xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 99282790b7d01ec3c4072621d46a0d7302517ad4)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * IEEE 802.11 protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>		/* XXX for ether_sprintf */
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_adhoc.h>
55 #include <net80211/ieee80211_sta.h>
56 #include <net80211/ieee80211_hostap.h>
57 #include <net80211/ieee80211_wds.h>
58 #ifdef IEEE80211_SUPPORT_MESH
59 #include <net80211/ieee80211_mesh.h>
60 #endif
61 #include <net80211/ieee80211_monitor.h>
62 #include <net80211/ieee80211_input.h>
63 
64 /* XXX tunables */
65 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
66 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
67 
68 const char *mgt_subtype_name[] = {
69 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
70 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
71 	"beacon",	"atim",		"disassoc",	"auth",
72 	"deauth",	"action",	"action_noack",	"reserved#15"
73 };
74 const char *ctl_subtype_name[] = {
75 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
76 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
77 	"bar",		"ba",		"ps_poll",	"rts",
78 	"cts",		"ack",		"cf_end",	"cf_end_ack"
79 };
80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
81 	"IBSS",		/* IEEE80211_M_IBSS */
82 	"STA",		/* IEEE80211_M_STA */
83 	"WDS",		/* IEEE80211_M_WDS */
84 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
85 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
86 	"MONITOR",	/* IEEE80211_M_MONITOR */
87 	"MBSS"		/* IEEE80211_M_MBSS */
88 };
89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
90 	"INIT",		/* IEEE80211_S_INIT */
91 	"SCAN",		/* IEEE80211_S_SCAN */
92 	"AUTH",		/* IEEE80211_S_AUTH */
93 	"ASSOC",	/* IEEE80211_S_ASSOC */
94 	"CAC",		/* IEEE80211_S_CAC */
95 	"RUN",		/* IEEE80211_S_RUN */
96 	"CSA",		/* IEEE80211_S_CSA */
97 	"SLEEP",	/* IEEE80211_S_SLEEP */
98 };
99 const char *ieee80211_wme_acnames[] = {
100 	"WME_AC_BE",
101 	"WME_AC_BK",
102 	"WME_AC_VI",
103 	"WME_AC_VO",
104 	"WME_UPSD",
105 };
106 
107 
108 /*
109  * Reason code descriptions were (mostly) obtained from
110  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
111  */
112 const char *
113 ieee80211_reason_to_string(uint16_t reason)
114 {
115 	switch (reason) {
116 	case IEEE80211_REASON_UNSPECIFIED:
117 		return ("unspecified");
118 	case IEEE80211_REASON_AUTH_EXPIRE:
119 		return ("previous authentication is expired");
120 	case IEEE80211_REASON_AUTH_LEAVE:
121 		return ("sending STA is leaving/has left IBSS or ESS");
122 	case IEEE80211_REASON_ASSOC_EXPIRE:
123 		return ("disassociated due to inactivity");
124 	case IEEE80211_REASON_ASSOC_TOOMANY:
125 		return ("too many associated STAs");
126 	case IEEE80211_REASON_NOT_AUTHED:
127 		return ("class 2 frame received from nonauthenticated STA");
128 	case IEEE80211_REASON_NOT_ASSOCED:
129 		return ("class 3 frame received from nonassociated STA");
130 	case IEEE80211_REASON_ASSOC_LEAVE:
131 		return ("sending STA is leaving/has left BSS");
132 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
133 		return ("STA requesting (re)association is not authenticated");
134 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
135 		return ("information in the Power Capability element is "
136 			"unacceptable");
137 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
138 		return ("information in the Supported Channels element is "
139 			"unacceptable");
140 	case IEEE80211_REASON_IE_INVALID:
141 		return ("invalid element");
142 	case IEEE80211_REASON_MIC_FAILURE:
143 		return ("MIC failure");
144 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
145 		return ("4-Way handshake timeout");
146 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
147 		return ("group key update timeout");
148 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
149 		return ("element in 4-Way handshake different from "
150 			"(re)association request/probe response/beacon frame");
151 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
152 		return ("invalid group cipher");
153 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
154 		return ("invalid pairwise cipher");
155 	case IEEE80211_REASON_AKMP_INVALID:
156 		return ("invalid AKMP");
157 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
158 		return ("unsupported version in RSN IE");
159 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
160 		return ("invalid capabilities in RSN IE");
161 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
162 		return ("IEEE 802.1X authentication failed");
163 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
164 		return ("cipher suite rejected because of the security "
165 			"policy");
166 	case IEEE80211_REASON_UNSPECIFIED_QOS:
167 		return ("unspecified (QoS-related)");
168 	case IEEE80211_REASON_INSUFFICIENT_BW:
169 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
170 	case IEEE80211_REASON_TOOMANY_FRAMES:
171 		return ("too many frames need to be acknowledged");
172 	case IEEE80211_REASON_OUTSIDE_TXOP:
173 		return ("STA is transmitting outside the limits of its TXOPs");
174 	case IEEE80211_REASON_LEAVING_QBSS:
175 		return ("requested from peer STA (the STA is "
176 			"resetting/leaving the BSS)");
177 	case IEEE80211_REASON_BAD_MECHANISM:
178 		return ("requested from peer STA (it does not want to use "
179 			"the mechanism)");
180 	case IEEE80211_REASON_SETUP_NEEDED:
181 		return ("requested from peer STA (setup is required for the "
182 			"used mechanism)");
183 	case IEEE80211_REASON_TIMEOUT:
184 		return ("requested from peer STA (timeout)");
185 	case IEEE80211_REASON_PEER_LINK_CANCELED:
186 		return ("SME cancels the mesh peering instance (not related "
187 			"to the maximum number of peer mesh STAs)");
188 	case IEEE80211_REASON_MESH_MAX_PEERS:
189 		return ("maximum number of peer mesh STAs was reached");
190 	case IEEE80211_REASON_MESH_CPVIOLATION:
191 		return ("the received information violates the Mesh "
192 			"Configuration policy configured in the mesh STA "
193 			"profile");
194 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
195 		return ("the mesh STA has received a Mesh Peering Close "
196 			"message requesting to close the mesh peering");
197 	case IEEE80211_REASON_MESH_MAX_RETRIES:
198 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
199 			"Peering Open messages, without receiving a Mesh "
200 			"Peering Confirm message");
201 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
202 		return ("the confirmTimer for the mesh peering instance times "
203 			"out");
204 	case IEEE80211_REASON_MESH_INVALID_GTK:
205 		return ("the mesh STA fails to unwrap the GTK or the values "
206 			"in the wrapped contents do not match");
207 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
208 		return ("the mesh STA receives inconsistent information about "
209 			"the mesh parameters between Mesh Peering Management "
210 			"frames");
211 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
212 		return ("the mesh STA fails the authenticated mesh peering "
213 			"exchange because due to failure in selecting "
214 			"pairwise/group ciphersuite");
215 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
216 		return ("the mesh STA does not have proxy information for "
217 			"this external destination");
218 	case IEEE80211_REASON_MESH_PERR_NO_FI:
219 		return ("the mesh STA does not have forwarding information "
220 			"for this destination");
221 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
222 		return ("the mesh STA determines that the link to the next "
223 			"hop of an active path in its forwarding information "
224 			"is no longer usable");
225 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
226 		return ("the MAC address of the STA already exists in the "
227 			"mesh BSS");
228 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
229 		return ("the mesh STA performs channel switch to meet "
230 			"regulatory requirements");
231 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
232 		return ("the mesh STA performs channel switch with "
233 			"unspecified reason");
234 	default:
235 		return ("reserved/unknown");
236 	}
237 }
238 
239 static void beacon_miss(void *, int);
240 static void beacon_swmiss(void *, int);
241 static void parent_updown(void *, int);
242 static void update_mcast(void *, int);
243 static void update_promisc(void *, int);
244 static void update_channel(void *, int);
245 static void update_chw(void *, int);
246 static void vap_update_wme(void *, int);
247 static void vap_update_slot(void *, int);
248 static void restart_vaps(void *, int);
249 static void ieee80211_newstate_cb(void *, int);
250 
251 static int
252 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
253 	const struct ieee80211_bpf_params *params)
254 {
255 
256 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
257 	m_freem(m);
258 	return ENETDOWN;
259 }
260 
261 void
262 ieee80211_proto_attach(struct ieee80211com *ic)
263 {
264 	uint8_t hdrlen;
265 
266 	/* override the 802.3 setting */
267 	hdrlen = ic->ic_headroom
268 		+ sizeof(struct ieee80211_qosframe_addr4)
269 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
270 		+ IEEE80211_WEP_EXTIVLEN;
271 	/* XXX no way to recalculate on ifdetach */
272 	if (ALIGN(hdrlen) > max_linkhdr) {
273 		/* XXX sanity check... */
274 		max_linkhdr = ALIGN(hdrlen);
275 		max_hdr = max_linkhdr + max_protohdr;
276 		max_datalen = MHLEN - max_hdr;
277 	}
278 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
279 
280 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
281 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
282 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
283 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
284 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
285 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
286 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
287 
288 	ic->ic_wme.wme_hipri_switch_hysteresis =
289 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
290 
291 	/* initialize management frame handlers */
292 	ic->ic_send_mgmt = ieee80211_send_mgmt;
293 	ic->ic_raw_xmit = null_raw_xmit;
294 
295 	ieee80211_adhoc_attach(ic);
296 	ieee80211_sta_attach(ic);
297 	ieee80211_wds_attach(ic);
298 	ieee80211_hostap_attach(ic);
299 #ifdef IEEE80211_SUPPORT_MESH
300 	ieee80211_mesh_attach(ic);
301 #endif
302 	ieee80211_monitor_attach(ic);
303 }
304 
305 void
306 ieee80211_proto_detach(struct ieee80211com *ic)
307 {
308 	ieee80211_monitor_detach(ic);
309 #ifdef IEEE80211_SUPPORT_MESH
310 	ieee80211_mesh_detach(ic);
311 #endif
312 	ieee80211_hostap_detach(ic);
313 	ieee80211_wds_detach(ic);
314 	ieee80211_adhoc_detach(ic);
315 	ieee80211_sta_detach(ic);
316 }
317 
318 static void
319 null_update_beacon(struct ieee80211vap *vap, int item)
320 {
321 }
322 
323 void
324 ieee80211_proto_vattach(struct ieee80211vap *vap)
325 {
326 	struct ieee80211com *ic = vap->iv_ic;
327 	struct ifnet *ifp = vap->iv_ifp;
328 	int i;
329 
330 	/* override the 802.3 setting */
331 	ifp->if_hdrlen = ic->ic_headroom
332                 + sizeof(struct ieee80211_qosframe_addr4)
333                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
334                 + IEEE80211_WEP_EXTIVLEN;
335 
336 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
337 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
338 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
339 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
340 	callout_init(&vap->iv_mgtsend, 1);
341 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
342 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
343 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
344 	TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
345 	/*
346 	 * Install default tx rate handling: no fixed rate, lowest
347 	 * supported rate for mgmt and multicast frames.  Default
348 	 * max retry count.  These settings can be changed by the
349 	 * driver and/or user applications.
