1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> /* XXX for ether_sprintf */ 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_adhoc.h> 51 #include <net80211/ieee80211_sta.h> 52 #include <net80211/ieee80211_hostap.h> 53 #include <net80211/ieee80211_wds.h> 54 #ifdef IEEE80211_SUPPORT_MESH 55 #include <net80211/ieee80211_mesh.h> 56 #endif 57 #include <net80211/ieee80211_monitor.h> 58 #include <net80211/ieee80211_input.h> 59 60 /* XXX tunables */ 61 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 62 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 63 64 const char *ieee80211_mgt_subtype_name[] = { 65 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 66 "probe_req", "probe_resp", "reserved#6", "reserved#7", 67 "beacon", "atim", "disassoc", "auth", 68 "deauth", "action", "action_noack", "reserved#15" 69 }; 70 const char *ieee80211_ctl_subtype_name[] = { 71 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 72 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 73 "reserved#8", "reserved#9", "ps_poll", "rts", 74 "cts", "ack", "cf_end", "cf_end_ack" 75 }; 76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 77 "IBSS", /* IEEE80211_M_IBSS */ 78 "STA", /* IEEE80211_M_STA */ 79 "WDS", /* IEEE80211_M_WDS */ 80 "AHDEMO", /* IEEE80211_M_AHDEMO */ 81 "HOSTAP", /* IEEE80211_M_HOSTAP */ 82 "MONITOR", /* IEEE80211_M_MONITOR */ 83 "MBSS" /* IEEE80211_M_MBSS */ 84 }; 85 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 86 "INIT", /* IEEE80211_S_INIT */ 87 "SCAN", /* IEEE80211_S_SCAN */ 88 "AUTH", /* IEEE80211_S_AUTH */ 89 "ASSOC", /* IEEE80211_S_ASSOC */ 90 "CAC", /* IEEE80211_S_CAC */ 91 "RUN", /* IEEE80211_S_RUN */ 92 "CSA", /* IEEE80211_S_CSA */ 93 "SLEEP", /* IEEE80211_S_SLEEP */ 94 }; 95 const char *ieee80211_wme_acnames[] = { 96 "WME_AC_BE", 97 "WME_AC_BK", 98 "WME_AC_VI", 99 "WME_AC_VO", 100 "WME_UPSD", 101 }; 102 103 static void beacon_miss(void *, int); 104 static void beacon_swmiss(void *, int); 105 static void parent_updown(void *, int); 106 static void update_mcast(void *, int); 107 static void update_promisc(void *, int); 108 static void update_channel(void *, int); 109 static void update_chw(void *, int); 110 static void update_wme(void *, int); 111 static void ieee80211_newstate_cb(void *, int); 112 113 static int 114 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 115 const struct ieee80211_bpf_params *params) 116 { 117 118 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 119 m_freem(m); 120 return ENETDOWN; 121 } 122 123 void 124 ieee80211_proto_attach(struct ieee80211com *ic) 125 { 126 uint8_t hdrlen; 127 128 /* override the 802.3 setting */ 129 hdrlen = ic->ic_headroom 130 + sizeof(struct ieee80211_qosframe_addr4) 131 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 132 + IEEE80211_WEP_EXTIVLEN; 133 /* XXX no way to recalculate on ifdetach */ 134 if (ALIGN(hdrlen) > max_linkhdr) { 135 /* XXX sanity check... */ 136 max_linkhdr = ALIGN(hdrlen); 137 max_hdr = max_linkhdr + max_protohdr; 138 max_datalen = MHLEN - max_hdr; 139 } 140 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 141 142 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 143 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 144 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 145 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 146 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 147 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 148 TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic); 149 150 ic->ic_wme.wme_hipri_switch_hysteresis = 151 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 152 153 /* initialize management frame handlers */ 154 ic->ic_send_mgmt = ieee80211_send_mgmt; 155 ic->ic_raw_xmit = null_raw_xmit; 156 157 ieee80211_adhoc_attach(ic); 158 ieee80211_sta_attach(ic); 159 ieee80211_wds_attach(ic); 160 ieee80211_hostap_attach(ic); 161 #ifdef IEEE80211_SUPPORT_MESH 162 ieee80211_mesh_attach(ic); 163 #endif 164 ieee80211_monitor_attach(ic); 165 } 166 167 void 168 ieee80211_proto_detach(struct ieee80211com *ic) 169 { 170 ieee80211_monitor_detach(ic); 171 #ifdef IEEE80211_SUPPORT_MESH 172 ieee80211_mesh_detach(ic); 173 #endif 174 ieee80211_hostap_detach(ic); 175 ieee80211_wds_detach(ic); 176 ieee80211_adhoc_detach(ic); 177 ieee80211_sta_detach(ic); 178 } 179 180 static void 181 null_update_beacon(struct ieee80211vap *vap, int item) 182 { 183 } 184 185 void 186 ieee80211_proto_vattach(struct ieee80211vap *vap) 187 { 188 struct ieee80211com *ic = vap->iv_ic; 189 struct ifnet *ifp = vap->iv_ifp; 190 int i; 191 192 /* override the 802.3 setting */ 193 ifp->if_hdrlen = ic->ic_headroom 194 + sizeof(struct ieee80211_qosframe_addr4) 195 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 196 + IEEE80211_WEP_EXTIVLEN; 197 198 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 199 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 200 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 201 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 202 callout_init(&vap->iv_mgtsend, 1); 203 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 204 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 205 /* 206 * Install default tx rate handling: no fixed rate, lowest 207 * supported rate for mgmt and multicast frames. Default 208 * max retry count. These settings can be changed by the 209 * driver and/or user applications. 210 */ 211 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 212 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 213 214 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 215 216 /* 217 * Setting the management rate to MCS 0 assumes that the 218 * BSS Basic rate set is empty and the BSS Basic MCS set 219 * is not. 220 * 221 * Since we're not checking this, default to the lowest 222 * defined rate for this mode. 223 * 224 * At least one 11n AP (DLINK DIR-825) is reported to drop 225 * some MCS management traffic (eg BA response frames.) 226 * 227 * See also: 9.6.0 of the 802.11n-2009 specification. 228 */ 229 #ifdef NOTYET 230 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 231 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 232 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 233 } else { 234 vap->iv_txparms[i].mgmtrate = 235 rs->rs_rates[0] & IEEE80211_RATE_VAL; 236 vap->iv_txparms[i].mcastrate = 237 rs->rs_rates[0] & IEEE80211_RATE_VAL; 238 } 239 #endif 240 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 241 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 242 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 243 } 244 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 245 246 vap->iv_update_beacon = null_update_beacon; 247 vap->iv_deliver_data = ieee80211_deliver_data; 248 249 /* attach support for operating mode */ 250 ic->ic_vattach[vap->iv_opmode](vap); 251 } 252 253 void 254 ieee80211_proto_vdetach(struct ieee80211vap *vap) 255 { 256 #define FREEAPPIE(ie) do { \ 257 if (ie != NULL) \ 258 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 259 } while (0) 260 /* 261 * Detach operating mode module. 262 */ 263 if (vap->iv_opdetach != NULL) 264 vap->iv_opdetach(vap); 265 /* 266 * This should not be needed as we detach when reseting 267 * the state but be conservative here since the 268 * authenticator may do things like spawn kernel threads. 269 */ 270 if (vap->iv_auth->ia_detach != NULL) 271 vap->iv_auth->ia_detach(vap); 272 /* 273 * Detach any ACL'ator. 274 */ 275 if (vap->iv_acl != NULL) 276 vap->iv_acl->iac_detach(vap); 277 278 FREEAPPIE(vap->iv_appie_beacon); 279 FREEAPPIE(vap->iv_appie_probereq); 280 FREEAPPIE(vap->iv_appie_proberesp); 281 FREEAPPIE(vap->iv_appie_assocreq); 282 FREEAPPIE(vap->iv_appie_assocresp); 283 FREEAPPIE(vap->iv_appie_wpa); 284 #undef FREEAPPIE 285 } 286 287 /* 288 * Simple-minded authenticator module support. 