1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 /* 108 * Reason code descriptions were (mostly) obtained from 109 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 110 */ 111 const char * 112 ieee80211_reason_to_string(uint16_t reason) 113 { 114 switch (reason) { 115 case IEEE80211_REASON_UNSPECIFIED: 116 return ("unspecified"); 117 case IEEE80211_REASON_AUTH_EXPIRE: 118 return ("previous authentication is expired"); 119 case IEEE80211_REASON_AUTH_LEAVE: 120 return ("sending STA is leaving/has left IBSS or ESS"); 121 case IEEE80211_REASON_ASSOC_EXPIRE: 122 return ("disassociated due to inactivity"); 123 case IEEE80211_REASON_ASSOC_TOOMANY: 124 return ("too many associated STAs"); 125 case IEEE80211_REASON_NOT_AUTHED: 126 return ("class 2 frame received from nonauthenticated STA"); 127 case IEEE80211_REASON_NOT_ASSOCED: 128 return ("class 3 frame received from nonassociated STA"); 129 case IEEE80211_REASON_ASSOC_LEAVE: 130 return ("sending STA is leaving/has left BSS"); 131 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 132 return ("STA requesting (re)association is not authenticated"); 133 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 134 return ("information in the Power Capability element is " 135 "unacceptable"); 136 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 137 return ("information in the Supported Channels element is " 138 "unacceptable"); 139 case IEEE80211_REASON_IE_INVALID: 140 return ("invalid element"); 141 case IEEE80211_REASON_MIC_FAILURE: 142 return ("MIC failure"); 143 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 144 return ("4-Way handshake timeout"); 145 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 146 return ("group key update timeout"); 147 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 148 return ("element in 4-Way handshake different from " 149 "(re)association request/probe response/beacon frame"); 150 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 151 return ("invalid group cipher"); 152 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 153 return ("invalid pairwise cipher"); 154 case IEEE80211_REASON_AKMP_INVALID: 155 return ("invalid AKMP"); 156 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 157 return ("unsupported version in RSN IE"); 158 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 159 return ("invalid capabilities in RSN IE"); 160 case IEEE80211_REASON_802_1X_AUTH_FAILED: 161 return ("IEEE 802.1X authentication failed"); 162 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 163 return ("cipher suite rejected because of the security " 164 "policy"); 165 case IEEE80211_REASON_UNSPECIFIED_QOS: 166 return ("unspecified (QoS-related)"); 167 case IEEE80211_REASON_INSUFFICIENT_BW: 168 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 169 case IEEE80211_REASON_TOOMANY_FRAMES: 170 return ("too many frames need to be acknowledged"); 171 case IEEE80211_REASON_OUTSIDE_TXOP: 172 return ("STA is transmitting outside the limits of its TXOPs"); 173 case IEEE80211_REASON_LEAVING_QBSS: 174 return ("requested from peer STA (the STA is " 175 "resetting/leaving the BSS)"); 176 case IEEE80211_REASON_BAD_MECHANISM: 177 return ("requested from peer STA (it does not want to use " 178 "the mechanism)"); 179 case IEEE80211_REASON_SETUP_NEEDED: 180 return ("requested from peer STA (setup is required for the " 181 "used mechanism)"); 182 case IEEE80211_REASON_TIMEOUT: 183 return ("requested from peer STA (timeout)"); 184 case IEEE80211_REASON_PEER_LINK_CANCELED: 185 return ("SME cancels the mesh peering instance (not related " 186 "to the maximum number of peer mesh STAs)"); 187 case IEEE80211_REASON_MESH_MAX_PEERS: 188 return ("maximum number of peer mesh STAs was reached"); 189 case IEEE80211_REASON_MESH_CPVIOLATION: 190 return ("the received information violates the Mesh " 191 "Configuration policy configured in the mesh STA " 192 "profile"); 193 case IEEE80211_REASON_MESH_CLOSE_RCVD: 194 return ("the mesh STA has received a Mesh Peering Close " 195 "message requesting to close the mesh peering"); 196 case IEEE80211_REASON_MESH_MAX_RETRIES: 197 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 198 "Peering Open messages, without receiving a Mesh " 199 "Peering Confirm message"); 200 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 201 return ("the confirmTimer for the mesh peering instance times " 202 "out"); 203 case IEEE80211_REASON_MESH_INVALID_GTK: 204 return ("the mesh STA fails to unwrap the GTK or the values " 205 "in the wrapped contents do not match"); 206 case IEEE80211_REASON_MESH_INCONS_PARAMS: 207 return ("the mesh STA receives inconsistent information about " 208 "the mesh parameters between Mesh Peering Management " 209 "frames"); 210 case IEEE80211_REASON_MESH_INVALID_SECURITY: 211 return ("the mesh STA fails the authenticated mesh peering " 212 "exchange because due to failure in selecting " 213 "pairwise/group ciphersuite"); 214 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 215 return ("the mesh STA does not have proxy information for " 216 "this external destination"); 217 case IEEE80211_REASON_MESH_PERR_NO_FI: 218 return ("the mesh STA does not have forwarding information " 219 "for this destination"); 220 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 221 return ("the mesh STA determines that the link to the next " 222 "hop of an active path in its forwarding information " 223 "is no longer usable"); 224 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 225 return ("the MAC address of the STA already exists in the " 226 "mesh BSS"); 227 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 228 return ("the mesh STA performs channel switch to meet " 229 "regulatory requirements"); 230 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 231 return ("the mesh STA performs channel switch with " 232 "unspecified reason"); 233 default: 234 return ("reserved/unknown"); 235 } 236 } 237 238 static void beacon_miss(void *, int); 239 static void beacon_swmiss(void *, int); 240 static void parent_updown(void *, int); 241 static void update_mcast(void *, int); 242 static void update_promisc(void *, int); 243 static void update_channel(void *, int); 244 static void update_chw(void *, int); 245 static void vap_update_wme(void *, int); 246 static void vap_update_slot(void *, int); 247 static void restart_vaps(void *, int); 248 static void vap_update_erp_protmode(void *, int); 249 static void vap_update_preamble(void *, int); 250 static void vap_update_ht_protmode(void *, int); 251 static void ieee80211_newstate_cb(void *, int); 252 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 253 struct ieee80211_node *); 254 255 static int 256 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 257 const struct ieee80211_bpf_params *params) 258 { 259 260 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 261 m_freem(m); 262 return ENETDOWN; 263 } 264 265 void 266 ieee80211_proto_attach(struct ieee80211com *ic) 267 { 268 uint8_t hdrlen; 269 270 /* override the 802.3 setting */ 271 hdrlen = ic->ic_headroom 272 + sizeof(struct ieee80211_qosframe_addr4) 273 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 274 + IEEE80211_WEP_EXTIVLEN; 275 /* XXX no way to recalculate on ifdetach */ 276 max_linkhdr_grow(ALIGN(hdrlen)); 277 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 278 279 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 280 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 281 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 282 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 283 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 284 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 285 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 286 287 ic->ic_wme.wme_hipri_switch_hysteresis = 288 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 289 290 /* initialize management frame handlers */ 291 ic->ic_send_mgmt = ieee80211_send_mgmt; 292 ic->ic_raw_xmit = null_raw_xmit; 293 294 ieee80211_adhoc_attach(ic); 295 ieee80211_sta_attach(ic); 296 ieee80211_wds_attach(ic); 297 ieee80211_hostap_attach(ic); 298 #ifdef IEEE80211_SUPPORT_MESH 299 ieee80211_mesh_attach(ic); 300 #endif 301 ieee80211_monitor_attach(ic); 302 } 303 304 void 305 ieee80211_proto_detach(struct ieee80211com *ic) 306 { 307 ieee80211_monitor_detach(ic); 308 #ifdef IEEE80211_SUPPORT_MESH 309 ieee80211_mesh_detach(ic); 310 #endif 311 ieee80211_hostap_detach(ic); 312 ieee80211_wds_detach(ic); 313 ieee80211_adhoc_detach(ic); 314 ieee80211_sta_detach(ic); 315 } 316 317 static void 318 null_update_beacon(struct ieee80211vap *vap, int item) 319 { 320 } 321 322 void 323 ieee80211_proto_vattach(struct ieee80211vap *vap) 324 { 325 struct ieee80211com *ic = vap->iv_ic; 326 struct ifnet *ifp = vap->iv_ifp; 327 int i; 328 329 /* override the 802.3 setting */ 330 ifp->if_hdrlen = ic->ic_headroom 331 + sizeof(struct ieee80211_qosframe_addr4) 332 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 333 + IEEE80211_WEP_EXTIVLEN; 334 335 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 336 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 337 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 338 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 339 callout_init(&vap->iv_mgtsend, 1); 340 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 343 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 344 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 345 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 346 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 347 /* 348 * Install default tx rate handling: no fixed rate, lowest 349 * supported rate for mgmt and multicast frames. Default 350 * max retry count. These settings can be changed by the 351 * driver and/or user applications. 352 */ 353 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 354 if (isclr(ic->ic_modecaps, i)) 355 continue; 356 357 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 358 359 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 360 361 /* 362 * Setting the management rate to MCS 0 assumes that the 363 * BSS Basic rate set is empty and the BSS Basic MCS set 364 * is not. 365 * 366 * Since we're not checking this, default to the lowest 367 * defined rate for this mode. 368 * 369 * At least one 11n AP (DLINK DIR-825) is reported to drop 370 * some MCS management traffic (eg BA response frames.) 371 * 372 * See also: 9.6.0 of the 802.11n-2009 specification. 373 */ 374 #ifdef NOTYET 375 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 376 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 377 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 378 } else { 379 vap->iv_txparms[i].mgmtrate = 380 rs->rs_rates[0] & IEEE80211_RATE_VAL; 381 vap->iv_txparms[i].mcastrate = 382 rs->rs_rates[0] & IEEE80211_RATE_VAL; 383 } 384 #endif 385 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 387 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 388 } 389 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 390 391 vap->iv_update_beacon = null_update_beacon; 392 vap->iv_deliver_data = ieee80211_deliver_data; 393 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 394 vap->iv_update_bss = vap_update_bss; 395 396 /* attach support for operating mode */ 397 ic->ic_vattach[vap->iv_opmode](vap); 398 } 399 400 void 401 ieee80211_proto_vdetach(struct ieee80211vap *vap) 402 { 403 #define FREEAPPIE(ie) do { \ 404 if (ie != NULL) \ 405 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 406 } while (0) 407 /* 408 * Detach operating mode module. 