1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/if_private.h> 52 #include <net/ethernet.h> /* XXX for ether_sprintf */ 53 54 #include <net80211/ieee80211_var.h> 55 #include <net80211/ieee80211_adhoc.h> 56 #include <net80211/ieee80211_sta.h> 57 #include <net80211/ieee80211_hostap.h> 58 #include <net80211/ieee80211_wds.h> 59 #ifdef IEEE80211_SUPPORT_MESH 60 #include <net80211/ieee80211_mesh.h> 61 #endif 62 #include <net80211/ieee80211_monitor.h> 63 #include <net80211/ieee80211_input.h> 64 65 /* XXX tunables */ 66 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 67 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 68 69 const char *mgt_subtype_name[] = { 70 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 71 "probe_req", "probe_resp", "timing_adv", "reserved#7", 72 "beacon", "atim", "disassoc", "auth", 73 "deauth", "action", "action_noack", "reserved#15" 74 }; 75 const char *ctl_subtype_name[] = { 76 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 77 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 78 "bar", "ba", "ps_poll", "rts", 79 "cts", "ack", "cf_end", "cf_end_ack" 80 }; 81 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 82 "IBSS", /* IEEE80211_M_IBSS */ 83 "STA", /* IEEE80211_M_STA */ 84 "WDS", /* IEEE80211_M_WDS */ 85 "AHDEMO", /* IEEE80211_M_AHDEMO */ 86 "HOSTAP", /* IEEE80211_M_HOSTAP */ 87 "MONITOR", /* IEEE80211_M_MONITOR */ 88 "MBSS" /* IEEE80211_M_MBSS */ 89 }; 90 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 91 "INIT", /* IEEE80211_S_INIT */ 92 "SCAN", /* IEEE80211_S_SCAN */ 93 "AUTH", /* IEEE80211_S_AUTH */ 94 "ASSOC", /* IEEE80211_S_ASSOC */ 95 "CAC", /* IEEE80211_S_CAC */ 96 "RUN", /* IEEE80211_S_RUN */ 97 "CSA", /* IEEE80211_S_CSA */ 98 "SLEEP", /* IEEE80211_S_SLEEP */ 99 }; 100 const char *ieee80211_wme_acnames[] = { 101 "WME_AC_BE", 102 "WME_AC_BK", 103 "WME_AC_VI", 104 "WME_AC_VO", 105 "WME_UPSD", 106 }; 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void vap_update_slot(void *, int); 248 static void restart_vaps(void *, int); 249 static void vap_update_erp_protmode(void *, int); 250 static void vap_update_preamble(void *, int); 251 static void vap_update_ht_protmode(void *, int); 252 static void ieee80211_newstate_cb(void *, int); 253 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 254 struct ieee80211_node *); 255 256 static int 257 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 258 const struct ieee80211_bpf_params *params) 259 { 260 261 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 262 m_freem(m); 263 return ENETDOWN; 264 } 265 266 void 267 ieee80211_proto_attach(struct ieee80211com *ic) 268 { 269 uint8_t hdrlen; 270 271 /* override the 802.3 setting */ 272 hdrlen = ic->ic_headroom 273 + sizeof(struct ieee80211_qosframe_addr4) 274 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 275 + IEEE80211_WEP_EXTIVLEN; 276 /* XXX no way to recalculate on ifdetach */ 277 max_linkhdr_grow(ALIGN(hdrlen)); 278 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 279 280 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 281 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 282 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 283 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 284 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 285 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 286 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 287 288 ic->ic_wme.wme_hipri_switch_hysteresis = 289 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 290 291 /* initialize management frame handlers */ 292 ic->ic_send_mgmt = ieee80211_send_mgmt; 293 ic->ic_raw_xmit = null_raw_xmit; 294 295 ieee80211_adhoc_attach(ic); 296 ieee80211_sta_attach(ic); 297 ieee80211_wds_attach(ic); 298 ieee80211_hostap_attach(ic); 299 #ifdef IEEE80211_SUPPORT_MESH 300 ieee80211_mesh_attach(ic); 301 #endif 302 ieee80211_monitor_attach(ic); 303 } 304 305 void 306 ieee80211_proto_detach(struct ieee80211com *ic) 307 { 308 ieee80211_monitor_detach(ic); 309 #ifdef IEEE80211_SUPPORT_MESH 310 ieee80211_mesh_detach(ic); 311 #endif 312 ieee80211_hostap_detach(ic); 313 ieee80211_wds_detach(ic); 314 ieee80211_adhoc_detach(ic); 315 ieee80211_sta_detach(ic); 316 } 317 318 static void 319 null_update_beacon(struct ieee80211vap *vap, int item) 320 { 321 } 322 323 void 324 ieee80211_proto_vattach(struct ieee80211vap *vap) 325 { 326 struct ieee80211com *ic = vap->iv_ic; 327 struct ifnet *ifp = vap->iv_ifp; 328 int i; 329 330 /* override the 802.3 setting */ 331 ifp->if_hdrlen = ic->ic_headroom 332 + sizeof(struct ieee80211_qosframe_addr4) 333 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 334 + IEEE80211_WEP_EXTIVLEN; 335 336 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 337 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 338 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 339 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 340 callout_init(&vap->iv_mgtsend, 1); 341 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 342 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 343 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 344 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 345 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 346 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 347 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 348 /* 349 * Install default tx rate handling: no fixed rate, lowest 350 * supported rate for mgmt and multicast frames. Default 351 * max retry count. These settings can be changed by the 352 * driver and/or user applications. 353 */ 354 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 355 if (isclr(ic->ic_modecaps, i)) 356 continue; 357 358 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 359 360 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 361 362 /* 363 * Setting the management rate to MCS 0 assumes that the 364 * BSS Basic rate set is empty and the BSS Basic MCS set 365 * is not. 366 * 367 * Since we're not checking this, default to the lowest 368 * defined rate for this mode. 369 * 370 * At least one 11n AP (DLINK DIR-825) is reported to drop 371 * some MCS management traffic (eg BA response frames.) 372 * 373 * See also: 9.6.0 of the 802.11n-2009 specification. 374 */ 375 #ifdef NOTYET 376 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 377 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 378 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 379 } else { 380 vap->iv_txparms[i].mgmtrate = 381 rs->rs_rates[0] & IEEE80211_RATE_VAL; 382 vap->iv_txparms[i].mcastrate = 383 rs->rs_rates[0] & IEEE80211_RATE_VAL; 384 } 385 #endif 386 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 387 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 388 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 389 } 390 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 391 392 vap->iv_update_beacon = null_update_beacon; 393 vap->iv_deliver_data = ieee80211_deliver_data; 394 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 395 vap->iv_update_bss = vap_update_bss; 396 397 /* attach support for operating mode */ 398 ic->ic_vattach[vap->iv_opmode](vap); 399 } 400 401 void 402 ieee80211_proto_vdetach(struct ieee80211vap *vap) 403 { 404 #define FREEAPPIE(ie) do { \ 405 if (ie != NULL) \ 406 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 407 } while (0) 408 /* 409 * Detach operating mode module. 410 */ 411 if (vap->iv_opdetach != NULL) 412 vap->iv_opdetach(vap); 413 /* 414 * This should not be needed as we detach when reseting 415 * the state but be conservative here since the 416 * authenticator may do things like spawn kernel threads. 417 */ 418 if (vap->iv_auth->ia_detach != NULL) 419 vap->iv_auth->ia_detach(vap); 420 /* 421 * Detach any ACL'ator. 422 */ 423 if (vap->iv_acl != NULL) 424 vap->iv_acl->iac_detach(vap); 425 426 FREEAPPIE(vap->iv_appie_beacon); 427 FREEAPPIE(vap->iv_appie_probereq); 428 FREEAPPIE(vap->iv_appie_proberesp); 429 FREEAPPIE(vap->iv_appie_assocreq); 430 FREEAPPIE(vap->iv_appie_assocresp); 431 FREEAPPIE(vap->iv_appie_wpa); 432 #undef FREEAPPIE 433 } 434 435 /* 436 * Simple-minded authenticator module support. 437 */ 438 439 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 440 /* XXX well-known names */ 441 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 442 "wlan_internal", /* IEEE80211_AUTH_NONE */ 443 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 444 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 445 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 446 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 447 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 448 }; 449 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 450 451 static const struct ieee80211_authenticator auth_internal = { 452 .ia_name = "wlan_internal", 453 .ia_attach = NULL, 454 .ia_detach = NULL, 455 .ia_node_join = NULL, 456 .ia_node_leave = NULL, 457 }; 458 459 /* 460 * Setup internal authenticators once; they are never unregistered. 461 */ 462 static void 463 ieee80211_auth_setup(void) 464 { 465 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 466 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 467 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 468 } 469 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 470 471 const struct ieee80211_authenticator * 472 ieee80211_authenticator_get(int auth) 473 { 474 if (auth >= IEEE80211_AUTH_MAX) 475 return NULL; 476 if (authenticators[auth] == NULL) 477 ieee80211_load_module(auth_modnames[auth]); 478 return authenticators[auth]; 479 } 480 481 void 482 ieee80211_authenticator_register(int type, 483 const struct ieee80211_authenticator *auth) 484 { 485 if (type >= IEEE80211_AUTH_MAX) 486 return; 487 authenticators[type] = auth; 488 } 489 490 void 491 ieee80211_authenticator_unregister(int type) 492 { 493 494 if (type >= IEEE80211_AUTH_MAX) 495 return; 496 authenticators[type] = NULL; 497 } 498 499 /* 500 * Very simple-minded ACL module support. 