1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> /* XXX for ether_sprintf */ 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_adhoc.h> 50 #include <net80211/ieee80211_sta.h> 51 #include <net80211/ieee80211_hostap.h> 52 #include <net80211/ieee80211_wds.h> 53 #ifdef IEEE80211_SUPPORT_MESH 54 #include <net80211/ieee80211_mesh.h> 55 #endif 56 #include <net80211/ieee80211_monitor.h> 57 #include <net80211/ieee80211_input.h> 58 59 /* XXX tunables */ 60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 61 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 62 63 const char *ieee80211_mgt_subtype_name[] = { 64 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 65 "probe_req", "probe_resp", "reserved#6", "reserved#7", 66 "beacon", "atim", "disassoc", "auth", 67 "deauth", "action", "action_noack", "reserved#15" 68 }; 69 const char *ieee80211_ctl_subtype_name[] = { 70 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 71 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 72 "reserved#8", "reserved#9", "ps_poll", "rts", 73 "cts", "ack", "cf_end", "cf_end_ack" 74 }; 75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 76 "IBSS", /* IEEE80211_M_IBSS */ 77 "STA", /* IEEE80211_M_STA */ 78 "WDS", /* IEEE80211_M_WDS */ 79 "AHDEMO", /* IEEE80211_M_AHDEMO */ 80 "HOSTAP", /* IEEE80211_M_HOSTAP */ 81 "MONITOR", /* IEEE80211_M_MONITOR */ 82 "MBSS" /* IEEE80211_M_MBSS */ 83 }; 84 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 85 "INIT", /* IEEE80211_S_INIT */ 86 "SCAN", /* IEEE80211_S_SCAN */ 87 "AUTH", /* IEEE80211_S_AUTH */ 88 "ASSOC", /* IEEE80211_S_ASSOC */ 89 "CAC", /* IEEE80211_S_CAC */ 90 "RUN", /* IEEE80211_S_RUN */ 91 "CSA", /* IEEE80211_S_CSA */ 92 "SLEEP", /* IEEE80211_S_SLEEP */ 93 }; 94 const char *ieee80211_wme_acnames[] = { 95 "WME_AC_BE", 96 "WME_AC_BK", 97 "WME_AC_VI", 98 "WME_AC_VO", 99 "WME_UPSD", 100 }; 101 102 static void beacon_miss(void *, int); 103 static void beacon_swmiss(void *, int); 104 static void parent_updown(void *, int); 105 static void update_mcast(void *, int); 106 static void update_promisc(void *, int); 107 static void update_channel(void *, int); 108 static void update_chw(void *, int); 109 static void ieee80211_newstate_cb(void *, int); 110 static int ieee80211_new_state_locked(struct ieee80211vap *, 111 enum ieee80211_state, int); 112 113 static int 114 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 115 const struct ieee80211_bpf_params *params) 116 { 117 struct ifnet *ifp = ni->ni_ic->ic_ifp; 118 119 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n"); 120 m_freem(m); 121 return ENETDOWN; 122 } 123 124 void 125 ieee80211_proto_attach(struct ieee80211com *ic) 126 { 127 struct ifnet *ifp = ic->ic_ifp; 128 129 /* override the 802.3 setting */ 130 ifp->if_hdrlen = ic->ic_headroom 131 + sizeof(struct ieee80211_qosframe_addr4) 132 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 133 + IEEE80211_WEP_EXTIVLEN; 134 /* XXX no way to recalculate on ifdetach */ 135 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) { 136 /* XXX sanity check... */ 137 max_linkhdr = ALIGN(ifp->if_hdrlen); 138 max_hdr = max_linkhdr + max_protohdr; 139 max_datalen = MHLEN - max_hdr; 140 } 141 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 142 143 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp); 144 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 145 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 146 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 147 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 148 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 149 150 ic->ic_wme.wme_hipri_switch_hysteresis = 151 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 152 153 /* initialize management frame handlers */ 154 ic->ic_send_mgmt = ieee80211_send_mgmt; 155 ic->ic_raw_xmit = null_raw_xmit; 156 157 ieee80211_adhoc_attach(ic); 158 ieee80211_sta_attach(ic); 159 ieee80211_wds_attach(ic); 160 ieee80211_hostap_attach(ic); 161 #ifdef IEEE80211_SUPPORT_MESH 162 ieee80211_mesh_attach(ic); 163 #endif 164 ieee80211_monitor_attach(ic); 165 } 166 167 void 168 ieee80211_proto_detach(struct ieee80211com *ic) 169 { 170 ieee80211_monitor_detach(ic); 171 #ifdef IEEE80211_SUPPORT_MESH 172 ieee80211_mesh_detach(ic); 173 #endif 174 ieee80211_hostap_detach(ic); 175 ieee80211_wds_detach(ic); 176 ieee80211_adhoc_detach(ic); 177 ieee80211_sta_detach(ic); 178 } 179 180 static void 181 null_update_beacon(struct ieee80211vap *vap, int item) 182 { 183 } 184 185 void 186 ieee80211_proto_vattach(struct ieee80211vap *vap) 187 { 188 struct ieee80211com *ic = vap->iv_ic; 189 struct ifnet *ifp = vap->iv_ifp; 190 int i; 191 192 /* override the 802.3 setting */ 193 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen; 194 195 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 196 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 197 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 198 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 199 callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE); 200 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 201 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 202 /* 203 * Install default tx rate handling: no fixed rate, lowest 204 * supported rate for mgmt and multicast frames. Default 205 * max retry count. These settings can be changed by the 206 * driver and/or user applications. 207 */ 208 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 209 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 210 211 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 212 213 /* 214 * Setting the management rate to MCS 0 assumes that the 215 * BSS Basic rate set is empty and the BSS Basic MCS set 216 * is not. 217 * 218 * Since we're not checking this, default to the lowest 219 * defined rate for this mode. 220 * 221 * At least one 11n AP (DLINK DIR-825) is reported to drop 222 * some MCS management traffic (eg BA response frames.) 223 * 224 * See also: 9.6.0 of the 802.11n-2009 specification. 225 */ 226 #ifdef NOTYET 227 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 228 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 229 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 230 } else { 231 vap->iv_txparms[i].mgmtrate = 232 rs->rs_rates[0] & IEEE80211_RATE_VAL; 233 vap->iv_txparms[i].mcastrate = 234 rs->rs_rates[0] & IEEE80211_RATE_VAL; 235 } 236 #endif 237 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 238 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 239 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 240 } 241 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 242 243 vap->iv_update_beacon = null_update_beacon; 244 vap->iv_deliver_data = ieee80211_deliver_data; 245 246 /* attach support for operating mode */ 247 ic->ic_vattach[vap->iv_opmode](vap); 248 } 249 250 void 251 ieee80211_proto_vdetach(struct ieee80211vap *vap) 252 { 253 #define FREEAPPIE(ie) do { \ 254 if (ie != NULL) \ 255 free(ie, M_80211_NODE_IE); \ 256 } while (0) 257 /* 258 * Detach operating mode module. 259 */ 260 if (vap->iv_opdetach != NULL) 261 vap->iv_opdetach(vap); 262 /* 263 * This should not be needed as we detach when reseting 264 * the state but be conservative here since the 265 * authenticator may do things like spawn kernel threads. 266 */ 267 if (vap->iv_auth->ia_detach != NULL) 268 vap->iv_auth->ia_detach(vap); 269 /* 270 * Detach any ACL'ator. 271 */ 272 if (vap->iv_acl != NULL) 273 vap->iv_acl->iac_detach(vap); 274 275 FREEAPPIE(vap->iv_appie_beacon); 276 FREEAPPIE(vap->iv_appie_probereq); 277 FREEAPPIE(vap->iv_appie_proberesp); 278 FREEAPPIE(vap->iv_appie_assocreq); 279 FREEAPPIE(vap->iv_appie_assocresp); 280 FREEAPPIE(vap->iv_appie_wpa); 281 #undef FREEAPPIE 282 } 283 284 /* 285 * Simple-minded authenticator module support. 