1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> /* XXX for ether_sprintf */ 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_adhoc.h> 51 #include <net80211/ieee80211_sta.h> 52 #include <net80211/ieee80211_hostap.h> 53 #include <net80211/ieee80211_wds.h> 54 #ifdef IEEE80211_SUPPORT_MESH 55 #include <net80211/ieee80211_mesh.h> 56 #endif 57 #include <net80211/ieee80211_monitor.h> 58 #include <net80211/ieee80211_input.h> 59 60 /* XXX tunables */ 61 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 62 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 63 64 const char *ieee80211_mgt_subtype_name[] = { 65 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 66 "probe_req", "probe_resp", "reserved#6", "reserved#7", 67 "beacon", "atim", "disassoc", "auth", 68 "deauth", "action", "action_noack", "reserved#15" 69 }; 70 const char *ieee80211_ctl_subtype_name[] = { 71 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 72 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 73 "reserved#8", "reserved#9", "ps_poll", "rts", 74 "cts", "ack", "cf_end", "cf_end_ack" 75 }; 76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 77 "IBSS", /* IEEE80211_M_IBSS */ 78 "STA", /* IEEE80211_M_STA */ 79 "WDS", /* IEEE80211_M_WDS */ 80 "AHDEMO", /* IEEE80211_M_AHDEMO */ 81 "HOSTAP", /* IEEE80211_M_HOSTAP */ 82 "MONITOR", /* IEEE80211_M_MONITOR */ 83 "MBSS" /* IEEE80211_M_MBSS */ 84 }; 85 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 86 "INIT", /* IEEE80211_S_INIT */ 87 "SCAN", /* IEEE80211_S_SCAN */ 88 "AUTH", /* IEEE80211_S_AUTH */ 89 "ASSOC", /* IEEE80211_S_ASSOC */ 90 "CAC", /* IEEE80211_S_CAC */ 91 "RUN", /* IEEE80211_S_RUN */ 92 "CSA", /* IEEE80211_S_CSA */ 93 "SLEEP", /* IEEE80211_S_SLEEP */ 94 }; 95 const char *ieee80211_wme_acnames[] = { 96 "WME_AC_BE", 97 "WME_AC_BK", 98 "WME_AC_VI", 99 "WME_AC_VO", 100 "WME_UPSD", 101 }; 102 103 static void beacon_miss(void *, int); 104 static void beacon_swmiss(void *, int); 105 static void parent_updown(void *, int); 106 static void update_mcast(void *, int); 107 static void update_promisc(void *, int); 108 static void update_channel(void *, int); 109 static void update_chw(void *, int); 110 static void ieee80211_newstate_cb(void *, int); 111 112 static int 113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 114 const struct ieee80211_bpf_params *params) 115 { 116 117 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 118 m_freem(m); 119 return ENETDOWN; 120 } 121 122 void 123 ieee80211_proto_attach(struct ieee80211com *ic) 124 { 125 uint8_t hdrlen; 126 127 /* override the 802.3 setting */ 128 hdrlen = ic->ic_headroom 129 + sizeof(struct ieee80211_qosframe_addr4) 130 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 131 + IEEE80211_WEP_EXTIVLEN; 132 /* XXX no way to recalculate on ifdetach */ 133 if (ALIGN(hdrlen) > max_linkhdr) { 134 /* XXX sanity check... */ 135 max_linkhdr = ALIGN(hdrlen); 136 max_hdr = max_linkhdr + max_protohdr; 137 max_datalen = MHLEN - max_hdr; 138 } 139 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 140 141 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 142 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 143 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 144 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 145 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 146 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 147 148 ic->ic_wme.wme_hipri_switch_hysteresis = 149 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 150 151 /* initialize management frame handlers */ 152 ic->ic_send_mgmt = ieee80211_send_mgmt; 153 ic->ic_raw_xmit = null_raw_xmit; 154 155 ieee80211_adhoc_attach(ic); 156 ieee80211_sta_attach(ic); 157 ieee80211_wds_attach(ic); 158 ieee80211_hostap_attach(ic); 159 #ifdef IEEE80211_SUPPORT_MESH 160 ieee80211_mesh_attach(ic); 161 #endif 162 ieee80211_monitor_attach(ic); 163 } 164 165 void 166 ieee80211_proto_detach(struct ieee80211com *ic) 167 { 168 ieee80211_monitor_detach(ic); 169 #ifdef IEEE80211_SUPPORT_MESH 170 ieee80211_mesh_detach(ic); 171 #endif 172 ieee80211_hostap_detach(ic); 173 ieee80211_wds_detach(ic); 174 ieee80211_adhoc_detach(ic); 175 ieee80211_sta_detach(ic); 176 } 177 178 static void 179 null_update_beacon(struct ieee80211vap *vap, int item) 180 { 181 } 182 183 void 184 ieee80211_proto_vattach(struct ieee80211vap *vap) 185 { 186 struct ieee80211com *ic = vap->iv_ic; 187 struct ifnet *ifp = vap->iv_ifp; 188 int i; 189 190 /* override the 802.3 setting */ 191 ifp->if_hdrlen = ic->ic_headroom 192 + sizeof(struct ieee80211_qosframe_addr4) 193 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 194 + IEEE80211_WEP_EXTIVLEN; 195 196 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 197 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 198 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 199 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 200 callout_init(&vap->iv_mgtsend, 1); 201 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 202 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 203 /* 204 * Install default tx rate handling: no fixed rate, lowest 205 * supported rate for mgmt and multicast frames. Default 206 * max retry count. These settings can be changed by the 207 * driver and/or user applications. 208 */ 209 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 210 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 211 212 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 213 214 /* 215 * Setting the management rate to MCS 0 assumes that the 216 * BSS Basic rate set is empty and the BSS Basic MCS set 217 * is not. 218 * 219 * Since we're not checking this, default to the lowest 220 * defined rate for this mode. 221 * 222 * At least one 11n AP (DLINK DIR-825) is reported to drop 223 * some MCS management traffic (eg BA response frames.) 224 * 225 * See also: 9.6.0 of the 802.11n-2009 specification. 226 */ 227 #ifdef NOTYET 228 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 229 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 230 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 231 } else { 232 vap->iv_txparms[i].mgmtrate = 233 rs->rs_rates[0] & IEEE80211_RATE_VAL; 234 vap->iv_txparms[i].mcastrate = 235 rs->rs_rates[0] & IEEE80211_RATE_VAL; 236 } 237 #endif 238 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 239 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 240 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 241 } 242 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 243 244 vap->iv_update_beacon = null_update_beacon; 245 vap->iv_deliver_data = ieee80211_deliver_data; 246 247 /* attach support for operating mode */ 248 ic->ic_vattach[vap->iv_opmode](vap); 249 } 250 251 void 252 ieee80211_proto_vdetach(struct ieee80211vap *vap) 253 { 254 #define FREEAPPIE(ie) do { \ 255 if (ie != NULL) \ 256 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 257 } while (0) 258 /* 259 * Detach operating mode module. 260 */ 261 if (vap->iv_opdetach != NULL) 262 vap->iv_opdetach(vap); 263 /* 264 * This should not be needed as we detach when reseting 265 * the state but be conservative here since the 266 * authenticator may do things like spawn kernel threads. 267 */ 268 if (vap->iv_auth->ia_detach != NULL) 269 vap->iv_auth->ia_detach(vap); 270 /* 271 * Detach any ACL'ator. 272 */ 273 if (vap->iv_acl != NULL) 274 vap->iv_acl->iac_detach(vap); 275 276 FREEAPPIE(vap->iv_appie_beacon); 277 FREEAPPIE(vap->iv_appie_probereq); 278 FREEAPPIE(vap->iv_appie_proberesp); 279 FREEAPPIE(vap->iv_appie_assocreq); 280 FREEAPPIE(vap->iv_appie_assocresp); 281 FREEAPPIE(vap->iv_appie_wpa); 282 #undef FREEAPPIE 283 } 284 285 /* 286 * Simple-minded authenticator module support. 