501 */ 502 /* XXX just one for now */ 503 static const struct ieee80211_aclator *acl = NULL; 504 505 void 506 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 507 { 508 printf("wlan: %s acl policy registered\n", iac->iac_name); 509 acl = iac; 510 } 511 512 void 513 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 514 { 515 if (acl == iac) 516 acl = NULL; 517 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 518 } 519 520 const struct ieee80211_aclator * 521 ieee80211_aclator_get(const char *name) 522 { 523 if (acl == NULL) 524 ieee80211_load_module("wlan_acl"); 525 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 526 } 527 528 void 529 ieee80211_print_essid(const uint8_t *essid, int len) 530 { 531 const uint8_t *p; 532 int i; 533 534 if (len > IEEE80211_NWID_LEN) 535 len = IEEE80211_NWID_LEN; 536 /* determine printable or not */ 537 for (i = 0, p = essid; i < len; i++, p++) { 538 if (*p < ' ' || *p > 0x7e) 539 break; 540 } 541 if (i == len) { 542 printf("\""); 543 for (i = 0, p = essid; i < len; i++, p++) 544 printf("%c", *p); 545 printf("\""); 546 } else { 547 printf("0x"); 548 for (i = 0, p = essid; i < len; i++, p++) 549 printf("%02x", *p); 550 } 551 } 552 553 void 554 ieee80211_dump_pkt(struct ieee80211com *ic, 555 const uint8_t *buf, int len, int rate, int rssi) 556 { 557 const struct ieee80211_frame *wh; 558 int i; 559 560 wh = (const struct ieee80211_frame *)buf; 561 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 562 case IEEE80211_FC1_DIR_NODS: 563 printf("NODS %s", ether_sprintf(wh->i_addr2)); 564 printf("->%s", ether_sprintf(wh->i_addr1)); 565 printf("(%s)", ether_sprintf(wh->i_addr3)); 566 break; 567 case IEEE80211_FC1_DIR_TODS: 568 printf("TODS %s", ether_sprintf(wh->i_addr2)); 569 printf("->%s", ether_sprintf(wh->i_addr3)); 570 printf("(%s)", ether_sprintf(wh->i_addr1)); 571 break; 572 case IEEE80211_FC1_DIR_FROMDS: 573 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 574 printf("->%s", ether_sprintf(wh->i_addr1)); 575 printf("(%s)", ether_sprintf(wh->i_addr2)); 576 break; 577 case IEEE80211_FC1_DIR_DSTODS: 578 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 579 printf("->%s", ether_sprintf(wh->i_addr3)); 580 printf("(%s", ether_sprintf(wh->i_addr2)); 581 printf("->%s)", ether_sprintf(wh->i_addr1)); 582 break; 583 } 584 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 585 case IEEE80211_FC0_TYPE_DATA: 586 printf(" data"); 587 break; 588 case IEEE80211_FC0_TYPE_MGT: 589 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 590 break; 591 default: 592 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 593 break; 594 } 595 if (IEEE80211_QOS_HAS_SEQ(wh)) { 596 const struct ieee80211_qosframe *qwh = 597 (const struct ieee80211_qosframe *)buf; 598 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 599 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 600 } 601 if (IEEE80211_IS_PROTECTED(wh)) { 602 int off; 603 604 off = ieee80211_anyhdrspace(ic, wh); 605 printf(" WEP [IV %.02x %.02x %.02x", 606 buf[off+0], buf[off+1], buf[off+2]); 607 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 608 printf(" %.02x %.02x %.02x", 609 buf[off+4], buf[off+5], buf[off+6]); 610 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 611 } 612 if (rate >= 0) 613 printf(" %dM", rate / 2); 614 if (rssi >= 0) 615 printf(" +%d", rssi); 616 printf("\n"); 617 if (len > 0) { 618 for (i = 0; i < len; i++) { 619 if ((i & 1) == 0) 620 printf(" "); 621 printf("%02x", buf[i]); 622 } 623 printf("\n"); 624 } 625 } 626 627 static __inline int 628 findrix(const struct ieee80211_rateset *rs, int r) 629 { 630 int i; 631 632 for (i = 0; i < rs->rs_nrates; i++) 633 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 634 return i; 635 return -1; 636 } 637 638 int 639 ieee80211_fix_rate(struct ieee80211_node *ni, 640 struct ieee80211_rateset *nrs, int flags) 641 { 642 struct ieee80211vap *vap = ni->ni_vap; 643 struct ieee80211com *ic = ni->ni_ic; 644 int i, j, rix, error; 645 int okrate, badrate, fixedrate, ucastrate; 646 const struct ieee80211_rateset *srs; 647 uint8_t r; 648 649 error = 0; 650 okrate = badrate = 0; 651 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 652 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 653 /* 654 * Workaround awkwardness with fixed rate. We are called 655 * to check both the legacy rate set and the HT rate set 656 * but we must apply any legacy fixed rate check only to the 657 * legacy rate set and vice versa. We cannot tell what type 658 * of rate set we've been given (legacy or HT) but we can 659 * distinguish the fixed rate type (MCS have 0x80 set). 660 * So to deal with this the caller communicates whether to 661 * check MCS or legacy rate using the flags and we use the 662 * type of any fixed rate to avoid applying an MCS to a 663 * legacy rate and vice versa. 664 */ 665 if (ucastrate & 0x80) { 666 if (flags & IEEE80211_F_DOFRATE) 667 flags &= ~IEEE80211_F_DOFRATE; 668 } else if ((ucastrate & 0x80) == 0) { 669 if (flags & IEEE80211_F_DOFMCS) 670 flags &= ~IEEE80211_F_DOFMCS; 671 } 672 /* NB: required to make MCS match below work */ 673 ucastrate &= IEEE80211_RATE_VAL; 674 } 675 fixedrate = IEEE80211_FIXED_RATE_NONE; 676 /* 677 * XXX we are called to process both MCS and legacy rates; 678 * we must use the appropriate basic rate set or chaos will 679 * ensue; for now callers that want MCS must supply 680 * IEEE80211_F_DOBRS; at some point we'll need to split this 681 * function so there are two variants, one for MCS and one 682 * for legacy rates. 683 */ 684 if (flags & IEEE80211_F_DOBRS) 685 srs = (const struct ieee80211_rateset *) 686 ieee80211_get_suphtrates(ic, ni->ni_chan); 687 else 688 srs = ieee80211_get_suprates(ic, ni->ni_chan); 689 for (i = 0; i < nrs->rs_nrates; ) { 690 if (flags & IEEE80211_F_DOSORT) { 691 /* 692 * Sort rates. 693 */ 694 for (j = i + 1; j < nrs->rs_nrates; j++) { 695 if (IEEE80211_RV(nrs->rs_rates[i]) > 696 IEEE80211_RV(nrs->rs_rates[j])) { 697 r = nrs->rs_rates[i]; 698 nrs->rs_rates[i] = nrs->rs_rates[j]; 699 nrs->rs_rates[j] = r; 700 } 701 } 702 } 703 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 704 badrate = r; 705 /* 706 * Check for fixed rate. 707 */ 708 if (r == ucastrate) 709 fixedrate = r; 710 /* 711 * Check against supported rates. 712 */ 713 rix = findrix(srs, r); 714 if (flags & IEEE80211_F_DONEGO) { 715 if (rix < 0) { 716 /* 717 * A rate in the node's rate set is not 718 * supported. If this is a basic rate and we 719 * are operating as a STA then this is an error. 720 * Otherwise we just discard/ignore the rate. 721 */ 722 if ((flags & IEEE80211_F_JOIN) && 723 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 724 error++; 725 } else if ((flags & IEEE80211_F_JOIN) == 0) { 726 /* 727 * Overwrite with the supported rate 728 * value so any basic rate bit is set. 729 */ 730 nrs->rs_rates[i] = srs->rs_rates[rix]; 731 } 732 } 733 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 734 /* 735 * Delete unacceptable rates. 736 */ 737 nrs->rs_nrates--; 738 for (j = i; j < nrs->rs_nrates; j++) 739 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 740 nrs->rs_rates[j] = 0; 741 continue; 742 } 743 if (rix >= 0) 744 okrate = nrs->rs_rates[i]; 745 i++; 746 } 747 if (okrate == 0 || error != 0 || 748 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 749 fixedrate != ucastrate)) { 750 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 751 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 752 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 753 return badrate | IEEE80211_RATE_BASIC; 754 } else 755 return IEEE80211_RV(okrate); 756 } 757 758 /* 759 * Reset 11g-related state. 760 * 761 * This is for per-VAP ERP/11g state. 762 * 763 * Eventually everything in ieee80211_reset_erp() will be 764 * per-VAP and in here. 765 */ 766 void 767 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 768 { 769 struct ieee80211com *ic = vap->iv_ic; 770 771 vap->iv_nonerpsta = 0; 772 vap->iv_longslotsta = 0; 773 774 vap->iv_flags &= ~IEEE80211_F_USEPROT; 775 /* 776 * Set short preamble and ERP barker-preamble flags. 777 */ 778 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 779 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 780 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 781 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 782 } else { 783 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 784 vap->iv_flags |= IEEE80211_F_USEBARKER; 785 } 786 787 /* 788 * Short slot time is enabled only when operating in 11g 789 * and not in an IBSS. We must also honor whether or not 790 * the driver is capable of doing it. 791 */ 792 ieee80211_vap_set_shortslottime(vap, 793 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 794 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 795 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 796 vap->iv_opmode == IEEE80211_M_HOSTAP && 797 (ic->ic_caps & IEEE80211_C_SHSLOT))); 798 } 799 800 /* 801 * Reset 11g-related state. 802 * 803 * Note this resets the global state and a caller should schedule 804 * a re-check of all the VAPs after setup to update said state. 805 */ 806 void 807 ieee80211_reset_erp(struct ieee80211com *ic) 808 { 809 #if 0 810 ic->ic_flags &= ~IEEE80211_F_USEPROT; 811 /* 812 * Set short preamble and ERP barker-preamble flags. 813 */ 814 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 815 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 816 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 817 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 818 } else { 819 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 820 ic->ic_flags |= IEEE80211_F_USEBARKER; 821 } 822 #endif 823 /* XXX TODO: schedule a new per-VAP ERP calculation */ 824 } 825 826 static struct ieee80211_node * 827 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 828 { 829 struct ieee80211_node *obss; 830 831 obss = vap->iv_bss; 832 vap->iv_bss = ni; 833 834 return (obss); 835 } 836 837 /* 838 * Deferred slot time update. 839 * 840 * For per-VAP slot time configuration, call the VAP 841 * method if the VAP requires it. Otherwise, just call the 842 * older global method. 843 * 844 * If the per-VAP method is called then it's expected that 845 * the driver/firmware will take care of turning the per-VAP 846 * flags into slot time configuration. 847 * 848 * If the per-VAP method is not called then the global flags will be 849 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 850 * be set only if all of the vaps will have it set. 851 * 852 * Look at the comments for vap_update_erp_protmode() for more 853 * background; this assumes all VAPs are on the same channel. 854 */ 855 static void 856 vap_update_slot(void *arg, int npending) 857 { 858 struct ieee80211vap *vap = arg; 859 struct ieee80211com *ic = vap->iv_ic; 860 struct ieee80211vap *iv; 861 int num_shslot = 0, num_lgslot = 0; 862 863 /* 864 * Per-VAP path - we've already had the flags updated; 865 * so just notify the driver and move on. 866 */ 867 if (vap->iv_updateslot != NULL) { 868 vap->iv_updateslot(vap); 869 return; 870 } 871 872 /* 873 * Iterate over all of the VAP flags to update the 874 * global flag. 875 * 876 * If all vaps have short slot enabled then flip on 877 * short slot. If any vap has it disabled then 878 * we leave it globally disabled. This should provide 879 * correct behaviour in a multi-BSS scenario where 880 * at least one VAP has short slot disabled for some 881 * reason. 