1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> /* XXX for ether_sprintf */ 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_adhoc.h> 51 #include <net80211/ieee80211_sta.h> 52 #include <net80211/ieee80211_hostap.h> 53 #include <net80211/ieee80211_wds.h> 54 #ifdef IEEE80211_SUPPORT_MESH 55 #include <net80211/ieee80211_mesh.h> 56 #endif 57 #include <net80211/ieee80211_monitor.h> 58 #include <net80211/ieee80211_input.h> 59 60 /* XXX tunables */ 61 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 62 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 63 64 const char *ieee80211_mgt_subtype_name[] = { 65 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 66 "probe_req", "probe_resp", "reserved#6", "reserved#7", 67 "beacon", "atim", "disassoc", "auth", 68 "deauth", "action", "action_noack", "reserved#15" 69 }; 70 const char *ieee80211_ctl_subtype_name[] = { 71 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 72 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 73 "reserved#8", "reserved#9", "ps_poll", "rts", 74 "cts", "ack", "cf_end", "cf_end_ack" 75 }; 76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 77 "IBSS", /* IEEE80211_M_IBSS */ 78 "STA", /* IEEE80211_M_STA */ 79 "WDS", /* IEEE80211_M_WDS */ 80 "AHDEMO", /* IEEE80211_M_AHDEMO */ 81 "HOSTAP", /* IEEE80211_M_HOSTAP */ 82 "MONITOR", /* IEEE80211_M_MONITOR */ 83 "MBSS" /* IEEE80211_M_MBSS */ 84 }; 85 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 86 "INIT", /* IEEE80211_S_INIT */ 87 "SCAN", /* IEEE80211_S_SCAN */ 88 "AUTH", /* IEEE80211_S_AUTH */ 89 "ASSOC", /* IEEE80211_S_ASSOC */ 90 "CAC", /* IEEE80211_S_CAC */ 91 "RUN", /* IEEE80211_S_RUN */ 92 "CSA", /* IEEE80211_S_CSA */ 93 "SLEEP", /* IEEE80211_S_SLEEP */ 94 }; 95 const char *ieee80211_wme_acnames[] = { 96 "WME_AC_BE", 97 "WME_AC_BK", 98 "WME_AC_VI", 99 "WME_AC_VO", 100 "WME_UPSD", 101 }; 102 103 static void beacon_miss(void *, int); 104 static void beacon_swmiss(void *, int); 105 static void parent_updown(void *, int); 106 static void update_mcast(void *, int); 107 static void update_promisc(void *, int); 108 static void update_channel(void *, int); 109 static void update_chw(void *, int); 110 static void ieee80211_newstate_cb(void *, int); 111 112 static int 113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 114 const struct ieee80211_bpf_params *params) 115 { 116 117 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 118 m_freem(m); 119 return ENETDOWN; 120 } 121 122 void 123 ieee80211_proto_attach(struct ieee80211com *ic) 124 { 125 uint8_t hdrlen; 126 127 /* override the 802.3 setting */ 128 hdrlen = ic->ic_headroom 129 + sizeof(struct ieee80211_qosframe_addr4) 130 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 131 + IEEE80211_WEP_EXTIVLEN; 132 /* XXX no way to recalculate on ifdetach */ 133 if (ALIGN(hdrlen) > max_linkhdr) { 134 /* XXX sanity check... */ 135 max_linkhdr = ALIGN(hdrlen); 136 max_hdr = max_linkhdr + max_protohdr; 137 max_datalen = MHLEN - max_hdr; 138 } 139 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 140 141 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 142 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 143 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 144 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 145 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 146 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 147 148 ic->ic_wme.wme_hipri_switch_hysteresis = 149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 150 151 /* initialize management frame handlers */ 152 ic->ic_send_mgmt = ieee80211_send_mgmt; 153 ic->ic_raw_xmit = null_raw_xmit; 154 155 ieee80211_adhoc_attach(ic); 156 ieee80211_sta_attach(ic); 157 ieee80211_wds_attach(ic); 158 ieee80211_hostap_attach(ic); 159 #ifdef IEEE80211_SUPPORT_MESH 160 ieee80211_mesh_attach(ic); 161 #endif 162 ieee80211_monitor_attach(ic); 163 } 164 165 void 166 ieee80211_proto_detach(struct ieee80211com *ic) 167 { 168 ieee80211_monitor_detach(ic); 169 #ifdef IEEE80211_SUPPORT_MESH 170 ieee80211_mesh_detach(ic); 171 #endif 172 ieee80211_hostap_detach(ic); 173 ieee80211_wds_detach(ic); 174 ieee80211_adhoc_detach(ic); 175 ieee80211_sta_detach(ic); 176 } 177 178 static void 179 null_update_beacon(struct ieee80211vap *vap, int item) 180 { 181 } 182 183 void 184 ieee80211_proto_vattach(struct ieee80211vap *vap) 185 { 186 struct ieee80211com *ic = vap->iv_ic; 187 struct ifnet *ifp = vap->iv_ifp; 188 int i; 189 190 /* override the 802.3 setting */ 191 ifp->if_hdrlen = ic->ic_headroom 192 + sizeof(struct ieee80211_qosframe_addr4) 193 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 194 + IEEE80211_WEP_EXTIVLEN; 195 196 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 197 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 198 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 199 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 200 callout_init(&vap->iv_mgtsend, 1); 201 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 202 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 203 /* 204 * Install default tx rate handling: no fixed rate, lowest 205 * supported rate for mgmt and multicast frames. Default 206 * max retry count. These settings can be changed by the 207 * driver and/or user applications. 208 */ 209 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 210 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 211 212 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 213 214 /* 215 * Setting the management rate to MCS 0 assumes that the 216 * BSS Basic rate set is empty and the BSS Basic MCS set 217 * is not. 218 * 219 * Since we're not checking this, default to the lowest 220 * defined rate for this mode. 221 * 222 * At least one 11n AP (DLINK DIR-825) is reported to drop 223 * some MCS management traffic (eg BA response frames.) 224 * 225 * See also: 9.6.0 of the 802.11n-2009 specification. 226 */ 227 #ifdef NOTYET 228 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 229 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 230 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 231 } else { 232 vap->iv_txparms[i].mgmtrate = 233 rs->rs_rates[0] & IEEE80211_RATE_VAL; 234 vap->iv_txparms[i].mcastrate = 235 rs->rs_rates[0] & IEEE80211_RATE_VAL; 236 } 237 #endif 238 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 239 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 240 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 241 } 242 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 243 244 vap->iv_update_beacon = null_update_beacon; 245 vap->iv_deliver_data = ieee80211_deliver_data; 246 247 /* attach support for operating mode */ 248 ic->ic_vattach[vap->iv_opmode](vap); 249 } 250 251 void 252 ieee80211_proto_vdetach(struct ieee80211vap *vap) 253 { 254 #define FREEAPPIE(ie) do { \ 255 if (ie != NULL) \ 256 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 257 } while (0) 258 /* 259 * Detach operating mode module. 260 */ 261 if (vap->iv_opdetach != NULL) 262 vap->iv_opdetach(vap); 263 /* 264 * This should not be needed as we detach when reseting 265 * the state but be conservative here since the 266 * authenticator may do things like spawn kernel threads. 267 */ 268 if (vap->iv_auth->ia_detach != NULL) 269 vap->iv_auth->ia_detach(vap); 270 /* 271 * Detach any ACL'ator. 272 */ 273 if (vap->iv_acl != NULL) 274 vap->iv_acl->iac_detach(vap); 275 276 FREEAPPIE(vap->iv_appie_beacon); 277 FREEAPPIE(vap->iv_appie_probereq); 278 FREEAPPIE(vap->iv_appie_proberesp); 279 FREEAPPIE(vap->iv_appie_assocreq); 280 FREEAPPIE(vap->iv_appie_assocresp); 281 FREEAPPIE(vap->iv_appie_wpa); 282 #undef FREEAPPIE 283 } 284 285 /* 286 * Simple-minded authenticator module support. 