xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 991554f2c46fdbc7e9acbf87fc8da089618c3a19)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_media.h>
47 #include <net/ethernet.h>		/* XXX for ether_sprintf */
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_adhoc.h>
51 #include <net80211/ieee80211_sta.h>
52 #include <net80211/ieee80211_hostap.h>
53 #include <net80211/ieee80211_wds.h>
54 #ifdef IEEE80211_SUPPORT_MESH
55 #include <net80211/ieee80211_mesh.h>
56 #endif
57 #include <net80211/ieee80211_monitor.h>
58 #include <net80211/ieee80211_input.h>
59 
60 /* XXX tunables */
61 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
62 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
63 
64 const char *ieee80211_mgt_subtype_name[] = {
65 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
66 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
67 	"beacon",	"atim",		"disassoc",	"auth",
68 	"deauth",	"action",	"action_noack",	"reserved#15"
69 };
70 const char *ieee80211_ctl_subtype_name[] = {
71 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
72 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
73 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
74 	"cts",		"ack",		"cf_end",	"cf_end_ack"
75 };
76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
77 	"IBSS",		/* IEEE80211_M_IBSS */
78 	"STA",		/* IEEE80211_M_STA */
79 	"WDS",		/* IEEE80211_M_WDS */
80 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
81 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
82 	"MONITOR",	/* IEEE80211_M_MONITOR */
83 	"MBSS"		/* IEEE80211_M_MBSS */
84 };
85 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
86 	"INIT",		/* IEEE80211_S_INIT */
87 	"SCAN",		/* IEEE80211_S_SCAN */
88 	"AUTH",		/* IEEE80211_S_AUTH */
89 	"ASSOC",	/* IEEE80211_S_ASSOC */
90 	"CAC",		/* IEEE80211_S_CAC */
91 	"RUN",		/* IEEE80211_S_RUN */
92 	"CSA",		/* IEEE80211_S_CSA */
93 	"SLEEP",	/* IEEE80211_S_SLEEP */
94 };
95 const char *ieee80211_wme_acnames[] = {
96 	"WME_AC_BE",
97 	"WME_AC_BK",
98 	"WME_AC_VI",
99 	"WME_AC_VO",
100 	"WME_UPSD",
101 };
102 
103 static void beacon_miss(void *, int);
104 static void beacon_swmiss(void *, int);
105 static void parent_updown(void *, int);
106 static void update_mcast(void *, int);
107 static void update_promisc(void *, int);
108 static void update_channel(void *, int);
109 static void update_chw(void *, int);
110 static void ieee80211_newstate_cb(void *, int);
111 
112 static int
113 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
114 	const struct ieee80211_bpf_params *params)
115 {
116 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
117 
118 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
119 	m_freem(m);
120 	return ENETDOWN;
121 }
122 
123 void
124 ieee80211_proto_attach(struct ieee80211com *ic)
125 {
126 	struct ifnet *ifp = ic->ic_ifp;
127 
128 	/* override the 802.3 setting */
129 	ifp->if_hdrlen = ic->ic_headroom
130 		+ sizeof(struct ieee80211_qosframe_addr4)
131 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
132 		+ IEEE80211_WEP_EXTIVLEN;
133 	/* XXX no way to recalculate on ifdetach */
134 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
135 		/* XXX sanity check... */
136 		max_linkhdr = ALIGN(ifp->if_hdrlen);
137 		max_hdr = max_linkhdr + max_protohdr;
138 		max_datalen = MHLEN - max_hdr;
139 	}
140 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
141 
142 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
143 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
144 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
145 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
146 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
147 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
148 
149 	ic->ic_wme.wme_hipri_switch_hysteresis =
150 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
151 
152 	/* initialize management frame handlers */
153 	ic->ic_send_mgmt = ieee80211_send_mgmt;
154 	ic->ic_raw_xmit = null_raw_xmit;
155 
156 	ieee80211_adhoc_attach(ic);
157 	ieee80211_sta_attach(ic);
158 	ieee80211_wds_attach(ic);
159 	ieee80211_hostap_attach(ic);
160 #ifdef IEEE80211_SUPPORT_MESH
161 	ieee80211_mesh_attach(ic);
162 #endif
163 	ieee80211_monitor_attach(ic);
164 }
165 
166 void
167 ieee80211_proto_detach(struct ieee80211com *ic)
168 {
169 	ieee80211_monitor_detach(ic);
170 #ifdef IEEE80211_SUPPORT_MESH
171 	ieee80211_mesh_detach(ic);
172 #endif
173 	ieee80211_hostap_detach(ic);
174 	ieee80211_wds_detach(ic);
175 	ieee80211_adhoc_detach(ic);
176 	ieee80211_sta_detach(ic);
177 }
178 
179 static void
180 null_update_beacon(struct ieee80211vap *vap, int item)
181 {
182 }
183 
184 void
185 ieee80211_proto_vattach(struct ieee80211vap *vap)
186 {
187 	struct ieee80211com *ic = vap->iv_ic;
188 	struct ifnet *ifp = vap->iv_ifp;
189 	int i;
190 
191 	/* override the 802.3 setting */
192 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
193 
194 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
195 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
196 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
197 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
198 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
199 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
200 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
201 	/*
202 	 * Install default tx rate handling: no fixed rate, lowest
203 	 * supported rate for mgmt and multicast frames.  Default
204 	 * max retry count.  These settings can be changed by the
205 	 * driver and/or user applications.