286 */ 287 288 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 289 /* XXX well-known names */ 290 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 291 "wlan_internal", /* IEEE80211_AUTH_NONE */ 292 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 293 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 294 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 295 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 296 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 297 }; 298 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 299 300 static const struct ieee80211_authenticator auth_internal = { 301 .ia_name = "wlan_internal", 302 .ia_attach = NULL, 303 .ia_detach = NULL, 304 .ia_node_join = NULL, 305 .ia_node_leave = NULL, 306 }; 307 308 /* 309 * Setup internal authenticators once; they are never unregistered. 310 */ 311 static void 312 ieee80211_auth_setup(void) 313 { 314 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 315 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 316 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 317 } 318 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 319 320 const struct ieee80211_authenticator * 321 ieee80211_authenticator_get(int auth) 322 { 323 if (auth >= IEEE80211_AUTH_MAX) 324 return NULL; 325 if (authenticators[auth] == NULL) 326 ieee80211_load_module(auth_modnames[auth]); 327 return authenticators[auth]; 328 } 329 330 void 331 ieee80211_authenticator_register(int type, 332 const struct ieee80211_authenticator *auth) 333 { 334 if (type >= IEEE80211_AUTH_MAX) 335 return; 336 authenticators[type] = auth; 337 } 338 339 void 340 ieee80211_authenticator_unregister(int type) 341 { 342 343 if (type >= IEEE80211_AUTH_MAX) 344 return; 345 authenticators[type] = NULL; 346 } 347 348 /* 349 * Very simple-minded ACL module support. 350 */ 351 /* XXX just one for now */ 352 static const struct ieee80211_aclator *acl = NULL; 353 354 void 355 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 356 { 357 printf("wlan: %s acl policy registered\n", iac->iac_name); 358 acl = iac; 359 } 360 361 void 362 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 363 { 364 if (acl == iac) 365 acl = NULL; 366 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 367 } 368 369 const struct ieee80211_aclator * 370 ieee80211_aclator_get(const char *name) 371 { 372 if (acl == NULL) 373 ieee80211_load_module("wlan_acl"); 374 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 375 } 376 377 void 378 ieee80211_print_essid(const uint8_t *essid, int len) 379 { 380 const uint8_t *p; 381 int i; 382 383 if (len > IEEE80211_NWID_LEN) 384 len = IEEE80211_NWID_LEN; 385 /* determine printable or not */ 386 for (i = 0, p = essid; i < len; i++, p++) { 387 if (*p < ' ' || *p > 0x7e) 388 break; 389 } 390 if (i == len) { 391 printf("\""); 392 for (i = 0, p = essid; i < len; i++, p++) 393 printf("%c", *p); 394 printf("\""); 395 } else { 396 printf("0x"); 397 for (i = 0, p = essid; i < len; i++, p++) 398 printf("%02x", *p); 399 } 400 } 401 402 void 403 ieee80211_dump_pkt(struct ieee80211com *ic, 404 const uint8_t *buf, int len, int rate, int rssi) 405 { 406 const struct ieee80211_frame *wh; 407 int i; 408 409 wh = (const struct ieee80211_frame *)buf; 410 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 411 case IEEE80211_FC1_DIR_NODS: 412 printf("NODS %s", ether_sprintf(wh->i_addr2)); 413 printf("->%s", ether_sprintf(wh->i_addr1)); 414 printf("(%s)", ether_sprintf(wh->i_addr3)); 415 break; 416 case IEEE80211_FC1_DIR_TODS: 417 printf("TODS %s", ether_sprintf(wh->i_addr2)); 418 printf("->%s", ether_sprintf(wh->i_addr3)); 419 printf("(%s)", ether_sprintf(wh->i_addr1)); 420 break; 421 case IEEE80211_FC1_DIR_FROMDS: 422 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 423 printf("->%s", ether_sprintf(wh->i_addr1)); 424 printf("(%s)", ether_sprintf(wh->i_addr2)); 425 break; 426 case IEEE80211_FC1_DIR_DSTODS: 427 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 428 printf("->%s", ether_sprintf(wh->i_addr3)); 429 printf("(%s", ether_sprintf(wh->i_addr2)); 430 printf("->%s)", ether_sprintf(wh->i_addr1)); 431 break; 432 } 433 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 434 case IEEE80211_FC0_TYPE_DATA: 435 printf(" data"); 436 break; 437 case IEEE80211_FC0_TYPE_MGT: 438 printf(" %s", ieee80211_mgt_subtype_name[ 439 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 440 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 441 break; 442 default: 443 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 444 break; 445 } 446 if (IEEE80211_QOS_HAS_SEQ(wh)) { 447 const struct ieee80211_qosframe *qwh = 448 (const struct ieee80211_qosframe *)buf; 449 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 450 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 451 } 452 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 453 int off; 454 455 off = ieee80211_anyhdrspace(ic, wh); 456 printf(" WEP [IV %.02x %.02x %.02x", 457 buf[off+0], buf[off+1], buf[off+2]); 458 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 459 printf(" %.02x %.02x %.02x", 460 buf[off+4], buf[off+5], buf[off+6]); 461 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 462 } 463 if (rate >= 0) 464 printf(" %dM", rate / 2); 465 if (rssi >= 0) 466 printf(" +%d", rssi); 467 printf("\n"); 468 if (len > 0) { 469 for (i = 0; i < len; i++) { 470 if ((i & 1) == 0) 471 printf(" "); 472 printf("%02x", buf[i]); 473 } 474 printf("\n"); 475 } 476 } 477 478 static __inline int 479 findrix(const struct ieee80211_rateset *rs, int r) 480 { 481 int i; 482 483 for (i = 0; i < rs->rs_nrates; i++) 484 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 485 return i; 486 return -1; 487 } 488 489 int 490 ieee80211_fix_rate(struct ieee80211_node *ni, 491 struct ieee80211_rateset *nrs, int flags) 492 { 493 #define RV(v) ((v) & IEEE80211_RATE_VAL) 494 struct ieee80211vap *vap = ni->ni_vap; 495 struct ieee80211com *ic = ni->ni_ic; 496 int i, j, rix, error; 497 int okrate, badrate, fixedrate, ucastrate; 498 const struct ieee80211_rateset *srs; 499 uint8_t r; 500 501 error = 0; 502 okrate = badrate = 0; 503 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 504 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 505 /* 506 * Workaround awkwardness with fixed rate. We are called 507 * to check both the legacy rate set and the HT rate set 508 * but we must apply any legacy fixed rate check only to the 509 * legacy rate set and vice versa. We cannot tell what type 510 * of rate set we've been given (legacy or HT) but we can 511 * distinguish the fixed rate type (MCS have 0x80 set). 512 * So to deal with this the caller communicates whether to 513 * check MCS or legacy rate using the flags and we use the 514 * type of any fixed rate to avoid applying an MCS to a 515 * legacy rate and vice versa. 516 */ 517 if (ucastrate & 0x80) { 518 if (flags & IEEE80211_F_DOFRATE) 519 flags &= ~IEEE80211_F_DOFRATE; 520 } else if ((ucastrate & 0x80) == 0) { 521 if (flags & IEEE80211_F_DOFMCS) 522 flags &= ~IEEE80211_F_DOFMCS; 523 } 524 /* NB: required to make MCS match below work */ 525 ucastrate &= IEEE80211_RATE_VAL; 526 } 527 fixedrate = IEEE80211_FIXED_RATE_NONE; 528 /* 529 * XXX we are called to process both MCS and legacy rates; 530 * we must use the appropriate basic rate set or chaos will 531 * ensue; for now callers that want MCS must supply 532 * IEEE80211_F_DOBRS; at some point we'll need to split this 533 * function so there are two variants, one for MCS and one 534 * for legacy rates. 535 */ 536 if (flags & IEEE80211_F_DOBRS) 537 srs = (const struct ieee80211_rateset *) 538 ieee80211_get_suphtrates(ic, ni->ni_chan); 539 else 540 srs = ieee80211_get_suprates(ic, ni->ni_chan); 541 for (i = 0; i < nrs->rs_nrates; ) { 542 if (flags & IEEE80211_F_DOSORT) { 543 /* 544 * Sort rates. 