287 */ 288 289 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 290 /* XXX well-known names */ 291 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 292 "wlan_internal", /* IEEE80211_AUTH_NONE */ 293 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 294 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 295 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 296 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 297 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 298 }; 299 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 300 301 static const struct ieee80211_authenticator auth_internal = { 302 .ia_name = "wlan_internal", 303 .ia_attach = NULL, 304 .ia_detach = NULL, 305 .ia_node_join = NULL, 306 .ia_node_leave = NULL, 307 }; 308 309 /* 310 * Setup internal authenticators once; they are never unregistered. 311 */ 312 static void 313 ieee80211_auth_setup(void) 314 { 315 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 316 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 317 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 318 } 319 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 320 321 const struct ieee80211_authenticator * 322 ieee80211_authenticator_get(int auth) 323 { 324 if (auth >= IEEE80211_AUTH_MAX) 325 return NULL; 326 if (authenticators[auth] == NULL) 327 ieee80211_load_module(auth_modnames[auth]); 328 return authenticators[auth]; 329 } 330 331 void 332 ieee80211_authenticator_register(int type, 333 const struct ieee80211_authenticator *auth) 334 { 335 if (type >= IEEE80211_AUTH_MAX) 336 return; 337 authenticators[type] = auth; 338 } 339 340 void 341 ieee80211_authenticator_unregister(int type) 342 { 343 344 if (type >= IEEE80211_AUTH_MAX) 345 return; 346 authenticators[type] = NULL; 347 } 348 349 /* 350 * Very simple-minded ACL module support. 351 */ 352 /* XXX just one for now */ 353 static const struct ieee80211_aclator *acl = NULL; 354 355 void 356 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 357 { 358 printf("wlan: %s acl policy registered\n", iac->iac_name); 359 acl = iac; 360 } 361 362 void 363 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 364 { 365 if (acl == iac) 366 acl = NULL; 367 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 368 } 369 370 const struct ieee80211_aclator * 371 ieee80211_aclator_get(const char *name) 372 { 373 if (acl == NULL) 374 ieee80211_load_module("wlan_acl"); 375 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 376 } 377 378 void 379 ieee80211_print_essid(const uint8_t *essid, int len) 380 { 381 const uint8_t *p; 382 int i; 383 384 if (len > IEEE80211_NWID_LEN) 385 len = IEEE80211_NWID_LEN; 386 /* determine printable or not */ 387 for (i = 0, p = essid; i < len; i++, p++) { 388 if (*p < ' ' || *p > 0x7e) 389 break; 390 } 391 if (i == len) { 392 printf("\""); 393 for (i = 0, p = essid; i < len; i++, p++) 394 printf("%c", *p); 395 printf("\""); 396 } else { 397 printf("0x"); 398 for (i = 0, p = essid; i < len; i++, p++) 399 printf("%02x", *p); 400 } 401 } 402 403 void 404 ieee80211_dump_pkt(struct ieee80211com *ic, 405 const uint8_t *buf, int len, int rate, int rssi) 406 { 407 const struct ieee80211_frame *wh; 408 int i; 409 410 wh = (const struct ieee80211_frame *)buf; 411 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 412 case IEEE80211_FC1_DIR_NODS: 413 printf("NODS %s", ether_sprintf(wh->i_addr2)); 414 printf("->%s", ether_sprintf(wh->i_addr1)); 415 printf("(%s)", ether_sprintf(wh->i_addr3)); 416 break; 417 case IEEE80211_FC1_DIR_TODS: 418 printf("TODS %s", ether_sprintf(wh->i_addr2)); 419 printf("->%s", ether_sprintf(wh->i_addr3)); 420 printf("(%s)", ether_sprintf(wh->i_addr1)); 421 break; 422 case IEEE80211_FC1_DIR_FROMDS: 423 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 424 printf("->%s", ether_sprintf(wh->i_addr1)); 425 printf("(%s)", ether_sprintf(wh->i_addr2)); 426 break; 427 case IEEE80211_FC1_DIR_DSTODS: 428 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 429 printf("->%s", ether_sprintf(wh->i_addr3)); 430 printf("(%s", ether_sprintf(wh->i_addr2)); 431 printf("->%s)", ether_sprintf(wh->i_addr1)); 432 break; 433 } 434 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 435 case IEEE80211_FC0_TYPE_DATA: 436 printf(" data"); 437 break; 438 case IEEE80211_FC0_TYPE_MGT: 439 printf(" %s", ieee80211_mgt_subtype_name[ 440 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 441 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 442 break; 443 default: 444 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 445 break; 446 } 447 if (IEEE80211_QOS_HAS_SEQ(wh)) { 448 const struct ieee80211_qosframe *qwh = 449 (const struct ieee80211_qosframe *)buf; 450 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 451 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 452 } 453 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 454 int off; 455 456 off = ieee80211_anyhdrspace(ic, wh); 457 printf(" WEP [IV %.02x %.02x %.02x", 458 buf[off+0], buf[off+1], buf[off+2]); 459 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 460 printf(" %.02x %.02x %.02x", 461 buf[off+4], buf[off+5], buf[off+6]); 462 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 463 } 464 if (rate >= 0) 465 printf(" %dM", rate / 2); 466 if (rssi >= 0) 467 printf(" +%d", rssi); 468 printf("\n"); 469 if (len > 0) { 470 for (i = 0; i < len; i++) { 471 if ((i & 1) == 0) 472 printf(" "); 473 printf("%02x", buf[i]); 474 } 475 printf("\n"); 476 } 477 } 478 479 static __inline int 480 findrix(const struct ieee80211_rateset *rs, int r) 481 { 482 int i; 483 484 for (i = 0; i < rs->rs_nrates; i++) 485 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 486 return i; 487 return -1; 488 } 489 490 int 491 ieee80211_fix_rate(struct ieee80211_node *ni, 492 struct ieee80211_rateset *nrs, int flags) 493 { 494 struct ieee80211vap *vap = ni->ni_vap; 495 struct ieee80211com *ic = ni->ni_ic; 496 int i, j, rix, error; 497 int okrate, badrate, fixedrate, ucastrate; 498 const struct ieee80211_rateset *srs; 499 uint8_t r; 500 501 error = 0; 502 okrate = badrate = 0; 503 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 504 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 505 /* 506 * Workaround awkwardness with fixed rate. We are called 507 * to check both the legacy rate set and the HT rate set 508 * but we must apply any legacy fixed rate check only to the 509 * legacy rate set and vice versa. We cannot tell what type 510 * of rate set we've been given (legacy or HT) but we can 511 * distinguish the fixed rate type (MCS have 0x80 set). 512 * So to deal with this the caller communicates whether to 513 * check MCS or legacy rate using the flags and we use the 514 * type of any fixed rate to avoid applying an MCS to a 515 * legacy rate and vice versa. 516 */ 517 if (ucastrate & 0x80) { 518 if (flags & IEEE80211_F_DOFRATE) 519 flags &= ~IEEE80211_F_DOFRATE; 520 } else if ((ucastrate & 0x80) == 0) { 521 if (flags & IEEE80211_F_DOFMCS) 522 flags &= ~IEEE80211_F_DOFMCS; 523 } 524 /* NB: required to make MCS match below work */ 525 ucastrate &= IEEE80211_RATE_VAL; 526 } 527 fixedrate = IEEE80211_FIXED_RATE_NONE; 528 /* 529 * XXX we are called to process both MCS and legacy rates; 530 * we must use the appropriate basic rate set or chaos will 531 * ensue; for now callers that want MCS must supply 532 * IEEE80211_F_DOBRS; at some point we'll need to split this 533 * function so there are two variants, one for MCS and one 534 * for legacy rates. 535 */ 536 if (flags & IEEE80211_F_DOBRS) 537 srs = (const struct ieee80211_rateset *) 538 ieee80211_get_suphtrates(ic, ni->ni_chan); 539 else 540 srs = ieee80211_get_suprates(ic, ni->ni_chan); 541 for (i = 0; i < nrs->rs_nrates; ) { 542 if (flags & IEEE80211_F_DOSORT) { 543 /* 544 * Sort rates. 545 */ 546 for (j = i + 1; j < nrs->rs_nrates; j++) { 547 if (IEEE80211_RV(nrs->rs_rates[i]) > 548 IEEE80211_RV(nrs->rs_rates[j])) { 549 r = nrs->rs_rates[i]; 550 nrs->rs_rates[i] = nrs->rs_rates[j]; 551 nrs->rs_rates[j] = r; 552 } 553 } 554 } 555 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 556 badrate = r; 557 /* 558 * Check for fixed rate. 559 */ 560 if (r == ucastrate) 561 fixedrate = r; 562 /* 563 * Check against supported rates. 