xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 9ce06829f29232e312130530c304d287b39b0059)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>		/* XXX for ether_sprintf */
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_adhoc.h>
51 #include <net80211/ieee80211_sta.h>
52 #include <net80211/ieee80211_hostap.h>
53 #include <net80211/ieee80211_wds.h>
54 #ifdef IEEE80211_SUPPORT_MESH
55 #include <net80211/ieee80211_mesh.h>
56 #endif
57 #include <net80211/ieee80211_monitor.h>
58 #include <net80211/ieee80211_input.h>
59 
60 /* XXX tunables */
61 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
62 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
63 
64 const char *ieee80211_mgt_subtype_name[] = {
65 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
66 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
67 	"beacon",	"atim",		"disassoc",	"auth",
68 	"deauth",	"action",	"action_noack",	"reserved#15"
69 };
70 const char *ieee80211_ctl_subtype_name[] = {
71 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
72 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
73 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
74 	"cts",		"ack",		"cf_end",	"cf_end_ack"
75 };
76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
77 	"IBSS",		/* IEEE80211_M_IBSS */
78 	"STA",		/* IEEE80211_M_STA */
79 	"WDS",		/* IEEE80211_M_WDS */
80 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
81 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
82 	"MONITOR",	/* IEEE80211_M_MONITOR */
83 	"MBSS"		/* IEEE80211_M_MBSS */
84 };
85 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
86 	"INIT",		/* IEEE80211_S_INIT */
87 	"SCAN",		/* IEEE80211_S_SCAN */
88 	"AUTH",		/* IEEE80211_S_AUTH */
89 	"ASSOC",	/* IEEE80211_S_ASSOC */
90 	"CAC",		/* IEEE80211_S_CAC */
91 	"RUN",		/* IEEE80211_S_RUN */
92 	"CSA",		/* IEEE80211_S_CSA */
93 	"SLEEP",	/* IEEE80211_S_SLEEP */
94 };
95 const char *ieee80211_wme_acnames[] = {
96 	"WME_AC_BE",
97 	"WME_AC_BK",
98 	"WME_AC_VI",
99 	"WME_AC_VO",
100 	"WME_UPSD",
101 };
102 
103 static void beacon_miss(void *, int);
104 static void beacon_swmiss(void *, int);
105 static void parent_updown(void *, int);
106 static void update_mcast(void *, int);
107 static void update_promisc(void *, int);
108 static void update_channel(void *, int);
109 static void update_chw(void *, int);
110 static void ieee80211_newstate_cb(void *, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 
117 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
118 	m_freem(m);
119 	return ENETDOWN;
120 }
121 
122 void
123 ieee80211_proto_attach(struct ieee80211com *ic)
124 {
125 	uint8_t hdrlen;
126 
127 	/* override the 802.3 setting */
128 	hdrlen = ic->ic_headroom
129 		+ sizeof(struct ieee80211_qosframe_addr4)
130 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
131 		+ IEEE80211_WEP_EXTIVLEN;
132 	/* XXX no way to recalculate on ifdetach */
133 	if (ALIGN(hdrlen) > max_linkhdr) {
134 		/* XXX sanity check... */
135 		max_linkhdr = ALIGN(hdrlen);
136 		max_hdr = max_linkhdr + max_protohdr;
137 		max_datalen = MHLEN - max_hdr;
138 	}
139 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
140 
141 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
142 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
143 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
144 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
145 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
146 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
147 
148 	ic->ic_wme.wme_hipri_switch_hysteresis =
149 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
150 
151 	/* initialize management frame handlers */
152 	ic->ic_send_mgmt = ieee80211_send_mgmt;
153 	ic->ic_raw_xmit = null_raw_xmit;
154 
155 	ieee80211_adhoc_attach(ic);
156 	ieee80211_sta_attach(ic);
157 	ieee80211_wds_attach(ic);
158 	ieee80211_hostap_attach(ic);
159 #ifdef IEEE80211_SUPPORT_MESH
160 	ieee80211_mesh_attach(ic);
161 #endif
162 	ieee80211_monitor_attach(ic);
163 }
164 
165 void
166 ieee80211_proto_detach(struct ieee80211com *ic)
167 {
168 	ieee80211_monitor_detach(ic);
169 #ifdef IEEE80211_SUPPORT_MESH
170 	ieee80211_mesh_detach(ic);
171 #endif
172 	ieee80211_hostap_detach(ic);
173 	ieee80211_wds_detach(ic);
174 	ieee80211_adhoc_detach(ic);
175 	ieee80211_sta_detach(ic);
176 }
177 
178 static void
179 null_update_beacon(struct ieee80211vap *vap, int item)
180 {
181 }
182 
183 void
184 ieee80211_proto_vattach(struct ieee80211vap *vap)
185 {
186 	struct ieee80211com *ic = vap->iv_ic;
187 	struct ifnet *ifp = vap->iv_ifp;
188 	int i;
189 
190 	/* override the 802.3 setting */
191 	ifp->if_hdrlen = ic->ic_headroom
192                 + sizeof(struct ieee80211_qosframe_addr4)
193                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
194                 + IEEE80211_WEP_EXTIVLEN;
195 
196 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
197 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
198 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
199 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
200 	callout_init(&vap->iv_mgtsend, 1);
201 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
202 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
203 	/*
204 	 * Install default tx rate handling: no fixed rate, lowest
205 	 * supported rate for mgmt and multicast frames.  Default
206 	 * max retry count.  These settings can be changed by the
207 	 * driver and/or user applications.
208 	 */
209 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
210 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
211 
212 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
213 
214 		/*
215 		 * Setting the management rate to MCS 0 assumes that the
216 		 * BSS Basic rate set is empty and the BSS Basic MCS set
217 		 * is not.
218 		 *
219 		 * Since we're not checking this, default to the lowest
220 		 * defined rate for this mode.
221 		 *
222 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
223 		 * some MCS management traffic (eg BA response frames.)
224 		 *
225 		 * See also: 9.6.0 of the 802.11n-2009 specification.
226 		 */
227 #ifdef	NOTYET
228 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
229 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
230 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
231 		} else {
232 			vap->iv_txparms[i].mgmtrate =
233 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
234 			vap->iv_txparms[i].mcastrate =
235 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
236 		}
237 #endif
238 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
239 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
240 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
241 	}
242 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
243 
244 	vap->iv_update_beacon = null_update_beacon;
245 	vap->iv_deliver_data = ieee80211_deliver_data;
246 
247 	/* attach support for operating mode */
248 	ic->ic_vattach[vap->iv_opmode](vap);
249 }
250 
251 void
252 ieee80211_proto_vdetach(struct ieee80211vap *vap)
253 {
254 #define	FREEAPPIE(ie) do { \
255 	if (ie != NULL) \
256 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
257 } while (0)
258 	/*
259 	 * Detach operating mode module.
260 	 */
261 	if (vap->iv_opdetach != NULL)
262 		vap->iv_opdetach(vap);
263 	/*
264 	 * This should not be needed as we detach when reseting
265 	 * the state but be conservative here since the
266 	 * authenticator may do things like spawn kernel threads.
267 	 */
268 	if (vap->iv_auth->ia_detach != NULL)
269 		vap->iv_auth->ia_detach(vap);
270 	/*
271 	 * Detach any ACL'ator.