350 	 */
351 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
352 		if (isclr(ic->ic_modecaps, i))
353 			continue;
354 
355 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
356 
357 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
358 
359 		/*
360 		 * Setting the management rate to MCS 0 assumes that the
361 		 * BSS Basic rate set is empty and the BSS Basic MCS set
362 		 * is not.
363 		 *
364 		 * Since we're not checking this, default to the lowest
365 		 * defined rate for this mode.
366 		 *
367 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
368 		 * some MCS management traffic (eg BA response frames.)
369 		 *
370 		 * See also: 9.6.0 of the 802.11n-2009 specification.
371 		 */
372 #ifdef	NOTYET
373 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
374 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
375 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
376 		} else {
377 			vap->iv_txparms[i].mgmtrate =
378 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
379 			vap->iv_txparms[i].mcastrate =
380 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
381 		}
382 #endif
383 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
384 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
385 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
386 	}
387 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
388 
389 	vap->iv_update_beacon = null_update_beacon;
390 	vap->iv_deliver_data = ieee80211_deliver_data;
391 
392 	/* attach support for operating mode */
393 	ic->ic_vattach[vap->iv_opmode](vap);
394 }
395 
396 void
397 ieee80211_proto_vdetach(struct ieee80211vap *vap)
398 {
399 #define	FREEAPPIE(ie) do { \
400 	if (ie != NULL) \
401 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
402 } while (0)
403 	/*
404 	 * Detach operating mode module.
405 	 */
406 	if (vap->iv_opdetach != NULL)
407 		vap->iv_opdetach(vap);
408 	/*
409 	 * This should not be needed as we detach when reseting
410 	 * the state but be conservative here since the
411 	 * authenticator may do things like spawn kernel threads.
412 	 */
413 	if (vap->iv_auth->ia_detach != NULL)
414 		vap->iv_auth->ia_detach(vap);
415 	/*
416 	 * Detach any ACL'ator.
417 	 */
418 	if (vap->iv_acl != NULL)
419 		vap->iv_acl->iac_detach(vap);
420 
421 	FREEAPPIE(vap->iv_appie_beacon);
422 	FREEAPPIE(vap->iv_appie_probereq);
423 	FREEAPPIE(vap->iv_appie_proberesp);
424 	FREEAPPIE(vap->iv_appie_assocreq);
425 	FREEAPPIE(vap->iv_appie_assocresp);
426 	FREEAPPIE(vap->iv_appie_wpa);
427 #undef FREEAPPIE
428 }
429 
430 /*
431  * Simple-minded authenticator module support.
432  */
433 
434 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
435 /* XXX well-known names */
436 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
437 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
438 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
439 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
440 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
441 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
442 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
443 };
444 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
445 
446 static const struct ieee80211_authenticator auth_internal = {
447 	.ia_name		= "wlan_internal",
448 	.ia_attach		= NULL,
449 	.ia_detach		= NULL,
450 	.ia_node_join		= NULL,
451 	.ia_node_leave		= NULL,
452 };
453 
454 /*
455  * Setup internal authenticators once; they are never unregistered.
456  */
457 static void
458 ieee80211_auth_setup(void)
459 {
460 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
461 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
462 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
463 }
464 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
465 
466 const struct ieee80211_authenticator *
467 ieee80211_authenticator_get(int auth)
468 {
469 	if (auth >= IEEE80211_AUTH_MAX)
470 		return NULL;
471 	if (authenticators[auth] == NULL)
472 		ieee80211_load_module(auth_modnames[auth]);
473 	return authenticators[auth];
474 }
475 
476 void
477 ieee80211_authenticator_register(int type,
478 	const struct ieee80211_authenticator *auth)
479 {
480 	if (type >= IEEE80211_AUTH_MAX)
481 		return;
482 	authenticators[type] = auth;
483 }
484 
485 void
486 ieee80211_authenticator_unregister(int type)
487 {
488 
489 	if (type >= IEEE80211_AUTH_MAX)
490 		return;
491 	authenticators[type] = NULL;
492 }
493 
494 /*
495  * Very simple-minded ACL module support.
496  */
497 /* XXX just one for now */
498 static	const struct ieee80211_aclator *acl = NULL;
499 
500 void
501 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
502 {
503 	printf("wlan: %s acl policy registered\n", iac->iac_name);
504 	acl = iac;
505 }
506 
507 void
508 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
509 {
510 	if (acl == iac)
511 		acl = NULL;
512 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
513 }
514 
515 const struct ieee80211_aclator *
516 ieee80211_aclator_get(const char *name)
517 {
518 	if (acl == NULL)
519 		ieee80211_load_module("wlan_acl");
520 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
521 }
522 
523 void
524 ieee80211_print_essid(const uint8_t *essid, int len)
525 {
526 	const uint8_t *p;
527 	int i;
528 
529 	if (len > IEEE80211_NWID_LEN)
530 		len = IEEE80211_NWID_LEN;
531 	/* determine printable or not */
532 	for (i = 0, p = essid; i < len; i++, p++) {
533 		if (*p < ' ' || *p > 0x7e)
534 			break;
535 	}
536 	if (i == len) {
537 		printf("\"");
538 		for (i = 0, p = essid; i < len; i++, p++)
539 			printf("%c", *p);
540 		printf("\"");
541 	} else {
542 		printf("0x");
543 		for (i = 0, p = essid; i < len; i++, p++)
544 			printf("%02x", *p);
545 	}
546 }
547 
548 void
549 ieee80211_dump_pkt(struct ieee80211com *ic,
550 	const uint8_t *buf, int len, int rate, int rssi)
551 {
552 	const struct ieee80211_frame *wh;
553 	int i;
554 
555 	wh = (const struct ieee80211_frame *)buf;
556 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
557 	case IEEE80211_FC1_DIR_NODS:
558 		printf("NODS %s", ether_sprintf(wh->i_addr2));
559 		printf("->%s", ether_sprintf(wh->i_addr1));
560 		printf("(%s)", ether_sprintf(wh->i_addr3));
561 		break;
562 	case IEEE80211_FC1_DIR_TODS:
563 		printf("TODS %s", ether_sprintf(wh->i_addr2));
564 		printf("->%s", ether_sprintf(wh->i_addr3));
565 		printf("(%s)", ether_sprintf(wh->i_addr1));
566 		break;
567 	case IEEE80211_FC1_DIR_FROMDS:
568 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
569 		printf("->%s", ether_sprintf(wh->i_addr1));
570 		printf("(%s)", ether_sprintf(wh->i_addr2));
571 		break;
572 	case IEEE80211_FC1_DIR_DSTODS:
573 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
574 		printf("->%s", ether_sprintf(wh->i_addr3));
575 		printf("(%s", ether_sprintf(wh->i_addr2));
576 		printf("->%s)", ether_sprintf(wh->i_addr1));
577 		break;
578 	}
579 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
580 	case IEEE80211_FC0_TYPE_DATA:
581 		printf(" data");
582 		break;
583 	case IEEE80211_FC0_TYPE_MGT:
584 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
585 		break;
586 	default:
587 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
588 		break;
589 	}
590 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
591 		const struct ieee80211_qosframe *qwh =
592 			(const struct ieee80211_qosframe *)buf;
593 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
594 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
595 	}
596 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
597 		int off;
598 
599 		off = ieee80211_anyhdrspace(ic, wh);
600 		printf(" WEP [IV %.02x %.02x %.02x",
601 			buf[off+0], buf[off+1], buf[off+2]);
602 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
603 			printf(" %.02x %.02x %.02x",
604 				buf[off+4], buf[off+5], buf[off+6]);
605 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
606 	}
607 	if (rate >= 0)
608 		printf(" %dM", rate / 2);
609 	if (rssi >= 0)
610 		printf(" +%d", rssi);
611 	printf("\n");
612 	if (len > 0) {
613 		for (i = 0; i < len; i++) {
614 			if ((i & 1) == 0)
615 				printf(" ");
616 			printf("%02x", buf[i]);
617 		}
618 		printf("\n");
619 	}
620 }
621 
622 static __inline int
623 findrix(const struct ieee80211_rateset *rs, int r)
624 {
625 	int i;
626 
627 	for (i = 0; i < rs->rs_nrates; i++)
628 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
629 			return i;
630 	return -1;
631 }
632 
633 int
634 ieee80211_fix_rate(struct ieee80211_node *ni,
635 	struct ieee80211_rateset *nrs, int flags)
636 {
637 	struct ieee80211vap *vap = ni->ni_vap;
638 	struct ieee80211com *ic = ni->ni_ic;
639 	int i, j, rix, error;
640 	int okrate, badrate, fixedrate, ucastrate;
641 	const struct ieee80211_rateset *srs;
642 	uint8_t r;
643 
644 	error = 0;
645 	okrate = badrate = 0;
646 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
647 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
648 		/*
649 		 * Workaround awkwardness with fixed rate.  We are called
650 		 * to check both the legacy rate set and the HT rate set
651 		 * but we must apply any legacy fixed rate check only to the
652 		 * legacy rate set and vice versa.  We cannot tell what type
653 		 * of rate set we've been given (legacy or HT) but we can
654 		 * distinguish the fixed rate type (MCS have 0x80 set).