409 */ 410 if (vap->iv_opdetach != NULL) 411 vap->iv_opdetach(vap); 412 /* 413 * This should not be needed as we detach when reseting 414 * the state but be conservative here since the 415 * authenticator may do things like spawn kernel threads. 416 */ 417 if (vap->iv_auth->ia_detach != NULL) 418 vap->iv_auth->ia_detach(vap); 419 /* 420 * Detach any ACL'ator. 421 */ 422 if (vap->iv_acl != NULL) 423 vap->iv_acl->iac_detach(vap); 424 425 FREEAPPIE(vap->iv_appie_beacon); 426 FREEAPPIE(vap->iv_appie_probereq); 427 FREEAPPIE(vap->iv_appie_proberesp); 428 FREEAPPIE(vap->iv_appie_assocreq); 429 FREEAPPIE(vap->iv_appie_assocresp); 430 FREEAPPIE(vap->iv_appie_wpa); 431 #undef FREEAPPIE 432 } 433 434 /* 435 * Simple-minded authenticator module support. 436 */ 437 438 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 439 /* XXX well-known names */ 440 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 441 "wlan_internal", /* IEEE80211_AUTH_NONE */ 442 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 443 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 444 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 445 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 446 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 447 }; 448 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 449 450 static const struct ieee80211_authenticator auth_internal = { 451 .ia_name = "wlan_internal", 452 .ia_attach = NULL, 453 .ia_detach = NULL, 454 .ia_node_join = NULL, 455 .ia_node_leave = NULL, 456 }; 457 458 /* 459 * Setup internal authenticators once; they are never unregistered. 460 */ 461 static void 462 ieee80211_auth_setup(void) 463 { 464 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 465 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 466 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 467 } 468 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 469 470 const struct ieee80211_authenticator * 471 ieee80211_authenticator_get(int auth) 472 { 473 if (auth >= IEEE80211_AUTH_MAX) 474 return NULL; 475 if (authenticators[auth] == NULL) 476 ieee80211_load_module(auth_modnames[auth]); 477 return authenticators[auth]; 478 } 479 480 void 481 ieee80211_authenticator_register(int type, 482 const struct ieee80211_authenticator *auth) 483 { 484 if (type >= IEEE80211_AUTH_MAX) 485 return; 486 authenticators[type] = auth; 487 } 488 489 void 490 ieee80211_authenticator_unregister(int type) 491 { 492 493 if (type >= IEEE80211_AUTH_MAX) 494 return; 495 authenticators[type] = NULL; 496 } 497 498 /* 499 * Very simple-minded ACL module support. 500 */ 501 /* XXX just one for now */ 502 static const struct ieee80211_aclator *acl = NULL; 503 504 void 505 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 506 { 507 printf("wlan: %s acl policy registered\n", iac->iac_name); 508 acl = iac; 509 } 510 511 void 512 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 513 { 514 if (acl == iac) 515 acl = NULL; 516 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 517 } 518 519 const struct ieee80211_aclator * 520 ieee80211_aclator_get(const char *name) 521 { 522 if (acl == NULL) 523 ieee80211_load_module("wlan_acl"); 524 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 525 } 526 527 void 528 ieee80211_print_essid(const uint8_t *essid, int len) 529 { 530 const uint8_t *p; 531 int i; 532 533 if (len > IEEE80211_NWID_LEN) 534 len = IEEE80211_NWID_LEN; 535 /* determine printable or not */ 536 for (i = 0, p = essid; i < len; i++, p++) { 537 if (*p < ' ' || *p > 0x7e) 538 break; 539 } 540 if (i == len) { 541 printf("\""); 542 for (i = 0, p = essid; i < len; i++, p++) 543 printf("%c", *p); 544 printf("\""); 545 } else { 546 printf("0x"); 547 for (i = 0, p = essid; i < len; i++, p++) 548 printf("%02x", *p); 549 } 550 } 551 552 void 553 ieee80211_dump_pkt(struct ieee80211com *ic, 554 const uint8_t *buf, int len, int rate, int rssi) 555 { 556 const struct ieee80211_frame *wh; 557 int i; 558 559 wh = (const struct ieee80211_frame *)buf; 560 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 561 case IEEE80211_FC1_DIR_NODS: 562 printf("NODS %s", ether_sprintf(wh->i_addr2)); 563 printf("->%s", ether_sprintf(wh->i_addr1)); 564 printf("(%s)", ether_sprintf(wh->i_addr3)); 565 break; 566 case IEEE80211_FC1_DIR_TODS: 567 printf("TODS %s", ether_sprintf(wh->i_addr2)); 568 printf("->%s", ether_sprintf(wh->i_addr3)); 569 printf("(%s)", ether_sprintf(wh->i_addr1)); 570 break; 571 case IEEE80211_FC1_DIR_FROMDS: 572 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 573 printf("->%s", ether_sprintf(wh->i_addr1)); 574 printf("(%s)", ether_sprintf(wh->i_addr2)); 575 break; 576 case IEEE80211_FC1_DIR_DSTODS: 577 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 578 printf("->%s", ether_sprintf(wh->i_addr3)); 579 printf("(%s", ether_sprintf(wh->i_addr2)); 580 printf("->%s)", ether_sprintf(wh->i_addr1)); 581 break; 582 } 583 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 584 case IEEE80211_FC0_TYPE_DATA: 585 printf(" data"); 586 break; 587 case IEEE80211_FC0_TYPE_MGT: 588 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 589 break; 590 default: 591 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 592 break; 593 } 594 if (IEEE80211_QOS_HAS_SEQ(wh)) { 595 const struct ieee80211_qosframe *qwh = 596 (const struct ieee80211_qosframe *)buf; 597 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 598 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 599 } 600 if (IEEE80211_IS_PROTECTED(wh)) { 601 int off; 602 603 off = ieee80211_anyhdrspace(ic, wh); 604 printf(" WEP [IV %.02x %.02x %.02x", 605 buf[off+0], buf[off+1], buf[off+2]); 606 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 607 printf(" %.02x %.02x %.02x", 608 buf[off+4], buf[off+5], buf[off+6]); 609 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 610 } 611 if (rate >= 0) 612 printf(" %dM", rate / 2); 613 if (rssi >= 0) 614 printf(" +%d", rssi); 615 printf("\n"); 616 if (len > 0) { 617 for (i = 0; i < len; i++) { 618 if ((i & 1) == 0) 619 printf(" "); 620 printf("%02x", buf[i]); 621 } 622 printf("\n"); 623 } 624 } 625 626 static __inline int 627 findrix(const struct ieee80211_rateset *rs, int r) 628 { 629 int i; 630 631 for (i = 0; i < rs->rs_nrates; i++) 632 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 633 return i; 634 return -1; 635 } 636 637 int 638 ieee80211_fix_rate(struct ieee80211_node *ni, 639 struct ieee80211_rateset *nrs, int flags) 640 { 641 struct ieee80211vap *vap = ni->ni_vap; 642 struct ieee80211com *ic = ni->ni_ic; 643 int i, j, rix, error; 644 int okrate, badrate, fixedrate, ucastrate; 645 const struct ieee80211_rateset *srs; 646 uint8_t r; 647 648 error = 0; 649 okrate = badrate = 0; 650 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 651 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 652 /* 653 * Workaround awkwardness with fixed rate. We are called 654 * to check both the legacy rate set and the HT rate set 655 * but we must apply any legacy fixed rate check only to the 656 * legacy rate set and vice versa. We cannot tell what type 657 * of rate set we've been given (legacy or HT) but we can 658 * distinguish the fixed rate type (MCS have 0x80 set). 659 * So to deal with this the caller communicates whether to 660 * check MCS or legacy rate using the flags and we use the 661 * type of any fixed rate to avoid applying an MCS to a 662 * legacy rate and vice versa. 663 */ 664 if (ucastrate & 0x80) { 665 if (flags & IEEE80211_F_DOFRATE) 666 flags &= ~IEEE80211_F_DOFRATE; 667 } else if ((ucastrate & 0x80) == 0) { 668 if (flags & IEEE80211_F_DOFMCS) 669 flags &= ~IEEE80211_F_DOFMCS; 670 } 671 /* NB: required to make MCS match below work */ 672 ucastrate &= IEEE80211_RATE_VAL; 673 } 674 fixedrate = IEEE80211_FIXED_RATE_NONE; 675 /* 676 * XXX we are called to process both MCS and legacy rates; 677 * we must use the appropriate basic rate set or chaos will 678 * ensue; for now callers that want MCS must supply 679 * IEEE80211_F_DOBRS; at some point we'll need to split this 680 * function so there are two variants, one for MCS and one 681 * for legacy rates. 682 */ 683 if (flags & IEEE80211_F_DOBRS) 684 srs = (const struct ieee80211_rateset *) 685 ieee80211_get_suphtrates(ic, ni->ni_chan); 686 else 687 srs = ieee80211_get_suprates(ic, ni->ni_chan); 688 for (i = 0; i < nrs->rs_nrates; ) { 689 if (flags & IEEE80211_F_DOSORT) { 690 /* 691 * Sort rates. 692 */ 693 for (j = i + 1; j < nrs->rs_nrates; j++) { 694 if (IEEE80211_RV(nrs->rs_rates[i]) > 695 IEEE80211_RV(nrs->rs_rates[j])) { 696 r = nrs->rs_rates[i]; 697 nrs->rs_rates[i] = nrs->rs_rates[j]; 698 nrs->rs_rates[j] = r; 699 } 700 } 701 } 702 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 703 badrate = r; 704 /* 705 * Check for fixed rate. 706 */ 707 if (r == ucastrate) 708 fixedrate = r; 709 /* 710 * Check against supported rates. 711 */ 712 rix = findrix(srs, r); 713 if (flags & IEEE80211_F_DONEGO) { 714 if (rix < 0) { 715 /* 716 * A rate in the node's rate set is not 717 * supported. If this is a basic rate and we 718 * are operating as a STA then this is an error. 719 * Otherwise we just discard/ignore the rate. 720 */ 721 if ((flags & IEEE80211_F_JOIN) && 722 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 723 error++; 724 } else if ((flags & IEEE80211_F_JOIN) == 0) { 725 /* 726 * Overwrite with the supported rate 727 * value so any basic rate bit is set. 728 */ 729 nrs->rs_rates[i] = srs->rs_rates[rix]; 730 } 731 } 732 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 733 /* 734 * Delete unacceptable rates. 735 */ 736 nrs->rs_nrates--; 737 for (j = i; j < nrs->rs_nrates; j++) 738 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 739 nrs->rs_rates[j] = 0; 740 continue; 741 } 742 if (rix >= 0) 743 okrate = nrs->rs_rates[i]; 744 i++; 745 } 746 if (okrate == 0 || error != 0 || 747 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 748 fixedrate != ucastrate)) { 749 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 750 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 751 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 752 return badrate | IEEE80211_RATE_BASIC; 753 } else 754 return IEEE80211_RV(okrate); 755 } 756 757 /* 758 * Reset 11g-related state. 759 * 760 * This is for per-VAP ERP/11g state. 761 * 762 * Eventually everything in ieee80211_reset_erp() will be 763 * per-VAP and in here. 764 */ 765 void 766 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 767 { 768 struct ieee80211com *ic = vap->iv_ic; 769 770 vap->iv_nonerpsta = 0; 771 vap->iv_longslotsta = 0; 772 773 vap->iv_flags &= ~IEEE80211_F_USEPROT; 774 /* 775 * Set short preamble and ERP barker-preamble flags. 