1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * Copyright (c) 2012 IEEE 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 */ 27 28 #include <sys/cdefs.h> 29 __FBSDID("$FreeBSD$"); 30 31 /* 32 * IEEE 802.11 protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/ethernet.h> /* XXX for ether_sprintf */ 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_adhoc.h> 53 #include <net80211/ieee80211_sta.h> 54 #include <net80211/ieee80211_hostap.h> 55 #include <net80211/ieee80211_wds.h> 56 #ifdef IEEE80211_SUPPORT_MESH 57 #include <net80211/ieee80211_mesh.h> 58 #endif 59 #include <net80211/ieee80211_monitor.h> 60 #include <net80211/ieee80211_input.h> 61 62 /* XXX tunables */ 63 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 64 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 65 66 const char *mgt_subtype_name[] = { 67 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 68 "probe_req", "probe_resp", "timing_adv", "reserved#7", 69 "beacon", "atim", "disassoc", "auth", 70 "deauth", "action", "action_noack", "reserved#15" 71 }; 72 const char *ctl_subtype_name[] = { 73 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 74 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 75 "bar", "ba", "ps_poll", "rts", 76 "cts", "ack", "cf_end", "cf_end_ack" 77 }; 78 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 79 "IBSS", /* IEEE80211_M_IBSS */ 80 "STA", /* IEEE80211_M_STA */ 81 "WDS", /* IEEE80211_M_WDS */ 82 "AHDEMO", /* IEEE80211_M_AHDEMO */ 83 "HOSTAP", /* IEEE80211_M_HOSTAP */ 84 "MONITOR", /* IEEE80211_M_MONITOR */ 85 "MBSS" /* IEEE80211_M_MBSS */ 86 }; 87 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 88 "INIT", /* IEEE80211_S_INIT */ 89 "SCAN", /* IEEE80211_S_SCAN */ 90 "AUTH", /* IEEE80211_S_AUTH */ 91 "ASSOC", /* IEEE80211_S_ASSOC */ 92 "CAC", /* IEEE80211_S_CAC */ 93 "RUN", /* IEEE80211_S_RUN */ 94 "CSA", /* IEEE80211_S_CSA */ 95 "SLEEP", /* IEEE80211_S_SLEEP */ 96 }; 97 const char *ieee80211_wme_acnames[] = { 98 "WME_AC_BE", 99 "WME_AC_BK", 100 "WME_AC_VI", 101 "WME_AC_VO", 102 "WME_UPSD", 103 }; 104 105 106 /* 107 * Reason code descriptions were (mostly) obtained from 108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 109 */ 110 const char * 111 ieee80211_reason_to_string(uint16_t reason) 112 { 113 switch (reason) { 114 case IEEE80211_REASON_UNSPECIFIED: 115 return ("unspecified"); 116 case IEEE80211_REASON_AUTH_EXPIRE: 117 return ("previous authentication is expired"); 118 case IEEE80211_REASON_AUTH_LEAVE: 119 return ("sending STA is leaving/has left IBSS or ESS"); 120 case IEEE80211_REASON_ASSOC_EXPIRE: 121 return ("disassociated due to inactivity"); 122 case IEEE80211_REASON_ASSOC_TOOMANY: 123 return ("too many associated STAs"); 124 case IEEE80211_REASON_NOT_AUTHED: 125 return ("class 2 frame received from nonauthenticated STA"); 126 case IEEE80211_REASON_NOT_ASSOCED: 127 return ("class 3 frame received from nonassociated STA"); 128 case IEEE80211_REASON_ASSOC_LEAVE: 129 return ("sending STA is leaving/has left BSS"); 130 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 131 return ("STA requesting (re)association is not authenticated"); 132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 133 return ("information in the Power Capability element is " 134 "unacceptable"); 135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 136 return ("information in the Supported Channels element is " 137 "unacceptable"); 138 case IEEE80211_REASON_IE_INVALID: 139 return ("invalid element"); 140 case IEEE80211_REASON_MIC_FAILURE: 141 return ("MIC failure"); 142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 143 return ("4-Way handshake timeout"); 144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 145 return ("group key update timeout"); 146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 147 return ("element in 4-Way handshake different from " 148 "(re)association request/probe response/beacon frame"); 149 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 150 return ("invalid group cipher"); 151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 152 return ("invalid pairwise cipher"); 153 case IEEE80211_REASON_AKMP_INVALID: 154 return ("invalid AKMP"); 155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 156 return ("unsupported version in RSN IE"); 157 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 158 return ("invalid capabilities in RSN IE"); 159 case IEEE80211_REASON_802_1X_AUTH_FAILED: 160 return ("IEEE 802.1X authentication failed"); 161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 162 return ("cipher suite rejected because of the security " 163 "policy"); 164 case IEEE80211_REASON_UNSPECIFIED_QOS: 165 return ("unspecified (QoS-related)"); 166 case IEEE80211_REASON_INSUFFICIENT_BW: 167 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 168 case IEEE80211_REASON_TOOMANY_FRAMES: 169 return ("too many frames need to be acknowledged"); 170 case IEEE80211_REASON_OUTSIDE_TXOP: 171 return ("STA is transmitting outside the limits of its TXOPs"); 172 case IEEE80211_REASON_LEAVING_QBSS: 173 return ("requested from peer STA (the STA is " 174 "resetting/leaving the BSS)"); 175 case IEEE80211_REASON_BAD_MECHANISM: 176 return ("requested from peer STA (it does not want to use " 177 "the mechanism)"); 178 case IEEE80211_REASON_SETUP_NEEDED: 179 return ("requested from peer STA (setup is required for the " 180 "used mechanism)"); 181 case IEEE80211_REASON_TIMEOUT: 182 return ("requested from peer STA (timeout)"); 183 case IEEE80211_REASON_PEER_LINK_CANCELED: 184 return ("SME cancels the mesh peering instance (not related " 185 "to the maximum number of peer mesh STAs)"); 186 case IEEE80211_REASON_MESH_MAX_PEERS: 187 return ("maximum number of peer mesh STAs was reached"); 188 case IEEE80211_REASON_MESH_CPVIOLATION: 189 return ("the received information violates the Mesh " 190 "Configuration policy configured in the mesh STA " 191 "profile"); 192 case IEEE80211_REASON_MESH_CLOSE_RCVD: 193 return ("the mesh STA has received a Mesh Peering Close " 194 "message requesting to close the mesh peering"); 195 case IEEE80211_REASON_MESH_MAX_RETRIES: 196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 197 "Peering Open messages, without receiving a Mesh " 198 "Peering Confirm message"); 199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 200 return ("the confirmTimer for the mesh peering instance times " 201 "out"); 202 case IEEE80211_REASON_MESH_INVALID_GTK: 203 return ("the mesh STA fails to unwrap the GTK or the values " 204 "in the wrapped contents do not match"); 205 case IEEE80211_REASON_MESH_INCONS_PARAMS: 206 return ("the mesh STA receives inconsistent information about " 207 "the mesh parameters between Mesh Peering Management " 208 "frames"); 209 case IEEE80211_REASON_MESH_INVALID_SECURITY: 210 return ("the mesh STA fails the authenticated mesh peering " 211 "exchange because due to failure in selecting " 212 "pairwise/group ciphersuite"); 213 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 214 return ("the mesh STA does not have proxy information for " 215 "this external destination"); 216 case IEEE80211_REASON_MESH_PERR_NO_FI: 217 return ("the mesh STA does not have forwarding information " 218 "for this destination"); 219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 220 return ("the mesh STA determines that the link to the next " 221 "hop of an active path in its forwarding information " 222 "is no longer usable"); 223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 224 return ("the MAC address of the STA already exists in the " 225 "mesh BSS"); 226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 227 return ("the mesh STA performs channel switch to meet " 228 "regulatory requirements"); 229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 230 return ("the mesh STA performs channel switch with " 231 "unspecified reason"); 232 default: 233 return ("reserved/unknown"); 234 } 235 } 236 237 static void beacon_miss(void *, int); 238 static void beacon_swmiss(void *, int); 239 static void parent_updown(void *, int); 240 static void update_mcast(void *, int); 241 static void update_promisc(void *, int); 242 static void update_channel(void *, int); 243 static void update_chw(void *, int); 244 static void vap_update_wme(void *, int); 245 static void restart_vaps(void *, int); 246 static void ieee80211_newstate_cb(void *, int); 247 248 static int 249 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 250 const struct ieee80211_bpf_params *params) 251 { 252 253 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 254 m_freem(m); 255 return ENETDOWN; 256 } 257 258 void 259 ieee80211_proto_attach(struct ieee80211com *ic) 260 { 261 uint8_t hdrlen; 262 263 /* override the 802.3 setting */ 264 hdrlen = ic->ic_headroom 265 + sizeof(struct ieee80211_qosframe_addr4) 266 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 267 + IEEE80211_WEP_EXTIVLEN; 268 /* XXX no way to recalculate on ifdetach */ 269 if (ALIGN(hdrlen) > max_linkhdr) { 270 /* XXX sanity check... */ 271 max_linkhdr = ALIGN(hdrlen); 272 max_hdr = max_linkhdr + max_protohdr; 273 max_datalen = MHLEN - max_hdr; 274 } 275 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 276 277 