272 	 */
273 	if (vap->iv_acl != NULL)
274 		vap->iv_acl->iac_detach(vap);
275 
276 	FREEAPPIE(vap->iv_appie_beacon);
277 	FREEAPPIE(vap->iv_appie_probereq);
278 	FREEAPPIE(vap->iv_appie_proberesp);
279 	FREEAPPIE(vap->iv_appie_assocreq);
280 	FREEAPPIE(vap->iv_appie_assocresp);
281 	FREEAPPIE(vap->iv_appie_wpa);
282 #undef FREEAPPIE
283 }
284 
285 /*
286  * Simple-minded authenticator module support.
287  */
288 
289 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
290 /* XXX well-known names */
291 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
292 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
293 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
294 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
295 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
296 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
297 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
298 };
299 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
300 
301 static const struct ieee80211_authenticator auth_internal = {
302 	.ia_name		= "wlan_internal",
303 	.ia_attach		= NULL,
304 	.ia_detach		= NULL,
305 	.ia_node_join		= NULL,
306 	.ia_node_leave		= NULL,
307 };
308 
309 /*
310  * Setup internal authenticators once; they are never unregistered.
311  */
312 static void
313 ieee80211_auth_setup(void)
314 {
315 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
316 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
317 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
318 }
319 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
320 
321 const struct ieee80211_authenticator *
322 ieee80211_authenticator_get(int auth)
323 {
324 	if (auth >= IEEE80211_AUTH_MAX)
325 		return NULL;
326 	if (authenticators[auth] == NULL)
327 		ieee80211_load_module(auth_modnames[auth]);
328 	return authenticators[auth];
329 }
330 
331 void
332 ieee80211_authenticator_register(int type,
333 	const struct ieee80211_authenticator *auth)
334 {
335 	if (type >= IEEE80211_AUTH_MAX)
336 		return;
337 	authenticators[type] = auth;
338 }
339 
340 void
341 ieee80211_authenticator_unregister(int type)
342 {
343 
344 	if (type >= IEEE80211_AUTH_MAX)
345 		return;
346 	authenticators[type] = NULL;
347 }
348 
349 /*
350  * Very simple-minded ACL module support.
351  */
352 /* XXX just one for now */
353 static	const struct ieee80211_aclator *acl = NULL;
354 
355 void
356 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
357 {
358 	printf("wlan: %s acl policy registered\n", iac->iac_name);
359 	acl = iac;
360 }
361 
362 void
363 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
364 {
365 	if (acl == iac)
366 		acl = NULL;
367 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
368 }
369 
370 const struct ieee80211_aclator *
371 ieee80211_aclator_get(const char *name)
372 {
373 	if (acl == NULL)
374 		ieee80211_load_module("wlan_acl");
375 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
376 }
377 
378 void
379 ieee80211_print_essid(const uint8_t *essid, int len)
380 {
381 	const uint8_t *p;
382 	int i;
383 
384 	if (len > IEEE80211_NWID_LEN)
385 		len = IEEE80211_NWID_LEN;
386 	/* determine printable or not */
387 	for (i = 0, p = essid; i < len; i++, p++) {
388 		if (*p < ' ' || *p > 0x7e)
389 			break;
390 	}
391 	if (i == len) {
392 		printf("\"");
393 		for (i = 0, p = essid; i < len; i++, p++)
394 			printf("%c", *p);
395 		printf("\"");
396 	} else {
397 		printf("0x");
398 		for (i = 0, p = essid; i < len; i++, p++)
399 			printf("%02x", *p);
400 	}
401 }
402 
403 void
404 ieee80211_dump_pkt(struct ieee80211com *ic,
405 	const uint8_t *buf, int len, int rate, int rssi)
406 {
407 	const struct ieee80211_frame *wh;
408 	int i;
409 
410 	wh = (const struct ieee80211_frame *)buf;
411 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
412 	case IEEE80211_FC1_DIR_NODS:
413 		printf("NODS %s", ether_sprintf(wh->i_addr2));
414 		printf("->%s", ether_sprintf(wh->i_addr1));
415 		printf("(%s)", ether_sprintf(wh->i_addr3));
416 		break;
417 	case IEEE80211_FC1_DIR_TODS:
418 		printf("TODS %s", ether_sprintf(wh->i_addr2));
419 		printf("->%s", ether_sprintf(wh->i_addr3));
420 		printf("(%s)", ether_sprintf(wh->i_addr1));
421 		break;
422 	case IEEE80211_FC1_DIR_FROMDS:
423 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
424 		printf("->%s", ether_sprintf(wh->i_addr1));
425 		printf("(%s)", ether_sprintf(wh->i_addr2));
426 		break;
427 	case IEEE80211_FC1_DIR_DSTODS:
428 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
429 		printf("->%s", ether_sprintf(wh->i_addr3));
430 		printf("(%s", ether_sprintf(wh->i_addr2));
431 		printf("->%s)", ether_sprintf(wh->i_addr1));
432 		break;
433 	}
434 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
435 	case IEEE80211_FC0_TYPE_DATA:
436 		printf(" data");
437 		break;
438 	case IEEE80211_FC0_TYPE_MGT:
439 		printf(" %s", ieee80211_mgt_subtype_name[
440 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
441 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
442 		break;
443 	default:
444 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
445 		break;
446 	}
447 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
448 		const struct ieee80211_qosframe *qwh =
449 			(const struct ieee80211_qosframe *)buf;
450 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
451 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
452 	}
453 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
454 		int off;
455 
456 		off = ieee80211_anyhdrspace(ic, wh);
457 		printf(" WEP [IV %.02x %.02x %.02x",
458 			buf[off+0], buf[off+1], buf[off+2]);
459 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
460 			printf(" %.02x %.02x %.02x",
461 				buf[off+4], buf[off+5], buf[off+6]);
462 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
463 	}
464 	if (rate >= 0)
465 		printf(" %dM", rate / 2);
466 	if (rssi >= 0)
467 		printf(" +%d", rssi);
468 	printf("\n");
469 	if (len > 0) {
470 		for (i = 0; i < len; i++) {
471 			if ((i & 1) == 0)
472 				printf(" ");
473 			printf("%02x", buf[i]);
474 		}
475 		printf("\n");
476 	}
477 }
478 
479 static __inline int
480 findrix(const struct ieee80211_rateset *rs, int r)
481 {
482 	int i;
483 
484 	for (i = 0; i < rs->rs_nrates; i++)
485 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
486 			return i;
487 	return -1;
488 }
489 
490 int
491 ieee80211_fix_rate(struct ieee80211_node *ni,
492 	struct ieee80211_rateset *nrs, int flags)
493 {
494 	struct ieee80211vap *vap = ni->ni_vap;
495 	struct ieee80211com *ic = ni->ni_ic;
496 	int i, j, rix, error;
497 	int okrate, badrate, fixedrate, ucastrate;
498 	const struct ieee80211_rateset *srs;
499 	uint8_t r;
500 
501 	error = 0;
502 	okrate = badrate = 0;
503 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
504 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
505 		/*
506 		 * Workaround awkwardness with fixed rate.  We are called
507 		 * to check both the legacy rate set and the HT rate set
508 		 * but we must apply any legacy fixed rate check only to the
509 		 * legacy rate set and vice versa.  We cannot tell what type
510 		 * of rate set we've been given (legacy or HT) but we can
511 		 * distinguish the fixed rate type (MCS have 0x80 set).
512 		 * So to deal with this the caller communicates whether to
513 		 * check MCS or legacy rate using the flags and we use the
514 		 * type of any fixed rate to avoid applying an MCS to a
515 		 * legacy rate and vice versa.