882 */ 883 IEEE80211_LOCK(ic); 884 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 885 if (iv->iv_flags & IEEE80211_F_SHSLOT) 886 num_shslot++; 887 else 888 num_lgslot++; 889 } 890 891 /* 892 * It looks backwards but - if the number of short slot VAPs 893 * is zero then we're not short slot. Else, we have one 894 * or more short slot VAPs and we're checking to see if ANY 895 * of them have short slot disabled. 896 */ 897 if (num_shslot == 0) 898 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 899 else if (num_lgslot == 0) 900 ic->ic_flags |= IEEE80211_F_SHSLOT; 901 IEEE80211_UNLOCK(ic); 902 903 /* 904 * Call the driver with our new global slot time flags. 905 */ 906 if (ic->ic_updateslot != NULL) 907 ic->ic_updateslot(ic); 908 } 909 910 /* 911 * Deferred ERP protmode update. 912 * 913 * This currently calculates the global ERP protection mode flag 914 * based on each of the VAPs. Any VAP with it enabled is enough 915 * for the global flag to be enabled. All VAPs with it disabled 916 * is enough for it to be disabled. 917 * 918 * This may make sense right now for the supported hardware where 919 * net80211 is controlling the single channel configuration, but 920 * offload firmware that's doing channel changes (eg off-channel 921 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 922 * silly looking flag updates. 923 * 924 * Ideally the protection mode calculation is done based on the 925 * channel, and all VAPs using that channel will inherit it. 926 * But until that's what net80211 does, this wil have to do. 927 */ 928 static void 929 vap_update_erp_protmode(void *arg, int npending) 930 { 931 struct ieee80211vap *vap = arg; 932 struct ieee80211com *ic = vap->iv_ic; 933 struct ieee80211vap *iv; 934 int enable_protmode = 0; 935 int non_erp_present = 0; 936 937 /* 938 * Iterate over all of the VAPs to calculate the overlapping 939 * ERP protection mode configuration and ERP present math. 940 * 941 * For now we assume that if a driver can handle this per-VAP 942 * then it'll ignore the ic->ic_protmode variant and instead 943 * will look at the vap related flags. 944 */ 945 IEEE80211_LOCK(ic); 946 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 947 if (iv->iv_flags & IEEE80211_F_USEPROT) 948 enable_protmode = 1; 949 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 950 non_erp_present = 1; 951 } 952 953 if (enable_protmode) 954 ic->ic_flags |= IEEE80211_F_USEPROT; 955 else 956 ic->ic_flags &= ~IEEE80211_F_USEPROT; 957 958 if (non_erp_present) 959 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 960 else 961 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 962 963 /* Beacon update on all VAPs */ 964 ieee80211_notify_erp_locked(ic); 965 966 IEEE80211_UNLOCK(ic); 967 968 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 969 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 970 __func__, enable_protmode, non_erp_present); 971 972 /* 973 * Now that the global configuration flags are calculated, 974 * notify the VAP about its configuration. 975 * 976 * The global flags will be used when assembling ERP IEs 977 * for multi-VAP operation, even if it's on a different 978 * channel. Yes, that's going to need fixing in the 979 * future. 980 */ 981 if (vap->iv_erp_protmode_update != NULL) 982 vap->iv_erp_protmode_update(vap); 983 } 984 985 /* 986 * Deferred ERP short preamble/barker update. 987 * 988 * All VAPs need to use short preamble for it to be globally 989 * enabled or not. 990 * 991 * Look at the comments for vap_update_erp_protmode() for more 992 * background; this assumes all VAPs are on the same channel. 993 */ 994 static void 995 vap_update_preamble(void *arg, int npending) 996 { 997 struct ieee80211vap *vap = arg; 998 struct ieee80211com *ic = vap->iv_ic; 999 struct ieee80211vap *iv; 1000 int barker_count = 0, short_preamble_count = 0, count = 0; 1001 1002 /* 1003 * Iterate over all of the VAPs to calculate the overlapping 1004 * short or long preamble configuration. 1005 * 1006 * For now we assume that if a driver can handle this per-VAP 1007 * then it'll ignore the ic->ic_flags variant and instead 1008 * will look at the vap related flags. 1009 */ 1010 IEEE80211_LOCK(ic); 1011 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1012 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1013 barker_count++; 1014 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1015 short_preamble_count++; 1016 count++; 1017 } 1018 1019 /* 1020 * As with vap_update_erp_protmode(), the global flags are 1021 * currently used for beacon IEs. 1022 */ 1023 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1024 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1025 __func__, barker_count, short_preamble_count); 1026 1027 /* 1028 * Only flip on short preamble if all of the VAPs support 1029 * it. 1030 */ 1031 if (barker_count == 0 && short_preamble_count == count) { 1032 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1033 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1034 } else { 1035 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1036 ic->ic_flags |= IEEE80211_F_USEBARKER; 1037 } 1038 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1039 "%s: global barker=%d preamble=%d\n", 1040 __func__, 1041 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1042 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1043 1044 /* Beacon update on all VAPs */ 1045 ieee80211_notify_erp_locked(ic); 1046 1047 IEEE80211_UNLOCK(ic); 1048 1049 /* Driver notification */ 1050 if (vap->iv_erp_protmode_update != NULL) 1051 vap->iv_preamble_update(vap); 1052 } 1053 1054 /* 1055 * Deferred HT protmode update and beacon update. 1056 * 1057 * Look at the comments for vap_update_erp_protmode() for more 1058 * background; this assumes all VAPs are on the same channel. 1059 */ 1060 static void 1061 vap_update_ht_protmode(void *arg, int npending) 1062 { 1063 struct ieee80211vap *vap = arg; 1064 struct ieee80211vap *iv; 1065 struct ieee80211com *ic = vap->iv_ic; 1066 int num_vaps = 0, num_pure = 0; 1067 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1068 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1069 int num_nonhtpr = 0; 1070 1071 /* 1072 * Iterate over all of the VAPs to calculate everything. 1073 * 1074 * There are a few different flags to calculate: 1075 * 1076 * + whether there's HT only or HT+legacy stations; 1077 * + whether there's HT20, HT40, or HT20+HT40 stations; 1078 * + whether the desired protection mode is mixed, pure or 1079 * one of the two above. 1080 * 1081 * For now we assume that if a driver can handle this per-VAP 1082 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1083 * variant and instead will look at the vap related variables. 1084 * 1085 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1086 */ 1087 1088 IEEE80211_LOCK(ic); 1089 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1090 num_vaps++; 1091 /* overlapping BSSes advertising non-HT status present */ 1092 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1093 num_nonht++; 1094 /* Operating mode flags */ 1095 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1096 num_nonhtpr++; 1097 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1098 case IEEE80211_HTINFO_OPMODE_PURE: 1099 num_pure++; 1100 break; 1101 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1102 num_optional++; 1103 break; 1104 case IEEE80211_HTINFO_OPMODE_HT20PR: 1105 num_ht2040++; 1106 break; 1107 } 1108 1109 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1110 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1111 __func__, 1112 ieee80211_get_vap_ifname(iv), 1113 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1114 iv->iv_curhtprotmode); 1115 1116 num_ht_sta += iv->iv_ht_sta_assoc; 1117 num_ht40_sta += iv->iv_ht40_sta_assoc; 1118 num_sta += iv->iv_sta_assoc; 1119 } 1120 1121 /* 1122 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1123 * non-HT present), set it here. This shouldn't be used by 1124 * anything but the old overlapping BSS logic so if any drivers 1125 * consume it, it's up to date. 1126 */ 1127 if (num_nonht > 0) 1128 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1129 else 1130 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1131 1132 /* 1133 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1134 * 1135 * + If all VAPs are PURE, we can stay PURE. 1136 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1137 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1138 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1139 * So we look at the sum ht and sum ht40 sta counts; if we have a 1140 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1141 * Note all stations need to be HT for this to be an option. 1142 * + The fall-through is MIXED, because it means we have some odd 1143 * non HT40-involved combination of opmode and this is the most 1144 * sensible default. 1145 */ 1146 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1147 1148 if (num_pure == num_vaps) 1149 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1150 1151 if (num_optional == num_vaps) 1152 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1153 1154 /* 1155 * Note: we need /a/ HT40 station somewhere for this to 1156 * be a possibility. 1157 */ 1158 if ((num_ht2040 > 0) || 1159 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1160 (num_ht_sta != num_ht40_sta))) 1161 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1162 1163 /* 1164 * Step 3 - if any of the stations across the VAPs are 1165 * non-HT then this needs to be flipped back to MIXED. 1166 */ 1167 if (num_ht_sta != num_sta) 1168 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1169 1170 /* 1171 * Step 4 - If we see any overlapping BSS non-HT stations 1172 * via beacons then flip on NONHT_PRESENT. 1173 */ 1174 if (num_nonhtpr > 0) 1175 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1176 1177 /* Notify all VAPs to potentially update their beacons */ 1178 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1179 ieee80211_htinfo_notify(iv); 1180 1181 IEEE80211_UNLOCK(ic); 1182 1183 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1184 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1185 __func__, 1186 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1187 ic->ic_curhtprotmode); 1188 1189 /* Driver update */ 1190 if (vap->iv_erp_protmode_update != NULL) 1191 vap->iv_ht_protmode_update(vap); 1192 } 1193 1194 /* 1195 * Set the short slot time state and notify the driver. 1196 * 1197 * This is the per-VAP slot time state. 1198 */ 1199 void 1200 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1201 { 1202 struct ieee80211com *ic = vap->iv_ic; 1203 1204 /* XXX lock? */ 1205 1206 /* 1207 * Only modify the per-VAP slot time. 1208 */ 1209 if (onoff) 1210 vap->iv_flags |= IEEE80211_F_SHSLOT; 1211 else 1212 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1213 1214 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1215 "%s: called; onoff=%d\n", __func__, onoff); 1216 /* schedule the deferred slot flag update and update */ 1217 ieee80211_runtask(ic, &vap->iv_slot_task); 1218 } 1219 1220 /* 1221 * Update the VAP short /long / barker preamble state and 1222 * update beacon state if needed. 