289 */ 290 291 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 292 /* XXX well-known names */ 293 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 294 "wlan_internal", /* IEEE80211_AUTH_NONE */ 295 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 296 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 297 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 298 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 299 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 300 }; 301 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 302 303 static const struct ieee80211_authenticator auth_internal = { 304 .ia_name = "wlan_internal", 305 .ia_attach = NULL, 306 .ia_detach = NULL, 307 .ia_node_join = NULL, 308 .ia_node_leave = NULL, 309 }; 310 311 /* 312 * Setup internal authenticators once; they are never unregistered. 313 */ 314 static void 315 ieee80211_auth_setup(void) 316 { 317 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 318 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 319 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 320 } 321 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 322 323 const struct ieee80211_authenticator * 324 ieee80211_authenticator_get(int auth) 325 { 326 if (auth >= IEEE80211_AUTH_MAX) 327 return NULL; 328 if (authenticators[auth] == NULL) 329 ieee80211_load_module(auth_modnames[auth]); 330 return authenticators[auth]; 331 } 332 333 void 334 ieee80211_authenticator_register(int type, 335 const struct ieee80211_authenticator *auth) 336 { 337 if (type >= IEEE80211_AUTH_MAX) 338 return; 339 authenticators[type] = auth; 340 } 341 342 void 343 ieee80211_authenticator_unregister(int type) 344 { 345 346 if (type >= IEEE80211_AUTH_MAX) 347 return; 348 authenticators[type] = NULL; 349 } 350 351 /* 352 * Very simple-minded ACL module support. 353 */ 354 /* XXX just one for now */ 355 static const struct ieee80211_aclator *acl = NULL; 356 357 void 358 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 359 { 360 printf("wlan: %s acl policy registered\n", iac->iac_name); 361 acl = iac; 362 } 363 364 void 365 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 366 { 367 if (acl == iac) 368 acl = NULL; 369 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 370 } 371 372 const struct ieee80211_aclator * 373 ieee80211_aclator_get(const char *name) 374 { 375 if (acl == NULL) 376 ieee80211_load_module("wlan_acl"); 377 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 378 } 379 380 void 381 ieee80211_print_essid(const uint8_t *essid, int len) 382 { 383 const uint8_t *p; 384 int i; 385 386 if (len > IEEE80211_NWID_LEN) 387 len = IEEE80211_NWID_LEN; 388 /* determine printable or not */ 389 for (i = 0, p = essid; i < len; i++, p++) { 390 if (*p < ' ' || *p > 0x7e) 391 break; 392 } 393 if (i == len) { 394 printf("\""); 395 for (i = 0, p = essid; i < len; i++, p++) 396 printf("%c", *p); 397 printf("\""); 398 } else { 399 printf("0x"); 400 for (i = 0, p = essid; i < len; i++, p++) 401 printf("%02x", *p); 402 } 403 } 404 405 void 406 ieee80211_dump_pkt(struct ieee80211com *ic, 407 const uint8_t *buf, int len, int rate, int rssi) 408 { 409 const struct ieee80211_frame *wh; 410 int i; 411 412 wh = (const struct ieee80211_frame *)buf; 413 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 414 case IEEE80211_FC1_DIR_NODS: 415 printf("NODS %s", ether_sprintf(wh->i_addr2)); 416 printf("->%s", ether_sprintf(wh->i_addr1)); 417 printf("(%s)", ether_sprintf(wh->i_addr3)); 418 break; 419 case IEEE80211_FC1_DIR_TODS: 420 printf("TODS %s", ether_sprintf(wh->i_addr2)); 421 printf("->%s", ether_sprintf(wh->i_addr3)); 422 printf("(%s)", ether_sprintf(wh->i_addr1)); 423 break; 424 case IEEE80211_FC1_DIR_FROMDS: 425 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 426 printf("->%s", ether_sprintf(wh->i_addr1)); 427 printf("(%s)", ether_sprintf(wh->i_addr2)); 428 break; 429 case IEEE80211_FC1_DIR_DSTODS: 430 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 431 printf("->%s", ether_sprintf(wh->i_addr3)); 432 printf("(%s", ether_sprintf(wh->i_addr2)); 433 printf("->%s)", ether_sprintf(wh->i_addr1)); 434 break; 435 } 436 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 437 case IEEE80211_FC0_TYPE_DATA: 438 printf(" data"); 439 break; 440 case IEEE80211_FC0_TYPE_MGT: 441 printf(" %s", ieee80211_mgt_subtype_name[ 442 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 443 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 444 break; 445 default: 446 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 447 break; 448 } 449 if (IEEE80211_QOS_HAS_SEQ(wh)) { 450 const struct ieee80211_qosframe *qwh = 451 (const struct ieee80211_qosframe *)buf; 452 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 453 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 454 } 455 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 456 int off; 457 458 off = ieee80211_anyhdrspace(ic, wh); 459 printf(" WEP [IV %.02x %.02x %.02x", 460 buf[off+0], buf[off+1], buf[off+2]); 461 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 462 printf(" %.02x %.02x %.02x", 463 buf[off+4], buf[off+5], buf[off+6]); 464 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 465 } 466 if (rate >= 0) 467 printf(" %dM", rate / 2); 468 if (rssi >= 0) 469 printf(" +%d", rssi); 470 printf("\n"); 471 if (len > 0) { 472 for (i = 0; i < len; i++) { 473 if ((i & 1) == 0) 474 printf(" "); 475 printf("%02x", buf[i]); 476 } 477 printf("\n"); 478 } 479 } 480 481 static __inline int 482 findrix(const struct ieee80211_rateset *rs, int r) 483 { 484 int i; 485 486 for (i = 0; i < rs->rs_nrates; i++) 487 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 488 return i; 489 return -1; 490 } 491 492 int 493 ieee80211_fix_rate(struct ieee80211_node *ni, 494 struct ieee80211_rateset *nrs, int flags) 495 { 496 struct ieee80211vap *vap = ni->ni_vap; 497 struct ieee80211com *ic = ni->ni_ic; 498 int i, j, rix, error; 499 int okrate, badrate, fixedrate, ucastrate; 500 const struct ieee80211_rateset *srs; 501 uint8_t r; 502 503 error = 0; 504 okrate = badrate = 0; 505 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 506 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 507 /* 508 * Workaround awkwardness with fixed rate. We are called 509 * to check both the legacy rate set and the HT rate set 510 * but we must apply any legacy fixed rate check only to the 511 * legacy rate set and vice versa. We cannot tell what type 512 * of rate set we've been given (legacy or HT) but we can 513 * distinguish the fixed rate type (MCS have 0x80 set). 514 * So to deal with this the caller communicates whether to 515 * check MCS or legacy rate using the flags and we use the 516 * type of any fixed rate to avoid applying an MCS to a 517 * legacy rate and vice versa. 518 */ 519 if (ucastrate & 0x80) { 520 if (flags & IEEE80211_F_DOFRATE) 521 flags &= ~IEEE80211_F_DOFRATE; 522 } else if ((ucastrate & 0x80) == 0) { 523 if (flags & IEEE80211_F_DOFMCS) 524 flags &= ~IEEE80211_F_DOFMCS; 525 } 526 /* NB: required to make MCS match below work */ 527 ucastrate &= IEEE80211_RATE_VAL; 528 } 529 fixedrate = IEEE80211_FIXED_RATE_NONE; 530 /* 531 * XXX we are called to process both MCS and legacy rates; 532 * we must use the appropriate basic rate set or chaos will 533 * ensue; for now callers that want MCS must supply 534 * IEEE80211_F_DOBRS; at some point we'll need to split this 535 * function so there are two variants, one for MCS and one 536 * for legacy rates. 537 */ 538 if (flags & IEEE80211_F_DOBRS) 539 srs = (const struct ieee80211_rateset *) 540 ieee80211_get_suphtrates(ic, ni->ni_chan); 541 else 542 srs = ieee80211_get_suprates(ic, ni->ni_chan); 543 for (i = 0; i < nrs->rs_nrates; ) { 544 if (flags & IEEE80211_F_DOSORT) { 545 /* 546 * Sort rates. 547 */ 548 for (j = i + 1; j < nrs->rs_nrates; j++) { 549 if (IEEE80211_RV(nrs->rs_rates[i]) > 550 IEEE80211_RV(nrs->rs_rates[j])) { 551 r = nrs->rs_rates[i]; 552 nrs->rs_rates[i] = nrs->rs_rates[j]; 553 nrs->rs_rates[j] = r; 554 } 555 } 556 } 557 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 558 badrate = r; 559 /* 560 * Check for fixed rate. 561 */ 562 if (r == ucastrate) 563 fixedrate = r; 564 /* 565 * Check against supported rates. 