xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 9fc5c47fa5c7fa58d61245f0408611943e613164)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>		/* XXX for ether_sprintf */
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_adhoc.h>
51 #include <net80211/ieee80211_sta.h>
52 #include <net80211/ieee80211_hostap.h>
53 #include <net80211/ieee80211_wds.h>
54 #ifdef IEEE80211_SUPPORT_MESH
55 #include <net80211/ieee80211_mesh.h>
56 #endif
57 #include <net80211/ieee80211_monitor.h>
58 #include <net80211/ieee80211_input.h>
59 
60 /* XXX tunables */
61 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
62 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
63 
64 const char *ieee80211_mgt_subtype_name[] = {
65 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
66 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
67 	"beacon",	"atim",		"disassoc",	"auth",
68 	"deauth",	"action",	"action_noack",	"reserved#15"
69 };
70 const char *ieee80211_ctl_subtype_name[] = {
71 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
72 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
73 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
74 	"cts",		"ack",		"cf_end",	"cf_end_ack"
75 };
76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
77 	"IBSS",		/* IEEE80211_M_IBSS */
78 	"STA",		/* IEEE80211_M_STA */
79 	"WDS",		/* IEEE80211_M_WDS */
80 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
81 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
82 	"MONITOR",	/* IEEE80211_M_MONITOR */
83 	"MBSS"		/* IEEE80211_M_MBSS */
84 };
85 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
86 	"INIT",		/* IEEE80211_S_INIT */
87 	"SCAN",		/* IEEE80211_S_SCAN */
88 	"AUTH",		/* IEEE80211_S_AUTH */
89 	"ASSOC",	/* IEEE80211_S_ASSOC */
90 	"CAC",		/* IEEE80211_S_CAC */
91 	"RUN",		/* IEEE80211_S_RUN */
92 	"CSA",		/* IEEE80211_S_CSA */
93 	"SLEEP",	/* IEEE80211_S_SLEEP */
94 };
95 const char *ieee80211_wme_acnames[] = {
96 	"WME_AC_BE",
97 	"WME_AC_BK",
98 	"WME_AC_VI",
99 	"WME_AC_VO",
100 	"WME_UPSD",
101 };
102 
103 static void beacon_miss(void *, int);
104 static void beacon_swmiss(void *, int);
105 static void parent_updown(void *, int);
106 static void update_mcast(void *, int);
107 static void update_promisc(void *, int);
108 static void update_channel(void *, int);
109 static void update_chw(void *, int);
110 static void ieee80211_newstate_cb(void *, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 
117 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
118 	m_freem(m);
119 	return ENETDOWN;
120 }
121 
122 void
123 ieee80211_proto_attach(struct ieee80211com *ic)
124 {
125 	uint8_t hdrlen;
126 
127 	/* override the 802.3 setting */
128 	hdrlen = ic->ic_headroom
129 		+ sizeof(struct ieee80211_qosframe_addr4)
130 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131 		+ IEEE80211_WEP_EXTIVLEN;
132 	/* XXX no way to recalculate on ifdetach */
133 	if (ALIGN(hdrlen) > max_linkhdr) {
134 		/* XXX sanity check... */
135 		max_linkhdr = ALIGN(hdrlen);
136 		max_hdr = max_linkhdr + max_protohdr;
137 		max_datalen = MHLEN - max_hdr;
138 	}
139 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
140 
141 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
142 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
143 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
144 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
145 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
146 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_headroom
192                 + sizeof(struct ieee80211_qosframe_addr4)
193                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
194                 + IEEE80211_WEP_EXTIVLEN;
195 
196 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
197 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
198 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
199 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
200 	callout_init(&vap->iv_mgtsend, 1);
201 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
202 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
203 	/*
204 	 * Install default tx rate handling: no fixed rate, lowest
205 	 * supported rate for mgmt and multicast frames.  Default
206 	 * max retry count.  These settings can be changed by the
207 	 * driver and/or user applications.
208 	 */
209 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
210 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
211 
212 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
213 
214 		/*
215 		 * Setting the management rate to MCS 0 assumes that the
216 		 * BSS Basic rate set is empty and the BSS Basic MCS set
217 		 * is not.
218 		 *
219 		 * Since we're not checking this, default to the lowest
220 		 * defined rate for this mode.
221 		 *
222 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
223 		 * some MCS management traffic (eg BA response frames.)
224 		 *
225 		 * See also: 9.6.0 of the 802.11n-2009 specification.
226 		 */
227 #ifdef	NOTYET
228 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
229 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
230 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
231 		} else {
232 			vap->iv_txparms[i].mgmtrate =
233 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
234 			vap->iv_txparms[i].mcastrate =
235 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
236 		}
237 #endif
238 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
239 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
240 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
241 	}
242 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
243 
244 	vap->iv_update_beacon = null_update_beacon;
245 	vap->iv_deliver_data = ieee80211_deliver_data;
246 
247 	/* attach support for operating mode */
248 	ic->ic_vattach[vap->iv_opmode](vap);
249 }
250 
251 void
252 ieee80211_proto_vdetach(struct ieee80211vap *vap)
253 {
254 #define	FREEAPPIE(ie) do { \
255 	if (ie != NULL) \
256 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
257 } while (0)
258 	/*
259 	 * Detach operating mode module.
260 	 */
261 	if (vap->iv_opdetach != NULL)
262 		vap->iv_opdetach(vap);
263 	/*
264 	 * This should not be needed as we detach when reseting
265 	 * the state but be conservative here since the
266 	 * authenticator may do things like spawn kernel threads.
267 	 */
268 	if (vap->iv_auth->ia_detach != NULL)
269 		vap->iv_auth->ia_detach(vap);
270 	/*
271 	 * Detach any ACL'ator.
272 	 */
273 	if (vap->iv_acl != NULL)
274 		vap->iv_acl->iac_detach(vap);
275 
276 	FREEAPPIE(vap->iv_appie_beacon);
277 	FREEAPPIE(vap->iv_appie_probereq);
278 	FREEAPPIE(vap->iv_appie_proberesp);
279 	FREEAPPIE(vap->iv_appie_assocreq);
280 	FREEAPPIE(vap->iv_appie_assocresp);
281 	FREEAPPIE(vap->iv_appie_wpa);
282 #undef FREEAPPIE
283 }
284 
285 /*
286  * Simple-minded authenticator module support.
287  */
288 
289 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
290 /* XXX well-known names */
291 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
292 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
293 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
294 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
295 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
296 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
297 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
298 };
299 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
300 
301 static const struct ieee80211_authenticator auth_internal = {
302 	.ia_name		= "wlan_internal",
303 	.ia_attach		= NULL,
304 	.ia_detach		= NULL,
305 	.ia_node_join		= NULL,
306 	.ia_node_leave		= NULL,
307 };
308 
309 /*
310  * Setup internal authenticators once; they are never unregistered.