206 	 */
207 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
208 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
209 
210 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
211 
212 		/*
213 		 * Setting the management rate to MCS 0 assumes that the
214 		 * BSS Basic rate set is empty and the BSS Basic MCS set
215 		 * is not.
216 		 *
217 		 * Since we're not checking this, default to the lowest
218 		 * defined rate for this mode.
219 		 *
220 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
221 		 * some MCS management traffic (eg BA response frames.)
222 		 *
223 		 * See also: 9.6.0 of the 802.11n-2009 specification.
224 		 */
225 #ifdef	NOTYET
226 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
227 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
228 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
229 		} else {
230 			vap->iv_txparms[i].mgmtrate =
231 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
232 			vap->iv_txparms[i].mcastrate =
233 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
234 		}
235 #endif
236 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
237 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
238 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
239 	}
240 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
241 
242 	vap->iv_update_beacon = null_update_beacon;
243 	vap->iv_deliver_data = ieee80211_deliver_data;
244 
245 	/* attach support for operating mode */
246 	ic->ic_vattach[vap->iv_opmode](vap);
247 }
248 
249 void
250 ieee80211_proto_vdetach(struct ieee80211vap *vap)
251 {
252 #define	FREEAPPIE(ie) do { \
253 	if (ie != NULL) \
254 		free(ie, M_80211_NODE_IE); \
255 } while (0)
256 	/*
257 	 * Detach operating mode module.
258 	 */
259 	if (vap->iv_opdetach != NULL)
260 		vap->iv_opdetach(vap);
261 	/*
262 	 * This should not be needed as we detach when reseting
263 	 * the state but be conservative here since the
264 	 * authenticator may do things like spawn kernel threads.
265 	 */
266 	if (vap->iv_auth->ia_detach != NULL)
267 		vap->iv_auth->ia_detach(vap);
268 	/*
269 	 * Detach any ACL'ator.
270 	 */
271 	if (vap->iv_acl != NULL)
272 		vap->iv_acl->iac_detach(vap);
273 
274 	FREEAPPIE(vap->iv_appie_beacon);
275 	FREEAPPIE(vap->iv_appie_probereq);
276 	FREEAPPIE(vap->iv_appie_proberesp);
277 	FREEAPPIE(vap->iv_appie_assocreq);
278 	FREEAPPIE(vap->iv_appie_assocresp);
279 	FREEAPPIE(vap->iv_appie_wpa);
280 #undef FREEAPPIE
281 }
282 
283 /*
284  * Simple-minded authenticator module support.
285  */
286 
287 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
288 /* XXX well-known names */
289 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
290 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
291 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
292 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
293 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
294 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
295 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
296 };
297 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
298 
299 static const struct ieee80211_authenticator auth_internal = {
300 	.ia_name		= "wlan_internal",
301 	.ia_attach		= NULL,
302 	.ia_detach		= NULL,
303 	.ia_node_join		= NULL,
304 	.ia_node_leave		= NULL,
305 };
306 
307 /*
308  * Setup internal authenticators once; they are never unregistered.