545 */ 546 for (j = i + 1; j < nrs->rs_nrates; j++) { 547 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 548 r = nrs->rs_rates[i]; 549 nrs->rs_rates[i] = nrs->rs_rates[j]; 550 nrs->rs_rates[j] = r; 551 } 552 } 553 } 554 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 555 badrate = r; 556 /* 557 * Check for fixed rate. 558 */ 559 if (r == ucastrate) 560 fixedrate = r; 561 /* 562 * Check against supported rates. 563 */ 564 rix = findrix(srs, r); 565 if (flags & IEEE80211_F_DONEGO) { 566 if (rix < 0) { 567 /* 568 * A rate in the node's rate set is not 569 * supported. If this is a basic rate and we 570 * are operating as a STA then this is an error. 571 * Otherwise we just discard/ignore the rate. 572 */ 573 if ((flags & IEEE80211_F_JOIN) && 574 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 575 error++; 576 } else if ((flags & IEEE80211_F_JOIN) == 0) { 577 /* 578 * Overwrite with the supported rate 579 * value so any basic rate bit is set. 580 */ 581 nrs->rs_rates[i] = srs->rs_rates[rix]; 582 } 583 } 584 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 585 /* 586 * Delete unacceptable rates. 587 */ 588 nrs->rs_nrates--; 589 for (j = i; j < nrs->rs_nrates; j++) 590 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 591 nrs->rs_rates[j] = 0; 592 continue; 593 } 594 if (rix >= 0) 595 okrate = nrs->rs_rates[i]; 596 i++; 597 } 598 if (okrate == 0 || error != 0 || 599 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 600 fixedrate != ucastrate)) { 601 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 602 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 603 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 604 return badrate | IEEE80211_RATE_BASIC; 605 } else 606 return RV(okrate); 607 #undef RV 608 } 609 610 /* 611 * Reset 11g-related state. 612 */ 613 void 614 ieee80211_reset_erp(struct ieee80211com *ic) 615 { 616 ic->ic_flags &= ~IEEE80211_F_USEPROT; 617 ic->ic_nonerpsta = 0; 618 ic->ic_longslotsta = 0; 619 /* 620 * Short slot time is enabled only when operating in 11g 621 * and not in an IBSS. We must also honor whether or not 622 * the driver is capable of doing it. 623 */ 624 ieee80211_set_shortslottime(ic, 625 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 626 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 627 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 628 ic->ic_opmode == IEEE80211_M_HOSTAP && 629 (ic->ic_caps & IEEE80211_C_SHSLOT))); 630 /* 631 * Set short preamble and ERP barker-preamble flags. 632 */ 633 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 634 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 635 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 636 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 637 } else { 638 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 639 ic->ic_flags |= IEEE80211_F_USEBARKER; 640 } 641 } 642 643 /* 644 * Set the short slot time state and notify the driver. 645 */ 646 void 647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 648 { 649 if (onoff) 650 ic->ic_flags |= IEEE80211_F_SHSLOT; 651 else 652 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 653 /* notify driver */ 654 if (ic->ic_updateslot != NULL) 655 ic->ic_updateslot(ic->ic_ifp); 656 } 657 658 /* 659 * Check if the specified rate set supports ERP. 660 * NB: the rate set is assumed to be sorted. 661 */ 662 int 663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 664 { 665 #define N(a) (sizeof(a) / sizeof(a[0])) 666 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 667 int i, j; 668 669 if (rs->rs_nrates < N(rates)) 670 return 0; 671 for (i = 0; i < N(rates); i++) { 672 for (j = 0; j < rs->rs_nrates; j++) { 673 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 674 if (rates[i] == r) 675 goto next; 676 if (r > rates[i]) 677 return 0; 678 } 679 return 0; 680 next: 681 ; 682 } 683 return 1; 684 #undef N 685 } 686 687 /* 688 * Mark the basic rates for the rate table based on the 689 * operating mode. For real 11g we mark all the 11b rates 690 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 691 * 11b rates. There's also a pseudo 11a-mode used to mark only 692 * the basic OFDM rates. 693 */ 694 static void 695 setbasicrates(struct ieee80211_rateset *rs, 696 enum ieee80211_phymode mode, int add) 697 { 698 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 699 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 700 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 701 /* NB: mixed b/g */ 702 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 703 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 704 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 705 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 706 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 707 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 708 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 709 /* NB: mixed b/g */ 710 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 711 }; 712 int i, j; 713 714 for (i = 0; i < rs->rs_nrates; i++) { 715 if (!add) 716 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 717 for (j = 0; j < basic[mode].rs_nrates; j++) 718 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 719 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 720 break; 721 } 722 } 723 } 724 725 /* 726 * Set the basic rates in a rate set. 727 */ 728 void 729 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 730 enum ieee80211_phymode mode) 731 { 732 setbasicrates(rs, mode, 0); 733 } 734 735 /* 736 * Add basic rates to a rate set. 737 */ 738 void 739 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 740 enum ieee80211_phymode mode) 741 { 742 setbasicrates(rs, mode, 1); 743 } 744 745 /* 746 * WME protocol support. 747 * 748 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 749 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 750 * Draft 2.0 Test Plan (Appendix D). 751 * 752 * Static/Dynamic Turbo mode settings come from Atheros. 753 */ 754 typedef struct phyParamType { 755 uint8_t aifsn; 756 uint8_t logcwmin; 757 uint8_t logcwmax; 758 uint16_t txopLimit; 759 uint8_t acm; 760 } paramType; 761 762 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 763 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 767 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 768 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 770 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 771 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 773 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 774 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 775 }; 776 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 777 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 781 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 782 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 784 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 785 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 787 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 788 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 789 }; 790 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 791 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 792 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 793 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 794 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 795 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 796 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 798 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 799 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 801 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 802 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 803 }; 804 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 805 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 806 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 807 