287 */ 288 289 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 290 /* XXX well-known names */ 291 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 292 "wlan_internal", /* IEEE80211_AUTH_NONE */ 293 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 294 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 295 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 296 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 297 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 298 }; 299 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 300 301 static const struct ieee80211_authenticator auth_internal = { 302 .ia_name = "wlan_internal", 303 .ia_attach = NULL, 304 .ia_detach = NULL, 305 .ia_node_join = NULL, 306 .ia_node_leave = NULL, 307 }; 308 309 /* 310 * Setup internal authenticators once; they are never unregistered. 311 */ 312 static void 313 ieee80211_auth_setup(void) 314 { 315 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 316 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 317 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 318 } 319 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 320 321 const struct ieee80211_authenticator * 322 ieee80211_authenticator_get(int auth) 323 { 324 if (auth >= IEEE80211_AUTH_MAX) 325 return NULL; 326 if (authenticators[auth] == NULL) 327 ieee80211_load_module(auth_modnames[auth]); 328 return authenticators[auth]; 329 } 330 331 void 332 ieee80211_authenticator_register(int type, 333 const struct ieee80211_authenticator *auth) 334 { 335 if (type >= IEEE80211_AUTH_MAX) 336 return; 337 authenticators[type] = auth; 338 } 339 340 void 341 ieee80211_authenticator_unregister(int type) 342 { 343 344 if (type >= IEEE80211_AUTH_MAX) 345 return; 346 authenticators[type] = NULL; 347 } 348 349 /* 350 * Very simple-minded ACL module support. 351 */ 352 /* XXX just one for now */ 353 static const struct ieee80211_aclator *acl = NULL; 354 355 void 356 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 357 { 358 printf("wlan: %s acl policy registered\n", iac->iac_name); 359 acl = iac; 360 } 361 362 void 363 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 364 { 365 if (acl == iac) 366 acl = NULL; 367 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 368 } 369 370 const struct ieee80211_aclator * 371 ieee80211_aclator_get(const char *name) 372 { 373 if (acl == NULL) 374 ieee80211_load_module("wlan_acl"); 375 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 376 } 377 378 void 379 ieee80211_print_essid(const uint8_t *essid, int len) 380 { 381 const uint8_t *p; 382 int i; 383 384 if (len > IEEE80211_NWID_LEN) 385 len = IEEE80211_NWID_LEN; 386 /* determine printable or not */ 387 for (i = 0, p = essid; i < len; i++, p++) { 388 if (*p < ' ' || *p > 0x7e) 389 break; 390 } 391 if (i == len) { 392 printf("\""); 393 for (i = 0, p = essid; i < len; i++, p++) 394 printf("%c", *p); 395 printf("\""); 396 } else { 397 printf("0x"); 398 for (i = 0, p = essid; i < len; i++, p++) 399 printf("%02x", *p); 400 } 401 } 402 403 void 404 ieee80211_dump_pkt(struct ieee80211com *ic, 405 const uint8_t *buf, int len, int rate, int rssi) 406 { 407 const struct ieee80211_frame *wh; 408 int i; 409 410 wh = (const struct ieee80211_frame *)buf; 411 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 412 case IEEE80211_FC1_DIR_NODS: 413 printf("NODS %s", ether_sprintf(wh->i_addr2)); 414 printf("->%s", ether_sprintf(wh->i_addr1)); 415 printf("(%s)", ether_sprintf(wh->i_addr3)); 416 break; 417 case IEEE80211_FC1_DIR_TODS: 418 printf("TODS %s", ether_sprintf(wh->i_addr2)); 419 printf("->%s", ether_sprintf(wh->i_addr3)); 420 printf("(%s)", ether_sprintf(wh->i_addr1)); 421 break; 422 case IEEE80211_FC1_DIR_FROMDS: 423 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 424 printf("->%s", ether_sprintf(wh->i_addr1)); 425 printf("(%s)", ether_sprintf(wh->i_addr2)); 426 break; 427 case IEEE80211_FC1_DIR_DSTODS: 428 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 429 printf("->%s", ether_sprintf(wh->i_addr3)); 430 printf("(%s", ether_sprintf(wh->i_addr2)); 431 printf("->%s)", ether_sprintf(wh->i_addr1)); 432 break; 433 } 434 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 435 case IEEE80211_FC0_TYPE_DATA: 436 printf(" data"); 437 break; 438 case IEEE80211_FC0_TYPE_MGT: 439 printf(" %s", ieee80211_mgt_subtype_name[ 440 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 441 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 442 break; 443 default: 444 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 445 break; 446 } 447 if (IEEE80211_QOS_HAS_SEQ(wh)) { 448 const struct ieee80211_qosframe *qwh = 449 (const struct ieee80211_qosframe *)buf; 450 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 451 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 452 } 453 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 454 int off; 455 456 off = ieee80211_anyhdrspace(ic, wh); 457 printf(" WEP [IV %.02x %.02x %.02x", 458 buf[off+0], buf[off+1], buf[off+2]); 459 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 460 printf(" %.02x %.02x %.02x", 461 buf[off+4], buf[off+5], buf[off+6]); 462 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 463 } 464 if (rate >= 0) 465 printf(" %dM", rate / 2); 466 if (rssi >= 0) 467 printf(" +%d", rssi); 468 printf("\n"); 469 if (len > 0) { 470 for (i = 0; i < len; i++) { 471 if ((i & 1) == 0) 472 printf(" "); 473 printf("%02x", buf[i]); 474 } 475 printf("\n"); 476 } 477 } 478 479 static __inline int 480 findrix(const struct ieee80211_rateset *rs, int r) 481 { 482 int i; 483 484 for (i = 0; i < rs->rs_nrates; i++) 485 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 486 return i; 487 return -1; 488 } 489 490 int 491 ieee80211_fix_rate(struct ieee80211_node *ni, 492 struct ieee80211_rateset *nrs, int flags) 493 { 494 #define RV(v) ((v) & IEEE80211_RATE_VAL) 495 struct ieee80211vap *vap = ni->ni_vap; 496 struct ieee80211com *ic = ni->ni_ic; 497 int i, j, rix, error; 498 int okrate, badrate, fixedrate, ucastrate; 499 const struct ieee80211_rateset *srs; 500 uint8_t r; 501 502 error = 0; 503 okrate = badrate = 0; 504 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 505 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 506 /* 507 * Workaround awkwardness with fixed rate. We are called 508 * to check both the legacy rate set and the HT rate set 509 * but we must apply any legacy fixed rate check only to the 510 * legacy rate set and vice versa. We cannot tell what type 511 * of rate set we've been given (legacy or HT) but we can 512 * distinguish the fixed rate type (MCS have 0x80 set). 513 * So to deal with this the caller communicates whether to 514 * check MCS or legacy rate using the flags and we use the 515 * type of any fixed rate to avoid applying an MCS to a 516 * legacy rate and vice versa. 517 */ 518 if (ucastrate & 0x80) { 519 if (flags & IEEE80211_F_DOFRATE) 520 flags &= ~IEEE80211_F_DOFRATE; 521 } else if ((ucastrate & 0x80) == 0) { 522 if (flags & IEEE80211_F_DOFMCS) 523 flags &= ~IEEE80211_F_DOFMCS; 524 } 525 /* NB: required to make MCS match below work */ 526 ucastrate &= IEEE80211_RATE_VAL; 527 } 528 fixedrate = IEEE80211_FIXED_RATE_NONE; 529 /* 530 * XXX we are called to process both MCS and legacy rates; 531 * we must use the appropriate basic rate set or chaos will 532 * ensue; for now callers that want MCS must supply 533 * IEEE80211_F_DOBRS; at some point we'll need to split this 534 * function so there are two variants, one for MCS and one 535 * for legacy rates. 536 */ 537 if (flags & IEEE80211_F_DOBRS) 538 srs = (const struct ieee80211_rateset *) 539 ieee80211_get_suphtrates(ic, ni->ni_chan); 540 else 541 srs = ieee80211_get_suprates(ic, ni->ni_chan); 542 for (i = 0; i < nrs->rs_nrates; ) { 543 if (flags & IEEE80211_F_DOSORT) { 544 /* 545 * Sort rates. 546 */ 547 for (j = i + 1; j < nrs->rs_nrates; j++) { 548 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 549 r = nrs->rs_rates[i]; 550 nrs->rs_rates[i] = nrs->rs_rates[j]; 551 nrs->rs_rates[j] = r; 552 } 553 } 554 } 555 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 556 badrate = r; 557 /* 558 * Check for fixed rate. 559 */ 560 if (r == ucastrate) 561 fixedrate = r; 562 /* 563 * Check against supported rates. 