566 */ 567 rix = findrix(srs, r); 568 if (flags & IEEE80211_F_DONEGO) { 569 if (rix < 0) { 570 /* 571 * A rate in the node's rate set is not 572 * supported. If this is a basic rate and we 573 * are operating as a STA then this is an error. 574 * Otherwise we just discard/ignore the rate. 575 */ 576 if ((flags & IEEE80211_F_JOIN) && 577 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 578 error++; 579 } else if ((flags & IEEE80211_F_JOIN) == 0) { 580 /* 581 * Overwrite with the supported rate 582 * value so any basic rate bit is set. 583 */ 584 nrs->rs_rates[i] = srs->rs_rates[rix]; 585 } 586 } 587 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 588 /* 589 * Delete unacceptable rates. 590 */ 591 nrs->rs_nrates--; 592 for (j = i; j < nrs->rs_nrates; j++) 593 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 594 nrs->rs_rates[j] = 0; 595 continue; 596 } 597 if (rix >= 0) 598 okrate = nrs->rs_rates[i]; 599 i++; 600 } 601 if (okrate == 0 || error != 0 || 602 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 603 fixedrate != ucastrate)) { 604 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 605 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 606 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 607 return badrate | IEEE80211_RATE_BASIC; 608 } else 609 return IEEE80211_RV(okrate); 610 } 611 612 /* 613 * Reset 11g-related state. 614 */ 615 void 616 ieee80211_reset_erp(struct ieee80211com *ic) 617 { 618 ic->ic_flags &= ~IEEE80211_F_USEPROT; 619 ic->ic_nonerpsta = 0; 620 ic->ic_longslotsta = 0; 621 /* 622 * Short slot time is enabled only when operating in 11g 623 * and not in an IBSS. We must also honor whether or not 624 * the driver is capable of doing it. 625 */ 626 ieee80211_set_shortslottime(ic, 627 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 628 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 629 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 630 ic->ic_opmode == IEEE80211_M_HOSTAP && 631 (ic->ic_caps & IEEE80211_C_SHSLOT))); 632 /* 633 * Set short preamble and ERP barker-preamble flags. 634 */ 635 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 636 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 637 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 638 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 639 } else { 640 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 641 ic->ic_flags |= IEEE80211_F_USEBARKER; 642 } 643 } 644 645 /* 646 * Set the short slot time state and notify the driver. 647 */ 648 void 649 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 650 { 651 if (onoff) 652 ic->ic_flags |= IEEE80211_F_SHSLOT; 653 else 654 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 655 /* notify driver */ 656 if (ic->ic_updateslot != NULL) 657 ic->ic_updateslot(ic); 658 } 659 660 /* 661 * Check if the specified rate set supports ERP. 662 * NB: the rate set is assumed to be sorted. 663 */ 664 int 665 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 666 { 667 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 668 int i, j; 669 670 if (rs->rs_nrates < nitems(rates)) 671 return 0; 672 for (i = 0; i < nitems(rates); i++) { 673 for (j = 0; j < rs->rs_nrates; j++) { 674 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 675 if (rates[i] == r) 676 goto next; 677 if (r > rates[i]) 678 return 0; 679 } 680 return 0; 681 next: 682 ; 683 } 684 return 1; 685 } 686 687 /* 688 * Mark the basic rates for the rate table based on the 689 * operating mode. For real 11g we mark all the 11b rates 690 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 691 * 11b rates. There's also a pseudo 11a-mode used to mark only 692 * the basic OFDM rates. 693 */ 694 static void 695 setbasicrates(struct ieee80211_rateset *rs, 696 enum ieee80211_phymode mode, int add) 697 { 698 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 699 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 700 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 701 /* NB: mixed b/g */ 702 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 703 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 704 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 705 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 706 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 707 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 708 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 709 /* NB: mixed b/g */ 710 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 711 }; 712 int i, j; 713 714 for (i = 0; i < rs->rs_nrates; i++) { 715 if (!add) 716 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 717 for (j = 0; j < basic[mode].rs_nrates; j++) 718 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 719 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 720 break; 721 } 722 } 723 } 724 725 /* 726 * Set the basic rates in a rate set. 727 */ 728 void 729 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 730 enum ieee80211_phymode mode) 731 { 732 setbasicrates(rs, mode, 0); 733 } 734 735 /* 736 * Add basic rates to a rate set. 737 */ 738 void 739 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 740 enum ieee80211_phymode mode) 741 { 742 setbasicrates(rs, mode, 1); 743 } 744 745 /* 746 * WME protocol support. 747 * 748 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 749 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 750 * Draft 2.0 Test Plan (Appendix D). 751 * 752 * Static/Dynamic Turbo mode settings come from Atheros. 753 */ 754 typedef struct phyParamType { 755 uint8_t aifsn; 756 uint8_t logcwmin; 757 uint8_t logcwmax; 758 uint16_t txopLimit; 759 uint8_t acm; 760 } paramType; 761 762 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 763 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 767 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 768 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 770 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 771 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 773 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 774 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 775 }; 776 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 777 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 781 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 782 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 784 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 785 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 787 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 788 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 789 }; 790 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 791 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 792 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 793 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 794 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 795 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 796 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 798 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 799 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 801 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 802 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 803 }; 804 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 805 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 806 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 807 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 808 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 809 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 810 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 812 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 813 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 815 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 