776 */ 777 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 778 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 779 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 780 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 781 } else { 782 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 783 vap->iv_flags |= IEEE80211_F_USEBARKER; 784 } 785 786 /* 787 * Short slot time is enabled only when operating in 11g 788 * and not in an IBSS. We must also honor whether or not 789 * the driver is capable of doing it. 790 */ 791 ieee80211_vap_set_shortslottime(vap, 792 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 793 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 794 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 795 vap->iv_opmode == IEEE80211_M_HOSTAP && 796 (ic->ic_caps & IEEE80211_C_SHSLOT))); 797 } 798 799 /* 800 * Reset 11g-related state. 801 * 802 * Note this resets the global state and a caller should schedule 803 * a re-check of all the VAPs after setup to update said state. 804 */ 805 void 806 ieee80211_reset_erp(struct ieee80211com *ic) 807 { 808 #if 0 809 ic->ic_flags &= ~IEEE80211_F_USEPROT; 810 /* 811 * Set short preamble and ERP barker-preamble flags. 812 */ 813 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 814 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 815 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 816 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 817 } else { 818 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 819 ic->ic_flags |= IEEE80211_F_USEBARKER; 820 } 821 #endif 822 /* XXX TODO: schedule a new per-VAP ERP calculation */ 823 } 824 825 static struct ieee80211_node * 826 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 827 { 828 struct ieee80211_node *obss; 829 830 obss = vap->iv_bss; 831 vap->iv_bss = ni; 832 833 return (obss); 834 } 835 836 /* 837 * Deferred slot time update. 838 * 839 * For per-VAP slot time configuration, call the VAP 840 * method if the VAP requires it. Otherwise, just call the 841 * older global method. 842 * 843 * If the per-VAP method is called then it's expected that 844 * the driver/firmware will take care of turning the per-VAP 845 * flags into slot time configuration. 846 * 847 * If the per-VAP method is not called then the global flags will be 848 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 849 * be set only if all of the vaps will have it set. 850 * 851 * Look at the comments for vap_update_erp_protmode() for more 852 * background; this assumes all VAPs are on the same channel. 853 */ 854 static void 855 vap_update_slot(void *arg, int npending) 856 { 857 struct ieee80211vap *vap = arg; 858 struct ieee80211com *ic = vap->iv_ic; 859 struct ieee80211vap *iv; 860 int num_shslot = 0, num_lgslot = 0; 861 862 /* 863 * Per-VAP path - we've already had the flags updated; 864 * so just notify the driver and move on. 865 */ 866 if (vap->iv_updateslot != NULL) { 867 vap->iv_updateslot(vap); 868 return; 869 } 870 871 /* 872 * Iterate over all of the VAP flags to update the 873 * global flag. 874 * 875 * If all vaps have short slot enabled then flip on 876 * short slot. If any vap has it disabled then 877 * we leave it globally disabled. This should provide 878 * correct behaviour in a multi-BSS scenario where 879 * at least one VAP has short slot disabled for some 880 * reason. 881 */ 882 IEEE80211_LOCK(ic); 883 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 884 if (iv->iv_flags & IEEE80211_F_SHSLOT) 885 num_shslot++; 886 else 887 num_lgslot++; 888 } 889 890 /* 891 * It looks backwards but - if the number of short slot VAPs 892 * is zero then we're not short slot. Else, we have one 893 * or more short slot VAPs and we're checking to see if ANY 894 * of them have short slot disabled. 895 */ 896 if (num_shslot == 0) 897 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 898 else if (num_lgslot == 0) 899 ic->ic_flags |= IEEE80211_F_SHSLOT; 900 IEEE80211_UNLOCK(ic); 901 902 /* 903 * Call the driver with our new global slot time flags. 904 */ 905 if (ic->ic_updateslot != NULL) 906 ic->ic_updateslot(ic); 907 } 908 909 /* 910 * Deferred ERP protmode update. 911 * 912 * This currently calculates the global ERP protection mode flag 913 * based on each of the VAPs. Any VAP with it enabled is enough 914 * for the global flag to be enabled. All VAPs with it disabled 915 * is enough for it to be disabled. 916 * 917 * This may make sense right now for the supported hardware where 918 * net80211 is controlling the single channel configuration, but 919 * offload firmware that's doing channel changes (eg off-channel 920 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 921 * silly looking flag updates. 922 * 923 * Ideally the protection mode calculation is done based on the 924 * channel, and all VAPs using that channel will inherit it. 925 * But until that's what net80211 does, this wil have to do. 926 */ 927 static void 928 vap_update_erp_protmode(void *arg, int npending) 929 { 930 struct ieee80211vap *vap = arg; 931 struct ieee80211com *ic = vap->iv_ic; 932 struct ieee80211vap *iv; 933 int enable_protmode = 0; 934 int non_erp_present = 0; 935 936 /* 937 * Iterate over all of the VAPs to calculate the overlapping 938 * ERP protection mode configuration and ERP present math. 939 * 940 * For now we assume that if a driver can handle this per-VAP 941 * then it'll ignore the ic->ic_protmode variant and instead 942 * will look at the vap related flags. 943 */ 944 IEEE80211_LOCK(ic); 945 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 946 if (iv->iv_flags & IEEE80211_F_USEPROT) 947 enable_protmode = 1; 948 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 949 non_erp_present = 1; 950 } 951 952 if (enable_protmode) 953 ic->ic_flags |= IEEE80211_F_USEPROT; 954 else 955 ic->ic_flags &= ~IEEE80211_F_USEPROT; 956 957 if (non_erp_present) 958 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 959 else 960 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 961 962 /* Beacon update on all VAPs */ 963 ieee80211_notify_erp_locked(ic); 964 965 IEEE80211_UNLOCK(ic); 966 967 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 968 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 969 __func__, enable_protmode, non_erp_present); 970 971 /* 972 * Now that the global configuration flags are calculated, 973 * notify the VAP about its configuration. 974 * 975 * The global flags will be used when assembling ERP IEs 976 * for multi-VAP operation, even if it's on a different 977 * channel. Yes, that's going to need fixing in the 978 * future. 979 */ 980 if (vap->iv_erp_protmode_update != NULL) 981 vap->iv_erp_protmode_update(vap); 982 } 983 984 /* 985 * Deferred ERP short preamble/barker update. 986 * 987 * All VAPs need to use short preamble for it to be globally 988 * enabled or not. 989 * 990 * Look at the comments for vap_update_erp_protmode() for more 991 * background; this assumes all VAPs are on the same channel. 992 */ 993 static void 994 vap_update_preamble(void *arg, int npending) 995 { 996 struct ieee80211vap *vap = arg; 997 struct ieee80211com *ic = vap->iv_ic; 998 struct ieee80211vap *iv; 999 int barker_count = 0, short_preamble_count = 0, count = 0; 1000 1001 /* 1002 * Iterate over all of the VAPs to calculate the overlapping 1003 * short or long preamble configuration. 1004 * 1005 * For now we assume that if a driver can handle this per-VAP 1006 * then it'll ignore the ic->ic_flags variant and instead 1007 * will look at the vap related flags. 1008 */ 1009 IEEE80211_LOCK(ic); 1010 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1011 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1012 barker_count++; 1013 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1014 short_preamble_count++; 1015 count++; 1016 } 1017 1018 /* 1019 * As with vap_update_erp_protmode(), the global flags are 1020 * currently used for beacon IEs. 1021 */ 1022 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1023 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1024 __func__, barker_count, short_preamble_count); 1025 1026 /* 1027 * Only flip on short preamble if all of the VAPs support 1028 * it. 1029 */ 1030 if (barker_count == 0 && short_preamble_count == count) { 1031 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1032 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1033 } else { 1034 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1035 ic->ic_flags |= IEEE80211_F_USEBARKER; 1036 } 1037 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1038 "%s: global barker=%d preamble=%d\n", 1039 __func__, 1040 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1041 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1042 1043 /* Beacon update on all VAPs */ 1044 ieee80211_notify_erp_locked(ic); 1045 1046 IEEE80211_UNLOCK(ic); 1047 1048 /* Driver notification */ 1049 if (vap->iv_erp_protmode_update != NULL) 1050 vap->iv_preamble_update(vap); 1051 } 1052 1053 /* 1054 * Deferred HT protmode update and beacon update. 1055 * 1056 * Look at the comments for vap_update_erp_protmode() for more 1057 * background; this assumes all VAPs are on the same channel. 1058 */ 1059 static void 1060 vap_update_ht_protmode(void *arg, int npending) 1061 { 1062 struct ieee80211vap *vap = arg; 1063 struct ieee80211vap *iv; 1064 struct ieee80211com *ic = vap->iv_ic; 1065 int num_vaps = 0, num_pure = 0; 1066 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1067 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1068 int num_nonhtpr = 0; 1069 1070 /* 1071 * Iterate over all of the VAPs to calculate everything. 1072 * 1073 * There are a few different flags to calculate: 1074 * 1075 * + whether there's HT only or HT+legacy stations; 1076 * + whether there's HT20, HT40, or HT20+HT40 stations; 1077 * + whether the desired protection mode is mixed, pure or 1078 * one of the two above. 1079 * 1080 * For now we assume that if a driver can handle this per-VAP 1081 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1082 * variant and instead will look at the vap related variables. 1083 * 1084 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1085 */ 1086 1087 IEEE80211_LOCK(ic); 1088 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1089 num_vaps++; 1090 /* overlapping BSSes advertising non-HT status present */ 1091 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1092 num_nonht++; 1093 /* Operating mode flags */ 1094 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1095 num_nonhtpr++; 1096 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1097 case IEEE80211_HTINFO_OPMODE_PURE: 1098 num_pure++; 1099 break; 1100 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1101 num_optional++; 1102 break; 1103 case IEEE80211_HTINFO_OPMODE_HT20PR: 1104 num_ht2040++; 1105 break; 1106 } 1107 1108 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1109 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1110 __func__, 1111 ieee80211_get_vap_ifname(iv), 1112 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1113 iv->iv_curhtprotmode); 1114 1115 num_ht_sta += iv->iv_ht_sta_assoc; 1116 num_ht40_sta += iv->iv_ht40_sta_assoc; 1117 num_sta += iv->iv_sta_assoc; 1118 } 1119 1120 /* 1121 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1122 * non-HT present), set it here. This shouldn't be used by 1123 * anything but the old overlapping BSS logic so if any drivers 1124 * consume it, it's up to date. 1125 */ 1126 if (num_nonht > 0) 1127 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1128 else 1129 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1130 1131 /* 1132 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1133 * 1134 * + If all VAPs are PURE, we can stay PURE. 1135 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1136 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1137 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1138 * So we look at the sum ht and sum ht40 sta counts; if we have a 1139 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1140 * Note all stations need to be HT for this to be an option. 