1223 * 1224 * For now it simply copies the global flags into the per-vap 1225 * flags and schedules the callback. Later this will support 1226 * both global and per-VAP flags, especially useful for 1227 * and STA+STA multi-channel operation (eg p2p). 1228 */ 1229 void 1230 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1231 { 1232 struct ieee80211com *ic = vap->iv_ic; 1233 1234 /* XXX lock? */ 1235 1236 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1237 "%s: called\n", __func__); 1238 /* schedule the deferred slot flag update and update */ 1239 ieee80211_runtask(ic, &vap->iv_preamble_task); 1240 } 1241 1242 /* 1243 * Update the VAP 11g protection mode and update beacon state 1244 * if needed. 1245 */ 1246 void 1247 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1248 { 1249 struct ieee80211com *ic = vap->iv_ic; 1250 1251 /* XXX lock? */ 1252 1253 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1254 "%s: called\n", __func__); 1255 /* schedule the deferred slot flag update and update */ 1256 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1257 } 1258 1259 /* 1260 * Update the VAP 11n protection mode and update beacon state 1261 * if needed. 1262 */ 1263 void 1264 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1265 { 1266 struct ieee80211com *ic = vap->iv_ic; 1267 1268 /* XXX lock? */ 1269 1270 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1271 "%s: called\n", __func__); 1272 /* schedule the deferred protmode update */ 1273 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1274 } 1275 1276 /* 1277 * Check if the specified rate set supports ERP. 1278 * NB: the rate set is assumed to be sorted. 1279 */ 1280 int 1281 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1282 { 1283 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1284 int i, j; 1285 1286 if (rs->rs_nrates < nitems(rates)) 1287 return 0; 1288 for (i = 0; i < nitems(rates); i++) { 1289 for (j = 0; j < rs->rs_nrates; j++) { 1290 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1291 if (rates[i] == r) 1292 goto next; 1293 if (r > rates[i]) 1294 return 0; 1295 } 1296 return 0; 1297 next: 1298 ; 1299 } 1300 return 1; 1301 } 1302 1303 /* 1304 * Mark the basic rates for the rate table based on the 1305 * operating mode. For real 11g we mark all the 11b rates 1306 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1307 * 11b rates. There's also a pseudo 11a-mode used to mark only 1308 * the basic OFDM rates. 1309 */ 1310 static void 1311 setbasicrates(struct ieee80211_rateset *rs, 1312 enum ieee80211_phymode mode, int add) 1313 { 1314 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1315 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1316 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1317 /* NB: mixed b/g */ 1318 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1319 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1320 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1321 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1322 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1323 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1324 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1325 /* NB: mixed b/g */ 1326 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1327 /* NB: mixed b/g */ 1328 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1329 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1330 }; 1331 int i, j; 1332 1333 for (i = 0; i < rs->rs_nrates; i++) { 1334 if (!add) 1335 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1336 for (j = 0; j < basic[mode].rs_nrates; j++) 1337 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1338 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1339 break; 1340 } 1341 } 1342 } 1343 1344 /* 1345 * Set the basic rates in a rate set. 1346 */ 1347 void 1348 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1349 enum ieee80211_phymode mode) 1350 { 1351 setbasicrates(rs, mode, 0); 1352 } 1353 1354 /* 1355 * Add basic rates to a rate set. 1356 */ 1357 void 1358 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1359 enum ieee80211_phymode mode) 1360 { 1361 setbasicrates(rs, mode, 1); 1362 } 1363 1364 /* 1365 * WME protocol support. 1366 * 1367 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1368 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1369 * Draft 2.0 Test Plan (Appendix D). 1370 * 1371 * Static/Dynamic Turbo mode settings come from Atheros. 1372 */ 1373 typedef struct phyParamType { 1374 uint8_t aifsn; 1375 uint8_t logcwmin; 1376 uint8_t logcwmax; 1377 uint16_t txopLimit; 1378 uint8_t acm; 1379 } paramType; 1380 1381 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1382 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1383 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1384 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1386 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1387 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1388 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1389 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1390 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1391 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1392 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1393 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1394 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1395 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1396 }; 1397 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1398 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1399 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1400 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1402 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1403 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1404 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1405 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1406 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1407 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1408 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1409 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1410 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1411 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1412 }; 1413 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1414 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1415 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1416 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1417 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1418 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1419 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1420 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1421 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1422 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1423 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1424 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1425 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1426 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1427 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1428 }; 1429 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1430 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1431 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1432 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1433 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1434 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1435 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1436 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1437 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1438 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1439 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1440 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1441 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1442 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1443 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1444 }; 1445 1446 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1447 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1448 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1449 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1451 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1452 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1453 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1454 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1455 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1456 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1457 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1458 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1459 }; 1460 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1461 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1462 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1463 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1464 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1465 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1466 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1467 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1468 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1469 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1470 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1471 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1472 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1473 }; 1474 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1475 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1476 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1477 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1478 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1479 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1480 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1481 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1482 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1483 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1484 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1485 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1486 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1487 }; 1488 1489 static void 1490 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1491 { 1492 wmep->wmep_aifsn = phy->aifsn; 1493 wmep->wmep_logcwmin = phy->logcwmin; 1494 wmep->wmep_logcwmax = phy->logcwmax; 1495 wmep->wmep_txopLimit = phy->txopLimit; 1496 } 1497 1498 static void 1499 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1500 struct wmeParams *wmep, const paramType *phy) 1501 { 1502 wmep->wmep_acm = phy->acm; 1503 _setifsparams(wmep, phy); 1504 1505 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1506 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1507 ieee80211_wme_acnames[ac], type, 1508 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1509 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1510 } 1511 1512 static void 1513 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1514 { 1515 struct ieee80211com *ic = vap->iv_ic; 1516 struct ieee80211_wme_state *wme = &ic->ic_wme; 1517 const paramType *pPhyParam, *pBssPhyParam; 1518 struct wmeParams *wmep; 1519 enum ieee80211_phymode mode; 1520 int i; 1521 1522 IEEE80211_LOCK_ASSERT(ic); 1523 1524 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1525 return; 1526 1527 /* 1528 * Clear the wme cap_info field so a qoscount from a previous 1529 * vap doesn't confuse later code which only parses the beacon 1530 * field and updates hardware when said field changes. 