516 		 */
517 		if (ucastrate & 0x80) {
518 			if (flags & IEEE80211_F_DOFRATE)
519 				flags &= ~IEEE80211_F_DOFRATE;
520 		} else if ((ucastrate & 0x80) == 0) {
521 			if (flags & IEEE80211_F_DOFMCS)
522 				flags &= ~IEEE80211_F_DOFMCS;
523 		}
524 		/* NB: required to make MCS match below work */
525 		ucastrate &= IEEE80211_RATE_VAL;
526 	}
527 	fixedrate = IEEE80211_FIXED_RATE_NONE;
528 	/*
529 	 * XXX we are called to process both MCS and legacy rates;
530 	 * we must use the appropriate basic rate set or chaos will
531 	 * ensue; for now callers that want MCS must supply
532 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
533 	 * function so there are two variants, one for MCS and one
534 	 * for legacy rates.
535 	 */
536 	if (flags & IEEE80211_F_DOBRS)
537 		srs = (const struct ieee80211_rateset *)
538 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
539 	else
540 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
541 	for (i = 0; i < nrs->rs_nrates; ) {
542 		if (flags & IEEE80211_F_DOSORT) {
543 			/*
544 			 * Sort rates.
545 			 */
546 			for (j = i + 1; j < nrs->rs_nrates; j++) {
547 				if (IEEE80211_RV(nrs->rs_rates[i]) >
548 				    IEEE80211_RV(nrs->rs_rates[j])) {
549 					r = nrs->rs_rates[i];
550 					nrs->rs_rates[i] = nrs->rs_rates[j];
551 					nrs->rs_rates[j] = r;
552 				}
553 			}
554 		}
555 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
556 		badrate = r;
557 		/*
558 		 * Check for fixed rate.
559 		 */
560 		if (r == ucastrate)
561 			fixedrate = r;
562 		/*
563 		 * Check against supported rates.
564 		 */
565 		rix = findrix(srs, r);
566 		if (flags & IEEE80211_F_DONEGO) {
567 			if (rix < 0) {
568 				/*
569 				 * A rate in the node's rate set is not
570 				 * supported.  If this is a basic rate and we
571 				 * are operating as a STA then this is an error.
572 				 * Otherwise we just discard/ignore the rate.
573 				 */
574 				if ((flags & IEEE80211_F_JOIN) &&
575 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
576 					error++;
577 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
578 				/*
579 				 * Overwrite with the supported rate
580 				 * value so any basic rate bit is set.
581 				 */
582 				nrs->rs_rates[i] = srs->rs_rates[rix];
583 			}
584 		}
585 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
586 			/*
587 			 * Delete unacceptable rates.
588 			 */
589 			nrs->rs_nrates--;
590 			for (j = i; j < nrs->rs_nrates; j++)
591 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
592 			nrs->rs_rates[j] = 0;
593 			continue;
594 		}
595 		if (rix >= 0)
596 			okrate = nrs->rs_rates[i];
597 		i++;
598 	}
599 	if (okrate == 0 || error != 0 ||
600 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
601 	     fixedrate != ucastrate)) {
602 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
603 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
604 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
605 		return badrate | IEEE80211_RATE_BASIC;
606 	} else
607 		return IEEE80211_RV(okrate);
608 }
609 
610 /*
611  * Reset 11g-related state.
612  */
613 void
614 ieee80211_reset_erp(struct ieee80211com *ic)
615 {
616 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
617 	ic->ic_nonerpsta = 0;
618 	ic->ic_longslotsta = 0;
619 	/*
620 	 * Short slot time is enabled only when operating in 11g
621 	 * and not in an IBSS.  We must also honor whether or not
622 	 * the driver is capable of doing it.
623 	 */
624 	ieee80211_set_shortslottime(ic,
625 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
626 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
627 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
628 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
629 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
630 	/*
631 	 * Set short preamble and ERP barker-preamble flags.
632 	 */
633 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
634 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
635 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
636 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
637 	} else {
638 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
639 		ic->ic_flags |= IEEE80211_F_USEBARKER;
640 	}
641 }
642 
643 /*
644  * Set the short slot time state and notify the driver.
645  */
646 void
647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
648 {
649 	if (onoff)
650 		ic->ic_flags |= IEEE80211_F_SHSLOT;
651 	else
652 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
653 	/* notify driver */
654 	if (ic->ic_updateslot != NULL)
655 		ic->ic_updateslot(ic);
656 }
657 
658 /*
659  * Check if the specified rate set supports ERP.
660  * NB: the rate set is assumed to be sorted.
661  */
662 int
663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
664 {
665 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
666 	int i, j;
667 
668 	if (rs->rs_nrates < nitems(rates))
669 		return 0;
670 	for (i = 0; i < nitems(rates); i++) {
671 		for (j = 0; j < rs->rs_nrates; j++) {
672 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
673 			if (rates[i] == r)
674 				goto next;
675 			if (r > rates[i])
676 				return 0;
677 		}
678 		return 0;
679 	next:
680 		;
681 	}
682 	return 1;
683 }
684 
685 /*
686  * Mark the basic rates for the rate table based on the
687  * operating mode.  For real 11g we mark all the 11b rates
688  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
689  * 11b rates.  There's also a pseudo 11a-mode used to mark only
690  * the basic OFDM rates.
691  */
692 static void
693 setbasicrates(struct ieee80211_rateset *rs,
694     enum ieee80211_phymode mode, int add)
695 {
696 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
697 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
698 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
699 					    /* NB: mixed b/g */
700 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
701 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
702 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
703 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
704 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
705 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
706 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
707 					    /* NB: mixed b/g */
708 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
709 	};
710 	int i, j;
711 
712 	for (i = 0; i < rs->rs_nrates; i++) {
713 		if (!add)
714 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
715 		for (j = 0; j < basic[mode].rs_nrates; j++)
716 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
717 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
718 				break;
719 			}
720 	}
721 }
722 
723 /*
724  * Set the basic rates in a rate set.
725  */
726 void
727 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
728     enum ieee80211_phymode mode)
729 {
730 	setbasicrates(rs, mode, 0);
731 }
732 
733 /*
734  * Add basic rates to a rate set.
735  */
736 void
737 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
738     enum ieee80211_phymode mode)
739 {
740 	setbasicrates(rs, mode, 1);
741 }
742 
743 /*
744  * WME protocol support.
745  *
746  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
747  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
748  * Draft 2.0 Test Plan (Appendix D).
749  *
750  * Static/Dynamic Turbo mode settings come from Atheros.
751  */
752 typedef struct phyParamType {
753 	uint8_t		aifsn;
754 	uint8_t		logcwmin;
755 	uint8_t		logcwmax;
756 	uint16_t	txopLimit;
757 	uint8_t 	acm;
758 } paramType;
759 
760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
761 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
762 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
766 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
767 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
768 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
769 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
772 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
773 };
774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
775 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
776 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
780 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
781 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
782 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
783 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
786 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
787 };
788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
789 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
790 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
791 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
792 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
793 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
794 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
795 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
796 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
797 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
799 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
800 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
801 };
802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
803 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
804 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
805 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
806 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
807 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
808 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
809 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
810 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
811 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
813 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
814 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
815 };
816 
817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
818 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
819 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
823 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
824 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
825 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
826 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
829 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
830 };
831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
832 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
833 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
834 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
835 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
836 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
837 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
838 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
839 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
840 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
842 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
843 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
844 };
845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
846 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
847 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
848 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
849 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
850 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
851 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
852 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
853 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
854 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
856 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
857 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
858 };
859 
860 static void
861 _setifsparams(struct wmeParams *wmep, const paramType *phy)
862 {
863 	wmep->wmep_aifsn = phy->aifsn;
864 	wmep->wmep_logcwmin = phy->logcwmin;
865 	wmep->wmep_logcwmax = phy->logcwmax;
866 	wmep->wmep_txopLimit = phy->txopLimit;
867 }
868 
869 static void
870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
871 	struct wmeParams *wmep, const paramType *phy)
872 {
873 	wmep->wmep_acm = phy->acm;
874 	_setifsparams(wmep, phy);
875 
876 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
877 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
878 	    ieee80211_wme_acnames[ac], type,
879 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
880 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
881 }
882 
883 static void
884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
885 {
886 	struct ieee80211com *ic = vap->iv_ic;
887 	struct ieee80211_wme_state *wme = &ic->ic_wme;
888 	const paramType *pPhyParam, *pBssPhyParam;
889 	struct wmeParams *wmep;
890 	enum ieee80211_phymode mode;
891 	int i;
892 
893 	IEEE80211_LOCK_ASSERT(ic);
894 
895 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
896 		return;
897 
898 	/*
899 	 * Clear the wme cap_info field so a qoscount from a previous
900 	 * vap doesn't confuse later code which only parses the beacon
901 	 * field and updates hardware when said field changes.
