_nonhtpr = 0; 1068 1069 /* 1070 * Iterate over all of the VAPs to calculate everything. 1071 * 1072 * There are a few different flags to calculate: 1073 * 1074 * + whether there's HT only or HT+legacy stations; 1075 * + whether there's HT20, HT40, or HT20+HT40 stations; 1076 * + whether the desired protection mode is mixed, pure or 1077 * one of the two above. 1078 * 1079 * For now we assume that if a driver can handle this per-VAP 1080 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1081 * variant and instead will look at the vap related variables. 1082 * 1083 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1084 */ 1085 1086 IEEE80211_LOCK(ic); 1087 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1088 num_vaps++; 1089 /* overlapping BSSes advertising non-HT status present */ 1090 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1091 num_nonht++; 1092 /* Operating mode flags */ 1093 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1094 num_nonhtpr++; 1095 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1096 case IEEE80211_HTINFO_OPMODE_PURE: 1097 num_pure++; 1098 break; 1099 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1100 num_optional++; 1101 break; 1102 case IEEE80211_HTINFO_OPMODE_HT20PR: 1103 num_ht2040++; 1104 break; 1105 } 1106 1107 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1108 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1109 __func__, 1110 ieee80211_get_vap_ifname(iv), 1111 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1112 iv->iv_curhtprotmode); 1113 1114 num_ht_sta += iv->iv_ht_sta_assoc; 1115 num_ht40_sta += iv->iv_ht40_sta_assoc; 1116 num_sta += iv->iv_sta_assoc; 1117 } 1118 1119 /* 1120 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1121 * non-HT present), set it here. This shouldn't be used by 1122 * anything but the old overlapping BSS logic so if any drivers 1123 * consume it, it's up to date. 1124 */ 1125 if (num_nonht > 0) 1126 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1127 else 1128 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1129 1130 /* 1131 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1132 * 1133 * + If all VAPs are PURE, we can stay PURE. 1134 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1135 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1136 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1137 * So we look at the sum ht and sum ht40 sta counts; if we have a 1138 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1139 * Note all stations need to be HT for this to be an option. 1140 * + The fall-through is MIXED, because it means we have some odd 1141 * non HT40-involved combination of opmode and this is the most 1142 * sensible default. 1143 */ 1144 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1145 1146 if (num_pure == num_vaps) 1147 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1148 1149 if (num_optional == num_vaps) 1150 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1151 1152 /* 1153 * Note: we need /a/ HT40 station somewhere for this to 1154 * be a possibility. 1155 */ 1156 if ((num_ht2040 > 0) || 1157 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1158 (num_ht_sta != num_ht40_sta))) 1159 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1160 1161 /* 1162 * Step 3 - if any of the stations across the VAPs are 1163 * non-HT then this needs to be flipped back to MIXED. 1164 */ 1165 if (num_ht_sta != num_sta) 1166 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1167 1168 /* 1169 * Step 4 - If we see any overlapping BSS non-HT stations 1170 * via beacons then flip on NONHT_PRESENT. 1171 */ 1172 if (num_nonhtpr > 0) 1173 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1174 1175 /* Notify all VAPs to potentially update their beacons */ 1176 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1177 ieee80211_htinfo_notify(iv); 1178 1179 IEEE80211_UNLOCK(ic); 1180 1181 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1182 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1183 __func__, 1184 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1185 ic->ic_curhtprotmode); 1186 1187 /* Driver update */ 1188 if (vap->iv_erp_protmode_update != NULL) 1189 vap->iv_ht_protmode_update(vap); 1190 } 1191 1192 /* 1193 * Set the short slot time state and notify the driver. 1194 * 1195 * This is the per-VAP slot time state. 1196 */ 1197 void 1198 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1199 { 1200 struct ieee80211com *ic = vap->iv_ic; 1201 1202 /* XXX lock? */ 1203 1204 /* 1205 * Only modify the per-VAP slot time. 1206 */ 1207 if (onoff) 1208 vap->iv_flags |= IEEE80211_F_SHSLOT; 1209 else 1210 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1211 1212 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1213 "%s: called; onoff=%d\n", __func__, onoff); 1214 /* schedule the deferred slot flag update and update */ 1215 ieee80211_runtask(ic, &vap->iv_slot_task); 1216 } 1217 1218 /* 1219 * Update the VAP short /long / barker preamble state and 1220 * update beacon state if needed. 1221 * 1222 * For now it simply copies the global flags into the per-vap 1223 * flags and schedules the callback. Later this will support 1224 * both global and per-VAP flags, especially useful for 1225 * and STA+STA multi-channel operation (eg p2p). 1226 */ 1227 void 1228 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1229 { 1230 struct ieee80211com *ic = vap->iv_ic; 1231 1232 /* XXX lock? */ 1233 1234 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1235 "%s: called\n", __func__); 1236 /* schedule the deferred slot flag update and update */ 1237 ieee80211_runtask(ic, &vap->iv_preamble_task); 1238 } 1239 1240 /* 1241 * Update the VAP 11g protection mode and update beacon state 1242 * if needed. 1243 */ 1244 void 1245 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1246 { 1247 struct ieee80211com *ic = vap->iv_ic; 1248 1249 /* XXX lock? */ 1250 1251 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1252 "%s: called\n", __func__); 1253 /* schedule the deferred slot flag update and update */ 1254 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1255 } 1256 1257 /* 1258 * Update the VAP 11n protection mode and update beacon state 1259 * if needed. 1260 */ 1261 void 1262 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1263 { 1264 struct ieee80211com *ic = vap->iv_ic; 1265 1266 /* XXX lock? */ 1267 1268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1269 "%s: called\n", __func__); 1270 /* schedule the deferred protmode update */ 1271 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1272 } 1273 1274 /* 1275 * Check if the specified rate set supports ERP. 1276 * NB: the rate set is assumed to be sorted. 1277 */ 1278 int 1279 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1280 { 1281 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1282 int i, j; 1283 1284 if (rs->rs_nrates < nitems(rates)) 1285 return 0; 1286 for (i = 0; i < nitems(rates); i++) { 1287 for (j = 0; j < rs->rs_nrates; j++) { 1288 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1289 if (rates[i] == r) 1290 goto next; 1291 if (r > rates[i]) 1292 return 0; 1293 } 1294 return 0; 1295 next: 1296 ; 1297 } 1298 return 1; 1299 } 1300 1301 /* 1302 * Mark the basic rates for the rate table based on the 1303 * operating mode. For real 11g we mark all the 11b rates 1304 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1305 * 11b rates. There's also a pseudo 11a-mode used to mark only 1306 * the basic OFDM rates. 