1531 * Otherwise the hardware is programmed with defaults, not what 1532 * the beacon actually announces. 1533 * 1534 * Note that we can't ever have 0xff as an actual value; 1535 * the only valid values are 0..15. 1536 */ 1537 wme->wme_wmeChanParams.cap_info = 0xfe; 1538 1539 /* 1540 * Select mode; we can be called early in which case we 1541 * always use auto mode. We know we'll be called when 1542 * entering the RUN state with bsschan setup properly 1543 * so state will eventually get set correctly 1544 */ 1545 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1546 mode = ieee80211_chan2mode(ic->ic_bsschan); 1547 else 1548 mode = IEEE80211_MODE_AUTO; 1549 for (i = 0; i < WME_NUM_AC; i++) { 1550 switch (i) { 1551 case WME_AC_BK: 1552 pPhyParam = &phyParamForAC_BK[mode]; 1553 pBssPhyParam = &phyParamForAC_BK[mode]; 1554 break; 1555 case WME_AC_VI: 1556 pPhyParam = &phyParamForAC_VI[mode]; 1557 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1558 break; 1559 case WME_AC_VO: 1560 pPhyParam = &phyParamForAC_VO[mode]; 1561 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1562 break; 1563 case WME_AC_BE: 1564 default: 1565 pPhyParam = &phyParamForAC_BE[mode]; 1566 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1567 break; 1568 } 1569 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1570 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1571 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1572 } else { 1573 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1574 } 1575 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1576 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1577 } 1578 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1579 if (vap->iv_bss != NULL) { 1580 /* 1581 * Calculate aggressive mode switching threshold based 1582 * on beacon interval. This doesn't need locking since 1583 * we're only called before entering the RUN state at 1584 * which point we start sending beacon frames. 1585 */ 1586 wme->wme_hipri_switch_thresh = 1587 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1588 wme->wme_flags &= ~WME_F_AGGRMODE; 1589 ieee80211_wme_updateparams(vap); 1590 } 1591 } 1592 1593 void 1594 ieee80211_wme_initparams(struct ieee80211vap *vap) 1595 { 1596 struct ieee80211com *ic = vap->iv_ic; 1597 1598 IEEE80211_LOCK(ic); 1599 ieee80211_wme_initparams_locked(vap); 1600 IEEE80211_UNLOCK(ic); 1601 } 1602 1603 /* 1604 * Update WME parameters for ourself and the BSS. 1605 */ 1606 void 1607 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1608 { 1609 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1610 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1611 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1612 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1613 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1614 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1615 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1616 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1617 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1618 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1619 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1620 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1621 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1622 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1623 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1624 }; 1625 struct ieee80211com *ic = vap->iv_ic; 1626 struct ieee80211_wme_state *wme = &ic->ic_wme; 1627 const struct wmeParams *wmep; 1628 struct wmeParams *chanp, *bssp; 1629 enum ieee80211_phymode mode; 1630 int i; 1631 int do_aggrmode = 0; 1632 1633 /* 1634 * Set up the channel access parameters for the physical 1635 * device. First populate the configured settings. 1636 */ 1637 for (i = 0; i < WME_NUM_AC; i++) { 1638 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1639 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1640 chanp->wmep_aifsn = wmep->wmep_aifsn; 1641 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1642 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1643 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1644 1645 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1646 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1647 chanp->wmep_aifsn = wmep->wmep_aifsn; 1648 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1649 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1650 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1651 } 1652 1653 /* 1654 * Select mode; we can be called early in which case we 1655 * always use auto mode. We know we'll be called when 1656 * entering the RUN state with bsschan setup properly 1657 * so state will eventually get set correctly 1658 */ 1659 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1660 mode = ieee80211_chan2mode(ic->ic_bsschan); 1661 else 1662 mode = IEEE80211_MODE_AUTO; 1663 1664 /* 1665 * This implements aggressive mode as found in certain 1666 * vendors' AP's. When there is significant high 1667 * priority (VI/VO) traffic in the BSS throttle back BE 1668 * traffic by using conservative parameters. Otherwise 1669 * BE uses aggressive params to optimize performance of 1670 * legacy/non-QoS traffic. 1671 */ 1672 1673 /* Hostap? Only if aggressive mode is enabled */ 1674 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1675 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1676 do_aggrmode = 1; 1677 1678 /* 1679 * Station? Only if we're in a non-QoS BSS. 1680 */ 1681 else if ((vap->iv_opmode == IEEE80211_M_STA && 1682 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1683 do_aggrmode = 1; 1684 1685 /* 1686 * IBSS? Only if we have WME enabled. 1687 */ 1688 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1689 (vap->iv_flags & IEEE80211_F_WME)) 1690 do_aggrmode = 1; 1691 1692 /* 1693 * If WME is disabled on this VAP, default to aggressive mode 1694 * regardless of the configuration. 1695 */ 1696 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1697 do_aggrmode = 1; 1698 1699 /* XXX WDS? */ 1700 1701 /* XXX MBSS? */ 1702 1703 if (do_aggrmode) { 1704 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1705 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1706 1707 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1708 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1709 aggrParam[mode].logcwmin; 1710 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1711 aggrParam[mode].logcwmax; 1712 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1713 (vap->iv_flags & IEEE80211_F_BURST) ? 1714 aggrParam[mode].txopLimit : 0; 1715 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1716 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1717 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1718 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1719 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1720 } 1721 1722 /* 1723 * Change the contention window based on the number of associated 1724 * stations. If the number of associated stations is 1 and 1725 * aggressive mode is enabled, lower the contention window even 1726 * further. 1727 */ 1728 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1729 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1730 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1731 [IEEE80211_MODE_AUTO] = 3, 1732 [IEEE80211_MODE_11A] = 3, 1733 [IEEE80211_MODE_11B] = 4, 1734 [IEEE80211_MODE_11G] = 3, 1735 [IEEE80211_MODE_FH] = 4, 1736 [IEEE80211_MODE_TURBO_A] = 3, 1737 [IEEE80211_MODE_TURBO_G] = 3, 1738 [IEEE80211_MODE_STURBO_A] = 3, 1739 [IEEE80211_MODE_HALF] = 3, 1740 [IEEE80211_MODE_QUARTER] = 3, 1741 [IEEE80211_MODE_11NA] = 3, 1742 [IEEE80211_MODE_11NG] = 3, 1743 [IEEE80211_MODE_VHT_2GHZ] = 3, 1744 [IEEE80211_MODE_VHT_5GHZ] = 3, 1745 }; 1746 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1747 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1748 1749 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1750 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1751 "update %s (chan+bss) logcwmin %u\n", 1752 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1753 } 1754 1755 /* schedule the deferred WME update */ 1756 ieee80211_runtask(ic, &vap->iv_wme_task); 1757 1758 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1759 "%s: WME params updated, cap_info 0x%x\n", __func__, 1760 vap->iv_opmode == IEEE80211_M_STA ? 1761 wme->wme_wmeChanParams.cap_info : 1762 wme->wme_bssChanParams.cap_info); 1763 } 1764 1765 void 1766 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1767 { 1768 struct ieee80211com *ic = vap->iv_ic; 1769 1770 if (ic->ic_caps & IEEE80211_C_WME) { 1771 IEEE80211_LOCK(ic); 1772 ieee80211_wme_updateparams_locked(vap); 1773 IEEE80211_UNLOCK(ic); 1774 } 1775 } 1776 1777 /* 1778 * Fetch the WME parameters for the given VAP. 1779 * 1780 * When net80211 grows p2p, etc support, this may return different 1781 * parameters for each VAP. 1782 */ 1783 void 1784 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1785 { 1786 1787 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1788 } 1789 1790 /* 1791 * For NICs which only support one set of WME parameters (ie, softmac NICs) 1792 * there may be different VAP WME parameters but only one is "active". 1793 * This returns the "NIC" WME parameters for the currently active 1794 * context. 1795 */ 1796 void 1797 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1798 { 1799 1800 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1801 } 1802 1803 /* 1804 * Return whether to use QoS on a given WME queue. 1805 * 1806 * This is intended to be called from the transmit path of softmac drivers 1807 * which are setting NoAck bits in transmit descriptors. 