311  */
312 static void
313 ieee80211_auth_setup(void)
314 {
315 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
316 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
317 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
318 }
319 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
320 
321 const struct ieee80211_authenticator *
322 ieee80211_authenticator_get(int auth)
323 {
324 	if (auth >= IEEE80211_AUTH_MAX)
325 		return NULL;
326 	if (authenticators[auth] == NULL)
327 		ieee80211_load_module(auth_modnames[auth]);
328 	return authenticators[auth];
329 }
330 
331 void
332 ieee80211_authenticator_register(int type,
333 	const struct ieee80211_authenticator *auth)
334 {
335 	if (type >= IEEE80211_AUTH_MAX)
336 		return;
337 	authenticators[type] = auth;
338 }
339 
340 void
341 ieee80211_authenticator_unregister(int type)
342 {
343 
344 	if (type >= IEEE80211_AUTH_MAX)
345 		return;
346 	authenticators[type] = NULL;
347 }
348 
349 /*
350  * Very simple-minded ACL module support.
351  */
352 /* XXX just one for now */
353 static	const struct ieee80211_aclator *acl = NULL;
354 
355 void
356 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
357 {
358 	printf("wlan: %s acl policy registered\n", iac->iac_name);
359 	acl = iac;
360 }
361 
362 void
363 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
364 {
365 	if (acl == iac)
366 		acl = NULL;
367 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
368 }
369 
370 const struct ieee80211_aclator *
371 ieee80211_aclator_get(const char *name)
372 {
373 	if (acl == NULL)
374 		ieee80211_load_module("wlan_acl");
375 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
376 }
377 
378 void
379 ieee80211_print_essid(const uint8_t *essid, int len)
380 {
381 	const uint8_t *p;
382 	int i;
383 
384 	if (len > IEEE80211_NWID_LEN)
385 		len = IEEE80211_NWID_LEN;
386 	/* determine printable or not */
387 	for (i = 0, p = essid; i < len; i++, p++) {
388 		if (*p < ' ' || *p > 0x7e)
389 			break;
390 	}
391 	if (i == len) {
392 		printf("\"");
393 		for (i = 0, p = essid; i < len; i++, p++)
394 			printf("%c", *p);
395 		printf("\"");
396 	} else {
397 		printf("0x");
398 		for (i = 0, p = essid; i < len; i++, p++)
399 			printf("%02x", *p);
400 	}
401 }
402 
403 void
404 ieee80211_dump_pkt(struct ieee80211com *ic,
405 	const uint8_t *buf, int len, int rate, int rssi)
406 {
407 	const struct ieee80211_frame *wh;
408 	int i;
409 
410 	wh = (const struct ieee80211_frame *)buf;
411 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
412 	case IEEE80211_FC1_DIR_NODS:
413 		printf("NODS %s", ether_sprintf(wh->i_addr2));
414 		printf("->%s", ether_sprintf(wh->i_addr1));
415 		printf("(%s)", ether_sprintf(wh->i_addr3));
416 		break;
417 	case IEEE80211_FC1_DIR_TODS:
418 		printf("TODS %s", ether_sprintf(wh->i_addr2));
419 		printf("->%s", ether_sprintf(wh->i_addr3));
420 		printf("(%s)", ether_sprintf(wh->i_addr1));
421 		break;
422 	case IEEE80211_FC1_DIR_FROMDS:
423 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
424 		printf("->%s", ether_sprintf(wh->i_addr1));
425 		printf("(%s)", ether_sprintf(wh->i_addr2));
426 		break;
427 	case IEEE80211_FC1_DIR_DSTODS:
428 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
429 		printf("->%s", ether_sprintf(wh->i_addr3));
430 		printf("(%s", ether_sprintf(wh->i_addr2));
431 		printf("->%s)", ether_sprintf(wh->i_addr1));
432 		break;
433 	}
434 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
435 	case IEEE80211_FC0_TYPE_DATA:
436 		printf(" data");
437 		break;
438 	case IEEE80211_FC0_TYPE_MGT:
439 		printf(" %s", ieee80211_mgt_subtype_name[
440 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
441 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
442 		break;
443 	default:
444 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
445 		break;
446 	}
447 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
448 		const struct ieee80211_qosframe *qwh =
449 			(const struct ieee80211_qosframe *)buf;
450 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
451 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
452 	}
453 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
454 		int off;
455 
456 		off = ieee80211_anyhdrspace(ic, wh);
457 		printf(" WEP [IV %.02x %.02x %.02x",
458 			buf[off+0], buf[off+1], buf[off+2]);
459 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
460 			printf(" %.02x %.02x %.02x",
461 				buf[off+4], buf[off+5], buf[off+6]);
462 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
463 	}
464 	if (rate >= 0)
465 		printf(" %dM", rate / 2);
466 	if (rssi >= 0)
467 		printf(" +%d", rssi);
468 	printf("\n");
469 	if (len > 0) {
470 		for (i = 0; i < len; i++) {
471 			if ((i & 1) == 0)
472 				printf(" ");
473 			printf("%02x", buf[i]);
474 		}
475 		printf("\n");
476 	}
477 }
478 
479 static __inline int
480 findrix(const struct ieee80211_rateset *rs, int r)
481 {
482 	int i;
483 
484 	for (i = 0; i < rs->rs_nrates; i++)
485 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
486 			return i;
487 	return -1;
488 }
489 
490 int
491 ieee80211_fix_rate(struct ieee80211_node *ni,
492 	struct ieee80211_rateset *nrs, int flags)
493 {
494 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
495 	struct ieee80211vap *vap = ni->ni_vap;
496 	struct ieee80211com *ic = ni->ni_ic;
497 	int i, j, rix, error;
498 	int okrate, badrate, fixedrate, ucastrate;
499 	const struct ieee80211_rateset *srs;
500 	uint8_t r;
501 
502 	error = 0;
503 	okrate = badrate = 0;
504 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
505 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
506 		/*
507 		 * Workaround awkwardness with fixed rate.  We are called
508 		 * to check both the legacy rate set and the HT rate set
509 		 * but we must apply any legacy fixed rate check only to the
510 		 * legacy rate set and vice versa.  We cannot tell what type
511 		 * of rate set we've been given (legacy or HT) but we can
512 		 * distinguish the fixed rate type (MCS have 0x80 set).
513 		 * So to deal with this the caller communicates whether to
514 		 * check MCS or legacy rate using the flags and we use the
515 		 * type of any fixed rate to avoid applying an MCS to a
516 		 * legacy rate and vice versa.
517 		 */
518 		if (ucastrate & 0x80) {
519 			if (flags & IEEE80211_F_DOFRATE)
520 				flags &= ~IEEE80211_F_DOFRATE;
521 		} else if ((ucastrate & 0x80) == 0) {
522 			if (flags & IEEE80211_F_DOFMCS)
523 				flags &= ~IEEE80211_F_DOFMCS;
524 		}
525 		/* NB: required to make MCS match below work */
526 		ucastrate &= IEEE80211_RATE_VAL;
527 	}
528 	fixedrate = IEEE80211_FIXED_RATE_NONE;
529 	/*
530 	 * XXX we are called to process both MCS and legacy rates;
531 	 * we must use the appropriate basic rate set or chaos will
532 	 * ensue; for now callers that want MCS must supply
533 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
534 	 * function so there are two variants, one for MCS and one
535 	 * for legacy rates.
536 	 */
537 	if (flags & IEEE80211_F_DOBRS)
538 		srs = (const struct ieee80211_rateset *)
539 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
540 	else
541 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
542 	for (i = 0; i < nrs->rs_nrates; ) {
543 		if (flags & IEEE80211_F_DOSORT) {
544 			/*
545 			 * Sort rates.