816 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 817 }; 818 819 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 820 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 824 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 825 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 827 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 828 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 830 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 831 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 832 }; 833 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 834 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 835 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 836 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 837 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 838 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 839 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 841 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 842 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 844 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 845 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 846 }; 847 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 848 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 849 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 850 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 851 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 852 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 853 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 855 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 856 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 858 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 859 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 860 }; 861 862 static void 863 _setifsparams(struct wmeParams *wmep, const paramType *phy) 864 { 865 wmep->wmep_aifsn = phy->aifsn; 866 wmep->wmep_logcwmin = phy->logcwmin; 867 wmep->wmep_logcwmax = phy->logcwmax; 868 wmep->wmep_txopLimit = phy->txopLimit; 869 } 870 871 static void 872 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 873 struct wmeParams *wmep, const paramType *phy) 874 { 875 wmep->wmep_acm = phy->acm; 876 _setifsparams(wmep, phy); 877 878 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 879 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 880 ieee80211_wme_acnames[ac], type, 881 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 882 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 883 } 884 885 static void 886 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 887 { 888 struct ieee80211com *ic = vap->iv_ic; 889 struct ieee80211_wme_state *wme = &ic->ic_wme; 890 const paramType *pPhyParam, *pBssPhyParam; 891 struct wmeParams *wmep; 892 enum ieee80211_phymode mode; 893 int i; 894 895 IEEE80211_LOCK_ASSERT(ic); 896 897 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 898 return; 899 900 /* 901 * Clear the wme cap_info field so a qoscount from a previous 902 * vap doesn't confuse later code which only parses the beacon 903 * field and updates hardware when said field changes. 904 * Otherwise the hardware is programmed with defaults, not what 905 * the beacon actually announces. 906 */ 907 wme->wme_wmeChanParams.cap_info = 0; 908 909 /* 910 * Select mode; we can be called early in which case we 911 * always use auto mode. We know we'll be called when 912 * entering the RUN state with bsschan setup properly 913 * so state will eventually get set correctly 914 */ 915 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 916 mode = ieee80211_chan2mode(ic->ic_bsschan); 917 else 918 mode = IEEE80211_MODE_AUTO; 919 for (i = 0; i < WME_NUM_AC; i++) { 920 switch (i) { 921 case WME_AC_BK: 922 pPhyParam = &phyParamForAC_BK[mode]; 923 pBssPhyParam = &phyParamForAC_BK[mode]; 924 break; 925 case WME_AC_VI: 926 pPhyParam = &phyParamForAC_VI[mode]; 927 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 928 break; 929 case WME_AC_VO: 930 pPhyParam = &phyParamForAC_VO[mode]; 931 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 932 break; 933 case WME_AC_BE: 934 default: 935 pPhyParam = &phyParamForAC_BE[mode]; 936 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 937 break; 938 } 939 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 940 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 941 setwmeparams(vap, "chan", i, wmep, pPhyParam); 942 } else { 943 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 944 } 945 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 946 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 947 } 948 /* NB: check ic_bss to avoid NULL deref on initial attach */ 949 if (vap->iv_bss != NULL) { 950 /* 951 * Calculate agressive mode switching threshold based 952 * on beacon interval. This doesn't need locking since 953 * we're only called before entering the RUN state at 954 * which point we start sending beacon frames. 955 */ 956 wme->wme_hipri_switch_thresh = 957 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 958 wme->wme_flags &= ~WME_F_AGGRMODE; 959 ieee80211_wme_updateparams(vap); 960 } 961 } 962 963 void 964 ieee80211_wme_initparams(struct ieee80211vap *vap) 965 { 966 struct ieee80211com *ic = vap->iv_ic; 967 968 IEEE80211_LOCK(ic); 969 ieee80211_wme_initparams_locked(vap); 970 IEEE80211_UNLOCK(ic); 971 } 972 973 /* 974 * Update WME parameters for ourself and the BSS. 975 */ 976 void 977 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 978 { 979 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 980 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 981 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 982 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 983 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 984 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 985 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 987 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 988 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 989 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 990 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 991 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 992 }; 993 struct ieee80211com *ic = vap->iv_ic; 994 struct ieee80211_wme_state *wme = &ic->ic_wme; 995 const struct wmeParams *wmep; 996 struct wmeParams *chanp, *bssp; 997 enum ieee80211_phymode mode; 998 int i; 999 int do_aggrmode = 0; 1000 1001 /* 1002 * Set up the channel access parameters for the physical 1003 * device. First populate the configured settings. 1004 */ 1005 for (i = 0; i < WME_NUM_AC; i++) { 1006 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1007 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1008 chanp->wmep_aifsn = wmep->wmep_aifsn; 1009 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1010 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1011 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1012 1013 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1014 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1015 chanp->wmep_aifsn = wmep->wmep_aifsn; 1016 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1017 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1018 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1019 } 1020 1021 /* 1022 * Select mode; we can be called early in which case we 1023 * always use auto mode. We know we'll be called when 1024 * entering the RUN state with bsschan setup properly 1025 * so state will eventually get set correctly 1026 */ 1027 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1028 mode = ieee80211_chan2mode(ic->ic_bsschan); 1029 else 1030 mode = IEEE80211_MODE_AUTO; 1031 1032 /* 1033 * This implements agressive mode as found in certain 1034 * vendors' AP's. When there is significant high 1035 * priority (VI/VO) traffic in the BSS throttle back BE 1036 * traffic by using conservative parameters. Otherwise 1037 * BE uses agressive params to optimize performance of 1038 * legacy/non-QoS traffic. 