1141 * + The fall-through is MIXED, because it means we have some odd 1142 * non HT40-involved combination of opmode and this is the most 1143 * sensible default. 1144 */ 1145 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1146 1147 if (num_pure == num_vaps) 1148 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1149 1150 if (num_optional == num_vaps) 1151 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1152 1153 /* 1154 * Note: we need /a/ HT40 station somewhere for this to 1155 * be a possibility. 1156 */ 1157 if ((num_ht2040 > 0) || 1158 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1159 (num_ht_sta != num_ht40_sta))) 1160 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1161 1162 /* 1163 * Step 3 - if any of the stations across the VAPs are 1164 * non-HT then this needs to be flipped back to MIXED. 1165 */ 1166 if (num_ht_sta != num_sta) 1167 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1168 1169 /* 1170 * Step 4 - If we see any overlapping BSS non-HT stations 1171 * via beacons then flip on NONHT_PRESENT. 1172 */ 1173 if (num_nonhtpr > 0) 1174 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1175 1176 /* Notify all VAPs to potentially update their beacons */ 1177 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1178 ieee80211_htinfo_notify(iv); 1179 1180 IEEE80211_UNLOCK(ic); 1181 1182 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1183 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1184 __func__, 1185 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1186 ic->ic_curhtprotmode); 1187 1188 /* Driver update */ 1189 if (vap->iv_erp_protmode_update != NULL) 1190 vap->iv_ht_protmode_update(vap); 1191 } 1192 1193 /* 1194 * Set the short slot time state and notify the driver. 1195 * 1196 * This is the per-VAP slot time state. 1197 */ 1198 void 1199 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1200 { 1201 struct ieee80211com *ic = vap->iv_ic; 1202 1203 /* XXX lock? */ 1204 1205 /* 1206 * Only modify the per-VAP slot time. 1207 */ 1208 if (onoff) 1209 vap->iv_flags |= IEEE80211_F_SHSLOT; 1210 else 1211 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1212 1213 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1214 "%s: called; onoff=%d\n", __func__, onoff); 1215 /* schedule the deferred slot flag update and update */ 1216 ieee80211_runtask(ic, &vap->iv_slot_task); 1217 } 1218 1219 /* 1220 * Update the VAP short /long / barker preamble state and 1221 * update beacon state if needed. 1222 * 1223 * For now it simply copies the global flags into the per-vap 1224 * flags and schedules the callback. Later this will support 1225 * both global and per-VAP flags, especially useful for 1226 * and STA+STA multi-channel operation (eg p2p). 1227 */ 1228 void 1229 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1230 { 1231 struct ieee80211com *ic = vap->iv_ic; 1232 1233 /* XXX lock? */ 1234 1235 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1236 "%s: called\n", __func__); 1237 /* schedule the deferred slot flag update and update */ 1238 ieee80211_runtask(ic, &vap->iv_preamble_task); 1239 } 1240 1241 /* 1242 * Update the VAP 11g protection mode and update beacon state 1243 * if needed. 1244 */ 1245 void 1246 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1247 { 1248 struct ieee80211com *ic = vap->iv_ic; 1249 1250 /* XXX lock? */ 1251 1252 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1253 "%s: called\n", __func__); 1254 /* schedule the deferred slot flag update and update */ 1255 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1256 } 1257 1258 /* 1259 * Update the VAP 11n protection mode and update beacon state 1260 * if needed. 1261 */ 1262 void 1263 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1264 { 1265 struct ieee80211com *ic = vap->iv_ic; 1266 1267 /* XXX lock? */ 1268 1269 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1270 "%s: called\n", __func__); 1271 /* schedule the deferred protmode update */ 1272 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1273 } 1274 1275 /* 1276 * Check if the specified rate set supports ERP. 1277 * NB: the rate set is assumed to be sorted. 1278 */ 1279 int 1280 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1281 { 1282 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1283 int i, j; 1284 1285 if (rs->rs_nrates < nitems(rates)) 1286 return 0; 1287 for (i = 0; i < nitems(rates); i++) { 1288 for (j = 0; j < rs->rs_nrates; j++) { 1289 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1290 if (rates[i] == r) 1291 goto next; 1292 if (r > rates[i]) 1293 return 0; 1294 } 1295 return 0; 1296 next: 1297 ; 1298 } 1299 return 1; 1300 } 1301 1302 /* 1303 * Mark the basic rates for the rate table based on the 1304 * operating mode. For real 11g we mark all the 11b rates 1305 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1306 * 11b rates. There's also a pseudo 11a-mode used to mark only 1307 * the basic OFDM rates. 1308 */ 1309 static void 1310 setbasicrates(struct ieee80211_rateset *rs, 1311 enum ieee80211_phymode mode, int add) 1312 { 1313 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1314 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1315 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1316 /* NB: mixed b/g */ 1317 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1318 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1319 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1320 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1321 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1322 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1323 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1324 /* NB: mixed b/g */ 1325 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1326 /* NB: mixed b/g */ 1327 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1328 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1329 }; 1330 int i, j; 1331 1332 for (i = 0; i < rs->rs_nrates; i++) { 1333 if (!add) 1334 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1335 for (j = 0; j < basic[mode].rs_nrates; j++) 1336 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1337 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1338 break; 1339 } 1340 } 1341 } 1342 1343 /* 1344 * Set the basic rates in a rate set. 1345 */ 1346 void 1347 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1348 enum ieee80211_phymode mode) 1349 { 1350 setbasicrates(rs, mode, 0); 1351 } 1352 1353 /* 1354 * Add basic rates to a rate set. 1355 */ 1356 void 1357 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1358 enum ieee80211_phymode mode) 1359 { 1360 setbasicrates(rs, mode, 1); 1361 } 1362 1363 /* 1364 * WME protocol support. 1365 * 1366 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1367 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1368 * Draft 2.0 Test Plan (Appendix D). 1369 * 1370 * Static/Dynamic Turbo mode settings come from Atheros. 1371 */ 1372 typedef struct phyParamType { 1373 uint8_t aifsn; 1374 uint8_t logcwmin; 1375 uint8_t logcwmax; 1376 uint16_t txopLimit; 1377 uint8_t acm; 1378 } paramType; 1379 1380 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1381 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1382 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1383 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1384 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1386 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1387 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1388 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1389 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1390 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1391 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1392 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1393 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1394 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1395 }; 1396 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1397 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1398 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1399 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1400 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1402 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1403 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1404 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1405 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1406 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1407 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1408 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1409 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1410 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1411 }; 1412 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1413 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1414 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1415 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1416 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1417 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1418 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1419 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1420 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1421 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1422 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1423 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1424 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1425 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1426 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1427 }; 1428 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1429 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1430 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1431 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1432 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1433 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1434 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1435 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1436 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1437 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1438 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1439 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1440 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1441 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1442 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1443 }; 1444 1445 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1446 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1447 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1448 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1449 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1451 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1452 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1453 