564 */ 565 rix = findrix(srs, r); 566 if (flags & IEEE80211_F_DONEGO) { 567 if (rix < 0) { 568 /* 569 * A rate in the node's rate set is not 570 * supported. If this is a basic rate and we 571 * are operating as a STA then this is an error. 572 * Otherwise we just discard/ignore the rate. 573 */ 574 if ((flags & IEEE80211_F_JOIN) && 575 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 576 error++; 577 } else if ((flags & IEEE80211_F_JOIN) == 0) { 578 /* 579 * Overwrite with the supported rate 580 * value so any basic rate bit is set. 581 */ 582 nrs->rs_rates[i] = srs->rs_rates[rix]; 583 } 584 } 585 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 586 /* 587 * Delete unacceptable rates. 588 */ 589 nrs->rs_nrates--; 590 for (j = i; j < nrs->rs_nrates; j++) 591 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 592 nrs->rs_rates[j] = 0; 593 continue; 594 } 595 if (rix >= 0) 596 okrate = nrs->rs_rates[i]; 597 i++; 598 } 599 if (okrate == 0 || error != 0 || 600 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 601 fixedrate != ucastrate)) { 602 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 603 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 604 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 605 return badrate | IEEE80211_RATE_BASIC; 606 } else 607 return RV(okrate); 608 #undef RV 609 } 610 611 /* 612 * Reset 11g-related state. 613 */ 614 void 615 ieee80211_reset_erp(struct ieee80211com *ic) 616 { 617 ic->ic_flags &= ~IEEE80211_F_USEPROT; 618 ic->ic_nonerpsta = 0; 619 ic->ic_longslotsta = 0; 620 /* 621 * Short slot time is enabled only when operating in 11g 622 * and not in an IBSS. We must also honor whether or not 623 * the driver is capable of doing it. 624 */ 625 ieee80211_set_shortslottime(ic, 626 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 627 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 628 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 629 ic->ic_opmode == IEEE80211_M_HOSTAP && 630 (ic->ic_caps & IEEE80211_C_SHSLOT))); 631 /* 632 * Set short preamble and ERP barker-preamble flags. 633 */ 634 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 635 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 636 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 637 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 638 } else { 639 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 640 ic->ic_flags |= IEEE80211_F_USEBARKER; 641 } 642 } 643 644 /* 645 * Set the short slot time state and notify the driver. 646 */ 647 void 648 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 649 { 650 if (onoff) 651 ic->ic_flags |= IEEE80211_F_SHSLOT; 652 else 653 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 654 /* notify driver */ 655 if (ic->ic_updateslot != NULL) 656 ic->ic_updateslot(ic); 657 } 658 659 /* 660 * Check if the specified rate set supports ERP. 661 * NB: the rate set is assumed to be sorted. 662 */ 663 int 664 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 665 { 666 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 667 int i, j; 668 669 if (rs->rs_nrates < nitems(rates)) 670 return 0; 671 for (i = 0; i < nitems(rates); i++) { 672 for (j = 0; j < rs->rs_nrates; j++) { 673 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 674 if (rates[i] == r) 675 goto next; 676 if (r > rates[i]) 677 return 0; 678 } 679 return 0; 680 next: 681 ; 682 } 683 return 1; 684 } 685 686 /* 687 * Mark the basic rates for the rate table based on the 688 * operating mode. For real 11g we mark all the 11b rates 689 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 690 * 11b rates. There's also a pseudo 11a-mode used to mark only 691 * the basic OFDM rates. 692 */ 693 static void 694 setbasicrates(struct ieee80211_rateset *rs, 695 enum ieee80211_phymode mode, int add) 696 { 697 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 698 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 699 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 700 /* NB: mixed b/g */ 701 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 702 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 703 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 704 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 705 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 706 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 707 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 708 /* NB: mixed b/g */ 709 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 710 }; 711 int i, j; 712 713 for (i = 0; i < rs->rs_nrates; i++) { 714 if (!add) 715 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 716 for (j = 0; j < basic[mode].rs_nrates; j++) 717 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 718 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 719 break; 720 } 721 } 722 } 723 724 /* 725 * Set the basic rates in a rate set. 726 */ 727 void 728 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 729 enum ieee80211_phymode mode) 730 { 731 setbasicrates(rs, mode, 0); 732 } 733 734 /* 735 * Add basic rates to a rate set. 736 */ 737 void 738 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 739 enum ieee80211_phymode mode) 740 { 741 setbasicrates(rs, mode, 1); 742 } 743 744 /* 745 * WME protocol support. 746 * 747 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 748 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 749 * Draft 2.0 Test Plan (Appendix D). 750 * 751 * Static/Dynamic Turbo mode settings come from Atheros. 752 */ 753 typedef struct phyParamType { 754 uint8_t aifsn; 755 uint8_t logcwmin; 756 uint8_t logcwmax; 757 uint16_t txopLimit; 758 uint8_t acm; 759 } paramType; 760 761 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 762 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 763 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 767 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 768 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 770 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 771 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 773 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 774 }; 775 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 776 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 777 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 781 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 782 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 784 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 785 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 787 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 788 }; 789 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 790 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 791 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 792 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 793 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 794 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 795 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 796 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 798 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 799 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 801 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 802 }; 803 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 804 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 805 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 806 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 807 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 808 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 809 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 810 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 812 