1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void vap_update_slot(void *, int); 248 static void restart_vaps(void *, int); 249 static void ieee80211_newstate_cb(void *, int); 250 251 static int 252 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 253 const struct ieee80211_bpf_params *params) 254 { 255 256 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 257 m_freem(m); 258 return ENETDOWN; 259 } 260 261 void 262 ieee80211_proto_attach(struct ieee80211com *ic) 263 { 264 uint8_t hdrlen; 265 266 /* override the 802.3 setting */ 267 hdrlen = ic->ic_headroom 268 + sizeof(struct ieee80211_qosframe_addr4) 269 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 270 + IEEE80211_WEP_EXTIVLEN; 271 /* XXX no way to recalculate on ifdetach */ 272 if (ALIGN(hdrlen) > max_linkhdr) { 273 /* XXX sanity check... */ 274 max_linkhdr = ALIGN(hdrlen); 275 max_hdr = max_linkhdr + max_protohdr; 276 max_datalen = MHLEN - max_hdr; 277 } 278 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 279 280 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 281 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 282 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 283 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 284 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 285 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 286 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 287 288 ic->ic_wme.wme_hipri_switch_hysteresis = 289 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 290 291 /* initialize management frame handlers */ 292 ic->ic_send_mgmt = ieee80211_send_mgmt; 293 ic->ic_raw_xmit = null_raw_xmit; 294 295 ieee80211_adhoc_attach(ic); 296 ieee80211_sta_attach(ic); 297 ieee80211_wds_attach(ic); 298 ieee80211_hostap_attach(ic); 299 #ifdef IEEE80211_SUPPORT_MESH 300 ieee80211_mesh_attach(ic); 301 #endif 302 ieee80211_monitor_attach(ic); 303 } 304 305 void 306 ieee80211_proto_detach(struct ieee80211com *ic) 307 { 308 ieee80211_monitor_detach(ic); 309 #ifdef IEEE80211_SUPPORT_MESH 310 ieee80211_mesh_detach(ic); 311 #endif 312 ieee80211_hostap_detach(ic); 313 ieee80211_wds_detach(ic); 314 ieee80211_adhoc_detach(ic); 315 ieee80211_sta_detach(ic); 316 } 317 318 static void 319 null_update_beacon(struct ieee80211vap *vap, int item) 320 { 321 } 322 323 void 324 ieee80211_proto_vattach(struct ieee80211vap *vap) 325 { 326 struct ieee80211com *ic = vap->iv_ic; 327 struct ifnet *ifp = vap->iv_ifp; 328 int i; 329 330 /* override the 802.3 setting */ 331 ifp->if_hdrlen = ic->ic_headroom 332 + sizeof(struct ieee80211_qosframe_addr4) 333 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 334 + IEEE80211_WEP_EXTIVLEN; 335 336 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 337 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 338 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 339 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 340 callout_init(&vap->iv_mgtsend, 1); 341 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 342 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 343 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 344 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 345 /* 346 * Install default tx rate handling: no fixed rate, lowest 347 * supported rate for mgmt and multicast frames. Default 348 * max retry count. These settings can be changed by the 349 * driver and/or user applications. 350 */ 351 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 352 if (isclr(ic->ic_modecaps, i)) 353 continue; 354 355 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 356 357 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 358 359 /* 360 * Setting the management rate to MCS 0 assumes that the 361 * BSS Basic rate set is empty and the BSS Basic MCS set 362 * is not. 363 * 364 * Since we're not checking this, default to the lowest 365 * defined rate for this mode. 366 * 367 * At least one 11n AP (DLINK DIR-825) is reported to drop 368 * some MCS management traffic (eg BA response frames.) 369 * 370 * See also: 9.6.0 of the 802.11n-2009 specification. 371 */ 372 #ifdef NOTYET 373 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 374 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 375 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 376 } else { 377 vap->iv_txparms[i].mgmtrate = 378 rs->rs_rates[0] & IEEE80211_RATE_VAL; 379 vap->iv_txparms[i].mcastrate = 380 rs->rs_rates[0] & IEEE80211_RATE_VAL; 381 } 382 #endif 383 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 384 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 385 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 386 } 387 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 388 389 vap->iv_update_beacon = null_update_beacon; 390 vap->iv_deliver_data = ieee80211_deliver_data; 391 392 /* attach support for operating mode */ 393 ic->ic_vattach[vap->iv_opmode](vap); 394 } 395 396 void 397 ieee80211_proto_vdetach(struct ieee80211vap *vap) 398 { 399 #define FREEAPPIE(ie) do { \ 400 if (ie != NULL) \ 401 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 402 } while (0) 403 /* 404 * Detach operating mode module. 405 */ 406 if (vap->iv_opdetach != NULL) 407 vap->iv_opdetach(vap); 408 /* 409 * This should not be needed as we detach when reseting 410 * the state but be conservative here since the 411 * authenticator may do things like spawn kernel threads. 412 */ 413 if (vap->iv_auth->ia_detach != NULL) 414 vap->iv_auth->ia_detach(vap); 415 /* 416 * Detach any ACL'ator. 417 */ 418 if (vap->iv_acl != NULL) 419 vap->iv_acl->iac_detach(vap); 420 421 FREEAPPIE(vap->iv_appie_beacon); 422 FREEAPPIE(vap->iv_appie_probereq); 423 FREEAPPIE(vap->iv_appie_proberesp); 424 FREEAPPIE(vap->iv_appie_assocreq); 425 FREEAPPIE(vap->iv_appie_assocresp); 426 FREEAPPIE(vap->iv_appie_wpa); 427 #undef FREEAPPIE 428 } 429 430 /* 431 * Simple-minded authenticator module support. 432 */ 433 434 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 435 /* XXX well-known names */ 436 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 437 "wlan_internal", /* IEEE80211_AUTH_NONE */ 438 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 439 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 440 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 441 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 442 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 443 }; 444 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 445 446 static const struct ieee80211_authenticator auth_internal = { 447 .ia_name = "wlan_internal", 448 .ia_attach = NULL, 449 .ia_detach = NULL, 450 .ia_node_join = NULL, 451 .ia_node_leave = NULL, 452 }; 453 454 /* 455 * Setup internal authenticators once; they are never unregistered. 456 */ 457 static void 458 ieee80211_auth_setup(void) 459 { 460 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 461 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 462 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 463 } 464 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 465 466 const struct ieee80211_authenticator * 467 ieee80211_authenticator_get(int auth) 468 { 469 if (auth >= IEEE80211_AUTH_MAX) 470 return NULL; 471 if (authenticators[auth] == NULL) 472 ieee80211_load_module(auth_modnames[auth]); 473 return authenticators[auth]; 474 } 475 476 void 477 ieee80211_authenticator_register(int type, 478 const struct ieee80211_authenticator *auth) 479 { 480 if (type >= IEEE80211_AUTH_MAX) 481 return; 482 authenticators[type] = auth; 483 } 484 485 void 486 ieee80211_authenticator_unregister(int type) 487 { 488 489 if (type >= IEEE80211_AUTH_MAX) 490 return; 491 authenticators[type] = NULL; 492 } 493 494 /* 495 * Very simple-minded ACL module support. 