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 278 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 279 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 280 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 281 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 282 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 283 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 284 285 ic->ic_wme.wme_hipri_switch_hysteresis = 286 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 287 288 /* initialize management frame handlers */ 289 ic->ic_send_mgmt = ieee80211_send_mgmt; 290 ic->ic_raw_xmit = null_raw_xmit; 291 292 ieee80211_adhoc_attach(ic); 293 ieee80211_sta_attach(ic); 294 ieee80211_wds_attach(ic); 295 ieee80211_hostap_attach(ic); 296 #ifdef IEEE80211_SUPPORT_MESH 297 ieee80211_mesh_attach(ic); 298 #endif 299 ieee80211_monitor_attach(ic); 300 } 301 302 void 303 ieee80211_proto_detach(struct ieee80211com *ic) 304 { 305 ieee80211_monitor_detach(ic); 306 #ifdef IEEE80211_SUPPORT_MESH 307 ieee80211_mesh_detach(ic); 308 #endif 309 ieee80211_hostap_detach(ic); 310 ieee80211_wds_detach(ic); 311 ieee80211_adhoc_detach(ic); 312 ieee80211_sta_detach(ic); 313 } 314 315 static void 316 null_update_beacon(struct ieee80211vap *vap, int item) 317 { 318 } 319 320 void 321 ieee80211_proto_vattach(struct ieee80211vap *vap) 322 { 323 struct ieee80211com *ic = vap->iv_ic; 324 struct ifnet *ifp = vap->iv_ifp; 325 int i; 326 327 /* override the 802.3 setting */ 328 ifp->if_hdrlen = ic->ic_headroom 329 + sizeof(struct ieee80211_qosframe_addr4) 330 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 331 + IEEE80211_WEP_EXTIVLEN; 332 333 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 334 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 335 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 336 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 337 callout_init(&vap->iv_mgtsend, 1); 338 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 339 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 340 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 341 /* 342 * Install default tx rate handling: no fixed rate, lowest 343 * supported rate for mgmt and multicast frames. Default 344 * max retry count. These settings can be changed by the 345 * driver and/or user applications. 346 */ 347 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 348 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 349 350 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 351 352 /* 353 * Setting the management rate to MCS 0 assumes that the 354 * BSS Basic rate set is empty and the BSS Basic MCS set 355 * is not. 356 * 357 * Since we're not checking this, default to the lowest 358 * defined rate for this mode. 359 * 360 * At least one 11n AP (DLINK DIR-825) is reported to drop 361 * some MCS management traffic (eg BA response frames.) 362 * 363 * See also: 9.6.0 of the 802.11n-2009 specification. 364 */ 365 #ifdef NOTYET 366 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 367 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 368 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 369 } else { 370 vap->iv_txparms[i].mgmtrate = 371 rs->rs_rates[0] & IEEE80211_RATE_VAL; 372 vap->iv_txparms[i].mcastrate = 373 rs->rs_rates[0] & IEEE80211_RATE_VAL; 374 } 375 #endif 376 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 377 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 378 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 379 } 380 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 381 382 vap->iv_update_beacon = null_update_beacon; 383 vap->iv_deliver_data = ieee80211_deliver_data; 384 385 /* attach support for operating mode */ 386 ic->ic_vattach[vap->iv_opmode](vap); 387 } 388 389 void 390 ieee80211_proto_vdetach(struct ieee80211vap *vap) 391 { 392 #define FREEAPPIE(ie) do { \ 393 if (ie != NULL) \ 394 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 395 } while (0) 396 /* 397 * Detach operating mode module. 398 */ 399 if (vap->iv_opdetach != NULL) 400 vap->iv_opdetach(vap); 401 /* 402 * This should not be needed as we detach when reseting 403 * the state but be conservative here since the 404 * authenticator may do things like spawn kernel threads. 405 */ 406 if (vap->iv_auth->ia_detach != NULL) 407 vap->iv_auth->ia_detach(vap); 408 /* 409 * Detach any ACL'ator. 410 */ 411 if (vap->iv_acl != NULL) 412 vap->iv_acl->iac_detach(vap); 413 414 FREEAPPIE(vap->iv_appie_beacon); 415 FREEAPPIE(vap->iv_appie_probereq); 416 FREEAPPIE(vap->iv_appie_proberesp); 417 FREEAPPIE(vap->iv_appie_assocreq); 418 FREEAPPIE(vap->iv_appie_assocresp); 419 FREEAPPIE(vap->iv_appie_wpa); 420 #undef FREEAPPIE 421 } 422 423 /* 424 * Simple-minded authenticator module support. 425 */ 426 427 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 428 /* XXX well-known names */ 429 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 430 "wlan_internal", /* IEEE80211_AUTH_NONE */ 431 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 432 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 433 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 434 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 435 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 436 }; 437 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 438 439 static const struct ieee80211_authenticator auth_internal = { 440 .ia_name = "wlan_internal", 441 .ia_attach = NULL, 442 .ia_detach = NULL, 443 .ia_node_join = NULL, 444 .ia_node_leave = NULL, 445 }; 446 447 /* 448 * Setup internal authenticators once; they are never unregistered. 449 */ 450 static void 451 ieee80211_auth_setup(void) 452 { 453 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 454 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 455 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 456 } 457 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 458 459 const struct ieee80211_authenticator * 460 ieee80211_authenticator_get(int auth) 461 { 462 if (auth >= IEEE80211_AUTH_MAX) 463 return NULL; 464 if (authenticators[auth] == NULL) 465 ieee80211_load_module(auth_modnames[auth]); 466 return authenticators[auth]; 467 } 468 469 void 470 ieee80211_authenticator_register(int type, 471 const struct ieee80211_authenticator *auth) 472 { 473 if (type >= IEEE80211_AUTH_MAX) 474 return; 475 authenticators[type] = auth; 476 } 477 478 void 479 ieee80211_authenticator_unregister(int type) 480 { 481 482 if (type >= IEEE80211_AUTH_MAX) 483 return; 484 authenticators[type] = NULL; 485 } 486 487 /* 488 * Very simple-minded ACL module support. 489 */ 490 /* XXX just one for now */ 491 static const struct ieee80211_aclator *acl = NULL; 492 493 void 494 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 495 { 496 printf("wlan: %s acl policy registered\n", iac->iac_name); 497 acl = iac; 498 } 499 500 void 501 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 502 { 503 if (acl == iac) 504 acl = NULL; 505 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 506 } 507 508 const struct ieee80211_aclator * 509 ieee80211_aclator_get(const char *name) 510 { 511 if (acl == NULL) 512 ieee80211_load_module("wlan_acl"); 513 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 514 } 515 516 void 517 ieee80211_print_essid(const uint8_t *essid, int len) 518 { 519 const uint8_t *p; 520 int i; 521 522 if (len > IEEE80211_NWID_LEN) 523 len = IEEE80211_NWID_LEN; 524 /* determine printable or not */ 525 for (i = 0, p = essid; i < len; i++, p++) { 526 if (*p < ' ' || *p > 0x7e) 527 break; 528 } 529 if (i == len) { 530 printf("\""); 531 for (i = 0, p = essid; i < len; i++, p++) 532 printf("%c", *p); 533 printf("\""); 534 } else { 535 printf("0x"); 536 for (i = 0, p = essid; i < len; i++, p++) 537 printf("%02x", *p); 538 } 539 } 540 541 void 542 ieee80211_dump_pkt(struct ieee80211com *ic, 543 const uint8_t *buf, int len, int rate, int rssi) 544 { 545 const struct ieee80211_frame *wh; 546 int i; 547 548 wh = (const struct ieee80211_frame *)buf; 549 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 550 case IEEE80211_FC1_DIR_NODS: 551 printf("NODS %s", ether_sprintf(wh->i_addr2)); 552 printf("->%s", ether_sprintf(wh->i_addr1)); 553 printf("(%s)", ether_sprintf(wh->i_addr3)); 554 break; 555 case IEEE80211_FC1_DIR_TODS: 556 printf("TODS %s", ether_sprintf(wh->i_addr2)); 557 printf("->%s", ether_sprintf(wh->i_addr3)); 558 printf("(%s)", ether_sprintf(wh->i_addr1)); 559 break; 560 case IEEE80211_FC1_DIR_FROMDS: 561 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 562 printf("->%s", ether_sprintf(wh->i_addr1)); 563 printf("(%s)", ether_sprintf(wh->i_addr2)); 564 break; 565 case IEEE80211_FC1_DIR_DSTODS: 566 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 567 printf("->%s", ether_sprintf(wh->i_addr3)); 568 printf("(%s", ether_sprintf(wh->i_addr2)); 569 printf("->%s)", ether_sprintf(wh->i_addr1)); 570 break; 571 } 572 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 573 case IEEE80211_FC0_TYPE_DATA: 574 printf(" data"); 575 break; 576 case IEEE80211_FC0_TYPE_MGT: 577 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 578 break; 579 default: 580 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 581 break; 582 } 583 