546 			 */
547 			for (j = i + 1; j < nrs->rs_nrates; j++) {
548 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
549 					r = nrs->rs_rates[i];
550 					nrs->rs_rates[i] = nrs->rs_rates[j];
551 					nrs->rs_rates[j] = r;
552 				}
553 			}
554 		}
555 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
556 		badrate = r;
557 		/*
558 		 * Check for fixed rate.
559 		 */
560 		if (r == ucastrate)
561 			fixedrate = r;
562 		/*
563 		 * Check against supported rates.
564 		 */
565 		rix = findrix(srs, r);
566 		if (flags & IEEE80211_F_DONEGO) {
567 			if (rix < 0) {
568 				/*
569 				 * A rate in the node's rate set is not
570 				 * supported.  If this is a basic rate and we
571 				 * are operating as a STA then this is an error.
572 				 * Otherwise we just discard/ignore the rate.
573 				 */
574 				if ((flags & IEEE80211_F_JOIN) &&
575 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
576 					error++;
577 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
578 				/*
579 				 * Overwrite with the supported rate
580 				 * value so any basic rate bit is set.
581 				 */
582 				nrs->rs_rates[i] = srs->rs_rates[rix];
583 			}
584 		}
585 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
586 			/*
587 			 * Delete unacceptable rates.
588 			 */
589 			nrs->rs_nrates--;
590 			for (j = i; j < nrs->rs_nrates; j++)
591 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
592 			nrs->rs_rates[j] = 0;
593 			continue;
594 		}
595 		if (rix >= 0)
596 			okrate = nrs->rs_rates[i];
597 		i++;
598 	}
599 	if (okrate == 0 || error != 0 ||
600 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
601 	     fixedrate != ucastrate)) {
602 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
603 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
604 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
605 		return badrate | IEEE80211_RATE_BASIC;
606 	} else
607 		return RV(okrate);
608 #undef RV
609 }
610 
611 /*
612  * Reset 11g-related state.
613  */
614 void
615 ieee80211_reset_erp(struct ieee80211com *ic)
616 {
617 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
618 	ic->ic_nonerpsta = 0;
619 	ic->ic_longslotsta = 0;
620 	/*
621 	 * Short slot time is enabled only when operating in 11g
622 	 * and not in an IBSS.  We must also honor whether or not
623 	 * the driver is capable of doing it.
624 	 */
625 	ieee80211_set_shortslottime(ic,
626 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
627 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
628 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
629 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
630 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
631 	/*
632 	 * Set short preamble and ERP barker-preamble flags.
633 	 */
634 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
635 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
636 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
637 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
638 	} else {
639 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
640 		ic->ic_flags |= IEEE80211_F_USEBARKER;
641 	}
642 }
643 
644 /*
645  * Set the short slot time state and notify the driver.
646  */
647 void
648 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
649 {
650 	if (onoff)
651 		ic->ic_flags |= IEEE80211_F_SHSLOT;
652 	else
653 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
654 	/* notify driver */
655 	if (ic->ic_updateslot != NULL)
656 		ic->ic_updateslot(ic);
657 }
658 
659 /*
660  * Check if the specified rate set supports ERP.
661  * NB: the rate set is assumed to be sorted.
662  */
663 int
664 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
665 {
666 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
667 	int i, j;
668 
669 	if (rs->rs_nrates < nitems(rates))
670 		return 0;
671 	for (i = 0; i < nitems(rates); i++) {
672 		for (j = 0; j < rs->rs_nrates; j++) {
673 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
674 			if (rates[i] == r)
675 				goto next;
676 			if (r > rates[i])
677 				return 0;
678 		}
679 		return 0;
680 	next:
681 		;
682 	}
683 	return 1;
684 }
685 
686 /*
687  * Mark the basic rates for the rate table based on the
688  * operating mode.  For real 11g we mark all the 11b rates
689  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
690  * 11b rates.  There's also a pseudo 11a-mode used to mark only
691  * the basic OFDM rates.
692  */
693 static void
694 setbasicrates(struct ieee80211_rateset *rs,
695     enum ieee80211_phymode mode, int add)
696 {
697 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
698 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
699 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
700 					    /* NB: mixed b/g */
701 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
702 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
703 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
704 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
705 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
706 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
707 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
708 					    /* NB: mixed b/g */
709 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
710 	};
711 	int i, j;
712 
713 	for (i = 0; i < rs->rs_nrates; i++) {
714 		if (!add)
715 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
716 		for (j = 0; j < basic[mode].rs_nrates; j++)
717 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
718 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
719 				break;
720 			}
721 	}
722 }
723 
724 /*
725  * Set the basic rates in a rate set.
726  */
727 void
728 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
729     enum ieee80211_phymode mode)
730 {
731 	setbasicrates(rs, mode, 0);
732 }
733 
734 /*
735  * Add basic rates to a rate set.
736  */
737 void
738 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
739     enum ieee80211_phymode mode)
740 {
741 	setbasicrates(rs, mode, 1);
742 }
743 
744 /*
745  * WME protocol support.
746  *
747  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
748  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
749  * Draft 2.0 Test Plan (Appendix D).
750  *
751  * Static/Dynamic Turbo mode settings come from Atheros.
752  */
753 typedef struct phyParamType {
754 	uint8_t		aifsn;
755 	uint8_t		logcwmin;
756 	uint8_t		logcwmax;
757 	uint16_t	txopLimit;
758 	uint8_t 	acm;
759 } paramType;
760 
761 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
762 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
766 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
767 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
768 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
769 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
770 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
772 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
773 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
774 };
775 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
776 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
780 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
781 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
782 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
783 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
784 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
786 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
787 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
788 };
789 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
790 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
791 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
792 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
793 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
794 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
795 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
796 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
797 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
798 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
799 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
800 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
801 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
802 };
803 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
804 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
805 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
806 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
807 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
808 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
809 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
810 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
811 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
812 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
813 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
814 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
815 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
816 };
817 
818 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
819 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
823 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
824 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
825 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
826 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
827 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
829 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
830 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
831 };
832 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
833 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
834 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
835 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
836 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
837 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
838 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
839 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
840 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
841 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
842 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
843 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
844 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
845 };
846 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
847 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
848 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
849 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
850 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
851 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
852 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
853 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
854 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
855 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
856 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
857 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
858 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
859 };
860 
861 static void
862 _setifsparams(struct wmeParams *wmep, const paramType *phy)
863 {
864 	wmep->wmep_aifsn = phy->aifsn;
865 	wmep->wmep_logcwmin = phy->logcwmin;
866 	wmep->wmep_logcwmax = phy->logcwmax;
867 	wmep->wmep_txopLimit = phy->txopLimit;
868 }
869 
870 static void
871 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
872 	struct wmeParams *wmep, const paramType *phy)
873 {
874 	wmep->wmep_acm = phy->acm;
875 	_setifsparams(wmep, phy);
876 
877 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
878 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
879 	    ieee80211_wme_acnames[ac], type,
880 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
881 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
882 }
883 
884 static void
885 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
886 {
887 	struct ieee80211com *ic = vap->iv_ic;
888 	struct ieee80211_wme_state *wme = &ic->ic_wme;
889 	const paramType *pPhyParam, *pBssPhyParam;
890 	struct wmeParams *wmep;
891 	enum ieee80211_phymode mode;
892 	int i;
893 
894 	IEEE80211_LOCK_ASSERT(ic);
895 
896 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
897 		return;
898 
899 	/*
900 	 * Clear the wme cap_info field so a qoscount from a previous
901 	 * vap doesn't confuse later code which only parses the beacon
902 	 * field and updates hardware when said field changes.