1039 */ 1040 1041 /* Hostap? Only if aggressive mode is enabled */ 1042 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1043 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1044 do_aggrmode = 1; 1045 1046 /* 1047 * Station? Only if we're in a non-QoS BSS. 1048 */ 1049 else if ((vap->iv_opmode == IEEE80211_M_STA && 1050 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1051 do_aggrmode = 1; 1052 1053 /* 1054 * IBSS? Only if we we have WME enabled. 1055 */ 1056 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1057 (vap->iv_flags & IEEE80211_F_WME)) 1058 do_aggrmode = 1; 1059 1060 /* 1061 * If WME is disabled on this VAP, default to aggressive mode 1062 * regardless of the configuration. 1063 */ 1064 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1065 do_aggrmode = 1; 1066 1067 /* XXX WDS? */ 1068 1069 /* XXX MBSS? */ 1070 1071 if (do_aggrmode) { 1072 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1073 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1074 1075 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1076 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1077 aggrParam[mode].logcwmin; 1078 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1079 aggrParam[mode].logcwmax; 1080 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1081 (vap->iv_flags & IEEE80211_F_BURST) ? 1082 aggrParam[mode].txopLimit : 0; 1083 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1084 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1085 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1086 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1087 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1088 } 1089 1090 1091 /* 1092 * Change the contention window based on the number of associated 1093 * stations. If the number of associated stations is 1 and 1094 * aggressive mode is enabled, lower the contention window even 1095 * further. 1096 */ 1097 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1098 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1099 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1100 [IEEE80211_MODE_AUTO] = 3, 1101 [IEEE80211_MODE_11A] = 3, 1102 [IEEE80211_MODE_11B] = 4, 1103 [IEEE80211_MODE_11G] = 3, 1104 [IEEE80211_MODE_FH] = 4, 1105 [IEEE80211_MODE_TURBO_A] = 3, 1106 [IEEE80211_MODE_TURBO_G] = 3, 1107 [IEEE80211_MODE_STURBO_A] = 3, 1108 [IEEE80211_MODE_HALF] = 3, 1109 [IEEE80211_MODE_QUARTER] = 3, 1110 [IEEE80211_MODE_11NA] = 3, 1111 [IEEE80211_MODE_11NG] = 3, 1112 }; 1113 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1114 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1115 1116 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1117 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1118 "update %s (chan+bss) logcwmin %u\n", 1119 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1120 } 1121 1122 /* 1123 * Arrange for the beacon update. 1124 * 1125 * XXX what about MBSS, WDS? 1126 */ 1127 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1128 || vap->iv_opmode == IEEE80211_M_IBSS) { 1129 /* 1130 * Arrange for a beacon update and bump the parameter 1131 * set number so associated stations load the new values. 1132 */ 1133 wme->wme_bssChanParams.cap_info = 1134 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1135 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1136 } 1137 1138 /* schedule the deferred WME update */ 1139 ieee80211_runtask(ic, &ic->ic_wme_task); 1140 1141 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1142 "%s: WME params updated, cap_info 0x%x\n", __func__, 1143 vap->iv_opmode == IEEE80211_M_STA ? 1144 wme->wme_wmeChanParams.cap_info : 1145 wme->wme_bssChanParams.cap_info); 1146 } 1147 1148 void 1149 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1150 { 1151 struct ieee80211com *ic = vap->iv_ic; 1152 1153 if (ic->ic_caps & IEEE80211_C_WME) { 1154 IEEE80211_LOCK(ic); 1155 ieee80211_wme_updateparams_locked(vap); 1156 IEEE80211_UNLOCK(ic); 1157 } 1158 } 1159 1160 static void 1161 parent_updown(void *arg, int npending) 1162 { 1163 struct ieee80211com *ic = arg; 1164 1165 ic->ic_parent(ic); 1166 } 1167 1168 static void 1169 update_mcast(void *arg, int npending) 1170 { 1171 struct ieee80211com *ic = arg; 1172 1173 ic->ic_update_mcast(ic); 1174 } 1175 1176 static void 1177 update_promisc(void *arg, int npending) 1178 { 1179 struct ieee80211com *ic = arg; 1180 1181 ic->ic_update_promisc(ic); 1182 } 1183 1184 static void 1185 update_channel(void *arg, int npending) 1186 { 1187 struct ieee80211com *ic = arg; 1188 1189 ic->ic_set_channel(ic); 1190 ieee80211_radiotap_chan_change(ic); 1191 } 1192 1193 static void 1194 update_chw(void *arg, int npending) 1195 { 1196 struct ieee80211com *ic = arg; 1197 1198 /* 1199 * XXX should we defer the channel width _config_ update until now? 1200 */ 1201 ic->ic_update_chw(ic); 1202 } 1203 1204 static void 1205 update_wme(void *arg, int npending) 1206 { 1207 struct ieee80211com *ic = arg; 1208 1209 /* 1210 * XXX should we defer the WME configuration update until now? 1211 */ 1212 ic->ic_wme.wme_update(ic); 1213 } 1214 1215 /* 1216 * Block until the parent is in a known state. This is 1217 * used after any operations that dispatch a task (e.g. 1218 * to auto-configure the parent device up/down). 1219 */ 1220 void 1221 ieee80211_waitfor_parent(struct ieee80211com *ic) 1222 { 1223 taskqueue_block(ic->ic_tq); 1224 ieee80211_draintask(ic, &ic->ic_parent_task); 1225 ieee80211_draintask(ic, &ic->ic_mcast_task); 1226 ieee80211_draintask(ic, &ic->ic_promisc_task); 1227 ieee80211_draintask(ic, &ic->ic_chan_task); 1228 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1229 ieee80211_draintask(ic, &ic->ic_chw_task); 1230 ieee80211_draintask(ic, &ic->ic_wme_task); 1231 taskqueue_unblock(ic->ic_tq); 1232 } 1233 1234 /* 1235 * Check to see whether the current channel needs reset. 1236 * 1237 * Some devices don't handle being given an invalid channel 1238 * in their operating mode very well (eg wpi(4) will throw a 1239 * firmware exception.) 1240 * 1241 * Return 0 if we're ok, 1 if the channel needs to be reset. 1242 * 1243 * See PR kern/202502. 1244 */ 1245 static int 1246 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1247 { 1248 struct ieee80211com *ic = vap->iv_ic; 1249 1250 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1251 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1252 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1253 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1254 return (1); 1255 return (0); 1256 } 1257 1258 /* 1259 * Reset the curchan to a known good state. 1260 */ 1261 static void 1262 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1263 { 1264 struct ieee80211com *ic = vap->iv_ic; 1265 1266 ic->ic_curchan = &ic->ic_channels[0]; 1267 } 1268 1269 /* 1270 * Start a vap running. If this is the first vap to be 1271 * set running on the underlying device then we 1272 * automatically bring the device up. 1273 */ 1274 void 1275 ieee80211_start_locked(struct ieee80211vap *vap) 1276 { 1277 struct ifnet *ifp = vap->iv_ifp; 1278 struct ieee80211com *ic = vap->iv_ic; 1279 1280 IEEE80211_LOCK_ASSERT(ic); 1281 1282 IEEE80211_DPRINTF(vap, 1283 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1284 "start running, %d vaps running\n", ic->ic_nrunning); 1285 1286 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1287 /* 1288 * Mark us running. Note that it's ok to do this first; 1289 * if we need to bring the parent device up we defer that 1290 * to avoid dropping the com lock. We expect the device 1291 * to respond to being marked up by calling back into us 1292 * through ieee80211_start_all at which point we'll come 1293 * back in here and complete the work. 1294 */ 1295 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1296 /* 1297 * We are not running; if this we are the first vap 1298 * to be brought up auto-up the parent if necessary. 