309  */
310 static void
311 ieee80211_auth_setup(void)
312 {
313 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
314 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
315 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
316 }
317 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
318 
319 const struct ieee80211_authenticator *
320 ieee80211_authenticator_get(int auth)
321 {
322 	if (auth >= IEEE80211_AUTH_MAX)
323 		return NULL;
324 	if (authenticators[auth] == NULL)
325 		ieee80211_load_module(auth_modnames[auth]);
326 	return authenticators[auth];
327 }
328 
329 void
330 ieee80211_authenticator_register(int type,
331 	const struct ieee80211_authenticator *auth)
332 {
333 	if (type >= IEEE80211_AUTH_MAX)
334 		return;
335 	authenticators[type] = auth;
336 }
337 
338 void
339 ieee80211_authenticator_unregister(int type)
340 {
341 
342 	if (type >= IEEE80211_AUTH_MAX)
343 		return;
344 	authenticators[type] = NULL;
345 }
346 
347 /*
348  * Very simple-minded ACL module support.
349  */
350 /* XXX just one for now */
351 static	const struct ieee80211_aclator *acl = NULL;
352 
353 void
354 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
355 {
356 	printf("wlan: %s acl policy registered\n", iac->iac_name);
357 	acl = iac;
358 }
359 
360 void
361 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
362 {
363 	if (acl == iac)
364 		acl = NULL;
365 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
366 }
367 
368 const struct ieee80211_aclator *
369 ieee80211_aclator_get(const char *name)
370 {
371 	if (acl == NULL)
372 		ieee80211_load_module("wlan_acl");
373 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
374 }
375 
376 void
377 ieee80211_print_essid(const uint8_t *essid, int len)
378 {
379 	const uint8_t *p;
380 	int i;
381 
382 	if (len > IEEE80211_NWID_LEN)
383 		len = IEEE80211_NWID_LEN;
384 	/* determine printable or not */
385 	for (i = 0, p = essid; i < len; i++, p++) {
386 		if (*p < ' ' || *p > 0x7e)
387 			break;
388 	}
389 	if (i == len) {
390 		printf("\"");
391 		for (i = 0, p = essid; i < len; i++, p++)
392 			printf("%c", *p);
393 		printf("\"");
394 	} else {
395 		printf("0x");
396 		for (i = 0, p = essid; i < len; i++, p++)
397 			printf("%02x", *p);
398 	}
399 }
400 
401 void
402 ieee80211_dump_pkt(struct ieee80211com *ic,
403 	const uint8_t *buf, int len, int rate, int rssi)
404 {
405 	const struct ieee80211_frame *wh;
406 	int i;
407 
408 	wh = (const struct ieee80211_frame *)buf;
409 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
410 	case IEEE80211_FC1_DIR_NODS:
411 		printf("NODS %s", ether_sprintf(wh->i_addr2));
412 		printf("->%s", ether_sprintf(wh->i_addr1));
413 		printf("(%s)", ether_sprintf(wh->i_addr3));
414 		break;
415 	case IEEE80211_FC1_DIR_TODS:
416 		printf("TODS %s", ether_sprintf(wh->i_addr2));
417 		printf("->%s", ether_sprintf(wh->i_addr3));
418 		printf("(%s)", ether_sprintf(wh->i_addr1));
419 		break;
420 	case IEEE80211_FC1_DIR_FROMDS:
421 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
422 		printf("->%s", ether_sprintf(wh->i_addr1));
423 		printf("(%s)", ether_sprintf(wh->i_addr2));
424 		break;
425 	case IEEE80211_FC1_DIR_DSTODS:
426 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
427 		printf("->%s", ether_sprintf(wh->i_addr3));
428 		printf("(%s", ether_sprintf(wh->i_addr2));
429 		printf("->%s)", ether_sprintf(wh->i_addr1));
430 		break;
431 	}
432 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
433 	case IEEE80211_FC0_TYPE_DATA:
434 		printf(" data");
435 		break;
436 	case IEEE80211_FC0_TYPE_MGT:
437 		printf(" %s", ieee80211_mgt_subtype_name[
438 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
439 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
440 		break;
441 	default:
442 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
443 		break;
444 	}
445 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
446 		const struct ieee80211_qosframe *qwh =
447 			(const struct ieee80211_qosframe *)buf;
448 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