902 	 * Otherwise the hardware is programmed with defaults, not what
903 	 * the beacon actually announces.
904 	 */
905 	wme->wme_wmeChanParams.cap_info = 0;
906 
907 	/*
908 	 * Select mode; we can be called early in which case we
909 	 * always use auto mode.  We know we'll be called when
910 	 * entering the RUN state with bsschan setup properly
911 	 * so state will eventually get set correctly
912 	 */
913 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
914 		mode = ieee80211_chan2mode(ic->ic_bsschan);
915 	else
916 		mode = IEEE80211_MODE_AUTO;
917 	for (i = 0; i < WME_NUM_AC; i++) {
918 		switch (i) {
919 		case WME_AC_BK:
920 			pPhyParam = &phyParamForAC_BK[mode];
921 			pBssPhyParam = &phyParamForAC_BK[mode];
922 			break;
923 		case WME_AC_VI:
924 			pPhyParam = &phyParamForAC_VI[mode];
925 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
926 			break;
927 		case WME_AC_VO:
928 			pPhyParam = &phyParamForAC_VO[mode];
929 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
930 			break;
931 		case WME_AC_BE:
932 		default:
933 			pPhyParam = &phyParamForAC_BE[mode];
934 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
935 			break;
936 		}
937 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
938 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
939 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
940 		} else {
941 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
942 		}
943 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
944 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
945 	}
946 	/* NB: check ic_bss to avoid NULL deref on initial attach */
947 	if (vap->iv_bss != NULL) {
948 		/*
949 		 * Calculate agressive mode switching threshold based
950 		 * on beacon interval.  This doesn't need locking since
951 		 * we're only called before entering the RUN state at
952 		 * which point we start sending beacon frames.
953 		 */
954 		wme->wme_hipri_switch_thresh =
955 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
956 		wme->wme_flags &= ~WME_F_AGGRMODE;
957 		ieee80211_wme_updateparams(vap);
958 	}
959 }
960 
961 void
962 ieee80211_wme_initparams(struct ieee80211vap *vap)
963 {
964 	struct ieee80211com *ic = vap->iv_ic;
965 
966 	IEEE80211_LOCK(ic);
967 	ieee80211_wme_initparams_locked(vap);
968 	IEEE80211_UNLOCK(ic);
969 }
970 
971 /*
972  * Update WME parameters for ourself and the BSS.
973  */
974 void
975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
976 {
977 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
978 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
979 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
980 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
981 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
982 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
983 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
984 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
985 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
986 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
987 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
988 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
989 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
990 	};
991 	struct ieee80211com *ic = vap->iv_ic;
992 	struct ieee80211_wme_state *wme = &ic->ic_wme;
993 	const struct wmeParams *wmep;
994 	struct wmeParams *chanp, *bssp;
995 	enum ieee80211_phymode mode;
996 	int i;
997 	int do_aggrmode = 0;
998 
999        	/*
1000 	 * Set up the channel access parameters for the physical
1001 	 * device.  First populate the configured settings.
1002 	 */
1003 	for (i = 0; i < WME_NUM_AC; i++) {
1004 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1005 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1006 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1007 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1008 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1009 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1010 
1011 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1012 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1013 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1014 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1015 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1016 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1017 	}
1018 
1019 	/*
1020 	 * Select mode; we can be called early in which case we
1021 	 * always use auto mode.  We know we'll be called when
1022 	 * entering the RUN state with bsschan setup properly
1023 	 * so state will eventually get set correctly
1024 	 */
1025 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1026 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1027 	else
1028 		mode = IEEE80211_MODE_AUTO;
1029 
1030 	/*
1031 	 * This implements agressive mode as found in certain
1032 	 * vendors' AP's.  When there is significant high
1033 	 * priority (VI/VO) traffic in the BSS throttle back BE
1034 	 * traffic by using conservative parameters.  Otherwise
1035 	 * BE uses agressive params to optimize performance of
1036 	 * legacy/non-QoS traffic.
1037 	 */
1038 
1039 	/* Hostap? Only if aggressive mode is enabled */
1040         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1041 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1042 		do_aggrmode = 1;
1043 
1044 	/*
1045 	 * Station? Only if we're in a non-QoS BSS.
1046 	 */
1047 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1048 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1049 		do_aggrmode = 1;
1050 
1051 	/*
1052 	 * IBSS? Only if we we have WME enabled.
1053 	 */
1054 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1055 	    (vap->iv_flags & IEEE80211_F_WME))
1056 		do_aggrmode = 1;
1057 
1058 	/*
1059 	 * If WME is disabled on this VAP, default to aggressive mode
1060 	 * regardless of the configuration.
1061 	 */
1062 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1063 		do_aggrmode = 1;
1064 
1065 	/* XXX WDS? */
1066 
1067 	/* XXX MBSS? */
1068 
1069 	if (do_aggrmode) {
1070 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1071 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1072 
1073 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1074 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1075 		    aggrParam[mode].logcwmin;
1076 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1077 		    aggrParam[mode].logcwmax;
1078 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1079 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1080 			aggrParam[mode].txopLimit : 0;
1081 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1082 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1083 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1084 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1085 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1086 	}
1087 
1088 
1089 	/*
1090 	 * Change the contention window based on the number of associated
1091 	 * stations.  If the number of associated stations is 1 and
1092 	 * aggressive mode is enabled, lower the contention window even
1093 	 * further.
1094 	 */
1095 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1096 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1097 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1098 		    [IEEE80211_MODE_AUTO]	= 3,
1099 		    [IEEE80211_MODE_11A]	= 3,
1100 		    [IEEE80211_MODE_11B]	= 4,
1101 		    [IEEE80211_MODE_11G]	= 3,
1102 		    [IEEE80211_MODE_FH]		= 4,
1103 		    [IEEE80211_MODE_TURBO_A]	= 3,
1104 		    [IEEE80211_MODE_TURBO_G]	= 3,
1105 		    [IEEE80211_MODE_STURBO_A]	= 3,
1106 		    [IEEE80211_MODE_HALF]	= 3,
1107 		    [IEEE80211_MODE_QUARTER]	= 3,
1108 		    [IEEE80211_MODE_11NA]	= 3,
1109 		    [IEEE80211_MODE_11NG]	= 3,
1110 		};
1111 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1112 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1113 
1114 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1115 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1116 		    "update %s (chan+bss) logcwmin %u\n",
1117 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1118 	}
1119 
1120 	/*
1121 	 * Arrange for the beacon update.