564 */ 565 rix = findrix(srs, r); 566 if (flags & IEEE80211_F_DONEGO) { 567 if (rix < 0) { 568 /* 569 * A rate in the node's rate set is not 570 * supported. If this is a basic rate and we 571 * are operating as a STA then this is an error. 572 * Otherwise we just discard/ignore the rate. 573 */ 574 if ((flags & IEEE80211_F_JOIN) && 575 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 576 error++; 577 } else if ((flags & IEEE80211_F_JOIN) == 0) { 578 /* 579 * Overwrite with the supported rate 580 * value so any basic rate bit is set. 581 */ 582 nrs->rs_rates[i] = srs->rs_rates[rix]; 583 } 584 } 585 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 586 /* 587 * Delete unacceptable rates. 588 */ 589 nrs->rs_nrates--; 590 for (j = i; j < nrs->rs_nrates; j++) 591 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 592 nrs->rs_rates[j] = 0; 593 continue; 594 } 595 if (rix >= 0) 596 okrate = nrs->rs_rates[i]; 597 i++; 598 } 599 if (okrate == 0 || error != 0 || 600 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 601 fixedrate != ucastrate)) { 602 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 603 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 604 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 605 return badrate | IEEE80211_RATE_BASIC; 606 } else 607 return IEEE80211_RV(okrate); 608 } 609 610 /* 611 * Reset 11g-related state. 612 */ 613 void 614 ieee80211_reset_erp(struct ieee80211com *ic) 615 { 616 ic->ic_flags &= ~IEEE80211_F_USEPROT; 617 ic->ic_nonerpsta = 0; 618 ic->ic_longslotsta = 0; 619 /* 620 * Short slot time is enabled only when operating in 11g 621 * and not in an IBSS. We must also honor whether or not 622 * the driver is capable of doing it. 623 */ 624 ieee80211_set_shortslottime(ic, 625 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 626 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 627 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 628 ic->ic_opmode == IEEE80211_M_HOSTAP && 629 (ic->ic_caps & IEEE80211_C_SHSLOT))); 630 /* 631 * Set short preamble and ERP barker-preamble flags. 632 */ 633 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 634 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 635 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 636 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 637 } else { 638 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 639 ic->ic_flags |= IEEE80211_F_USEBARKER; 640 } 641 } 642 643 /* 644 * Set the short slot time state and notify the driver. 645 */ 646 void 647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 648 { 649 if (onoff) 650 ic->ic_flags |= IEEE80211_F_SHSLOT; 651 else 652 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 653 /* notify driver */ 654 if (ic->ic_updateslot != NULL) 655 ic->ic_updateslot(ic); 656 } 657 658 /* 659 * Check if the specified rate set supports ERP. 660 * NB: the rate set is assumed to be sorted. 661 */ 662 int 663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 664 { 665 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 666 int i, j; 667 668 if (rs->rs_nrates < nitems(rates)) 669 return 0; 670 for (i = 0; i < nitems(rates); i++) { 671 for (j = 0; j < rs->rs_nrates; j++) { 672 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 673 if (rates[i] == r) 674 goto next; 675 if (r > rates[i]) 676 return 0; 677 } 678 return 0; 679 next: 680 ; 681 } 682 return 1; 683 } 684 685 /* 686 * Mark the basic rates for the rate table based on the 687 * operating mode. For real 11g we mark all the 11b rates 688 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 689 * 11b rates. There's also a pseudo 11a-mode used to mark only 690 * the basic OFDM rates. 691 */ 692 static void 693 setbasicrates(struct ieee80211_rateset *rs, 694 enum ieee80211_phymode mode, int add) 695 { 696 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 697 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 698 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 699 /* NB: mixed b/g */ 700 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 701 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 702 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 703 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 704 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 705 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 706 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 707 /* NB: mixed b/g */ 708 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 709 }; 710 int i, j; 711 712 for (i = 0; i < rs->rs_nrates; i++) { 713 if (!add) 714 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 715 for (j = 0; j < basic[mode].rs_nrates; j++) 716 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 717 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 718 break; 719 } 720 } 721 } 722 723 /* 724 * Set the basic rates in a rate set. 725 */ 726 void 727 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 728 enum ieee80211_phymode mode) 729 { 730 setbasicrates(rs, mode, 0); 731 } 732 733 /* 734 * Add basic rates to a rate set. 735 */ 736 void 737 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 738 enum ieee80211_phymode mode) 739 { 740 setbasicrates(rs, mode, 1); 741 } 742 743 /* 744 * WME protocol support. 745 * 746 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 747 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 748 * Draft 2.0 Test Plan (Appendix D). 749 * 750 * Static/Dynamic Turbo mode settings come from Atheros. 751 */ 752 typedef struct phyParamType { 753 uint8_t aifsn; 754 uint8_t logcwmin; 755 uint8_t logcwmax; 756 uint16_t txopLimit; 757 uint8_t acm; 758 } paramType; 759 760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 761 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 762 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 763 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 767 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 768 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 770 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 771 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 773 }; 774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 775 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 776 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 777 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 781 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 782 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 784 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 785 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 787 }; 788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 789 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 790 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 791 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 792 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 793 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 794 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 795 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 796 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 798 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 799 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 801 }; 802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 803 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 804 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 805 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 806 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 807 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 808 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 809 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 810 