496 */ 497 /* XXX just one for now */ 498 static const struct ieee80211_aclator *acl = NULL; 499 500 void 501 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 502 { 503 printf("wlan: %s acl policy registered\n", iac->iac_name); 504 acl = iac; 505 } 506 507 void 508 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 509 { 510 if (acl == iac) 511 acl = NULL; 512 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 513 } 514 515 const struct ieee80211_aclator * 516 ieee80211_aclator_get(const char *name) 517 { 518 if (acl == NULL) 519 ieee80211_load_module("wlan_acl"); 520 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 521 } 522 523 void 524 ieee80211_print_essid(const uint8_t *essid, int len) 525 { 526 const uint8_t *p; 527 int i; 528 529 if (len > IEEE80211_NWID_LEN) 530 len = IEEE80211_NWID_LEN; 531 /* determine printable or not */ 532 for (i = 0, p = essid; i < len; i++, p++) { 533 if (*p < ' ' || *p > 0x7e) 534 break; 535 } 536 if (i == len) { 537 printf("\""); 538 for (i = 0, p = essid; i < len; i++, p++) 539 printf("%c", *p); 540 printf("\""); 541 } else { 542 printf("0x"); 543 for (i = 0, p = essid; i < len; i++, p++) 544 printf("%02x", *p); 545 } 546 } 547 548 void 549 ieee80211_dump_pkt(struct ieee80211com *ic, 550 const uint8_t *buf, int len, int rate, int rssi) 551 { 552 const struct ieee80211_frame *wh; 553 int i; 554 555 wh = (const struct ieee80211_frame *)buf; 556 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 557 case IEEE80211_FC1_DIR_NODS: 558 printf("NODS %s", ether_sprintf(wh->i_addr2)); 559 printf("->%s", ether_sprintf(wh->i_addr1)); 560 printf("(%s)", ether_sprintf(wh->i_addr3)); 561 break; 562 case IEEE80211_FC1_DIR_TODS: 563 printf("TODS %s", ether_sprintf(wh->i_addr2)); 564 printf("->%s", ether_sprintf(wh->i_addr3)); 565 printf("(%s)", ether_sprintf(wh->i_addr1)); 566 break; 567 case IEEE80211_FC1_DIR_FROMDS: 568 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 569 printf("->%s", ether_sprintf(wh->i_addr1)); 570 printf("(%s)", ether_sprintf(wh->i_addr2)); 571 break; 572 case IEEE80211_FC1_DIR_DSTODS: 573 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 574 printf("->%s", ether_sprintf(wh->i_addr3)); 575 printf("(%s", ether_sprintf(wh->i_addr2)); 576 printf("->%s)", ether_sprintf(wh->i_addr1)); 577 break; 578 } 579 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 580 case IEEE80211_FC0_TYPE_DATA: 581 printf(" data"); 582 break; 583 case IEEE80211_FC0_TYPE_MGT: 584 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 585 break; 586 default: 587 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 588 break; 589 } 590 if (IEEE80211_QOS_HAS_SEQ(wh)) { 591 const struct ieee80211_qosframe *qwh = 592 (const struct ieee80211_qosframe *)buf; 593 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 594 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 595 } 596 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 597 int off; 598 599 off = ieee80211_anyhdrspace(ic, wh); 600 printf(" WEP [IV %.02x %.02x %.02x", 601 buf[off+0], buf[off+1], buf[off+2]); 602 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 603 printf(" %.02x %.02x %.02x", 604 buf[off+4], buf[off+5], buf[off+6]); 605 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 606 } 607 if (rate >= 0) 608 printf(" %dM", rate / 2); 609 if (rssi >= 0) 610 printf(" +%d", rssi); 611 printf("\n"); 612 if (len > 0) { 613 for (i = 0; i < len; i++) { 614 if ((i & 1) == 0) 615 printf(" "); 616 printf("%02x", buf[i]); 617 } 618 printf("\n"); 619 } 620 } 621 622 static __inline int 623 findrix(const struct ieee80211_rateset *rs, int r) 624 { 625 int i; 626 627 for (i = 0; i < rs->rs_nrates; i++) 628 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 629 return i; 630 return -1; 631 } 632 633 int 634 ieee80211_fix_rate(struct ieee80211_node *ni, 635 struct ieee80211_rateset *nrs, int flags) 636 { 637 struct ieee80211vap *vap = ni->ni_vap; 638 struct ieee80211com *ic = ni->ni_ic; 639 int i, j, rix, error; 640 int okrate, badrate, fixedrate, ucastrate; 641 const struct ieee80211_rateset *srs; 642 uint8_t r; 643 644 error = 0; 645 okrate = badrate = 0; 646 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 647 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 648 /* 649 * Workaround awkwardness with fixed rate. We are called 650 * to check both the legacy rate set and the HT rate set 651 * but we must apply any legacy fixed rate check only to the 652 * legacy rate set and vice versa. We cannot tell what type 653 * of rate set we've been given (legacy or HT) but we can 654 * distinguish the fixed rate type (MCS have 0x80 set). 655 * So to deal with this the caller communicates whether to 656 * check MCS or legacy rate using the flags and we use the 657 * type of any fixed rate to avoid applying an MCS to a 658 * legacy rate and vice versa. 659 */ 660 if (ucastrate & 0x80) { 661 if (flags & IEEE80211_F_DOFRATE) 662 flags &= ~IEEE80211_F_DOFRATE; 663 } else if ((ucastrate & 0x80) == 0) { 664 if (flags & IEEE80211_F_DOFMCS) 665 flags &= ~IEEE80211_F_DOFMCS; 666 } 667 /* NB: required to make MCS match below work */ 668 ucastrate &= IEEE80211_RATE_VAL; 669 } 670 fixedrate = IEEE80211_FIXED_RATE_NONE; 671 /* 672 * XXX we are called to process both MCS and legacy rates; 673 * we must use the appropriate basic rate set or chaos will 674 * ensue; for now callers that want MCS must supply 675 * IEEE80211_F_DOBRS; at some point we'll need to split this 676 * function so there are two variants, one for MCS and one 677 * for legacy rates. 678 */ 679 if (flags & IEEE80211_F_DOBRS) 680 srs = (const struct ieee80211_rateset *) 681 ieee80211_get_suphtrates(ic, ni->ni_chan); 682 else 683 srs = ieee80211_get_suprates(ic, ni->ni_chan); 684 for (i = 0; i < nrs->rs_nrates; ) { 685 if (flags & IEEE80211_F_DOSORT) { 686 /* 687 * Sort rates. 688 */ 689 for (j = i + 1; j < nrs->rs_nrates; j++) { 690 if (IEEE80211_RV(nrs->rs_rates[i]) > 691 IEEE80211_RV(nrs->rs_rates[j])) { 692 r = nrs->rs_rates[i]; 693 nrs->rs_rates[i] = nrs->rs_rates[j]; 694 nrs->rs_rates[j] = r; 695 } 696 } 697 } 698 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 699 badrate = r; 700 /* 701 * Check for fixed rate. 702 */ 703 if (r == ucastrate) 704 fixedrate = r; 705 /* 706 * Check against supported rates. 707 */ 708 rix = findrix(srs, r); 709 if (flags & IEEE80211_F_DONEGO) { 710 if (rix < 0) { 711 /* 712 * A rate in the node's rate set is not 713 * supported. If this is a basic rate and we 714 * are operating as a STA then this is an error. 715 * Otherwise we just discard/ignore the rate. 716 */ 717 if ((flags & IEEE80211_F_JOIN) && 718 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 719 error++; 720 } else if ((flags & IEEE80211_F_JOIN) == 0) { 721 /* 722 * Overwrite with the supported rate 723 * value so any basic rate bit is set. 724 */ 725 nrs->rs_rates[i] = srs->rs_rates[rix]; 726 } 727 } 728 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 729 /* 730 * Delete unacceptable rates. 731 */ 732 nrs->rs_nrates--; 733 for (j = i; j < nrs->rs_nrates; j++) 734 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 735 nrs->rs_rates[j] = 0; 736 continue; 737 } 738 if (rix >= 0) 739 okrate = nrs->rs_rates[i]; 740 i++; 741 } 742 if (okrate == 0 || error != 0 || 743 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 744 fixedrate != ucastrate)) { 745 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 746 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 747 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 748 return badrate | IEEE80211_RATE_BASIC; 749 } else 750 return IEEE80211_RV(okrate); 751 } 752 753 /* 754 * Reset 11g-related state. 755 * 756 * This is for per-VAP ERP/11g state. 757 * 758 * Eventually everything in ieee80211_reset_erp() will be 759 * per-VAP and in here. 760 */ 761 void 762 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 763 { 764 struct ieee80211com *ic = vap->iv_ic; 765 766 /* 767 * Short slot time is enabled only when operating in 11g 768 * and not in an IBSS. We must also honor whether or not 769 * the driver is capable of doing it. 770 */ 771 ieee80211_vap_set_shortslottime(vap, 772 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 773 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 774 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 775 vap->iv_opmode == IEEE80211_M_HOSTAP && 776 (ic->ic_caps & IEEE80211_C_SHSLOT))); 777 } 778 779 /* 780 * Reset 11g-related state. 781 */ 782 void 783 ieee80211_reset_erp(struct ieee80211com *ic) 784 { 785 ic->ic_flags &= ~IEEE80211_F_USEPROT; 786 ic->ic_nonerpsta = 0; 787 ic->ic_longslotsta = 0; 788 /* 789 * Set short preamble and ERP barker-preamble flags. 790 */ 791 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 792 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 793 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 794 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 795 } else { 796 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 797 ic->ic_flags |= IEEE80211_F_USEBARKER; 798 } 799 } 800 801 /* 802 * Deferred slot time update. 803 * 804 * For per-VAP slot time configuration, call the VAP 805 * method if the VAP requires it. Otherwise, just call the 806 * older global method. 807 * 808 * If the per-VAP method is called then it's expected that 809 * the driver/firmware will take care of turning the per-VAP 810 * flags into slot time configuration. 