1808 * 1809 * Ideally this would be set in some transmit field before the packet is 1810 * queued to the driver but net80211 isn't quite there yet. 1811 */ 1812 int 1813 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1814 { 1815 /* Bounds/sanity check */ 1816 if (ac < 0 || ac >= WME_NUM_AC) 1817 return (0); 1818 1819 /* Again, there's only one global context for now */ 1820 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1821 } 1822 1823 static void 1824 parent_updown(void *arg, int npending) 1825 { 1826 struct ieee80211com *ic = arg; 1827 1828 ic->ic_parent(ic); 1829 } 1830 1831 static void 1832 update_mcast(void *arg, int npending) 1833 { 1834 struct ieee80211com *ic = arg; 1835 1836 ic->ic_update_mcast(ic); 1837 } 1838 1839 static void 1840 update_promisc(void *arg, int npending) 1841 { 1842 struct ieee80211com *ic = arg; 1843 1844 ic->ic_update_promisc(ic); 1845 } 1846 1847 static void 1848 update_channel(void *arg, int npending) 1849 { 1850 struct ieee80211com *ic = arg; 1851 1852 ic->ic_set_channel(ic); 1853 ieee80211_radiotap_chan_change(ic); 1854 } 1855 1856 static void 1857 update_chw(void *arg, int npending) 1858 { 1859 struct ieee80211com *ic = arg; 1860 1861 /* 1862 * XXX should we defer the channel width _config_ update until now? 1863 */ 1864 ic->ic_update_chw(ic); 1865 } 1866 1867 /* 1868 * Deferred WME parameter and beacon update. 1869 * 1870 * In preparation for per-VAP WME configuration, call the VAP 1871 * method if the VAP requires it. Otherwise, just call the 1872 * older global method. There isn't a per-VAP WME configuration 1873 * just yet so for now just use the global configuration. 1874 */ 1875 static void 1876 vap_update_wme(void *arg, int npending) 1877 { 1878 struct ieee80211vap *vap = arg; 1879 struct ieee80211com *ic = vap->iv_ic; 1880 struct ieee80211_wme_state *wme = &ic->ic_wme; 1881 1882 /* Driver update */ 1883 if (vap->iv_wme_update != NULL) 1884 vap->iv_wme_update(vap, 1885 ic->ic_wme.wme_chanParams.cap_wmeParams); 1886 else 1887 ic->ic_wme.wme_update(ic); 1888 1889 IEEE80211_LOCK(ic); 1890 /* 1891 * Arrange for the beacon update. 1892 * 1893 * XXX what about MBSS, WDS? 1894 */ 1895 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1896 || vap->iv_opmode == IEEE80211_M_IBSS) { 1897 /* 1898 * Arrange for a beacon update and bump the parameter 1899 * set number so associated stations load the new values. 1900 */ 1901 wme->wme_bssChanParams.cap_info = 1902 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1903 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1904 } 1905 IEEE80211_UNLOCK(ic); 1906 } 1907 1908 static void 1909 restart_vaps(void *arg, int npending) 1910 { 1911 struct ieee80211com *ic = arg; 1912 1913 ieee80211_suspend_all(ic); 1914 ieee80211_resume_all(ic); 1915 } 1916 1917 /* 1918 * Block until the parent is in a known state. This is 1919 * used after any operations that dispatch a task (e.g. 1920 * to auto-configure the parent device up/down). 1921 */ 1922 void 1923 ieee80211_waitfor_parent(struct ieee80211com *ic) 1924 { 1925 taskqueue_block(ic->ic_tq); 1926 ieee80211_draintask(ic, &ic->ic_parent_task); 1927 ieee80211_draintask(ic, &ic->ic_mcast_task); 1928 ieee80211_draintask(ic, &ic->ic_promisc_task); 1929 ieee80211_draintask(ic, &ic->ic_chan_task); 1930 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1931 ieee80211_draintask(ic, &ic->ic_chw_task); 1932 taskqueue_unblock(ic->ic_tq); 1933 } 1934 1935 /* 1936 * Check to see whether the current channel needs reset. 1937 * 1938 * Some devices don't handle being given an invalid channel 1939 * in their operating mode very well (eg wpi(4) will throw a 1940 * firmware exception.) 1941 * 1942 * Return 0 if we're ok, 1 if the channel needs to be reset. 1943 * 1944 * See PR kern/202502. 1945 */ 1946 static int 1947 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1948 { 1949 struct ieee80211com *ic = vap->iv_ic; 1950 1951 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1952 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1953 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1954 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1955 return (1); 1956 return (0); 1957 } 1958 1959 /* 1960 * Reset the curchan to a known good state. 1961 */ 1962 static void 1963 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1964 { 1965 struct ieee80211com *ic = vap->iv_ic; 1966 1967 ic->ic_curchan = &ic->ic_channels[0]; 1968 } 1969 1970 /* 1971 * Start a vap running. If this is the first vap to be 1972 * set running on the underlying device then we 1973 * automatically bring the device up. 1974 */ 1975 void 1976 ieee80211_start_locked(struct ieee80211vap *vap) 1977 { 1978 struct ifnet *ifp = vap->iv_ifp; 1979 struct ieee80211com *ic = vap->iv_ic; 1980 1981 IEEE80211_LOCK_ASSERT(ic); 1982 1983 IEEE80211_DPRINTF(vap, 1984 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1985 "start running, %d vaps running\n", ic->ic_nrunning); 1986 1987 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1988 /* 1989 * Mark us running. Note that it's ok to do this first; 1990 * if we need to bring the parent device up we defer that 1991 * to avoid dropping the com lock. We expect the device 1992 * to respond to being marked up by calling back into us 1993 * through ieee80211_start_all at which point we'll come 1994 * back in here and complete the work. 1995 */ 1996 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1997 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 1998 1999 /* 2000 * We are not running; if this we are the first vap 2001 * to be brought up auto-up the parent if necessary. 2002 */ 2003 if (ic->ic_nrunning++ == 0) { 2004 /* reset the channel to a known good channel */ 2005 if (ieee80211_start_check_reset_chan(vap)) 2006 ieee80211_start_reset_chan(vap); 2007 2008 IEEE80211_DPRINTF(vap, 2009 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2010 "%s: up parent %s\n", __func__, ic->ic_name); 2011 ieee80211_runtask(ic, &ic->ic_parent_task); 2012 return; 2013 } 2014 } 2015 /* 2016 * If the parent is up and running, then kick the 2017 * 802.11 state machine as appropriate. 2018 */ 2019 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2020 if (vap->iv_opmode == IEEE80211_M_STA) { 2021 #if 0 2022 /* XXX bypasses scan too easily; disable for now */ 2023 /* 2024 * Try to be intelligent about clocking the state 2025 * machine. If we're currently in RUN state then 2026 * we should be able to apply any new state/parameters 2027 * simply by re-associating. Otherwise we need to 2028 * re-scan to select an appropriate ap. 2029 */ 2030 if (vap->iv_state >= IEEE80211_S_RUN) 2031 ieee80211_new_state_locked(vap, 2032 IEEE80211_S_ASSOC, 1); 2033 else 2034 #endif 2035 ieee80211_new_state_locked(vap, 2036 IEEE80211_S_SCAN, 0); 2037 } else { 2038 /* 2039 * For monitor+wds mode there's nothing to do but 2040 * start running. Otherwise if this is the first 2041 * vap to be brought up, start a scan which may be 2042 * preempted if the station is locked to a particular 2043 * channel. 2044 */ 2045 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2046 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2047 vap->iv_opmode == IEEE80211_M_WDS) 2048 ieee80211_new_state_locked(vap, 2049 IEEE80211_S_RUN, -1); 2050 else 2051 ieee80211_new_state_locked(vap, 2052 IEEE80211_S_SCAN, 0); 2053 } 2054 } 2055 } 2056 2057 /* 2058 * Start a single vap. 2059 */ 2060 void 2061 ieee80211_init(void *arg) 2062 { 2063 struct ieee80211vap *vap = arg; 2064 2065 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2066 "%s\n", __func__); 2067 2068 IEEE80211_LOCK(vap->iv_ic); 2069 ieee80211_start_locked(vap); 2070 IEEE80211_UNLOCK(vap->iv_ic); 2071 } 2072 2073 /* 2074 * Start all runnable vap's on a device. 2075 */ 2076 void 2077 ieee80211_start_all(struct ieee80211com *ic) 2078 { 2079 struct ieee80211vap *vap; 2080 2081 IEEE80211_LOCK(ic); 2082 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2083 struct ifnet *ifp = vap->iv_ifp; 2084 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2085 ieee80211_start_locked(vap); 2086 } 2087 IEEE80211_UNLOCK(ic); 2088 } 2089 2090 /* 2091 * Stop a vap. We force it down using the state machine 2092 * then mark it's ifnet not running. If this is the last 2093 * vap running on the underlying device then we close it 2094 * too to insure it will be properly initialized when the 2095 * next vap is brought up. 2096 */ 2097 void 2098 ieee80211_stop_locked(struct ieee80211vap *vap) 2099 { 2100 struct ieee80211com *ic = vap->iv_ic; 2101 struct ifnet *ifp = vap->iv_ifp; 2102 2103 IEEE80211_LOCK_ASSERT(ic); 2104 2105 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2106 "stop running, %d vaps running\n", ic->ic_nrunning); 2107 2108 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2109 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2110 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2111 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 2112 if (--ic->ic_nrunning == 0) { 2113 IEEE80211_DPRINTF(vap, 2114 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2115 "down parent %s\n", ic->ic_name); 2116 ieee80211_runtask(ic, &ic->ic_parent_task); 2117 } 2118 } 2119 } 2120 2121 void 2122 ieee80211_stop(struct ieee80211vap *vap) 2123 { 2124 struct ieee80211com *ic = vap->iv_ic; 2125 2126 IEEE80211_LOCK(ic); 2127 ieee80211_stop_locked(vap); 2128 IEEE80211_UNLOCK(ic); 2129 } 2130 2131 /* 2132 * Stop all vap's running on a device. 2133 */ 2134 void 2135 ieee80211_stop_all(struct ieee80211com *ic) 2136 { 2137 struct ieee80211vap *vap; 2138 2139 IEEE80211_LOCK(ic); 2140 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2141 struct ifnet *ifp = vap->iv_ifp; 2142 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2143 ieee80211_stop_locked(vap); 2144 } 2145 IEEE80211_UNLOCK(ic); 2146 2147 ieee80211_waitfor_parent(ic); 2148 } 2149 2150 /* 2151 * Stop all vap's running on a device and arrange 2152 * for those that were running to be resumed. 2153 */ 2154 void 2155 ieee80211_suspend_all(struct ieee80211com *ic) 2156 { 2157 struct ieee80211vap *vap; 2158 2159 IEEE80211_LOCK(ic); 2160 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2161 struct ifnet *ifp = vap->iv_ifp; 2162 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2163 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2164 ieee80211_stop_locked(vap); 2165 } 2166 } 2167 IEEE80211_UNLOCK(ic); 2168 2169 ieee80211_waitfor_parent(ic); 2170 } 2171 2172 /* 2173 * Start all vap's marked for resume. 2174 */ 2175 void 2176 ieee80211_resume_all(struct ieee80211com *ic) 2177 { 2178 struct ieee80211vap *vap; 2179 2180 IEEE80211_LOCK(ic); 2181 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2182 struct ifnet *ifp = vap->iv_ifp; 2183 if (!IFNET_IS_UP_RUNNING(ifp) && 2184 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2185 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2186 ieee80211_start_locked(vap); 2187 } 2188 } 2189 IEEE80211_UNLOCK(ic); 2190 } 2191 2192 /* 2193 * Restart all vap's running on a device. 