903 	 * Otherwise the hardware is programmed with defaults, not what
904 	 * the beacon actually announces.
905 	 */
906 	wme->wme_wmeChanParams.cap_info = 0;
907 
908 	/*
909 	 * Select mode; we can be called early in which case we
910 	 * always use auto mode.  We know we'll be called when
911 	 * entering the RUN state with bsschan setup properly
912 	 * so state will eventually get set correctly
913 	 */
914 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
915 		mode = ieee80211_chan2mode(ic->ic_bsschan);
916 	else
917 		mode = IEEE80211_MODE_AUTO;
918 	for (i = 0; i < WME_NUM_AC; i++) {
919 		switch (i) {
920 		case WME_AC_BK:
921 			pPhyParam = &phyParamForAC_BK[mode];
922 			pBssPhyParam = &phyParamForAC_BK[mode];
923 			break;
924 		case WME_AC_VI:
925 			pPhyParam = &phyParamForAC_VI[mode];
926 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
927 			break;
928 		case WME_AC_VO:
929 			pPhyParam = &phyParamForAC_VO[mode];
930 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
931 			break;
932 		case WME_AC_BE:
933 		default:
934 			pPhyParam = &phyParamForAC_BE[mode];
935 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
936 			break;
937 		}
938 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
939 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
940 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
941 		} else {
942 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
943 		}
944 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
945 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
946 	}
947 	/* NB: check ic_bss to avoid NULL deref on initial attach */
948 	if (vap->iv_bss != NULL) {
949 		/*
950 		 * Calculate agressive mode switching threshold based
951 		 * on beacon interval.  This doesn't need locking since
952 		 * we're only called before entering the RUN state at
953 		 * which point we start sending beacon frames.
954 		 */
955 		wme->wme_hipri_switch_thresh =
956 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
957 		wme->wme_flags &= ~WME_F_AGGRMODE;
958 		ieee80211_wme_updateparams(vap);
959 	}
960 }
961 
962 void
963 ieee80211_wme_initparams(struct ieee80211vap *vap)
964 {
965 	struct ieee80211com *ic = vap->iv_ic;
966 
967 	IEEE80211_LOCK(ic);
968 	ieee80211_wme_initparams_locked(vap);
969 	IEEE80211_UNLOCK(ic);
970 }
971 
972 /*
973  * Update WME parameters for ourself and the BSS.
974  */
975 void
976 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
977 {
978 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
979 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
980 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
981 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
982 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
983 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
984 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
985 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
986 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
987 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
988 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
989 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
990 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
991 	};
992 	struct ieee80211com *ic = vap->iv_ic;
993 	struct ieee80211_wme_state *wme = &ic->ic_wme;
994 	const struct wmeParams *wmep;
995 	struct wmeParams *chanp, *bssp;
996 	enum ieee80211_phymode mode;
997 	int i;
998 	int do_aggrmode = 0;
999 
1000        	/*
1001 	 * Set up the channel access parameters for the physical
1002 	 * device.  First populate the configured settings.
1003 	 */
1004 	for (i = 0; i < WME_NUM_AC; i++) {
1005 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1006 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1007 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1008 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1009 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1010 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1011 
1012 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1013 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1014 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1015 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1016 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1017 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1018 	}
1019 
1020 	/*
1021 	 * Select mode; we can be called early in which case we
1022 	 * always use auto mode.  We know we'll be called when
1023 	 * entering the RUN state with bsschan setup properly
1024 	 * so state will eventually get set correctly
1025 	 */
1026 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1027 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1028 	else
1029 		mode = IEEE80211_MODE_AUTO;
1030 
1031 	/*
1032 	 * This implements agressive mode as found in certain
1033 	 * vendors' AP's.  When there is significant high
1034 	 * priority (VI/VO) traffic in the BSS throttle back BE
1035 	 * traffic by using conservative parameters.  Otherwise
1036 	 * BE uses agressive params to optimize performance of
1037 	 * legacy/non-QoS traffic.
1038 	 */
1039 
1040 	/* Hostap? Only if aggressive mode is enabled */
1041         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1042 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1043 		do_aggrmode = 1;
1044 
1045 	/*
1046 	 * Station? Only if we're in a non-QoS BSS.
1047 	 */
1048 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1049 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1050 		do_aggrmode = 1;
1051 
1052 	/*
1053 	 * IBSS? Only if we we have WME enabled.
1054 	 */
1055 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1056 	    (vap->iv_flags & IEEE80211_F_WME))
1057 		do_aggrmode = 1;
1058 
1059 	/*
1060 	 * If WME is disabled on this VAP, default to aggressive mode
1061 	 * regardless of the configuration.
1062 	 */
1063 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1064 		do_aggrmode = 1;
1065 
1066 	/* XXX WDS? */
1067 
1068 	/* XXX MBSS? */
1069 
1070 	if (do_aggrmode) {
1071 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1072 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1073 
1074 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1075 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1076 		    aggrParam[mode].logcwmin;
1077 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1078 		    aggrParam[mode].logcwmax;
1079 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1080 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1081 			aggrParam[mode].txopLimit : 0;
1082 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1083 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1084 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1085 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1086 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1087 	}
1088 
1089 
1090 	/*
1091 	 * Change the contention window based on the number of associated
1092 	 * stations.  If the number of associated stations is 1 and
1093 	 * aggressive mode is enabled, lower the contention window even
1094 	 * further.
1095 	 */
1096 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1097 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1098 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1099 		    [IEEE80211_MODE_AUTO]	= 3,
1100 		    [IEEE80211_MODE_11A]	= 3,
1101 		    [IEEE80211_MODE_11B]	= 4,
1102 		    [IEEE80211_MODE_11G]	= 3,
1103 		    [IEEE80211_MODE_FH]		= 4,
1104 		    [IEEE80211_MODE_TURBO_A]	= 3,
1105 		    [IEEE80211_MODE_TURBO_G]	= 3,
1106 		    [IEEE80211_MODE_STURBO_A]	= 3,
1107 		    [IEEE80211_MODE_HALF]	= 3,
1108 		    [IEEE80211_MODE_QUARTER]	= 3,
1109 		    [IEEE80211_MODE_11NA]	= 3,
1110 		    [IEEE80211_MODE_11NG]	= 3,
1111 		};
1112 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1113 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1114 
1115 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1116 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1117 		    "update %s (chan+bss) logcwmin %u\n",
1118 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1119 	}
1120 
1121 	/*
1122 	 * Arrange for the beacon update.
1123 	 *
1124 	 * XXX what about MBSS, WDS?
1125 	 */
1126 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1127 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1128 		/*
1129 		 * Arrange for a beacon update and bump the parameter
1130 		 * set number so associated stations load the new values.
1131 		 */
1132 		wme->wme_bssChanParams.cap_info =
1133 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1134 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1135 	}
1136 
1137 	wme->wme_update(ic);
1138 
1139 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1140 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1141 	    vap->iv_opmode == IEEE80211_M_STA ?