655 		 * So to deal with this the caller communicates whether to
656 		 * check MCS or legacy rate using the flags and we use the
657 		 * type of any fixed rate to avoid applying an MCS to a
658 		 * legacy rate and vice versa.
659 		 */
660 		if (ucastrate & 0x80) {
661 			if (flags & IEEE80211_F_DOFRATE)
662 				flags &= ~IEEE80211_F_DOFRATE;
663 		} else if ((ucastrate & 0x80) == 0) {
664 			if (flags & IEEE80211_F_DOFMCS)
665 				flags &= ~IEEE80211_F_DOFMCS;
666 		}
667 		/* NB: required to make MCS match below work */
668 		ucastrate &= IEEE80211_RATE_VAL;
669 	}
670 	fixedrate = IEEE80211_FIXED_RATE_NONE;
671 	/*
672 	 * XXX we are called to process both MCS and legacy rates;
673 	 * we must use the appropriate basic rate set or chaos will
674 	 * ensue; for now callers that want MCS must supply
675 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
676 	 * function so there are two variants, one for MCS and one
677 	 * for legacy rates.
678 	 */
679 	if (flags & IEEE80211_F_DOBRS)
680 		srs = (const struct ieee80211_rateset *)
681 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
682 	else
683 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
684 	for (i = 0; i < nrs->rs_nrates; ) {
685 		if (flags & IEEE80211_F_DOSORT) {
686 			/*
687 			 * Sort rates.
688 			 */
689 			for (j = i + 1; j < nrs->rs_nrates; j++) {
690 				if (IEEE80211_RV(nrs->rs_rates[i]) >
691 				    IEEE80211_RV(nrs->rs_rates[j])) {
692 					r = nrs->rs_rates[i];
693 					nrs->rs_rates[i] = nrs->rs_rates[j];
694 					nrs->rs_rates[j] = r;
695 				}
696 			}
697 		}
698 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
699 		badrate = r;
700 		/*
701 		 * Check for fixed rate.
702 		 */
703 		if (r == ucastrate)
704 			fixedrate = r;
705 		/*
706 		 * Check against supported rates.
707 		 */
708 		rix = findrix(srs, r);
709 		if (flags & IEEE80211_F_DONEGO) {
710 			if (rix < 0) {
711 				/*
712 				 * A rate in the node's rate set is not
713 				 * supported.  If this is a basic rate and we
714 				 * are operating as a STA then this is an error.
715 				 * Otherwise we just discard/ignore the rate.
716 				 */
717 				if ((flags & IEEE80211_F_JOIN) &&
718 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
719 					error++;
720 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
721 				/*
722 				 * Overwrite with the supported rate
723 				 * value so any basic rate bit is set.
724 				 */
725 				nrs->rs_rates[i] = srs->rs_rates[rix];
726 			}
727 		}
728 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
729 			/*
730 			 * Delete unacceptable rates.
731 			 */
732 			nrs->rs_nrates--;
733 			for (j = i; j < nrs->rs_nrates; j++)
734 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
735 			nrs->rs_rates[j] = 0;
736 			continue;
737 		}
738 		if (rix >= 0)
739 			okrate = nrs->rs_rates[i];
740 		i++;
741 	}
742 	if (okrate == 0 || error != 0 ||
743 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
744 	     fixedrate != ucastrate)) {
745 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
746 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
747 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
748 		return badrate | IEEE80211_RATE_BASIC;
749 	} else
750 		return IEEE80211_RV(okrate);
751 }
752 
753 /*
754  * Reset 11g-related state.
755  *
756  * This is for per-VAP ERP/11g state.
757  *
758  * Eventually everything in ieee80211_reset_erp() will be
759  * per-VAP and in here.
760  */
761 void
762 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
763 {
764 	struct ieee80211com *ic = vap->iv_ic;
765 
766 	/*
767 	 * Short slot time is enabled only when operating in 11g
768 	 * and not in an IBSS.  We must also honor whether or not
769 	 * the driver is capable of doing it.
770 	 */
771 	ieee80211_vap_set_shortslottime(vap,
772 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
773 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
774 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
775 		vap->iv_opmode == IEEE80211_M_HOSTAP &&
776 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
777 }
778 
779 /*
780  * Reset 11g-related state.
781  */
782 void
783 ieee80211_reset_erp(struct ieee80211com *ic)
784 {
785 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
786 	ic->ic_nonerpsta = 0;
787 	ic->ic_longslotsta = 0;
788 	/*
789 	 * Set short preamble and ERP barker-preamble flags.
790 	 */
791 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
792 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
793 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
794 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
795 	} else {
796 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
797 		ic->ic_flags |= IEEE80211_F_USEBARKER;
798 	}
799 }
800 
801 /*
802  * Deferred slot time update.
803  *
804  * For per-VAP slot time configuration, call the VAP
805  * method if the VAP requires it.  Otherwise, just call the
806  * older global method.
807  *
808  * If the per-VAP method is called then it's expected that
809  * the driver/firmware will take care of turning the per-VAP
810  * flags into slot time configuration.
811  *
812  * If the per-VAP method is not called then the global flags will be
813  * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
814  * be set only if all of the vaps will have it set.
815  */
816 static void
817 vap_update_slot(void *arg, int npending)
818 {
819 	struct ieee80211vap *vap = arg;
820 	struct ieee80211com *ic = vap->iv_ic;
821 	struct ieee80211vap *iv;
822 	int num_shslot = 0, num_lgslot = 0;
823 
824 	/*
825 	 * Per-VAP path - we've already had the flags updated;
826 	 * so just notify the driver and move on.
827 	 */
828 	if (vap->iv_updateslot != NULL) {
829 		vap->iv_updateslot(vap);
830 		return;
831 	}
832 
833 	/*
834 	 * Iterate over all of the VAP flags to update the
835 	 * global flag.
836 	 *
837 	 * If all vaps have short slot enabled then flip on
838 	 * short slot.  If any vap has it disabled then
839 	 * we leave it globally disabled.  This should provide
840 	 * correct behaviour in a multi-BSS scenario where
841 	 * at least one VAP has short slot disabled for some
842 	 * reason.
843 	 */
844 	IEEE80211_LOCK(ic);
845 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
846 		if (iv->iv_flags & IEEE80211_F_SHSLOT)
847 			num_shslot++;
848 		else
849 			num_lgslot++;
850 	}
851 	IEEE80211_UNLOCK(ic);
852 
853 	/*
854 	 * It looks backwards but - if the number of short slot VAPs
855 	 * is zero then we're not short slot.  Else, we have one
856 	 * or more short slot VAPs and we're checking to see if ANY
857 	 * of them have short slot disabled.
858 	 */
859 	if (num_shslot == 0)
860 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
861 	else if (num_lgslot == 0)
862 		ic->ic_flags |= IEEE80211_F_SHSLOT;
863 
864 	/*
865 	 * Call the driver with our new global slot time flags.
866 	 */
867 	if (ic->ic_updateslot != NULL)
868 		ic->ic_updateslot(ic);
869 }
870 
871 /*
872  * Set the short slot time state and notify the driver.