if (IEEE80211_QOS_HAS_SEQ(wh)) { 584 const struct ieee80211_qosframe *qwh = 585 (const struct ieee80211_qosframe *)buf; 586 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 587 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 588 } 589 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 590 int off; 591 592 off = ieee80211_anyhdrspace(ic, wh); 593 printf(" WEP [IV %.02x %.02x %.02x", 594 buf[off+0], buf[off+1], buf[off+2]); 595 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 596 printf(" %.02x %.02x %.02x", 597 buf[off+4], buf[off+5], buf[off+6]); 598 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 599 } 600 if (rate >= 0) 601 printf(" %dM", rate / 2); 602 if (rssi >= 0) 603 printf(" +%d", rssi); 604 printf("\n"); 605 if (len > 0) { 606 for (i = 0; i < len; i++) { 607 if ((i & 1) == 0) 608 printf(" "); 609 printf("%02x", buf[i]); 610 } 611 printf("\n"); 612 } 613 } 614 615 static __inline int 616 findrix(const struct ieee80211_rateset *rs, int r) 617 { 618 int i; 619 620 for (i = 0; i < rs->rs_nrates; i++) 621 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 622 return i; 623 return -1; 624 } 625 626 int 627 ieee80211_fix_rate(struct ieee80211_node *ni, 628 struct ieee80211_rateset *nrs, int flags) 629 { 630 struct ieee80211vap *vap = ni->ni_vap; 631 struct ieee80211com *ic = ni->ni_ic; 632 int i, j, rix, error; 633 int okrate, badrate, fixedrate, ucastrate; 634 const struct ieee80211_rateset *srs; 635 uint8_t r; 636 637 error = 0; 638 okrate = badrate = 0; 639 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 640 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 641 /* 642 * Workaround awkwardness with fixed rate. We are called 643 * to check both the legacy rate set and the HT rate set 644 * but we must apply any legacy fixed rate check only to the 645 * legacy rate set and vice versa. We cannot tell what type 646 * of rate set we've been given (legacy or HT) but we can 647 * distinguish the fixed rate type (MCS have 0x80 set). 648 * So to deal with this the caller communicates whether to 649 * check MCS or legacy rate using the flags and we use the 650 * type of any fixed rate to avoid applying an MCS to a 651 * legacy rate and vice versa. 652 */ 653 if (ucastrate & 0x80) { 654 if (flags & IEEE80211_F_DOFRATE) 655 flags &= ~IEEE80211_F_DOFRATE; 656 } else if ((ucastrate & 0x80) == 0) { 657 if (flags & IEEE80211_F_DOFMCS) 658 flags &= ~IEEE80211_F_DOFMCS; 659 } 660 /* NB: required to make MCS match below work */ 661 ucastrate &= IEEE80211_RATE_VAL; 662 } 663 fixedrate = IEEE80211_FIXED_RATE_NONE; 664 /* 665 * XXX we are called to process both MCS and legacy rates; 666 * we must use the appropriate basic rate set or chaos will 667 * ensue; for now callers that want MCS must supply 668 * IEEE80211_F_DOBRS; at some point we'll need to split this 669 * function so there are two variants, one for MCS and one 670 * for legacy rates. 671 */ 672 if (flags & IEEE80211_F_DOBRS) 673 srs = (const struct ieee80211_rateset *) 674 ieee80211_get_suphtrates(ic, ni->ni_chan); 675 else 676 srs = ieee80211_get_suprates(ic, ni->ni_chan); 677 for (i = 0; i < nrs->rs_nrates; ) { 678 if (flags & IEEE80211_F_DOSORT) { 679 /* 680 * Sort rates. 681 */ 682 for (j = i + 1; j < nrs->rs_nrates; j++) { 683 if (IEEE80211_RV(nrs->rs_rates[i]) > 684 IEEE80211_RV(nrs->rs_rates[j])) { 685 r = nrs->rs_rates[i]; 686 nrs->rs_rates[i] = nrs->rs_rates[j]; 687 nrs->rs_rates[j] = r; 688 } 689 } 690 } 691 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 692 badrate = r; 693 /* 694 * Check for fixed rate. 695 */ 696 if (r == ucastrate) 697 fixedrate = r; 698 /* 699 * Check against supported rates. 700 */ 701 rix = findrix(srs, r); 702 if (flags & IEEE80211_F_DONEGO) { 703 if (rix < 0) { 704 /* 705 * A rate in the node's rate set is not 706 * supported. If this is a basic rate and we 707 * are operating as a STA then this is an error. 708 * Otherwise we just discard/ignore the rate. 709 */ 710 if ((flags & IEEE80211_F_JOIN) && 711 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 712 error++; 713 } else if ((flags & IEEE80211_F_JOIN) == 0) { 714 /* 715 * Overwrite with the supported rate 716 * value so any basic rate bit is set. 717 */ 718 nrs->rs_rates[i] = srs->rs_rates[rix]; 719 } 720 } 721 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 722 /* 723 * Delete unacceptable rates. 724 */ 725 nrs->rs_nrates--; 726 for (j = i; j < nrs->rs_nrates; j++) 727 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 728 nrs->rs_rates[j] = 0; 729 continue; 730 } 731 if (rix >= 0) 732 okrate = nrs->rs_rates[i]; 733 i++; 734 } 735 if (okrate == 0 || error != 0 || 736 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 737 fixedrate != ucastrate)) { 738 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 739 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 740 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 741 return badrate | IEEE80211_RATE_BASIC; 742 } else 743 return IEEE80211_RV(okrate); 744 } 745 746 /* 747 * Reset 11g-related state. 748 */ 749 void 750 ieee80211_reset_erp(struct ieee80211com *ic) 751 { 752 ic->ic_flags &= ~IEEE80211_F_USEPROT; 753 ic->ic_nonerpsta = 0; 754 ic->ic_longslotsta = 0; 755 /* 756 * Short slot time is enabled only when operating in 11g 757 * and not in an IBSS. We must also honor whether or not 758 * the driver is capable of doing it. 759 */ 760 ieee80211_set_shortslottime(ic, 761 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 762 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 763 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 764 ic->ic_opmode == IEEE80211_M_HOSTAP && 765 (ic->ic_caps & IEEE80211_C_SHSLOT))); 766 /* 767 * Set short preamble and ERP barker-preamble flags. 768 */ 769 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 770 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 771 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 772 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 773 } else { 774 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 775 ic->ic_flags |= IEEE80211_F_USEBARKER; 776 } 777 } 778 779 /* 780 * Set the short slot time state and notify the driver. 781 */ 782 void 783 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 784 { 785 if (onoff) 786 ic->ic_flags |= IEEE80211_F_SHSLOT; 787 else 788 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 789 /* notify driver */ 790 if (ic->ic_updateslot != NULL) 791 ic->ic_updateslot(ic); 792 } 793 794 /* 795 * Check if the specified rate set supports ERP. 796 * NB: the rate set is assumed to be sorted. 797 */ 798 int 799 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 800 { 801 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 802 int i, j; 803 804 if (rs->rs_nrates < nitems(rates)) 805 return 0; 806 for (i = 0; i < nitems(rates); i++) { 807 for (j = 0; j < rs->rs_nrates; j++) { 808 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 809 if (rates[i] == r) 810 goto next; 811 if (r > rates[i]) 812 return 0; 813 } 814 return 0; 815 next: 816 ; 817 } 818 return 1; 819 } 820 821 /* 822 * Mark the basic rates for the rate table based on the 823 * operating mode. For real 11g we mark all the 11b rates 824 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 825 * 11b rates. There's also a pseudo 11a-mode used to mark only 826 * the basic OFDM rates. 827 */ 828 static void 829 setbasicrates(struct ieee80211_rateset *rs, 830 enum ieee80211_phymode mode, int add) 831 { 832 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 833 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 834 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 835 /* NB: mixed b/g */ 836 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 837 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 838 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 839 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 840 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 841 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 842 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 843 /* NB: mixed b/g */ 844 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 845 /* NB: mixed b/g */ 846 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 847 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 848 }; 849 int i, j; 850 851 for (i = 0; i < rs->rs_nrates; i++) { 852 if (!add) 853 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 854 for (j = 0; j < basic[mode].rs_nrates; j++) 855 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 856 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 857 break; 858 } 859 } 860 } 861 862 /* 863 * Set the basic rates in a rate set. 864 */ 865 void 866 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 867 enum ieee80211_phymode mode) 868 { 869 setbasicrates(rs, mode, 0); 870 } 871 872 /* 873 * Add basic rates to a rate set. 874 */ 875 void 876 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 877 enum ieee80211_phymode mode) 878 { 879 setbasicrates(rs, mode, 1); 880 } 881 882 /* 883 * WME protocol support. 884 * 885 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 886 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 887 * Draft 2.0 Test Plan (Appendix D). 