1307 */ 1308 static void 1309 setbasicrates(struct ieee80211_rateset *rs, 1310 enum ieee80211_phymode mode, int add) 1311 { 1312 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1313 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1314 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1315 /* NB: mixed b/g */ 1316 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1317 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1318 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1319 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1320 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1321 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1322 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1323 /* NB: mixed b/g */ 1324 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1325 /* NB: mixed b/g */ 1326 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1327 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1328 }; 1329 int i, j; 1330 1331 for (i = 0; i < rs->rs_nrates; i++) { 1332 if (!add) 1333 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1334 for (j = 0; j < basic[mode].rs_nrates; j++) 1335 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1336 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1337 break; 1338 } 1339 } 1340 } 1341 1342 /* 1343 * Set the basic rates in a rate set. 1344 */ 1345 void 1346 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1347 enum ieee80211_phymode mode) 1348 { 1349 setbasicrates(rs, mode, 0); 1350 } 1351 1352 /* 1353 * Add basic rates to a rate set. 1354 */ 1355 void 1356 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1357 enum ieee80211_phymode mode) 1358 { 1359 setbasicrates(rs, mode, 1); 1360 } 1361 1362 /* 1363 * WME protocol support. 1364 * 1365 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1366 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1367 * Draft 2.0 Test Plan (Appendix D). 1368 * 1369 * Static/Dynamic Turbo mode settings come from Atheros. 1370 */ 1371 typedef struct phyParamType { 1372 uint8_t aifsn; 1373 uint8_t logcwmin; 1374 uint8_t logcwmax; 1375 uint16_t txopLimit; 1376 uint8_t acm; 1377 } paramType; 1378 1379 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1380 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1381 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1382 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1383 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1384 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1386 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1387 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1388 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1389 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1390 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1391 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1392 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1393 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1394 }; 1395 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1396 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1397 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1398 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1399 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1400 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1402 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1403 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1404 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1405 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1406 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1407 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1408 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1409 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1410 }; 1411 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1412 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1413 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1414 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1415 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1416 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1417 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1418 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1419 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1420 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1421 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1422 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1423 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1424 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1425 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1426 }; 1427 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1428 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1429 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1430 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1431 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1432 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1433 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1434 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1435 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1436 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1437 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1438 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1439 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1440 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1441 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1442 }; 1443 1444 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1445 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1446 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1447 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1448 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1449 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1451 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1452 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1453 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1454 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1455 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1456 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1457 }; 1458 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1459 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1460 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1461 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1462 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1463 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1464 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1465 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1466 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1467 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1468 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1469 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1470 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1471 }; 1472 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1473 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1474 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1475 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1476 