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 812 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 813 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 815 }; 816 817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 818 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 819 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 820 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 824 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 825 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 827 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 828 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 830 }; 831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 832 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 833 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 834 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 835 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 836 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 837 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 838 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 839 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 841 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 842 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 844 }; 845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 846 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 847 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 848 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 849 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 850 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 851 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 852 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 853 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 855 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 856 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 858 }; 859 860 static void 861 _setifsparams(struct wmeParams *wmep, const paramType *phy) 862 { 863 wmep->wmep_aifsn = phy->aifsn; 864 wmep->wmep_logcwmin = phy->logcwmin; 865 wmep->wmep_logcwmax = phy->logcwmax; 866 wmep->wmep_txopLimit = phy->txopLimit; 867 } 868 869 static void 870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 871 struct wmeParams *wmep, const paramType *phy) 872 { 873 wmep->wmep_acm = phy->acm; 874 _setifsparams(wmep, phy); 875 876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 877 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 878 ieee80211_wme_acnames[ac], type, 879 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 880 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 881 } 882 883 static void 884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 885 { 886 struct ieee80211com *ic = vap->iv_ic; 887 struct ieee80211_wme_state *wme = &ic->ic_wme; 888 const paramType *pPhyParam, *pBssPhyParam; 889 struct wmeParams *wmep; 890 enum ieee80211_phymode mode; 891 int i; 892 893 IEEE80211_LOCK_ASSERT(ic); 894 895 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 896 return; 897 898 /* 899 * Clear the wme cap_info field so a qoscount from a previous 900 * vap doesn't confuse later code which only parses the beacon 901 * field and updates hardware when said field changes. 902 * Otherwise the hardware is programmed with defaults, not what 903 * the beacon actually announces. 904 */ 905 wme->wme_wmeChanParams.cap_info = 0; 906 907 /* 908 * Select mode; we can be called early in which case we 909 * always use auto mode. We know we'll be called when 910 * entering the RUN state with bsschan setup properly 911 * so state will eventually get set correctly 912 */ 913 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 914 mode = ieee80211_chan2mode(ic->ic_bsschan); 915 else 916 mode = IEEE80211_MODE_AUTO; 917 for (i = 0; i < WME_NUM_AC; i++) { 918 switch (i) { 919 case WME_AC_BK: 920 pPhyParam = &phyParamForAC_BK[mode]; 921 pBssPhyParam = &phyParamForAC_BK[mode]; 922 break; 923 case WME_AC_VI: 924 pPhyParam = &phyParamForAC_VI[mode]; 925 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 926 break; 927 case WME_AC_VO: 928 pPhyParam = &phyParamForAC_VO[mode]; 929 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 930 break; 931 case WME_AC_BE: 932 default: 933 pPhyParam = &phyParamForAC_BE[mode]; 934 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 935 break; 936 } 937 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 938 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 939 setwmeparams(vap, "chan", i, wmep, pPhyParam); 940 } else { 941 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 942 } 943 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 944 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 945 } 946 /* NB: check ic_bss to avoid NULL deref on initial attach */ 947 if (vap->iv_bss != NULL) { 948 /* 949 * Calculate agressive mode switching threshold based 950 * on beacon interval. This doesn't need locking since 951 * we're only called before entering the RUN state at 952 * which point we start sending beacon frames. 953 */ 954 wme->wme_hipri_switch_thresh = 955 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 956 wme->wme_flags &= ~WME_F_AGGRMODE; 957 ieee80211_wme_updateparams(vap); 958 } 959 } 960 961 void 962 ieee80211_wme_initparams(struct ieee80211vap *vap) 963 { 964 struct ieee80211com *ic = vap->iv_ic; 965 966 IEEE80211_LOCK(ic); 967 ieee80211_wme_initparams_locked(vap); 968 IEEE80211_UNLOCK(ic); 969 } 970 971 /* 972 * Update WME parameters for ourself and the BSS. 973 */ 974 void 975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 976 { 977 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 978 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 979 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 980 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 981 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 982 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 983 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 984 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 985 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 987 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 988 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 989 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 990 }; 991 struct ieee80211com *ic = vap->iv_ic; 992 struct ieee80211_wme_state *wme = &ic->ic_wme; 993 const struct wmeParams *wmep; 994 struct wmeParams *chanp, *bssp; 995 enum ieee80211_phymode mode; 996 int i; 997 int do_aggrmode = 0; 998 999 /* 1000 * Set up the channel access parameters for the physical 1001 * device. First populate the configured settings. 1002 */ 1003 for (i = 0; i < WME_NUM_AC; i++) { 1004 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1005 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1006 chanp->wmep_aifsn = wmep->wmep_aifsn; 1007 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1008 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1009 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1010 1011 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1012 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1013 chanp->wmep_aifsn = wmep->wmep_aifsn; 1014 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1015 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1016 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1017 } 1018 1019 /* 1020 * Select mode; we can be called early in which case we 1021 * always use auto mode. We know we'll be called when 1022 * entering the RUN state with bsschan setup properly 1023 * so state will eventually get set correctly 1024 */ 1025 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1026 mode = ieee80211_chan2mode(ic->ic_bsschan); 1027 else 1028 mode = IEEE80211_MODE_AUTO; 1029 1030 /* 1031 * This implements agressive mode as found in certain 1032 * vendors' AP's. When there is significant high 1033 * priority (VI/VO) traffic in the BSS throttle back BE 1034 * traffic by using conservative parameters. Otherwise 1035 * BE uses agressive params to optimize performance of 1036 * legacy/non-QoS traffic. 