2194 */ 2195 void 2196 ieee80211_restart_all(struct ieee80211com *ic) 2197 { 2198 /* 2199 * NB: do not use ieee80211_runtask here, we will 2200 * block & drain net80211 taskqueue. 2201 */ 2202 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2203 } 2204 2205 void 2206 ieee80211_beacon_miss(struct ieee80211com *ic) 2207 { 2208 IEEE80211_LOCK(ic); 2209 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2210 /* Process in a taskq, the handler may reenter the driver */ 2211 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2212 } 2213 IEEE80211_UNLOCK(ic); 2214 } 2215 2216 static void 2217 beacon_miss(void *arg, int npending) 2218 { 2219 struct ieee80211com *ic = arg; 2220 struct ieee80211vap *vap; 2221 2222 IEEE80211_LOCK(ic); 2223 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2224 /* 2225 * We only pass events through for sta vap's in RUN+ state; 2226 * may be too restrictive but for now this saves all the 2227 * handlers duplicating these checks. 2228 */ 2229 if (vap->iv_opmode == IEEE80211_M_STA && 2230 vap->iv_state >= IEEE80211_S_RUN && 2231 vap->iv_bmiss != NULL) 2232 vap->iv_bmiss(vap); 2233 } 2234 IEEE80211_UNLOCK(ic); 2235 } 2236 2237 static void 2238 beacon_swmiss(void *arg, int npending) 2239 { 2240 struct ieee80211vap *vap = arg; 2241 struct ieee80211com *ic = vap->iv_ic; 2242 2243 IEEE80211_LOCK(ic); 2244 if (vap->iv_state >= IEEE80211_S_RUN) { 2245 /* XXX Call multiple times if npending > zero? */ 2246 vap->iv_bmiss(vap); 2247 } 2248 IEEE80211_UNLOCK(ic); 2249 } 2250 2251 /* 2252 * Software beacon miss handling. Check if any beacons 2253 * were received in the last period. If not post a 2254 * beacon miss; otherwise reset the counter. 2255 */ 2256 void 2257 ieee80211_swbmiss(void *arg) 2258 { 2259 struct ieee80211vap *vap = arg; 2260 struct ieee80211com *ic = vap->iv_ic; 2261 2262 IEEE80211_LOCK_ASSERT(ic); 2263 2264 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2265 ("wrong state %d", vap->iv_state)); 2266 2267 if (ic->ic_flags & IEEE80211_F_SCAN) { 2268 /* 2269 * If scanning just ignore and reset state. If we get a 2270 * bmiss after coming out of scan because we haven't had 2271 * time to receive a beacon then we should probe the AP 2272 * before posting a real bmiss (unless iv_bmiss_max has 2273 * been artifiically lowered). A cleaner solution might 2274 * be to disable the timer on scan start/end but to handle 2275 * case of multiple sta vap's we'd need to disable the 2276 * timers of all affected vap's. 2277 */ 2278 vap->iv_swbmiss_count = 0; 2279 } else if (vap->iv_swbmiss_count == 0) { 2280 if (vap->iv_bmiss != NULL) 2281 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2282 } else 2283 vap->iv_swbmiss_count = 0; 2284 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2285 ieee80211_swbmiss, vap); 2286 } 2287 2288 /* 2289 * Start an 802.11h channel switch. We record the parameters, 2290 * mark the operation pending, notify each vap through the 2291 * beacon update mechanism so it can update the beacon frame 2292 * contents, and then switch vap's to CSA state to block outbound 2293 * traffic. Devices that handle CSA directly can use the state 2294 * switch to do the right thing so long as they call 2295 * ieee80211_csa_completeswitch when it's time to complete the 2296 * channel change. Devices that depend on the net80211 layer can 2297 * use ieee80211_beacon_update to handle the countdown and the 2298 * channel switch. 2299 */ 2300 void 2301 ieee80211_csa_startswitch(struct ieee80211com *ic, 2302 struct ieee80211_channel *c, int mode, int count) 2303 { 2304 struct ieee80211vap *vap; 2305 2306 IEEE80211_LOCK_ASSERT(ic); 2307 2308 ic->ic_csa_newchan = c; 2309 ic->ic_csa_mode = mode; 2310 ic->ic_csa_count = count; 2311 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2312 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2313 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2314 vap->iv_opmode == IEEE80211_M_IBSS || 2315 vap->iv_opmode == IEEE80211_M_MBSS) 2316 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2317 /* switch to CSA state to block outbound traffic */ 2318 if (vap->iv_state == IEEE80211_S_RUN) 2319 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2320 } 2321 ieee80211_notify_csa(ic, c, mode, count); 2322 } 2323 2324 /* 2325 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2326 * This is called by both the completion and cancellation functions 2327 * so each VAP is placed back in the RUN state and can thus transmit. 2328 */ 2329 static void 2330 csa_completeswitch(struct ieee80211com *ic) 2331 { 2332 struct ieee80211vap *vap; 2333 2334 ic->ic_csa_newchan = NULL; 2335 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2336 2337 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2338 if (vap->iv_state == IEEE80211_S_CSA) 2339 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2340 } 2341 2342 /* 2343 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2344 * We clear state and move all vap's in CSA state to RUN state 2345 * so they can again transmit. 2346 * 2347 * Although this may not be completely correct, update the BSS channel 2348 * for each VAP to the newly configured channel. The setcurchan sets 2349 * the current operating channel for the interface (so the radio does 2350 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2351 * reported information via ioctl. 2352 */ 2353 void 2354 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2355 { 2356 struct ieee80211vap *vap; 2357 2358 IEEE80211_LOCK_ASSERT(ic); 2359 2360 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2361 2362 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2363 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2364 if (vap->iv_state == IEEE80211_S_CSA) 2365 vap->iv_bss->ni_chan = ic->ic_curchan; 2366 2367 csa_completeswitch(ic); 2368 } 2369 2370 /* 2371 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2372 * We clear state and move all vap's in CSA state to RUN state 2373 * so they can again transmit. 2374 */ 2375 void 2376 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2377 { 2378 IEEE80211_LOCK_ASSERT(ic); 2379 2380 csa_completeswitch(ic); 2381 } 2382 2383 /* 2384 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2385 * We clear state and move all vap's in CAC state to RUN state. 2386 */ 2387 void 2388 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2389 { 2390 struct ieee80211com *ic = vap0->iv_ic; 2391 struct ieee80211vap *vap; 2392 2393 IEEE80211_LOCK(ic); 2394 /* 2395 * Complete CAC state change for lead vap first; then 2396 * clock all the other vap's waiting. 2397 */ 2398 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2399 ("wrong state %d", vap0->iv_state)); 2400 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2401 2402 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2403 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2404 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2405 IEEE80211_UNLOCK(ic); 2406 } 2407 2408 /* 2409 * Force all vap's other than the specified vap to the INIT state 2410 * and mark them as waiting for a scan to complete. These vaps 2411 * will be brought up when the scan completes and the scanning vap 2412 * reaches RUN state by wakeupwaiting. 2413 */ 2414 static void 2415 markwaiting(struct ieee80211vap *vap0) 2416 { 2417 struct ieee80211com *ic = vap0->iv_ic; 2418 struct ieee80211vap *vap; 2419 2420 IEEE80211_LOCK_ASSERT(ic); 2421 2422 /* 2423 * A vap list entry can not disappear since we are running on the 2424 * taskqueue and a vap destroy will queue and drain another state 2425 * change task. 2426 */ 2427 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2428 if (vap == vap0) 2429 continue; 2430 if (vap->iv_state != IEEE80211_S_INIT) { 2431 /* NB: iv_newstate may drop the lock */ 2432 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2433 IEEE80211_LOCK_ASSERT(ic); 2434 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2435 } 2436 } 2437 } 2438 2439 /* 2440 * Wakeup all vap's waiting for a scan to complete. This is the 2441 * companion to markwaiting (above) and is used to coordinate 2442 * multiple vaps scanning. 2443 * This is called from the state taskqueue. 2444 */ 2445 static void 2446 wakeupwaiting(struct ieee80211vap *vap0) 2447 { 2448 struct ieee80211com *ic = vap0->iv_ic; 2449 struct ieee80211vap *vap; 2450 2451 IEEE80211_LOCK_ASSERT(ic); 2452 2453 /* 2454 * A vap list entry can not disappear since we are running on the 2455 * taskqueue and a vap destroy will queue and drain another state 2456 * change task. 2457 */ 2458 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2459 if (vap == vap0) 2460 continue; 2461 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2462 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2463 /* NB: sta's cannot go INIT->RUN */ 2464 /* NB: iv_newstate may drop the lock */ 2465 2466 /* 2467 * This is problematic if the interface has OACTIVE 2468 * set. Only the deferred ieee80211_newstate_cb() 2469 * will end up actually /clearing/ the OACTIVE 2470 * flag on a state transition to RUN from a non-RUN 2471 * state. 2472 * 2473 * But, we're not actually deferring this callback; 2474 * and when the deferred call occurs it shows up as 2475 * a RUN->RUN transition! So the flag isn't/wasn't 2476 * cleared! 2477 * 2478 * I'm also not sure if it's correct to actually 2479 * do the transitions here fully through the deferred 2480 * paths either as other things can be invoked as 2481 * part of that state machine. 2482 * 2483 * So just keep this in mind when looking at what 2484 * the markwaiting/wakeupwaiting routines are doing 2485 * and how they invoke vap state changes. 2486 */ 2487 2488 vap->iv_newstate(vap, 2489 vap->iv_opmode == IEEE80211_M_STA ? 2490 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2491 IEEE80211_LOCK_ASSERT(ic); 2492 } 2493 } 2494 } 2495 2496 /* 2497 * Handle post state change work common to all operating modes. 2498 */ 2499 static void 2500 ieee80211_newstate_cb(void *xvap, int npending) 2501 { 2502 struct ieee80211vap *vap = xvap; 2503 struct ieee80211com *ic = vap->iv_ic; 2504 enum ieee80211_state nstate, ostate; 2505 int arg, rc; 2506 2507 IEEE80211_LOCK(ic); 2508 nstate = vap->iv_nstate; 2509 arg = vap->iv_nstate_arg; 2510 2511 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2512 /* 2513 * We have been requested to drop back to the INIT before 2514 * proceeding to the new state. 