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 813 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 815 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 816 }; 817 818 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 819 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 820 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 824 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 825 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 827 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 828 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 830 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 831 }; 832 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 833 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 834 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 835 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 836 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 837 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 838 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 839 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 841 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 842 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 844 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 845 }; 846 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 847 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 848 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 849 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 850 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 851 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 852 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 853 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 855 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 856 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 858 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 859 }; 860 861 static void 862 _setifsparams(struct wmeParams *wmep, const paramType *phy) 863 { 864 wmep->wmep_aifsn = phy->aifsn; 865 wmep->wmep_logcwmin = phy->logcwmin; 866 wmep->wmep_logcwmax = phy->logcwmax; 867 wmep->wmep_txopLimit = phy->txopLimit; 868 } 869 870 static void 871 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 872 struct wmeParams *wmep, const paramType *phy) 873 { 874 wmep->wmep_acm = phy->acm; 875 _setifsparams(wmep, phy); 876 877 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 878 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 879 ieee80211_wme_acnames[ac], type, 880 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 881 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 882 } 883 884 static void 885 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 886 { 887 struct ieee80211com *ic = vap->iv_ic; 888 struct ieee80211_wme_state *wme = &ic->ic_wme; 889 const paramType *pPhyParam, *pBssPhyParam; 890 struct wmeParams *wmep; 891 enum ieee80211_phymode mode; 892 int i; 893 894 IEEE80211_LOCK_ASSERT(ic); 895 896 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 897 return; 898 899 /* 900 * Clear the wme cap_info field so a qoscount from a previous 901 * vap doesn't confuse later code which only parses the beacon 902 * field and updates hardware when said field changes. 903 * Otherwise the hardware is programmed with defaults, not what 904 * the beacon actually announces. 905 */ 906 wme->wme_wmeChanParams.cap_info = 0; 907 908 /* 909 * Select mode; we can be called early in which case we 910 * always use auto mode. We know we'll be called when 911 * entering the RUN state with bsschan setup properly 912 * so state will eventually get set correctly 913 */ 914 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 915 mode = ieee80211_chan2mode(ic->ic_bsschan); 916 else 917 mode = IEEE80211_MODE_AUTO; 918 for (i = 0; i < WME_NUM_AC; i++) { 919 switch (i) { 920 case WME_AC_BK: 921 pPhyParam = &phyParamForAC_BK[mode]; 922 pBssPhyParam = &phyParamForAC_BK[mode]; 923 break; 924 case WME_AC_VI: 925 pPhyParam = &phyParamForAC_VI[mode]; 926 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 927 break; 928 case WME_AC_VO: 929 pPhyParam = &phyParamForAC_VO[mode]; 930 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 931 break; 932 case WME_AC_BE: 933 default: 934 pPhyParam = &phyParamForAC_BE[mode]; 935 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 936 break; 937 } 938 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 939 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 940 setwmeparams(vap, "chan", i, wmep, pPhyParam); 941 } else { 942 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 943 } 944 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 945 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 946 } 947 /* NB: check ic_bss to avoid NULL deref on initial attach */ 948 if (vap->iv_bss != NULL) { 949 /* 950 * Calculate agressive mode switching threshold based 951 * on beacon interval. This doesn't need locking since 952 * we're only called before entering the RUN state at 953 * which point we start sending beacon frames. 954 */ 955 wme->wme_hipri_switch_thresh = 956 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 957 wme->wme_flags &= ~WME_F_AGGRMODE; 958 ieee80211_wme_updateparams(vap); 959 } 960 } 961 962 void 963 ieee80211_wme_initparams(struct ieee80211vap *vap) 964 { 965 struct ieee80211com *ic = vap->iv_ic; 966 967 IEEE80211_LOCK(ic); 968 ieee80211_wme_initparams_locked(vap); 969 IEEE80211_UNLOCK(ic); 970 } 971 972 /* 973 * Update WME parameters for ourself and the BSS. 974 */ 975 void 976 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 977 { 978 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 979 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 980 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 981 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 982 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 983 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 984 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 985 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 987 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 988 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 989 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 990 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 991 }; 992 struct ieee80211com *ic = vap->iv_ic; 993 struct ieee80211_wme_state *wme = &ic->ic_wme; 994 const struct wmeParams *wmep; 995 struct wmeParams *chanp, *bssp; 996 enum ieee80211_phymode mode; 997 int i; 998 int do_aggrmode = 0; 999 1000 /* 1001 * Set up the channel access parameters for the physical 1002 * device. First populate the configured settings. 1003 */ 1004 for (i = 0; i < WME_NUM_AC; i++) { 1005 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1006 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1007 chanp->wmep_aifsn = wmep->wmep_aifsn; 1008 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1009 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1010 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1011 1012 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1013 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1014 chanp->wmep_aifsn = wmep->wmep_aifsn; 1015 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1016 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1017 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1018 } 1019 1020 /* 1021 * Select mode; we can be called early in which case we 1022 * always use auto mode. We know we'll be called when 1023 * entering the RUN state with bsschan setup properly 1024 * so state will eventually get set correctly 1025 */ 1026 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1027 mode = ieee80211_chan2mode(ic->ic_bsschan); 1028 else 1029 mode = IEEE80211_MODE_AUTO; 1030 1031 /* 1032 * This implements agressive mode as found in certain 1033 * vendors' AP's. When there is significant high 1034 * priority (VI/VO) traffic in the BSS throttle back BE 1035 * traffic by using conservative parameters. Otherwise 1036 * BE uses agressive params to optimize performance of 1037 * legacy/non-QoS traffic. 