888 * 889 * Static/Dynamic Turbo mode settings come from Atheros. 890 */ 891 typedef struct phyParamType { 892 uint8_t aifsn; 893 uint8_t logcwmin; 894 uint8_t logcwmax; 895 uint16_t txopLimit; 896 uint8_t acm; 897 } paramType; 898 899 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 900 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 901 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 902 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 903 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 904 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 905 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 906 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 907 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 908 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 909 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 910 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 911 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 912 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 913 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 914 }; 915 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 916 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 917 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 918 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 919 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 920 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 921 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 922 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 923 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 924 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 925 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 926 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 927 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 928 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 929 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 930 }; 931 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 932 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 933 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 934 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 935 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 936 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 937 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 938 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 939 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 940 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 941 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 942 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 943 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 944 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 945 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 946 }; 947 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 948 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 949 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 950 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 951 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 952 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 953 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 954 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 955 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 956 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 957 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 958 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 959 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 960 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 961 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 962 }; 963 964 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 965 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 966 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 967 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 968 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 969 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 970 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 971 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 972 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 973 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 974 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 975 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 976 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 977 }; 978 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 979 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 980 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 981 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 982 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 983 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 984 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 985 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 986 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 987 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 988 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 989 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 990 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 991 }; 992 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 993 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 994 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 995 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 996 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 997 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 998 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 999 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1000 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1001 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1002 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1003 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1004 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1005 }; 1006 1007 static void 1008 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1009 { 1010 wmep->wmep_aifsn = phy->aifsn; 1011 wmep->wmep_logcwmin = phy->logcwmin; 1012 wmep->wmep_logcwmax = phy->logcwmax; 1013 wmep->wmep_txopLimit = phy->txopLimit; 1014 } 1015 1016 static void 1017 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1018 struct wmeParams *wmep, const paramType *phy) 1019 { 1020 wmep->wmep_acm = phy->acm; 1021 _setifsparams(wmep, phy); 1022 1023 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1024 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1025 ieee80211_wme_acnames[ac], type, 1026 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1027 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1028 } 1029 1030 static void 1031 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1032 { 1033 struct ieee80211com *ic = vap->iv_ic; 1034 struct ieee80211_wme_state *wme = &ic->ic_wme; 1035 const paramType *pPhyParam, *pBssPhyParam; 1036 struct wmeParams *wmep; 1037 enum ieee80211_phymode mode; 1038 int i; 1039 1040 IEEE80211_LOCK_ASSERT(ic); 1041 1042 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1043 return; 1044 1045 /* 1046 * Clear the wme cap_info field so a qoscount from a previous 1047 * vap doesn't confuse later code which only parses the beacon 1048 * field and updates hardware when said field changes. 1049 * Otherwise the hardware is programmed with defaults, not what 1050 * the beacon actually announces. 1051 */ 1052 wme->wme_wmeChanParams.cap_info = 0; 1053 1054 /* 1055 * Select mode; we can be called early in which case we 1056 * always use auto mode. We know we'll be called when 1057 * entering the RUN state with bsschan setup properly 1058 * so state will eventually get set correctly 1059 */ 1060 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1061 mode = ieee80211_chan2mode(ic->ic_bsschan); 1062 else 1063 mode = IEEE80211_MODE_AUTO; 1064 for (i = 0; i < WME_NUM_AC; i++) { 1065 switch (i) { 1066 case WME_AC_BK: 1067 pPhyParam = &phyParamForAC_BK[mode]; 1068 pBssPhyParam = &phyParamForAC_BK[mode]; 1069 break; 1070 case WME_AC_VI: 1071 pPhyParam = &phyParamForAC_VI[mode]; 1072 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1073 break; 1074 case WME_AC_VO: 1075 pPhyParam = &phyParamForAC_VO[mode]; 1076 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1077 break; 1078 case WME_AC_BE: 1079 default: 1080 pPhyParam = &phyParamForAC_BE[mode]; 1081 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1082 break; 1083 } 1084 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1085 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1086 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1087 } else { 1088 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1089 } 1090 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1091 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1092 } 1093 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1094 if (vap->iv_bss != NULL) { 1095 /* 1096 * Calculate aggressive mode switching threshold based 1097 * on beacon interval. This doesn't need locking since 1098 * we're only called before entering the RUN state at 1099 * which point we start sending beacon frames. 