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1454 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1455 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1456 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1457 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1458 }; 1459 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1460 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1461 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1462 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1463 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1464 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1465 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1466 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1467 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1468 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1469 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1470 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1471 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1472 }; 1473 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1474 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1475 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1476 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1477 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1478 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1479 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1480 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1481 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1482 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1483 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1484 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1485 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1486 }; 1487 1488 static void 1489 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1490 { 1491 wmep->wmep_aifsn = phy->aifsn; 1492 wmep->wmep_logcwmin = phy->logcwmin; 1493 wmep->wmep_logcwmax = phy->logcwmax; 1494 wmep->wmep_txopLimit = phy->txopLimit; 1495 } 1496 1497 static void 1498 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1499 struct wmeParams *wmep, const paramType *phy) 1500 { 1501 wmep->wmep_acm = phy->acm; 1502 _setifsparams(wmep, phy); 1503 1504 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1505 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1506 ieee80211_wme_acnames[ac], type, 1507 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1508 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1509 } 1510 1511 static void 1512 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1513 { 1514 struct ieee80211com *ic = vap->iv_ic; 1515 struct ieee80211_wme_state *wme = &ic->ic_wme; 1516 const paramType *pPhyParam, *pBssPhyParam; 1517 struct wmeParams *wmep; 1518 enum ieee80211_phymode mode; 1519 int i; 1520 1521 IEEE80211_LOCK_ASSERT(ic); 1522 1523 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1524 return; 1525 1526 /* 1527 * Clear the wme cap_info field so a qoscount from a previous 1528 * vap doesn't confuse later code which only parses the beacon 1529 * field and updates hardware when said field changes. 1530 * Otherwise the hardware is programmed with defaults, not what 1531 * the beacon actually announces. 1532 * 1533 * Note that we can't ever have 0xff as an actual value; 1534 * the only valid values are 0..15. 1535 */ 1536 wme->wme_wmeChanParams.cap_info = 0xfe; 1537 1538 /* 1539 * Select mode; we can be called early in which case we 1540 * always use auto mode. We know we'll be called when 1541 * entering the RUN state with bsschan setup properly 1542 * so state will eventually get set correctly 1543 */ 1544 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1545 mode = ieee80211_chan2mode(ic->ic_bsschan); 1546 else 1547 mode = IEEE80211_MODE_AUTO; 1548 for (i = 0; i < WME_NUM_AC; i++) { 1549 switch (i) { 1550 case WME_AC_BK: 1551 pPhyParam = &phyParamForAC_BK[mode]; 1552 pBssPhyParam = &phyParamForAC_BK[mode]; 1553 break; 1554 case WME_AC_VI: 1555 pPhyParam = &phyParamForAC_VI[mode]; 1556 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1557 break; 1558 case WME_AC_VO: 1559 pPhyParam = &phyParamForAC_VO[mode]; 1560 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1561 break; 1562 case WME_AC_BE: 1563 default: 1564 pPhyParam = &phyParamForAC_BE[mode]; 1565 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1566 break; 1567 } 1568 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1569 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1570 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1571 } else { 1572 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1573 } 1574 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1575 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1576 } 1577 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1578 if (vap->iv_bss != NULL) { 1579 /* 1580 * Calculate aggressive mode switching threshold based 1581 * on beacon interval. This doesn't need locking since 1582 * we're only called before entering the RUN state at 1583 * which point we start sending beacon frames. 1584 */ 1585 wme->wme_hipri_switch_thresh = 1586 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1587 wme->wme_flags &= ~WME_F_AGGRMODE; 1588 ieee80211_wme_updateparams(vap); 1589 } 1590 } 1591 1592 void 1593 ieee80211_wme_initparams(struct ieee80211vap *vap) 1594 { 1595 struct ieee80211com *ic = vap->iv_ic; 1596 1597 IEEE80211_LOCK(ic); 1598 ieee80211_wme_initparams_locked(vap); 1599 IEEE80211_UNLOCK(ic); 1600 } 1601 1602 /* 1603 * Update WME parameters for ourself and the BSS. 1604 */ 1605 void 1606 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1607 { 1608 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1609 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1610 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1611 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1612 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1613 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1614 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1615 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1616 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1617 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1618 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1619 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1620 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1621 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1622 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1623 }; 1624 struct ieee80211com *ic = vap->iv_ic; 1625 struct ieee80211_wme_state *wme = &ic->ic_wme; 1626 const struct wmeParams *wmep; 1627 struct wmeParams *chanp, *bssp; 1628 enum ieee80211_phymode mode; 1629 int i; 1630 int do_aggrmode = 0; 1631 1632 /* 1633 * Set up the channel access parameters for the physical 1634 * device. First populate the configured settings. 1635 */ 1636 for (i = 0; i < WME_NUM_AC; i++) { 1637 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1638 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1639 chanp->wmep_aifsn = wmep->wmep_aifsn; 1640 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1641 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1642 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1643 1644 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1645 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1646 chanp->wmep_aifsn = wmep->wmep_aifsn; 1647 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1648 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1649 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1650 } 1651 1652 /* 1653 * Select mode; we can be called early in which case we 1654 * always use auto mode. We know we'll be called when 1655 * entering the RUN state with bsschan setup properly 1656 * so state will eventually get set correctly 1657 */ 1658 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1659 mode = ieee80211_chan2mode(ic->ic_bsschan); 1660 else 1661 mode = IEEE80211_MODE_AUTO; 1662 1663 /* 1664 * This implements aggressive mode as found in certain 1665 * vendors' AP's. When there is significant high 1666 * priority (VI/VO) traffic in the BSS throttle back BE 1667 * traffic by using conservative parameters. Otherwise 1668 * BE uses aggressive params to optimize performance of 1669 * legacy/non-QoS traffic. 1670 */ 1671 1672 /* Hostap? Only if aggressive mode is enabled */ 1673 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1674 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1675 do_aggrmode = 1; 1676 1677 /* 1678 * Station? Only if we're in a non-QoS BSS. 1679 */ 1680 else if ((vap->iv_opmode == IEEE80211_M_STA && 1681 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1682 do_aggrmode = 1; 1683 1684 /* 1685 * IBSS? Only if we we have WME enabled. 1686 */ 1687 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1688 (vap->iv_flags & IEEE80211_F_WME)) 1689 do_aggrmode = 1; 1690 1691 /* 1692 * If WME is disabled on this VAP, default to aggressive mode 1693 * regardless of the configuration. 1694 */ 1695 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1696 do_aggrmode = 1; 1697 1698 /* XXX WDS? */ 1699 1700 /* XXX MBSS? */ 1701 1702 if (do_aggrmode) { 1703 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1704 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1705 1706 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1707 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1708 aggrParam[mode].logcwmin; 1709 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1710 aggrParam[mode].logcwmax; 1711 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1712 (vap->iv_flags & IEEE80211_F_BURST) ? 1713 aggrParam[mode].txopLimit : 0; 1714 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1715 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1716 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1717 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1718 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1719 } 1720 1721 /* 1722 * Change the contention window based on the number of associated 1723 * stations. If the number of associated stations is 1 and 1724 * aggressive mode is enabled, lower the contention window even 1725 * further. 1726 */ 1727 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1728 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1729 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1730 [IEEE80211_MODE_AUTO] = 3, 1731 [IEEE80211_MODE_11A] = 3, 1732 [IEEE80211_MODE_11B] = 4, 1733 [IEEE80211_MODE_11G] = 3, 1734 [IEEE80211_MODE_FH] = 4, 1735 [IEEE80211_MODE_TURBO_A] = 3, 1736 [IEEE80211_MODE_TURBO_G] = 3, 1737 [IEEE80211_MODE_STURBO_A] = 3, 1738 [IEEE80211_MODE_HALF] = 3, 1739 [IEEE80211_MODE_QUARTER] = 3, 1740 [IEEE80211_MODE_11NA] = 3, 1741 [IEEE80211_MODE_11NG] = 3, 1742 [IEEE80211_MODE_VHT_2GHZ] = 3, 1743 [IEEE80211_MODE_VHT_5GHZ] = 3, 1744 }; 1745 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1746 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1747 1748 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1750 "update %s (chan+bss) logcwmin %u\n", 1751 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1752 } 1753 1754 /* schedule the deferred WME update */ 1755 ieee80211_runtask(ic, &vap->iv_wme_task); 1756 1757 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1758 "%s: WME params updated, cap_info 0x%x\n", __func__, 1759 vap->iv_opmode == IEEE80211_M_STA ? 