1142 		wme->wme_wmeChanParams.cap_info :
1143 		wme->wme_bssChanParams.cap_info);
1144 }
1145 
1146 void
1147 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1148 {
1149 	struct ieee80211com *ic = vap->iv_ic;
1150 
1151 	if (ic->ic_caps & IEEE80211_C_WME) {
1152 		IEEE80211_LOCK(ic);
1153 		ieee80211_wme_updateparams_locked(vap);
1154 		IEEE80211_UNLOCK(ic);
1155 	}
1156 }
1157 
1158 static void
1159 parent_updown(void *arg, int npending)
1160 {
1161 	struct ieee80211com *ic = arg;
1162 
1163 	ic->ic_parent(ic);
1164 }
1165 
1166 static void
1167 update_mcast(void *arg, int npending)
1168 {
1169 	struct ieee80211com *ic = arg;
1170 
1171 	ic->ic_update_mcast(ic);
1172 }
1173 
1174 static void
1175 update_promisc(void *arg, int npending)
1176 {
1177 	struct ieee80211com *ic = arg;
1178 
1179 	ic->ic_update_promisc(ic);
1180 }
1181 
1182 static void
1183 update_channel(void *arg, int npending)
1184 {
1185 	struct ieee80211com *ic = arg;
1186 
1187 	ic->ic_set_channel(ic);
1188 	ieee80211_radiotap_chan_change(ic);
1189 }
1190 
1191 static void
1192 update_chw(void *arg, int npending)
1193 {
1194 	struct ieee80211com *ic = arg;
1195 
1196 	/*
1197 	 * XXX should we defer the channel width _config_ update until now?
1198 	 */
1199 	ic->ic_update_chw(ic);
1200 }
1201 
1202 /*
1203  * Block until the parent is in a known state.  This is
1204  * used after any operations that dispatch a task (e.g.
1205  * to auto-configure the parent device up/down).
1206  */
1207 void
1208 ieee80211_waitfor_parent(struct ieee80211com *ic)
1209 {
1210 	taskqueue_block(ic->ic_tq);
1211 	ieee80211_draintask(ic, &ic->ic_parent_task);
1212 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1213 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1214 	ieee80211_draintask(ic, &ic->ic_chan_task);
1215 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1216 	ieee80211_draintask(ic, &ic->ic_chw_task);
1217 	taskqueue_unblock(ic->ic_tq);
1218 }
1219 
1220 /*
1221  * Check to see whether the current channel needs reset.
1222  *
1223  * Some devices don't handle being given an invalid channel
1224  * in their operating mode very well (eg wpi(4) will throw a
1225  * firmware exception.)
1226  *
1227  * Return 0 if we're ok, 1 if the channel needs to be reset.
1228  *
1229  * See PR kern/202502.
1230  */
1231 static int
1232 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1233 {
1234 	struct ieee80211com *ic = vap->iv_ic;
1235 
1236 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1237 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1238 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1239 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1240 		return (1);
1241 	return (0);
1242 }
1243 
1244 /*
1245  * Reset the curchan to a known good state.
1246  */
1247 static void
1248 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1249 {
1250 	struct ieee80211com *ic = vap->iv_ic;
1251 
1252 	ic->ic_curchan = &ic->ic_channels[0];
1253 }
1254 
1255 /*
1256  * Start a vap running.  If this is the first vap to be
1257  * set running on the underlying device then we
1258  * automatically bring the device up.
1259  */
1260 void
1261 ieee80211_start_locked(struct ieee80211vap *vap)
1262 {
1263 	struct ifnet *ifp = vap->iv_ifp;
1264 	struct ieee80211com *ic = vap->iv_ic;
1265 
1266 	IEEE80211_LOCK_ASSERT(ic);
1267 
1268 	IEEE80211_DPRINTF(vap,
1269 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1270 		"start running, %d vaps running\n", ic->ic_nrunning);
1271 
1272 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1273 		/*
1274 		 * Mark us running.  Note that it's ok to do this first;
1275 		 * if we need to bring the parent device up we defer that
1276 		 * to avoid dropping the com lock.  We expect the device
1277 		 * to respond to being marked up by calling back into us
1278 		 * through ieee80211_start_all at which point we'll come
1279 		 * back in here and complete the work.
1280 		 */
1281 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1282 		/*
1283 		 * We are not running; if this we are the first vap
1284 		 * to be brought up auto-up the parent if necessary.
1285 		 */
1286 		if (ic->ic_nrunning++ == 0) {
1287 
1288 			/* reset the channel to a known good channel */
1289 			if (ieee80211_start_check_reset_chan(vap))
1290 				ieee80211_start_reset_chan(vap);
1291 
1292 			IEEE80211_DPRINTF(vap,
1293 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1294 			    "%s: up parent %s\n", __func__, ic->ic_name);
1295 			ieee80211_runtask(ic, &ic->ic_parent_task);
1296 			return;
1297 		}
1298 	}
1299 	/*
1300 	 * If the parent is up and running, then kick the
1301 	 * 802.11 state machine as appropriate.
1302 	 */
1303 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1304 		if (vap->iv_opmode == IEEE80211_M_STA) {
1305 #if 0
1306 			/* XXX bypasses scan too easily; disable for now */
1307 			/*
1308 			 * Try to be intelligent about clocking the state
1309 			 * machine.  If we're currently in RUN state then
1310 			 * we should be able to apply any new state/parameters
1311 			 * simply by re-associating.  Otherwise we need to
1312 			 * re-scan to select an appropriate ap.
1313 			 */
1314 			if (vap->iv_state >= IEEE80211_S_RUN)
1315 				ieee80211_new_state_locked(vap,
1316 				    IEEE80211_S_ASSOC, 1);
1317 			else
1318 #endif
1319 				ieee80211_new_state_locked(vap,
1320 				    IEEE80211_S_SCAN, 0);
1321 		} else {
1322 			/*
1323 			 * For monitor+wds mode there's nothing to do but
1324 			 * start running.  Otherwise if this is the first
1325 			 * vap to be brought up, start a scan which may be
1326 			 * preempted if the station is locked to a particular
1327 			 * channel.
1328 			 */
1329 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1330 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1331 			    vap->iv_opmode == IEEE80211_M_WDS)
1332 				ieee80211_new_state_locked(vap,
1333 				    IEEE80211_S_RUN, -1);
1334 			else
1335 				ieee80211_new_state_locked(vap,
1336 				    IEEE80211_S_SCAN, 0);
1337 		}
1338 	}
1339 }
1340 
1341 /*
1342  * Start a single vap.
1343  */
1344 void
1345 ieee80211_init(void *arg)
1346 {
1347 	struct ieee80211vap *vap = arg;
1348 
1349 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1350 	    "%s\n", __func__);
1351 
1352 	IEEE80211_LOCK(vap->iv_ic);
1353 	ieee80211_start_locked(vap);
1354 	IEEE80211_UNLOCK(vap->iv_ic);
1355 }
1356 
1357 /*
1358  * Start all runnable vap's on a device.
1359  */
1360 void
1361 ieee80211_start_all(struct ieee80211com *ic)
1362 {
1363 	struct ieee80211vap *vap;
1364 
1365 	IEEE80211_LOCK(ic);
1366 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1367 		struct ifnet *ifp = vap->iv_ifp;
1368 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1369 			ieee80211_start_locked(vap);
1370 	}
1371 	IEEE80211_UNLOCK(ic);
1372 }
1373 
1374 /*
1375  * Stop a vap.  We force it down using the state machine
1376  * then mark it's ifnet not running.  If this is the last
1377  * vap running on the underlying device then we close it
1378  * too to insure it will be properly initialized when the
1379  * next vap is brought up.