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 808 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 809 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 810 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 812 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 813 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 815 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 816 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 817 }; 818 819 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 820 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 824 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 825 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 827 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 828 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 830 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 831 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 832 }; 833 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 834 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 835 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 836 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 837 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 838 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 839 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 841 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 842 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 844 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 845 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 846 }; 847 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 848 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 849 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 850 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 851 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 852 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 853 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 855 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 856 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 858 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 859 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 860 }; 861 862 static void 863 _setifsparams(struct wmeParams *wmep, const paramType *phy) 864 { 865 wmep->wmep_aifsn = phy->aifsn; 866 wmep->wmep_logcwmin = phy->logcwmin; 867 wmep->wmep_logcwmax = phy->logcwmax; 868 wmep->wmep_txopLimit = phy->txopLimit; 869 } 870 871 static void 872 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 873 struct wmeParams *wmep, const paramType *phy) 874 { 875 wmep->wmep_acm = phy->acm; 876 _setifsparams(wmep, phy); 877 878 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 879 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 880 ieee80211_wme_acnames[ac], type, 881 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 882 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 883 } 884 885 static void 886 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 887 { 888 struct ieee80211com *ic = vap->iv_ic; 889 struct ieee80211_wme_state *wme = &ic->ic_wme; 890 const paramType *pPhyParam, *pBssPhyParam; 891 struct wmeParams *wmep; 892 enum ieee80211_phymode mode; 893 int i; 894 895 IEEE80211_LOCK_ASSERT(ic); 896 897 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 898 return; 899 900 /* 901 * Clear the wme cap_info field so a qoscount from a previous 902 * vap doesn't confuse later code which only parses the beacon 903 * field and updates hardware when said field changes. 904 * Otherwise the hardware is programmed with defaults, not what 905 * the beacon actually announces. 906 */ 907 wme->wme_wmeChanParams.cap_info = 0; 908 909 /* 910 * Select mode; we can be called early in which case we 911 * always use auto mode. We know we'll be called when 912 * entering the RUN state with bsschan setup properly 913 * so state will eventually get set correctly 914 */ 915 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 916 mode = ieee80211_chan2mode(ic->ic_bsschan); 917 else 918 mode = IEEE80211_MODE_AUTO; 919 for (i = 0; i < WME_NUM_AC; i++) { 920 switch (i) { 921 case WME_AC_BK: 922 pPhyParam = &phyParamForAC_BK[mode]; 923 pBssPhyParam = &phyParamForAC_BK[mode]; 924 break; 925 case WME_AC_VI: 926 pPhyParam = &phyParamForAC_VI[mode]; 927 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 928 break; 929 case WME_AC_VO: 930 pPhyParam = &phyParamForAC_VO[mode]; 931 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 932 break; 933 case WME_AC_BE: 934 default: 935 pPhyParam = &phyParamForAC_BE[mode]; 936 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 937 break; 938 } 939 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 940 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 941 setwmeparams(vap, "chan", i, wmep, pPhyParam); 942 } else { 943 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 944 } 945 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 946 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 947 } 948 /* NB: check ic_bss to avoid NULL deref on initial attach */ 949 if (vap->iv_bss != NULL) { 950 /* 951 * Calculate agressive mode switching threshold based 952 * on beacon interval. This doesn't need locking since 953 * we're only called before entering the RUN state at 954 * which point we start sending beacon frames. 955 */ 956 wme->wme_hipri_switch_thresh = 957 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 958 wme->wme_flags &= ~WME_F_AGGRMODE; 959 ieee80211_wme_updateparams(vap); 960 } 961 } 962 963 void 964 ieee80211_wme_initparams(struct ieee80211vap *vap) 965 { 966 struct ieee80211com *ic = vap->iv_ic; 967 968 IEEE80211_LOCK(ic); 969 ieee80211_wme_initparams_locked(vap); 970 IEEE80211_UNLOCK(ic); 971 } 972 973 /* 974 * Update WME parameters for ourself and the BSS. 975 */ 976 void 977 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 978 { 979 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 980 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 981 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 982 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 983 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 984 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 985 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 987 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 988 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 989 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 990 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 991 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 992 }; 993 struct ieee80211com *ic = vap->iv_ic; 994 struct ieee80211_wme_state *wme = &ic->ic_wme; 995 const struct wmeParams *wmep; 996 struct wmeParams *chanp, *bssp; 997 enum ieee80211_phymode mode; 998 int i; 999 int do_aggrmode = 0; 1000 1001 /* 1002 * Set up the channel access parameters for the physical 1003 * device. First populate the configured settings. 1004 */ 1005 for (i = 0; i < WME_NUM_AC; i++) { 1006 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1007 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1008 chanp->wmep_aifsn = wmep->wmep_aifsn; 1009 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1010 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1011 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1012 1013 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1014 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1015 chanp->wmep_aifsn = wmep->wmep_aifsn; 1016 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1017 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1018 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1019 } 1020 1021 /* 1022 * Select mode; we can be called early in which case we 1023 * always use auto mode. We know we'll be called when 1024 * entering the RUN state with bsschan setup properly 1025 * so state will eventually get set correctly 1026 */ 1027 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1028 mode = ieee80211_chan2mode(ic->ic_bsschan); 1029 else 1030 mode = IEEE80211_MODE_AUTO; 1031 1032 /* 1033 * This implements agressive mode as found in certain 1034 * vendors' AP's. When there is significant high 1035 * priority (VI/VO) traffic in the BSS throttle back BE 1036 * traffic by using conservative parameters. Otherwise 1037 * BE uses agressive params to optimize performance of 1038 * legacy/non-QoS traffic. 