811 * 812 * If the per-VAP method is not called then the global flags will be 813 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 814 * be set only if all of the vaps will have it set. 815 */ 816 static void 817 vap_update_slot(void *arg, int npending) 818 { 819 struct ieee80211vap *vap = arg; 820 struct ieee80211com *ic = vap->iv_ic; 821 struct ieee80211vap *iv; 822 int num_shslot = 0, num_lgslot = 0; 823 824 /* 825 * Per-VAP path - we've already had the flags updated; 826 * so just notify the driver and move on. 827 */ 828 if (vap->iv_updateslot != NULL) { 829 vap->iv_updateslot(vap); 830 return; 831 } 832 833 /* 834 * Iterate over all of the VAP flags to update the 835 * global flag. 836 * 837 * If all vaps have short slot enabled then flip on 838 * short slot. If any vap has it disabled then 839 * we leave it globally disabled. This should provide 840 * correct behaviour in a multi-BSS scenario where 841 * at least one VAP has short slot disabled for some 842 * reason. 843 */ 844 IEEE80211_LOCK(ic); 845 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 846 if (iv->iv_flags & IEEE80211_F_SHSLOT) 847 num_shslot++; 848 else 849 num_lgslot++; 850 } 851 IEEE80211_UNLOCK(ic); 852 853 /* 854 * It looks backwards but - if the number of short slot VAPs 855 * is zero then we're not short slot. Else, we have one 856 * or more short slot VAPs and we're checking to see if ANY 857 * of them have short slot disabled. 858 */ 859 if (num_shslot == 0) 860 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 861 else if (num_lgslot == 0) 862 ic->ic_flags |= IEEE80211_F_SHSLOT; 863 864 /* 865 * Call the driver with our new global slot time flags. 866 */ 867 if (ic->ic_updateslot != NULL) 868 ic->ic_updateslot(ic); 869 } 870 871 /* 872 * Set the short slot time state and notify the driver. 873 * 874 * This is the per-VAP slot time state. 875 */ 876 void 877 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 878 { 879 struct ieee80211com *ic = vap->iv_ic; 880 881 /* 882 * Only modify the per-VAP slot time. 883 */ 884 if (onoff) 885 vap->iv_flags |= IEEE80211_F_SHSLOT; 886 else 887 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 888 889 /* schedule the deferred slot flag update and update */ 890 ieee80211_runtask(ic, &vap->iv_slot_task); 891 } 892 893 /* 894 * Check if the specified rate set supports ERP. 895 * NB: the rate set is assumed to be sorted. 896 */ 897 int 898 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 899 { 900 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 901 int i, j; 902 903 if (rs->rs_nrates < nitems(rates)) 904 return 0; 905 for (i = 0; i < nitems(rates); i++) { 906 for (j = 0; j < rs->rs_nrates; j++) { 907 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 908 if (rates[i] == r) 909 goto next; 910 if (r > rates[i]) 911 return 0; 912 } 913 return 0; 914 next: 915 ; 916 } 917 return 1; 918 } 919 920 /* 921 * Mark the basic rates for the rate table based on the 922 * operating mode. For real 11g we mark all the 11b rates 923 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 924 * 11b rates. There's also a pseudo 11a-mode used to mark only 925 * the basic OFDM rates. 926 */ 927 static void 928 setbasicrates(struct ieee80211_rateset *rs, 929 enum ieee80211_phymode mode, int add) 930 { 931 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 932 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 933 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 934 /* NB: mixed b/g */ 935 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 936 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 937 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 938 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 939 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 940 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 941 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 942 /* NB: mixed b/g */ 943 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 944 /* NB: mixed b/g */ 945 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 946 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 947 }; 948 int i, j; 949 950 for (i = 0; i < rs->rs_nrates; i++) { 951 if (!add) 952 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 953 for (j = 0; j < basic[mode].rs_nrates; j++) 954 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 955 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 956 break; 957 } 958 } 959 } 960 961 /* 962 * Set the basic rates in a rate set. 963 */ 964 void 965 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 966 enum ieee80211_phymode mode) 967 { 968 setbasicrates(rs, mode, 0); 969 } 970 971 /* 972 * Add basic rates to a rate set. 973 */ 974 void 975 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 976 enum ieee80211_phymode mode) 977 { 978 setbasicrates(rs, mode, 1); 979 } 980 981 /* 982 * WME protocol support. 983 * 984 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 985 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 986 * Draft 2.0 Test Plan (Appendix D). 987 * 988 * Static/Dynamic Turbo mode settings come from Atheros. 989 */ 990 typedef struct phyParamType { 991 uint8_t aifsn; 992 uint8_t logcwmin; 993 uint8_t logcwmax; 994 uint16_t txopLimit; 995 uint8_t acm; 996 } paramType; 997 998 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 999 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1000 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1001 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1002 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1003 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1004 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1005 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1006 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1007 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1008 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1009 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1010 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1011 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1012 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1013 }; 1014 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1015 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1016 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1017 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1018 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1019 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1020 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1021 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1022 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1023 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1024 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1025 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1026 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1027 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1028 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1029 }; 1030 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1031 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1032 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1033 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1034 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1035 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1036 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1037 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1038 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1039 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1040 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1041 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1042 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1043 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1044 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1045 }; 1046 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1047 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1048 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1049 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1050 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1051 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1052 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1053 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1054 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1055 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1056 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1057 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1058 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1059 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1060 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1061 }; 1062 1063 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1064 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1065 