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1477 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1478 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1479 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1480 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1481 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1482 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1483 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1484 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1485 }; 1486 1487 static void 1488 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1489 { 1490 wmep->wmep_aifsn = phy->aifsn; 1491 wmep->wmep_logcwmin = phy->logcwmin; 1492 wmep->wmep_logcwmax = phy->logcwmax; 1493 wmep->wmep_txopLimit = phy->txopLimit; 1494 } 1495 1496 static void 1497 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1498 struct wmeParams *wmep, const paramType *phy) 1499 { 1500 wmep->wmep_acm = phy->acm; 1501 _setifsparams(wmep, phy); 1502 1503 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1504 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1505 ieee80211_wme_acnames[ac], type, 1506 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1507 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1508 } 1509 1510 static void 1511 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1512 { 1513 struct ieee80211com *ic = vap->iv_ic; 1514 struct ieee80211_wme_state *wme = &ic->ic_wme; 1515 const paramType *pPhyParam, *pBssPhyParam; 1516 struct wmeParams *wmep; 1517 enum ieee80211_phymode mode; 1518 int i; 1519 1520 IEEE80211_LOCK_ASSERT(ic); 1521 1522 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1523 return; 1524 1525 /* 1526 * Clear the wme cap_info field so a qoscount from a previous 1527 * vap doesn't confuse later code which only parses the beacon 1528 * field and updates hardware when said field changes. 1529 * Otherwise the hardware is programmed with defaults, not what 1530 * the beacon actually announces. 1531 * 1532 * Note that we can't ever have 0xff as an actual value; 1533 * the only valid values are 0..15. 1534 */ 1535 wme->wme_wmeChanParams.cap_info = 0xfe; 1536 1537 /* 1538 * Select mode; we can be called early in which case we 1539 * always use auto mode. We know we'll be called when 1540 * entering the RUN state with bsschan setup properly 1541 * so state will eventually get set correctly 1542 */ 1543 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1544 mode = ieee80211_chan2mode(ic->ic_bsschan); 1545 else 1546 mode = IEEE80211_MODE_AUTO; 1547 for (i = 0; i < WME_NUM_AC; i++) { 1548 switch (i) { 1549 case WME_AC_BK: 1550 pPhyParam = &phyParamForAC_BK[mode]; 1551 pBssPhyParam = &phyParamForAC_BK[mode]; 1552 break; 1553 case WME_AC_VI: 1554 pPhyParam = &phyParamForAC_VI[mode]; 1555 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1556 break; 1557 case WME_AC_VO: 1558 pPhyParam = &phyParamForAC_VO[mode]; 1559 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1560 break; 1561 case WME_AC_BE: 1562 default: 1563 pPhyParam = &phyParamForAC_BE[mode]; 1564 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1565 break; 1566 } 1567 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1568 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1569 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1570 } else { 1571 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1572 } 1573 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1574 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1575 } 1576 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1577 if (vap->iv_bss != NULL) { 1578 /* 1579 * Calculate aggressive mode switching threshold based 1580 * on beacon interval. This doesn't need locking since 1581 * we're only called before entering the RUN state at 1582 * which point we start sending beacon frames. 1583 */ 1584 wme->wme_hipri_switch_thresh = 1585 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1586 wme->wme_flags &= ~WME_F_AGGRMODE; 1587 ieee80211_wme_updateparams(vap); 1588 } 1589 } 1590 1591 void 1592 ieee80211_wme_initparams(struct ieee80211vap *vap) 1593 { 1594 struct ieee80211com *ic = vap->iv_ic; 1595 1596 IEEE80211_LOCK(ic); 1597 ieee80211_wme_initparams_locked(vap); 1598 IEEE80211_UNLOCK(ic); 1599 } 1600 1601 /* 1602 * Update WME parameters for ourself and the BSS. 1603 */ 1604 void 1605 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1606 { 1607 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1608 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1609 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1610 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1611 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1612 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1613 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1614 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1615 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1616 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1617 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1618 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1619 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1620 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1621 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1622 }; 1623 struct ieee80211com *ic = vap->iv_ic; 1624 struct ieee80211_wme_state *wme = &ic->ic_wme; 1625 const struct wmeParams *wmep; 1626 struct wmeParams *chanp, *bssp; 1627 enum ieee80211_phymode mode; 1628 int i; 1629 int do_aggrmode = 0; 1630 1631 /* 1632 * Set up the channel access parameters for the physical 1633 * device. First populate the configured settings. 1634 */ 1635 for (i = 0; i < WME_NUM_AC; i++) { 1636 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1637 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1638 chanp->wmep_aifsn = wmep->wmep_aifsn; 1639 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1640 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1641 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1642 1643 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1644 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1645 chanp->wmep_aifsn = wmep->wmep_aifsn; 1646 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1647 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1648 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1649 } 1650 1651 /* 1652 * Select mode; we can be called early in which case we 1653 * always use auto mode. We know we'll be called when 1654 * entering the RUN state with bsschan setup properly 1655 * so state will eventually get set correctly 1656 */ 1657 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1658 mode = ieee80211_chan2mode(ic->ic_bsschan); 1659 else 1660 mode = IEEE80211_MODE_AUTO; 1661 1662 /* 1663 * This implements aggressive mode as found in certain 1664 * vendors' AP's. When there is significant high 1665 * priority (VI/VO) traffic in the BSS throttle back BE 1666 * traffic by using conservative parameters. Otherwise 1667 * BE uses aggressive params to optimize performance of 1668 * legacy/non-QoS traffic. 1669 */ 1670 1671 /* Hostap? Only if aggressive mode is enabled */ 1672 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1673 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1674 do_aggrmode = 1; 1675 1676 /* 1677 * Station? Only if we're in a non-QoS BSS. 1678 */ 1679 else if ((vap->iv_opmode == IEEE80211_M_STA && 1680 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1681 do_aggrmode = 1; 1682 1683 /* 1684 * IBSS? Only if we have WME enabled. 