1037 */ 1038 1039 /* Hostap? Only if aggressive mode is enabled */ 1040 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1041 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1042 do_aggrmode = 1; 1043 1044 /* 1045 * Station? Only if we're in a non-QoS BSS. 1046 */ 1047 else if ((vap->iv_opmode == IEEE80211_M_STA && 1048 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1049 do_aggrmode = 1; 1050 1051 /* 1052 * IBSS? Only if we we have WME enabled. 1053 */ 1054 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1055 (vap->iv_flags & IEEE80211_F_WME)) 1056 do_aggrmode = 1; 1057 1058 /* 1059 * If WME is disabled on this VAP, default to aggressive mode 1060 * regardless of the configuration. 1061 */ 1062 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1063 do_aggrmode = 1; 1064 1065 /* XXX WDS? */ 1066 1067 /* XXX MBSS? */ 1068 1069 if (do_aggrmode) { 1070 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1071 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1072 1073 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1074 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1075 aggrParam[mode].logcwmin; 1076 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1077 aggrParam[mode].logcwmax; 1078 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1079 (vap->iv_flags & IEEE80211_F_BURST) ? 1080 aggrParam[mode].txopLimit : 0; 1081 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1082 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1083 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1084 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1085 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1086 } 1087 1088 1089 /* 1090 * Change the contention window based on the number of associated 1091 * stations. If the number of associated stations is 1 and 1092 * aggressive mode is enabled, lower the contention window even 1093 * further. 1094 */ 1095 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1096 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1097 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1098 [IEEE80211_MODE_AUTO] = 3, 1099 [IEEE80211_MODE_11A] = 3, 1100 [IEEE80211_MODE_11B] = 4, 1101 [IEEE80211_MODE_11G] = 3, 1102 [IEEE80211_MODE_FH] = 4, 1103 [IEEE80211_MODE_TURBO_A] = 3, 1104 [IEEE80211_MODE_TURBO_G] = 3, 1105 [IEEE80211_MODE_STURBO_A] = 3, 1106 [IEEE80211_MODE_HALF] = 3, 1107 [IEEE80211_MODE_QUARTER] = 3, 1108 [IEEE80211_MODE_11NA] = 3, 1109 [IEEE80211_MODE_11NG] = 3, 1110 }; 1111 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1112 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1113 1114 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1116 "update %s (chan+bss) logcwmin %u\n", 1117 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1118 } 1119 1120 /* 1121 * Arrange for the beacon update. 1122 * 1123 * XXX what about MBSS, WDS? 1124 */ 1125 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1126 || vap->iv_opmode == IEEE80211_M_IBSS) { 1127 /* 1128 * Arrange for a beacon update and bump the parameter 1129 * set number so associated stations load the new values. 1130 */ 1131 wme->wme_bssChanParams.cap_info = 1132 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1133 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1134 } 1135 1136 wme->wme_update(ic); 1137 1138 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1139 "%s: WME params updated, cap_info 0x%x\n", __func__, 1140 vap->iv_opmode == IEEE80211_M_STA ? 1141 wme->wme_wmeChanParams.cap_info : 1142 wme->wme_bssChanParams.cap_info); 1143 } 1144 1145 void 1146 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1147 { 1148 struct ieee80211com *ic = vap->iv_ic; 1149 1150 if (ic->ic_caps & IEEE80211_C_WME) { 1151 IEEE80211_LOCK(ic); 1152 ieee80211_wme_updateparams_locked(vap); 1153 IEEE80211_UNLOCK(ic); 1154 } 1155 } 1156 1157 static void 1158 parent_updown(void *arg, int npending) 1159 { 1160 struct ieee80211com *ic = arg; 1161 1162 ic->ic_parent(ic); 1163 } 1164 1165 static void 1166 update_mcast(void *arg, int npending) 1167 { 1168 struct ieee80211com *ic = arg; 1169 1170 ic->ic_update_mcast(ic); 1171 } 1172 1173 static void 1174 update_promisc(void *arg, int npending) 1175 { 1176 struct ieee80211com *ic = arg; 1177 1178 ic->ic_update_promisc(ic); 1179 } 1180 1181 static void 1182 update_channel(void *arg, int npending) 1183 { 1184 struct ieee80211com *ic = arg; 1185 1186 ic->ic_set_channel(ic); 1187 ieee80211_radiotap_chan_change(ic); 1188 } 1189 1190 static void 1191 update_chw(void *arg, int npending) 1192 { 1193 struct ieee80211com *ic = arg; 1194 1195 /* 1196 * XXX should we defer the channel width _config_ update until now? 1197 */ 1198 ic->ic_update_chw(ic); 1199 } 1200 1201 /* 1202 * Block until the parent is in a known state. This is 1203 * used after any operations that dispatch a task (e.g. 1204 * to auto-configure the parent device up/down). 1205 */ 1206 void 1207 ieee80211_waitfor_parent(struct ieee80211com *ic) 1208 { 1209 taskqueue_block(ic->ic_tq); 1210 ieee80211_draintask(ic, &ic->ic_parent_task); 1211 ieee80211_draintask(ic, &ic->ic_mcast_task); 1212 ieee80211_draintask(ic, &ic->ic_promisc_task); 1213 ieee80211_draintask(ic, &ic->ic_chan_task); 1214 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1215 ieee80211_draintask(ic, &ic->ic_chw_task); 1216 taskqueue_unblock(ic->ic_tq); 1217 } 1218 1219 /* 1220 * Check to see whether the current channel needs reset. 1221 * 1222 * Some devices don't handle being given an invalid channel 1223 * in their operating mode very well (eg wpi(4) will throw a 1224 * firmware exception.) 1225 * 1226 * Return 0 if we're ok, 1 if the channel needs to be reset. 1227 * 1228 * See PR kern/202502. 1229 */ 1230 static int 1231 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1232 { 1233 struct ieee80211com *ic = vap->iv_ic; 1234 1235 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1236 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1237 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1238 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1239 return (1); 1240 return (0); 1241 } 1242 1243 /* 1244 * Reset the curchan to a known good state. 1245 */ 1246 static void 1247 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1248 { 1249 struct ieee80211com *ic = vap->iv_ic; 1250 1251 ic->ic_curchan = &ic->ic_channels[0]; 1252 } 1253 1254 /* 1255 * Start a vap running. If this is the first vap to be 1256 * set running on the underlying device then we 1257 * automatically bring the device up. 1258 */ 1259 void 1260 ieee80211_start_locked(struct ieee80211vap *vap) 1261 { 1262 struct ifnet *ifp = vap->iv_ifp; 1263 struct ieee80211com *ic = vap->iv_ic; 1264 1265 IEEE80211_LOCK_ASSERT(ic); 1266 1267 IEEE80211_DPRINTF(vap, 1268 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1269 "start running, %d vaps running\n", ic->ic_nrunning); 1270 1271 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1272 /* 1273 * Mark us running. Note that it's ok to do this first; 1274 * if we need to bring the parent device up we defer that 1275 * to avoid dropping the com lock. We expect the device 1276 * to respond to being marked up by calling back into us 1277 * through ieee80211_start_all at which point we'll come 1278 * back in here and complete the work. 1279 */ 1280 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1281 /* 1282 * We are not running; if this we are the first vap 1283 * to be brought up auto-up the parent if necessary. 