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1066 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1067 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1068 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1069 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1070 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1071 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1072 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1073 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1074 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1075 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1076 }; 1077 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1078 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1079 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1080 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1081 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1082 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1083 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1084 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1085 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1086 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1087 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1088 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1089 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1090 }; 1091 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1092 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1093 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1094 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1095 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1096 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1097 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1098 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1099 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1100 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1101 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1102 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1103 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1104 }; 1105 1106 static void 1107 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1108 { 1109 wmep->wmep_aifsn = phy->aifsn; 1110 wmep->wmep_logcwmin = phy->logcwmin; 1111 wmep->wmep_logcwmax = phy->logcwmax; 1112 wmep->wmep_txopLimit = phy->txopLimit; 1113 } 1114 1115 static void 1116 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1117 struct wmeParams *wmep, const paramType *phy) 1118 { 1119 wmep->wmep_acm = phy->acm; 1120 _setifsparams(wmep, phy); 1121 1122 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1123 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1124 ieee80211_wme_acnames[ac], type, 1125 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1126 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1127 } 1128 1129 static void 1130 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1131 { 1132 struct ieee80211com *ic = vap->iv_ic; 1133 struct ieee80211_wme_state *wme = &ic->ic_wme; 1134 const paramType *pPhyParam, *pBssPhyParam; 1135 struct wmeParams *wmep; 1136 enum ieee80211_phymode mode; 1137 int i; 1138 1139 IEEE80211_LOCK_ASSERT(ic); 1140 1141 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1142 return; 1143 1144 /* 1145 * Clear the wme cap_info field so a qoscount from a previous 1146 * vap doesn't confuse later code which only parses the beacon 1147 * field and updates hardware when said field changes. 1148 * Otherwise the hardware is programmed with defaults, not what 1149 * the beacon actually announces. 1150 */ 1151 wme->wme_wmeChanParams.cap_info = 0; 1152 1153 /* 1154 * Select mode; we can be called early in which case we 1155 * always use auto mode. We know we'll be called when 1156 * entering the RUN state with bsschan setup properly 1157 * so state will eventually get set correctly 1158 */ 1159 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1160 mode = ieee80211_chan2mode(ic->ic_bsschan); 1161 else 1162 mode = IEEE80211_MODE_AUTO; 1163 for (i = 0; i < WME_NUM_AC; i++) { 1164 switch (i) { 1165 case WME_AC_BK: 1166 pPhyParam = &phyParamForAC_BK[mode]; 1167 pBssPhyParam = &phyParamForAC_BK[mode]; 1168 break; 1169 case WME_AC_VI: 1170 pPhyParam = &phyParamForAC_VI[mode]; 1171 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1172 break; 1173 case WME_AC_VO: 1174 pPhyParam = &phyParamForAC_VO[mode]; 1175 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1176 break; 1177 case WME_AC_BE: 1178 default: 1179 pPhyParam = &phyParamForAC_BE[mode]; 1180 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1181 break; 1182 } 1183 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1184 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1185 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1186 } else { 1187 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1188 } 1189 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1190 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1191 } 1192 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1193 if (vap->iv_bss != NULL) { 1194 /* 1195 * Calculate aggressive mode switching threshold based 1196 * on beacon interval. This doesn't need locking since 1197 * we're only called before entering the RUN state at 1198 * which point we start sending beacon frames. 1199 */ 1200 wme->wme_hipri_switch_thresh = 1201 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1202 wme->wme_flags &= ~WME_F_AGGRMODE; 1203 ieee80211_wme_updateparams(vap); 1204 } 1205 } 1206 1207 void 1208 ieee80211_wme_initparams(struct ieee80211vap *vap) 1209 { 1210 struct ieee80211com *ic = vap->iv_ic; 1211 1212 IEEE80211_LOCK(ic); 1213 ieee80211_wme_initparams_locked(vap); 1214 IEEE80211_UNLOCK(ic); 1215 } 1216 1217 /* 1218 * Update WME parameters for ourself and the BSS. 1219 */ 1220 void 1221 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1222 { 1223 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1224 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1225 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1226 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1227 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1228 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1229 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1230 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1231 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1232 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1233 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1234 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1235 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1236 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1237 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1238 }; 1239 struct ieee80211com *ic = vap->iv_ic; 1240 struct ieee80211_wme_state *wme = &ic->ic_wme; 1241 const struct wmeParams *wmep; 1242 struct wmeParams *chanp, *bssp; 1243 enum ieee80211_phymode mode; 1244 int i; 1245 int do_aggrmode = 0; 1246 1247 /* 1248 * Set up the channel access parameters for the physical 1249 * device. First populate the configured settings. 1250 */ 1251 for (i = 0; i < WME_NUM_AC; i++) { 1252 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1253 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1254 chanp->wmep_aifsn = wmep->wmep_aifsn; 1255 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1256 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1257 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1258 1259 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1260 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1261 chanp->wmep_aifsn = wmep->wmep_aifsn; 1262 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1263 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1264 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1265 } 1266 1267 /* 1268 * Select mode; we can be called early in which case we 1269 * always use auto mode. We know we'll be called when 1270 * entering the RUN state with bsschan setup properly 1271 * so state will eventually get set correctly 1272 */ 1273 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1274 mode = ieee80211_chan2mode(ic->ic_bsschan); 1275 else 1276 mode = IEEE80211_MODE_AUTO; 1277 1278 /* 1279 * This implements aggressive mode as found in certain 1280 * vendors' AP's. When there is significant high 1281 * priority (VI/VO) traffic in the BSS throttle back BE 1282 * traffic by using conservative parameters. Otherwise 1283 * BE uses aggressive params to optimize performance of 1284 * legacy/non-QoS traffic. 