1038 */ 1039 1040 /* Hostap? Only if aggressive mode is enabled */ 1041 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1042 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1043 do_aggrmode = 1; 1044 1045 /* 1046 * Station? Only if we're in a non-QoS BSS. 1047 */ 1048 else if ((vap->iv_opmode == IEEE80211_M_STA && 1049 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1050 do_aggrmode = 1; 1051 1052 /* 1053 * IBSS? Only if we we have WME enabled. 1054 */ 1055 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1056 (vap->iv_flags & IEEE80211_F_WME)) 1057 do_aggrmode = 1; 1058 1059 /* 1060 * If WME is disabled on this VAP, default to aggressive mode 1061 * regardless of the configuration. 1062 */ 1063 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1064 do_aggrmode = 1; 1065 1066 /* XXX WDS? */ 1067 1068 /* XXX MBSS? */ 1069 1070 if (do_aggrmode) { 1071 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1072 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1073 1074 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1075 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1076 aggrParam[mode].logcwmin; 1077 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1078 aggrParam[mode].logcwmax; 1079 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1080 (vap->iv_flags & IEEE80211_F_BURST) ? 1081 aggrParam[mode].txopLimit : 0; 1082 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1083 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1084 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1085 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1086 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1087 } 1088 1089 1090 /* 1091 * Change the contention window based on the number of associated 1092 * stations. If the number of associated stations is 1 and 1093 * aggressive mode is enabled, lower the contention window even 1094 * further. 1095 */ 1096 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1097 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1098 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1099 [IEEE80211_MODE_AUTO] = 3, 1100 [IEEE80211_MODE_11A] = 3, 1101 [IEEE80211_MODE_11B] = 4, 1102 [IEEE80211_MODE_11G] = 3, 1103 [IEEE80211_MODE_FH] = 4, 1104 [IEEE80211_MODE_TURBO_A] = 3, 1105 [IEEE80211_MODE_TURBO_G] = 3, 1106 [IEEE80211_MODE_STURBO_A] = 3, 1107 [IEEE80211_MODE_HALF] = 3, 1108 [IEEE80211_MODE_QUARTER] = 3, 1109 [IEEE80211_MODE_11NA] = 3, 1110 [IEEE80211_MODE_11NG] = 3, 1111 }; 1112 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1113 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1114 1115 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1116 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1117 "update %s (chan+bss) logcwmin %u\n", 1118 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1119 } 1120 1121 /* 1122 * Arrange for the beacon update. 1123 * 1124 * XXX what about MBSS, WDS? 1125 */ 1126 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1127 || vap->iv_opmode == IEEE80211_M_IBSS) { 1128 /* 1129 * Arrange for a beacon update and bump the parameter 1130 * set number so associated stations load the new values. 1131 */ 1132 wme->wme_bssChanParams.cap_info = 1133 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1134 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1135 } 1136 1137 wme->wme_update(ic); 1138 1139 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1140 "%s: WME params updated, cap_info 0x%x\n", __func__, 1141 vap->iv_opmode == IEEE80211_M_STA ? 1142 wme->wme_wmeChanParams.cap_info : 1143 wme->wme_bssChanParams.cap_info); 1144 } 1145 1146 void 1147 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1148 { 1149 struct ieee80211com *ic = vap->iv_ic; 1150 1151 if (ic->ic_caps & IEEE80211_C_WME) { 1152 IEEE80211_LOCK(ic); 1153 ieee80211_wme_updateparams_locked(vap); 1154 IEEE80211_UNLOCK(ic); 1155 } 1156 } 1157 1158 static void 1159 parent_updown(void *arg, int npending) 1160 { 1161 struct ieee80211com *ic = arg; 1162 1163 ic->ic_parent(ic); 1164 } 1165 1166 static void 1167 update_mcast(void *arg, int npending) 1168 { 1169 struct ieee80211com *ic = arg; 1170 1171 ic->ic_update_mcast(ic); 1172 } 1173 1174 static void 1175 update_promisc(void *arg, int npending) 1176 { 1177 struct ieee80211com *ic = arg; 1178 1179 ic->ic_update_promisc(ic); 1180 } 1181 1182 static void 1183 update_channel(void *arg, int npending) 1184 { 1185 struct ieee80211com *ic = arg; 1186 1187 ic->ic_set_channel(ic); 1188 ieee80211_radiotap_chan_change(ic); 1189 } 1190 1191 static void 1192 update_chw(void *arg, int npending) 1193 { 1194 struct ieee80211com *ic = arg; 1195 1196 /* 1197 * XXX should we defer the channel width _config_ update until now? 1198 */ 1199 ic->ic_update_chw(ic); 1200 } 1201 1202 /* 1203 * Block until the parent is in a known state. This is 1204 * used after any operations that dispatch a task (e.g. 1205 * to auto-configure the parent device up/down). 1206 */ 1207 void 1208 ieee80211_waitfor_parent(struct ieee80211com *ic) 1209 { 1210 taskqueue_block(ic->ic_tq); 1211 ieee80211_draintask(ic, &ic->ic_parent_task); 1212 ieee80211_draintask(ic, &ic->ic_mcast_task); 1213 ieee80211_draintask(ic, &ic->ic_promisc_task); 1214 ieee80211_draintask(ic, &ic->ic_chan_task); 1215 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1216 ieee80211_draintask(ic, &ic->ic_chw_task); 1217 taskqueue_unblock(ic->ic_tq); 1218 } 1219 1220 /* 1221 * Check to see whether the current channel needs reset. 1222 * 1223 * Some devices don't handle being given an invalid channel 1224 * in their operating mode very well (eg wpi(4) will throw a 1225 * firmware exception.) 1226 * 1227 * Return 0 if we're ok, 1 if the channel needs to be reset. 1228 * 1229 * See PR kern/202502. 1230 */ 1231 static int 1232 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1233 { 1234 struct ieee80211com *ic = vap->iv_ic; 1235 1236 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1237 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1238 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1239 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1240 return (1); 1241 return (0); 1242 } 1243 1244 /* 1245 * Reset the curchan to a known good state. 1246 */ 1247 static void 1248 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1249 { 1250 struct ieee80211com *ic = vap->iv_ic; 1251 1252 ic->ic_curchan = &ic->ic_channels[0]; 1253 } 1254 1255 /* 1256 * Start a vap running. If this is the first vap to be 1257 * set running on the underlying device then we 1258 * automatically bring the device up. 1259 */ 1260 void 1261 ieee80211_start_locked(struct ieee80211vap *vap) 1262 { 1263 struct ifnet *ifp = vap->iv_ifp; 1264 struct ieee80211com *ic = vap->iv_ic; 1265 1266 IEEE80211_LOCK_ASSERT(ic); 1267 1268 IEEE80211_DPRINTF(vap, 1269 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1270 "start running, %d vaps running\n", ic->ic_nrunning); 1271 1272 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1273 /* 1274 * Mark us running. Note that it's ok to do this first; 1275 * if we need to bring the parent device up we defer that 1276 * to avoid dropping the com lock. We expect the device 1277 * to respond to being marked up by calling back into us 1278 * through ieee80211_start_all at which point we'll come 1279 * back in here and complete the work. 1280 */ 1281 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1282 /* 1283 * We are not running; if this we are the first vap 1284 * to be brought up auto-up the parent if necessary. 