1284 */ 1285 if (ic->ic_nrunning++ == 0) { 1286 1287 /* reset the channel to a known good channel */ 1288 if (ieee80211_start_check_reset_chan(vap)) 1289 ieee80211_start_reset_chan(vap); 1290 1291 IEEE80211_DPRINTF(vap, 1292 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1293 "%s: up parent %s\n", __func__, ic->ic_name); 1294 ieee80211_runtask(ic, &ic->ic_parent_task); 1295 return; 1296 } 1297 } 1298 /* 1299 * If the parent is up and running, then kick the 1300 * 802.11 state machine as appropriate. 1301 */ 1302 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1303 if (vap->iv_opmode == IEEE80211_M_STA) { 1304 #if 0 1305 /* XXX bypasses scan too easily; disable for now */ 1306 /* 1307 * Try to be intelligent about clocking the state 1308 * machine. If we're currently in RUN state then 1309 * we should be able to apply any new state/parameters 1310 * simply by re-associating. Otherwise we need to 1311 * re-scan to select an appropriate ap. 1312 */ 1313 if (vap->iv_state >= IEEE80211_S_RUN) 1314 ieee80211_new_state_locked(vap, 1315 IEEE80211_S_ASSOC, 1); 1316 else 1317 #endif 1318 ieee80211_new_state_locked(vap, 1319 IEEE80211_S_SCAN, 0); 1320 } else { 1321 /* 1322 * For monitor+wds mode there's nothing to do but 1323 * start running. Otherwise if this is the first 1324 * vap to be brought up, start a scan which may be 1325 * preempted if the station is locked to a particular 1326 * channel. 1327 */ 1328 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1329 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1330 vap->iv_opmode == IEEE80211_M_WDS) 1331 ieee80211_new_state_locked(vap, 1332 IEEE80211_S_RUN, -1); 1333 else 1334 ieee80211_new_state_locked(vap, 1335 IEEE80211_S_SCAN, 0); 1336 } 1337 } 1338 } 1339 1340 /* 1341 * Start a single vap. 1342 */ 1343 void 1344 ieee80211_init(void *arg) 1345 { 1346 struct ieee80211vap *vap = arg; 1347 1348 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1349 "%s\n", __func__); 1350 1351 IEEE80211_LOCK(vap->iv_ic); 1352 ieee80211_start_locked(vap); 1353 IEEE80211_UNLOCK(vap->iv_ic); 1354 } 1355 1356 /* 1357 * Start all runnable vap's on a device. 1358 */ 1359 void 1360 ieee80211_start_all(struct ieee80211com *ic) 1361 { 1362 struct ieee80211vap *vap; 1363 1364 IEEE80211_LOCK(ic); 1365 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1366 struct ifnet *ifp = vap->iv_ifp; 1367 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1368 ieee80211_start_locked(vap); 1369 } 1370 IEEE80211_UNLOCK(ic); 1371 } 1372 1373 /* 1374 * Stop a vap. We force it down using the state machine 1375 * then mark it's ifnet not running. If this is the last 1376 * vap running on the underlying device then we close it 1377 * too to insure it will be properly initialized when the 1378 * next vap is brought up. 1379 */ 1380 void 1381 ieee80211_stop_locked(struct ieee80211vap *vap) 1382 { 1383 struct ieee80211com *ic = vap->iv_ic; 1384 struct ifnet *ifp = vap->iv_ifp; 1385 1386 IEEE80211_LOCK_ASSERT(ic); 1387 1388 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1389 "stop running, %d vaps running\n", ic->ic_nrunning); 1390 1391 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1392 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1393 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1394 if (--ic->ic_nrunning == 0) { 1395 IEEE80211_DPRINTF(vap, 1396 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1397 "down parent %s\n", ic->ic_name); 1398 ieee80211_runtask(ic, &ic->ic_parent_task); 1399 } 1400 } 1401 } 1402 1403 void 1404 ieee80211_stop(struct ieee80211vap *vap) 1405 { 1406 struct ieee80211com *ic = vap->iv_ic; 1407 1408 IEEE80211_LOCK(ic); 1409 ieee80211_stop_locked(vap); 1410 IEEE80211_UNLOCK(ic); 1411 } 1412 1413 /* 1414 * Stop all vap's running on a device. 1415 */ 1416 void 1417 ieee80211_stop_all(struct ieee80211com *ic) 1418 { 1419 struct ieee80211vap *vap; 1420 1421 IEEE80211_LOCK(ic); 1422 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1423 struct ifnet *ifp = vap->iv_ifp; 1424 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1425 ieee80211_stop_locked(vap); 1426 } 1427 IEEE80211_UNLOCK(ic); 1428 1429 ieee80211_waitfor_parent(ic); 1430 } 1431 1432 /* 1433 * Stop all vap's running on a device and arrange 1434 * for those that were running to be resumed. 1435 */ 1436 void 1437 ieee80211_suspend_all(struct ieee80211com *ic) 1438 { 1439 struct ieee80211vap *vap; 1440 1441 IEEE80211_LOCK(ic); 1442 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1443 struct ifnet *ifp = vap->iv_ifp; 1444 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1445 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1446 ieee80211_stop_locked(vap); 1447 } 1448 } 1449 IEEE80211_UNLOCK(ic); 1450 1451 ieee80211_waitfor_parent(ic); 1452 } 1453 1454 /* 1455 * Start all vap's marked for resume. 1456 */ 1457 void 1458 ieee80211_resume_all(struct ieee80211com *ic) 1459 { 1460 struct ieee80211vap *vap; 1461 1462 IEEE80211_LOCK(ic); 1463 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1464 struct ifnet *ifp = vap->iv_ifp; 1465 if (!IFNET_IS_UP_RUNNING(ifp) && 1466 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1467 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1468 ieee80211_start_locked(vap); 1469 } 1470 } 1471 IEEE80211_UNLOCK(ic); 1472 } 1473 1474 void 1475 ieee80211_beacon_miss(struct ieee80211com *ic) 1476 { 1477 IEEE80211_LOCK(ic); 1478 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1479 /* Process in a taskq, the handler may reenter the driver */ 1480 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1481 } 1482 IEEE80211_UNLOCK(ic); 1483 } 1484 1485 static void 1486 beacon_miss(void *arg, int npending) 1487 { 1488 struct ieee80211com *ic = arg; 1489 struct ieee80211vap *vap; 1490 1491 IEEE80211_LOCK(ic); 1492 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1493 /* 1494 * We only pass events through for sta vap's in RUN state; 1495 * may be too restrictive but for now this saves all the 1496 * handlers duplicating these checks. 1497 */ 1498 if (vap->iv_opmode == IEEE80211_M_STA && 1499 vap->iv_state >= IEEE80211_S_RUN && 1500 vap->iv_bmiss != NULL) 1501 vap->iv_bmiss(vap); 1502 } 1503 IEEE80211_UNLOCK(ic); 1504 } 1505 1506 static void 1507 beacon_swmiss(void *arg, int npending) 1508 { 1509 struct ieee80211vap *vap = arg; 1510 struct ieee80211com *ic = vap->iv_ic; 1511 1512 IEEE80211_LOCK(ic); 1513 if (vap->iv_state == IEEE80211_S_RUN) { 1514 /* XXX Call multiple times if npending > zero? */ 1515 vap->iv_bmiss(vap); 1516 } 1517 IEEE80211_UNLOCK(ic); 1518 } 1519 1520 /* 1521 * Software beacon miss handling. Check if any beacons 1522 * were received in the last period. If not post a 1523 * beacon miss; otherwise reset the counter. 1524 */ 1525 void 1526 ieee80211_swbmiss(void *arg) 1527 { 1528 struct ieee80211vap *vap = arg; 1529 struct ieee80211com *ic = vap->iv_ic; 1530 1531 IEEE80211_LOCK_ASSERT(ic); 1532 1533 /* XXX sleep state? */ 1534 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1535 ("wrong state %d", vap->iv_state)); 1536 1537 if (ic->ic_flags & IEEE80211_F_SCAN) { 1538 /* 1539 * If scanning just ignore and reset state. If we get a 1540 * bmiss after coming out of scan because we haven't had 1541 * time to receive a beacon then we should probe the AP 1542 * before posting a real bmiss (unless iv_bmiss_max has 1543 * been artifiically lowered). A cleaner solution might 1544 * be to disable the timer on scan start/end but to handle 1545 * case of multiple sta vap's we'd need to disable the 1546 * timers of all affected vap's. 1547 */ 1548 vap->iv_swbmiss_count = 0; 1549 } else if (vap->iv_swbmiss_count == 0) { 1550 if (vap->iv_bmiss != NULL) 1551 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1552 } else 1553 vap->iv_swbmiss_count = 0; 1554 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1555 ieee80211_swbmiss, vap); 1556 } 1557 1558 /* 1559 * Start an 802.11h channel switch. We record the parameters, 1560 * mark the operation pending, notify each vap through the 1561 * beacon update mechanism so it can update the beacon frame 1562 * contents, and then switch vap's to CSA state to block outbound 1563 * traffic. Devices that handle CSA directly can use the state 1564 * switch to do the right thing so long as they call 1565 * ieee80211_csa_completeswitch when it's time to complete the 1566 * channel change. Devices that depend on the net80211 layer can 1567 * use ieee80211_beacon_update to handle the countdown and the 1568 * channel switch. 