1122 	 *
1123 	 * XXX what about MBSS, WDS?
1124 	 */
1125 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1126 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1127 		/*
1128 		 * Arrange for a beacon update and bump the parameter
1129 		 * set number so associated stations load the new values.
1130 		 */
1131 		wme->wme_bssChanParams.cap_info =
1132 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1133 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1134 	}
1135 
1136 	wme->wme_update(ic);
1137 
1138 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1139 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1140 	    vap->iv_opmode == IEEE80211_M_STA ?
1141 		wme->wme_wmeChanParams.cap_info :
1142 		wme->wme_bssChanParams.cap_info);
1143 }
1144 
1145 void
1146 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1147 {
1148 	struct ieee80211com *ic = vap->iv_ic;
1149 
1150 	if (ic->ic_caps & IEEE80211_C_WME) {
1151 		IEEE80211_LOCK(ic);
1152 		ieee80211_wme_updateparams_locked(vap);
1153 		IEEE80211_UNLOCK(ic);
1154 	}
1155 }
1156 
1157 static void
1158 parent_updown(void *arg, int npending)
1159 {
1160 	struct ieee80211com *ic = arg;
1161 
1162 	ic->ic_parent(ic);
1163 }
1164 
1165 static void
1166 update_mcast(void *arg, int npending)
1167 {
1168 	struct ieee80211com *ic = arg;
1169 
1170 	ic->ic_update_mcast(ic);
1171 }
1172 
1173 static void
1174 update_promisc(void *arg, int npending)
1175 {
1176 	struct ieee80211com *ic = arg;
1177 
1178 	ic->ic_update_promisc(ic);
1179 }
1180 
1181 static void
1182 update_channel(void *arg, int npending)
1183 {
1184 	struct ieee80211com *ic = arg;
1185 
1186 	ic->ic_set_channel(ic);
1187 	ieee80211_radiotap_chan_change(ic);
1188 }
1189 
1190 static void
1191 update_chw(void *arg, int npending)
1192 {
1193 	struct ieee80211com *ic = arg;
1194 
1195 	/*
1196 	 * XXX should we defer the channel width _config_ update until now?
1197 	 */
1198 	ic->ic_update_chw(ic);
1199 }
1200 
1201 /*
1202  * Block until the parent is in a known state.  This is
1203  * used after any operations that dispatch a task (e.g.
1204  * to auto-configure the parent device up/down).
1205  */
1206 void
1207 ieee80211_waitfor_parent(struct ieee80211com *ic)
1208 {
1209 	taskqueue_block(ic->ic_tq);
1210 	ieee80211_draintask(ic, &ic->ic_parent_task);
1211 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1212 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1213 	ieee80211_draintask(ic, &ic->ic_chan_task);
1214 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1215 	ieee80211_draintask(ic, &ic->ic_chw_task);
1216 	taskqueue_unblock(ic->ic_tq);
1217 }
1218 
1219 /*
1220  * Check to see whether the current channel needs reset.
1221  *
1222  * Some devices don't handle being given an invalid channel
1223  * in their operating mode very well (eg wpi(4) will throw a
1224  * firmware exception.)
1225  *
1226  * Return 0 if we're ok, 1 if the channel needs to be reset.
1227  *
1228  * See PR kern/202502.
1229  */
1230 static int
1231 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1232 {
1233 	struct ieee80211com *ic = vap->iv_ic;
1234 
1235 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1236 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1237 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1238 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1239 		return (1);
1240 	return (0);
1241 }
1242 
1243 /*
1244  * Reset the curchan to a known good state.
1245  */
1246 static void
1247 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1248 {
1249 	struct ieee80211com *ic = vap->iv_ic;
1250 
1251 	ic->ic_curchan = &ic->ic_channels[0];
1252 }
1253 
1254 /*
1255  * Start a vap running.  If this is the first vap to be
1256  * set running on the underlying device then we
1257  * automatically bring the device up.
1258  */
1259 void
1260 ieee80211_start_locked(struct ieee80211vap *vap)
1261 {
1262 	struct ifnet *ifp = vap->iv_ifp;
1263 	struct ieee80211com *ic = vap->iv_ic;
1264 
1265 	IEEE80211_LOCK_ASSERT(ic);
1266 
1267 	IEEE80211_DPRINTF(vap,
1268 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1269 		"start running, %d vaps running\n", ic->ic_nrunning);
1270 
1271 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1272 		/*
1273 		 * Mark us running.  Note that it's ok to do this first;
1274 		 * if we need to bring the parent device up we defer that
1275 		 * to avoid dropping the com lock.  We expect the device
1276 		 * to respond to being marked up by calling back into us
1277 		 * through ieee80211_start_all at which point we'll come
1278 		 * back in here and complete the work.
1279 		 */
1280 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1281 		/*
1282 		 * We are not running; if this we are the first vap
1283 		 * to be brought up auto-up the parent if necessary.
1284 		 */
1285 		if (ic->ic_nrunning++ == 0) {
1286 
1287 			/* reset the channel to a known good channel */
1288 			if (ieee80211_start_check_reset_chan(vap))
1289 				ieee80211_start_reset_chan(vap);
1290 
1291 			IEEE80211_DPRINTF(vap,
1292 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1293 			    "%s: up parent %s\n", __func__, ic->ic_name);
1294 			ieee80211_runtask(ic, &ic->ic_parent_task);
1295 			return;
1296 		}
1297 	}
1298 	/*
1299 	 * If the parent is up and running, then kick the
1300 	 * 802.11 state machine as appropriate.
1301 	 */
1302 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1303 		if (vap->iv_opmode == IEEE80211_M_STA) {
1304 #if 0
1305 			/* XXX bypasses scan too easily; disable for now */
1306 			/*
1307 			 * Try to be intelligent about clocking the state
1308 			 * machine.  If we're currently in RUN state then
1309 			 * we should be able to apply any new state/parameters
1310 			 * simply by re-associating.  Otherwise we need to
1311 			 * re-scan to select an appropriate ap.
1312 			 */
1313 			if (vap->iv_state >= IEEE80211_S_RUN)
1314 				ieee80211_new_state_locked(vap,
1315 				    IEEE80211_S_ASSOC, 1);
1316 			else
1317 #endif
1318 				ieee80211_new_state_locked(vap,
1319 				    IEEE80211_S_SCAN, 0);
1320 		} else {
1321 			/*
1322 			 * For monitor+wds mode there's nothing to do but
1323 			 * start running.  Otherwise if this is the first
1324 			 * vap to be brought up, start a scan which may be
1325 			 * preempted if the station is locked to a particular
1326 			 * channel.
1327 			 */
1328 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1329 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1330 			    vap->iv_opmode == IEEE80211_M_WDS)
1331 				ieee80211_new_state_locked(vap,
1332 				    IEEE80211_S_RUN, -1);
1333 			else
1334 				ieee80211_new_state_locked(vap,
1335 				    IEEE80211_S_SCAN, 0);
1336 		}
1337 	}
1338 }
1339 
1340 /*
1341  * Start a single vap.
1342  */
1343 void
1344 ieee80211_init(void *arg)
1345 {
1346 	struct ieee80211vap *vap = arg;
1347 
1348 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1349 	    "%s\n", __func__);
1350 
1351 	IEEE80211_LOCK(vap->iv_ic);
1352 	ieee80211_start_locked(vap);
1353 	IEEE80211_UNLOCK(vap->iv_ic);
1354 }
1355 
1356 /*
1357  * Start all runnable vap's on a device.