1760 wme->wme_wmeChanParams.cap_info : 1761 wme->wme_bssChanParams.cap_info); 1762 } 1763 1764 void 1765 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1766 { 1767 struct ieee80211com *ic = vap->iv_ic; 1768 1769 if (ic->ic_caps & IEEE80211_C_WME) { 1770 IEEE80211_LOCK(ic); 1771 ieee80211_wme_updateparams_locked(vap); 1772 IEEE80211_UNLOCK(ic); 1773 } 1774 } 1775 1776 /* 1777 * Fetch the WME parameters for the given VAP. 1778 * 1779 * When net80211 grows p2p, etc support, this may return different 1780 * parameters for each VAP. 1781 */ 1782 void 1783 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1784 { 1785 1786 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1787 } 1788 1789 /* 1790 * For NICs which only support one set of WME parameters (ie, softmac NICs) 1791 * there may be different VAP WME parameters but only one is "active". 1792 * This returns the "NIC" WME parameters for the currently active 1793 * context. 1794 */ 1795 void 1796 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1797 { 1798 1799 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1800 } 1801 1802 /* 1803 * Return whether to use QoS on a given WME queue. 1804 * 1805 * This is intended to be called from the transmit path of softmac drivers 1806 * which are setting NoAck bits in transmit descriptors. 1807 * 1808 * Ideally this would be set in some transmit field before the packet is 1809 * queued to the driver but net80211 isn't quite there yet. 1810 */ 1811 int 1812 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1813 { 1814 /* Bounds/sanity check */ 1815 if (ac < 0 || ac >= WME_NUM_AC) 1816 return (0); 1817 1818 /* Again, there's only one global context for now */ 1819 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1820 } 1821 1822 static void 1823 parent_updown(void *arg, int npending) 1824 { 1825 struct ieee80211com *ic = arg; 1826 1827 ic->ic_parent(ic); 1828 } 1829 1830 static void 1831 update_mcast(void *arg, int npending) 1832 { 1833 struct ieee80211com *ic = arg; 1834 1835 ic->ic_update_mcast(ic); 1836 } 1837 1838 static void 1839 update_promisc(void *arg, int npending) 1840 { 1841 struct ieee80211com *ic = arg; 1842 1843 ic->ic_update_promisc(ic); 1844 } 1845 1846 static void 1847 update_channel(void *arg, int npending) 1848 { 1849 struct ieee80211com *ic = arg; 1850 1851 ic->ic_set_channel(ic); 1852 ieee80211_radiotap_chan_change(ic); 1853 } 1854 1855 static void 1856 update_chw(void *arg, int npending) 1857 { 1858 struct ieee80211com *ic = arg; 1859 1860 /* 1861 * XXX should we defer the channel width _config_ update until now? 1862 */ 1863 ic->ic_update_chw(ic); 1864 } 1865 1866 /* 1867 * Deferred WME parameter and beacon update. 1868 * 1869 * In preparation for per-VAP WME configuration, call the VAP 1870 * method if the VAP requires it. Otherwise, just call the 1871 * older global method. There isn't a per-VAP WME configuration 1872 * just yet so for now just use the global configuration. 1873 */ 1874 static void 1875 vap_update_wme(void *arg, int npending) 1876 { 1877 struct ieee80211vap *vap = arg; 1878 struct ieee80211com *ic = vap->iv_ic; 1879 struct ieee80211_wme_state *wme = &ic->ic_wme; 1880 1881 /* Driver update */ 1882 if (vap->iv_wme_update != NULL) 1883 vap->iv_wme_update(vap, 1884 ic->ic_wme.wme_chanParams.cap_wmeParams); 1885 else 1886 ic->ic_wme.wme_update(ic); 1887 1888 IEEE80211_LOCK(ic); 1889 /* 1890 * Arrange for the beacon update. 1891 * 1892 * XXX what about MBSS, WDS? 1893 */ 1894 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1895 || vap->iv_opmode == IEEE80211_M_IBSS) { 1896 /* 1897 * Arrange for a beacon update and bump the parameter 1898 * set number so associated stations load the new values. 1899 */ 1900 wme->wme_bssChanParams.cap_info = 1901 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1902 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1903 } 1904 IEEE80211_UNLOCK(ic); 1905 } 1906 1907 static void 1908 restart_vaps(void *arg, int npending) 1909 { 1910 struct ieee80211com *ic = arg; 1911 1912 ieee80211_suspend_all(ic); 1913 ieee80211_resume_all(ic); 1914 } 1915 1916 /* 1917 * Block until the parent is in a known state. This is 1918 * used after any operations that dispatch a task (e.g. 1919 * to auto-configure the parent device up/down). 1920 */ 1921 void 1922 ieee80211_waitfor_parent(struct ieee80211com *ic) 1923 { 1924 taskqueue_block(ic->ic_tq); 1925 ieee80211_draintask(ic, &ic->ic_parent_task); 1926 ieee80211_draintask(ic, &ic->ic_mcast_task); 1927 ieee80211_draintask(ic, &ic->ic_promisc_task); 1928 ieee80211_draintask(ic, &ic->ic_chan_task); 1929 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1930 ieee80211_draintask(ic, &ic->ic_chw_task); 1931 taskqueue_unblock(ic->ic_tq); 1932 } 1933 1934 /* 1935 * Check to see whether the current channel needs reset. 1936 * 1937 * Some devices don't handle being given an invalid channel 1938 * in their operating mode very well (eg wpi(4) will throw a 1939 * firmware exception.) 1940 * 1941 * Return 0 if we're ok, 1 if the channel needs to be reset. 1942 * 1943 * See PR kern/202502. 1944 */ 1945 static int 1946 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1947 { 1948 struct ieee80211com *ic = vap->iv_ic; 1949 1950 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1951 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1952 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1953 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1954 return (1); 1955 return (0); 1956 } 1957 1958 /* 1959 * Reset the curchan to a known good state. 1960 */ 1961 static void 1962 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1963 { 1964 struct ieee80211com *ic = vap->iv_ic; 1965 1966 ic->ic_curchan = &ic->ic_channels[0]; 1967 } 1968 1969 /* 1970 * Start a vap running. If this is the first vap to be 1971 * set running on the underlying device then we 1972 * automatically bring the device up. 1973 */ 1974 void 1975 ieee80211_start_locked(struct ieee80211vap *vap) 1976 { 1977 struct ifnet *ifp = vap->iv_ifp; 1978 struct ieee80211com *ic = vap->iv_ic; 1979 1980 IEEE80211_LOCK_ASSERT(ic); 1981 1982 IEEE80211_DPRINTF(vap, 1983 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1984 "start running, %d vaps running\n", ic->ic_nrunning); 1985 1986 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1987 /* 1988 * Mark us running. Note that it's ok to do this first; 1989 * if we need to bring the parent device up we defer that 1990 * to avoid dropping the com lock. We expect the device 1991 * to respond to being marked up by calling back into us 1992 * through ieee80211_start_all at which point we'll come 1993 * back in here and complete the work. 1994 */ 1995 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1996 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 1997 1998 /* 1999 * We are not running; if this we are the first vap 2000 * to be brought up auto-up the parent if necessary. 2001 */ 2002 if (ic->ic_nrunning++ == 0) { 2003 /* reset the channel to a known good channel */ 2004 if (ieee80211_start_check_reset_chan(vap)) 2005 ieee80211_start_reset_chan(vap); 2006 2007 IEEE80211_DPRINTF(vap, 2008 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2009 "%s: up parent %s\n", __func__, ic->ic_name); 2010 ieee80211_runtask(ic, &ic->ic_parent_task); 2011 return; 2012 } 2013 } 2014 /* 2015 * If the parent is up and running, then kick the 2016 * 802.11 state machine as appropriate. 2017 */ 2018 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2019 if (vap->iv_opmode == IEEE80211_M_STA) { 2020 #if 0 2021 /* XXX bypasses scan too easily; disable for now */ 2022 /* 2023 * Try to be intelligent about clocking the state 2024 * machine. If we're currently in RUN state then 2025 * we should be able to apply any new state/parameters 2026 * simply by re-associating. Otherwise we need to 2027 * re-scan to select an appropriate ap. 2028 */ 2029 if (vap->iv_state >= IEEE80211_S_RUN) 2030 ieee80211_new_state_locked(vap, 2031 IEEE80211_S_ASSOC, 1); 2032 else 2033 #endif 2034 ieee80211_new_state_locked(vap, 2035 IEEE80211_S_SCAN, 0); 2036 } else { 2037 /* 2038 * For monitor+wds mode there's nothing to do but 2039 * start running. Otherwise if this is the first 2040 * vap to be brought up, start a scan which may be 2041 * preempted if the station is locked to a particular 2042 * channel. 2043 */ 2044 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2045 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2046 vap->iv_opmode == IEEE80211_M_WDS) 2047 ieee80211_new_state_locked(vap, 2048 IEEE80211_S_RUN, -1); 2049 else 2050 ieee80211_new_state_locked(vap, 2051 IEEE80211_S_SCAN, 0); 2052 } 2053 } 2054 } 2055 2056 /* 2057 * Start a single vap. 2058 */ 2059 void 2060 ieee80211_init(void *arg) 2061 { 2062 struct ieee80211vap *vap = arg; 2063 2064 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2065 "%s\n", __func__); 2066 2067 IEEE80211_LOCK(vap->iv_ic); 2068 ieee80211_start_locked(vap); 2069 IEEE80211_UNLOCK(vap->iv_ic); 2070 } 2071 2072 /* 2073 * Start all runnable vap's on a device. 2074 */ 2075 void 2076 ieee80211_start_all(struct ieee80211com *ic) 2077 { 2078 struct ieee80211vap *vap; 2079 2080 IEEE80211_LOCK(ic); 2081 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2082 struct ifnet *ifp = vap->iv_ifp; 2083 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2084 ieee80211_start_locked(vap); 2085 } 2086 IEEE80211_UNLOCK(ic); 2087 } 2088 2089 /* 2090 * Stop a vap. We force it down using the state machine 2091 * then mark it's ifnet not running. If this is the last 2092 * vap running on the underlying device then we close it 2093 * too to insure it will be properly initialized when the 2094 * next vap is brought up. 2095 */ 2096 void 2097 ieee80211_stop_locked(struct ieee80211vap *vap) 2098 { 2099 struct ieee80211com *ic = vap->iv_ic; 2100 struct ifnet *ifp = vap->iv_ifp; 2101 2102 IEEE80211_LOCK_ASSERT(ic); 2103 2104 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2105 "stop running, %d vaps running\n", ic->ic_nrunning); 2106 2107 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2108 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2109 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2110 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 2111 if (--ic->ic_nrunning == 0) { 2112 IEEE80211_DPRINTF(vap, 2113 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2114 "down parent %s\n", ic->ic_name); 2115 ieee80211_runtask(ic, &ic->ic_parent_task); 2116 } 2117 } 2118 } 2119 2120 void 2121 ieee80211_stop(struct ieee80211vap *vap) 2122 { 2123 struct ieee80211com *ic = vap->iv_ic; 2124 2125 IEEE80211_LOCK(ic); 2126 ieee80211_stop_locked(vap); 2127 IEEE80211_UNLOCK(ic); 2128 } 2129 2130 /* 2131 * Stop all vap's running on a device. 2132 */ 2133 void 2134 ieee80211_stop_all(struct ieee80211com *ic) 2135 { 2136 struct ieee80211vap *vap; 2137 2138 IEEE80211_LOCK(ic); 2139 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2140 struct ifnet *ifp = vap->iv_ifp; 2141 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2142 ieee80211_stop_locked(vap); 2143 } 2144 IEEE80211_UNLOCK(ic); 2145 2146 ieee80211_waitfor_parent(ic); 2147 } 2148 2149 /* 2150 * Stop all vap's running on a device and arrange 2151 * for those that were running to be resumed. 