1685 */ 1686 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1687 (vap->iv_flags & IEEE80211_F_WME)) 1688 do_aggrmode = 1; 1689 1690 /* 1691 * If WME is disabled on this VAP, default to aggressive mode 1692 * regardless of the configuration. 1693 */ 1694 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1695 do_aggrmode = 1; 1696 1697 /* XXX WDS? */ 1698 1699 /* XXX MBSS? */ 1700 1701 if (do_aggrmode) { 1702 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1703 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1704 1705 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1706 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1707 aggrParam[mode].logcwmin; 1708 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1709 aggrParam[mode].logcwmax; 1710 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1711 (vap->iv_flags & IEEE80211_F_BURST) ? 1712 aggrParam[mode].txopLimit : 0; 1713 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1714 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1715 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1716 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1717 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1718 } 1719 1720 /* 1721 * Change the contention window based on the number of associated 1722 * stations. If the number of associated stations is 1 and 1723 * aggressive mode is enabled, lower the contention window even 1724 * further. 1725 */ 1726 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1727 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1728 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1729 [IEEE80211_MODE_AUTO] = 3, 1730 [IEEE80211_MODE_11A] = 3, 1731 [IEEE80211_MODE_11B] = 4, 1732 [IEEE80211_MODE_11G] = 3, 1733 [IEEE80211_MODE_FH] = 4, 1734 [IEEE80211_MODE_TURBO_A] = 3, 1735 [IEEE80211_MODE_TURBO_G] = 3, 1736 [IEEE80211_MODE_STURBO_A] = 3, 1737 [IEEE80211_MODE_HALF] = 3, 1738 [IEEE80211_MODE_QUARTER] = 3, 1739 [IEEE80211_MODE_11NA] = 3, 1740 [IEEE80211_MODE_11NG] = 3, 1741 [IEEE80211_MODE_VHT_2GHZ] = 3, 1742 [IEEE80211_MODE_VHT_5GHZ] = 3, 1743 }; 1744 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1745 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1746 1747 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1748 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1749 "update %s (chan+bss) logcwmin %u\n", 1750 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1751 } 1752 1753 /* schedule the deferred WME update */ 1754 ieee80211_runtask(ic, &vap->iv_wme_task); 1755 1756 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1757 "%s: WME params updated, cap_info 0x%x\n", __func__, 1758 vap->iv_opmode == IEEE80211_M_STA ? 1759 wme->wme_wmeChanParams.cap_info : 1760 wme->wme_bssChanParams.cap_info); 1761 } 1762 1763 void 1764 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1765 { 1766 struct ieee80211com *ic = vap->iv_ic; 1767 1768 if (ic->ic_caps & IEEE80211_C_WME) { 1769 IEEE80211_LOCK(ic); 1770 ieee80211_wme_updateparams_locked(vap); 1771 IEEE80211_UNLOCK(ic); 1772 } 1773 } 1774 1775 /* 1776 * Fetch the WME parameters for the given VAP. 1777 * 1778 * When net80211 grows p2p, etc support, this may return different 1779 * parameters for each VAP. 1780 */ 1781 void 1782 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1783 { 1784 1785 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1786 } 1787 1788 /* 1789 * For NICs which only support one set of WME parameters (ie, softmac NICs) 1790 * there may be different VAP WME parameters but only one is "active". 1791 * This returns the "NIC" WME parameters for the currently active 1792 * context. 1793 */ 1794 void 1795 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1796 { 1797 1798 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1799 } 1800 1801 /* 1802 * Return whether to use QoS on a given WME queue. 1803 * 1804 * This is intended to be called from the transmit path of softmac drivers 1805 * which are setting NoAck bits in transmit descriptors. 1806 * 1807 * Ideally this would be set in some transmit field before the packet is 1808 * queued to the driver but net80211 isn't quite there yet. 1809 */ 1810 int 1811 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1812 { 1813 /* Bounds/sanity check */ 1814 if (ac < 0 || ac >= WME_NUM_AC) 1815 return (0); 1816 1817 /* Again, there's only one global context for now */ 1818 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1819 } 1820 1821 static void 1822 parent_updown(void *arg, int npending) 1823 { 1824 struct ieee80211com *ic = arg; 1825 1826 ic->ic_parent(ic); 1827 } 1828 1829 static void 1830 update_mcast(void *arg, int npending) 1831 { 1832 struct ieee80211com *ic = arg; 1833 1834 ic->ic_update_mcast(ic); 1835 } 1836 1837 static void 1838 update_promisc(void *arg, int npending) 1839 { 1840 struct ieee80211com *ic = arg; 1841 1842 ic->ic_update_promisc(ic); 1843 } 1844 1845 static void 1846 update_channel(void *arg, int npending) 1847 { 1848 struct ieee80211com *ic = arg; 1849 1850 ic->ic_set_channel(ic); 1851 ieee80211_radiotap_chan_change(ic); 1852 } 1853 1854 static void 1855 update_chw(void *arg, int npending) 1856 { 1857 struct ieee80211com *ic = arg; 1858 1859 /* 1860 * XXX should we defer the channel width _config_ update until now? 1861 */ 1862 ic->ic_update_chw(ic); 1863 } 1864 1865 /* 1866 * Deferred WME parameter and beacon update. 1867 * 1868 * In preparation for per-VAP WME configuration, call the VAP 1869 * method if the VAP requires it. Otherwise, just call the 1870 * older global method. There isn't a per-VAP WME configuration 1871 * just yet so for now just use the global configuration. 1872 */ 1873 static void 1874 vap_update_wme(void *arg, int npending) 1875 { 1876 struct ieee80211vap *vap = arg; 1877 struct ieee80211com *ic = vap->iv_ic; 1878 struct ieee80211_wme_state *wme = &ic->ic_wme; 1879 1880 /* Driver update */ 1881 if (vap->iv_wme_update != NULL) 1882 vap->iv_wme_update(vap, 1883 ic->ic_wme.wme_chanParams.cap_wmeParams); 1884 else 1885 ic->ic_wme.wme_update(ic); 1886 1887 IEEE80211_LOCK(ic); 1888 /* 1889 * Arrange for the beacon update. 1890 * 1891 * XXX what about MBSS, WDS? 1892 */ 1893 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1894 || vap->iv_opmode == IEEE80211_M_IBSS) { 1895 /* 1896 * Arrange for a beacon update and bump the parameter 1897 * set number so associated stations load the new values. 1898 */ 1899 wme->wme_bssChanParams.cap_info = 1900 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1901 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1902 } 1903 IEEE80211_UNLOCK(ic); 1904 } 1905 1906 static void 1907 restart_vaps(void *arg, int npending) 1908 { 1909 struct ieee80211com *ic = arg; 1910 1911 ieee80211_suspend_all(ic); 1912 ieee80211_resume_all(ic); 1913 } 1914 1915 /* 1916 * Block until the parent is in a known state. This is 1917 * used after any operations that dispatch a task (e.g. 1918 * to auto-configure the parent device up/down). 