2515 */ 2516 /* Deny any state changes while we are here. */ 2517 vap->iv_nstate = IEEE80211_S_INIT; 2518 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2519 "%s: %s -> %s arg %d\n", __func__, 2520 ieee80211_state_name[vap->iv_state], 2521 ieee80211_state_name[vap->iv_nstate], arg); 2522 vap->iv_newstate(vap, vap->iv_nstate, 0); 2523 IEEE80211_LOCK_ASSERT(ic); 2524 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2525 IEEE80211_FEXT_STATEWAIT); 2526 /* enqueue new state transition after cancel_scan() task */ 2527 ieee80211_new_state_locked(vap, nstate, arg); 2528 goto done; 2529 } 2530 2531 ostate = vap->iv_state; 2532 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2533 /* 2534 * SCAN was forced; e.g. on beacon miss. Force other running 2535 * vap's to INIT state and mark them as waiting for the scan to 2536 * complete. This insures they don't interfere with our 2537 * scanning. Since we are single threaded the vaps can not 2538 * transition again while we are executing. 2539 * 2540 * XXX not always right, assumes ap follows sta 2541 */ 2542 markwaiting(vap); 2543 } 2544 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2545 "%s: %s -> %s arg %d\n", __func__, 2546 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2547 2548 rc = vap->iv_newstate(vap, nstate, arg); 2549 IEEE80211_LOCK_ASSERT(ic); 2550 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2551 if (rc != 0) { 2552 /* State transition failed */ 2553 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2554 KASSERT(nstate != IEEE80211_S_INIT, 2555 ("INIT state change failed")); 2556 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2557 "%s: %s returned error %d\n", __func__, 2558 ieee80211_state_name[nstate], rc); 2559 goto done; 2560 } 2561 2562 /* 2563 * Handle the case of a RUN->RUN transition occuring when STA + AP 2564 * VAPs occur on the same radio. 2565 * 2566 * The mark and wakeup waiting routines call iv_newstate() directly, 2567 * but they do not end up deferring state changes here. 2568 * Thus, although the VAP newstate method sees a transition 2569 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN 2570 * transition. If OACTIVE is set then it is never cleared. 2571 * 2572 * So, if we're here and the state is RUN, just clear OACTIVE. 2573 * At some point if the markwaiting/wakeupwaiting paths end up 2574 * also invoking the deferred state updates then this will 2575 * be no-op code - and also if OACTIVE is finally retired, it'll 2576 * also be no-op code. 2577 */ 2578 if (nstate == IEEE80211_S_RUN) { 2579 /* 2580 * OACTIVE may be set on the vap if the upper layer 2581 * tried to transmit (e.g. IPv6 NDP) before we reach 2582 * RUN state. Clear it and restart xmit. 2583 * 2584 * Note this can also happen as a result of SLEEP->RUN 2585 * (i.e. coming out of power save mode). 2586 * 2587 * Historically this was done only for a state change 2588 * but is needed earlier; see next comment. The 2nd half 2589 * of the work is still only done in case of an actual 2590 * state change below. 2591 */ 2592 /* 2593 * Unblock the VAP queue; a RUN->RUN state can happen 2594 * on a STA+AP setup on the AP vap. See wakeupwaiting(). 2595 */ 2596 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2597 2598 /* 2599 * XXX TODO Kick-start a VAP queue - this should be a method! 2600 */ 2601 } 2602 2603 /* No actual transition, skip post processing */ 2604 if (ostate == nstate) 2605 goto done; 2606 2607 if (nstate == IEEE80211_S_RUN) { 2608 2609 /* bring up any vaps waiting on us */ 2610 wakeupwaiting(vap); 2611 } else if (nstate == IEEE80211_S_INIT) { 2612 /* 2613 * Flush the scan cache if we did the last scan (XXX?) 2614 * and flush any frames on send queues from this vap. 2615 * Note the mgt q is used only for legacy drivers and 2616 * will go away shortly. 2617 */ 2618 ieee80211_scan_flush(vap); 2619 2620 /* 2621 * XXX TODO: ic/vap queue flush 2622 */ 2623 } 2624 done: 2625 IEEE80211_UNLOCK(ic); 2626 } 2627 2628 /* 2629 * Public interface for initiating a state machine change. 2630 * This routine single-threads the request and coordinates 2631 * the scheduling of multiple vaps for the purpose of selecting 2632 * an operating channel. Specifically the following scenarios 2633 * are handled: 2634 * o only one vap can be selecting a channel so on transition to 2635 * SCAN state if another vap is already scanning then 2636 * mark the caller for later processing and return without 2637 * doing anything (XXX? expectations by caller of synchronous operation) 2638 * o only one vap can be doing CAC of a channel so on transition to 2639 * CAC state if another vap is already scanning for radar then 2640 * mark the caller for later processing and return without 2641 * doing anything (XXX? expectations by caller of synchronous operation) 2642 * o if another vap is already running when a request is made 2643 * to SCAN then an operating channel has been chosen; bypass 2644 * the scan and just join the channel 2645 * 2646 * Note that the state change call is done through the iv_newstate 2647 * method pointer so any driver routine gets invoked. The driver 2648 * will normally call back into operating mode-specific 2649 * ieee80211_newstate routines (below) unless it needs to completely 2650 * bypass the state machine (e.g. because the firmware has it's 2651 * own idea how things should work). Bypassing the net80211 layer 2652 * is usually a mistake and indicates lack of proper integration 2653 * with the net80211 layer. 2654 */ 2655 int 2656 ieee80211_new_state_locked(struct ieee80211vap *vap, 2657 enum ieee80211_state nstate, int arg) 2658 { 2659 struct ieee80211com *ic = vap->iv_ic; 2660 struct ieee80211vap *vp; 2661 enum ieee80211_state ostate; 2662 int nrunning, nscanning; 2663 2664 IEEE80211_LOCK_ASSERT(ic); 2665 2666 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2667 if (vap->iv_nstate == IEEE80211_S_INIT || 2668 ((vap->iv_state == IEEE80211_S_INIT || 2669 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2670 vap->iv_nstate == IEEE80211_S_SCAN && 2671 nstate > IEEE80211_S_SCAN)) { 2672 /* 2673 * XXX The vap is being stopped/started, 2674 * do not allow any other state changes 2675 * until this is completed. 2676 */ 2677 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2678 "%s: %s -> %s (%s) transition discarded\n", 2679 __func__, 2680 ieee80211_state_name[vap->iv_state], 2681 ieee80211_state_name[nstate], 2682 ieee80211_state_name[vap->iv_nstate]); 2683 return -1; 2684 } else if (vap->iv_state != vap->iv_nstate) { 2685 #if 0 2686 /* Warn if the previous state hasn't completed. */ 2687 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2688 "%s: pending %s -> %s transition lost\n", __func__, 2689 ieee80211_state_name[vap->iv_state], 2690 ieee80211_state_name[vap->iv_nstate]); 2691 #else 2692 /* XXX temporarily enable to identify issues */ 2693 if_printf(vap->iv_ifp, 2694 "%s: pending %s -> %s transition lost\n", 2695 __func__, ieee80211_state_name[vap->iv_state], 2696 ieee80211_state_name[vap->iv_nstate]); 2697 #endif 2698 } 2699 } 2700 2701 nrunning = nscanning = 0; 2702 /* XXX can track this state instead of calculating */ 2703 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2704 if (vp != vap) { 2705 if (vp->iv_state >= IEEE80211_S_RUN) 2706 nrunning++; 2707 /* XXX doesn't handle bg scan */ 2708 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2709 else if (vp->iv_state > IEEE80211_S_INIT) 2710 nscanning++; 2711 } 2712 } 2713 ostate = vap->iv_state; 2714 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2715 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2716 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2717 nrunning, nscanning); 2718 switch (nstate) { 2719 case IEEE80211_S_SCAN: 2720 if (ostate == IEEE80211_S_INIT) { 2721 /* 2722 * INIT -> SCAN happens on initial bringup. 2723 */ 2724 KASSERT(!(nscanning && nrunning), 2725 ("%d scanning and %d running", nscanning, nrunning)); 2726 if (nscanning) { 2727 /* 2728 * Someone is scanning, defer our state 2729 * change until the work has completed. 2730 */ 2731 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2732 "%s: defer %s -> %s\n", 2733 __func__, ieee80211_state_name[ostate], 2734 ieee80211_state_name[nstate]); 2735 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2736 return 0; 2737 } 2738 if (nrunning) { 2739 /* 2740 * Someone is operating; just join the channel 2741 * they have chosen. 2742 */ 2743 /* XXX kill arg? */ 2744 /* XXX check each opmode, adhoc? */ 2745 if (vap->iv_opmode == IEEE80211_M_STA) 2746 nstate = IEEE80211_S_SCAN; 2747 else 2748 nstate = IEEE80211_S_RUN; 2749 #ifdef IEEE80211_DEBUG 2750 if (nstate != IEEE80211_S_SCAN) { 2751 IEEE80211_DPRINTF(vap, 2752 IEEE80211_MSG_STATE, 2753 "%s: override, now %s -> %s\n", 2754 __func__, 2755 ieee80211_state_name[ostate], 2756 ieee80211_state_name[nstate]); 2757 } 2758 #endif 2759 } 2760 } 2761 break; 2762 case IEEE80211_S_RUN: 2763 if (vap->iv_opmode == IEEE80211_M_WDS && 2764 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2765 nscanning) { 2766 /* 2767 * Legacy WDS with someone else scanning; don't 2768 * go online until that completes as we should 2769 * follow the other vap to the channel they choose. 2770 */ 2771 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2772 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2773 ieee80211_state_name[ostate], 2774 ieee80211_state_name[nstate]); 2775 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2776 return 0; 2777 } 2778 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2779 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2780 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2781 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2782 /* 2783 * This is a DFS channel, transition to CAC state 2784 * instead of RUN. This allows us to initiate 2785 * Channel Availability Check (CAC) as specified 2786 * by 11h/DFS. 2787 */ 2788 nstate = IEEE80211_S_CAC; 2789 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2790 "%s: override %s -> %s (DFS)\n", __func__, 2791 ieee80211_state_name[ostate], 2792 ieee80211_state_name[nstate]); 2793 } 2794 break; 2795 case IEEE80211_S_INIT: 2796 /* cancel any scan in progress */ 2797 ieee80211_cancel_scan(vap); 2798 if (ostate == IEEE80211_S_INIT ) { 2799 /* XXX don't believe this */ 2800 /* INIT -> INIT. nothing to do */ 2801 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2802 } 2803 /* fall thru... */ 2804 default: 2805 break; 2806 } 2807 /* defer the state change to a thread */ 2808 vap->iv_nstate = nstate; 2809 vap->iv_nstate_arg = arg; 2810 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2811 ieee80211_runtask(ic, &vap->iv_nstate_task); 2812 return EINPROGRESS; 2813 } 2814 2815 int 2816 ieee80211_new_state(struct ieee80211vap *vap, 2817 enum ieee80211_state nstate, int arg) 2818 { 2819 struct ieee80211com *ic = vap->iv_ic; 2820 int rc; 2821 2822 IEEE80211_LOCK(ic); 2823 rc = ieee80211_new_state_locked(vap, nstate, arg); 2824 IEEE80211_UNLOCK(ic); 2825 return rc; 2826 } 2827