2152 */ 2153 void 2154 ieee80211_suspend_all(struct ieee80211com *ic) 2155 { 2156 struct ieee80211vap *vap; 2157 2158 IEEE80211_LOCK(ic); 2159 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2160 struct ifnet *ifp = vap->iv_ifp; 2161 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2162 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2163 ieee80211_stop_locked(vap); 2164 } 2165 } 2166 IEEE80211_UNLOCK(ic); 2167 2168 ieee80211_waitfor_parent(ic); 2169 } 2170 2171 /* 2172 * Start all vap's marked for resume. 2173 */ 2174 void 2175 ieee80211_resume_all(struct ieee80211com *ic) 2176 { 2177 struct ieee80211vap *vap; 2178 2179 IEEE80211_LOCK(ic); 2180 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2181 struct ifnet *ifp = vap->iv_ifp; 2182 if (!IFNET_IS_UP_RUNNING(ifp) && 2183 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2184 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2185 ieee80211_start_locked(vap); 2186 } 2187 } 2188 IEEE80211_UNLOCK(ic); 2189 } 2190 2191 /* 2192 * Restart all vap's running on a device. 2193 */ 2194 void 2195 ieee80211_restart_all(struct ieee80211com *ic) 2196 { 2197 /* 2198 * NB: do not use ieee80211_runtask here, we will 2199 * block & drain net80211 taskqueue. 2200 */ 2201 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2202 } 2203 2204 void 2205 ieee80211_beacon_miss(struct ieee80211com *ic) 2206 { 2207 IEEE80211_LOCK(ic); 2208 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2209 /* Process in a taskq, the handler may reenter the driver */ 2210 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2211 } 2212 IEEE80211_UNLOCK(ic); 2213 } 2214 2215 static void 2216 beacon_miss(void *arg, int npending) 2217 { 2218 struct ieee80211com *ic = arg; 2219 struct ieee80211vap *vap; 2220 2221 IEEE80211_LOCK(ic); 2222 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2223 /* 2224 * We only pass events through for sta vap's in RUN+ state; 2225 * may be too restrictive but for now this saves all the 2226 * handlers duplicating these checks. 2227 */ 2228 if (vap->iv_opmode == IEEE80211_M_STA && 2229 vap->iv_state >= IEEE80211_S_RUN && 2230 vap->iv_bmiss != NULL) 2231 vap->iv_bmiss(vap); 2232 } 2233 IEEE80211_UNLOCK(ic); 2234 } 2235 2236 static void 2237 beacon_swmiss(void *arg, int npending) 2238 { 2239 struct ieee80211vap *vap = arg; 2240 struct ieee80211com *ic = vap->iv_ic; 2241 2242 IEEE80211_LOCK(ic); 2243 if (vap->iv_state >= IEEE80211_S_RUN) { 2244 /* XXX Call multiple times if npending > zero? */ 2245 vap->iv_bmiss(vap); 2246 } 2247 IEEE80211_UNLOCK(ic); 2248 } 2249 2250 /* 2251 * Software beacon miss handling. Check if any beacons 2252 * were received in the last period. If not post a 2253 * beacon miss; otherwise reset the counter. 2254 */ 2255 void 2256 ieee80211_swbmiss(void *arg) 2257 { 2258 struct ieee80211vap *vap = arg; 2259 struct ieee80211com *ic = vap->iv_ic; 2260 2261 IEEE80211_LOCK_ASSERT(ic); 2262 2263 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2264 ("wrong state %d", vap->iv_state)); 2265 2266 if (ic->ic_flags & IEEE80211_F_SCAN) { 2267 /* 2268 * If scanning just ignore and reset state. If we get a 2269 * bmiss after coming out of scan because we haven't had 2270 * time to receive a beacon then we should probe the AP 2271 * before posting a real bmiss (unless iv_bmiss_max has 2272 * been artifiically lowered). A cleaner solution might 2273 * be to disable the timer on scan start/end but to handle 2274 * case of multiple sta vap's we'd need to disable the 2275 * timers of all affected vap's. 2276 */ 2277 vap->iv_swbmiss_count = 0; 2278 } else if (vap->iv_swbmiss_count == 0) { 2279 if (vap->iv_bmiss != NULL) 2280 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2281 } else 2282 vap->iv_swbmiss_count = 0; 2283 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2284 ieee80211_swbmiss, vap); 2285 } 2286 2287 /* 2288 * Start an 802.11h channel switch. We record the parameters, 2289 * mark the operation pending, notify each vap through the 2290 * beacon update mechanism so it can update the beacon frame 2291 * contents, and then switch vap's to CSA state to block outbound 2292 * traffic. Devices that handle CSA directly can use the state 2293 * switch to do the right thing so long as they call 2294 * ieee80211_csa_completeswitch when it's time to complete the 2295 * channel change. Devices that depend on the net80211 layer can 2296 * use ieee80211_beacon_update to handle the countdown and the 2297 * channel switch. 2298 */ 2299 void 2300 ieee80211_csa_startswitch(struct ieee80211com *ic, 2301 struct ieee80211_channel *c, int mode, int count) 2302 { 2303 struct ieee80211vap *vap; 2304 2305 IEEE80211_LOCK_ASSERT(ic); 2306 2307 ic->ic_csa_newchan = c; 2308 ic->ic_csa_mode = mode; 2309 ic->ic_csa_count = count; 2310 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2311 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2312 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2313 vap->iv_opmode == IEEE80211_M_IBSS || 2314 vap->iv_opmode == IEEE80211_M_MBSS) 2315 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2316 /* switch to CSA state to block outbound traffic */ 2317 if (vap->iv_state == IEEE80211_S_RUN) 2318 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2319 } 2320 ieee80211_notify_csa(ic, c, mode, count); 2321 } 2322 2323 /* 2324 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2325 * This is called by both the completion and cancellation functions 2326 * so each VAP is placed back in the RUN state and can thus transmit. 2327 */ 2328 static void 2329 csa_completeswitch(struct ieee80211com *ic) 2330 { 2331 struct ieee80211vap *vap; 2332 2333 ic->ic_csa_newchan = NULL; 2334 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2335 2336 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2337 if (vap->iv_state == IEEE80211_S_CSA) 2338 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2339 } 2340 2341 /* 2342 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2343 * We clear state and move all vap's in CSA state to RUN state 2344 * so they can again transmit. 2345 * 2346 * Although this may not be completely correct, update the BSS channel 2347 * for each VAP to the newly configured channel. The setcurchan sets 2348 * the current operating channel for the interface (so the radio does 2349 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2350 * reported information via ioctl. 2351 */ 2352 void 2353 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2354 { 2355 struct ieee80211vap *vap; 2356 2357 IEEE80211_LOCK_ASSERT(ic); 2358 2359 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2360 2361 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2362 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2363 if (vap->iv_state == IEEE80211_S_CSA) 2364 vap->iv_bss->ni_chan = ic->ic_curchan; 2365 2366 csa_completeswitch(ic); 2367 } 2368 2369 /* 2370 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2371 * We clear state and move all vap's in CSA state to RUN state 2372 * so they can again transmit. 2373 */ 2374 void 2375 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2376 { 2377 IEEE80211_LOCK_ASSERT(ic); 2378 2379 csa_completeswitch(ic); 2380 } 2381 2382 /* 2383 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2384 * We clear state and move all vap's in CAC state to RUN state. 2385 */ 2386 void 2387 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2388 { 2389 struct ieee80211com *ic = vap0->iv_ic; 2390 struct ieee80211vap *vap; 2391 2392 IEEE80211_LOCK(ic); 2393 /* 2394 * Complete CAC state change for lead vap first; then 2395 * clock all the other vap's waiting. 2396 */ 2397 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2398 ("wrong state %d", vap0->iv_state)); 2399 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2400 2401 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2402 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2403 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2404 IEEE80211_UNLOCK(ic); 2405 } 2406 2407 /* 2408 * Force all vap's other than the specified vap to the INIT state 2409 * and mark them as waiting for a scan to complete. These vaps 2410 * will be brought up when the scan completes and the scanning vap 2411 * reaches RUN state by wakeupwaiting. 2412 */ 2413 static void 2414 markwaiting(struct ieee80211vap *vap0) 2415 { 2416 struct ieee80211com *ic = vap0->iv_ic; 2417 struct ieee80211vap *vap; 2418 2419 IEEE80211_LOCK_ASSERT(ic); 2420 2421 /* 2422 * A vap list entry can not disappear since we are running on the 2423 * taskqueue and a vap destroy will queue and drain another state 2424 * change task. 2425 */ 2426 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2427 if (vap == vap0) 2428 continue; 2429 if (vap->iv_state != IEEE80211_S_INIT) { 2430 /* NB: iv_newstate may drop the lock */ 2431 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2432 IEEE80211_LOCK_ASSERT(ic); 2433 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2434 } 2435 } 2436 } 2437 2438 /* 2439 * Wakeup all vap's waiting for a scan to complete. This is the 2440 * companion to markwaiting (above) and is used to coordinate 2441 * multiple vaps scanning. 2442 * This is called from the state taskqueue. 2443 */ 2444 static void 2445 wakeupwaiting(struct ieee80211vap *vap0) 2446 { 2447 struct ieee80211com *ic = vap0->iv_ic; 2448 struct ieee80211vap *vap; 2449 2450 IEEE80211_LOCK_ASSERT(ic); 2451 2452 /* 2453 * A vap list entry can not disappear since we are running on the 2454 * taskqueue and a vap destroy will queue and drain another state 2455 * change task. 2456 */ 2457 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2458 if (vap == vap0) 2459 continue; 2460 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2461 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2462 /* NB: sta's cannot go INIT->RUN */ 2463 /* NB: iv_newstate may drop the lock */ 2464 2465 /* 2466 * This is problematic if the interface has OACTIVE 2467 * set. Only the deferred ieee80211_newstate_cb() 2468 * will end up actually /clearing/ the OACTIVE 2469 * flag on a state transition to RUN from a non-RUN 2470 * state. 2471 * 2472 * But, we're not actually deferring this callback; 2473 * and when the deferred call occurs it shows up as 2474 * a RUN->RUN transition! So the flag isn't/wasn't 2475 * cleared! 2476 * 2477 * I'm also not sure if it's correct to actually 2478 * do the transitions here fully through the deferred 2479 * paths either as other things can be invoked as 2480 * part of that state machine. 2481 * 2482 * So just keep this in mind when looking at what 2483 * the markwaiting/wakeupwaiting routines are doing 2484 * and how they invoke vap state changes. 2485 */ 2486 2487 vap->iv_newstate(vap, 2488 vap->iv_opmode == IEEE80211_M_STA ? 2489 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2490 IEEE80211_LOCK_ASSERT(ic); 2491 } 2492 } 2493 } 2494 2495 /* 2496 * Handle post state change work common to all operating modes. 