1569 */ 1570 void 1571 ieee80211_csa_startswitch(struct ieee80211com *ic, 1572 struct ieee80211_channel *c, int mode, int count) 1573 { 1574 struct ieee80211vap *vap; 1575 1576 IEEE80211_LOCK_ASSERT(ic); 1577 1578 ic->ic_csa_newchan = c; 1579 ic->ic_csa_mode = mode; 1580 ic->ic_csa_count = count; 1581 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1582 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1583 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1584 vap->iv_opmode == IEEE80211_M_IBSS || 1585 vap->iv_opmode == IEEE80211_M_MBSS) 1586 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1587 /* switch to CSA state to block outbound traffic */ 1588 if (vap->iv_state == IEEE80211_S_RUN) 1589 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1590 } 1591 ieee80211_notify_csa(ic, c, mode, count); 1592 } 1593 1594 /* 1595 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1596 * This is called by both the completion and cancellation functions 1597 * so each VAP is placed back in the RUN state and can thus transmit. 1598 */ 1599 static void 1600 csa_completeswitch(struct ieee80211com *ic) 1601 { 1602 struct ieee80211vap *vap; 1603 1604 ic->ic_csa_newchan = NULL; 1605 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1606 1607 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1608 if (vap->iv_state == IEEE80211_S_CSA) 1609 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1610 } 1611 1612 /* 1613 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1614 * We clear state and move all vap's in CSA state to RUN state 1615 * so they can again transmit. 1616 * 1617 * Although this may not be completely correct, update the BSS channel 1618 * for each VAP to the newly configured channel. The setcurchan sets 1619 * the current operating channel for the interface (so the radio does 1620 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1621 * reported information via ioctl. 1622 */ 1623 void 1624 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1625 { 1626 struct ieee80211vap *vap; 1627 1628 IEEE80211_LOCK_ASSERT(ic); 1629 1630 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1631 1632 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1633 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1634 if (vap->iv_state == IEEE80211_S_CSA) 1635 vap->iv_bss->ni_chan = ic->ic_curchan; 1636 1637 csa_completeswitch(ic); 1638 } 1639 1640 /* 1641 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1642 * We clear state and move all vap's in CSA state to RUN state 1643 * so they can again transmit. 1644 */ 1645 void 1646 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1647 { 1648 IEEE80211_LOCK_ASSERT(ic); 1649 1650 csa_completeswitch(ic); 1651 } 1652 1653 /* 1654 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1655 * We clear state and move all vap's in CAC state to RUN state. 1656 */ 1657 void 1658 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1659 { 1660 struct ieee80211com *ic = vap0->iv_ic; 1661 struct ieee80211vap *vap; 1662 1663 IEEE80211_LOCK(ic); 1664 /* 1665 * Complete CAC state change for lead vap first; then 1666 * clock all the other vap's waiting. 1667 */ 1668 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1669 ("wrong state %d", vap0->iv_state)); 1670 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1671 1672 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1673 if (vap->iv_state == IEEE80211_S_CAC) 1674 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1675 IEEE80211_UNLOCK(ic); 1676 } 1677 1678 /* 1679 * Force all vap's other than the specified vap to the INIT state 1680 * and mark them as waiting for a scan to complete. These vaps 1681 * will be brought up when the scan completes and the scanning vap 1682 * reaches RUN state by wakeupwaiting. 1683 */ 1684 static void 1685 markwaiting(struct ieee80211vap *vap0) 1686 { 1687 struct ieee80211com *ic = vap0->iv_ic; 1688 struct ieee80211vap *vap; 1689 1690 IEEE80211_LOCK_ASSERT(ic); 1691 1692 /* 1693 * A vap list entry can not disappear since we are running on the 1694 * taskqueue and a vap destroy will queue and drain another state 1695 * change task. 1696 */ 1697 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1698 if (vap == vap0) 1699 continue; 1700 if (vap->iv_state != IEEE80211_S_INIT) { 1701 /* NB: iv_newstate may drop the lock */ 1702 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1703 IEEE80211_LOCK_ASSERT(ic); 1704 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1705 } 1706 } 1707 } 1708 1709 /* 1710 * Wakeup all vap's waiting for a scan to complete. This is the 1711 * companion to markwaiting (above) and is used to coordinate 1712 * multiple vaps scanning. 1713 * This is called from the state taskqueue. 1714 */ 1715 static void 1716 wakeupwaiting(struct ieee80211vap *vap0) 1717 { 1718 struct ieee80211com *ic = vap0->iv_ic; 1719 struct ieee80211vap *vap; 1720 1721 IEEE80211_LOCK_ASSERT(ic); 1722 1723 /* 1724 * A vap list entry can not disappear since we are running on the 1725 * taskqueue and a vap destroy will queue and drain another state 1726 * change task. 1727 */ 1728 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1729 if (vap == vap0) 1730 continue; 1731 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1732 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1733 /* NB: sta's cannot go INIT->RUN */ 1734 /* NB: iv_newstate may drop the lock */ 1735 vap->iv_newstate(vap, 1736 vap->iv_opmode == IEEE80211_M_STA ? 1737 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1738 IEEE80211_LOCK_ASSERT(ic); 1739 } 1740 } 1741 } 1742 1743 /* 1744 * Handle post state change work common to all operating modes. 1745 */ 1746 static void 1747 ieee80211_newstate_cb(void *xvap, int npending) 1748 { 1749 struct ieee80211vap *vap = xvap; 1750 struct ieee80211com *ic = vap->iv_ic; 1751 enum ieee80211_state nstate, ostate; 1752 int arg, rc; 1753 1754 IEEE80211_LOCK(ic); 1755 nstate = vap->iv_nstate; 1756 arg = vap->iv_nstate_arg; 1757 1758 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1759 /* 1760 * We have been requested to drop back to the INIT before 1761 * proceeding to the new state. 1762 */ 1763 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1764 "%s: %s -> %s arg %d\n", __func__, 1765 ieee80211_state_name[vap->iv_state], 1766 ieee80211_state_name[IEEE80211_S_INIT], arg); 1767 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1768 IEEE80211_LOCK_ASSERT(ic); 1769 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1770 } 1771 1772 ostate = vap->iv_state; 1773 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1774 /* 1775 * SCAN was forced; e.g. on beacon miss. Force other running 1776 * vap's to INIT state and mark them as waiting for the scan to 1777 * complete. This insures they don't interfere with our 1778 * scanning. Since we are single threaded the vaps can not 1779 * transition again while we are executing. 