1285 */ 1286 1287 /* Hostap? Only if aggressive mode is enabled */ 1288 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1289 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1290 do_aggrmode = 1; 1291 1292 /* 1293 * Station? Only if we're in a non-QoS BSS. 1294 */ 1295 else if ((vap->iv_opmode == IEEE80211_M_STA && 1296 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1297 do_aggrmode = 1; 1298 1299 /* 1300 * IBSS? Only if we we have WME enabled. 1301 */ 1302 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1303 (vap->iv_flags & IEEE80211_F_WME)) 1304 do_aggrmode = 1; 1305 1306 /* 1307 * If WME is disabled on this VAP, default to aggressive mode 1308 * regardless of the configuration. 1309 */ 1310 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1311 do_aggrmode = 1; 1312 1313 /* XXX WDS? */ 1314 1315 /* XXX MBSS? */ 1316 1317 if (do_aggrmode) { 1318 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1319 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1320 1321 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1322 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1323 aggrParam[mode].logcwmin; 1324 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1325 aggrParam[mode].logcwmax; 1326 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1327 (vap->iv_flags & IEEE80211_F_BURST) ? 1328 aggrParam[mode].txopLimit : 0; 1329 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1330 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1331 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1332 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1333 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1334 } 1335 1336 1337 /* 1338 * Change the contention window based on the number of associated 1339 * stations. If the number of associated stations is 1 and 1340 * aggressive mode is enabled, lower the contention window even 1341 * further. 1342 */ 1343 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1344 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1345 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1346 [IEEE80211_MODE_AUTO] = 3, 1347 [IEEE80211_MODE_11A] = 3, 1348 [IEEE80211_MODE_11B] = 4, 1349 [IEEE80211_MODE_11G] = 3, 1350 [IEEE80211_MODE_FH] = 4, 1351 [IEEE80211_MODE_TURBO_A] = 3, 1352 [IEEE80211_MODE_TURBO_G] = 3, 1353 [IEEE80211_MODE_STURBO_A] = 3, 1354 [IEEE80211_MODE_HALF] = 3, 1355 [IEEE80211_MODE_QUARTER] = 3, 1356 [IEEE80211_MODE_11NA] = 3, 1357 [IEEE80211_MODE_11NG] = 3, 1358 [IEEE80211_MODE_VHT_2GHZ] = 3, 1359 [IEEE80211_MODE_VHT_5GHZ] = 3, 1360 }; 1361 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1362 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1363 1364 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1365 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1366 "update %s (chan+bss) logcwmin %u\n", 1367 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1368 } 1369 1370 /* 1371 * Arrange for the beacon update. 1372 * 1373 * XXX what about MBSS, WDS? 1374 */ 1375 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1376 || vap->iv_opmode == IEEE80211_M_IBSS) { 1377 /* 1378 * Arrange for a beacon update and bump the parameter 1379 * set number so associated stations load the new values. 1380 */ 1381 wme->wme_bssChanParams.cap_info = 1382 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1383 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1384 } 1385 1386 /* schedule the deferred WME update */ 1387 ieee80211_runtask(ic, &vap->iv_wme_task); 1388 1389 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1390 "%s: WME params updated, cap_info 0x%x\n", __func__, 1391 vap->iv_opmode == IEEE80211_M_STA ? 1392 wme->wme_wmeChanParams.cap_info : 1393 wme->wme_bssChanParams.cap_info); 1394 } 1395 1396 void 1397 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1398 { 1399 struct ieee80211com *ic = vap->iv_ic; 1400 1401 if (ic->ic_caps & IEEE80211_C_WME) { 1402 IEEE80211_LOCK(ic); 1403 ieee80211_wme_updateparams_locked(vap); 1404 IEEE80211_UNLOCK(ic); 1405 } 1406 } 1407 1408 /* 1409 * Fetch the WME parameters for the given VAP. 1410 * 1411 * When net80211 grows p2p, etc support, this may return different 1412 * parameters for each VAP. 1413 */ 1414 void 1415 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1416 { 1417 1418 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1419 } 1420 1421 /* 1422 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1423 * there may be different VAP WME parameters but only one is "active". 1424 * This returns the "NIC" WME parameters for the currently active 1425 * context. 1426 */ 1427 void 1428 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1429 { 1430 1431 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1432 } 1433 1434 /* 1435 * Return whether to use QoS on a given WME queue. 1436 * 1437 * This is intended to be called from the transmit path of softmac drivers 1438 * which are setting NoAck bits in transmit descriptors. 1439 * 1440 * Ideally this would be set in some transmit field before the packet is 1441 * queued to the driver but net80211 isn't quite there yet. 1442 */ 1443 int 1444 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1445 { 1446 /* Bounds/sanity check */ 1447 if (ac < 0 || ac >= WME_NUM_AC) 1448 return (0); 1449 1450 /* Again, there's only one global context for now */ 1451 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1452 } 1453 1454 static void 1455 parent_updown(void *arg, int npending) 1456 { 1457 struct ieee80211com *ic = arg; 1458 1459 ic->ic_parent(ic); 1460 } 1461 1462 static void 1463 update_mcast(void *arg, int npending) 1464 { 1465 struct ieee80211com *ic = arg; 1466 1467 ic->ic_update_mcast(ic); 1468 } 1469 1470 static void 1471 update_promisc(void *arg, int npending) 1472 { 1473 struct ieee80211com *ic = arg; 1474 1475 ic->ic_update_promisc(ic); 1476 } 1477 1478 static void 1479 update_channel(void *arg, int npending) 1480 { 1481 struct ieee80211com *ic = arg; 1482 1483 ic->ic_set_channel(ic); 1484 ieee80211_radiotap_chan_change(ic); 1485 } 1486 1487 static void 1488 update_chw(void *arg, int npending) 1489 { 1490 struct ieee80211com *ic = arg; 1491 1492 /* 1493 * XXX should we defer the channel width _config_ update until now? 1494 */ 1495 ic->ic_update_chw(ic); 1496 } 1497 1498 /* 1499 * Deferred WME update. 1500 * 1501 * In preparation for per-VAP WME configuration, call the VAP 1502 * method if the VAP requires it. Otherwise, just call the 1503 * older global method. There isn't a per-VAP WME configuration 1504 * just yet so for now just use the global configuration. 1505 */ 1506 static void 1507 vap_update_wme(void *arg, int npending) 1508 { 1509 struct ieee80211vap *vap = arg; 1510 struct ieee80211com *ic = vap->iv_ic; 1511 1512 if (vap->iv_wme_update != NULL) 1513 vap->iv_wme_update(vap, 1514 ic->ic_wme.wme_chanParams.cap_wmeParams); 1515 else 1516 ic->ic_wme.wme_update(ic); 1517 } 1518 1519 static void 1520 restart_vaps(void *arg, int npending) 1521 { 1522 struct ieee80211com *ic = arg; 1523 1524 ieee80211_suspend_all(ic); 1525 ieee80211_resume_all(ic); 1526 } 1527 1528 /* 1529 * Block until the parent is in a known state. This is 1530 * used after any operations that dispatch a task (e.g. 1531 * to auto-configure the parent device up/down). 1532 */ 1533 void 1534 ieee80211_waitfor_parent(struct ieee80211com *ic) 1535 { 1536 taskqueue_block(ic->ic_tq); 1537 ieee80211_draintask(ic, &ic->ic_parent_task); 1538 ieee80211_draintask(ic, &ic->ic_mcast_task); 1539 ieee80211_draintask(ic, &ic->ic_promisc_task); 1540 ieee80211_draintask(ic, &ic->ic_chan_task); 1541 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1542 ieee80211_draintask(ic, &ic->ic_chw_task); 1543 taskqueue_unblock(ic->ic_tq); 1544 } 1545 1546 /* 1547 * Check to see whether the current channel needs reset. 1548 * 1549 * Some devices don't handle being given an invalid channel 1550 * in their operating mode very well (eg wpi(4) will throw a 1551 * firmware exception.) 1552 * 1553 * Return 0 if we're ok, 1 if the channel needs to be reset. 1554 * 1555 * See PR kern/202502. 1556 */ 1557 static int 1558 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1559 { 1560 struct ieee80211com *ic = vap->iv_ic; 1561 1562 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1563 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1564 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1565 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1566 return (1); 1567 return (0); 1568 } 1569 1570 /* 1571 * Reset the curchan to a known good state. 