1100 */ 1101 wme->wme_hipri_switch_thresh = 1102 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1103 wme->wme_flags &= ~WME_F_AGGRMODE; 1104 ieee80211_wme_updateparams(vap); 1105 } 1106 } 1107 1108 void 1109 ieee80211_wme_initparams(struct ieee80211vap *vap) 1110 { 1111 struct ieee80211com *ic = vap->iv_ic; 1112 1113 IEEE80211_LOCK(ic); 1114 ieee80211_wme_initparams_locked(vap); 1115 IEEE80211_UNLOCK(ic); 1116 } 1117 1118 /* 1119 * Update WME parameters for ourself and the BSS. 1120 */ 1121 void 1122 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1123 { 1124 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1125 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1126 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1127 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1128 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1129 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1130 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1131 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1132 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1133 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1134 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1135 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1136 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1137 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1138 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1139 }; 1140 struct ieee80211com *ic = vap->iv_ic; 1141 struct ieee80211_wme_state *wme = &ic->ic_wme; 1142 const struct wmeParams *wmep; 1143 struct wmeParams *chanp, *bssp; 1144 enum ieee80211_phymode mode; 1145 int i; 1146 int do_aggrmode = 0; 1147 1148 /* 1149 * Set up the channel access parameters for the physical 1150 * device. First populate the configured settings. 1151 */ 1152 for (i = 0; i < WME_NUM_AC; i++) { 1153 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1154 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1155 chanp->wmep_aifsn = wmep->wmep_aifsn; 1156 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1157 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1158 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1159 1160 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1161 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1162 chanp->wmep_aifsn = wmep->wmep_aifsn; 1163 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1164 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1165 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1166 } 1167 1168 /* 1169 * Select mode; we can be called early in which case we 1170 * always use auto mode. We know we'll be called when 1171 * entering the RUN state with bsschan setup properly 1172 * so state will eventually get set correctly 1173 */ 1174 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1175 mode = ieee80211_chan2mode(ic->ic_bsschan); 1176 else 1177 mode = IEEE80211_MODE_AUTO; 1178 1179 /* 1180 * This implements aggressive mode as found in certain 1181 * vendors' AP's. When there is significant high 1182 * priority (VI/VO) traffic in the BSS throttle back BE 1183 * traffic by using conservative parameters. Otherwise 1184 * BE uses aggressive params to optimize performance of 1185 * legacy/non-QoS traffic. 1186 */ 1187 1188 /* Hostap? Only if aggressive mode is enabled */ 1189 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1190 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1191 do_aggrmode = 1; 1192 1193 /* 1194 * Station? Only if we're in a non-QoS BSS. 1195 */ 1196 else if ((vap->iv_opmode == IEEE80211_M_STA && 1197 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1198 do_aggrmode = 1; 1199 1200 /* 1201 * IBSS? Only if we we have WME enabled. 1202 */ 1203 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1204 (vap->iv_flags & IEEE80211_F_WME)) 1205 do_aggrmode = 1; 1206 1207 /* 1208 * If WME is disabled on this VAP, default to aggressive mode 1209 * regardless of the configuration. 1210 */ 1211 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1212 do_aggrmode = 1; 1213 1214 /* XXX WDS? */ 1215 1216 /* XXX MBSS? */ 1217 1218 if (do_aggrmode) { 1219 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1220 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1221 1222 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1223 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1224 aggrParam[mode].logcwmin; 1225 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1226 aggrParam[mode].logcwmax; 1227 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1228 (vap->iv_flags & IEEE80211_F_BURST) ? 1229 aggrParam[mode].txopLimit : 0; 1230 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1231 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1232 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1233 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1234 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1235 } 1236 1237 1238 /* 1239 * Change the contention window based on the number of associated 1240 * stations. If the number of associated stations is 1 and 1241 * aggressive mode is enabled, lower the contention window even 1242 * further. 1243 */ 1244 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1245 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1246 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1247 [IEEE80211_MODE_AUTO] = 3, 1248 [IEEE80211_MODE_11A] = 3, 1249 [IEEE80211_MODE_11B] = 4, 1250 [IEEE80211_MODE_11G] = 3, 1251 [IEEE80211_MODE_FH] = 4, 1252 [IEEE80211_MODE_TURBO_A] = 3, 1253 [IEEE80211_MODE_TURBO_G] = 3, 1254 [IEEE80211_MODE_STURBO_A] = 3, 1255 [IEEE80211_MODE_HALF] = 3, 1256 [IEEE80211_MODE_QUARTER] = 3, 1257 [IEEE80211_MODE_11NA] = 3, 1258 [IEEE80211_MODE_11NG] = 3, 1259 [IEEE80211_MODE_VHT_2GHZ] = 3, 1260 [IEEE80211_MODE_VHT_5GHZ] = 3, 1261 }; 1262 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1263 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1264 1265 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1266 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1267 "update %s (chan+bss) logcwmin %u\n", 1268 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1269 } 1270 1271 /* 1272 * Arrange for the beacon update. 1273 * 1274 * XXX what about MBSS, WDS? 1275 */ 1276 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1277 || vap->iv_opmode == IEEE80211_M_IBSS) { 1278 /* 1279 * Arrange for a beacon update and bump the parameter 1280 * set number so associated stations load the new values. 1281 */ 1282 wme->wme_bssChanParams.cap_info = 1283 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1284 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1285 } 1286 1287 /* schedule the deferred WME update */ 1288 ieee80211_runtask(ic, &vap->iv_wme_task); 1289 1290 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1291 "%s: WME params updated, cap_info 0x%x\n", __func__, 1292 vap->iv_opmode == IEEE80211_M_STA ? 1293 wme->wme_wmeChanParams.cap_info : 1294 wme->wme_bssChanParams.cap_info); 1295 } 1296 1297 void 1298 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1299 { 1300 struct ieee80211com *ic = vap->iv_ic; 1301 1302 if (ic->ic_caps & IEEE80211_C_WME) { 1303 IEEE80211_LOCK(ic); 1304 ieee80211_wme_updateparams_locked(vap); 1305 IEEE80211_UNLOCK(ic); 1306 } 1307 } 1308 1309 void 1310 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1311 { 1312 1313 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1314 } 1315 1316 void 1317 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1318 { 1319 1320 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1321 } 1322 1323 static void 1324 parent_updown(void *arg, int npending) 1325 { 1326 struct ieee80211com *ic = arg; 1327 1328 ic->ic_parent(ic); 1329 } 1330 1331 static void 1332 update_mcast(void *arg, int npending) 1333 { 1334 struct ieee80211com *ic = arg; 1335 1336 ic->ic_update_mcast(ic); 1337 } 1338 1339 static void 1340 update_promisc(void *arg, int npending) 1341 { 1342 struct ieee80211com *ic = arg; 1343 1344 ic->ic_update_promisc(ic); 1345 } 1346 1347 static void 1348 update_channel(void *arg, int npending) 1349 { 1350 struct ieee80211com *ic = arg; 1351 1352 ic->ic_set_channel(ic); 1353 ieee80211_radiotap_chan_change(ic); 1354 } 1355 1356 static void 1357 update_chw(void *arg, int npending) 1358 { 1359 struct ieee80211com *ic = arg; 1360 1361 /* 1362 * XXX should we defer the channel width _config_ update until now? 1363 */ 1364 ic->ic_update_chw(ic); 1365 } 1366 1367 /* 1368 * Deferred WME update. 1369 * 1370 * In preparation for per-VAP WME configuration, call the VAP 1371 * method if the VAP requires it. Otherwise, just call the 1372 * older global method. There isn't a per-VAP WME configuration 1373 * just yet so for now just use the global configuration. 1374 */ 1375 static void 1376 vap_update_wme(void *arg, int npending) 1377 { 1378 struct ieee80211vap *vap = arg; 1379 struct ieee80211com *ic = vap->iv_ic; 1380 1381 if (vap->iv_wme_update != NULL) 1382 vap->iv_wme_update(vap, 1383 ic->ic_wme.wme_chanParams.cap_wmeParams); 1384 else 1385 ic->ic_wme.wme_update(ic); 1386 } 1387 1388 static void 1389 restart_vaps(void *arg, int npending) 1390 { 1391 struct ieee80211com *ic = arg; 1392 1393 ieee80211_suspend_all(ic); 1394 ieee80211_resume_all(ic); 1395 } 1396 1397 /* 1398 * Block until the parent is in a known state. This is 1399 * used after any operations that dispatch a task (e.g. 1400 * to auto-configure the parent device up/down). 