873  *
874  * This is the per-VAP slot time state.
875  */
876 void
877 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
878 {
879 	struct ieee80211com *ic = vap->iv_ic;
880 
881 	/*
882 	 * Only modify the per-VAP slot time.
883 	 */
884 	if (onoff)
885 		vap->iv_flags |= IEEE80211_F_SHSLOT;
886 	else
887 		vap->iv_flags &= ~IEEE80211_F_SHSLOT;
888 
889 	/* schedule the deferred slot flag update and update */
890 	ieee80211_runtask(ic, &vap->iv_slot_task);
891 }
892 
893 /*
894  * Check if the specified rate set supports ERP.
895  * NB: the rate set is assumed to be sorted.
896  */
897 int
898 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
899 {
900 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
901 	int i, j;
902 
903 	if (rs->rs_nrates < nitems(rates))
904 		return 0;
905 	for (i = 0; i < nitems(rates); i++) {
906 		for (j = 0; j < rs->rs_nrates; j++) {
907 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
908 			if (rates[i] == r)
909 				goto next;
910 			if (r > rates[i])
911 				return 0;
912 		}
913 		return 0;
914 	next:
915 		;
916 	}
917 	return 1;
918 }
919 
920 /*
921  * Mark the basic rates for the rate table based on the
922  * operating mode.  For real 11g we mark all the 11b rates
923  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
924  * 11b rates.  There's also a pseudo 11a-mode used to mark only
925  * the basic OFDM rates.
926  */
927 static void
928 setbasicrates(struct ieee80211_rateset *rs,
929     enum ieee80211_phymode mode, int add)
930 {
931 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
932 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
933 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
934 					    /* NB: mixed b/g */
935 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
936 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
937 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
938 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
939 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
940 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
941 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
942 					    /* NB: mixed b/g */
943 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
944 					    /* NB: mixed b/g */
945 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
946 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
947 	};
948 	int i, j;
949 
950 	for (i = 0; i < rs->rs_nrates; i++) {
951 		if (!add)
952 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
953 		for (j = 0; j < basic[mode].rs_nrates; j++)
954 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
955 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
956 				break;
957 			}
958 	}
959 }
960 
961 /*
962  * Set the basic rates in a rate set.
963  */
964 void
965 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
966     enum ieee80211_phymode mode)
967 {
968 	setbasicrates(rs, mode, 0);
969 }
970 
971 /*
972  * Add basic rates to a rate set.
973  */
974 void
975 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
976     enum ieee80211_phymode mode)
977 {
978 	setbasicrates(rs, mode, 1);
979 }
980 
981 /*
982  * WME protocol support.
983  *
984  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
985  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
986  * Draft 2.0 Test Plan (Appendix D).
987  *
988  * Static/Dynamic Turbo mode settings come from Atheros.
989  */
990 typedef struct phyParamType {
991 	uint8_t		aifsn;
992 	uint8_t		logcwmin;
993 	uint8_t		logcwmax;
994 	uint16_t	txopLimit;
995 	uint8_t 	acm;
996 } paramType;
997 
998 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
999 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
1000 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
1001 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
1002 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
1003 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
1004 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
1005 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
1006 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
1007 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
1008 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
1009 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
1010 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
1011 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
1012 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
1013 };
1014 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1015 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
1016 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
1017 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
1018 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
1019 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
1020 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
1021 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
1022 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
1023 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
1024 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
1025 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
1026 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
1027 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
1028 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
1029 };
1030 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1031 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
1032 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
1033 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
1034 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
1035 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
1036 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
1037 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
1038 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
1039 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
1040 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
1041 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
1042 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
1043 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
1044 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
1045 };
1046 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1047 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
1048 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
1049 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
1050 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
1051 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
1052 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1053 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1054 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1055 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
1056 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
1057 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
1058 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
1059 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
1060 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
1061 };
1062 
1063 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1064 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
1065 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
1066 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
1067 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
1068 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
1069 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
1070 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
1071 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
1072 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
1073 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
1074 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
1075 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
1076 };
1077 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1078 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
1079 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
1080 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
1081 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
1082 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
1083 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
1084 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
1085 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
1086 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
1087 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
1088 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
1089 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
1090 };
1091 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1092 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
1093 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1094 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1095 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1096 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1097 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1098 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1099 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1100 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1101 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1102 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1103 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1104 };
1105 
1106 static void
1107 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1108 {
1109 	wmep->wmep_aifsn = phy->aifsn;
1110 	wmep->wmep_logcwmin = phy->logcwmin;
1111 	wmep->wmep_logcwmax = phy->logcwmax;
1112 	wmep->wmep_txopLimit = phy->txopLimit;
1113 }
1114 
1115 static void
1116 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1117 	struct wmeParams *wmep, const paramType *phy)
1118 {
1119 	wmep->wmep_acm = phy->acm;
1120 	_setifsparams(wmep, phy);
1121 
1122 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1123 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1124 	    ieee80211_wme_acnames[ac], type,
1125 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1126 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1127 }
1128 
1129 static void
1130 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1131 {
1132 	struct ieee80211com *ic = vap->iv_ic;
1133 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1134 	const paramType *pPhyParam, *pBssPhyParam;
1135 	struct wmeParams *wmep;
1136 	enum ieee80211_phymode mode;
1137 	int i;
1138 
1139 	IEEE80211_LOCK_ASSERT(ic);
1140 
1141 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1142 		return;
1143 
1144 	/*
1145 	 * Clear the wme cap_info field so a qoscount from a previous
1146 	 * vap doesn't confuse later code which only parses the beacon
1147 	 * field and updates hardware when said field changes.
1148 	 * Otherwise the hardware is programmed with defaults, not what
1149 	 * the beacon actually announces.
1150 	 */
1151 	wme->wme_wmeChanParams.cap_info = 0;
1152 
1153 	/*
1154 	 * Select mode; we can be called early in which case we
1155 	 * always use auto mode.  We know we'll be called when
1156 	 * entering the RUN state with bsschan setup properly
1157 	 * so state will eventually get set correctly
1158 	 */
1159 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1160 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1161 	else
1162 		mode = IEEE80211_MODE_AUTO;
1163 	for (i = 0; i < WME_NUM_AC; i++) {
1164 		switch (i) {
1165 		case WME_AC_BK:
1166 			pPhyParam = &phyParamForAC_BK[mode];
1167 			pBssPhyParam = &phyParamForAC_BK[mode];
1168 			break;
1169 		case WME_AC_VI:
1170 			pPhyParam = &phyParamForAC_VI[mode];
1171 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1172 			break;
1173 		case WME_AC_VO:
1174 			pPhyParam = &phyParamForAC_VO[mode];
1175 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1176 			break;
1177 		case WME_AC_BE:
1178 		default:
1179 			pPhyParam = &phyParamForAC_BE[mode];
1180 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1181 			break;
1182 		}
1183 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1184 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1185 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1186 		} else {
1187 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1188 		}
1189 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1190 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1191 	}
1192 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1193 	if (vap->iv_bss != NULL) {
1194 		/*
1195 		 * Calculate aggressive mode switching threshold based
1196 		 * on beacon interval.  This doesn't need locking since
1197 		 * we're only called before entering the RUN state at
1198 		 * which point we start sending beacon frames.
1199 		 */
1200 		wme->wme_hipri_switch_thresh =
1201 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1202 		wme->wme_flags &= ~WME_F_AGGRMODE;
1203 		ieee80211_wme_updateparams(vap);
1204 	}
1205 }
1206 
1207 void
1208 ieee80211_wme_initparams(struct ieee80211vap *vap)
1209 {
1210 	struct ieee80211com *ic = vap->iv_ic;
1211 
1212 	IEEE80211_LOCK(ic);
1213 	ieee80211_wme_initparams_locked(vap);
1214 	IEEE80211_UNLOCK(ic);
1215 }
1216 
1217 /*
1218  * Update WME parameters for ourself and the BSS.
1219  */
1220 void
1221 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1222 {
1223 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1224 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1225 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1226 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1227 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1228 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1229 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1230 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1231 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1232 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1233 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1234 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1235 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1236 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1237 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1238 	};
1239 	struct ieee80211com *ic = vap->iv_ic;
1240 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1241 	const struct wmeParams *wmep;
1242 	struct wmeParams *chanp, *bssp;
1243 	enum ieee80211_phymode mode;
1244 	int i;
1245 	int do_aggrmode = 0;
1246 
1247        	/*
1248 	 * Set up the channel access parameters for the physical
1249 	 * device.  First populate the configured settings.
1250 	 */
1251 	for (i = 0; i < WME_NUM_AC; i++) {
1252 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1253 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1254 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1255 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1256 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1257 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1258 
1259 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1260 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1261 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1262 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1263 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1264 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1265 	}
1266 
1267 	/*
1268 	 * Select mode; we can be called early in which case we
1269 	 * always use auto mode.  We know we'll be called when
1270 	 * entering the RUN state with bsschan setup properly
1271 	 * so state will eventually get set correctly
1272 	 */
1273 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1274 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1275 	else
1276 		mode = IEEE80211_MODE_AUTO;
1277 
1278 	/*
1279 	 * This implements aggressive mode as found in certain
1280 	 * vendors' AP's.  When there is significant high
1281 	 * priority (VI/VO) traffic in the BSS throttle back BE
1282 	 * traffic by using conservative parameters.  Otherwise
1283 	 * BE uses aggressive params to optimize performance of
1284 	 * legacy/non-QoS traffic.