1039 */ 1040 1041 /* Hostap? Only if aggressive mode is enabled */ 1042 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1043 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1044 do_aggrmode = 1; 1045 1046 /* 1047 * Station? Only if we're in a non-QoS BSS. 1048 */ 1049 else if ((vap->iv_opmode == IEEE80211_M_STA && 1050 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1051 do_aggrmode = 1; 1052 1053 /* 1054 * IBSS? Only if we we have WME enabled. 1055 */ 1056 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1057 (vap->iv_flags & IEEE80211_F_WME)) 1058 do_aggrmode = 1; 1059 1060 /* 1061 * If WME is disabled on this VAP, default to aggressive mode 1062 * regardless of the configuration. 1063 */ 1064 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1065 do_aggrmode = 1; 1066 1067 /* XXX WDS? */ 1068 1069 /* XXX MBSS? */ 1070 1071 if (do_aggrmode) { 1072 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1073 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1074 1075 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1076 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1077 aggrParam[mode].logcwmin; 1078 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1079 aggrParam[mode].logcwmax; 1080 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1081 (vap->iv_flags & IEEE80211_F_BURST) ? 1082 aggrParam[mode].txopLimit : 0; 1083 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1084 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1085 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1086 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1087 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1088 } 1089 1090 1091 /* 1092 * Change the contention window based on the number of associated 1093 * stations. If the number of associated stations is 1 and 1094 * aggressive mode is enabled, lower the contention window even 1095 * further. 1096 */ 1097 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1098 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1099 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1100 [IEEE80211_MODE_AUTO] = 3, 1101 [IEEE80211_MODE_11A] = 3, 1102 [IEEE80211_MODE_11B] = 4, 1103 [IEEE80211_MODE_11G] = 3, 1104 [IEEE80211_MODE_FH] = 4, 1105 [IEEE80211_MODE_TURBO_A] = 3, 1106 [IEEE80211_MODE_TURBO_G] = 3, 1107 [IEEE80211_MODE_STURBO_A] = 3, 1108 [IEEE80211_MODE_HALF] = 3, 1109 [IEEE80211_MODE_QUARTER] = 3, 1110 [IEEE80211_MODE_11NA] = 3, 1111 [IEEE80211_MODE_11NG] = 3, 1112 }; 1113 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1114 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1115 1116 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1117 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1118 "update %s (chan+bss) logcwmin %u\n", 1119 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1120 } 1121 1122 /* 1123 * Arrange for the beacon update. 1124 * 1125 * XXX what about MBSS, WDS? 1126 */ 1127 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1128 || vap->iv_opmode == IEEE80211_M_IBSS) { 1129 /* 1130 * Arrange for a beacon update and bump the parameter 1131 * set number so associated stations load the new values. 1132 */ 1133 wme->wme_bssChanParams.cap_info = 1134 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1135 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1136 } 1137 1138 wme->wme_update(ic); 1139 1140 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1141 "%s: WME params updated, cap_info 0x%x\n", __func__, 1142 vap->iv_opmode == IEEE80211_M_STA ? 1143 wme->wme_wmeChanParams.cap_info : 1144 wme->wme_bssChanParams.cap_info); 1145 } 1146 1147 void 1148 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1149 { 1150 struct ieee80211com *ic = vap->iv_ic; 1151 1152 if (ic->ic_caps & IEEE80211_C_WME) { 1153 IEEE80211_LOCK(ic); 1154 ieee80211_wme_updateparams_locked(vap); 1155 IEEE80211_UNLOCK(ic); 1156 } 1157 } 1158 1159 static void 1160 parent_updown(void *arg, int npending) 1161 { 1162 struct ifnet *parent = arg; 1163 1164 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL); 1165 } 1166 1167 static void 1168 update_mcast(void *arg, int npending) 1169 { 1170 struct ieee80211com *ic = arg; 1171 struct ifnet *parent = ic->ic_ifp; 1172 1173 ic->ic_update_mcast(parent); 1174 } 1175 1176 static void 1177 update_promisc(void *arg, int npending) 1178 { 1179 struct ieee80211com *ic = arg; 1180 struct ifnet *parent = ic->ic_ifp; 1181 1182 ic->ic_update_promisc(parent); 1183 } 1184 1185 static void 1186 update_channel(void *arg, int npending) 1187 { 1188 struct ieee80211com *ic = arg; 1189 1190 ic->ic_set_channel(ic); 1191 ieee80211_radiotap_chan_change(ic); 1192 } 1193 1194 static void 1195 update_chw(void *arg, int npending) 1196 { 1197 struct ieee80211com *ic = arg; 1198 1199 /* 1200 * XXX should we defer the channel width _config_ update until now? 1201 */ 1202 ic->ic_update_chw(ic); 1203 } 1204 1205 /* 1206 * Block until the parent is in a known state. This is 1207 * used after any operations that dispatch a task (e.g. 1208 * to auto-configure the parent device up/down). 1209 */ 1210 void 1211 ieee80211_waitfor_parent(struct ieee80211com *ic) 1212 { 1213 taskqueue_block(ic->ic_tq); 1214 ieee80211_draintask(ic, &ic->ic_parent_task); 1215 ieee80211_draintask(ic, &ic->ic_mcast_task); 1216 ieee80211_draintask(ic, &ic->ic_promisc_task); 1217 ieee80211_draintask(ic, &ic->ic_chan_task); 1218 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1219 ieee80211_draintask(ic, &ic->ic_chw_task); 1220 taskqueue_unblock(ic->ic_tq); 1221 } 1222 1223 /* 1224 * Start a vap running. If this is the first vap to be 1225 * set running on the underlying device then we 1226 * automatically bring the device up. 1227 */ 1228 void 1229 ieee80211_start_locked(struct ieee80211vap *vap) 1230 { 1231 struct ifnet *ifp = vap->iv_ifp; 1232 struct ieee80211com *ic = vap->iv_ic; 1233 struct ifnet *parent = ic->ic_ifp; 1234 1235 IEEE80211_LOCK_ASSERT(ic); 1236 1237 IEEE80211_DPRINTF(vap, 1238 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1239 "start running, %d vaps running\n", ic->ic_nrunning); 1240 1241 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1242 /* 1243 * Mark us running. Note that it's ok to do this first; 1244 * if we need to bring the parent device up we defer that 1245 * to avoid dropping the com lock. We expect the device 1246 * to respond to being marked up by calling back into us 1247 * through ieee80211_start_all at which point we'll come 1248 * back in here and complete the work. 1249 */ 1250 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1251 /* 1252 * We are not running; if this we are the first vap 1253 * to be brought up auto-up the parent if necessary. 1254 */ 1255 if (ic->ic_nrunning++ == 0 && 1256 (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1257 IEEE80211_DPRINTF(vap, 1258 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1259 "%s: up parent %s\n", __func__, parent->if_xname); 1260 parent->if_flags |= IFF_UP; 1261 ieee80211_runtask(ic, &ic->ic_parent_task); 1262 return; 1263 } 1264 } 1265 /* 1266 * If the parent is up and running, then kick the 1267 * 802.11 state machine as appropriate. 