449 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
450 	}
451 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
452 		int off;
453 
454 		off = ieee80211_anyhdrspace(ic, wh);
455 		printf(" WEP [IV %.02x %.02x %.02x",
456 			buf[off+0], buf[off+1], buf[off+2]);
457 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
458 			printf(" %.02x %.02x %.02x",
459 				buf[off+4], buf[off+5], buf[off+6]);
460 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
461 	}
462 	if (rate >= 0)
463 		printf(" %dM", rate / 2);
464 	if (rssi >= 0)
465 		printf(" +%d", rssi);
466 	printf("\n");
467 	if (len > 0) {
468 		for (i = 0; i < len; i++) {
469 			if ((i & 1) == 0)
470 				printf(" ");
471 			printf("%02x", buf[i]);
472 		}
473 		printf("\n");
474 	}
475 }
476 
477 static __inline int
478 findrix(const struct ieee80211_rateset *rs, int r)
479 {
480 	int i;
481 
482 	for (i = 0; i < rs->rs_nrates; i++)
483 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
484 			return i;
485 	return -1;
486 }
487 
488 int
489 ieee80211_fix_rate(struct ieee80211_node *ni,
490 	struct ieee80211_rateset *nrs, int flags)
491 {
492 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
493 	struct ieee80211vap *vap = ni->ni_vap;
494 	struct ieee80211com *ic = ni->ni_ic;
495 	int i, j, rix, error;
496 	int okrate, badrate, fixedrate, ucastrate;
497 	const struct ieee80211_rateset *srs;
498 	uint8_t r;
499 
500 	error = 0;
501 	okrate = badrate = 0;
502 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
503 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
504 		/*
505 		 * Workaround awkwardness with fixed rate.  We are called
506 		 * to check both the legacy rate set and the HT rate set
507 		 * but we must apply any legacy fixed rate check only to the
508 		 * legacy rate set and vice versa.  We cannot tell what type
509 		 * of rate set we've been given (legacy or HT) but we can
510 		 * distinguish the fixed rate type (MCS have 0x80 set).
511 		 * So to deal with this the caller communicates whether to
512 		 * check MCS or legacy rate using the flags and we use the
513 		 * type of any fixed rate to avoid applying an MCS to a
514 		 * legacy rate and vice versa.
515 		 */
516 		if (ucastrate & 0x80) {
517 			if (flags & IEEE80211_F_DOFRATE)
518 				flags &= ~IEEE80211_F_DOFRATE;
519 		} else if ((ucastrate & 0x80) == 0) {
520 			if (flags & IEEE80211_F_DOFMCS)
521 				flags &= ~IEEE80211_F_DOFMCS;
522 		}
523 		/* NB: required to make MCS match below work */
524 		ucastrate &= IEEE80211_RATE_VAL;
525 	}
526 	fixedrate = IEEE80211_FIXED_RATE_NONE;
527 	/*
528 	 * XXX we are called to process both MCS and legacy rates;
529 	 * we must use the appropriate basic rate set or chaos will
530 	 * ensue; for now callers that want MCS must supply
531 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
532 	 * function so there are two variants, one for MCS and one
533 	 * for legacy rates.
534 	 */
535 	if (flags & IEEE80211_F_DOBRS)
536 		srs = (const struct ieee80211_rateset *)
537 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
538 	else
539 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
540 	for (i = 0; i < nrs->rs_nrates; ) {
541 		if (flags & IEEE80211_F_DOSORT) {
542 			/*
543 			 * Sort rates.
544 			 */
545 			for (j = i + 1; j < nrs->rs_nrates; j++) {
546 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
547 					r = nrs->rs_rates[i];
548 					nrs->rs_rates[i] = nrs->rs_rates[j];
549 					nrs->rs_rates[j] = r;
550 				}
551 			}
552 		}
553 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
554 		badrate = r;
555 		/*
556 		 * Check for fixed rate.
557 		 */
558 		if (r == ucastrate)
559 			fixedrate = r;
560 		/*
561 		 * Check against supported rates.
562 		 */
563 		rix = findrix(srs, r);
564 		if (flags & IEEE80211_F_DONEGO) {
565 			if (rix < 0) {
566 				/*
567 				 * A rate in the node's rate set is not
568 				 * supported.  If this is a basic rate and we
569 				 * are operating as a STA then this is an error.