1919 */ 1920 void 1921 ieee80211_waitfor_parent(struct ieee80211com *ic) 1922 { 1923 taskqueue_block(ic->ic_tq); 1924 ieee80211_draintask(ic, &ic->ic_parent_task); 1925 ieee80211_draintask(ic, &ic->ic_mcast_task); 1926 ieee80211_draintask(ic, &ic->ic_promisc_task); 1927 ieee80211_draintask(ic, &ic->ic_chan_task); 1928 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1929 ieee80211_draintask(ic, &ic->ic_chw_task); 1930 taskqueue_unblock(ic->ic_tq); 1931 } 1932 1933 /* 1934 * Check to see whether the current channel needs reset. 1935 * 1936 * Some devices don't handle being given an invalid channel 1937 * in their operating mode very well (eg wpi(4) will throw a 1938 * firmware exception.) 1939 * 1940 * Return 0 if we're ok, 1 if the channel needs to be reset. 1941 * 1942 * See PR kern/202502. 1943 */ 1944 static int 1945 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1946 { 1947 struct ieee80211com *ic = vap->iv_ic; 1948 1949 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1950 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1951 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1952 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1953 return (1); 1954 return (0); 1955 } 1956 1957 /* 1958 * Reset the curchan to a known good state. 1959 */ 1960 static void 1961 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1962 { 1963 struct ieee80211com *ic = vap->iv_ic; 1964 1965 ic->ic_curchan = &ic->ic_channels[0]; 1966 } 1967 1968 /* 1969 * Start a vap running. If this is the first vap to be 1970 * set running on the underlying device then we 1971 * automatically bring the device up. 1972 */ 1973 void 1974 ieee80211_start_locked(struct ieee80211vap *vap) 1975 { 1976 struct ifnet *ifp = vap->iv_ifp; 1977 struct ieee80211com *ic = vap->iv_ic; 1978 1979 IEEE80211_LOCK_ASSERT(ic); 1980 1981 IEEE80211_DPRINTF(vap, 1982 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1983 "start running, %d vaps running\n", ic->ic_nrunning); 1984 1985 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1986 /* 1987 * Mark us running. Note that it's ok to do this first; 1988 * if we need to bring the parent device up we defer that 1989 * to avoid dropping the com lock. We expect the device 1990 * to respond to being marked up by calling back into us 1991 * through ieee80211_start_all at which point we'll come 1992 * back in here and complete the work. 1993 */ 1994 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1995 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 1996 1997 /* 1998 * We are not running; if this we are the first vap 1999 * to be brought up auto-up the parent if necessary. 2000 */ 2001 if (ic->ic_nrunning++ == 0) { 2002 /* reset the channel to a known good channel */ 2003 if (ieee80211_start_check_reset_chan(vap)) 2004 ieee80211_start_reset_chan(vap); 2005 2006 IEEE80211_DPRINTF(vap, 2007 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2008 "%s: up parent %s\n", __func__, ic->ic_name); 2009 ieee80211_runtask(ic, &ic->ic_parent_task); 2010 return; 2011 } 2012 } 2013 /* 2014 * If the parent is up and running, then kick the 2015 * 802.11 state machine as appropriate. 2016 */ 2017 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2018 if (vap->iv_opmode == IEEE80211_M_STA) { 2019 #if 0 2020 /* XXX bypasses scan too easily; disable for now */ 2021 /* 2022 * Try to be intelligent about clocking the state 2023 * machine. If we're currently in RUN state then 2024 * we should be able to apply any new state/parameters 2025 * simply by re-associating. Otherwise we need to 2026 * re-scan to select an appropriate ap. 2027 */ 2028 if (vap->iv_state >= IEEE80211_S_RUN) 2029 ieee80211_new_state_locked(vap, 2030 IEEE80211_S_ASSOC, 1); 2031 else 2032 #endif 2033 ieee80211_new_state_locked(vap, 2034 IEEE80211_S_SCAN, 0); 2035 } else { 2036 /* 2037 * For monitor+wds mode there's nothing to do but 2038 * start running. Otherwise if this is the first 2039 * vap to be brought up, start a scan which may be 2040 * preempted if the station is locked to a particular 2041 * channel. 2042 */ 2043 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2044 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2045 vap->iv_opmode == IEEE80211_M_WDS) 2046 ieee80211_new_state_locked(vap, 2047 IEEE80211_S_RUN, -1); 2048 else 2049 ieee80211_new_state_locked(vap, 2050 IEEE80211_S_SCAN, 0); 2051 } 2052 } 2053 } 2054 2055 /* 2056 * Start a single vap. 2057 */ 2058 void 2059 ieee80211_init(void *arg) 2060 { 2061 struct ieee80211vap *vap = arg; 2062 2063 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2064 "%s\n", __func__); 2065 2066 IEEE80211_LOCK(vap->iv_ic); 2067 ieee80211_start_locked(vap); 2068 IEEE80211_UNLOCK(vap->iv_ic); 2069 } 2070 2071 /* 2072 * Start all runnable vap's on a device. 2073 */ 2074 void 2075 ieee80211_start_all(struct ieee80211com *ic) 2076 { 2077 struct ieee80211vap *vap; 2078 2079 IEEE80211_LOCK(ic); 2080 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2081 struct ifnet *ifp = vap->iv_ifp; 2082 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2083 ieee80211_start_locked(vap); 2084 } 2085 IEEE80211_UNLOCK(ic); 2086 } 2087 2088 /* 2089 * Stop a vap. We force it down using the state machine 2090 * then mark it's ifnet not running. If this is the last 2091 * vap running on the underlying device then we close it 2092 * too to insure it will be properly initialized when the 2093 * next vap is brought up. 2094 */ 2095 void 2096 ieee80211_stop_locked(struct ieee80211vap *vap) 2097 { 2098 struct ieee80211com *ic = vap->iv_ic; 2099 struct ifnet *ifp = vap->iv_ifp; 2100 2101 IEEE80211_LOCK_ASSERT(ic); 2102 2103 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2104 "stop running, %d vaps running\n", ic->ic_nrunning); 2105 2106 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2107 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2108 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2109 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 2110 if (--ic->ic_nrunning == 0) { 2111 IEEE80211_DPRINTF(vap, 2112 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2113 "down parent %s\n", ic->ic_name); 2114 ieee80211_runtask(ic, &ic->ic_parent_task); 2115 } 2116 } 2117 } 2118 2119 void 2120 ieee80211_stop(struct ieee80211vap *vap) 2121 { 2122 struct ieee80211com *ic = vap->iv_ic; 2123 2124 IEEE80211_LOCK(ic); 2125 ieee80211_stop_locked(vap); 2126 IEEE80211_UNLOCK(ic); 2127 } 2128 2129 /* 2130 * Stop all vap's running on a device. 2131 */ 2132 void 2133 ieee80211_stop_all(struct ieee80211com *ic) 2134 { 2135 struct ieee80211vap *vap; 2136 2137 IEEE80211_LOCK(ic); 2138 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2139 struct ifnet *ifp = vap->iv_ifp; 2140 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2141 ieee80211_stop_locked(vap); 2142 } 2143 IEEE80211_UNLOCK(ic); 2144 2145 ieee80211_waitfor_parent(ic); 2146 } 2147 2148 /* 2149 * Stop all vap's running on a device and arrange 2150 * for those that were running to be resumed. 2151 */ 2152 void 2153 ieee80211_suspend_all(struct ieee80211com *ic) 2154 { 2155 struct ieee80211vap *vap; 2156 2157 IEEE80211_LOCK(ic); 2158 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2159 struct ifnet *ifp = vap->iv_ifp; 2160 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2161 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2162 ieee80211_stop_locked(vap); 2163 } 2164 } 2165 IEEE80211_UNLOCK(ic); 2166 2167 ieee80211_waitfor_parent(ic); 2168 } 2169 2170 /* 2171 * Start all vap's marked for resume. 