1780 * 1781 * XXX not always right, assumes ap follows sta 1782 */ 1783 markwaiting(vap); 1784 } 1785 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1786 "%s: %s -> %s arg %d\n", __func__, 1787 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1788 1789 rc = vap->iv_newstate(vap, nstate, arg); 1790 IEEE80211_LOCK_ASSERT(ic); 1791 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1792 if (rc != 0) { 1793 /* State transition failed */ 1794 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1795 KASSERT(nstate != IEEE80211_S_INIT, 1796 ("INIT state change failed")); 1797 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1798 "%s: %s returned error %d\n", __func__, 1799 ieee80211_state_name[nstate], rc); 1800 goto done; 1801 } 1802 1803 /* No actual transition, skip post processing */ 1804 if (ostate == nstate) 1805 goto done; 1806 1807 if (nstate == IEEE80211_S_RUN) { 1808 /* 1809 * OACTIVE may be set on the vap if the upper layer 1810 * tried to transmit (e.g. IPv6 NDP) before we reach 1811 * RUN state. Clear it and restart xmit. 1812 * 1813 * Note this can also happen as a result of SLEEP->RUN 1814 * (i.e. coming out of power save mode). 1815 */ 1816 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1817 1818 /* 1819 * XXX TODO Kick-start a VAP queue - this should be a method! 1820 */ 1821 1822 /* bring up any vaps waiting on us */ 1823 wakeupwaiting(vap); 1824 } else if (nstate == IEEE80211_S_INIT) { 1825 /* 1826 * Flush the scan cache if we did the last scan (XXX?) 1827 * and flush any frames on send queues from this vap. 1828 * Note the mgt q is used only for legacy drivers and 1829 * will go away shortly. 1830 */ 1831 ieee80211_scan_flush(vap); 1832 1833 /* 1834 * XXX TODO: ic/vap queue flush 1835 */ 1836 } 1837 done: 1838 IEEE80211_UNLOCK(ic); 1839 } 1840 1841 /* 1842 * Public interface for initiating a state machine change. 1843 * This routine single-threads the request and coordinates 1844 * the scheduling of multiple vaps for the purpose of selecting 1845 * an operating channel. Specifically the following scenarios 1846 * are handled: 1847 * o only one vap can be selecting a channel so on transition to 1848 * SCAN state if another vap is already scanning then 1849 * mark the caller for later processing and return without 1850 * doing anything (XXX? expectations by caller of synchronous operation) 1851 * o only one vap can be doing CAC of a channel so on transition to 1852 * CAC state if another vap is already scanning for radar then 1853 * mark the caller for later processing and return without 1854 * doing anything (XXX? expectations by caller of synchronous operation) 1855 * o if another vap is already running when a request is made 1856 * to SCAN then an operating channel has been chosen; bypass 1857 * the scan and just join the channel 1858 * 1859 * Note that the state change call is done through the iv_newstate 1860 * method pointer so any driver routine gets invoked. The driver 1861 * will normally call back into operating mode-specific 1862 * ieee80211_newstate routines (below) unless it needs to completely 1863 * bypass the state machine (e.g. because the firmware has it's 1864 * own idea how things should work). Bypassing the net80211 layer 1865 * is usually a mistake and indicates lack of proper integration 1866 * with the net80211 layer. 1867 */ 1868 int 1869 ieee80211_new_state_locked(struct ieee80211vap *vap, 1870 enum ieee80211_state nstate, int arg) 1871 { 1872 struct ieee80211com *ic = vap->iv_ic; 1873 struct ieee80211vap *vp; 1874 enum ieee80211_state ostate; 1875 int nrunning, nscanning; 1876 1877 IEEE80211_LOCK_ASSERT(ic); 1878 1879 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1880 if (vap->iv_nstate == IEEE80211_S_INIT) { 1881 /* 1882 * XXX The vap is being stopped, do no allow any other 1883 * state changes until this is completed. 1884 */ 1885 return -1; 1886 } else if (vap->iv_state != vap->iv_nstate) { 1887 #if 0 1888 /* Warn if the previous state hasn't completed. */ 1889 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1890 "%s: pending %s -> %s transition lost\n", __func__, 1891 ieee80211_state_name[vap->iv_state], 1892 ieee80211_state_name[vap->iv_nstate]); 1893 #else 1894 /* XXX temporarily enable to identify issues */ 1895 if_printf(vap->iv_ifp, 1896 "%s: pending %s -> %s transition lost\n", 1897 __func__, ieee80211_state_name[vap->iv_state], 1898 ieee80211_state_name[vap->iv_nstate]); 1899 #endif 1900 } 1901 } 1902 1903 nrunning = nscanning = 0; 1904 /* XXX can track this state instead of calculating */ 1905 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1906 if (vp != vap) { 1907 if (vp->iv_state >= IEEE80211_S_RUN) 1908 nrunning++; 1909 /* XXX doesn't handle bg scan */ 1910 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1911 else if (vp->iv_state > IEEE80211_S_INIT) 1912 nscanning++; 1913 } 1914 } 1915 ostate = vap->iv_state; 1916 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1917 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1918 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1919 nrunning, nscanning); 1920 switch (nstate) { 1921 case IEEE80211_S_SCAN: 1922 if (ostate == IEEE80211_S_INIT) { 1923 /* 1924 * INIT -> SCAN happens on initial bringup. 1925 */ 1926 KASSERT(!(nscanning && nrunning), 1927 ("%d scanning and %d running", nscanning, nrunning)); 1928 if (nscanning) { 1929 /* 1930 * Someone is scanning, defer our state 1931 * change until the work has completed. 1932 */ 1933 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1934 "%s: defer %s -> %s\n", 1935 __func__, ieee80211_state_name[ostate], 1936 ieee80211_state_name[nstate]); 1937 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1938 return 0; 1939 } 1940 if (nrunning) { 1941 /* 1942 * Someone is operating; just join the channel 1943 * they have chosen. 1944 */ 1945 /* XXX kill arg? */ 1946 /* XXX check each opmode, adhoc? */ 1947 if (vap->iv_opmode == IEEE80211_M_STA) 1948 nstate = IEEE80211_S_SCAN; 1949 else 1950 nstate = IEEE80211_S_RUN; 1951 #ifdef IEEE80211_DEBUG 1952 if (nstate != IEEE80211_S_SCAN) { 1953 IEEE80211_DPRINTF(vap, 1954 IEEE80211_MSG_STATE, 1955 "%s: override, now %s -> %s\n", 1956 __func__, 1957 ieee80211_state_name[ostate], 1958 ieee80211_state_name[nstate]); 1959 } 1960 #endif 1961 } 1962 } 1963 break; 1964 case IEEE80211_S_RUN: 1965 if (vap->iv_opmode == IEEE80211_M_WDS && 1966 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1967 nscanning) { 1968 /* 1969 * Legacy WDS with someone else scanning; don't 1970 * go online until that completes as we should 1971 * follow the other vap to the channel they choose. 1972 */ 1973 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1974 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1975 ieee80211_state_name[ostate], 1976 ieee80211_state_name[nstate]); 1977 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1978 return 0; 1979 } 1980 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1981 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1982 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1983 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1984 /* 1985 * This is a DFS channel, transition to CAC state 1986 * instead of RUN. This allows us to initiate 1987 * Channel Availability Check (CAC) as specified 1988 * by 11h/DFS. 1989 */ 1990 nstate = IEEE80211_S_CAC; 1991 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1992 "%s: override %s -> %s (DFS)\n", __func__, 1993 ieee80211_state_name[ostate], 1994 ieee80211_state_name[nstate]); 1995 } 1996 break; 1997 case IEEE80211_S_INIT: 1998 /* cancel any scan in progress */ 1999 ieee80211_cancel_scan(vap); 2000 if (ostate == IEEE80211_S_INIT ) { 2001 /* XXX don't believe this */ 2002 /* INIT -> INIT. nothing to do */ 2003 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2004 } 2005 /* fall thru... */ 2006 default: 2007 break; 2008 } 2009 /* defer the state change to a thread */ 2010 vap->iv_nstate = nstate; 2011 vap->iv_nstate_arg = arg; 2012 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2013 ieee80211_runtask(ic, &vap->iv_nstate_task); 2014 return EINPROGRESS; 2015 } 2016 2017 int 2018 ieee80211_new_state(struct ieee80211vap *vap, 2019 enum ieee80211_state nstate, int arg) 2020 { 2021 struct ieee80211com *ic = vap->iv_ic; 2022 int rc; 2023 2024 IEEE80211_LOCK(ic); 2025 rc = ieee80211_new_state_locked(vap, nstate, arg); 2026 IEEE80211_UNLOCK(ic); 2027 return rc; 2028 } 2029