1380  */
1381 void
1382 ieee80211_stop_locked(struct ieee80211vap *vap)
1383 {
1384 	struct ieee80211com *ic = vap->iv_ic;
1385 	struct ifnet *ifp = vap->iv_ifp;
1386 
1387 	IEEE80211_LOCK_ASSERT(ic);
1388 
1389 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1390 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1391 
1392 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1393 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1394 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1395 		if (--ic->ic_nrunning == 0) {
1396 			IEEE80211_DPRINTF(vap,
1397 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1398 			    "down parent %s\n", ic->ic_name);
1399 			ieee80211_runtask(ic, &ic->ic_parent_task);
1400 		}
1401 	}
1402 }
1403 
1404 void
1405 ieee80211_stop(struct ieee80211vap *vap)
1406 {
1407 	struct ieee80211com *ic = vap->iv_ic;
1408 
1409 	IEEE80211_LOCK(ic);
1410 	ieee80211_stop_locked(vap);
1411 	IEEE80211_UNLOCK(ic);
1412 }
1413 
1414 /*
1415  * Stop all vap's running on a device.
1416  */
1417 void
1418 ieee80211_stop_all(struct ieee80211com *ic)
1419 {
1420 	struct ieee80211vap *vap;
1421 
1422 	IEEE80211_LOCK(ic);
1423 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1424 		struct ifnet *ifp = vap->iv_ifp;
1425 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1426 			ieee80211_stop_locked(vap);
1427 	}
1428 	IEEE80211_UNLOCK(ic);
1429 
1430 	ieee80211_waitfor_parent(ic);
1431 }
1432 
1433 /*
1434  * Stop all vap's running on a device and arrange
1435  * for those that were running to be resumed.
1436  */
1437 void
1438 ieee80211_suspend_all(struct ieee80211com *ic)
1439 {
1440 	struct ieee80211vap *vap;
1441 
1442 	IEEE80211_LOCK(ic);
1443 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1444 		struct ifnet *ifp = vap->iv_ifp;
1445 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1446 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1447 			ieee80211_stop_locked(vap);
1448 		}
1449 	}
1450 	IEEE80211_UNLOCK(ic);
1451 
1452 	ieee80211_waitfor_parent(ic);
1453 }
1454 
1455 /*
1456  * Start all vap's marked for resume.
1457  */
1458 void
1459 ieee80211_resume_all(struct ieee80211com *ic)
1460 {
1461 	struct ieee80211vap *vap;
1462 
1463 	IEEE80211_LOCK(ic);
1464 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1465 		struct ifnet *ifp = vap->iv_ifp;
1466 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1467 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1468 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1469 			ieee80211_start_locked(vap);
1470 		}
1471 	}
1472 	IEEE80211_UNLOCK(ic);
1473 }
1474 
1475 void
1476 ieee80211_beacon_miss(struct ieee80211com *ic)
1477 {
1478 	IEEE80211_LOCK(ic);
1479 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1480 		/* Process in a taskq, the handler may reenter the driver */
1481 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1482 	}
1483 	IEEE80211_UNLOCK(ic);
1484 }
1485 
1486 static void
1487 beacon_miss(void *arg, int npending)
1488 {
1489 	struct ieee80211com *ic = arg;
1490 	struct ieee80211vap *vap;
1491 
1492 	IEEE80211_LOCK(ic);
1493 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1494 		/*
1495 		 * We only pass events through for sta vap's in RUN state;
1496 		 * may be too restrictive but for now this saves all the
1497 		 * handlers duplicating these checks.
1498 		 */
1499 		if (vap->iv_opmode == IEEE80211_M_STA &&
1500 		    vap->iv_state >= IEEE80211_S_RUN &&
1501 		    vap->iv_bmiss != NULL)
1502 			vap->iv_bmiss(vap);
1503 	}
1504 	IEEE80211_UNLOCK(ic);
1505 }
1506 
1507 static void
1508 beacon_swmiss(void *arg, int npending)
1509 {
1510 	struct ieee80211vap *vap = arg;
1511 	struct ieee80211com *ic = vap->iv_ic;
1512 
1513 	IEEE80211_LOCK(ic);
1514 	if (vap->iv_state == IEEE80211_S_RUN) {
1515 		/* XXX Call multiple times if npending > zero? */
1516 		vap->iv_bmiss(vap);
1517 	}
1518 	IEEE80211_UNLOCK(ic);
1519 }
1520 
1521 /*
1522  * Software beacon miss handling.  Check if any beacons
1523  * were received in the last period.  If not post a
1524  * beacon miss; otherwise reset the counter.
1525  */
1526 void
1527 ieee80211_swbmiss(void *arg)
1528 {
1529 	struct ieee80211vap *vap = arg;
1530 	struct ieee80211com *ic = vap->iv_ic;
1531 
1532 	IEEE80211_LOCK_ASSERT(ic);
1533 
1534 	/* XXX sleep state? */
1535 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1536 	    ("wrong state %d", vap->iv_state));
1537 
1538 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1539 		/*
1540 		 * If scanning just ignore and reset state.  If we get a
1541 		 * bmiss after coming out of scan because we haven't had
1542 		 * time to receive a beacon then we should probe the AP
1543 		 * before posting a real bmiss (unless iv_bmiss_max has
1544 		 * been artifiically lowered).  A cleaner solution might
1545 		 * be to disable the timer on scan start/end but to handle
1546 		 * case of multiple sta vap's we'd need to disable the
1547 		 * timers of all affected vap's.
1548 		 */
1549 		vap->iv_swbmiss_count = 0;
1550 	} else if (vap->iv_swbmiss_count == 0) {
1551 		if (vap->iv_bmiss != NULL)
1552 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1553 	} else
1554 		vap->iv_swbmiss_count = 0;
1555 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1556 		ieee80211_swbmiss, vap);
1557 }
1558 
1559 /*
1560  * Start an 802.11h channel switch.  We record the parameters,
1561  * mark the operation pending, notify each vap through the
1562  * beacon update mechanism so it can update the beacon frame
1563  * contents, and then switch vap's to CSA state to block outbound
1564  * traffic.  Devices that handle CSA directly can use the state
1565  * switch to do the right thing so long as they call
1566  * ieee80211_csa_completeswitch when it's time to complete the
1567  * channel change.  Devices that depend on the net80211 layer can
1568  * use ieee80211_beacon_update to handle the countdown and the
1569  * channel switch.
1570  */
1571 void
1572 ieee80211_csa_startswitch(struct ieee80211com *ic,
1573 	struct ieee80211_channel *c, int mode, int count)
1574 {
1575 	struct ieee80211vap *vap;
1576 
1577 	IEEE80211_LOCK_ASSERT(ic);
1578 
1579 	ic->ic_csa_newchan = c;
1580 	ic->ic_csa_mode = mode;
1581 	ic->ic_csa_count = count;
1582 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1583 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1584 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1585 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1586 		    vap->iv_opmode == IEEE80211_M_MBSS)
1587 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1588 		/* switch to CSA state to block outbound traffic */
1589 		if (vap->iv_state == IEEE80211_S_RUN)
1590 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1591 	}
1592 	ieee80211_notify_csa(ic, c, mode, count);
1593 }
1594 
1595 /*
1596  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1597  * This is called by both the completion and cancellation functions
1598  * so each VAP is placed back in the RUN state and can thus transmit.