2172 */ 2173 void 2174 ieee80211_resume_all(struct ieee80211com *ic) 2175 { 2176 struct ieee80211vap *vap; 2177 2178 IEEE80211_LOCK(ic); 2179 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2180 struct ifnet *ifp = vap->iv_ifp; 2181 if (!IFNET_IS_UP_RUNNING(ifp) && 2182 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2183 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2184 ieee80211_start_locked(vap); 2185 } 2186 } 2187 IEEE80211_UNLOCK(ic); 2188 } 2189 2190 /* 2191 * Restart all vap's running on a device. 2192 */ 2193 void 2194 ieee80211_restart_all(struct ieee80211com *ic) 2195 { 2196 /* 2197 * NB: do not use ieee80211_runtask here, we will 2198 * block & drain net80211 taskqueue. 2199 */ 2200 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2201 } 2202 2203 void 2204 ieee80211_beacon_miss(struct ieee80211com *ic) 2205 { 2206 IEEE80211_LOCK(ic); 2207 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2208 /* Process in a taskq, the handler may reenter the driver */ 2209 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2210 } 2211 IEEE80211_UNLOCK(ic); 2212 } 2213 2214 static void 2215 beacon_miss(void *arg, int npending) 2216 { 2217 struct ieee80211com *ic = arg; 2218 struct ieee80211vap *vap; 2219 2220 IEEE80211_LOCK(ic); 2221 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2222 /* 2223 * We only pass events through for sta vap's in RUN+ state; 2224 * may be too restrictive but for now this saves all the 2225 * handlers duplicating these checks. 2226 */ 2227 if (vap->iv_opmode == IEEE80211_M_STA && 2228 vap->iv_state >= IEEE80211_S_RUN && 2229 vap->iv_bmiss != NULL) 2230 vap->iv_bmiss(vap); 2231 } 2232 IEEE80211_UNLOCK(ic); 2233 } 2234 2235 static void 2236 beacon_swmiss(void *arg, int npending) 2237 { 2238 struct ieee80211vap *vap = arg; 2239 struct ieee80211com *ic = vap->iv_ic; 2240 2241 IEEE80211_LOCK(ic); 2242 if (vap->iv_state >= IEEE80211_S_RUN) { 2243 /* XXX Call multiple times if npending > zero? */ 2244 vap->iv_bmiss(vap); 2245 } 2246 IEEE80211_UNLOCK(ic); 2247 } 2248 2249 /* 2250 * Software beacon miss handling. Check if any beacons 2251 * were received in the last period. If not post a 2252 * beacon miss; otherwise reset the counter. 2253 */ 2254 void 2255 ieee80211_swbmiss(void *arg) 2256 { 2257 struct ieee80211vap *vap = arg; 2258 struct ieee80211com *ic = vap->iv_ic; 2259 2260 IEEE80211_LOCK_ASSERT(ic); 2261 2262 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2263 ("wrong state %d", vap->iv_state)); 2264 2265 if (ic->ic_flags & IEEE80211_F_SCAN) { 2266 /* 2267 * If scanning just ignore and reset state. If we get a 2268 * bmiss after coming out of scan because we haven't had 2269 * time to receive a beacon then we should probe the AP 2270 * before posting a real bmiss (unless iv_bmiss_max has 2271 * been artifiically lowered). A cleaner solution might 2272 * be to disable the timer on scan start/end but to handle 2273 * case of multiple sta vap's we'd need to disable the 2274 * timers of all affected vap's. 2275 */ 2276 vap->iv_swbmiss_count = 0; 2277 } else if (vap->iv_swbmiss_count == 0) { 2278 if (vap->iv_bmiss != NULL) 2279 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2280 } else 2281 vap->iv_swbmiss_count = 0; 2282 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2283 ieee80211_swbmiss, vap); 2284 } 2285 2286 /* 2287 * Start an 802.11h channel switch. We record the parameters, 2288 * mark the operation pending, notify each vap through the 2289 * beacon update mechanism so it can update the beacon frame 2290 * contents, and then switch vap's to CSA state to block outbound 2291 * traffic. Devices that handle CSA directly can use the state 2292 * switch to do the right thing so long as they call 2293 * ieee80211_csa_completeswitch when it's time to complete the 2294 * channel change. Devices that depend on the net80211 layer can 2295 * use ieee80211_beacon_update to handle the countdown and the 2296 * channel switch. 2297 */ 2298 void 2299 ieee80211_csa_startswitch(struct ieee80211com *ic, 2300 struct ieee80211_channel *c, int mode, int count) 2301 { 2302 struct ieee80211vap *vap; 2303 2304 IEEE80211_LOCK_ASSERT(ic); 2305 2306 ic->ic_csa_newchan = c; 2307 ic->ic_csa_mode = mode; 2308 ic->ic_csa_count = count; 2309 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2310 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2311 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2312 vap->iv_opmode == IEEE80211_M_IBSS || 2313 vap->iv_opmode == IEEE80211_M_MBSS) 2314 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2315 /* switch to CSA state to block outbound traffic */ 2316 if (vap->iv_state == IEEE80211_S_RUN) 2317 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2318 } 2319 ieee80211_notify_csa(ic, c, mode, count); 2320 } 2321 2322 /* 2323 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2324 * This is called by both the completion and cancellation functions 2325 * so each VAP is placed back in the RUN state and can thus transmit. 2326 */ 2327 static void 2328 csa_completeswitch(struct ieee80211com *ic) 2329 { 2330 struct ieee80211vap *vap; 2331 2332 ic->ic_csa_newchan = NULL; 2333 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2334 2335 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2336 if (vap->iv_state == IEEE80211_S_CSA) 2337 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2338 } 2339 2340 /* 2341 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2342 * We clear state and move all vap's in CSA state to RUN state 2343 * so they can again transmit. 2344 * 2345 * Although this may not be completely correct, update the BSS channel 2346 * for each VAP to the newly configured channel. The setcurchan sets 2347 * the current operating channel for the interface (so the radio does 2348 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2349 * reported information via ioctl. 2350 */ 2351 void 2352 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2353 { 2354 struct ieee80211vap *vap; 2355 2356 IEEE80211_LOCK_ASSERT(ic); 2357 2358 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2359 2360 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2361 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2362 if (vap->iv_state == IEEE80211_S_CSA) 2363 vap->iv_bss->ni_chan = ic->ic_curchan; 2364 2365 csa_completeswitch(ic); 2366 } 2367 2368 /* 2369 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2370 * We clear state and move all vap's in CSA state to RUN state 2371 * so they can again transmit. 2372 */ 2373 void 2374 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2375 { 2376 IEEE80211_LOCK_ASSERT(ic); 2377 2378 csa_completeswitch(ic); 2379 } 2380 2381 /* 2382 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2383 * We clear state and move all vap's in CAC state to RUN state. 2384 */ 2385 void 2386 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2387 { 2388 struct ieee80211com *ic = vap0->iv_ic; 2389 struct ieee80211vap *vap; 2390 2391 IEEE80211_LOCK(ic); 2392 /* 2393 * Complete CAC state change for lead vap first; then 2394 * clock all the other vap's waiting. 2395 */ 2396 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2397 ("wrong state %d", vap0->iv_state)); 2398 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2399 2400 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2401 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2402 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2403 IEEE80211_UNLOCK(ic); 2404 } 2405 2406 /* 2407 * Force all vap's other than the specified vap to the INIT state 2408 * and mark them as waiting for a scan to complete. These vaps 2409 * will be brought up when the scan completes and the scanning vap 2410 * reaches RUN state by wakeupwaiting. 