1401 */ 1402 void 1403 ieee80211_waitfor_parent(struct ieee80211com *ic) 1404 { 1405 taskqueue_block(ic->ic_tq); 1406 ieee80211_draintask(ic, &ic->ic_parent_task); 1407 ieee80211_draintask(ic, &ic->ic_mcast_task); 1408 ieee80211_draintask(ic, &ic->ic_promisc_task); 1409 ieee80211_draintask(ic, &ic->ic_chan_task); 1410 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1411 ieee80211_draintask(ic, &ic->ic_chw_task); 1412 taskqueue_unblock(ic->ic_tq); 1413 } 1414 1415 /* 1416 * Check to see whether the current channel needs reset. 1417 * 1418 * Some devices don't handle being given an invalid channel 1419 * in their operating mode very well (eg wpi(4) will throw a 1420 * firmware exception.) 1421 * 1422 * Return 0 if we're ok, 1 if the channel needs to be reset. 1423 * 1424 * See PR kern/202502. 1425 */ 1426 static int 1427 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1428 { 1429 struct ieee80211com *ic = vap->iv_ic; 1430 1431 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1432 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1433 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1434 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1435 return (1); 1436 return (0); 1437 } 1438 1439 /* 1440 * Reset the curchan to a known good state. 1441 */ 1442 static void 1443 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1444 { 1445 struct ieee80211com *ic = vap->iv_ic; 1446 1447 ic->ic_curchan = &ic->ic_channels[0]; 1448 } 1449 1450 /* 1451 * Start a vap running. If this is the first vap to be 1452 * set running on the underlying device then we 1453 * automatically bring the device up. 1454 */ 1455 void 1456 ieee80211_start_locked(struct ieee80211vap *vap) 1457 { 1458 struct ifnet *ifp = vap->iv_ifp; 1459 struct ieee80211com *ic = vap->iv_ic; 1460 1461 IEEE80211_LOCK_ASSERT(ic); 1462 1463 IEEE80211_DPRINTF(vap, 1464 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1465 "start running, %d vaps running\n", ic->ic_nrunning); 1466 1467 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1468 /* 1469 * Mark us running. Note that it's ok to do this first; 1470 * if we need to bring the parent device up we defer that 1471 * to avoid dropping the com lock. We expect the device 1472 * to respond to being marked up by calling back into us 1473 * through ieee80211_start_all at which point we'll come 1474 * back in here and complete the work. 1475 */ 1476 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1477 /* 1478 * We are not running; if this we are the first vap 1479 * to be brought up auto-up the parent if necessary. 1480 */ 1481 if (ic->ic_nrunning++ == 0) { 1482 1483 /* reset the channel to a known good channel */ 1484 if (ieee80211_start_check_reset_chan(vap)) 1485 ieee80211_start_reset_chan(vap); 1486 1487 IEEE80211_DPRINTF(vap, 1488 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1489 "%s: up parent %s\n", __func__, ic->ic_name); 1490 ieee80211_runtask(ic, &ic->ic_parent_task); 1491 return; 1492 } 1493 } 1494 /* 1495 * If the parent is up and running, then kick the 1496 * 802.11 state machine as appropriate. 1497 */ 1498 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1499 if (vap->iv_opmode == IEEE80211_M_STA) { 1500 #if 0 1501 /* XXX bypasses scan too easily; disable for now */ 1502 /* 1503 * Try to be intelligent about clocking the state 1504 * machine. If we're currently in RUN state then 1505 * we should be able to apply any new state/parameters 1506 * simply by re-associating. Otherwise we need to 1507 * re-scan to select an appropriate ap. 1508 */ 1509 if (vap->iv_state >= IEEE80211_S_RUN) 1510 ieee80211_new_state_locked(vap, 1511 IEEE80211_S_ASSOC, 1); 1512 else 1513 #endif 1514 ieee80211_new_state_locked(vap, 1515 IEEE80211_S_SCAN, 0); 1516 } else { 1517 /* 1518 * For monitor+wds mode there's nothing to do but 1519 * start running. Otherwise if this is the first 1520 * vap to be brought up, start a scan which may be 1521 * preempted if the station is locked to a particular 1522 * channel. 1523 */ 1524 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1525 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1526 vap->iv_opmode == IEEE80211_M_WDS) 1527 ieee80211_new_state_locked(vap, 1528 IEEE80211_S_RUN, -1); 1529 else 1530 ieee80211_new_state_locked(vap, 1531 IEEE80211_S_SCAN, 0); 1532 } 1533 } 1534 } 1535 1536 /* 1537 * Start a single vap. 1538 */ 1539 void 1540 ieee80211_init(void *arg) 1541 { 1542 struct ieee80211vap *vap = arg; 1543 1544 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1545 "%s\n", __func__); 1546 1547 IEEE80211_LOCK(vap->iv_ic); 1548 ieee80211_start_locked(vap); 1549 IEEE80211_UNLOCK(vap->iv_ic); 1550 } 1551 1552 /* 1553 * Start all runnable vap's on a device. 1554 */ 1555 void 1556 ieee80211_start_all(struct ieee80211com *ic) 1557 { 1558 struct ieee80211vap *vap; 1559 1560 IEEE80211_LOCK(ic); 1561 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1562 struct ifnet *ifp = vap->iv_ifp; 1563 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1564 ieee80211_start_locked(vap); 1565 } 1566 IEEE80211_UNLOCK(ic); 1567 } 1568 1569 /* 1570 * Stop a vap. We force it down using the state machine 1571 * then mark it's ifnet not running. If this is the last 1572 * vap running on the underlying device then we close it 1573 * too to insure it will be properly initialized when the 1574 * next vap is brought up. 1575 */ 1576 void 1577 ieee80211_stop_locked(struct ieee80211vap *vap) 1578 { 1579 struct ieee80211com *ic = vap->iv_ic; 1580 struct ifnet *ifp = vap->iv_ifp; 1581 1582 IEEE80211_LOCK_ASSERT(ic); 1583 1584 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1585 "stop running, %d vaps running\n", ic->ic_nrunning); 1586 1587 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1588 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1589 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1590 if (--ic->ic_nrunning == 0) { 1591 IEEE80211_DPRINTF(vap, 1592 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1593 "down parent %s\n", ic->ic_name); 1594 ieee80211_runtask(ic, &ic->ic_parent_task); 1595 } 1596 } 1597 } 1598 1599 void 1600 ieee80211_stop(struct ieee80211vap *vap) 1601 { 1602 struct ieee80211com *ic = vap->iv_ic; 1603 1604 IEEE80211_LOCK(ic); 1605 ieee80211_stop_locked(vap); 1606 IEEE80211_UNLOCK(ic); 1607 } 1608 1609 /* 1610 * Stop all vap's running on a device. 1611 */ 1612 void 1613 ieee80211_stop_all(struct ieee80211com *ic) 1614 { 1615 struct ieee80211vap *vap; 1616 1617 IEEE80211_LOCK(ic); 1618 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1619 struct ifnet *ifp = vap->iv_ifp; 1620 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1621 ieee80211_stop_locked(vap); 1622 } 1623 IEEE80211_UNLOCK(ic); 1624 1625 ieee80211_waitfor_parent(ic); 1626 } 1627 1628 /* 1629 * Stop all vap's running on a device and arrange 1630 * for those that were running to be resumed. 1631 */ 1632 void 1633 ieee80211_suspend_all(struct ieee80211com *ic) 1634 { 1635 struct ieee80211vap *vap; 1636 1637 IEEE80211_LOCK(ic); 1638 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1639 struct ifnet *ifp = vap->iv_ifp; 1640 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1641 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1642 ieee80211_stop_locked(vap); 1643 } 1644 } 1645 IEEE80211_UNLOCK(ic); 1646 1647 ieee80211_waitfor_parent(ic); 1648 } 1649 1650 /* 1651 * Start all vap's marked for resume. 1652 */ 1653 void 1654 ieee80211_resume_all(struct ieee80211com *ic) 1655 { 1656 struct ieee80211vap *vap; 1657 1658 IEEE80211_LOCK(ic); 1659 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1660 struct ifnet *ifp = vap->iv_ifp; 1661 if (!IFNET_IS_UP_RUNNING(ifp) && 1662 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1663 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1664 ieee80211_start_locked(vap); 1665 } 1666 } 1667 IEEE80211_UNLOCK(ic); 1668 } 1669 1670 /* 1671 * Restart all vap's running on a device. 1672 */ 1673 void 1674 ieee80211_restart_all(struct ieee80211com *ic) 1675 { 1676 /* 1677 * NB: do not use ieee80211_runtask here, we will 1678 * block & drain net80211 taskqueue. 1679 */ 1680 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1681 } 1682 1683 void 1684 ieee80211_beacon_miss(struct ieee80211com *ic) 1685 { 1686 IEEE80211_LOCK(ic); 1687 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1688 /* Process in a taskq, the handler may reenter the driver */ 1689 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1690 } 1691 IEEE80211_UNLOCK(ic); 1692 } 1693 1694 static void 1695 beacon_miss(void *arg, int npending) 1696 { 1697 struct ieee80211com *ic = arg; 1698 struct ieee80211vap *vap; 1699 1700 IEEE80211_LOCK(ic); 1701 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1702 /* 1703 * We only pass events through for sta vap's in RUN+ state; 1704 * may be too restrictive but for now this saves all the 1705 * handlers duplicating these checks. 