2497 */ 2498 static void 2499 ieee80211_newstate_cb(void *xvap, int npending) 2500 { 2501 struct ieee80211vap *vap = xvap; 2502 struct ieee80211com *ic = vap->iv_ic; 2503 enum ieee80211_state nstate, ostate; 2504 int arg, rc; 2505 2506 IEEE80211_LOCK(ic); 2507 nstate = vap->iv_nstate; 2508 arg = vap->iv_nstate_arg; 2509 2510 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2511 /* 2512 * We have been requested to drop back to the INIT before 2513 * proceeding to the new state. 2514 */ 2515 /* Deny any state changes while we are here. */ 2516 vap->iv_nstate = IEEE80211_S_INIT; 2517 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2518 "%s: %s -> %s arg %d\n", __func__, 2519 ieee80211_state_name[vap->iv_state], 2520 ieee80211_state_name[vap->iv_nstate], arg); 2521 vap->iv_newstate(vap, vap->iv_nstate, 0); 2522 IEEE80211_LOCK_ASSERT(ic); 2523 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2524 IEEE80211_FEXT_STATEWAIT); 2525 /* enqueue new state transition after cancel_scan() task */ 2526 ieee80211_new_state_locked(vap, nstate, arg); 2527 goto done; 2528 } 2529 2530 ostate = vap->iv_state; 2531 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2532 /* 2533 * SCAN was forced; e.g. on beacon miss. Force other running 2534 * vap's to INIT state and mark them as waiting for the scan to 2535 * complete. This insures they don't interfere with our 2536 * scanning. Since we are single threaded the vaps can not 2537 * transition again while we are executing. 2538 * 2539 * XXX not always right, assumes ap follows sta 2540 */ 2541 markwaiting(vap); 2542 } 2543 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2544 "%s: %s -> %s arg %d\n", __func__, 2545 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2546 2547 rc = vap->iv_newstate(vap, nstate, arg); 2548 IEEE80211_LOCK_ASSERT(ic); 2549 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2550 if (rc != 0) { 2551 /* State transition failed */ 2552 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2553 KASSERT(nstate != IEEE80211_S_INIT, 2554 ("INIT state change failed")); 2555 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2556 "%s: %s returned error %d\n", __func__, 2557 ieee80211_state_name[nstate], rc); 2558 goto done; 2559 } 2560 2561 /* 2562 * Handle the case of a RUN->RUN transition occuring when STA + AP 2563 * VAPs occur on the same radio. 2564 * 2565 * The mark and wakeup waiting routines call iv_newstate() directly, 2566 * but they do not end up deferring state changes here. 2567 * Thus, although the VAP newstate method sees a transition 2568 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN 2569 * transition. If OACTIVE is set then it is never cleared. 2570 * 2571 * So, if we're here and the state is RUN, just clear OACTIVE. 2572 * At some point if the markwaiting/wakeupwaiting paths end up 2573 * also invoking the deferred state updates then this will 2574 * be no-op code - and also if OACTIVE is finally retired, it'll 2575 * also be no-op code. 2576 */ 2577 if (nstate == IEEE80211_S_RUN) { 2578 /* 2579 * OACTIVE may be set on the vap if the upper layer 2580 * tried to transmit (e.g. IPv6 NDP) before we reach 2581 * RUN state. Clear it and restart xmit. 2582 * 2583 * Note this can also happen as a result of SLEEP->RUN 2584 * (i.e. coming out of power save mode). 2585 * 2586 * Historically this was done only for a state change 2587 * but is needed earlier; see next comment. The 2nd half 2588 * of the work is still only done in case of an actual 2589 * state change below. 2590 */ 2591 /* 2592 * Unblock the VAP queue; a RUN->RUN state can happen 2593 * on a STA+AP setup on the AP vap. See wakeupwaiting(). 2594 */ 2595 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2596 2597 /* 2598 * XXX TODO Kick-start a VAP queue - this should be a method! 2599 */ 2600 } 2601 2602 /* No actual transition, skip post processing */ 2603 if (ostate == nstate) 2604 goto done; 2605 2606 if (nstate == IEEE80211_S_RUN) { 2607 2608 /* bring up any vaps waiting on us */ 2609 wakeupwaiting(vap); 2610 } else if (nstate == IEEE80211_S_INIT) { 2611 /* 2612 * Flush the scan cache if we did the last scan (XXX?) 2613 * and flush any frames on send queues from this vap. 2614 * Note the mgt q is used only for legacy drivers and 2615 * will go away shortly. 2616 */ 2617 ieee80211_scan_flush(vap); 2618 2619 /* 2620 * XXX TODO: ic/vap queue flush 2621 */ 2622 } 2623 done: 2624 IEEE80211_UNLOCK(ic); 2625 } 2626 2627 /* 2628 * Public interface for initiating a state machine change. 2629 * This routine single-threads the request and coordinates 2630 * the scheduling of multiple vaps for the purpose of selecting 2631 * an operating channel. Specifically the following scenarios 2632 * are handled: 2633 * o only one vap can be selecting a channel so on transition to 2634 * SCAN state if another vap is already scanning then 2635 * mark the caller for later processing and return without 2636 * doing anything (XXX? expectations by caller of synchronous operation) 2637 * o only one vap can be doing CAC of a channel so on transition to 2638 * CAC state if another vap is already scanning for radar then 2639 * mark the caller for later processing and return without 2640 * doing anything (XXX? expectations by caller of synchronous operation) 2641 * o if another vap is already running when a request is made 2642 * to SCAN then an operating channel has been chosen; bypass 2643 * the scan and just join the channel 2644 * 2645 * Note that the state change call is done through the iv_newstate 2646 * method pointer so any driver routine gets invoked. The driver 2647 * will normally call back into operating mode-specific 2648 * ieee80211_newstate routines (below) unless it needs to completely 2649 * bypass the state machine (e.g. because the firmware has it's 2650 * own idea how things should work). Bypassing the net80211 layer 2651 * is usually a mistake and indicates lack of proper integration 2652 * with the net80211 layer. 2653 */ 2654 int 2655 ieee80211_new_state_locked(struct ieee80211vap *vap, 2656 enum ieee80211_state nstate, int arg) 2657 { 2658 struct ieee80211com *ic = vap->iv_ic; 2659 struct ieee80211vap *vp; 2660 enum ieee80211_state ostate; 2661 int nrunning, nscanning; 2662 2663 IEEE80211_LOCK_ASSERT(ic); 2664 2665 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2666 if (vap->iv_nstate == IEEE80211_S_INIT || 2667 ((vap->iv_state == IEEE80211_S_INIT || 2668 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2669 vap->iv_nstate == IEEE80211_S_SCAN && 2670 nstate > IEEE80211_S_SCAN)) { 2671 /* 2672 * XXX The vap is being stopped/started, 2673 * do not allow any other state changes 2674 * until this is completed. 2675 */ 2676 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2677 "%s: %s -> %s (%s) transition discarded\n", 2678 __func__, 2679 ieee80211_state_name[vap->iv_state], 2680 ieee80211_state_name[nstate], 2681 ieee80211_state_name[vap->iv_nstate]); 2682 return -1; 2683 } else if (vap->iv_state != vap->iv_nstate) { 2684 #if 0 2685 /* Warn if the previous state hasn't completed. */ 2686 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2687 "%s: pending %s -> %s transition lost\n", __func__, 2688 ieee80211_state_name[vap->iv_state], 2689 ieee80211_state_name[vap->iv_nstate]); 2690 #else 2691 /* XXX temporarily enable to identify issues */ 2692 if_printf(vap->iv_ifp, 2693 "%s: pending %s -> %s transition lost\n", 2694 __func__, ieee80211_state_name[vap->iv_state], 2695 ieee80211_state_name[vap->iv_nstate]); 2696 #endif 2697 } 2698 } 2699 2700 nrunning = nscanning = 0; 2701 /* XXX can track this state instead of calculating */ 2702 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2703 if (vp != vap) { 2704 if (vp->iv_state >= IEEE80211_S_RUN) 2705 nrunning++; 2706 /* XXX doesn't handle bg scan */ 2707 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2708 else if (vp->iv_state > IEEE80211_S_INIT) 2709 nscanning++; 2710 } 2711 } 2712 ostate = vap->iv_state; 2713 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2714 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2715 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2716 nrunning, nscanning); 2717 switch (nstate) { 2718 case IEEE80211_S_SCAN: 2719 if (ostate == IEEE80211_S_INIT) { 2720 /* 2721 * INIT -> SCAN happens on initial bringup. 2722 */ 2723 KASSERT(!(nscanning && nrunning), 2724 ("%d scanning and %d running", nscanning, nrunning)); 2725 if (nscanning) { 2726 /* 2727 * Someone is scanning, defer our state 2728 * change until the work has completed. 2729 */ 2730 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2731 "%s: defer %s -> %s\n", 2732 __func__, ieee80211_state_name[ostate], 2733 ieee80211_state_name[nstate]); 2734 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2735 return 0; 2736 } 2737 if (nrunning) { 2738 /* 2739 * Someone is operating; just join the channel 2740 * they have chosen. 2741 */ 2742 /* XXX kill arg? */ 2743 /* XXX check each opmode, adhoc? */ 2744 if (vap->iv_opmode == IEEE80211_M_STA) 2745 nstate = IEEE80211_S_SCAN; 2746 else 2747 nstate = IEEE80211_S_RUN; 2748 #ifdef IEEE80211_DEBUG 2749 if (nstate != IEEE80211_S_SCAN) { 2750 IEEE80211_DPRINTF(vap, 2751 IEEE80211_MSG_STATE, 2752 "%s: override, now %s -> %s\n", 2753 __func__, 2754 ieee80211_state_name[ostate], 2755 ieee80211_state_name[nstate]); 2756 } 2757 #endif 2758 } 2759 } 2760 break; 2761 case IEEE80211_S_RUN: 2762 if (vap->iv_opmode == IEEE80211_M_WDS && 2763 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2764 nscanning) { 2765 /* 2766 * Legacy WDS with someone else scanning; don't 2767 * go online until that completes as we should 2768 * follow the other vap to the channel they choose. 2769 */ 2770 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2771 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2772 ieee80211_state_name[ostate], 2773 ieee80211_state_name[nstate]); 2774 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2775 return 0; 2776 } 2777 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2778 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2779 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2780 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2781 /* 2782 * This is a DFS channel, transition to CAC state 2783 * instead of RUN. This allows us to initiate 2784 * Channel Availability Check (CAC) as specified 2785 * by 11h/DFS. 2786 */ 2787 nstate = IEEE80211_S_CAC; 2788 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2789 "%s: override %s -> %s (DFS)\n", __func__, 2790 ieee80211_state_name[ostate], 2791 ieee80211_state_name[nstate]); 2792 } 2793 break; 2794 case IEEE80211_S_INIT: 2795 /* cancel any scan in progress */ 2796 ieee80211_cancel_scan(vap); 2797 if (ostate == IEEE80211_S_INIT ) { 2798 /* XXX don't believe this */ 2799 /* INIT -> INIT. nothing to do */ 2800 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2801 } 2802 /* fall thru... */ 2803 default: 2804 break; 2805 } 2806 /* defer the state change to a thread */ 2807 vap->iv_nstate = nstate; 2808 vap->iv_nstate_arg = arg; 2809 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2810 ieee80211_runtask(ic, &vap->iv_nstate_task); 2811 return EINPROGRESS; 2812 } 2813 2814 int 2815 ieee80211_new_state(struct ieee80211vap *vap, 2816 enum ieee80211_state nstate, int arg) 2817 { 2818 struct ieee80211com *ic = vap->iv_ic; 2819 int rc; 2820 2821 IEEE80211_LOCK(ic); 2822 rc = ieee80211_new_state_locked(vap, nstate, arg); 2823 IEEE80211_UNLOCK(ic); 2824 return rc; 2825 } 2826