1358  */
1359 void
1360 ieee80211_start_all(struct ieee80211com *ic)
1361 {
1362 	struct ieee80211vap *vap;
1363 
1364 	IEEE80211_LOCK(ic);
1365 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1366 		struct ifnet *ifp = vap->iv_ifp;
1367 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1368 			ieee80211_start_locked(vap);
1369 	}
1370 	IEEE80211_UNLOCK(ic);
1371 }
1372 
1373 /*
1374  * Stop a vap.  We force it down using the state machine
1375  * then mark it's ifnet not running.  If this is the last
1376  * vap running on the underlying device then we close it
1377  * too to insure it will be properly initialized when the
1378  * next vap is brought up.
1379  */
1380 void
1381 ieee80211_stop_locked(struct ieee80211vap *vap)
1382 {
1383 	struct ieee80211com *ic = vap->iv_ic;
1384 	struct ifnet *ifp = vap->iv_ifp;
1385 
1386 	IEEE80211_LOCK_ASSERT(ic);
1387 
1388 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1389 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1390 
1391 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1392 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1393 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1394 		if (--ic->ic_nrunning == 0) {
1395 			IEEE80211_DPRINTF(vap,
1396 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1397 			    "down parent %s\n", ic->ic_name);
1398 			ieee80211_runtask(ic, &ic->ic_parent_task);
1399 		}
1400 	}
1401 }
1402 
1403 void
1404 ieee80211_stop(struct ieee80211vap *vap)
1405 {
1406 	struct ieee80211com *ic = vap->iv_ic;
1407 
1408 	IEEE80211_LOCK(ic);
1409 	ieee80211_stop_locked(vap);
1410 	IEEE80211_UNLOCK(ic);
1411 }
1412 
1413 /*
1414  * Stop all vap's running on a device.
1415  */
1416 void
1417 ieee80211_stop_all(struct ieee80211com *ic)
1418 {
1419 	struct ieee80211vap *vap;
1420 
1421 	IEEE80211_LOCK(ic);
1422 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1423 		struct ifnet *ifp = vap->iv_ifp;
1424 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1425 			ieee80211_stop_locked(vap);
1426 	}
1427 	IEEE80211_UNLOCK(ic);
1428 
1429 	ieee80211_waitfor_parent(ic);
1430 }
1431 
1432 /*
1433  * Stop all vap's running on a device and arrange
1434  * for those that were running to be resumed.
1435  */
1436 void
1437 ieee80211_suspend_all(struct ieee80211com *ic)
1438 {
1439 	struct ieee80211vap *vap;
1440 
1441 	IEEE80211_LOCK(ic);
1442 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1443 		struct ifnet *ifp = vap->iv_ifp;
1444 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1445 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1446 			ieee80211_stop_locked(vap);
1447 		}
1448 	}
1449 	IEEE80211_UNLOCK(ic);
1450 
1451 	ieee80211_waitfor_parent(ic);
1452 }
1453 
1454 /*
1455  * Start all vap's marked for resume.
1456  */
1457 void
1458 ieee80211_resume_all(struct ieee80211com *ic)
1459 {
1460 	struct ieee80211vap *vap;
1461 
1462 	IEEE80211_LOCK(ic);
1463 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1464 		struct ifnet *ifp = vap->iv_ifp;
1465 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1466 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1467 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1468 			ieee80211_start_locked(vap);
1469 		}
1470 	}
1471 	IEEE80211_UNLOCK(ic);
1472 }
1473 
1474 void
1475 ieee80211_beacon_miss(struct ieee80211com *ic)
1476 {
1477 	IEEE80211_LOCK(ic);
1478 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1479 		/* Process in a taskq, the handler may reenter the driver */
1480 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1481 	}
1482 	IEEE80211_UNLOCK(ic);
1483 }
1484 
1485 static void
1486 beacon_miss(void *arg, int npending)
1487 {
1488 	struct ieee80211com *ic = arg;
1489 	struct ieee80211vap *vap;
1490 
1491 	IEEE80211_LOCK(ic);
1492 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1493 		/*
1494 		 * We only pass events through for sta vap's in RUN state;
1495 		 * may be too restrictive but for now this saves all the
1496 		 * handlers duplicating these checks.
1497 		 */
1498 		if (vap->iv_opmode == IEEE80211_M_STA &&
1499 		    vap->iv_state >= IEEE80211_S_RUN &&
1500 		    vap->iv_bmiss != NULL)
1501 			vap->iv_bmiss(vap);
1502 	}
1503 	IEEE80211_UNLOCK(ic);
1504 }
1505 
1506 static void
1507 beacon_swmiss(void *arg, int npending)
1508 {
1509 	struct ieee80211vap *vap = arg;
1510 	struct ieee80211com *ic = vap->iv_ic;
1511 
1512 	IEEE80211_LOCK(ic);
1513 	if (vap->iv_state == IEEE80211_S_RUN) {
1514 		/* XXX Call multiple times if npending > zero? */
1515 		vap->iv_bmiss(vap);
1516 	}
1517 	IEEE80211_UNLOCK(ic);
1518 }
1519 
1520 /*
1521  * Software beacon miss handling.  Check if any beacons
1522  * were received in the last period.  If not post a
1523  * beacon miss; otherwise reset the counter.
1524  */
1525 void
1526 ieee80211_swbmiss(void *arg)
1527 {
1528 	struct ieee80211vap *vap = arg;
1529 	struct ieee80211com *ic = vap->iv_ic;
1530 
1531 	IEEE80211_LOCK_ASSERT(ic);
1532 
1533 	/* XXX sleep state? */
1534 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1535 	    ("wrong state %d", vap->iv_state));
1536 
1537 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1538 		/*
1539 		 * If scanning just ignore and reset state.  If we get a
1540 		 * bmiss after coming out of scan because we haven't had
1541 		 * time to receive a beacon then we should probe the AP
1542 		 * before posting a real bmiss (unless iv_bmiss_max has
1543 		 * been artifiically lowered).  A cleaner solution might
1544 		 * be to disable the timer on scan start/end but to handle
1545 		 * case of multiple sta vap's we'd need to disable the
1546 		 * timers of all affected vap's.
1547 		 */
1548 		vap->iv_swbmiss_count = 0;
1549 	} else if (vap->iv_swbmiss_count == 0) {
1550 		if (vap->iv_bmiss != NULL)
1551 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1552 	} else
1553 		vap->iv_swbmiss_count = 0;
1554 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1555 		ieee80211_swbmiss, vap);
1556 }
1557 
1558 /*
1559  * Start an 802.11h channel switch.  We record the parameters,
1560  * mark the operation pending, notify each vap through the
1561  * beacon update mechanism so it can update the beacon frame
1562  * contents, and then switch vap's to CSA state to block outbound
1563  * traffic.  Devices that handle CSA directly can use the state
1564  * switch to do the right thing so long as they call
1565  * ieee80211_csa_completeswitch when it's time to complete the
1566  * channel change.  Devices that depend on the net80211 layer can
1567  * use ieee80211_beacon_update to handle the countdown and the
1568  * channel switch.