1285 	 */
1286 
1287 	/* Hostap? Only if aggressive mode is enabled */
1288         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1289 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1290 		do_aggrmode = 1;
1291 
1292 	/*
1293 	 * Station? Only if we're in a non-QoS BSS.
1294 	 */
1295 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1296 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1297 		do_aggrmode = 1;
1298 
1299 	/*
1300 	 * IBSS? Only if we we have WME enabled.
1301 	 */
1302 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1303 	    (vap->iv_flags & IEEE80211_F_WME))
1304 		do_aggrmode = 1;
1305 
1306 	/*
1307 	 * If WME is disabled on this VAP, default to aggressive mode
1308 	 * regardless of the configuration.
1309 	 */
1310 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1311 		do_aggrmode = 1;
1312 
1313 	/* XXX WDS? */
1314 
1315 	/* XXX MBSS? */
1316 
1317 	if (do_aggrmode) {
1318 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1319 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1320 
1321 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1322 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1323 		    aggrParam[mode].logcwmin;
1324 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1325 		    aggrParam[mode].logcwmax;
1326 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1327 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1328 			aggrParam[mode].txopLimit : 0;
1329 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1330 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1331 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1332 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1333 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1334 	}
1335 
1336 
1337 	/*
1338 	 * Change the contention window based on the number of associated
1339 	 * stations.  If the number of associated stations is 1 and
1340 	 * aggressive mode is enabled, lower the contention window even
1341 	 * further.
1342 	 */
1343 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1344 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1345 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1346 		    [IEEE80211_MODE_AUTO]	= 3,
1347 		    [IEEE80211_MODE_11A]	= 3,
1348 		    [IEEE80211_MODE_11B]	= 4,
1349 		    [IEEE80211_MODE_11G]	= 3,
1350 		    [IEEE80211_MODE_FH]		= 4,
1351 		    [IEEE80211_MODE_TURBO_A]	= 3,
1352 		    [IEEE80211_MODE_TURBO_G]	= 3,
1353 		    [IEEE80211_MODE_STURBO_A]	= 3,
1354 		    [IEEE80211_MODE_HALF]	= 3,
1355 		    [IEEE80211_MODE_QUARTER]	= 3,
1356 		    [IEEE80211_MODE_11NA]	= 3,
1357 		    [IEEE80211_MODE_11NG]	= 3,
1358 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1359 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1360 		};
1361 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1362 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1363 
1364 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1365 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1366 		    "update %s (chan+bss) logcwmin %u\n",
1367 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1368 	}
1369 
1370 	/*
1371 	 * Arrange for the beacon update.
1372 	 *
1373 	 * XXX what about MBSS, WDS?
1374 	 */
1375 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1376 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1377 		/*
1378 		 * Arrange for a beacon update and bump the parameter
1379 		 * set number so associated stations load the new values.
1380 		 */
1381 		wme->wme_bssChanParams.cap_info =
1382 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1383 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1384 	}
1385 
1386 	/* schedule the deferred WME update */
1387 	ieee80211_runtask(ic, &vap->iv_wme_task);
1388 
1389 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1390 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1391 	    vap->iv_opmode == IEEE80211_M_STA ?
1392 		wme->wme_wmeChanParams.cap_info :
1393 		wme->wme_bssChanParams.cap_info);
1394 }
1395 
1396 void
1397 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1398 {
1399 	struct ieee80211com *ic = vap->iv_ic;
1400 
1401 	if (ic->ic_caps & IEEE80211_C_WME) {
1402 		IEEE80211_LOCK(ic);
1403 		ieee80211_wme_updateparams_locked(vap);
1404 		IEEE80211_UNLOCK(ic);
1405 	}
1406 }
1407 
1408 /*
1409  * Fetch the WME parameters for the given VAP.
1410  *
1411  * When net80211 grows p2p, etc support, this may return different
1412  * parameters for each VAP.
1413  */
1414 void
1415 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1416 {
1417 
1418 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1419 }
1420 
1421 /*
1422  * For NICs which only support one set of WME paramaters (ie, softmac NICs)
1423  * there may be different VAP WME parameters but only one is "active".
1424  * This returns the "NIC" WME parameters for the currently active
1425  * context.
1426  */
1427 void
1428 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1429 {
1430 
1431 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1432 }
1433 
1434 /*
1435  * Return whether to use QoS on a given WME queue.
1436  *
1437  * This is intended to be called from the transmit path of softmac drivers
1438  * which are setting NoAck bits in transmit descriptors.
1439  *
1440  * Ideally this would be set in some transmit field before the packet is
1441  * queued to the driver but net80211 isn't quite there yet.
1442  */
1443 int
1444 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1445 {
1446 	/* Bounds/sanity check */
1447 	if (ac < 0 || ac >= WME_NUM_AC)
1448 		return (0);
1449 
1450 	/* Again, there's only one global context for now */
1451 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1452 }
1453 
1454 static void
1455 parent_updown(void *arg, int npending)
1456 {
1457 	struct ieee80211com *ic = arg;
1458 
1459 	ic->ic_parent(ic);
1460 }
1461 
1462 static void
1463 update_mcast(void *arg, int npending)
1464 {
1465 	struct ieee80211com *ic = arg;
1466 
1467 	ic->ic_update_mcast(ic);
1468 }
1469 
1470 static void
1471 update_promisc(void *arg, int npending)
1472 {
1473 	struct ieee80211com *ic = arg;
1474 
1475 	ic->ic_update_promisc(ic);
1476 }
1477 
1478 static void
1479 update_channel(void *arg, int npending)
1480 {
1481 	struct ieee80211com *ic = arg;
1482 
1483 	ic->ic_set_channel(ic);
1484 	ieee80211_radiotap_chan_change(ic);
1485 }
1486 
1487 static void
1488 update_chw(void *arg, int npending)
1489 {
1490 	struct ieee80211com *ic = arg;
1491 
1492 	/*
1493 	 * XXX should we defer the channel width _config_ update until now?
1494 	 */
1495 	ic->ic_update_chw(ic);
1496 }
1497 
1498 /*
1499  * Deferred WME update.
1500  *
1501  * In preparation for per-VAP WME configuration, call the VAP
1502  * method if the VAP requires it.  Otherwise, just call the
1503  * older global method.  There isn't a per-VAP WME configuration
1504  * just yet so for now just use the global configuration.
1505  */
1506 static void
1507 vap_update_wme(void *arg, int npending)
1508 {
1509 	struct ieee80211vap *vap = arg;
1510 	struct ieee80211com *ic = vap->iv_ic;
1511 
1512 	if (vap->iv_wme_update != NULL)
1513 		vap->iv_wme_update(vap,
1514 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1515 	else
1516 		ic->ic_wme.wme_update(ic);
1517 }
1518 
1519 static void
1520 restart_vaps(void *arg, int npending)
1521 {
1522 	struct ieee80211com *ic = arg;
1523 
1524 	ieee80211_suspend_all(ic);
1525 	ieee80211_resume_all(ic);
1526 }
1527 
1528 /*
1529  * Block until the parent is in a known state.  This is
1530  * used after any operations that dispatch a task (e.g.
1531  * to auto-configure the parent device up/down).
1532  */
1533 void
1534 ieee80211_waitfor_parent(struct ieee80211com *ic)
1535 {
1536 	taskqueue_block(ic->ic_tq);
1537 	ieee80211_draintask(ic, &ic->ic_parent_task);
1538 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1539 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1540 	ieee80211_draintask(ic, &ic->ic_chan_task);
1541 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1542 	ieee80211_draintask(ic, &ic->ic_chw_task);
1543 	taskqueue_unblock(ic->ic_tq);
1544 }
1545 
1546 /*
1547  * Check to see whether the current channel needs reset.
1548  *
1549  * Some devices don't handle being given an invalid channel
1550  * in their operating mode very well (eg wpi(4) will throw a
1551  * firmware exception.)
1552  *
1553  * Return 0 if we're ok, 1 if the channel needs to be reset.
1554  *
1555  * See PR kern/202502.
1556  */
1557 static int
1558 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1559 {
1560 	struct ieee80211com *ic = vap->iv_ic;
1561 
1562 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1563 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1564 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1565 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1566 		return (1);
1567 	return (0);
1568 }
1569 
1570 /*
1571  * Reset the curchan to a known good state.
1572  */
1573 static void
1574 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1575 {
1576 	struct ieee80211com *ic = vap->iv_ic;
1577 
1578 	ic->ic_curchan = &ic->ic_channels[0];
1579 }
1580 
1581 /*
1582  * Start a vap running.  If this is the first vap to be
1583  * set running on the underlying device then we
1584  * automatically bring the device up.