1572 */ 1573 static void 1574 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1575 { 1576 struct ieee80211com *ic = vap->iv_ic; 1577 1578 ic->ic_curchan = &ic->ic_channels[0]; 1579 } 1580 1581 /* 1582 * Start a vap running. If this is the first vap to be 1583 * set running on the underlying device then we 1584 * automatically bring the device up. 1585 */ 1586 void 1587 ieee80211_start_locked(struct ieee80211vap *vap) 1588 { 1589 struct ifnet *ifp = vap->iv_ifp; 1590 struct ieee80211com *ic = vap->iv_ic; 1591 1592 IEEE80211_LOCK_ASSERT(ic); 1593 1594 IEEE80211_DPRINTF(vap, 1595 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1596 "start running, %d vaps running\n", ic->ic_nrunning); 1597 1598 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1599 /* 1600 * Mark us running. Note that it's ok to do this first; 1601 * if we need to bring the parent device up we defer that 1602 * to avoid dropping the com lock. We expect the device 1603 * to respond to being marked up by calling back into us 1604 * through ieee80211_start_all at which point we'll come 1605 * back in here and complete the work. 1606 */ 1607 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1608 ieee80211_notify_ifnet_change(vap); 1609 1610 /* 1611 * We are not running; if this we are the first vap 1612 * to be brought up auto-up the parent if necessary. 1613 */ 1614 if (ic->ic_nrunning++ == 0) { 1615 1616 /* reset the channel to a known good channel */ 1617 if (ieee80211_start_check_reset_chan(vap)) 1618 ieee80211_start_reset_chan(vap); 1619 1620 IEEE80211_DPRINTF(vap, 1621 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1622 "%s: up parent %s\n", __func__, ic->ic_name); 1623 ieee80211_runtask(ic, &ic->ic_parent_task); 1624 return; 1625 } 1626 } 1627 /* 1628 * If the parent is up and running, then kick the 1629 * 802.11 state machine as appropriate. 1630 */ 1631 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1632 if (vap->iv_opmode == IEEE80211_M_STA) { 1633 #if 0 1634 /* XXX bypasses scan too easily; disable for now */ 1635 /* 1636 * Try to be intelligent about clocking the state 1637 * machine. If we're currently in RUN state then 1638 * we should be able to apply any new state/parameters 1639 * simply by re-associating. Otherwise we need to 1640 * re-scan to select an appropriate ap. 1641 */ 1642 if (vap->iv_state >= IEEE80211_S_RUN) 1643 ieee80211_new_state_locked(vap, 1644 IEEE80211_S_ASSOC, 1); 1645 else 1646 #endif 1647 ieee80211_new_state_locked(vap, 1648 IEEE80211_S_SCAN, 0); 1649 } else { 1650 /* 1651 * For monitor+wds mode there's nothing to do but 1652 * start running. Otherwise if this is the first 1653 * vap to be brought up, start a scan which may be 1654 * preempted if the station is locked to a particular 1655 * channel. 1656 */ 1657 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1658 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1659 vap->iv_opmode == IEEE80211_M_WDS) 1660 ieee80211_new_state_locked(vap, 1661 IEEE80211_S_RUN, -1); 1662 else 1663 ieee80211_new_state_locked(vap, 1664 IEEE80211_S_SCAN, 0); 1665 } 1666 } 1667 } 1668 1669 /* 1670 * Start a single vap. 1671 */ 1672 void 1673 ieee80211_init(void *arg) 1674 { 1675 struct ieee80211vap *vap = arg; 1676 1677 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1678 "%s\n", __func__); 1679 1680 IEEE80211_LOCK(vap->iv_ic); 1681 ieee80211_start_locked(vap); 1682 IEEE80211_UNLOCK(vap->iv_ic); 1683 } 1684 1685 /* 1686 * Start all runnable vap's on a device. 1687 */ 1688 void 1689 ieee80211_start_all(struct ieee80211com *ic) 1690 { 1691 struct ieee80211vap *vap; 1692 1693 IEEE80211_LOCK(ic); 1694 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1695 struct ifnet *ifp = vap->iv_ifp; 1696 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1697 ieee80211_start_locked(vap); 1698 } 1699 IEEE80211_UNLOCK(ic); 1700 } 1701 1702 /* 1703 * Stop a vap. We force it down using the state machine 1704 * then mark it's ifnet not running. If this is the last 1705 * vap running on the underlying device then we close it 1706 * too to insure it will be properly initialized when the 1707 * next vap is brought up. 1708 */ 1709 void 1710 ieee80211_stop_locked(struct ieee80211vap *vap) 1711 { 1712 struct ieee80211com *ic = vap->iv_ic; 1713 struct ifnet *ifp = vap->iv_ifp; 1714 1715 IEEE80211_LOCK_ASSERT(ic); 1716 1717 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1718 "stop running, %d vaps running\n", ic->ic_nrunning); 1719 1720 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1721 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1722 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1723 ieee80211_notify_ifnet_change(vap); 1724 if (--ic->ic_nrunning == 0) { 1725 IEEE80211_DPRINTF(vap, 1726 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1727 "down parent %s\n", ic->ic_name); 1728 ieee80211_runtask(ic, &ic->ic_parent_task); 1729 } 1730 } 1731 } 1732 1733 void 1734 ieee80211_stop(struct ieee80211vap *vap) 1735 { 1736 struct ieee80211com *ic = vap->iv_ic; 1737 1738 IEEE80211_LOCK(ic); 1739 ieee80211_stop_locked(vap); 1740 IEEE80211_UNLOCK(ic); 1741 } 1742 1743 /* 1744 * Stop all vap's running on a device. 1745 */ 1746 void 1747 ieee80211_stop_all(struct ieee80211com *ic) 1748 { 1749 struct ieee80211vap *vap; 1750 1751 IEEE80211_LOCK(ic); 1752 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1753 struct ifnet *ifp = vap->iv_ifp; 1754 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1755 ieee80211_stop_locked(vap); 1756 } 1757 IEEE80211_UNLOCK(ic); 1758 1759 ieee80211_waitfor_parent(ic); 1760 } 1761 1762 /* 1763 * Stop all vap's running on a device and arrange 1764 * for those that were running to be resumed. 1765 */ 1766 void 1767 ieee80211_suspend_all(struct ieee80211com *ic) 1768 { 1769 struct ieee80211vap *vap; 1770 1771 IEEE80211_LOCK(ic); 1772 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1773 struct ifnet *ifp = vap->iv_ifp; 1774 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1775 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1776 ieee80211_stop_locked(vap); 1777 } 1778 } 1779 IEEE80211_UNLOCK(ic); 1780 1781 ieee80211_waitfor_parent(ic); 1782 } 1783 1784 /* 1785 * Start all vap's marked for resume. 1786 */ 1787 void 1788 ieee80211_resume_all(struct ieee80211com *ic) 1789 { 1790 struct ieee80211vap *vap; 1791 1792 IEEE80211_LOCK(ic); 1793 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1794 struct ifnet *ifp = vap->iv_ifp; 1795 if (!IFNET_IS_UP_RUNNING(ifp) && 1796 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1797 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1798 ieee80211_start_locked(vap); 1799 } 1800 } 1801 IEEE80211_UNLOCK(ic); 1802 } 1803 1804 /* 1805 * Restart all vap's running on a device. 1806 */ 1807 void 1808 ieee80211_restart_all(struct ieee80211com *ic) 1809 { 1810 /* 1811 * NB: do not use ieee80211_runtask here, we will 1812 * block & drain net80211 taskqueue. 1813 */ 1814 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1815 } 1816 1817 void 1818 ieee80211_beacon_miss(struct ieee80211com *ic) 1819 { 1820 IEEE80211_LOCK(ic); 1821 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1822 /* Process in a taskq, the handler may reenter the driver */ 1823 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1824 } 1825 IEEE80211_UNLOCK(ic); 1826 } 1827 1828 static void 1829 beacon_miss(void *arg, int npending) 1830 { 1831 struct ieee80211com *ic = arg; 1832 struct ieee80211vap *vap; 1833 1834 IEEE80211_LOCK(ic); 1835 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1836 /* 1837 * We only pass events through for sta vap's in RUN+ state; 1838 * may be too restrictive but for now this saves all the 1839 * handlers duplicating these checks. 1840 */ 1841 if (vap->iv_opmode == IEEE80211_M_STA && 1842 vap->iv_state >= IEEE80211_S_RUN && 1843 vap->iv_bmiss != NULL) 1844 vap->iv_bmiss(vap); 1845 } 1846 IEEE80211_UNLOCK(ic); 1847 } 1848 1849 static void 1850 beacon_swmiss(void *arg, int npending) 1851 { 1852 struct ieee80211vap *vap = arg; 1853 struct ieee80211com *ic = vap->iv_ic; 1854 1855 IEEE80211_LOCK(ic); 1856 if (vap->iv_state >= IEEE80211_S_RUN) { 1857 /* XXX Call multiple times if npending > zero? */ 1858 vap->iv_bmiss(vap); 1859 } 1860 IEEE80211_UNLOCK(ic); 1861 } 1862 1863 /* 1864 * Software beacon miss handling. Check if any beacons 1865 * were received in the last period. If not post a 1866 * beacon miss; otherwise reset the counter. 