1285 */ 1286 if (ic->ic_nrunning++ == 0) { 1287 1288 /* reset the channel to a known good channel */ 1289 if (ieee80211_start_check_reset_chan(vap)) 1290 ieee80211_start_reset_chan(vap); 1291 1292 IEEE80211_DPRINTF(vap, 1293 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1294 "%s: up parent %s\n", __func__, ic->ic_name); 1295 ieee80211_runtask(ic, &ic->ic_parent_task); 1296 return; 1297 } 1298 } 1299 /* 1300 * If the parent is up and running, then kick the 1301 * 802.11 state machine as appropriate. 1302 */ 1303 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1304 if (vap->iv_opmode == IEEE80211_M_STA) { 1305 #if 0 1306 /* XXX bypasses scan too easily; disable for now */ 1307 /* 1308 * Try to be intelligent about clocking the state 1309 * machine. If we're currently in RUN state then 1310 * we should be able to apply any new state/parameters 1311 * simply by re-associating. Otherwise we need to 1312 * re-scan to select an appropriate ap. 1313 */ 1314 if (vap->iv_state >= IEEE80211_S_RUN) 1315 ieee80211_new_state_locked(vap, 1316 IEEE80211_S_ASSOC, 1); 1317 else 1318 #endif 1319 ieee80211_new_state_locked(vap, 1320 IEEE80211_S_SCAN, 0); 1321 } else { 1322 /* 1323 * For monitor+wds mode there's nothing to do but 1324 * start running. Otherwise if this is the first 1325 * vap to be brought up, start a scan which may be 1326 * preempted if the station is locked to a particular 1327 * channel. 1328 */ 1329 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1330 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1331 vap->iv_opmode == IEEE80211_M_WDS) 1332 ieee80211_new_state_locked(vap, 1333 IEEE80211_S_RUN, -1); 1334 else 1335 ieee80211_new_state_locked(vap, 1336 IEEE80211_S_SCAN, 0); 1337 } 1338 } 1339 } 1340 1341 /* 1342 * Start a single vap. 1343 */ 1344 void 1345 ieee80211_init(void *arg) 1346 { 1347 struct ieee80211vap *vap = arg; 1348 1349 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1350 "%s\n", __func__); 1351 1352 IEEE80211_LOCK(vap->iv_ic); 1353 ieee80211_start_locked(vap); 1354 IEEE80211_UNLOCK(vap->iv_ic); 1355 } 1356 1357 /* 1358 * Start all runnable vap's on a device. 1359 */ 1360 void 1361 ieee80211_start_all(struct ieee80211com *ic) 1362 { 1363 struct ieee80211vap *vap; 1364 1365 IEEE80211_LOCK(ic); 1366 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1367 struct ifnet *ifp = vap->iv_ifp; 1368 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1369 ieee80211_start_locked(vap); 1370 } 1371 IEEE80211_UNLOCK(ic); 1372 } 1373 1374 /* 1375 * Stop a vap. We force it down using the state machine 1376 * then mark it's ifnet not running. If this is the last 1377 * vap running on the underlying device then we close it 1378 * too to insure it will be properly initialized when the 1379 * next vap is brought up. 1380 */ 1381 void 1382 ieee80211_stop_locked(struct ieee80211vap *vap) 1383 { 1384 struct ieee80211com *ic = vap->iv_ic; 1385 struct ifnet *ifp = vap->iv_ifp; 1386 1387 IEEE80211_LOCK_ASSERT(ic); 1388 1389 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1390 "stop running, %d vaps running\n", ic->ic_nrunning); 1391 1392 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1393 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1394 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1395 if (--ic->ic_nrunning == 0) { 1396 IEEE80211_DPRINTF(vap, 1397 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1398 "down parent %s\n", ic->ic_name); 1399 ieee80211_runtask(ic, &ic->ic_parent_task); 1400 } 1401 } 1402 } 1403 1404 void 1405 ieee80211_stop(struct ieee80211vap *vap) 1406 { 1407 struct ieee80211com *ic = vap->iv_ic; 1408 1409 IEEE80211_LOCK(ic); 1410 ieee80211_stop_locked(vap); 1411 IEEE80211_UNLOCK(ic); 1412 } 1413 1414 /* 1415 * Stop all vap's running on a device. 1416 */ 1417 void 1418 ieee80211_stop_all(struct ieee80211com *ic) 1419 { 1420 struct ieee80211vap *vap; 1421 1422 IEEE80211_LOCK(ic); 1423 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1424 struct ifnet *ifp = vap->iv_ifp; 1425 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1426 ieee80211_stop_locked(vap); 1427 } 1428 IEEE80211_UNLOCK(ic); 1429 1430 ieee80211_waitfor_parent(ic); 1431 } 1432 1433 /* 1434 * Stop all vap's running on a device and arrange 1435 * for those that were running to be resumed. 1436 */ 1437 void 1438 ieee80211_suspend_all(struct ieee80211com *ic) 1439 { 1440 struct ieee80211vap *vap; 1441 1442 IEEE80211_LOCK(ic); 1443 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1444 struct ifnet *ifp = vap->iv_ifp; 1445 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1446 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1447 ieee80211_stop_locked(vap); 1448 } 1449 } 1450 IEEE80211_UNLOCK(ic); 1451 1452 ieee80211_waitfor_parent(ic); 1453 } 1454 1455 /* 1456 * Start all vap's marked for resume. 1457 */ 1458 void 1459 ieee80211_resume_all(struct ieee80211com *ic) 1460 { 1461 struct ieee80211vap *vap; 1462 1463 IEEE80211_LOCK(ic); 1464 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1465 struct ifnet *ifp = vap->iv_ifp; 1466 if (!IFNET_IS_UP_RUNNING(ifp) && 1467 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1468 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1469 ieee80211_start_locked(vap); 1470 } 1471 } 1472 IEEE80211_UNLOCK(ic); 1473 } 1474 1475 void 1476 ieee80211_beacon_miss(struct ieee80211com *ic) 1477 { 1478 IEEE80211_LOCK(ic); 1479 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1480 /* Process in a taskq, the handler may reenter the driver */ 1481 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1482 } 1483 IEEE80211_UNLOCK(ic); 1484 } 1485 1486 static void 1487 beacon_miss(void *arg, int npending) 1488 { 1489 struct ieee80211com *ic = arg; 1490 struct ieee80211vap *vap; 1491 1492 IEEE80211_LOCK(ic); 1493 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1494 /* 1495 * We only pass events through for sta vap's in RUN state; 1496 * may be too restrictive but for now this saves all the 1497 * handlers duplicating these checks. 1498 */ 1499 if (vap->iv_opmode == IEEE80211_M_STA && 1500 vap->iv_state >= IEEE80211_S_RUN && 1501 vap->iv_bmiss != NULL) 1502 vap->iv_bmiss(vap); 1503 } 1504 IEEE80211_UNLOCK(ic); 1505 } 1506 1507 static void 1508 beacon_swmiss(void *arg, int npending) 1509 { 1510 struct ieee80211vap *vap = arg; 1511 struct ieee80211com *ic = vap->iv_ic; 1512 1513 IEEE80211_LOCK(ic); 1514 if (vap->iv_state == IEEE80211_S_RUN) { 1515 /* XXX Call multiple times if npending > zero? */ 1516 vap->iv_bmiss(vap); 1517 } 1518 IEEE80211_UNLOCK(ic); 1519 } 1520 1521 /* 1522 * Software beacon miss handling. Check if any beacons 1523 * were received in the last period. If not post a 1524 * beacon miss; otherwise reset the counter. 1525 */ 1526 void 1527 ieee80211_swbmiss(void *arg) 1528 { 1529 struct ieee80211vap *vap = arg; 1530 struct ieee80211com *ic = vap->iv_ic; 1531 1532 IEEE80211_LOCK_ASSERT(ic); 1533 1534 /* XXX sleep state? */ 1535 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1536 ("wrong state %d", vap->iv_state)); 1537 1538 if (ic->ic_flags & IEEE80211_F_SCAN) { 1539 /* 1540 * If scanning just ignore and reset state. If we get a 1541 * bmiss after coming out of scan because we haven't had 1542 * time to receive a beacon then we should probe the AP 1543 * before posting a real bmiss (unless iv_bmiss_max has 1544 * been artifiically lowered). A cleaner solution might 1545 * be to disable the timer on scan start/end but to handle 1546 * case of multiple sta vap's we'd need to disable the 1547 * timers of all affected vap's. 1548 */ 1549 vap->iv_swbmiss_count = 0; 1550 } else if (vap->iv_swbmiss_count == 0) { 1551 if (vap->iv_bmiss != NULL) 1552 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1553 } else 1554 vap->iv_swbmiss_count = 0; 1555 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1556 ieee80211_swbmiss, vap); 1557 } 1558 1559 /* 1560 * Start an 802.11h channel switch. We record the parameters, 1561 * mark the operation pending, notify each vap through the 1562 * beacon update mechanism so it can update the beacon frame 1563 * contents, and then switch vap's to CSA state to block outbound 1564 * traffic. Devices that handle CSA directly can use the state 1565 * switch to do the right thing so long as they call 1566 * ieee80211_csa_completeswitch when it's time to complete the 1567 * channel change. Devices that depend on the net80211 layer can 1568 * use ieee80211_beacon_update to handle the countdown and the 1569 * channel switch. 