1599  */
1600 static void
1601 csa_completeswitch(struct ieee80211com *ic)
1602 {
1603 	struct ieee80211vap *vap;
1604 
1605 	ic->ic_csa_newchan = NULL;
1606 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1607 
1608 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1609 		if (vap->iv_state == IEEE80211_S_CSA)
1610 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1611 }
1612 
1613 /*
1614  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1615  * We clear state and move all vap's in CSA state to RUN state
1616  * so they can again transmit.
1617  *
1618  * Although this may not be completely correct, update the BSS channel
1619  * for each VAP to the newly configured channel. The setcurchan sets
1620  * the current operating channel for the interface (so the radio does
1621  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1622  * reported information via ioctl.
1623  */
1624 void
1625 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1626 {
1627 	struct ieee80211vap *vap;
1628 
1629 	IEEE80211_LOCK_ASSERT(ic);
1630 
1631 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1632 
1633 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1634 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1635 		if (vap->iv_state == IEEE80211_S_CSA)
1636 			vap->iv_bss->ni_chan = ic->ic_curchan;
1637 
1638 	csa_completeswitch(ic);
1639 }
1640 
1641 /*
1642  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1643  * We clear state and move all vap's in CSA state to RUN state
1644  * so they can again transmit.
1645  */
1646 void
1647 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1648 {
1649 	IEEE80211_LOCK_ASSERT(ic);
1650 
1651 	csa_completeswitch(ic);
1652 }
1653 
1654 /*
1655  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1656  * We clear state and move all vap's in CAC state to RUN state.
1657  */
1658 void
1659 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1660 {
1661 	struct ieee80211com *ic = vap0->iv_ic;
1662 	struct ieee80211vap *vap;
1663 
1664 	IEEE80211_LOCK(ic);
1665 	/*
1666 	 * Complete CAC state change for lead vap first; then
1667 	 * clock all the other vap's waiting.
1668 	 */
1669 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1670 	    ("wrong state %d", vap0->iv_state));
1671 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1672 
1673 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1674 		if (vap->iv_state == IEEE80211_S_CAC)
1675 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1676 	IEEE80211_UNLOCK(ic);
1677 }
1678 
1679 /*
1680  * Force all vap's other than the specified vap to the INIT state
1681  * and mark them as waiting for a scan to complete.  These vaps
1682  * will be brought up when the scan completes and the scanning vap
1683  * reaches RUN state by wakeupwaiting.
1684  */
1685 static void
1686 markwaiting(struct ieee80211vap *vap0)
1687 {
1688 	struct ieee80211com *ic = vap0->iv_ic;
1689 	struct ieee80211vap *vap;
1690 
1691 	IEEE80211_LOCK_ASSERT(ic);
1692 
1693 	/*
1694 	 * A vap list entry can not disappear since we are running on the
1695 	 * taskqueue and a vap destroy will queue and drain another state
1696 	 * change task.
1697 	 */
1698 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1699 		if (vap == vap0)
1700 			continue;
1701 		if (vap->iv_state != IEEE80211_S_INIT) {
1702 			/* NB: iv_newstate may drop the lock */
1703 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1704 			IEEE80211_LOCK_ASSERT(ic);
1705 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1706 		}
1707 	}
1708 }
1709 
1710 /*
1711  * Wakeup all vap's waiting for a scan to complete.  This is the
1712  * companion to markwaiting (above) and is used to coordinate
1713  * multiple vaps scanning.
1714  * This is called from the state taskqueue.
1715  */
1716 static void
1717 wakeupwaiting(struct ieee80211vap *vap0)
1718 {
1719 	struct ieee80211com *ic = vap0->iv_ic;
1720 	struct ieee80211vap *vap;
1721 
1722 	IEEE80211_LOCK_ASSERT(ic);
1723 
1724 	/*
1725 	 * A vap list entry can not disappear since we are running on the
1726 	 * taskqueue and a vap destroy will queue and drain another state
1727 	 * change task.
1728 	 */
1729 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1730 		if (vap == vap0)
1731 			continue;
1732 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1733 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1734 			/* NB: sta's cannot go INIT->RUN */
1735 			/* NB: iv_newstate may drop the lock */
1736 			vap->iv_newstate(vap,
1737 			    vap->iv_opmode == IEEE80211_M_STA ?
1738 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1739 			IEEE80211_LOCK_ASSERT(ic);
1740 		}
1741 	}
1742 }
1743 
1744 /*
1745  * Handle post state change work common to all operating modes.
1746  */
1747 static void
1748 ieee80211_newstate_cb(void *xvap, int npending)
1749 {
1750 	struct ieee80211vap *vap = xvap;
1751 	struct ieee80211com *ic = vap->iv_ic;
1752 	enum ieee80211_state nstate, ostate;
1753 	int arg, rc;
1754 
1755 	IEEE80211_LOCK(ic);
1756 	nstate = vap->iv_nstate;
1757 	arg = vap->iv_nstate_arg;
1758 
1759 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1760 		/*
1761 		 * We have been requested to drop back to the INIT before
1762 		 * proceeding to the new state.
1763 		 */
1764 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1765 		    "%s: %s -> %s arg %d\n", __func__,
1766 		    ieee80211_state_name[vap->iv_state],
1767 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1768 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1769 		IEEE80211_LOCK_ASSERT(ic);
1770 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1771 	}
1772 
1773 	ostate = vap->iv_state;
1774 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1775 		/*
1776 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1777 		 * vap's to INIT state and mark them as waiting for the scan to
1778 		 * complete.  This insures they don't interfere with our
1779 		 * scanning.  Since we are single threaded the vaps can not
1780 		 * transition again while we are executing.
1781 		 *
1782 		 * XXX not always right, assumes ap follows sta
1783 		 */
1784 		markwaiting(vap);
1785 	}
1786 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1787 	    "%s: %s -> %s arg %d\n", __func__,
1788 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1789 
1790 	rc = vap->iv_newstate(vap, nstate, arg);
1791 	IEEE80211_LOCK_ASSERT(ic);
1792 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1793 	if (rc != 0) {
1794 		/* State transition failed */
1795 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1796 		KASSERT(nstate != IEEE80211_S_INIT,
1797 		    ("INIT state change failed"));
1798 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1799 		    "%s: %s returned error %d\n", __func__,
1800 		    ieee80211_state_name[nstate], rc);
1801 		goto done;
1802 	}
1803 
1804 	/* No actual transition, skip post processing */
1805 	if (ostate == nstate)
1806 		goto done;
1807 
1808 	if (nstate == IEEE80211_S_RUN) {
1809 		/*
1810 		 * OACTIVE may be set on the vap if the upper layer
1811 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1812 		 * RUN state.  Clear it and restart xmit.
1813 		 *
1814 		 * Note this can also happen as a result of SLEEP->RUN
1815 		 * (i.e. coming out of power save mode).
1816 		 */
1817 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1818 
1819 		/*
1820 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1821 		 */
1822 
1823 		/* bring up any vaps waiting on us */
1824 		wakeupwaiting(vap);
1825 	} else if (nstate == IEEE80211_S_INIT) {
1826 		/*
1827 		 * Flush the scan cache if we did the last scan (XXX?)