1867 */ 1868 void 1869 ieee80211_swbmiss(void *arg) 1870 { 1871 struct ieee80211vap *vap = arg; 1872 struct ieee80211com *ic = vap->iv_ic; 1873 1874 IEEE80211_LOCK_ASSERT(ic); 1875 1876 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1877 ("wrong state %d", vap->iv_state)); 1878 1879 if (ic->ic_flags & IEEE80211_F_SCAN) { 1880 /* 1881 * If scanning just ignore and reset state. If we get a 1882 * bmiss after coming out of scan because we haven't had 1883 * time to receive a beacon then we should probe the AP 1884 * before posting a real bmiss (unless iv_bmiss_max has 1885 * been artifiically lowered). A cleaner solution might 1886 * be to disable the timer on scan start/end but to handle 1887 * case of multiple sta vap's we'd need to disable the 1888 * timers of all affected vap's. 1889 */ 1890 vap->iv_swbmiss_count = 0; 1891 } else if (vap->iv_swbmiss_count == 0) { 1892 if (vap->iv_bmiss != NULL) 1893 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1894 } else 1895 vap->iv_swbmiss_count = 0; 1896 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1897 ieee80211_swbmiss, vap); 1898 } 1899 1900 /* 1901 * Start an 802.11h channel switch. We record the parameters, 1902 * mark the operation pending, notify each vap through the 1903 * beacon update mechanism so it can update the beacon frame 1904 * contents, and then switch vap's to CSA state to block outbound 1905 * traffic. Devices that handle CSA directly can use the state 1906 * switch to do the right thing so long as they call 1907 * ieee80211_csa_completeswitch when it's time to complete the 1908 * channel change. Devices that depend on the net80211 layer can 1909 * use ieee80211_beacon_update to handle the countdown and the 1910 * channel switch. 1911 */ 1912 void 1913 ieee80211_csa_startswitch(struct ieee80211com *ic, 1914 struct ieee80211_channel *c, int mode, int count) 1915 { 1916 struct ieee80211vap *vap; 1917 1918 IEEE80211_LOCK_ASSERT(ic); 1919 1920 ic->ic_csa_newchan = c; 1921 ic->ic_csa_mode = mode; 1922 ic->ic_csa_count = count; 1923 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1924 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1925 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1926 vap->iv_opmode == IEEE80211_M_IBSS || 1927 vap->iv_opmode == IEEE80211_M_MBSS) 1928 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1929 /* switch to CSA state to block outbound traffic */ 1930 if (vap->iv_state == IEEE80211_S_RUN) 1931 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1932 } 1933 ieee80211_notify_csa(ic, c, mode, count); 1934 } 1935 1936 /* 1937 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1938 * This is called by both the completion and cancellation functions 1939 * so each VAP is placed back in the RUN state and can thus transmit. 1940 */ 1941 static void 1942 csa_completeswitch(struct ieee80211com *ic) 1943 { 1944 struct ieee80211vap *vap; 1945 1946 ic->ic_csa_newchan = NULL; 1947 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1948 1949 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1950 if (vap->iv_state == IEEE80211_S_CSA) 1951 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1952 } 1953 1954 /* 1955 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1956 * We clear state and move all vap's in CSA state to RUN state 1957 * so they can again transmit. 1958 * 1959 * Although this may not be completely correct, update the BSS channel 1960 * for each VAP to the newly configured channel. The setcurchan sets 1961 * the current operating channel for the interface (so the radio does 1962 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1963 * reported information via ioctl. 1964 */ 1965 void 1966 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1967 { 1968 struct ieee80211vap *vap; 1969 1970 IEEE80211_LOCK_ASSERT(ic); 1971 1972 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1973 1974 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1975 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1976 if (vap->iv_state == IEEE80211_S_CSA) 1977 vap->iv_bss->ni_chan = ic->ic_curchan; 1978 1979 csa_completeswitch(ic); 1980 } 1981 1982 /* 1983 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1984 * We clear state and move all vap's in CSA state to RUN state 1985 * so they can again transmit. 1986 */ 1987 void 1988 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1989 { 1990 IEEE80211_LOCK_ASSERT(ic); 1991 1992 csa_completeswitch(ic); 1993 } 1994 1995 /* 1996 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1997 * We clear state and move all vap's in CAC state to RUN state. 1998 */ 1999 void 2000 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2001 { 2002 struct ieee80211com *ic = vap0->iv_ic; 2003 struct ieee80211vap *vap; 2004 2005 IEEE80211_LOCK(ic); 2006 /* 2007 * Complete CAC state change for lead vap first; then 2008 * clock all the other vap's waiting. 2009 */ 2010 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2011 ("wrong state %d", vap0->iv_state)); 2012 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2013 2014 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2015 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2016 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2017 IEEE80211_UNLOCK(ic); 2018 } 2019 2020 /* 2021 * Force all vap's other than the specified vap to the INIT state 2022 * and mark them as waiting for a scan to complete. These vaps 2023 * will be brought up when the scan completes and the scanning vap 2024 * reaches RUN state by wakeupwaiting. 2025 */ 2026 static void 2027 markwaiting(struct ieee80211vap *vap0) 2028 { 2029 struct ieee80211com *ic = vap0->iv_ic; 2030 struct ieee80211vap *vap; 2031 2032 IEEE80211_LOCK_ASSERT(ic); 2033 2034 /* 2035 * A vap list entry can not disappear since we are running on the 2036 * taskqueue and a vap destroy will queue and drain another state 2037 * change task. 2038 */ 2039 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2040 if (vap == vap0) 2041 continue; 2042 if (vap->iv_state != IEEE80211_S_INIT) { 2043 /* NB: iv_newstate may drop the lock */ 2044 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2045 IEEE80211_LOCK_ASSERT(ic); 2046 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2047 } 2048 } 2049 } 2050 2051 /* 2052 * Wakeup all vap's waiting for a scan to complete. This is the 2053 * companion to markwaiting (above) and is used to coordinate 2054 * multiple vaps scanning. 2055 * This is called from the state taskqueue. 2056 */ 2057 static void 2058 wakeupwaiting(struct ieee80211vap *vap0) 2059 { 2060 struct ieee80211com *ic = vap0->iv_ic; 2061 struct ieee80211vap *vap; 2062 2063 IEEE80211_LOCK_ASSERT(ic); 2064 2065 /* 2066 * A vap list entry can not disappear since we are running on the 2067 * taskqueue and a vap destroy will queue and drain another state 2068 * change task. 2069 */ 2070 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2071 if (vap == vap0) 2072 continue; 2073 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2074 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2075 /* NB: sta's cannot go INIT->RUN */ 2076 /* NB: iv_newstate may drop the lock */ 2077 vap->iv_newstate(vap, 2078 vap->iv_opmode == IEEE80211_M_STA ? 2079 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2080 IEEE80211_LOCK_ASSERT(ic); 2081 } 2082 } 2083 } 2084 2085 /* 2086 * Handle post state change work common to all operating modes. 2087 */ 2088 static void 2089 ieee80211_newstate_cb(void *xvap, int npending) 2090 { 2091 struct ieee80211vap *vap = xvap; 2092 struct ieee80211com *ic = vap->iv_ic; 2093 enum ieee80211_state nstate, ostate; 2094 int arg, rc; 2095 2096 IEEE80211_LOCK(ic); 2097 nstate = vap->iv_nstate; 2098 arg = vap->iv_nstate_arg; 2099 2100 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2101 /* 2102 * We have been requested to drop back to the INIT before 2103 * proceeding to the new state. 2104 */ 2105 /* Deny any state changes while we are here. */ 2106 vap->iv_nstate = IEEE80211_S_INIT; 2107 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2108 "%s: %s -> %s arg %d\n", __func__, 2109 ieee80211_state_name[vap->iv_state], 2110 ieee80211_state_name[vap->iv_nstate], arg); 2111 vap->iv_newstate(vap, vap->iv_nstate, 0); 2112 IEEE80211_LOCK_ASSERT(ic); 2113 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2114 IEEE80211_FEXT_STATEWAIT); 2115 /* enqueue new state transition after cancel_scan() task */ 2116 ieee80211_new_state_locked(vap, nstate, arg); 2117 goto done; 2118 } 2119 2120 ostate = vap->iv_state; 2121 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2122 /* 2123 * SCAN was forced; e.g. on beacon miss. Force other running 2124 * vap's to INIT state and mark them as waiting for the scan to 2125 * complete. This insures they don't interfere with our 2126 * scanning. Since we are single threaded the vaps can not 2127 * transition again while we are executing. 