1268 */ 1269 if ((parent->if_drv_flags & IFF_DRV_RUNNING) && 1270 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1271 if (vap->iv_opmode == IEEE80211_M_STA) { 1272 #if 0 1273 /* XXX bypasses scan too easily; disable for now */ 1274 /* 1275 * Try to be intelligent about clocking the state 1276 * machine. If we're currently in RUN state then 1277 * we should be able to apply any new state/parameters 1278 * simply by re-associating. Otherwise we need to 1279 * re-scan to select an appropriate ap. 1280 */ 1281 if (vap->iv_state >= IEEE80211_S_RUN) 1282 ieee80211_new_state_locked(vap, 1283 IEEE80211_S_ASSOC, 1); 1284 else 1285 #endif 1286 ieee80211_new_state_locked(vap, 1287 IEEE80211_S_SCAN, 0); 1288 } else { 1289 /* 1290 * For monitor+wds mode there's nothing to do but 1291 * start running. Otherwise if this is the first 1292 * vap to be brought up, start a scan which may be 1293 * preempted if the station is locked to a particular 1294 * channel. 1295 */ 1296 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1297 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1298 vap->iv_opmode == IEEE80211_M_WDS) 1299 ieee80211_new_state_locked(vap, 1300 IEEE80211_S_RUN, -1); 1301 else 1302 ieee80211_new_state_locked(vap, 1303 IEEE80211_S_SCAN, 0); 1304 } 1305 } 1306 } 1307 1308 /* 1309 * Start a single vap. 1310 */ 1311 void 1312 ieee80211_init(void *arg) 1313 { 1314 struct ieee80211vap *vap = arg; 1315 1316 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1317 "%s\n", __func__); 1318 1319 IEEE80211_LOCK(vap->iv_ic); 1320 ieee80211_start_locked(vap); 1321 IEEE80211_UNLOCK(vap->iv_ic); 1322 } 1323 1324 /* 1325 * Start all runnable vap's on a device. 1326 */ 1327 void 1328 ieee80211_start_all(struct ieee80211com *ic) 1329 { 1330 struct ieee80211vap *vap; 1331 1332 IEEE80211_LOCK(ic); 1333 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1334 struct ifnet *ifp = vap->iv_ifp; 1335 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1336 ieee80211_start_locked(vap); 1337 } 1338 IEEE80211_UNLOCK(ic); 1339 } 1340 1341 /* 1342 * Stop a vap. We force it down using the state machine 1343 * then mark it's ifnet not running. If this is the last 1344 * vap running on the underlying device then we close it 1345 * too to insure it will be properly initialized when the 1346 * next vap is brought up. 1347 */ 1348 void 1349 ieee80211_stop_locked(struct ieee80211vap *vap) 1350 { 1351 struct ieee80211com *ic = vap->iv_ic; 1352 struct ifnet *ifp = vap->iv_ifp; 1353 struct ifnet *parent = ic->ic_ifp; 1354 1355 IEEE80211_LOCK_ASSERT(ic); 1356 1357 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1358 "stop running, %d vaps running\n", ic->ic_nrunning); 1359 1360 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1361 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1362 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1363 if (--ic->ic_nrunning == 0 && 1364 (parent->if_drv_flags & IFF_DRV_RUNNING)) { 1365 IEEE80211_DPRINTF(vap, 1366 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1367 "down parent %s\n", parent->if_xname); 1368 parent->if_flags &= ~IFF_UP; 1369 ieee80211_runtask(ic, &ic->ic_parent_task); 1370 } 1371 } 1372 } 1373 1374 void 1375 ieee80211_stop(struct ieee80211vap *vap) 1376 { 1377 struct ieee80211com *ic = vap->iv_ic; 1378 1379 IEEE80211_LOCK(ic); 1380 ieee80211_stop_locked(vap); 1381 IEEE80211_UNLOCK(ic); 1382 } 1383 1384 /* 1385 * Stop all vap's running on a device. 1386 */ 1387 void 1388 ieee80211_stop_all(struct ieee80211com *ic) 1389 { 1390 struct ieee80211vap *vap; 1391 1392 IEEE80211_LOCK(ic); 1393 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1394 struct ifnet *ifp = vap->iv_ifp; 1395 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1396 ieee80211_stop_locked(vap); 1397 } 1398 IEEE80211_UNLOCK(ic); 1399 1400 ieee80211_waitfor_parent(ic); 1401 } 1402 1403 /* 1404 * Stop all vap's running on a device and arrange 1405 * for those that were running to be resumed. 1406 */ 1407 void 1408 ieee80211_suspend_all(struct ieee80211com *ic) 1409 { 1410 struct ieee80211vap *vap; 1411 1412 IEEE80211_LOCK(ic); 1413 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1414 struct ifnet *ifp = vap->iv_ifp; 1415 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1416 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1417 ieee80211_stop_locked(vap); 1418 } 1419 } 1420 IEEE80211_UNLOCK(ic); 1421 1422 ieee80211_waitfor_parent(ic); 1423 } 1424 1425 /* 1426 * Start all vap's marked for resume. 1427 */ 1428 void 1429 ieee80211_resume_all(struct ieee80211com *ic) 1430 { 1431 struct ieee80211vap *vap; 1432 1433 IEEE80211_LOCK(ic); 1434 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1435 struct ifnet *ifp = vap->iv_ifp; 1436 if (!IFNET_IS_UP_RUNNING(ifp) && 1437 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1438 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1439 ieee80211_start_locked(vap); 1440 } 1441 } 1442 IEEE80211_UNLOCK(ic); 1443 } 1444 1445 void 1446 ieee80211_beacon_miss(struct ieee80211com *ic) 1447 { 1448 IEEE80211_LOCK(ic); 1449 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1450 /* Process in a taskq, the handler may reenter the driver */ 1451 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1452 } 1453 IEEE80211_UNLOCK(ic); 1454 } 1455 1456 static void 1457 beacon_miss(void *arg, int npending) 1458 { 1459 struct ieee80211com *ic = arg; 1460 struct ieee80211vap *vap; 1461 1462 IEEE80211_LOCK(ic); 1463 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1464 /* 1465 * We only pass events through for sta vap's in RUN state; 1466 * may be too restrictive but for now this saves all the 1467 * handlers duplicating these checks. 1468 */ 1469 if (vap->iv_opmode == IEEE80211_M_STA && 1470 vap->iv_state >= IEEE80211_S_RUN && 1471 vap->iv_bmiss != NULL) 1472 vap->iv_bmiss(vap); 1473 } 1474 IEEE80211_UNLOCK(ic); 1475 } 1476 1477 static void 1478 beacon_swmiss(void *arg, int npending) 1479 { 1480 struct ieee80211vap *vap = arg; 1481 struct ieee80211com *ic = vap->iv_ic; 1482 1483 IEEE80211_LOCK(ic); 1484 if (vap->iv_state == IEEE80211_S_RUN) { 1485 /* XXX Call multiple times if npending > zero? */ 1486 vap->iv_bmiss(vap); 1487 } 1488 IEEE80211_UNLOCK(ic); 1489 } 1490 1491 /* 1492 * Software beacon miss handling. Check if any beacons 1493 * were received in the last period. If not post a 1494 * beacon miss; otherwise reset the counter. 1495 */ 1496 void 1497 ieee80211_swbmiss(void *arg) 1498 { 1499 struct ieee80211vap *vap = arg; 1500 struct ieee80211com *ic = vap->iv_ic; 1501 1502 IEEE80211_LOCK_ASSERT(ic); 1503 1504 /* XXX sleep state? */ 1505 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1506 ("wrong state %d", vap->iv_state)); 1507 1508 if (ic->ic_flags & IEEE80211_F_SCAN) { 1509 /* 1510 * If scanning just ignore and reset state. If we get a 1511 * bmiss after coming out of scan because we haven't had 1512 * time to receive a beacon then we should probe the AP 1513 * before posting a real bmiss (unless iv_bmiss_max has 1514 * been artifiically lowered). A cleaner solution might 1515 * be to disable the timer on scan start/end but to handle 1516 * case of multiple sta vap's we'd need to disable the 1517 * timers of all affected vap's. 1518 */ 1519 vap->iv_swbmiss_count = 0; 1520 } else if (vap->iv_swbmiss_count == 0) { 1521 if (vap->iv_bmiss != NULL) 1522 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1523 } else 1524 vap->iv_swbmiss_count = 0; 1525 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1526 ieee80211_swbmiss, vap); 1527 } 1528 1529 /* 1530 * Start an 802.11h channel switch. We record the parameters, 1531 * mark the operation pending, notify each vap through the 1532 * beacon update mechanism so it can update the beacon frame 1533 * contents, and then switch vap's to CSA state to block outbound 1534 * traffic. Devices that handle CSA directly can use the state 1535 * switch to do the right thing so long as they call 1536 * ieee80211_csa_completeswitch when it's time to complete the 1537 * channel change. Devices that depend on the net80211 layer can 1538 * use ieee80211_beacon_update to handle the countdown and the 1539 * channel switch. 