1585  */
1586 void
1587 ieee80211_start_locked(struct ieee80211vap *vap)
1588 {
1589 	struct ifnet *ifp = vap->iv_ifp;
1590 	struct ieee80211com *ic = vap->iv_ic;
1591 
1592 	IEEE80211_LOCK_ASSERT(ic);
1593 
1594 	IEEE80211_DPRINTF(vap,
1595 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1596 		"start running, %d vaps running\n", ic->ic_nrunning);
1597 
1598 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1599 		/*
1600 		 * Mark us running.  Note that it's ok to do this first;
1601 		 * if we need to bring the parent device up we defer that
1602 		 * to avoid dropping the com lock.  We expect the device
1603 		 * to respond to being marked up by calling back into us
1604 		 * through ieee80211_start_all at which point we'll come
1605 		 * back in here and complete the work.
1606 		 */
1607 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1608 		ieee80211_notify_ifnet_change(vap);
1609 
1610 		/*
1611 		 * We are not running; if this we are the first vap
1612 		 * to be brought up auto-up the parent if necessary.
1613 		 */
1614 		if (ic->ic_nrunning++ == 0) {
1615 
1616 			/* reset the channel to a known good channel */
1617 			if (ieee80211_start_check_reset_chan(vap))
1618 				ieee80211_start_reset_chan(vap);
1619 
1620 			IEEE80211_DPRINTF(vap,
1621 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1622 			    "%s: up parent %s\n", __func__, ic->ic_name);
1623 			ieee80211_runtask(ic, &ic->ic_parent_task);
1624 			return;
1625 		}
1626 	}
1627 	/*
1628 	 * If the parent is up and running, then kick the
1629 	 * 802.11 state machine as appropriate.
1630 	 */
1631 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1632 		if (vap->iv_opmode == IEEE80211_M_STA) {
1633 #if 0
1634 			/* XXX bypasses scan too easily; disable for now */
1635 			/*
1636 			 * Try to be intelligent about clocking the state
1637 			 * machine.  If we're currently in RUN state then
1638 			 * we should be able to apply any new state/parameters
1639 			 * simply by re-associating.  Otherwise we need to
1640 			 * re-scan to select an appropriate ap.
1641 			 */
1642 			if (vap->iv_state >= IEEE80211_S_RUN)
1643 				ieee80211_new_state_locked(vap,
1644 				    IEEE80211_S_ASSOC, 1);
1645 			else
1646 #endif
1647 				ieee80211_new_state_locked(vap,
1648 				    IEEE80211_S_SCAN, 0);
1649 		} else {
1650 			/*
1651 			 * For monitor+wds mode there's nothing to do but
1652 			 * start running.  Otherwise if this is the first
1653 			 * vap to be brought up, start a scan which may be
1654 			 * preempted if the station is locked to a particular
1655 			 * channel.
1656 			 */
1657 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1658 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1659 			    vap->iv_opmode == IEEE80211_M_WDS)
1660 				ieee80211_new_state_locked(vap,
1661 				    IEEE80211_S_RUN, -1);
1662 			else
1663 				ieee80211_new_state_locked(vap,
1664 				    IEEE80211_S_SCAN, 0);
1665 		}
1666 	}
1667 }
1668 
1669 /*
1670  * Start a single vap.
1671  */
1672 void
1673 ieee80211_init(void *arg)
1674 {
1675 	struct ieee80211vap *vap = arg;
1676 
1677 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1678 	    "%s\n", __func__);
1679 
1680 	IEEE80211_LOCK(vap->iv_ic);
1681 	ieee80211_start_locked(vap);
1682 	IEEE80211_UNLOCK(vap->iv_ic);
1683 }
1684 
1685 /*
1686  * Start all runnable vap's on a device.
1687  */
1688 void
1689 ieee80211_start_all(struct ieee80211com *ic)
1690 {
1691 	struct ieee80211vap *vap;
1692 
1693 	IEEE80211_LOCK(ic);
1694 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1695 		struct ifnet *ifp = vap->iv_ifp;
1696 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1697 			ieee80211_start_locked(vap);
1698 	}
1699 	IEEE80211_UNLOCK(ic);
1700 }
1701 
1702 /*
1703  * Stop a vap.  We force it down using the state machine
1704  * then mark it's ifnet not running.  If this is the last
1705  * vap running on the underlying device then we close it
1706  * too to insure it will be properly initialized when the
1707  * next vap is brought up.
1708  */
1709 void
1710 ieee80211_stop_locked(struct ieee80211vap *vap)
1711 {
1712 	struct ieee80211com *ic = vap->iv_ic;
1713 	struct ifnet *ifp = vap->iv_ifp;
1714 
1715 	IEEE80211_LOCK_ASSERT(ic);
1716 
1717 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1718 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1719 
1720 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1721 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1722 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1723 		ieee80211_notify_ifnet_change(vap);
1724 		if (--ic->ic_nrunning == 0) {
1725 			IEEE80211_DPRINTF(vap,
1726 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1727 			    "down parent %s\n", ic->ic_name);
1728 			ieee80211_runtask(ic, &ic->ic_parent_task);
1729 		}
1730 	}
1731 }
1732 
1733 void
1734 ieee80211_stop(struct ieee80211vap *vap)
1735 {
1736 	struct ieee80211com *ic = vap->iv_ic;
1737 
1738 	IEEE80211_LOCK(ic);
1739 	ieee80211_stop_locked(vap);
1740 	IEEE80211_UNLOCK(ic);
1741 }
1742 
1743 /*
1744  * Stop all vap's running on a device.
1745  */
1746 void
1747 ieee80211_stop_all(struct ieee80211com *ic)
1748 {
1749 	struct ieee80211vap *vap;
1750 
1751 	IEEE80211_LOCK(ic);
1752 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1753 		struct ifnet *ifp = vap->iv_ifp;
1754 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1755 			ieee80211_stop_locked(vap);
1756 	}
1757 	IEEE80211_UNLOCK(ic);
1758 
1759 	ieee80211_waitfor_parent(ic);
1760 }
1761 
1762 /*
1763  * Stop all vap's running on a device and arrange
1764  * for those that were running to be resumed.
1765  */
1766 void
1767 ieee80211_suspend_all(struct ieee80211com *ic)
1768 {
1769 	struct ieee80211vap *vap;
1770 
1771 	IEEE80211_LOCK(ic);
1772 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1773 		struct ifnet *ifp = vap->iv_ifp;
1774 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1775 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1776 			ieee80211_stop_locked(vap);
1777 		}
1778 	}
1779 	IEEE80211_UNLOCK(ic);
1780 
1781 	ieee80211_waitfor_parent(ic);
1782 }
1783 
1784 /*
1785  * Start all vap's marked for resume.
1786  */
1787 void
1788 ieee80211_resume_all(struct ieee80211com *ic)
1789 {
1790 	struct ieee80211vap *vap;
1791 
1792 	IEEE80211_LOCK(ic);
1793 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1794 		struct ifnet *ifp = vap->iv_ifp;
1795 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1796 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1797 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1798 			ieee80211_start_locked(vap);
1799 		}
1800 	}
1801 	IEEE80211_UNLOCK(ic);
1802 }
1803 
1804 /*
1805  * Restart all vap's running on a device.
1806  */
1807 void
1808 ieee80211_restart_all(struct ieee80211com *ic)
1809 {
1810 	/*
1811 	 * NB: do not use ieee80211_runtask here, we will
1812 	 * block & drain net80211 taskqueue.
1813 	 */
1814 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1815 }
1816 
1817 void
1818 ieee80211_beacon_miss(struct ieee80211com *ic)
1819 {
1820 	IEEE80211_LOCK(ic);
1821 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1822 		/* Process in a taskq, the handler may reenter the driver */
1823 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1824 	}
1825 	IEEE80211_UNLOCK(ic);
1826 }
1827 
1828 static void
1829 beacon_miss(void *arg, int npending)
1830 {
1831 	struct ieee80211com *ic = arg;
1832 	struct ieee80211vap *vap;
1833 
1834 	IEEE80211_LOCK(ic);
1835 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1836 		/*
1837 		 * We only pass events through for sta vap's in RUN+ state;
1838 		 * may be too restrictive but for now this saves all the
1839 		 * handlers duplicating these checks.
1840 		 */
1841 		if (vap->iv_opmode == IEEE80211_M_STA &&
1842 		    vap->iv_state >= IEEE80211_S_RUN &&
1843 		    vap->iv_bmiss != NULL)
1844 			vap->iv_bmiss(vap);
1845 	}
1846 	IEEE80211_UNLOCK(ic);
1847 }
1848 
1849 static void
1850 beacon_swmiss(void *arg, int npending)
1851 {
1852 	struct ieee80211vap *vap = arg;
1853 	struct ieee80211com *ic = vap->iv_ic;
1854 
1855 	IEEE80211_LOCK(ic);
1856 	if (vap->iv_state >= IEEE80211_S_RUN) {
1857 		/* XXX Call multiple times if npending > zero? */
1858 		vap->iv_bmiss(vap);
1859 	}
1860 	IEEE80211_UNLOCK(ic);
1861 }
1862 
1863 /*
1864  * Software beacon miss handling.  Check if any beacons
1865  * were received in the last period.  If not post a
1866  * beacon miss; otherwise reset the counter.