1569  */
1570 void
1571 ieee80211_csa_startswitch(struct ieee80211com *ic,
1572 	struct ieee80211_channel *c, int mode, int count)
1573 {
1574 	struct ieee80211vap *vap;
1575 
1576 	IEEE80211_LOCK_ASSERT(ic);
1577 
1578 	ic->ic_csa_newchan = c;
1579 	ic->ic_csa_mode = mode;
1580 	ic->ic_csa_count = count;
1581 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1582 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1583 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1584 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1585 		    vap->iv_opmode == IEEE80211_M_MBSS)
1586 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1587 		/* switch to CSA state to block outbound traffic */
1588 		if (vap->iv_state == IEEE80211_S_RUN)
1589 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1590 	}
1591 	ieee80211_notify_csa(ic, c, mode, count);
1592 }
1593 
1594 /*
1595  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1596  * This is called by both the completion and cancellation functions
1597  * so each VAP is placed back in the RUN state and can thus transmit.
1598  */
1599 static void
1600 csa_completeswitch(struct ieee80211com *ic)
1601 {
1602 	struct ieee80211vap *vap;
1603 
1604 	ic->ic_csa_newchan = NULL;
1605 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1606 
1607 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1608 		if (vap->iv_state == IEEE80211_S_CSA)
1609 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1610 }
1611 
1612 /*
1613  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1614  * We clear state and move all vap's in CSA state to RUN state
1615  * so they can again transmit.
1616  *
1617  * Although this may not be completely correct, update the BSS channel
1618  * for each VAP to the newly configured channel. The setcurchan sets
1619  * the current operating channel for the interface (so the radio does
1620  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1621  * reported information via ioctl.
1622  */
1623 void
1624 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1625 {
1626 	struct ieee80211vap *vap;
1627 
1628 	IEEE80211_LOCK_ASSERT(ic);
1629 
1630 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1631 
1632 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1633 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1634 		if (vap->iv_state == IEEE80211_S_CSA)
1635 			vap->iv_bss->ni_chan = ic->ic_curchan;
1636 
1637 	csa_completeswitch(ic);
1638 }
1639 
1640 /*
1641  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1642  * We clear state and move all vap's in CSA state to RUN state
1643  * so they can again transmit.
1644  */
1645 void
1646 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1647 {
1648 	IEEE80211_LOCK_ASSERT(ic);
1649 
1650 	csa_completeswitch(ic);
1651 }
1652 
1653 /*
1654  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1655  * We clear state and move all vap's in CAC state to RUN state.
1656  */
1657 void
1658 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1659 {
1660 	struct ieee80211com *ic = vap0->iv_ic;
1661 	struct ieee80211vap *vap;
1662 
1663 	IEEE80211_LOCK(ic);
1664 	/*
1665 	 * Complete CAC state change for lead vap first; then
1666 	 * clock all the other vap's waiting.
1667 	 */
1668 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1669 	    ("wrong state %d", vap0->iv_state));
1670 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1671 
1672 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1673 		if (vap->iv_state == IEEE80211_S_CAC)
1674 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1675 	IEEE80211_UNLOCK(ic);
1676 }
1677 
1678 /*
1679  * Force all vap's other than the specified vap to the INIT state
1680  * and mark them as waiting for a scan to complete.  These vaps
1681  * will be brought up when the scan completes and the scanning vap
1682  * reaches RUN state by wakeupwaiting.
1683  */
1684 static void
1685 markwaiting(struct ieee80211vap *vap0)
1686 {
1687 	struct ieee80211com *ic = vap0->iv_ic;
1688 	struct ieee80211vap *vap;
1689 
1690 	IEEE80211_LOCK_ASSERT(ic);
1691 
1692 	/*
1693 	 * A vap list entry can not disappear since we are running on the
1694 	 * taskqueue and a vap destroy will queue and drain another state
1695 	 * change task.
1696 	 */
1697 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1698 		if (vap == vap0)
1699 			continue;
1700 		if (vap->iv_state != IEEE80211_S_INIT) {
1701 			/* NB: iv_newstate may drop the lock */
1702 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1703 			IEEE80211_LOCK_ASSERT(ic);
1704 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1705 		}
1706 	}
1707 }
1708 
1709 /*
1710  * Wakeup all vap's waiting for a scan to complete.  This is the
1711  * companion to markwaiting (above) and is used to coordinate
1712  * multiple vaps scanning.
1713  * This is called from the state taskqueue.
1714  */
1715 static void
1716 wakeupwaiting(struct ieee80211vap *vap0)
1717 {
1718 	struct ieee80211com *ic = vap0->iv_ic;
1719 	struct ieee80211vap *vap;
1720 
1721 	IEEE80211_LOCK_ASSERT(ic);
1722 
1723 	/*
1724 	 * A vap list entry can not disappear since we are running on the
1725 	 * taskqueue and a vap destroy will queue and drain another state
1726 	 * change task.
1727 	 */
1728 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1729 		if (vap == vap0)
1730 			continue;
1731 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1732 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1733 			/* NB: sta's cannot go INIT->RUN */
1734 			/* NB: iv_newstate may drop the lock */
1735 			vap->iv_newstate(vap,
1736 			    vap->iv_opmode == IEEE80211_M_STA ?
1737 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1738 			IEEE80211_LOCK_ASSERT(ic);
1739 		}
1740 	}
1741 }
1742 
1743 /*
1744  * Handle post state change work common to all operating modes.
1745  */
1746 static void
1747 ieee80211_newstate_cb(void *xvap, int npending)
1748 {
1749 	struct ieee80211vap *vap = xvap;
1750 	struct ieee80211com *ic = vap->iv_ic;
1751 	enum ieee80211_state nstate, ostate;
1752 	int arg, rc;
1753 
1754 	IEEE80211_LOCK(ic);
1755 	nstate = vap->iv_nstate;
1756 	arg = vap->iv_nstate_arg;
1757 
1758 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1759 		/*
1760 		 * We have been requested to drop back to the INIT before
1761 		 * proceeding to the new state.
1762 		 */
1763 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1764 		    "%s: %s -> %s arg %d\n", __func__,
1765 		    ieee80211_state_name[vap->iv_state],
1766 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1767 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1768 		IEEE80211_LOCK_ASSERT(ic);
1769 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1770 	}
1771 
1772 	ostate = vap->iv_state;
1773 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1774 		/*
1775 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1776 		 * vap's to INIT state and mark them as waiting for the scan to
1777 		 * complete.  This insures they don't interfere with our
1778 		 * scanning.  Since we are single threaded the vaps can not
1779 		 * transition again while we are executing.
1780 		 *
1781 		 * XXX not always right, assumes ap follows sta
1782 		 */
1783 		markwaiting(vap);
1784 	}
1785 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1786 	    "%s: %s -> %s arg %d\n", __func__,
1787 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1788 
1789 	rc = vap->iv_newstate(vap, nstate, arg);
1790 	IEEE80211_LOCK_ASSERT(ic);
1791 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1792 	if (rc != 0) {
1793 		/* State transition failed */
1794 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1795 		KASSERT(nstate != IEEE80211_S_INIT,
1796 		    ("INIT state change failed"));
1797 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1798 		    "%s: %s returned error %d\n", __func__,
1799 		    ieee80211_state_name[nstate], rc);
1800 		goto done;
1801 	}
1802 
1803 	/* No actual transition, skip post processing */
1804 	if (ostate == nstate)
1805 		goto done;
1806 
1807 	if (nstate == IEEE80211_S_RUN) {
1808 		/*
1809 		 * OACTIVE may be set on the vap if the upper layer
1810 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1811 		 * RUN state.  Clear it and restart xmit.
1812 		 *
1813 		 * Note this can also happen as a result of SLEEP->RUN
1814 		 * (i.e. coming out of power save mode).