1299 */ 1300 if (ic->ic_nrunning++ == 0) { 1301 1302 /* reset the channel to a known good channel */ 1303 if (ieee80211_start_check_reset_chan(vap)) 1304 ieee80211_start_reset_chan(vap); 1305 1306 IEEE80211_DPRINTF(vap, 1307 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1308 "%s: up parent %s\n", __func__, ic->ic_name); 1309 ieee80211_runtask(ic, &ic->ic_parent_task); 1310 return; 1311 } 1312 } 1313 /* 1314 * If the parent is up and running, then kick the 1315 * 802.11 state machine as appropriate. 1316 */ 1317 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1318 if (vap->iv_opmode == IEEE80211_M_STA) { 1319 #if 0 1320 /* XXX bypasses scan too easily; disable for now */ 1321 /* 1322 * Try to be intelligent about clocking the state 1323 * machine. If we're currently in RUN state then 1324 * we should be able to apply any new state/parameters 1325 * simply by re-associating. Otherwise we need to 1326 * re-scan to select an appropriate ap. 1327 */ 1328 if (vap->iv_state >= IEEE80211_S_RUN) 1329 ieee80211_new_state_locked(vap, 1330 IEEE80211_S_ASSOC, 1); 1331 else 1332 #endif 1333 ieee80211_new_state_locked(vap, 1334 IEEE80211_S_SCAN, 0); 1335 } else { 1336 /* 1337 * For monitor+wds mode there's nothing to do but 1338 * start running. Otherwise if this is the first 1339 * vap to be brought up, start a scan which may be 1340 * preempted if the station is locked to a particular 1341 * channel. 1342 */ 1343 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1344 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1345 vap->iv_opmode == IEEE80211_M_WDS) 1346 ieee80211_new_state_locked(vap, 1347 IEEE80211_S_RUN, -1); 1348 else 1349 ieee80211_new_state_locked(vap, 1350 IEEE80211_S_SCAN, 0); 1351 } 1352 } 1353 } 1354 1355 /* 1356 * Start a single vap. 1357 */ 1358 void 1359 ieee80211_init(void *arg) 1360 { 1361 struct ieee80211vap *vap = arg; 1362 1363 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1364 "%s\n", __func__); 1365 1366 IEEE80211_LOCK(vap->iv_ic); 1367 ieee80211_start_locked(vap); 1368 IEEE80211_UNLOCK(vap->iv_ic); 1369 } 1370 1371 /* 1372 * Start all runnable vap's on a device. 1373 */ 1374 void 1375 ieee80211_start_all(struct ieee80211com *ic) 1376 { 1377 struct ieee80211vap *vap; 1378 1379 IEEE80211_LOCK(ic); 1380 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1381 struct ifnet *ifp = vap->iv_ifp; 1382 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1383 ieee80211_start_locked(vap); 1384 } 1385 IEEE80211_UNLOCK(ic); 1386 } 1387 1388 /* 1389 * Stop a vap. We force it down using the state machine 1390 * then mark it's ifnet not running. If this is the last 1391 * vap running on the underlying device then we close it 1392 * too to insure it will be properly initialized when the 1393 * next vap is brought up. 1394 */ 1395 void 1396 ieee80211_stop_locked(struct ieee80211vap *vap) 1397 { 1398 struct ieee80211com *ic = vap->iv_ic; 1399 struct ifnet *ifp = vap->iv_ifp; 1400 1401 IEEE80211_LOCK_ASSERT(ic); 1402 1403 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1404 "stop running, %d vaps running\n", ic->ic_nrunning); 1405 1406 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1407 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1408 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1409 if (--ic->ic_nrunning == 0) { 1410 IEEE80211_DPRINTF(vap, 1411 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1412 "down parent %s\n", ic->ic_name); 1413 ieee80211_runtask(ic, &ic->ic_parent_task); 1414 } 1415 } 1416 } 1417 1418 void 1419 ieee80211_stop(struct ieee80211vap *vap) 1420 { 1421 struct ieee80211com *ic = vap->iv_ic; 1422 1423 IEEE80211_LOCK(ic); 1424 ieee80211_stop_locked(vap); 1425 IEEE80211_UNLOCK(ic); 1426 } 1427 1428 /* 1429 * Stop all vap's running on a device. 1430 */ 1431 void 1432 ieee80211_stop_all(struct ieee80211com *ic) 1433 { 1434 struct ieee80211vap *vap; 1435 1436 IEEE80211_LOCK(ic); 1437 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1438 struct ifnet *ifp = vap->iv_ifp; 1439 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1440 ieee80211_stop_locked(vap); 1441 } 1442 IEEE80211_UNLOCK(ic); 1443 1444 ieee80211_waitfor_parent(ic); 1445 } 1446 1447 /* 1448 * Stop all vap's running on a device and arrange 1449 * for those that were running to be resumed. 1450 */ 1451 void 1452 ieee80211_suspend_all(struct ieee80211com *ic) 1453 { 1454 struct ieee80211vap *vap; 1455 1456 IEEE80211_LOCK(ic); 1457 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1458 struct ifnet *ifp = vap->iv_ifp; 1459 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1460 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1461 ieee80211_stop_locked(vap); 1462 } 1463 } 1464 IEEE80211_UNLOCK(ic); 1465 1466 ieee80211_waitfor_parent(ic); 1467 } 1468 1469 /* 1470 * Start all vap's marked for resume. 1471 */ 1472 void 1473 ieee80211_resume_all(struct ieee80211com *ic) 1474 { 1475 struct ieee80211vap *vap; 1476 1477 IEEE80211_LOCK(ic); 1478 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1479 struct ifnet *ifp = vap->iv_ifp; 1480 if (!IFNET_IS_UP_RUNNING(ifp) && 1481 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1482 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1483 ieee80211_start_locked(vap); 1484 } 1485 } 1486 IEEE80211_UNLOCK(ic); 1487 } 1488 1489 void 1490 ieee80211_beacon_miss(struct ieee80211com *ic) 1491 { 1492 IEEE80211_LOCK(ic); 1493 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1494 /* Process in a taskq, the handler may reenter the driver */ 1495 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1496 } 1497 IEEE80211_UNLOCK(ic); 1498 } 1499 1500 static void 1501 beacon_miss(void *arg, int npending) 1502 { 1503 struct ieee80211com *ic = arg; 1504 struct ieee80211vap *vap; 1505 1506 IEEE80211_LOCK(ic); 1507 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1508 /* 1509 * We only pass events through for sta vap's in RUN state; 1510 * may be too restrictive but for now this saves all the 1511 * handlers duplicating these checks. 1512 */ 1513 if (vap->iv_opmode == IEEE80211_M_STA && 1514 vap->iv_state >= IEEE80211_S_RUN && 1515 vap->iv_bmiss != NULL) 1516 vap->iv_bmiss(vap); 1517 } 1518 IEEE80211_UNLOCK(ic); 1519 } 1520 1521 static void 1522 beacon_swmiss(void *arg, int npending) 1523 { 1524 struct ieee80211vap *vap = arg; 1525 struct ieee80211com *ic = vap->iv_ic; 1526 1527 IEEE80211_LOCK(ic); 1528 if (vap->iv_state == IEEE80211_S_RUN) { 1529 /* XXX Call multiple times if npending > zero? */ 1530 vap->iv_bmiss(vap); 1531 } 1532 IEEE80211_UNLOCK(ic); 1533 } 1534 1535 /* 1536 * Software beacon miss handling. Check if any beacons 1537 * were received in the last period. If not post a 1538 * beacon miss; otherwise reset the counter. 1539 */ 1540 void 1541 ieee80211_swbmiss(void *arg) 1542 { 1543 struct ieee80211vap *vap = arg; 1544 struct ieee80211com *ic = vap->iv_ic; 1545 1546 IEEE80211_LOCK_ASSERT(ic); 1547 1548 /* XXX sleep state? */ 1549 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1550 ("wrong state %d", vap->iv_state)); 1551 1552 if (ic->ic_flags & IEEE80211_F_SCAN) { 1553 /* 1554 * If scanning just ignore and reset state. If we get a 1555 * bmiss after coming out of scan because we haven't had 1556 * time to receive a beacon then we should probe the AP 1557 * before posting a real bmiss (unless iv_bmiss_max has 1558 * been artifiically lowered). A cleaner solution might 1559 * be to disable the timer on scan start/end but to handle 1560 * case of multiple sta vap's we'd need to disable the 1561 * timers of all affected vap's. 1562 */ 1563 vap->iv_swbmiss_count = 0; 1564 } else if (vap->iv_swbmiss_count == 0) { 1565 if (vap->iv_bmiss != NULL) 1566 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1567 } else 1568 vap->iv_swbmiss_count = 0; 1569 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1570 ieee80211_swbmiss, vap); 1571 } 1572 1573 /* 1574 * Start an 802.11h channel switch. We record the parameters, 1575 * mark the operation pending, notify each vap through the 1576 * beacon update mechanism so it can update the beacon frame 1577 * contents, and then switch vap's to CSA state to block outbound 1578 * traffic. Devices that handle CSA directly can use the state 1579 * switch to do the right thing so long as they call 1580 * ieee80211_csa_completeswitch when it's time to complete the 1581 * channel change. Devices that depend on the net80211 layer can 1582 * use ieee80211_beacon_update to handle the countdown and the 1583 * channel switch. 