570 				 * Otherwise we just discard/ignore the rate.
571 				 */
572 				if ((flags & IEEE80211_F_JOIN) &&
573 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
574 					error++;
575 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
576 				/*
577 				 * Overwrite with the supported rate
578 				 * value so any basic rate bit is set.
579 				 */
580 				nrs->rs_rates[i] = srs->rs_rates[rix];
581 			}
582 		}
583 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
584 			/*
585 			 * Delete unacceptable rates.
586 			 */
587 			nrs->rs_nrates--;
588 			for (j = i; j < nrs->rs_nrates; j++)
589 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
590 			nrs->rs_rates[j] = 0;
591 			continue;
592 		}
593 		if (rix >= 0)
594 			okrate = nrs->rs_rates[i];
595 		i++;
596 	}
597 	if (okrate == 0 || error != 0 ||
598 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
599 	     fixedrate != ucastrate)) {
600 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
601 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
602 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
603 		return badrate | IEEE80211_RATE_BASIC;
604 	} else
605 		return RV(okrate);
606 #undef RV
607 }
608 
609 /*
610  * Reset 11g-related state.
611  */
612 void
613 ieee80211_reset_erp(struct ieee80211com *ic)
614 {
615 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
616 	ic->ic_nonerpsta = 0;
617 	ic->ic_longslotsta = 0;
618 	/*
619 	 * Short slot time is enabled only when operating in 11g
620 	 * and not in an IBSS.  We must also honor whether or not
621 	 * the driver is capable of doing it.
622 	 */
623 	ieee80211_set_shortslottime(ic,
624 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
625 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
626 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
627 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
628 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
629 	/*
630 	 * Set short preamble and ERP barker-preamble flags.
631 	 */
632 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
633 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
634 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
635 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
636 	} else {
637 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
638 		ic->ic_flags |= IEEE80211_F_USEBARKER;
639 	}
640 }
641 
642 /*
643  * Set the short slot time state and notify the driver.
644  */
645 void
646 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
647 {
648 	if (onoff)
649 		ic->ic_flags |= IEEE80211_F_SHSLOT;
650 	else
651 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
652 	/* notify driver */
653 	if (ic->ic_updateslot != NULL)
654 		ic->ic_updateslot(ic->ic_ifp);
655 }
656 
657 /*
658  * Check if the specified rate set supports ERP.
659  * NB: the rate set is assumed to be sorted.
660  */
661 int
662 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
663 {
664 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
665 	int i, j;
666 
667 	if (rs->rs_nrates < nitems(rates))
668 		return 0;
669 	for (i = 0; i < nitems(rates); i++) {
670 		for (j = 0; j < rs->rs_nrates; j++) {
671 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
672 			if (rates[i] == r)
673 				goto next;
674 			if (r > rates[i])
675 				return 0;
676 		}
677 		return 0;
678 	next:
679 		;
680 	}
681 	return 1;
682 }
683 
684 /*
685  * Mark the basic rates for the rate table based on the
686  * operating mode.  For real 11g we mark all the 11b rates
687  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
688  * 11b rates.  There's also a pseudo 11a-mode used to mark only
689  * the basic OFDM rates.
690  */
691 static void
692 setbasicrates(struct ieee80211_rateset *rs,
693     enum ieee80211_phymode mode, int add)
694 {
695 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
696 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
697 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
698 					    /* NB: mixed b/g */
699 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
700 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
701 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
702 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
703 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
704 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
705 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
706 					    /* NB: mixed b/g */
707 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
708 	};
709 	int i, j;
710 
711 	for (i = 0; i < rs->rs_nrates; i++) {
712 		if (!add)
713 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
714 		for (j = 0; j < basic[mode].rs_nrates; j++)
715 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
716 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
717 				break;
718 			}
719 	}
720 }
721 
722 /*
723  * Set the basic rates in a rate set.
724  */
725 void
726 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
727     enum ieee80211_phymode mode)
728 {
729 	setbasicrates(rs, mode, 0);
730 }
731 
732 /*
733  * Add basic rates to a rate set.