1815 		 */
1816 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1817 
1818 		/*
1819 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1820 		 */
1821 
1822 		/* bring up any vaps waiting on us */
1823 		wakeupwaiting(vap);
1824 	} else if (nstate == IEEE80211_S_INIT) {
1825 		/*
1826 		 * Flush the scan cache if we did the last scan (XXX?)
1827 		 * and flush any frames on send queues from this vap.
1828 		 * Note the mgt q is used only for legacy drivers and
1829 		 * will go away shortly.
1830 		 */
1831 		ieee80211_scan_flush(vap);
1832 
1833 		/*
1834 		 * XXX TODO: ic/vap queue flush
1835 		 */
1836 	}
1837 done:
1838 	IEEE80211_UNLOCK(ic);
1839 }
1840 
1841 /*
1842  * Public interface for initiating a state machine change.
1843  * This routine single-threads the request and coordinates
1844  * the scheduling of multiple vaps for the purpose of selecting
1845  * an operating channel.  Specifically the following scenarios
1846  * are handled:
1847  * o only one vap can be selecting a channel so on transition to
1848  *   SCAN state if another vap is already scanning then
1849  *   mark the caller for later processing and return without
1850  *   doing anything (XXX? expectations by caller of synchronous operation)
1851  * o only one vap can be doing CAC of a channel so on transition to
1852  *   CAC state if another vap is already scanning for radar then
1853  *   mark the caller for later processing and return without
1854  *   doing anything (XXX? expectations by caller of synchronous operation)
1855  * o if another vap is already running when a request is made
1856  *   to SCAN then an operating channel has been chosen; bypass
1857  *   the scan and just join the channel
1858  *
1859  * Note that the state change call is done through the iv_newstate
1860  * method pointer so any driver routine gets invoked.  The driver
1861  * will normally call back into operating mode-specific
1862  * ieee80211_newstate routines (below) unless it needs to completely
1863  * bypass the state machine (e.g. because the firmware has it's
1864  * own idea how things should work).  Bypassing the net80211 layer
1865  * is usually a mistake and indicates lack of proper integration
1866  * with the net80211 layer.
1867  */
1868 int
1869 ieee80211_new_state_locked(struct ieee80211vap *vap,
1870 	enum ieee80211_state nstate, int arg)
1871 {
1872 	struct ieee80211com *ic = vap->iv_ic;
1873 	struct ieee80211vap *vp;
1874 	enum ieee80211_state ostate;
1875 	int nrunning, nscanning;
1876 
1877 	IEEE80211_LOCK_ASSERT(ic);
1878 
1879 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1880 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1881 			/*
1882 			 * XXX The vap is being stopped, do no allow any other
1883 			 * state changes until this is completed.
1884 			 */
1885 			return -1;
1886 		} else if (vap->iv_state != vap->iv_nstate) {
1887 #if 0
1888 			/* Warn if the previous state hasn't completed. */
1889 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1890 			    "%s: pending %s -> %s transition lost\n", __func__,
1891 			    ieee80211_state_name[vap->iv_state],
1892 			    ieee80211_state_name[vap->iv_nstate]);
1893 #else
1894 			/* XXX temporarily enable to identify issues */
1895 			if_printf(vap->iv_ifp,
1896 			    "%s: pending %s -> %s transition lost\n",
1897 			    __func__, ieee80211_state_name[vap->iv_state],
1898 			    ieee80211_state_name[vap->iv_nstate]);
1899 #endif
1900 		}
1901 	}
1902 
1903 	nrunning = nscanning = 0;
1904 	/* XXX can track this state instead of calculating */
1905 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1906 		if (vp != vap) {
1907 			if (vp->iv_state >= IEEE80211_S_RUN)
1908 				nrunning++;
1909 			/* XXX doesn't handle bg scan */
1910 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1911 			else if (vp->iv_state > IEEE80211_S_INIT)
1912 				nscanning++;
1913 		}
1914 	}
1915 	ostate = vap->iv_state;
1916 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1917 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1918 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1919 	    nrunning, nscanning);
1920 	switch (nstate) {
1921 	case IEEE80211_S_SCAN:
1922 		if (ostate == IEEE80211_S_INIT) {
1923 			/*
1924 			 * INIT -> SCAN happens on initial bringup.
1925 			 */
1926 			KASSERT(!(nscanning && nrunning),
1927 			    ("%d scanning and %d running", nscanning, nrunning));
1928 			if (nscanning) {
1929 				/*
1930 				 * Someone is scanning, defer our state
1931 				 * change until the work has completed.
1932 				 */
1933 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1934 				    "%s: defer %s -> %s\n",
1935 				    __func__, ieee80211_state_name[ostate],
1936 				    ieee80211_state_name[nstate]);
1937 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1938 				return 0;
1939 			}
1940 			if (nrunning) {
1941 				/*
1942 				 * Someone is operating; just join the channel
1943 				 * they have chosen.
1944 				 */
1945 				/* XXX kill arg? */
1946 				/* XXX check each opmode, adhoc? */
1947 				if (vap->iv_opmode == IEEE80211_M_STA)
1948 					nstate = IEEE80211_S_SCAN;
1949 				else
1950 					nstate = IEEE80211_S_RUN;
1951 #ifdef IEEE80211_DEBUG
1952 				if (nstate != IEEE80211_S_SCAN) {
1953 					IEEE80211_DPRINTF(vap,
1954 					    IEEE80211_MSG_STATE,
1955 					    "%s: override, now %s -> %s\n",
1956 					    __func__,
1957 					    ieee80211_state_name[ostate],
1958 					    ieee80211_state_name[nstate]);
1959 				}
1960 #endif
1961 			}
1962 		}
1963 		break;
1964 	case IEEE80211_S_RUN:
1965 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1966 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1967 		    nscanning) {
1968 			/*
1969 			 * Legacy WDS with someone else scanning; don't
1970 			 * go online until that completes as we should
1971 			 * follow the other vap to the channel they choose.
1972 			 */
1973 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1974 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1975 			     ieee80211_state_name[ostate],
1976 			     ieee80211_state_name[nstate]);
1977 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1978 			return 0;
1979 		}
1980 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1981 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1982 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1983 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1984 			/*
1985 			 * This is a DFS channel, transition to CAC state
1986 			 * instead of RUN.  This allows us to initiate
1987 			 * Channel Availability Check (CAC) as specified
1988 			 * by 11h/DFS.
1989 			 */
1990 			nstate = IEEE80211_S_CAC;
1991 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1992 			     "%s: override %s -> %s (DFS)\n", __func__,
1993 			     ieee80211_state_name[ostate],
1994 			     ieee80211_state_name[nstate]);
1995 		}
1996 		break;
1997 	case IEEE80211_S_INIT:
1998 		/* cancel any scan in progress */
1999 		ieee80211_cancel_scan(vap);
2000 		if (ostate == IEEE80211_S_INIT ) {
2001 			/* XXX don't believe this */
2002 			/* INIT -> INIT. nothing to do */
2003 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2004 		}
2005 		/* fall thru... */
2006 	default:
2007 		break;
2008 	}
2009 	/* defer the state change to a thread */
2010 	vap->iv_nstate = nstate;
2011 	vap->iv_nstate_arg = arg;
2012 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2013 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2014 	return EINPROGRESS;
2015 }
2016 
2017 int
2018 ieee80211_new_state(struct ieee80211vap *vap,
2019 	enum ieee80211_state nstate, int arg)
2020 {
2021 	struct ieee80211com *ic = vap->iv_ic;
2022 	int rc;
2023 
2024 	IEEE80211_LOCK(ic);
2025 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2026 	IEEE80211_UNLOCK(ic);
2027 	return rc;
2028 }
2029