1867  */
1868 void
1869 ieee80211_swbmiss(void *arg)
1870 {
1871 	struct ieee80211vap *vap = arg;
1872 	struct ieee80211com *ic = vap->iv_ic;
1873 
1874 	IEEE80211_LOCK_ASSERT(ic);
1875 
1876 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1877 	    ("wrong state %d", vap->iv_state));
1878 
1879 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1880 		/*
1881 		 * If scanning just ignore and reset state.  If we get a
1882 		 * bmiss after coming out of scan because we haven't had
1883 		 * time to receive a beacon then we should probe the AP
1884 		 * before posting a real bmiss (unless iv_bmiss_max has
1885 		 * been artifiically lowered).  A cleaner solution might
1886 		 * be to disable the timer on scan start/end but to handle
1887 		 * case of multiple sta vap's we'd need to disable the
1888 		 * timers of all affected vap's.
1889 		 */
1890 		vap->iv_swbmiss_count = 0;
1891 	} else if (vap->iv_swbmiss_count == 0) {
1892 		if (vap->iv_bmiss != NULL)
1893 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1894 	} else
1895 		vap->iv_swbmiss_count = 0;
1896 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1897 		ieee80211_swbmiss, vap);
1898 }
1899 
1900 /*
1901  * Start an 802.11h channel switch.  We record the parameters,
1902  * mark the operation pending, notify each vap through the
1903  * beacon update mechanism so it can update the beacon frame
1904  * contents, and then switch vap's to CSA state to block outbound
1905  * traffic.  Devices that handle CSA directly can use the state
1906  * switch to do the right thing so long as they call
1907  * ieee80211_csa_completeswitch when it's time to complete the
1908  * channel change.  Devices that depend on the net80211 layer can
1909  * use ieee80211_beacon_update to handle the countdown and the
1910  * channel switch.
1911  */
1912 void
1913 ieee80211_csa_startswitch(struct ieee80211com *ic,
1914 	struct ieee80211_channel *c, int mode, int count)
1915 {
1916 	struct ieee80211vap *vap;
1917 
1918 	IEEE80211_LOCK_ASSERT(ic);
1919 
1920 	ic->ic_csa_newchan = c;
1921 	ic->ic_csa_mode = mode;
1922 	ic->ic_csa_count = count;
1923 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1924 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1925 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1926 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1927 		    vap->iv_opmode == IEEE80211_M_MBSS)
1928 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1929 		/* switch to CSA state to block outbound traffic */
1930 		if (vap->iv_state == IEEE80211_S_RUN)
1931 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1932 	}
1933 	ieee80211_notify_csa(ic, c, mode, count);
1934 }
1935 
1936 /*
1937  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1938  * This is called by both the completion and cancellation functions
1939  * so each VAP is placed back in the RUN state and can thus transmit.
1940  */
1941 static void
1942 csa_completeswitch(struct ieee80211com *ic)
1943 {
1944 	struct ieee80211vap *vap;
1945 
1946 	ic->ic_csa_newchan = NULL;
1947 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1948 
1949 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1950 		if (vap->iv_state == IEEE80211_S_CSA)
1951 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1952 }
1953 
1954 /*
1955  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1956  * We clear state and move all vap's in CSA state to RUN state
1957  * so they can again transmit.
1958  *
1959  * Although this may not be completely correct, update the BSS channel
1960  * for each VAP to the newly configured channel. The setcurchan sets
1961  * the current operating channel for the interface (so the radio does
1962  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1963  * reported information via ioctl.
1964  */
1965 void
1966 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1967 {
1968 	struct ieee80211vap *vap;
1969 
1970 	IEEE80211_LOCK_ASSERT(ic);
1971 
1972 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1973 
1974 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1975 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1976 		if (vap->iv_state == IEEE80211_S_CSA)
1977 			vap->iv_bss->ni_chan = ic->ic_curchan;
1978 
1979 	csa_completeswitch(ic);
1980 }
1981 
1982 /*
1983  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1984  * We clear state and move all vap's in CSA state to RUN state
1985  * so they can again transmit.
1986  */
1987 void
1988 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1989 {
1990 	IEEE80211_LOCK_ASSERT(ic);
1991 
1992 	csa_completeswitch(ic);
1993 }
1994 
1995 /*
1996  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1997  * We clear state and move all vap's in CAC state to RUN state.
1998  */
1999 void
2000 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2001 {
2002 	struct ieee80211com *ic = vap0->iv_ic;
2003 	struct ieee80211vap *vap;
2004 
2005 	IEEE80211_LOCK(ic);
2006 	/*
2007 	 * Complete CAC state change for lead vap first; then
2008 	 * clock all the other vap's waiting.
2009 	 */
2010 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2011 	    ("wrong state %d", vap0->iv_state));
2012 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2013 
2014 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2015 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2016 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2017 	IEEE80211_UNLOCK(ic);
2018 }
2019 
2020 /*
2021  * Force all vap's other than the specified vap to the INIT state
2022  * and mark them as waiting for a scan to complete.  These vaps
2023  * will be brought up when the scan completes and the scanning vap
2024  * reaches RUN state by wakeupwaiting.
2025  */
2026 static void
2027 markwaiting(struct ieee80211vap *vap0)
2028 {
2029 	struct ieee80211com *ic = vap0->iv_ic;
2030 	struct ieee80211vap *vap;
2031 
2032 	IEEE80211_LOCK_ASSERT(ic);
2033 
2034 	/*
2035 	 * A vap list entry can not disappear since we are running on the
2036 	 * taskqueue and a vap destroy will queue and drain another state
2037 	 * change task.
2038 	 */
2039 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2040 		if (vap == vap0)
2041 			continue;
2042 		if (vap->iv_state != IEEE80211_S_INIT) {
2043 			/* NB: iv_newstate may drop the lock */
2044 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2045 			IEEE80211_LOCK_ASSERT(ic);
2046 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2047 		}
2048 	}
2049 }
2050 
2051 /*
2052  * Wakeup all vap's waiting for a scan to complete.  This is the
2053  * companion to markwaiting (above) and is used to coordinate
2054  * multiple vaps scanning.
2055  * This is called from the state taskqueue.
2056  */
2057 static void
2058 wakeupwaiting(struct ieee80211vap *vap0)
2059 {
2060 	struct ieee80211com *ic = vap0->iv_ic;
2061 	struct ieee80211vap *vap;
2062 
2063 	IEEE80211_LOCK_ASSERT(ic);
2064 
2065 	/*
2066 	 * A vap list entry can not disappear since we are running on the
2067 	 * taskqueue and a vap destroy will queue and drain another state
2068 	 * change task.
2069 	 */
2070 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2071 		if (vap == vap0)
2072 			continue;
2073 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2074 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2075 			/* NB: sta's cannot go INIT->RUN */
2076 			/* NB: iv_newstate may drop the lock */
2077 			vap->iv_newstate(vap,
2078 			    vap->iv_opmode == IEEE80211_M_STA ?
2079 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2080 			IEEE80211_LOCK_ASSERT(ic);
2081 		}
2082 	}
2083 }
2084 
2085 /*
2086  * Handle post state change work common to all operating modes.
2087  */
2088 static void
2089 ieee80211_newstate_cb(void *xvap, int npending)
2090 {
2091 	struct ieee80211vap *vap = xvap;
2092 	struct ieee80211com *ic = vap->iv_ic;
2093 	enum ieee80211_state nstate, ostate;
2094 	int arg, rc;
2095 
2096 	IEEE80211_LOCK(ic);
2097 	nstate = vap->iv_nstate;
2098 	arg = vap->iv_nstate_arg;
2099 
2100 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2101 		/*
2102 		 * We have been requested to drop back to the INIT before
2103 		 * proceeding to the new state.
2104 		 */
2105 		/* Deny any state changes while we are here. */
2106 		vap->iv_nstate = IEEE80211_S_INIT;
2107 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2108 		    "%s: %s -> %s arg %d\n", __func__,
2109 		    ieee80211_state_name[vap->iv_state],
2110 		    ieee80211_state_name[vap->iv_nstate], arg);
2111 		vap->iv_newstate(vap, vap->iv_nstate, 0);
2112 		IEEE80211_LOCK_ASSERT(ic);
2113 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2114 		    IEEE80211_FEXT_STATEWAIT);
2115 		/* enqueue new state transition after cancel_scan() task */
2116 		ieee80211_new_state_locked(vap, nstate, arg);
2117 		goto done;
2118 	}
2119 
2120 	ostate = vap->iv_state;
2121 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2122 		/*
2123 		 * SCAN was forced; e.g. on beacon miss.  Force other running
2124 		 * vap's to INIT state and mark them as waiting for the scan to
2125 		 * complete.  This insures they don't interfere with our
2126 		 * scanning.  Since we are single threaded the vaps can not
2127 		 * transition again while we are executing.