1706 */ 1707 if (vap->iv_opmode == IEEE80211_M_STA && 1708 vap->iv_state >= IEEE80211_S_RUN && 1709 vap->iv_bmiss != NULL) 1710 vap->iv_bmiss(vap); 1711 } 1712 IEEE80211_UNLOCK(ic); 1713 } 1714 1715 static void 1716 beacon_swmiss(void *arg, int npending) 1717 { 1718 struct ieee80211vap *vap = arg; 1719 struct ieee80211com *ic = vap->iv_ic; 1720 1721 IEEE80211_LOCK(ic); 1722 if (vap->iv_state >= IEEE80211_S_RUN) { 1723 /* XXX Call multiple times if npending > zero? */ 1724 vap->iv_bmiss(vap); 1725 } 1726 IEEE80211_UNLOCK(ic); 1727 } 1728 1729 /* 1730 * Software beacon miss handling. Check if any beacons 1731 * were received in the last period. If not post a 1732 * beacon miss; otherwise reset the counter. 1733 */ 1734 void 1735 ieee80211_swbmiss(void *arg) 1736 { 1737 struct ieee80211vap *vap = arg; 1738 struct ieee80211com *ic = vap->iv_ic; 1739 1740 IEEE80211_LOCK_ASSERT(ic); 1741 1742 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1743 ("wrong state %d", vap->iv_state)); 1744 1745 if (ic->ic_flags & IEEE80211_F_SCAN) { 1746 /* 1747 * If scanning just ignore and reset state. If we get a 1748 * bmiss after coming out of scan because we haven't had 1749 * time to receive a beacon then we should probe the AP 1750 * before posting a real bmiss (unless iv_bmiss_max has 1751 * been artifiically lowered). A cleaner solution might 1752 * be to disable the timer on scan start/end but to handle 1753 * case of multiple sta vap's we'd need to disable the 1754 * timers of all affected vap's. 1755 */ 1756 vap->iv_swbmiss_count = 0; 1757 } else if (vap->iv_swbmiss_count == 0) { 1758 if (vap->iv_bmiss != NULL) 1759 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1760 } else 1761 vap->iv_swbmiss_count = 0; 1762 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1763 ieee80211_swbmiss, vap); 1764 } 1765 1766 /* 1767 * Start an 802.11h channel switch. We record the parameters, 1768 * mark the operation pending, notify each vap through the 1769 * beacon update mechanism so it can update the beacon frame 1770 * contents, and then switch vap's to CSA state to block outbound 1771 * traffic. Devices that handle CSA directly can use the state 1772 * switch to do the right thing so long as they call 1773 * ieee80211_csa_completeswitch when it's time to complete the 1774 * channel change. Devices that depend on the net80211 layer can 1775 * use ieee80211_beacon_update to handle the countdown and the 1776 * channel switch. 1777 */ 1778 void 1779 ieee80211_csa_startswitch(struct ieee80211com *ic, 1780 struct ieee80211_channel *c, int mode, int count) 1781 { 1782 struct ieee80211vap *vap; 1783 1784 IEEE80211_LOCK_ASSERT(ic); 1785 1786 ic->ic_csa_newchan = c; 1787 ic->ic_csa_mode = mode; 1788 ic->ic_csa_count = count; 1789 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1790 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1791 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1792 vap->iv_opmode == IEEE80211_M_IBSS || 1793 vap->iv_opmode == IEEE80211_M_MBSS) 1794 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1795 /* switch to CSA state to block outbound traffic */ 1796 if (vap->iv_state == IEEE80211_S_RUN) 1797 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1798 } 1799 ieee80211_notify_csa(ic, c, mode, count); 1800 } 1801 1802 /* 1803 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1804 * This is called by both the completion and cancellation functions 1805 * so each VAP is placed back in the RUN state and can thus transmit. 1806 */ 1807 static void 1808 csa_completeswitch(struct ieee80211com *ic) 1809 { 1810 struct ieee80211vap *vap; 1811 1812 ic->ic_csa_newchan = NULL; 1813 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1814 1815 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1816 if (vap->iv_state == IEEE80211_S_CSA) 1817 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1818 } 1819 1820 /* 1821 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1822 * We clear state and move all vap's in CSA state to RUN state 1823 * so they can again transmit. 1824 * 1825 * Although this may not be completely correct, update the BSS channel 1826 * for each VAP to the newly configured channel. The setcurchan sets 1827 * the current operating channel for the interface (so the radio does 1828 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1829 * reported information via ioctl. 1830 */ 1831 void 1832 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1833 { 1834 struct ieee80211vap *vap; 1835 1836 IEEE80211_LOCK_ASSERT(ic); 1837 1838 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1839 1840 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1841 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1842 if (vap->iv_state == IEEE80211_S_CSA) 1843 vap->iv_bss->ni_chan = ic->ic_curchan; 1844 1845 csa_completeswitch(ic); 1846 } 1847 1848 /* 1849 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1850 * We clear state and move all vap's in CSA state to RUN state 1851 * so they can again transmit. 1852 */ 1853 void 1854 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1855 { 1856 IEEE80211_LOCK_ASSERT(ic); 1857 1858 csa_completeswitch(ic); 1859 } 1860 1861 /* 1862 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1863 * We clear state and move all vap's in CAC state to RUN state. 1864 */ 1865 void 1866 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1867 { 1868 struct ieee80211com *ic = vap0->iv_ic; 1869 struct ieee80211vap *vap; 1870 1871 IEEE80211_LOCK(ic); 1872 /* 1873 * Complete CAC state change for lead vap first; then 1874 * clock all the other vap's waiting. 1875 */ 1876 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1877 ("wrong state %d", vap0->iv_state)); 1878 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1879 1880 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1881 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 1882 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1883 IEEE80211_UNLOCK(ic); 1884 } 1885 1886 /* 1887 * Force all vap's other than the specified vap to the INIT state 1888 * and mark them as waiting for a scan to complete. These vaps 1889 * will be brought up when the scan completes and the scanning vap 1890 * reaches RUN state by wakeupwaiting. 1891 */ 1892 static void 1893 markwaiting(struct ieee80211vap *vap0) 1894 { 1895 struct ieee80211com *ic = vap0->iv_ic; 1896 struct ieee80211vap *vap; 1897 1898 IEEE80211_LOCK_ASSERT(ic); 1899 1900 /* 1901 * A vap list entry can not disappear since we are running on the 1902 * taskqueue and a vap destroy will queue and drain another state 1903 * change task. 1904 */ 1905 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1906 if (vap == vap0) 1907 continue; 1908 if (vap->iv_state != IEEE80211_S_INIT) { 1909 /* NB: iv_newstate may drop the lock */ 1910 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1911 IEEE80211_LOCK_ASSERT(ic); 1912 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1913 } 1914 } 1915 } 1916 1917 /* 1918 * Wakeup all vap's waiting for a scan to complete. This is the 1919 * companion to markwaiting (above) and is used to coordinate 1920 * multiple vaps scanning. 1921 * This is called from the state taskqueue. 1922 */ 1923 static void 1924 wakeupwaiting(struct ieee80211vap *vap0) 1925 { 1926 struct ieee80211com *ic = vap0->iv_ic; 1927 struct ieee80211vap *vap; 1928 1929 IEEE80211_LOCK_ASSERT(ic); 1930 1931 /* 1932 * A vap list entry can not disappear since we are running on the 1933 * taskqueue and a vap destroy will queue and drain another state 1934 * change task. 1935 */ 1936 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1937 if (vap == vap0) 1938 continue; 1939 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1940 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1941 /* NB: sta's cannot go INIT->RUN */ 1942 /* NB: iv_newstate may drop the lock */ 1943 vap->iv_newstate(vap, 1944 vap->iv_opmode == IEEE80211_M_STA ? 1945 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1946 IEEE80211_LOCK_ASSERT(ic); 1947 } 1948 } 1949 } 1950 1951 /* 1952 * Handle post state change work common to all operating modes. 1953 */ 1954 static void 1955 ieee80211_newstate_cb(void *xvap, int npending) 1956 { 1957 struct ieee80211vap *vap = xvap; 1958 struct ieee80211com *ic = vap->iv_ic; 1959 enum ieee80211_state nstate, ostate; 1960 int arg, rc; 1961 1962 IEEE80211_LOCK(ic); 1963 nstate = vap->iv_nstate; 1964 arg = vap->iv_nstate_arg; 1965 1966 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1967 /* 1968 * We have been requested to drop back to the INIT before 1969 * proceeding to the new state. 1970 */ 1971 /* Deny any state changes while we are here. */ 1972 vap->iv_nstate = IEEE80211_S_INIT; 1973 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1974 "%s: %s -> %s arg %d\n", __func__, 1975 ieee80211_state_name[vap->iv_state], 1976 ieee80211_state_name[vap->iv_nstate], arg); 1977 vap->iv_newstate(vap, vap->iv_nstate, 0); 1978 IEEE80211_LOCK_ASSERT(ic); 1979 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 1980 IEEE80211_FEXT_STATEWAIT); 1981 /* enqueue new state transition after cancel_scan() task */ 1982 ieee80211_new_state_locked(vap, nstate, arg); 1983 goto done; 1984 } 1985 1986 ostate = vap->iv_state; 1987 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1988 /* 1989 * SCAN was forced; e.g. on beacon miss. Force other running 1990 * vap's to INIT state and mark them as waiting for the scan to 1991 * complete. This insures they don't interfere with our 1992 * scanning. Since we are single threaded the vaps can not 1993 * transition again while we are executing. 