2411 */ 2412 static void 2413 markwaiting(struct ieee80211vap *vap0) 2414 { 2415 struct ieee80211com *ic = vap0->iv_ic; 2416 struct ieee80211vap *vap; 2417 2418 IEEE80211_LOCK_ASSERT(ic); 2419 2420 /* 2421 * A vap list entry can not disappear since we are running on the 2422 * taskqueue and a vap destroy will queue and drain another state 2423 * change task. 2424 */ 2425 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2426 if (vap == vap0) 2427 continue; 2428 if (vap->iv_state != IEEE80211_S_INIT) { 2429 /* NB: iv_newstate may drop the lock */ 2430 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2431 IEEE80211_LOCK_ASSERT(ic); 2432 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2433 } 2434 } 2435 } 2436 2437 /* 2438 * Wakeup all vap's waiting for a scan to complete. This is the 2439 * companion to markwaiting (above) and is used to coordinate 2440 * multiple vaps scanning. 2441 * This is called from the state taskqueue. 2442 */ 2443 static void 2444 wakeupwaiting(struct ieee80211vap *vap0) 2445 { 2446 struct ieee80211com *ic = vap0->iv_ic; 2447 struct ieee80211vap *vap; 2448 2449 IEEE80211_LOCK_ASSERT(ic); 2450 2451 /* 2452 * A vap list entry can not disappear since we are running on the 2453 * taskqueue and a vap destroy will queue and drain another state 2454 * change task. 2455 */ 2456 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2457 if (vap == vap0) 2458 continue; 2459 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2460 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2461 /* NB: sta's cannot go INIT->RUN */ 2462 /* NB: iv_newstate may drop the lock */ 2463 2464 /* 2465 * This is problematic if the interface has OACTIVE 2466 * set. Only the deferred ieee80211_newstate_cb() 2467 * will end up actually /clearing/ the OACTIVE 2468 * flag on a state transition to RUN from a non-RUN 2469 * state. 2470 * 2471 * But, we're not actually deferring this callback; 2472 * and when the deferred call occurs it shows up as 2473 * a RUN->RUN transition! So the flag isn't/wasn't 2474 * cleared! 2475 * 2476 * I'm also not sure if it's correct to actually 2477 * do the transitions here fully through the deferred 2478 * paths either as other things can be invoked as 2479 * part of that state machine. 2480 * 2481 * So just keep this in mind when looking at what 2482 * the markwaiting/wakeupwaiting routines are doing 2483 * and how they invoke vap state changes. 2484 */ 2485 2486 vap->iv_newstate(vap, 2487 vap->iv_opmode == IEEE80211_M_STA ? 2488 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2489 IEEE80211_LOCK_ASSERT(ic); 2490 } 2491 } 2492 } 2493 2494 /* 2495 * Handle post state change work common to all operating modes. 2496 */ 2497 static void 2498 ieee80211_newstate_cb(void *xvap, int npending) 2499 { 2500 struct ieee80211vap *vap = xvap; 2501 struct ieee80211com *ic = vap->iv_ic; 2502 enum ieee80211_state nstate, ostate; 2503 int arg, rc; 2504 2505 IEEE80211_LOCK(ic); 2506 nstate = vap->iv_nstate; 2507 arg = vap->iv_nstate_arg; 2508 2509 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2510 "%s:%d: running state update %s -> %s (%d)\n", 2511 __func__, __LINE__, 2512 ieee80211_state_name[vap->iv_state], 2513 ieee80211_state_name[vap->iv_nstate], 2514 npending); 2515 2516 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2517 /* 2518 * We have been requested to drop back to the INIT before 2519 * proceeding to the new state. 2520 */ 2521 /* Deny any state changes while we are here. */ 2522 vap->iv_nstate = IEEE80211_S_INIT; 2523 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2524 "%s: %s -> %s arg %d\n", __func__, 2525 ieee80211_state_name[vap->iv_state], 2526 ieee80211_state_name[vap->iv_nstate], arg); 2527 vap->iv_newstate(vap, vap->iv_nstate, 0); 2528 IEEE80211_LOCK_ASSERT(ic); 2529 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2530 IEEE80211_FEXT_STATEWAIT); 2531 /* enqueue new state transition after cancel_scan() task */ 2532 ieee80211_new_state_locked(vap, nstate, arg); 2533 goto done; 2534 } 2535 2536 ostate = vap->iv_state; 2537 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2538 /* 2539 * SCAN was forced; e.g. on beacon miss. Force other running 2540 * vap's to INIT state and mark them as waiting for the scan to 2541 * complete. This insures they don't interfere with our 2542 * scanning. Since we are single threaded the vaps can not 2543 * transition again while we are executing. 2544 * 2545 * XXX not always right, assumes ap follows sta 2546 */ 2547 markwaiting(vap); 2548 } 2549 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2550 "%s: %s -> %s arg %d\n", __func__, 2551 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2552 2553 rc = vap->iv_newstate(vap, nstate, arg); 2554 IEEE80211_LOCK_ASSERT(ic); 2555 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2556 if (rc != 0) { 2557 /* State transition failed */ 2558 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2559 KASSERT(nstate != IEEE80211_S_INIT, 2560 ("INIT state change failed")); 2561 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2562 "%s: %s returned error %d\n", __func__, 2563 ieee80211_state_name[nstate], rc); 2564 goto done; 2565 } 2566 2567 /* 2568 * Handle the case of a RUN->RUN transition occuring when STA + AP 2569 * VAPs occur on the same radio. 2570 * 2571 * The mark and wakeup waiting routines call iv_newstate() directly, 2572 * but they do not end up deferring state changes here. 2573 * Thus, although the VAP newstate method sees a transition 2574 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN 2575 * transition. If OACTIVE is set then it is never cleared. 2576 * 2577 * So, if we're here and the state is RUN, just clear OACTIVE. 2578 * At some point if the markwaiting/wakeupwaiting paths end up 2579 * also invoking the deferred state updates then this will 2580 * be no-op code - and also if OACTIVE is finally retired, it'll 2581 * also be no-op code. 2582 */ 2583 if (nstate == IEEE80211_S_RUN) { 2584 /* 2585 * OACTIVE may be set on the vap if the upper layer 2586 * tried to transmit (e.g. IPv6 NDP) before we reach 2587 * RUN state. Clear it and restart xmit. 2588 * 2589 * Note this can also happen as a result of SLEEP->RUN 2590 * (i.e. coming out of power save mode). 2591 * 2592 * Historically this was done only for a state change 2593 * but is needed earlier; see next comment. The 2nd half 2594 * of the work is still only done in case of an actual 2595 * state change below. 2596 */ 2597 /* 2598 * Unblock the VAP queue; a RUN->RUN state can happen 2599 * on a STA+AP setup on the AP vap. See wakeupwaiting(). 2600 */ 2601 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2602 2603 /* 2604 * XXX TODO Kick-start a VAP queue - this should be a method! 2605 */ 2606 } 2607 2608 /* No actual transition, skip post processing */ 2609 if (ostate == nstate) 2610 goto done; 2611 2612 if (nstate == IEEE80211_S_RUN) { 2613 2614 /* bring up any vaps waiting on us */ 2615 wakeupwaiting(vap); 2616 } else if (nstate == IEEE80211_S_INIT) { 2617 /* 2618 * Flush the scan cache if we did the last scan (XXX?) 2619 * and flush any frames on send queues from this vap. 2620 * Note the mgt q is used only for legacy drivers and 2621 * will go away shortly. 