2128 		 *
2129 		 * XXX not always right, assumes ap follows sta
2130 		 */
2131 		markwaiting(vap);
2132 	}
2133 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2134 	    "%s: %s -> %s arg %d\n", __func__,
2135 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2136 
2137 	rc = vap->iv_newstate(vap, nstate, arg);
2138 	IEEE80211_LOCK_ASSERT(ic);
2139 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2140 	if (rc != 0) {
2141 		/* State transition failed */
2142 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2143 		KASSERT(nstate != IEEE80211_S_INIT,
2144 		    ("INIT state change failed"));
2145 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2146 		    "%s: %s returned error %d\n", __func__,
2147 		    ieee80211_state_name[nstate], rc);
2148 		goto done;
2149 	}
2150 
2151 	/* No actual transition, skip post processing */
2152 	if (ostate == nstate)
2153 		goto done;
2154 
2155 	if (nstate == IEEE80211_S_RUN) {
2156 		/*
2157 		 * OACTIVE may be set on the vap if the upper layer
2158 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2159 		 * RUN state.  Clear it and restart xmit.
2160 		 *
2161 		 * Note this can also happen as a result of SLEEP->RUN
2162 		 * (i.e. coming out of power save mode).
2163 		 */
2164 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2165 
2166 		/*
2167 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2168 		 */
2169 
2170 		/* bring up any vaps waiting on us */
2171 		wakeupwaiting(vap);
2172 	} else if (nstate == IEEE80211_S_INIT) {
2173 		/*
2174 		 * Flush the scan cache if we did the last scan (XXX?)
2175 		 * and flush any frames on send queues from this vap.
2176 		 * Note the mgt q is used only for legacy drivers and
2177 		 * will go away shortly.
2178 		 */
2179 		ieee80211_scan_flush(vap);
2180 
2181 		/*
2182 		 * XXX TODO: ic/vap queue flush
2183 		 */
2184 	}
2185 done:
2186 	IEEE80211_UNLOCK(ic);
2187 }
2188 
2189 /*
2190  * Public interface for initiating a state machine change.
2191  * This routine single-threads the request and coordinates
2192  * the scheduling of multiple vaps for the purpose of selecting
2193  * an operating channel.  Specifically the following scenarios
2194  * are handled:
2195  * o only one vap can be selecting a channel so on transition to
2196  *   SCAN state if another vap is already scanning then
2197  *   mark the caller for later processing and return without
2198  *   doing anything (XXX? expectations by caller of synchronous operation)
2199  * o only one vap can be doing CAC of a channel so on transition to
2200  *   CAC state if another vap is already scanning for radar then
2201  *   mark the caller for later processing and return without
2202  *   doing anything (XXX? expectations by caller of synchronous operation)
2203  * o if another vap is already running when a request is made
2204  *   to SCAN then an operating channel has been chosen; bypass
2205  *   the scan and just join the channel
2206  *
2207  * Note that the state change call is done through the iv_newstate
2208  * method pointer so any driver routine gets invoked.  The driver
2209  * will normally call back into operating mode-specific
2210  * ieee80211_newstate routines (below) unless it needs to completely
2211  * bypass the state machine (e.g. because the firmware has it's
2212  * own idea how things should work).  Bypassing the net80211 layer
2213  * is usually a mistake and indicates lack of proper integration
2214  * with the net80211 layer.
2215  */
2216 int
2217 ieee80211_new_state_locked(struct ieee80211vap *vap,
2218 	enum ieee80211_state nstate, int arg)
2219 {
2220 	struct ieee80211com *ic = vap->iv_ic;
2221 	struct ieee80211vap *vp;
2222 	enum ieee80211_state ostate;
2223 	int nrunning, nscanning;
2224 
2225 	IEEE80211_LOCK_ASSERT(ic);
2226 
2227 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2228 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2229 		    ((vap->iv_state == IEEE80211_S_INIT ||
2230 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2231 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2232 		    nstate > IEEE80211_S_SCAN)) {
2233 			/*
2234 			 * XXX The vap is being stopped/started,
2235 			 * do not allow any other state changes
2236 			 * until this is completed.
2237 			 */
2238 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2239 			    "%s: %s -> %s (%s) transition discarded\n",
2240 			    __func__,
2241 			    ieee80211_state_name[vap->iv_state],
2242 			    ieee80211_state_name[nstate],
2243 			    ieee80211_state_name[vap->iv_nstate]);
2244 			return -1;
2245 		} else if (vap->iv_state != vap->iv_nstate) {
2246 #if 0
2247 			/* Warn if the previous state hasn't completed. */
2248 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2249 			    "%s: pending %s -> %s transition lost\n", __func__,
2250 			    ieee80211_state_name[vap->iv_state],
2251 			    ieee80211_state_name[vap->iv_nstate]);
2252 #else
2253 			/* XXX temporarily enable to identify issues */
2254 			if_printf(vap->iv_ifp,
2255 			    "%s: pending %s -> %s transition lost\n",
2256 			    __func__, ieee80211_state_name[vap->iv_state],
2257 			    ieee80211_state_name[vap->iv_nstate]);
2258 #endif
2259 		}
2260 	}
2261 
2262 	nrunning = nscanning = 0;
2263 	/* XXX can track this state instead of calculating */
2264 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2265 		if (vp != vap) {
2266 			if (vp->iv_state >= IEEE80211_S_RUN)
2267 				nrunning++;
2268 			/* XXX doesn't handle bg scan */
2269 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2270 			else if (vp->iv_state > IEEE80211_S_INIT)
2271 				nscanning++;
2272 		}
2273 	}
2274 	ostate = vap->iv_state;
2275 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2276 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2277 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2278 	    nrunning, nscanning);
2279 	switch (nstate) {
2280 	case IEEE80211_S_SCAN:
2281 		if (ostate == IEEE80211_S_INIT) {
2282 			/*
2283 			 * INIT -> SCAN happens on initial bringup.
2284 			 */
2285 			KASSERT(!(nscanning && nrunning),
2286 			    ("%d scanning and %d running", nscanning, nrunning));
2287 			if (nscanning) {
2288 				/*
2289 				 * Someone is scanning, defer our state
2290 				 * change until the work has completed.
2291 				 */
2292 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2293 				    "%s: defer %s -> %s\n",
2294 				    __func__, ieee80211_state_name[ostate],
2295 				    ieee80211_state_name[nstate]);
2296 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2297 				return 0;
2298 			}
2299 			if (nrunning) {
2300 				/*
2301 				 * Someone is operating; just join the channel
2302 				 * they have chosen.
2303 				 */
2304 				/* XXX kill arg? */
2305 				/* XXX check each opmode, adhoc? */
2306 				if (vap->iv_opmode == IEEE80211_M_STA)
2307 					nstate = IEEE80211_S_SCAN;
2308 				else
2309 					nstate = IEEE80211_S_RUN;
2310 #ifdef IEEE80211_DEBUG
2311 				if (nstate != IEEE80211_S_SCAN) {
2312 					IEEE80211_DPRINTF(vap,
2313 					    IEEE80211_MSG_STATE,
2314 					    "%s: override, now %s -> %s\n",
2315 					    __func__,
2316 					    ieee80211_state_name[ostate],
2317 					    ieee80211_state_name[nstate]);
2318 				}
2319 #endif
2320 			}
2321 		}
2322 		break;
2323 	case IEEE80211_S_RUN:
2324 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2325 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2326 		    nscanning) {
2327 			/*
2328 			 * Legacy WDS with someone else scanning; don't
2329 			 * go online until that completes as we should
2330 			 * follow the other vap to the channel they choose.
2331 			 */
2332 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2333 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2334 			     ieee80211_state_name[ostate],
2335 			     ieee80211_state_name[nstate]);
2336 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2337 			return 0;
2338 		}
2339 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2340 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2341 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2342 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2343 			/*
2344 			 * This is a DFS channel, transition to CAC state
2345 			 * instead of RUN.  This allows us to initiate
2346 			 * Channel Availability Check (CAC) as specified
2347 			 * by 11h/DFS.
2348 			 */
2349 			nstate = IEEE80211_S_CAC;
2350 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2351 			     "%s: override %s -> %s (DFS)\n", __func__,
2352 			     ieee80211_state_name[ostate],
2353 			     ieee80211_state_name[nstate]);
2354 		}
2355 		break;
2356 	case IEEE80211_S_INIT:
2357 		/* cancel any scan in progress */
2358 		ieee80211_cancel_scan(vap);
2359 		if (ostate == IEEE80211_S_INIT ) {
2360 			/* XXX don't believe this */
2361 			/* INIT -> INIT. nothing to do */
2362 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2363 		}
2364 		/* fall thru... */
2365 	default:
2366 		break;
2367 	}
2368 	/* defer the state change to a thread */
2369 	vap->iv_nstate = nstate;
2370 	vap->iv_nstate_arg = arg;
2371 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2372 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2373 	return EINPROGRESS;
2374 }
2375 
2376 int
2377 ieee80211_new_state(struct ieee80211vap *vap,
2378 	enum ieee80211_state nstate, int arg)
2379 {
2380 	struct ieee80211com *ic = vap->iv_ic;
2381 	int rc;
2382 
2383 	IEEE80211_LOCK(ic);
2384 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2385 	IEEE80211_UNLOCK(ic);
2386 	return rc;
2387 }
2388