1828 		 * and flush any frames on send queues from this vap.
1829 		 * Note the mgt q is used only for legacy drivers and
1830 		 * will go away shortly.
1831 		 */
1832 		ieee80211_scan_flush(vap);
1833 
1834 		/*
1835 		 * XXX TODO: ic/vap queue flush
1836 		 */
1837 	}
1838 done:
1839 	IEEE80211_UNLOCK(ic);
1840 }
1841 
1842 /*
1843  * Public interface for initiating a state machine change.
1844  * This routine single-threads the request and coordinates
1845  * the scheduling of multiple vaps for the purpose of selecting
1846  * an operating channel.  Specifically the following scenarios
1847  * are handled:
1848  * o only one vap can be selecting a channel so on transition to
1849  *   SCAN state if another vap is already scanning then
1850  *   mark the caller for later processing and return without
1851  *   doing anything (XXX? expectations by caller of synchronous operation)
1852  * o only one vap can be doing CAC of a channel so on transition to
1853  *   CAC state if another vap is already scanning for radar then
1854  *   mark the caller for later processing and return without
1855  *   doing anything (XXX? expectations by caller of synchronous operation)
1856  * o if another vap is already running when a request is made
1857  *   to SCAN then an operating channel has been chosen; bypass
1858  *   the scan and just join the channel
1859  *
1860  * Note that the state change call is done through the iv_newstate
1861  * method pointer so any driver routine gets invoked.  The driver
1862  * will normally call back into operating mode-specific
1863  * ieee80211_newstate routines (below) unless it needs to completely
1864  * bypass the state machine (e.g. because the firmware has it's
1865  * own idea how things should work).  Bypassing the net80211 layer
1866  * is usually a mistake and indicates lack of proper integration
1867  * with the net80211 layer.
1868  */
1869 int
1870 ieee80211_new_state_locked(struct ieee80211vap *vap,
1871 	enum ieee80211_state nstate, int arg)
1872 {
1873 	struct ieee80211com *ic = vap->iv_ic;
1874 	struct ieee80211vap *vp;
1875 	enum ieee80211_state ostate;
1876 	int nrunning, nscanning;
1877 
1878 	IEEE80211_LOCK_ASSERT(ic);
1879 
1880 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1881 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1882 			/*
1883 			 * XXX The vap is being stopped, do no allow any other
1884 			 * state changes until this is completed.
1885 			 */
1886 			return -1;
1887 		} else if (vap->iv_state != vap->iv_nstate) {
1888 #if 0
1889 			/* Warn if the previous state hasn't completed. */
1890 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1891 			    "%s: pending %s -> %s transition lost\n", __func__,
1892 			    ieee80211_state_name[vap->iv_state],
1893 			    ieee80211_state_name[vap->iv_nstate]);
1894 #else
1895 			/* XXX temporarily enable to identify issues */
1896 			if_printf(vap->iv_ifp,
1897 			    "%s: pending %s -> %s transition lost\n",
1898 			    __func__, ieee80211_state_name[vap->iv_state],
1899 			    ieee80211_state_name[vap->iv_nstate]);
1900 #endif
1901 		}
1902 	}
1903 
1904 	nrunning = nscanning = 0;
1905 	/* XXX can track this state instead of calculating */
1906 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1907 		if (vp != vap) {
1908 			if (vp->iv_state >= IEEE80211_S_RUN)
1909 				nrunning++;
1910 			/* XXX doesn't handle bg scan */
1911 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1912 			else if (vp->iv_state > IEEE80211_S_INIT)
1913 				nscanning++;
1914 		}
1915 	}
1916 	ostate = vap->iv_state;
1917 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1918 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1919 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1920 	    nrunning, nscanning);
1921 	switch (nstate) {
1922 	case IEEE80211_S_SCAN:
1923 		if (ostate == IEEE80211_S_INIT) {
1924 			/*
1925 			 * INIT -> SCAN happens on initial bringup.
1926 			 */
1927 			KASSERT(!(nscanning && nrunning),
1928 			    ("%d scanning and %d running", nscanning, nrunning));
1929 			if (nscanning) {
1930 				/*
1931 				 * Someone is scanning, defer our state
1932 				 * change until the work has completed.
1933 				 */
1934 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1935 				    "%s: defer %s -> %s\n",
1936 				    __func__, ieee80211_state_name[ostate],
1937 				    ieee80211_state_name[nstate]);
1938 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1939 				return 0;
1940 			}
1941 			if (nrunning) {
1942 				/*
1943 				 * Someone is operating; just join the channel
1944 				 * they have chosen.
1945 				 */
1946 				/* XXX kill arg? */
1947 				/* XXX check each opmode, adhoc? */
1948 				if (vap->iv_opmode == IEEE80211_M_STA)
1949 					nstate = IEEE80211_S_SCAN;
1950 				else
1951 					nstate = IEEE80211_S_RUN;
1952 #ifdef IEEE80211_DEBUG
1953 				if (nstate != IEEE80211_S_SCAN) {
1954 					IEEE80211_DPRINTF(vap,
1955 					    IEEE80211_MSG_STATE,
1956 					    "%s: override, now %s -> %s\n",
1957 					    __func__,
1958 					    ieee80211_state_name[ostate],
1959 					    ieee80211_state_name[nstate]);
1960 				}
1961 #endif
1962 			}
1963 		}
1964 		break;
1965 	case IEEE80211_S_RUN:
1966 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1967 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1968 		    nscanning) {
1969 			/*
1970 			 * Legacy WDS with someone else scanning; don't
1971 			 * go online until that completes as we should
1972 			 * follow the other vap to the channel they choose.
1973 			 */
1974 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1975 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1976 			     ieee80211_state_name[ostate],
1977 			     ieee80211_state_name[nstate]);
1978 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1979 			return 0;
1980 		}
1981 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1982 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1983 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1984 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1985 			/*
1986 			 * This is a DFS channel, transition to CAC state
1987 			 * instead of RUN.  This allows us to initiate
1988 			 * Channel Availability Check (CAC) as specified
1989 			 * by 11h/DFS.
1990 			 */
1991 			nstate = IEEE80211_S_CAC;
1992 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1993 			     "%s: override %s -> %s (DFS)\n", __func__,
1994 			     ieee80211_state_name[ostate],
1995 			     ieee80211_state_name[nstate]);
1996 		}
1997 		break;
1998 	case IEEE80211_S_INIT:
1999 		/* cancel any scan in progress */
2000 		ieee80211_cancel_scan(vap);
2001 		if (ostate == IEEE80211_S_INIT ) {
2002 			/* XXX don't believe this */
2003 			/* INIT -> INIT. nothing to do */
2004 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2005 		}
2006 		/* fall thru... */
2007 	default:
2008 		break;
2009 	}
2010 	/* defer the state change to a thread */
2011 	vap->iv_nstate = nstate;
2012 	vap->iv_nstate_arg = arg;
2013 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2014 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2015 	return EINPROGRESS;
2016 }
2017 
2018 int
2019 ieee80211_new_state(struct ieee80211vap *vap,
2020 	enum ieee80211_state nstate, int arg)
2021 {
2022 	struct ieee80211com *ic = vap->iv_ic;
2023 	int rc;
2024 
2025 	IEEE80211_LOCK(ic);
2026 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2027 	IEEE80211_UNLOCK(ic);
2028 	return rc;
2029 }
2030