2622 */ 2623 ieee80211_scan_flush(vap); 2624 2625 /* 2626 * XXX TODO: ic/vap queue flush 2627 */ 2628 } 2629 done: 2630 IEEE80211_UNLOCK(ic); 2631 } 2632 2633 /* 2634 * Public interface for initiating a state machine change. 2635 * This routine single-threads the request and coordinates 2636 * the scheduling of multiple vaps for the purpose of selecting 2637 * an operating channel. Specifically the following scenarios 2638 * are handled: 2639 * o only one vap can be selecting a channel so on transition to 2640 * SCAN state if another vap is already scanning then 2641 * mark the caller for later processing and return without 2642 * doing anything (XXX? expectations by caller of synchronous operation) 2643 * o only one vap can be doing CAC of a channel so on transition to 2644 * CAC state if another vap is already scanning for radar then 2645 * mark the caller for later processing and return without 2646 * doing anything (XXX? expectations by caller of synchronous operation) 2647 * o if another vap is already running when a request is made 2648 * to SCAN then an operating channel has been chosen; bypass 2649 * the scan and just join the channel 2650 * 2651 * Note that the state change call is done through the iv_newstate 2652 * method pointer so any driver routine gets invoked. The driver 2653 * will normally call back into operating mode-specific 2654 * ieee80211_newstate routines (below) unless it needs to completely 2655 * bypass the state machine (e.g. because the firmware has it's 2656 * own idea how things should work). Bypassing the net80211 layer 2657 * is usually a mistake and indicates lack of proper integration 2658 * with the net80211 layer. 2659 */ 2660 int 2661 ieee80211_new_state_locked(struct ieee80211vap *vap, 2662 enum ieee80211_state nstate, int arg) 2663 { 2664 struct ieee80211com *ic = vap->iv_ic; 2665 struct ieee80211vap *vp; 2666 enum ieee80211_state ostate; 2667 int nrunning, nscanning; 2668 2669 IEEE80211_LOCK_ASSERT(ic); 2670 2671 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2672 if (vap->iv_nstate == IEEE80211_S_INIT || 2673 ((vap->iv_state == IEEE80211_S_INIT || 2674 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2675 vap->iv_nstate == IEEE80211_S_SCAN && 2676 nstate > IEEE80211_S_SCAN)) { 2677 /* 2678 * XXX The vap is being stopped/started, 2679 * do not allow any other state changes 2680 * until this is completed. 2681 */ 2682 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2683 "%s:%d: %s -> %s (%s) transition discarded\n", 2684 __func__, __LINE__, 2685 ieee80211_state_name[vap->iv_state], 2686 ieee80211_state_name[nstate], 2687 ieee80211_state_name[vap->iv_nstate]); 2688 return -1; 2689 } else if (vap->iv_state != vap->iv_nstate) { 2690 /* Warn if the previous state hasn't completed. */ 2691 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2692 "%s:%d: pending %s -> %s (now to %s) transition lost\n", 2693 __func__, __LINE__, 2694 ieee80211_state_name[vap->iv_state], 2695 ieee80211_state_name[vap->iv_nstate], 2696 ieee80211_state_name[nstate]); 2697 } 2698 } 2699 2700 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2701 "%s:%d: starting state update %s -> %s (%s)\n", 2702 __func__, __LINE__, 2703 ieee80211_state_name[vap->iv_state], 2704 ieee80211_state_name[vap->iv_nstate], 2705 ieee80211_state_name[nstate]); 2706 2707 nrunning = nscanning = 0; 2708 /* XXX can track this state instead of calculating */ 2709 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2710 if (vp != vap) { 2711 if (vp->iv_state >= IEEE80211_S_RUN) 2712 nrunning++; 2713 /* XXX doesn't handle bg scan */ 2714 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2715 else if (vp->iv_state > IEEE80211_S_INIT) 2716 nscanning++; 2717 } 2718 } 2719 ostate = vap->iv_state; 2720 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2721 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2722 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2723 nrunning, nscanning); 2724 switch (nstate) { 2725 case IEEE80211_S_SCAN: 2726 if (ostate == IEEE80211_S_INIT) { 2727 /* 2728 * INIT -> SCAN happens on initial bringup. 2729 */ 2730 KASSERT(!(nscanning && nrunning), 2731 ("%d scanning and %d running", nscanning, nrunning)); 2732 if (nscanning) { 2733 /* 2734 * Someone is scanning, defer our state 2735 * change until the work has completed. 2736 */ 2737 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2738 "%s: defer %s -> %s\n", 2739 __func__, ieee80211_state_name[ostate], 2740 ieee80211_state_name[nstate]); 2741 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2742 return 0; 2743 } 2744 if (nrunning) { 2745 /* 2746 * Someone is operating; just join the channel 2747 * they have chosen. 2748 */ 2749 /* XXX kill arg? */ 2750 /* XXX check each opmode, adhoc? */ 2751 if (vap->iv_opmode == IEEE80211_M_STA) 2752 nstate = IEEE80211_S_SCAN; 2753 else 2754 nstate = IEEE80211_S_RUN; 2755 #ifdef IEEE80211_DEBUG 2756 if (nstate != IEEE80211_S_SCAN) { 2757 IEEE80211_DPRINTF(vap, 2758 IEEE80211_MSG_STATE, 2759 "%s: override, now %s -> %s\n", 2760 __func__, 2761 ieee80211_state_name[ostate], 2762 ieee80211_state_name[nstate]); 2763 } 2764 #endif 2765 } 2766 } 2767 break; 2768 case IEEE80211_S_RUN: 2769 if (vap->iv_opmode == IEEE80211_M_WDS && 2770 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2771 nscanning) { 2772 /* 2773 * Legacy WDS with someone else scanning; don't 2774 * go online until that completes as we should 2775 * follow the other vap to the channel they choose. 2776 */ 2777 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2778 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2779 ieee80211_state_name[ostate], 2780 ieee80211_state_name[nstate]); 2781 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2782 return 0; 2783 } 2784 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2785 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2786 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2787 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2788 /* 2789 * This is a DFS channel, transition to CAC state 2790 * instead of RUN. This allows us to initiate 2791 * Channel Availability Check (CAC) as specified 2792 * by 11h/DFS. 2793 */ 2794 nstate = IEEE80211_S_CAC; 2795 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2796 "%s: override %s -> %s (DFS)\n", __func__, 2797 ieee80211_state_name[ostate], 2798 ieee80211_state_name[nstate]); 2799 } 2800 break; 2801 case IEEE80211_S_INIT: 2802 /* cancel any scan in progress */ 2803 ieee80211_cancel_scan(vap); 2804 if (ostate == IEEE80211_S_INIT ) { 2805 /* XXX don't believe this */ 2806 /* INIT -> INIT. nothing to do */ 2807 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2808 } 2809 /* fall thru... */ 2810 default: 2811 break; 2812 } 2813 /* defer the state change to a thread */ 2814 vap->iv_nstate = nstate; 2815 vap->iv_nstate_arg = arg; 2816 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2817 ieee80211_runtask(ic, &vap->iv_nstate_task); 2818 return EINPROGRESS; 2819 } 2820 2821 int 2822 ieee80211_new_state(struct ieee80211vap *vap, 2823 enum ieee80211_state nstate, int arg) 2824 { 2825 struct ieee80211com *ic = vap->iv_ic; 2826 int rc; 2827 2828 IEEE80211_LOCK(ic); 2829 rc = ieee80211_new_state_locked(vap, nstate, arg); 2830 IEEE80211_UNLOCK(ic); 2831 return rc; 2832 } 2833