2128 * 2129 * XXX not always right, assumes ap follows sta 2130 */ 2131 markwaiting(vap); 2132 } 2133 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2134 "%s: %s -> %s arg %d\n", __func__, 2135 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2136 2137 rc = vap->iv_newstate(vap, nstate, arg); 2138 IEEE80211_LOCK_ASSERT(ic); 2139 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2140 if (rc != 0) { 2141 /* State transition failed */ 2142 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2143 KASSERT(nstate != IEEE80211_S_INIT, 2144 ("INIT state change failed")); 2145 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2146 "%s: %s returned error %d\n", __func__, 2147 ieee80211_state_name[nstate], rc); 2148 goto done; 2149 } 2150 2151 /* No actual transition, skip post processing */ 2152 if (ostate == nstate) 2153 goto done; 2154 2155 if (nstate == IEEE80211_S_RUN) { 2156 /* 2157 * OACTIVE may be set on the vap if the upper layer 2158 * tried to transmit (e.g. IPv6 NDP) before we reach 2159 * RUN state. Clear it and restart xmit. 2160 * 2161 * Note this can also happen as a result of SLEEP->RUN 2162 * (i.e. coming out of power save mode). 2163 */ 2164 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2165 2166 /* 2167 * XXX TODO Kick-start a VAP queue - this should be a method! 2168 */ 2169 2170 /* bring up any vaps waiting on us */ 2171 wakeupwaiting(vap); 2172 } else if (nstate == IEEE80211_S_INIT) { 2173 /* 2174 * Flush the scan cache if we did the last scan (XXX?) 2175 * and flush any frames on send queues from this vap. 2176 * Note the mgt q is used only for legacy drivers and 2177 * will go away shortly. 2178 */ 2179 ieee80211_scan_flush(vap); 2180 2181 /* 2182 * XXX TODO: ic/vap queue flush 2183 */ 2184 } 2185 done: 2186 IEEE80211_UNLOCK(ic); 2187 } 2188 2189 /* 2190 * Public interface for initiating a state machine change. 2191 * This routine single-threads the request and coordinates 2192 * the scheduling of multiple vaps for the purpose of selecting 2193 * an operating channel. Specifically the following scenarios 2194 * are handled: 2195 * o only one vap can be selecting a channel so on transition to 2196 * SCAN state if another vap is already scanning then 2197 * mark the caller for later processing and return without 2198 * doing anything (XXX? expectations by caller of synchronous operation) 2199 * o only one vap can be doing CAC of a channel so on transition to 2200 * CAC state if another vap is already scanning for radar then 2201 * mark the caller for later processing and return without 2202 * doing anything (XXX? expectations by caller of synchronous operation) 2203 * o if another vap is already running when a request is made 2204 * to SCAN then an operating channel has been chosen; bypass 2205 * the scan and just join the channel 2206 * 2207 * Note that the state change call is done through the iv_newstate 2208 * method pointer so any driver routine gets invoked. The driver 2209 * will normally call back into operating mode-specific 2210 * ieee80211_newstate routines (below) unless it needs to completely 2211 * bypass the state machine (e.g. because the firmware has it's 2212 * own idea how things should work). Bypassing the net80211 layer 2213 * is usually a mistake and indicates lack of proper integration 2214 * with the net80211 layer. 2215 */ 2216 int 2217 ieee80211_new_state_locked(struct ieee80211vap *vap, 2218 enum ieee80211_state nstate, int arg) 2219 { 2220 struct ieee80211com *ic = vap->iv_ic; 2221 struct ieee80211vap *vp; 2222 enum ieee80211_state ostate; 2223 int nrunning, nscanning; 2224 2225 IEEE80211_LOCK_ASSERT(ic); 2226 2227 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2228 if (vap->iv_nstate == IEEE80211_S_INIT || 2229 ((vap->iv_state == IEEE80211_S_INIT || 2230 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2231 vap->iv_nstate == IEEE80211_S_SCAN && 2232 nstate > IEEE80211_S_SCAN)) { 2233 /* 2234 * XXX The vap is being stopped/started, 2235 * do not allow any other state changes 2236 * until this is completed. 2237 */ 2238 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2239 "%s: %s -> %s (%s) transition discarded\n", 2240 __func__, 2241 ieee80211_state_name[vap->iv_state], 2242 ieee80211_state_name[nstate], 2243 ieee80211_state_name[vap->iv_nstate]); 2244 return -1; 2245 } else if (vap->iv_state != vap->iv_nstate) { 2246 #if 0 2247 /* Warn if the previous state hasn't completed. */ 2248 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2249 "%s: pending %s -> %s transition lost\n", __func__, 2250 ieee80211_state_name[vap->iv_state], 2251 ieee80211_state_name[vap->iv_nstate]); 2252 #else 2253 /* XXX temporarily enable to identify issues */ 2254 if_printf(vap->iv_ifp, 2255 "%s: pending %s -> %s transition lost\n", 2256 __func__, ieee80211_state_name[vap->iv_state], 2257 ieee80211_state_name[vap->iv_nstate]); 2258 #endif 2259 } 2260 } 2261 2262 nrunning = nscanning = 0; 2263 /* XXX can track this state instead of calculating */ 2264 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2265 if (vp != vap) { 2266 if (vp->iv_state >= IEEE80211_S_RUN) 2267 nrunning++; 2268 /* XXX doesn't handle bg scan */ 2269 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2270 else if (vp->iv_state > IEEE80211_S_INIT) 2271 nscanning++; 2272 } 2273 } 2274 ostate = vap->iv_state; 2275 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2276 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2277 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2278 nrunning, nscanning); 2279 switch (nstate) { 2280 case IEEE80211_S_SCAN: 2281 if (ostate == IEEE80211_S_INIT) { 2282 /* 2283 * INIT -> SCAN happens on initial bringup. 2284 */ 2285 KASSERT(!(nscanning && nrunning), 2286 ("%d scanning and %d running", nscanning, nrunning)); 2287 if (nscanning) { 2288 /* 2289 * Someone is scanning, defer our state 2290 * change until the work has completed. 2291 */ 2292 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2293 "%s: defer %s -> %s\n", 2294 __func__, ieee80211_state_name[ostate], 2295 ieee80211_state_name[nstate]); 2296 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2297 return 0; 2298 } 2299 if (nrunning) { 2300 /* 2301 * Someone is operating; just join the channel 2302 * they have chosen. 2303 */ 2304 /* XXX kill arg? */ 2305 /* XXX check each opmode, adhoc? */ 2306 if (vap->iv_opmode == IEEE80211_M_STA) 2307 nstate = IEEE80211_S_SCAN; 2308 else 2309 nstate = IEEE80211_S_RUN; 2310 #ifdef IEEE80211_DEBUG 2311 if (nstate != IEEE80211_S_SCAN) { 2312 IEEE80211_DPRINTF(vap, 2313 IEEE80211_MSG_STATE, 2314 "%s: override, now %s -> %s\n", 2315 __func__, 2316 ieee80211_state_name[ostate], 2317 ieee80211_state_name[nstate]); 2318 } 2319 #endif 2320 } 2321 } 2322 break; 2323 case IEEE80211_S_RUN: 2324 if (vap->iv_opmode == IEEE80211_M_WDS && 2325 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2326 nscanning) { 2327 /* 2328 * Legacy WDS with someone else scanning; don't 2329 * go online until that completes as we should 2330 * follow the other vap to the channel they choose. 2331 */ 2332 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2333 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2334 ieee80211_state_name[ostate], 2335 ieee80211_state_name[nstate]); 2336 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2337 return 0; 2338 } 2339 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2340 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2341 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2342 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2343 /* 2344 * This is a DFS channel, transition to CAC state 2345 * instead of RUN. This allows us to initiate 2346 * Channel Availability Check (CAC) as specified 2347 * by 11h/DFS. 2348 */ 2349 nstate = IEEE80211_S_CAC; 2350 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2351 "%s: override %s -> %s (DFS)\n", __func__, 2352 ieee80211_state_name[ostate], 2353 ieee80211_state_name[nstate]); 2354 } 2355 break; 2356 case IEEE80211_S_INIT: 2357 /* cancel any scan in progress */ 2358 ieee80211_cancel_scan(vap); 2359 if (ostate == IEEE80211_S_INIT ) { 2360 /* XXX don't believe this */ 2361 /* INIT -> INIT. nothing to do */ 2362 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2363 } 2364 /* fall thru... */ 2365 default: 2366 break; 2367 } 2368 /* defer the state change to a thread */ 2369 vap->iv_nstate = nstate; 2370 vap->iv_nstate_arg = arg; 2371 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2372 ieee80211_runtask(ic, &vap->iv_nstate_task); 2373 return EINPROGRESS; 2374 } 2375 2376 int 2377 ieee80211_new_state(struct ieee80211vap *vap, 2378 enum ieee80211_state nstate, int arg) 2379 { 2380 struct ieee80211com *ic = vap->iv_ic; 2381 int rc; 2382 2383 IEEE80211_LOCK(ic); 2384 rc = ieee80211_new_state_locked(vap, nstate, arg); 2385 IEEE80211_UNLOCK(ic); 2386 return rc; 2387 } 2388