1540 */ 1541 void 1542 ieee80211_csa_startswitch(struct ieee80211com *ic, 1543 struct ieee80211_channel *c, int mode, int count) 1544 { 1545 struct ieee80211vap *vap; 1546 1547 IEEE80211_LOCK_ASSERT(ic); 1548 1549 ic->ic_csa_newchan = c; 1550 ic->ic_csa_mode = mode; 1551 ic->ic_csa_count = count; 1552 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1553 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1554 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1555 vap->iv_opmode == IEEE80211_M_IBSS || 1556 vap->iv_opmode == IEEE80211_M_MBSS) 1557 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1558 /* switch to CSA state to block outbound traffic */ 1559 if (vap->iv_state == IEEE80211_S_RUN) 1560 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1561 } 1562 ieee80211_notify_csa(ic, c, mode, count); 1563 } 1564 1565 /* 1566 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1567 * This is called by both the completion and cancellation functions 1568 * so each VAP is placed back in the RUN state and can thus transmit. 1569 */ 1570 static void 1571 csa_completeswitch(struct ieee80211com *ic) 1572 { 1573 struct ieee80211vap *vap; 1574 1575 ic->ic_csa_newchan = NULL; 1576 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1577 1578 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1579 if (vap->iv_state == IEEE80211_S_CSA) 1580 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1581 } 1582 1583 /* 1584 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1585 * We clear state and move all vap's in CSA state to RUN state 1586 * so they can again transmit. 1587 * 1588 * Although this may not be completely correct, update the BSS channel 1589 * for each VAP to the newly configured channel. The setcurchan sets 1590 * the current operating channel for the interface (so the radio does 1591 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1592 * reported information via ioctl. 1593 */ 1594 void 1595 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1596 { 1597 struct ieee80211vap *vap; 1598 1599 IEEE80211_LOCK_ASSERT(ic); 1600 1601 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1602 1603 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1604 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1605 if (vap->iv_state == IEEE80211_S_CSA) 1606 vap->iv_bss->ni_chan = ic->ic_curchan; 1607 1608 csa_completeswitch(ic); 1609 } 1610 1611 /* 1612 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1613 * We clear state and move all vap's in CSA state to RUN state 1614 * so they can again transmit. 1615 */ 1616 void 1617 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1618 { 1619 IEEE80211_LOCK_ASSERT(ic); 1620 1621 csa_completeswitch(ic); 1622 } 1623 1624 /* 1625 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1626 * We clear state and move all vap's in CAC state to RUN state. 1627 */ 1628 void 1629 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1630 { 1631 struct ieee80211com *ic = vap0->iv_ic; 1632 struct ieee80211vap *vap; 1633 1634 IEEE80211_LOCK(ic); 1635 /* 1636 * Complete CAC state change for lead vap first; then 1637 * clock all the other vap's waiting. 1638 */ 1639 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1640 ("wrong state %d", vap0->iv_state)); 1641 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1642 1643 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1644 if (vap->iv_state == IEEE80211_S_CAC) 1645 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1646 IEEE80211_UNLOCK(ic); 1647 } 1648 1649 /* 1650 * Force all vap's other than the specified vap to the INIT state 1651 * and mark them as waiting for a scan to complete. These vaps 1652 * will be brought up when the scan completes and the scanning vap 1653 * reaches RUN state by wakeupwaiting. 1654 */ 1655 static void 1656 markwaiting(struct ieee80211vap *vap0) 1657 { 1658 struct ieee80211com *ic = vap0->iv_ic; 1659 struct ieee80211vap *vap; 1660 1661 IEEE80211_LOCK_ASSERT(ic); 1662 1663 /* 1664 * A vap list entry can not disappear since we are running on the 1665 * taskqueue and a vap destroy will queue and drain another state 1666 * change task. 1667 */ 1668 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1669 if (vap == vap0) 1670 continue; 1671 if (vap->iv_state != IEEE80211_S_INIT) { 1672 /* NB: iv_newstate may drop the lock */ 1673 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1674 IEEE80211_LOCK_ASSERT(ic); 1675 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1676 } 1677 } 1678 } 1679 1680 /* 1681 * Wakeup all vap's waiting for a scan to complete. This is the 1682 * companion to markwaiting (above) and is used to coordinate 1683 * multiple vaps scanning. 1684 * This is called from the state taskqueue. 1685 */ 1686 static void 1687 wakeupwaiting(struct ieee80211vap *vap0) 1688 { 1689 struct ieee80211com *ic = vap0->iv_ic; 1690 struct ieee80211vap *vap; 1691 1692 IEEE80211_LOCK_ASSERT(ic); 1693 1694 /* 1695 * A vap list entry can not disappear since we are running on the 1696 * taskqueue and a vap destroy will queue and drain another state 1697 * change task. 1698 */ 1699 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1700 if (vap == vap0) 1701 continue; 1702 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1703 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1704 /* NB: sta's cannot go INIT->RUN */ 1705 /* NB: iv_newstate may drop the lock */ 1706 vap->iv_newstate(vap, 1707 vap->iv_opmode == IEEE80211_M_STA ? 1708 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1709 IEEE80211_LOCK_ASSERT(ic); 1710 } 1711 } 1712 } 1713 1714 /* 1715 * Handle post state change work common to all operating modes. 1716 */ 1717 static void 1718 ieee80211_newstate_cb(void *xvap, int npending) 1719 { 1720 struct ieee80211vap *vap = xvap; 1721 struct ieee80211com *ic = vap->iv_ic; 1722 enum ieee80211_state nstate, ostate; 1723 int arg, rc; 1724 1725 IEEE80211_LOCK(ic); 1726 nstate = vap->iv_nstate; 1727 arg = vap->iv_nstate_arg; 1728 1729 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1730 /* 1731 * We have been requested to drop back to the INIT before 1732 * proceeding to the new state. 1733 */ 1734 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1735 "%s: %s -> %s arg %d\n", __func__, 1736 ieee80211_state_name[vap->iv_state], 1737 ieee80211_state_name[IEEE80211_S_INIT], arg); 1738 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1739 IEEE80211_LOCK_ASSERT(ic); 1740 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1741 } 1742 1743 ostate = vap->iv_state; 1744 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1745 /* 1746 * SCAN was forced; e.g. on beacon miss. Force other running 1747 * vap's to INIT state and mark them as waiting for the scan to 1748 * complete. This insures they don't interfere with our 1749 * scanning. Since we are single threaded the vaps can not 1750 * transition again while we are executing. 1751 * 1752 * XXX not always right, assumes ap follows sta 1753 */ 1754 markwaiting(vap); 1755 } 1756 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1757 "%s: %s -> %s arg %d\n", __func__, 1758 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1759 1760 rc = vap->iv_newstate(vap, nstate, arg); 1761 IEEE80211_LOCK_ASSERT(ic); 1762 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1763 if (rc != 0) { 1764 /* State transition failed */ 1765 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1766 KASSERT(nstate != IEEE80211_S_INIT, 1767 ("INIT state change failed")); 1768 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1769 "%s: %s returned error %d\n", __func__, 1770 ieee80211_state_name[nstate], rc); 1771 goto done; 1772 } 1773 1774 /* No actual transition, skip post processing */ 1775 if (ostate == nstate) 1776 goto done; 1777 1778 if (nstate == IEEE80211_S_RUN) { 1779 /* 1780 * OACTIVE may be set on the vap if the upper layer 1781 * tried to transmit (e.g. IPv6 NDP) before we reach 1782 * RUN state. Clear it and restart xmit. 1783 * 1784 * Note this can also happen as a result of SLEEP->RUN 1785 * (i.e. coming out of power save mode). 