1584 */ 1585 void 1586 ieee80211_csa_startswitch(struct ieee80211com *ic, 1587 struct ieee80211_channel *c, int mode, int count) 1588 { 1589 struct ieee80211vap *vap; 1590 1591 IEEE80211_LOCK_ASSERT(ic); 1592 1593 ic->ic_csa_newchan = c; 1594 ic->ic_csa_mode = mode; 1595 ic->ic_csa_count = count; 1596 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1597 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1598 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1599 vap->iv_opmode == IEEE80211_M_IBSS || 1600 vap->iv_opmode == IEEE80211_M_MBSS) 1601 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1602 /* switch to CSA state to block outbound traffic */ 1603 if (vap->iv_state == IEEE80211_S_RUN) 1604 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1605 } 1606 ieee80211_notify_csa(ic, c, mode, count); 1607 } 1608 1609 /* 1610 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1611 * This is called by both the completion and cancellation functions 1612 * so each VAP is placed back in the RUN state and can thus transmit. 1613 */ 1614 static void 1615 csa_completeswitch(struct ieee80211com *ic) 1616 { 1617 struct ieee80211vap *vap; 1618 1619 ic->ic_csa_newchan = NULL; 1620 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1621 1622 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1623 if (vap->iv_state == IEEE80211_S_CSA) 1624 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1625 } 1626 1627 /* 1628 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1629 * We clear state and move all vap's in CSA state to RUN state 1630 * so they can again transmit. 1631 * 1632 * Although this may not be completely correct, update the BSS channel 1633 * for each VAP to the newly configured channel. The setcurchan sets 1634 * the current operating channel for the interface (so the radio does 1635 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1636 * reported information via ioctl. 1637 */ 1638 void 1639 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1640 { 1641 struct ieee80211vap *vap; 1642 1643 IEEE80211_LOCK_ASSERT(ic); 1644 1645 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1646 1647 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1648 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1649 if (vap->iv_state == IEEE80211_S_CSA) 1650 vap->iv_bss->ni_chan = ic->ic_curchan; 1651 1652 csa_completeswitch(ic); 1653 } 1654 1655 /* 1656 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1657 * We clear state and move all vap's in CSA state to RUN state 1658 * so they can again transmit. 1659 */ 1660 void 1661 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1662 { 1663 IEEE80211_LOCK_ASSERT(ic); 1664 1665 csa_completeswitch(ic); 1666 } 1667 1668 /* 1669 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1670 * We clear state and move all vap's in CAC state to RUN state. 1671 */ 1672 void 1673 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1674 { 1675 struct ieee80211com *ic = vap0->iv_ic; 1676 struct ieee80211vap *vap; 1677 1678 IEEE80211_LOCK(ic); 1679 /* 1680 * Complete CAC state change for lead vap first; then 1681 * clock all the other vap's waiting. 1682 */ 1683 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1684 ("wrong state %d", vap0->iv_state)); 1685 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1686 1687 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1688 if (vap->iv_state == IEEE80211_S_CAC) 1689 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1690 IEEE80211_UNLOCK(ic); 1691 } 1692 1693 /* 1694 * Force all vap's other than the specified vap to the INIT state 1695 * and mark them as waiting for a scan to complete. These vaps 1696 * will be brought up when the scan completes and the scanning vap 1697 * reaches RUN state by wakeupwaiting. 1698 */ 1699 static void 1700 markwaiting(struct ieee80211vap *vap0) 1701 { 1702 struct ieee80211com *ic = vap0->iv_ic; 1703 struct ieee80211vap *vap; 1704 1705 IEEE80211_LOCK_ASSERT(ic); 1706 1707 /* 1708 * A vap list entry can not disappear since we are running on the 1709 * taskqueue and a vap destroy will queue and drain another state 1710 * change task. 1711 */ 1712 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1713 if (vap == vap0) 1714 continue; 1715 if (vap->iv_state != IEEE80211_S_INIT) { 1716 /* NB: iv_newstate may drop the lock */ 1717 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1718 IEEE80211_LOCK_ASSERT(ic); 1719 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1720 } 1721 } 1722 } 1723 1724 /* 1725 * Wakeup all vap's waiting for a scan to complete. This is the 1726 * companion to markwaiting (above) and is used to coordinate 1727 * multiple vaps scanning. 1728 * This is called from the state taskqueue. 1729 */ 1730 static void 1731 wakeupwaiting(struct ieee80211vap *vap0) 1732 { 1733 struct ieee80211com *ic = vap0->iv_ic; 1734 struct ieee80211vap *vap; 1735 1736 IEEE80211_LOCK_ASSERT(ic); 1737 1738 /* 1739 * A vap list entry can not disappear since we are running on the 1740 * taskqueue and a vap destroy will queue and drain another state 1741 * change task. 1742 */ 1743 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1744 if (vap == vap0) 1745 continue; 1746 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1747 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1748 /* NB: sta's cannot go INIT->RUN */ 1749 /* NB: iv_newstate may drop the lock */ 1750 vap->iv_newstate(vap, 1751 vap->iv_opmode == IEEE80211_M_STA ? 1752 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1753 IEEE80211_LOCK_ASSERT(ic); 1754 } 1755 } 1756 } 1757 1758 /* 1759 * Handle post state change work common to all operating modes. 1760 */ 1761 static void 1762 ieee80211_newstate_cb(void *xvap, int npending) 1763 { 1764 struct ieee80211vap *vap = xvap; 1765 struct ieee80211com *ic = vap->iv_ic; 1766 enum ieee80211_state nstate, ostate; 1767 int arg, rc; 1768 1769 IEEE80211_LOCK(ic); 1770 nstate = vap->iv_nstate; 1771 arg = vap->iv_nstate_arg; 1772 1773 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1774 /* 1775 * We have been requested to drop back to the INIT before 1776 * proceeding to the new state. 1777 */ 1778 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1779 "%s: %s -> %s arg %d\n", __func__, 1780 ieee80211_state_name[vap->iv_state], 1781 ieee80211_state_name[IEEE80211_S_INIT], arg); 1782 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1783 IEEE80211_LOCK_ASSERT(ic); 1784 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1785 } 1786 1787 ostate = vap->iv_state; 1788 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1789 /* 1790 * SCAN was forced; e.g. on beacon miss. Force other running 1791 * vap's to INIT state and mark them as waiting for the scan to 1792 * complete. This insures they don't interfere with our 1793 * scanning. Since we are single threaded the vaps can not 1794 * transition again while we are executing. 