1994 * 1995 * XXX not always right, assumes ap follows sta 1996 */ 1997 markwaiting(vap); 1998 } 1999 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2000 "%s: %s -> %s arg %d\n", __func__, 2001 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2002 2003 rc = vap->iv_newstate(vap, nstate, arg); 2004 IEEE80211_LOCK_ASSERT(ic); 2005 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2006 if (rc != 0) { 2007 /* State transition failed */ 2008 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2009 KASSERT(nstate != IEEE80211_S_INIT, 2010 ("INIT state change failed")); 2011 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2012 "%s: %s returned error %d\n", __func__, 2013 ieee80211_state_name[nstate], rc); 2014 goto done; 2015 } 2016 2017 /* No actual transition, skip post processing */ 2018 if (ostate == nstate) 2019 goto done; 2020 2021 if (nstate == IEEE80211_S_RUN) { 2022 /* 2023 * OACTIVE may be set on the vap if the upper layer 2024 * tried to transmit (e.g. IPv6 NDP) before we reach 2025 * RUN state. Clear it and restart xmit. 2026 * 2027 * Note this can also happen as a result of SLEEP->RUN 2028 * (i.e. coming out of power save mode). 2029 */ 2030 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2031 2032 /* 2033 * XXX TODO Kick-start a VAP queue - this should be a method! 2034 */ 2035 2036 /* bring up any vaps waiting on us */ 2037 wakeupwaiting(vap); 2038 } else if (nstate == IEEE80211_S_INIT) { 2039 /* 2040 * Flush the scan cache if we did the last scan (XXX?) 2041 * and flush any frames on send queues from this vap. 2042 * Note the mgt q is used only for legacy drivers and 2043 * will go away shortly. 2044 */ 2045 ieee80211_scan_flush(vap); 2046 2047 /* 2048 * XXX TODO: ic/vap queue flush 2049 */ 2050 } 2051 done: 2052 IEEE80211_UNLOCK(ic); 2053 } 2054 2055 /* 2056 * Public interface for initiating a state machine change. 2057 * This routine single-threads the request and coordinates 2058 * the scheduling of multiple vaps for the purpose of selecting 2059 * an operating channel. Specifically the following scenarios 2060 * are handled: 2061 * o only one vap can be selecting a channel so on transition to 2062 * SCAN state if another vap is already scanning then 2063 * mark the caller for later processing and return without 2064 * doing anything (XXX? expectations by caller of synchronous operation) 2065 * o only one vap can be doing CAC of a channel so on transition to 2066 * CAC state if another vap is already scanning for radar then 2067 * mark the caller for later processing and return without 2068 * doing anything (XXX? expectations by caller of synchronous operation) 2069 * o if another vap is already running when a request is made 2070 * to SCAN then an operating channel has been chosen; bypass 2071 * the scan and just join the channel 2072 * 2073 * Note that the state change call is done through the iv_newstate 2074 * method pointer so any driver routine gets invoked. The driver 2075 * will normally call back into operating mode-specific 2076 * ieee80211_newstate routines (below) unless it needs to completely 2077 * bypass the state machine (e.g. because the firmware has it's 2078 * own idea how things should work). Bypassing the net80211 layer 2079 * is usually a mistake and indicates lack of proper integration 2080 * with the net80211 layer. 2081 */ 2082 int 2083 ieee80211_new_state_locked(struct ieee80211vap *vap, 2084 enum ieee80211_state nstate, int arg) 2085 { 2086 struct ieee80211com *ic = vap->iv_ic; 2087 struct ieee80211vap *vp; 2088 enum ieee80211_state ostate; 2089 int nrunning, nscanning; 2090 2091 IEEE80211_LOCK_ASSERT(ic); 2092 2093 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2094 if (vap->iv_nstate == IEEE80211_S_INIT || 2095 ((vap->iv_state == IEEE80211_S_INIT || 2096 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2097 vap->iv_nstate == IEEE80211_S_SCAN && 2098 nstate > IEEE80211_S_SCAN)) { 2099 /* 2100 * XXX The vap is being stopped/started, 2101 * do not allow any other state changes 2102 * until this is completed. 2103 */ 2104 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2105 "%s: %s -> %s (%s) transition discarded\n", 2106 __func__, 2107 ieee80211_state_name[vap->iv_state], 2108 ieee80211_state_name[nstate], 2109 ieee80211_state_name[vap->iv_nstate]); 2110 return -1; 2111 } else if (vap->iv_state != vap->iv_nstate) { 2112 #if 0 2113 /* Warn if the previous state hasn't completed. */ 2114 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2115 "%s: pending %s -> %s transition lost\n", __func__, 2116 ieee80211_state_name[vap->iv_state], 2117 ieee80211_state_name[vap->iv_nstate]); 2118 #else 2119 /* XXX temporarily enable to identify issues */ 2120 if_printf(vap->iv_ifp, 2121 "%s: pending %s -> %s transition lost\n", 2122 __func__, ieee80211_state_name[vap->iv_state], 2123 ieee80211_state_name[vap->iv_nstate]); 2124 #endif 2125 } 2126 } 2127 2128 nrunning = nscanning = 0; 2129 /* XXX can track this state instead of calculating */ 2130 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2131 if (vp != vap) { 2132 if (vp->iv_state >= IEEE80211_S_RUN) 2133 nrunning++; 2134 /* XXX doesn't handle bg scan */ 2135 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2136 else if (vp->iv_state > IEEE80211_S_INIT) 2137 nscanning++; 2138 } 2139 } 2140 ostate = vap->iv_state; 2141 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2142 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2143 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2144 nrunning, nscanning); 2145 switch (nstate) { 2146 case IEEE80211_S_SCAN: 2147 if (ostate == IEEE80211_S_INIT) { 2148 /* 2149 * INIT -> SCAN happens on initial bringup. 2150 */ 2151 KASSERT(!(nscanning && nrunning), 2152 ("%d scanning and %d running", nscanning, nrunning)); 2153 if (nscanning) { 2154 /* 2155 * Someone is scanning, defer our state 2156 * change until the work has completed. 2157 */ 2158 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2159 "%s: defer %s -> %s\n", 2160 __func__, ieee80211_state_name[ostate], 2161 ieee80211_state_name[nstate]); 2162 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2163 return 0; 2164 } 2165 if (nrunning) { 2166 /* 2167 * Someone is operating; just join the channel 2168 * they have chosen. 2169 */ 2170 /* XXX kill arg? */ 2171 /* XXX check each opmode, adhoc? */ 2172 if (vap->iv_opmode == IEEE80211_M_STA) 2173 nstate = IEEE80211_S_SCAN; 2174 else 2175 nstate = IEEE80211_S_RUN; 2176 #ifdef IEEE80211_DEBUG 2177 if (nstate != IEEE80211_S_SCAN) { 2178 IEEE80211_DPRINTF(vap, 2179 IEEE80211_MSG_STATE, 2180 "%s: override, now %s -> %s\n", 2181 __func__, 2182 ieee80211_state_name[ostate], 2183 ieee80211_state_name[nstate]); 2184 } 2185 #endif 2186 } 2187 } 2188 break; 2189 case IEEE80211_S_RUN: 2190 if (vap->iv_opmode == IEEE80211_M_WDS && 2191 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2192 nscanning) { 2193 /* 2194 * Legacy WDS with someone else scanning; don't 2195 * go online until that completes as we should 2196 * follow the other vap to the channel they choose. 2197 */ 2198 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2199 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2200 ieee80211_state_name[ostate], 2201 ieee80211_state_name[nstate]); 2202 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2203 return 0; 2204 } 2205 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2206 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2207 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2208 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2209 /* 2210 * This is a DFS channel, transition to CAC state 2211 * instead of RUN. This allows us to initiate 2212 * Channel Availability Check (CAC) as specified 2213 * by 11h/DFS. 2214 */ 2215 nstate = IEEE80211_S_CAC; 2216 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2217 "%s: override %s -> %s (DFS)\n", __func__, 2218 ieee80211_state_name[ostate], 2219 ieee80211_state_name[nstate]); 2220 } 2221 break; 2222 case IEEE80211_S_INIT: 2223 /* cancel any scan in progress */ 2224 ieee80211_cancel_scan(vap); 2225 if (ostate == IEEE80211_S_INIT ) { 2226 /* XXX don't believe this */ 2227 /* INIT -> INIT. nothing to do */ 2228 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2229 } 2230 /* fall thru... */ 2231 default: 2232 break; 2233 } 2234 /* defer the state change to a thread */ 2235 vap->iv_nstate = nstate; 2236 vap->iv_nstate_arg = arg; 2237 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2238 ieee80211_runtask(ic, &vap->iv_nstate_task); 2239 return EINPROGRESS; 2240 } 2241 2242 int 2243 ieee80211_new_state(struct ieee80211vap *vap, 2244 enum ieee80211_state nstate, int arg) 2245 { 2246 struct ieee80211com *ic = vap->iv_ic; 2247 int rc; 2248 2249 IEEE80211_LOCK(ic); 2250 rc = ieee80211_new_state_locked(vap, nstate, arg); 2251 IEEE80211_UNLOCK(ic); 2252 return rc; 2253 } 2254