1570 */ 1571 void 1572 ieee80211_csa_startswitch(struct ieee80211com *ic, 1573 struct ieee80211_channel *c, int mode, int count) 1574 { 1575 struct ieee80211vap *vap; 1576 1577 IEEE80211_LOCK_ASSERT(ic); 1578 1579 ic->ic_csa_newchan = c; 1580 ic->ic_csa_mode = mode; 1581 ic->ic_csa_count = count; 1582 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1583 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1584 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1585 vap->iv_opmode == IEEE80211_M_IBSS || 1586 vap->iv_opmode == IEEE80211_M_MBSS) 1587 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1588 /* switch to CSA state to block outbound traffic */ 1589 if (vap->iv_state == IEEE80211_S_RUN) 1590 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1591 } 1592 ieee80211_notify_csa(ic, c, mode, count); 1593 } 1594 1595 /* 1596 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1597 * This is called by both the completion and cancellation functions 1598 * so each VAP is placed back in the RUN state and can thus transmit. 1599 */ 1600 static void 1601 csa_completeswitch(struct ieee80211com *ic) 1602 { 1603 struct ieee80211vap *vap; 1604 1605 ic->ic_csa_newchan = NULL; 1606 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1607 1608 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1609 if (vap->iv_state == IEEE80211_S_CSA) 1610 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1611 } 1612 1613 /* 1614 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1615 * We clear state and move all vap's in CSA state to RUN state 1616 * so they can again transmit. 1617 * 1618 * Although this may not be completely correct, update the BSS channel 1619 * for each VAP to the newly configured channel. The setcurchan sets 1620 * the current operating channel for the interface (so the radio does 1621 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1622 * reported information via ioctl. 1623 */ 1624 void 1625 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1626 { 1627 struct ieee80211vap *vap; 1628 1629 IEEE80211_LOCK_ASSERT(ic); 1630 1631 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1632 1633 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1634 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1635 if (vap->iv_state == IEEE80211_S_CSA) 1636 vap->iv_bss->ni_chan = ic->ic_curchan; 1637 1638 csa_completeswitch(ic); 1639 } 1640 1641 /* 1642 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1643 * We clear state and move all vap's in CSA state to RUN state 1644 * so they can again transmit. 1645 */ 1646 void 1647 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1648 { 1649 IEEE80211_LOCK_ASSERT(ic); 1650 1651 csa_completeswitch(ic); 1652 } 1653 1654 /* 1655 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1656 * We clear state and move all vap's in CAC state to RUN state. 1657 */ 1658 void 1659 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1660 { 1661 struct ieee80211com *ic = vap0->iv_ic; 1662 struct ieee80211vap *vap; 1663 1664 IEEE80211_LOCK(ic); 1665 /* 1666 * Complete CAC state change for lead vap first; then 1667 * clock all the other vap's waiting. 1668 */ 1669 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1670 ("wrong state %d", vap0->iv_state)); 1671 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1672 1673 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1674 if (vap->iv_state == IEEE80211_S_CAC) 1675 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1676 IEEE80211_UNLOCK(ic); 1677 } 1678 1679 /* 1680 * Force all vap's other than the specified vap to the INIT state 1681 * and mark them as waiting for a scan to complete. These vaps 1682 * will be brought up when the scan completes and the scanning vap 1683 * reaches RUN state by wakeupwaiting. 1684 */ 1685 static void 1686 markwaiting(struct ieee80211vap *vap0) 1687 { 1688 struct ieee80211com *ic = vap0->iv_ic; 1689 struct ieee80211vap *vap; 1690 1691 IEEE80211_LOCK_ASSERT(ic); 1692 1693 /* 1694 * A vap list entry can not disappear since we are running on the 1695 * taskqueue and a vap destroy will queue and drain another state 1696 * change task. 1697 */ 1698 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1699 if (vap == vap0) 1700 continue; 1701 if (vap->iv_state != IEEE80211_S_INIT) { 1702 /* NB: iv_newstate may drop the lock */ 1703 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1704 IEEE80211_LOCK_ASSERT(ic); 1705 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1706 } 1707 } 1708 } 1709 1710 /* 1711 * Wakeup all vap's waiting for a scan to complete. This is the 1712 * companion to markwaiting (above) and is used to coordinate 1713 * multiple vaps scanning. 1714 * This is called from the state taskqueue. 1715 */ 1716 static void 1717 wakeupwaiting(struct ieee80211vap *vap0) 1718 { 1719 struct ieee80211com *ic = vap0->iv_ic; 1720 struct ieee80211vap *vap; 1721 1722 IEEE80211_LOCK_ASSERT(ic); 1723 1724 /* 1725 * A vap list entry can not disappear since we are running on the 1726 * taskqueue and a vap destroy will queue and drain another state 1727 * change task. 1728 */ 1729 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1730 if (vap == vap0) 1731 continue; 1732 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1733 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1734 /* NB: sta's cannot go INIT->RUN */ 1735 /* NB: iv_newstate may drop the lock */ 1736 vap->iv_newstate(vap, 1737 vap->iv_opmode == IEEE80211_M_STA ? 1738 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1739 IEEE80211_LOCK_ASSERT(ic); 1740 } 1741 } 1742 } 1743 1744 /* 1745 * Handle post state change work common to all operating modes. 1746 */ 1747 static void 1748 ieee80211_newstate_cb(void *xvap, int npending) 1749 { 1750 struct ieee80211vap *vap = xvap; 1751 struct ieee80211com *ic = vap->iv_ic; 1752 enum ieee80211_state nstate, ostate; 1753 int arg, rc; 1754 1755 IEEE80211_LOCK(ic); 1756 nstate = vap->iv_nstate; 1757 arg = vap->iv_nstate_arg; 1758 1759 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1760 /* 1761 * We have been requested to drop back to the INIT before 1762 * proceeding to the new state. 1763 */ 1764 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1765 "%s: %s -> %s arg %d\n", __func__, 1766 ieee80211_state_name[vap->iv_state], 1767 ieee80211_state_name[IEEE80211_S_INIT], arg); 1768 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1769 IEEE80211_LOCK_ASSERT(ic); 1770 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1771 } 1772 1773 ostate = vap->iv_state; 1774 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1775 /* 1776 * SCAN was forced; e.g. on beacon miss. Force other running 1777 * vap's to INIT state and mark them as waiting for the scan to 1778 * complete. This insures they don't interfere with our 1779 * scanning. Since we are single threaded the vaps can not 1780 * transition again while we are executing. 