1786 */ 1787 IF_LOCK(&vap->iv_ifp->if_snd); 1788 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1789 IF_UNLOCK(&vap->iv_ifp->if_snd); 1790 1791 /* 1792 * XXX Kick-start a VAP queue - this should be a method, 1793 * not if_start()! 1794 */ 1795 if_start(vap->iv_ifp); 1796 1797 /* bring up any vaps waiting on us */ 1798 wakeupwaiting(vap); 1799 } else if (nstate == IEEE80211_S_INIT) { 1800 /* 1801 * Flush the scan cache if we did the last scan (XXX?) 1802 * and flush any frames on send queues from this vap. 1803 * Note the mgt q is used only for legacy drivers and 1804 * will go away shortly. 1805 */ 1806 ieee80211_scan_flush(vap); 1807 1808 /* XXX NB: cast for altq */ 1809 ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap); 1810 } 1811 done: 1812 IEEE80211_UNLOCK(ic); 1813 } 1814 1815 /* 1816 * Public interface for initiating a state machine change. 1817 * This routine single-threads the request and coordinates 1818 * the scheduling of multiple vaps for the purpose of selecting 1819 * an operating channel. Specifically the following scenarios 1820 * are handled: 1821 * o only one vap can be selecting a channel so on transition to 1822 * SCAN state if another vap is already scanning then 1823 * mark the caller for later processing and return without 1824 * doing anything (XXX? expectations by caller of synchronous operation) 1825 * o only one vap can be doing CAC of a channel so on transition to 1826 * CAC state if another vap is already scanning for radar then 1827 * mark the caller for later processing and return without 1828 * doing anything (XXX? expectations by caller of synchronous operation) 1829 * o if another vap is already running when a request is made 1830 * to SCAN then an operating channel has been chosen; bypass 1831 * the scan and just join the channel 1832 * 1833 * Note that the state change call is done through the iv_newstate 1834 * method pointer so any driver routine gets invoked. The driver 1835 * will normally call back into operating mode-specific 1836 * ieee80211_newstate routines (below) unless it needs to completely 1837 * bypass the state machine (e.g. because the firmware has it's 1838 * own idea how things should work). Bypassing the net80211 layer 1839 * is usually a mistake and indicates lack of proper integration 1840 * with the net80211 layer. 1841 */ 1842 static int 1843 ieee80211_new_state_locked(struct ieee80211vap *vap, 1844 enum ieee80211_state nstate, int arg) 1845 { 1846 struct ieee80211com *ic = vap->iv_ic; 1847 struct ieee80211vap *vp; 1848 enum ieee80211_state ostate; 1849 int nrunning, nscanning; 1850 1851 IEEE80211_LOCK_ASSERT(ic); 1852 1853 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1854 if (vap->iv_nstate == IEEE80211_S_INIT) { 1855 /* 1856 * XXX The vap is being stopped, do no allow any other 1857 * state changes until this is completed. 1858 */ 1859 return -1; 1860 } else if (vap->iv_state != vap->iv_nstate) { 1861 #if 0 1862 /* Warn if the previous state hasn't completed. */ 1863 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1864 "%s: pending %s -> %s transition lost\n", __func__, 1865 ieee80211_state_name[vap->iv_state], 1866 ieee80211_state_name[vap->iv_nstate]); 1867 #else 1868 /* XXX temporarily enable to identify issues */ 1869 if_printf(vap->iv_ifp, 1870 "%s: pending %s -> %s transition lost\n", 1871 __func__, ieee80211_state_name[vap->iv_state], 1872 ieee80211_state_name[vap->iv_nstate]); 1873 #endif 1874 } 1875 } 1876 1877 nrunning = nscanning = 0; 1878 /* XXX can track this state instead of calculating */ 1879 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1880 if (vp != vap) { 1881 if (vp->iv_state >= IEEE80211_S_RUN) 1882 nrunning++; 1883 /* XXX doesn't handle bg scan */ 1884 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1885 else if (vp->iv_state > IEEE80211_S_INIT) 1886 nscanning++; 1887 } 1888 } 1889 ostate = vap->iv_state; 1890 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1891 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1892 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1893 nrunning, nscanning); 1894 switch (nstate) { 1895 case IEEE80211_S_SCAN: 1896 if (ostate == IEEE80211_S_INIT) { 1897 /* 1898 * INIT -> SCAN happens on initial bringup. 1899 */ 1900 KASSERT(!(nscanning && nrunning), 1901 ("%d scanning and %d running", nscanning, nrunning)); 1902 if (nscanning) { 1903 /* 1904 * Someone is scanning, defer our state 1905 * change until the work has completed. 1906 */ 1907 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1908 "%s: defer %s -> %s\n", 1909 __func__, ieee80211_state_name[ostate], 1910 ieee80211_state_name[nstate]); 1911 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1912 return 0; 1913 } 1914 if (nrunning) { 1915 /* 1916 * Someone is operating; just join the channel 1917 * they have chosen. 1918 */ 1919 /* XXX kill arg? */ 1920 /* XXX check each opmode, adhoc? */ 1921 if (vap->iv_opmode == IEEE80211_M_STA) 1922 nstate = IEEE80211_S_SCAN; 1923 else 1924 nstate = IEEE80211_S_RUN; 1925 #ifdef IEEE80211_DEBUG 1926 if (nstate != IEEE80211_S_SCAN) { 1927 IEEE80211_DPRINTF(vap, 1928 IEEE80211_MSG_STATE, 1929 "%s: override, now %s -> %s\n", 1930 __func__, 1931 ieee80211_state_name[ostate], 1932 ieee80211_state_name[nstate]); 1933 } 1934 #endif 1935 } 1936 } 1937 break; 1938 case IEEE80211_S_RUN: 1939 if (vap->iv_opmode == IEEE80211_M_WDS && 1940 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1941 nscanning) { 1942 /* 1943 * Legacy WDS with someone else scanning; don't 1944 * go online until that completes as we should 1945 * follow the other vap to the channel they choose. 1946 */ 1947 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1948 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1949 ieee80211_state_name[ostate], 1950 ieee80211_state_name[nstate]); 1951 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1952 return 0; 1953 } 1954 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1955 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1956 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1957 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1958 /* 1959 * This is a DFS channel, transition to CAC state 1960 * instead of RUN. This allows us to initiate 1961 * Channel Availability Check (CAC) as specified 1962 * by 11h/DFS. 1963 */ 1964 nstate = IEEE80211_S_CAC; 1965 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1966 "%s: override %s -> %s (DFS)\n", __func__, 1967 ieee80211_state_name[ostate], 1968 ieee80211_state_name[nstate]); 1969 } 1970 break; 1971 case IEEE80211_S_INIT: 1972 /* cancel any scan in progress */ 1973 ieee80211_cancel_scan(vap); 1974 if (ostate == IEEE80211_S_INIT ) { 1975 /* XXX don't believe this */ 1976 /* INIT -> INIT. nothing to do */ 1977 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1978 } 1979 /* fall thru... */ 1980 default: 1981 break; 1982 } 1983 /* defer the state change to a thread */ 1984 vap->iv_nstate = nstate; 1985 vap->iv_nstate_arg = arg; 1986 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 1987 ieee80211_runtask(ic, &vap->iv_nstate_task); 1988 return EINPROGRESS; 1989 } 1990 1991 int 1992 ieee80211_new_state(struct ieee80211vap *vap, 1993 enum ieee80211_state nstate, int arg) 1994 { 1995 struct ieee80211com *ic = vap->iv_ic; 1996 int rc; 1997 1998 IEEE80211_LOCK(ic); 1999 rc = ieee80211_new_state_locked(vap, nstate, arg); 2000 IEEE80211_UNLOCK(ic); 2001 return rc; 2002 } 2003