1795 * 1796 * XXX not always right, assumes ap follows sta 1797 */ 1798 markwaiting(vap); 1799 } 1800 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1801 "%s: %s -> %s arg %d\n", __func__, 1802 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1803 1804 rc = vap->iv_newstate(vap, nstate, arg); 1805 IEEE80211_LOCK_ASSERT(ic); 1806 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1807 if (rc != 0) { 1808 /* State transition failed */ 1809 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1810 KASSERT(nstate != IEEE80211_S_INIT, 1811 ("INIT state change failed")); 1812 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1813 "%s: %s returned error %d\n", __func__, 1814 ieee80211_state_name[nstate], rc); 1815 goto done; 1816 } 1817 1818 /* No actual transition, skip post processing */ 1819 if (ostate == nstate) 1820 goto done; 1821 1822 if (nstate == IEEE80211_S_RUN) { 1823 /* 1824 * OACTIVE may be set on the vap if the upper layer 1825 * tried to transmit (e.g. IPv6 NDP) before we reach 1826 * RUN state. Clear it and restart xmit. 1827 * 1828 * Note this can also happen as a result of SLEEP->RUN 1829 * (i.e. coming out of power save mode). 1830 */ 1831 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1832 1833 /* 1834 * XXX TODO Kick-start a VAP queue - this should be a method! 1835 */ 1836 1837 /* bring up any vaps waiting on us */ 1838 wakeupwaiting(vap); 1839 } else if (nstate == IEEE80211_S_INIT) { 1840 /* 1841 * Flush the scan cache if we did the last scan (XXX?) 1842 * and flush any frames on send queues from this vap. 1843 * Note the mgt q is used only for legacy drivers and 1844 * will go away shortly. 1845 */ 1846 ieee80211_scan_flush(vap); 1847 1848 /* 1849 * XXX TODO: ic/vap queue flush 1850 */ 1851 } 1852 done: 1853 IEEE80211_UNLOCK(ic); 1854 } 1855 1856 /* 1857 * Public interface for initiating a state machine change. 1858 * This routine single-threads the request and coordinates 1859 * the scheduling of multiple vaps for the purpose of selecting 1860 * an operating channel. Specifically the following scenarios 1861 * are handled: 1862 * o only one vap can be selecting a channel so on transition to 1863 * SCAN state if another vap is already scanning then 1864 * mark the caller for later processing and return without 1865 * doing anything (XXX? expectations by caller of synchronous operation) 1866 * o only one vap can be doing CAC of a channel so on transition to 1867 * CAC state if another vap is already scanning for radar then 1868 * mark the caller for later processing and return without 1869 * doing anything (XXX? expectations by caller of synchronous operation) 1870 * o if another vap is already running when a request is made 1871 * to SCAN then an operating channel has been chosen; bypass 1872 * the scan and just join the channel 1873 * 1874 * Note that the state change call is done through the iv_newstate 1875 * method pointer so any driver routine gets invoked. The driver 1876 * will normally call back into operating mode-specific 1877 * ieee80211_newstate routines (below) unless it needs to completely 1878 * bypass the state machine (e.g. because the firmware has it's 1879 * own idea how things should work). Bypassing the net80211 layer 1880 * is usually a mistake and indicates lack of proper integration 1881 * with the net80211 layer. 1882 */ 1883 int 1884 ieee80211_new_state_locked(struct ieee80211vap *vap, 1885 enum ieee80211_state nstate, int arg) 1886 { 1887 struct ieee80211com *ic = vap->iv_ic; 1888 struct ieee80211vap *vp; 1889 enum ieee80211_state ostate; 1890 int nrunning, nscanning; 1891 1892 IEEE80211_LOCK_ASSERT(ic); 1893 1894 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1895 if (vap->iv_nstate == IEEE80211_S_INIT) { 1896 /* 1897 * XXX The vap is being stopped, do no allow any other 1898 * state changes until this is completed. 1899 */ 1900 return -1; 1901 } else if (vap->iv_state != vap->iv_nstate) { 1902 #if 0 1903 /* Warn if the previous state hasn't completed. */ 1904 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1905 "%s: pending %s -> %s transition lost\n", __func__, 1906 ieee80211_state_name[vap->iv_state], 1907 ieee80211_state_name[vap->iv_nstate]); 1908 #else 1909 /* XXX temporarily enable to identify issues */ 1910 if_printf(vap->iv_ifp, 1911 "%s: pending %s -> %s transition lost\n", 1912 __func__, ieee80211_state_name[vap->iv_state], 1913 ieee80211_state_name[vap->iv_nstate]); 1914 #endif 1915 } 1916 } 1917 1918 nrunning = nscanning = 0; 1919 /* XXX can track this state instead of calculating */ 1920 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1921 if (vp != vap) { 1922 if (vp->iv_state >= IEEE80211_S_RUN) 1923 nrunning++; 1924 /* XXX doesn't handle bg scan */ 1925 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1926 else if (vp->iv_state > IEEE80211_S_INIT) 1927 nscanning++; 1928 } 1929 } 1930 ostate = vap->iv_state; 1931 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1932 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1933 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1934 nrunning, nscanning); 1935 switch (nstate) { 1936 case IEEE80211_S_SCAN: 1937 if (ostate == IEEE80211_S_INIT) { 1938 /* 1939 * INIT -> SCAN happens on initial bringup. 1940 */ 1941 KASSERT(!(nscanning && nrunning), 1942 ("%d scanning and %d running", nscanning, nrunning)); 1943 if (nscanning) { 1944 /* 1945 * Someone is scanning, defer our state 1946 * change until the work has completed. 1947 */ 1948 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1949 "%s: defer %s -> %s\n", 1950 __func__, ieee80211_state_name[ostate], 1951 ieee80211_state_name[nstate]); 1952 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1953 return 0; 1954 } 1955 if (nrunning) { 1956 /* 1957 * Someone is operating; just join the channel 1958 * they have chosen. 1959 */ 1960 /* XXX kill arg? */ 1961 /* XXX check each opmode, adhoc? */ 1962 if (vap->iv_opmode == IEEE80211_M_STA) 1963 nstate = IEEE80211_S_SCAN; 1964 else 1965 nstate = IEEE80211_S_RUN; 1966 #ifdef IEEE80211_DEBUG 1967 if (nstate != IEEE80211_S_SCAN) { 1968 IEEE80211_DPRINTF(vap, 1969 IEEE80211_MSG_STATE, 1970 "%s: override, now %s -> %s\n", 1971 __func__, 1972 ieee80211_state_name[ostate], 1973 ieee80211_state_name[nstate]); 1974 } 1975 #endif 1976 } 1977 } 1978 break; 1979 case IEEE80211_S_RUN: 1980 if (vap->iv_opmode == IEEE80211_M_WDS && 1981 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1982 nscanning) { 1983 /* 1984 * Legacy WDS with someone else scanning; don't 1985 * go online until that completes as we should 1986 * follow the other vap to the channel they choose. 1987 */ 1988 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1989 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1990 ieee80211_state_name[ostate], 1991 ieee80211_state_name[nstate]); 1992 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1993 return 0; 1994 } 1995 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1996 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1997 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1998 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1999 /* 2000 * This is a DFS channel, transition to CAC state 2001 * instead of RUN. This allows us to initiate 2002 * Channel Availability Check (CAC) as specified 2003 * by 11h/DFS. 2004 */ 2005 nstate = IEEE80211_S_CAC; 2006 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2007 "%s: override %s -> %s (DFS)\n", __func__, 2008 ieee80211_state_name[ostate], 2009 ieee80211_state_name[nstate]); 2010 } 2011 break; 2012 case IEEE80211_S_INIT: 2013 /* cancel any scan in progress */ 2014 ieee80211_cancel_scan(vap); 2015 if (ostate == IEEE80211_S_INIT ) { 2016 /* XXX don't believe this */ 2017 /* INIT -> INIT. nothing to do */ 2018 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2019 } 2020 /* fall thru... */ 2021 default: 2022 break; 2023 } 2024 /* defer the state change to a thread */ 2025 vap->iv_nstate = nstate; 2026 vap->iv_nstate_arg = arg; 2027 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2028 ieee80211_runtask(ic, &vap->iv_nstate_task); 2029 return EINPROGRESS; 2030 } 2031 2032 int 2033 ieee80211_new_state(struct ieee80211vap *vap, 2034 enum ieee80211_state nstate, int arg) 2035 { 2036 struct ieee80211com *ic = vap->iv_ic; 2037 int rc; 2038 2039 IEEE80211_LOCK(ic); 2040 rc = ieee80211_new_state_locked(vap, nstate, arg); 2041 IEEE80211_UNLOCK(ic); 2042 return rc; 2043 } 2044