1781 * 1782 * XXX not always right, assumes ap follows sta 1783 */ 1784 markwaiting(vap); 1785 } 1786 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1787 "%s: %s -> %s arg %d\n", __func__, 1788 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1789 1790 rc = vap->iv_newstate(vap, nstate, arg); 1791 IEEE80211_LOCK_ASSERT(ic); 1792 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1793 if (rc != 0) { 1794 /* State transition failed */ 1795 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1796 KASSERT(nstate != IEEE80211_S_INIT, 1797 ("INIT state change failed")); 1798 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1799 "%s: %s returned error %d\n", __func__, 1800 ieee80211_state_name[nstate], rc); 1801 goto done; 1802 } 1803 1804 /* No actual transition, skip post processing */ 1805 if (ostate == nstate) 1806 goto done; 1807 1808 if (nstate == IEEE80211_S_RUN) { 1809 /* 1810 * OACTIVE may be set on the vap if the upper layer 1811 * tried to transmit (e.g. IPv6 NDP) before we reach 1812 * RUN state. Clear it and restart xmit. 1813 * 1814 * Note this can also happen as a result of SLEEP->RUN 1815 * (i.e. coming out of power save mode). 1816 */ 1817 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1818 1819 /* 1820 * XXX TODO Kick-start a VAP queue - this should be a method! 1821 */ 1822 1823 /* bring up any vaps waiting on us */ 1824 wakeupwaiting(vap); 1825 } else if (nstate == IEEE80211_S_INIT) { 1826 /* 1827 * Flush the scan cache if we did the last scan (XXX?) 1828 * and flush any frames on send queues from this vap. 1829 * Note the mgt q is used only for legacy drivers and 1830 * will go away shortly. 1831 */ 1832 ieee80211_scan_flush(vap); 1833 1834 /* 1835 * XXX TODO: ic/vap queue flush 1836 */ 1837 } 1838 done: 1839 IEEE80211_UNLOCK(ic); 1840 } 1841 1842 /* 1843 * Public interface for initiating a state machine change. 1844 * This routine single-threads the request and coordinates 1845 * the scheduling of multiple vaps for the purpose of selecting 1846 * an operating channel. Specifically the following scenarios 1847 * are handled: 1848 * o only one vap can be selecting a channel so on transition to 1849 * SCAN state if another vap is already scanning then 1850 * mark the caller for later processing and return without 1851 * doing anything (XXX? expectations by caller of synchronous operation) 1852 * o only one vap can be doing CAC of a channel so on transition to 1853 * CAC state if another vap is already scanning for radar then 1854 * mark the caller for later processing and return without 1855 * doing anything (XXX? expectations by caller of synchronous operation) 1856 * o if another vap is already running when a request is made 1857 * to SCAN then an operating channel has been chosen; bypass 1858 * the scan and just join the channel 1859 * 1860 * Note that the state change call is done through the iv_newstate 1861 * method pointer so any driver routine gets invoked. The driver 1862 * will normally call back into operating mode-specific 1863 * ieee80211_newstate routines (below) unless it needs to completely 1864 * bypass the state machine (e.g. because the firmware has it's 1865 * own idea how things should work). Bypassing the net80211 layer 1866 * is usually a mistake and indicates lack of proper integration 1867 * with the net80211 layer. 1868 */ 1869 int 1870 ieee80211_new_state_locked(struct ieee80211vap *vap, 1871 enum ieee80211_state nstate, int arg) 1872 { 1873 struct ieee80211com *ic = vap->iv_ic; 1874 struct ieee80211vap *vp; 1875 enum ieee80211_state ostate; 1876 int nrunning, nscanning; 1877 1878 IEEE80211_LOCK_ASSERT(ic); 1879 1880 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1881 if (vap->iv_nstate == IEEE80211_S_INIT) { 1882 /* 1883 * XXX The vap is being stopped, do no allow any other 1884 * state changes until this is completed. 1885 */ 1886 return -1; 1887 } else if (vap->iv_state != vap->iv_nstate) { 1888 #if 0 1889 /* Warn if the previous state hasn't completed. */ 1890 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1891 "%s: pending %s -> %s transition lost\n", __func__, 1892 ieee80211_state_name[vap->iv_state], 1893 ieee80211_state_name[vap->iv_nstate]); 1894 #else 1895 /* XXX temporarily enable to identify issues */ 1896 if_printf(vap->iv_ifp, 1897 "%s: pending %s -> %s transition lost\n", 1898 __func__, ieee80211_state_name[vap->iv_state], 1899 ieee80211_state_name[vap->iv_nstate]); 1900 #endif 1901 } 1902 } 1903 1904 nrunning = nscanning = 0; 1905 /* XXX can track this state instead of calculating */ 1906 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1907 if (vp != vap) { 1908 if (vp->iv_state >= IEEE80211_S_RUN) 1909 nrunning++; 1910 /* XXX doesn't handle bg scan */ 1911 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1912 else if (vp->iv_state > IEEE80211_S_INIT) 1913 nscanning++; 1914 } 1915 } 1916 ostate = vap->iv_state; 1917 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1918 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1919 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1920 nrunning, nscanning); 1921 switch (nstate) { 1922 case IEEE80211_S_SCAN: 1923 if (ostate == IEEE80211_S_INIT) { 1924 /* 1925 * INIT -> SCAN happens on initial bringup. 1926 */ 1927 KASSERT(!(nscanning && nrunning), 1928 ("%d scanning and %d running", nscanning, nrunning)); 1929 if (nscanning) { 1930 /* 1931 * Someone is scanning, defer our state 1932 * change until the work has completed. 1933 */ 1934 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1935 "%s: defer %s -> %s\n", 1936 __func__, ieee80211_state_name[ostate], 1937 ieee80211_state_name[nstate]); 1938 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1939 return 0; 1940 } 1941 if (nrunning) { 1942 /* 1943 * Someone is operating; just join the channel 1944 * they have chosen. 1945 */ 1946 /* XXX kill arg? */ 1947 /* XXX check each opmode, adhoc? */ 1948 if (vap->iv_opmode == IEEE80211_M_STA) 1949 nstate = IEEE80211_S_SCAN; 1950 else 1951 nstate = IEEE80211_S_RUN; 1952 #ifdef IEEE80211_DEBUG 1953 if (nstate != IEEE80211_S_SCAN) { 1954 IEEE80211_DPRINTF(vap, 1955 IEEE80211_MSG_STATE, 1956 "%s: override, now %s -> %s\n", 1957 __func__, 1958 ieee80211_state_name[ostate], 1959 ieee80211_state_name[nstate]); 1960 } 1961 #endif 1962 } 1963 } 1964 break; 1965 case IEEE80211_S_RUN: 1966 if (vap->iv_opmode == IEEE80211_M_WDS && 1967 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1968 nscanning) { 1969 /* 1970 * Legacy WDS with someone else scanning; don't 1971 * go online until that completes as we should 1972 * follow the other vap to the channel they choose. 1973 */ 1974 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1975 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1976 ieee80211_state_name[ostate], 1977 ieee80211_state_name[nstate]); 1978 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1979 return 0; 1980 } 1981 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1982 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1983 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1984 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1985 /* 1986 * This is a DFS channel, transition to CAC state 1987 * instead of RUN. This allows us to initiate 1988 * Channel Availability Check (CAC) as specified 1989 * by 11h/DFS. 1990 */ 1991 nstate = IEEE80211_S_CAC; 1992 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1993 "%s: override %s -> %s (DFS)\n", __func__, 1994 ieee80211_state_name[ostate], 1995 ieee80211_state_name[nstate]); 1996 } 1997 break; 1998 case IEEE80211_S_INIT: 1999 /* cancel any scan in progress */ 2000 ieee80211_cancel_scan(vap); 2001 if (ostate == IEEE80211_S_INIT ) { 2002 /* XXX don't believe this */ 2003 /* INIT -> INIT. nothing to do */ 2004 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2005 } 2006 /* fall thru... */ 2007 default: 2008 break; 2009 } 2010 /* defer the state change to a thread */ 2011 vap->iv_nstate = nstate; 2012 vap->iv_nstate_arg = arg; 2013 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2014 ieee80211_runtask(ic, &vap->iv_nstate_task); 2015 return EINPROGRESS; 2016 } 2017 2018 int 2019 ieee80211_new_state(struct ieee80211vap *vap, 2020 enum ieee80211_state nstate, int arg) 2021 { 2022 struct ieee80211com *ic = vap->iv_ic; 2023 int rc; 2024 2025 IEEE80211_LOCK(ic); 2026 rc = ieee80211_new_state_locked(vap, nstate, arg); 2027 IEEE80211_UNLOCK(ic); 2028 return rc; 2029 } 2030