734  */
735 void
736 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
737     enum ieee80211_phymode mode)
738 {
739 	setbasicrates(rs, mode, 1);
740 }
741 
742 /*
743  * WME protocol support.
744  *
745  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
746  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
747  * Draft 2.0 Test Plan (Appendix D).
748  *
749  * Static/Dynamic Turbo mode settings come from Atheros.
750  */
751 typedef struct phyParamType {
752 	uint8_t		aifsn;
753 	uint8_t		logcwmin;
754 	uint8_t		logcwmax;
755 	uint16_t	txopLimit;
756 	uint8_t 	acm;
757 } paramType;
758 
759 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
760 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
761 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
762 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
766 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
767 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
768 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
769 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
772 };
773 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
774 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
775 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
776 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
780 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
781 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
782 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
783 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
786 };
787 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
788 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
789 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
790 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
791 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
792 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
793 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
794 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
795 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
796 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
797 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
799 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
800 };
801 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
802 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
803 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
804 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
805 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
806 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
807 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
808 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
809 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
810 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
811 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
813 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
814 };
815 
816 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
817 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
818 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
819 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
823 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
824 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
825 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
826 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
829 };
830 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
831 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
832 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
833 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
834 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
835 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
836 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
837 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
838 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
839 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
840 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
842 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
843 };
844 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
845 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
846 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
847 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
848 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
849 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
850 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
851 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
852 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
853 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
854 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
856 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
857 };
858 
859 static void
860 _setifsparams(struct wmeParams *wmep, const paramType *phy)
861 {
862 	wmep->wmep_aifsn = phy->aifsn;
863 	wmep->wmep_logcwmin = phy->logcwmin;
864 	wmep->wmep_logcwmax = phy->logcwmax;
865 	wmep->wmep_txopLimit = phy->txopLimit;
866 }
867 
868 static void
869 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
870 	struct wmeParams *wmep, const paramType *phy)
871 {
872 	wmep->wmep_acm = phy->acm;
873 	_setifsparams(wmep, phy);
874 
875 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
876 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
877 	    ieee80211_wme_acnames[ac], type,
878 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
879 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
880 }
881 
882 static void
883 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
884 {
885 	struct ieee80211com *ic = vap->iv_ic;
886 	struct ieee80211_wme_state *wme = &ic->ic_wme;
887 	const paramType *pPhyParam, *pBssPhyParam;
888 	struct wmeParams *wmep;
889 	enum ieee80211_phymode mode;
890 	int i;
891 
892 	IEEE80211_LOCK_ASSERT(ic);
893 
894 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
895 		return;
896 
897 	/*
898 	 * Clear the wme cap_info field so a qoscount from a previous
899 	 * vap doesn't confuse later code which only parses the beacon
900 	 * field and updates hardware when said field changes.
901 	 * Otherwise the hardware is programmed with defaults, not what
902 	 * the beacon actually announces.
903 	 */
904 	wme->wme_wmeChanParams.cap_info = 0;
905 
906 	/*
907 	 * Select mode; we can be called early in which case we
908 	 * always use auto mode.  We know we'll be called when
909 	 * entering the RUN state with bsschan setup properly
910 	 * so state will eventually get set correctly
911 	 */
912 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
913 		mode = ieee80211_chan2mode(ic->ic_bsschan);
914 	else
915 		mode = IEEE80211_MODE_AUTO;
916 	for (i = 0; i < WME_NUM_AC; i++) {
917 		switch (i) {
918 		case WME_AC_BK:
919 			pPhyParam = &phyParamForAC_BK[mode];
920 			pBssPhyParam = &phyParamForAC_BK[mode];
921 			break;
922 		case WME_AC_VI:
923 			pPhyParam = &phyParamForAC_VI[mode];
924 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
925 			break;
926 		case WME_AC_VO:
927 			pPhyParam = &phyParamForAC_VO[mode];
928 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
929 			break;
930 		case WME_AC_BE:
931 		default:
932 			pPhyParam = &phyParamForAC_BE[mode];
933 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
934 			break;
935 		}
936 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
937 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
938 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
939 		} else {
940 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
941 		}
942 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
943 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
944 	}
945 	/* NB: check ic_bss to avoid NULL deref on initial attach */
946 	if (vap->iv_bss != NULL) {
947 		/*
948 		 * Calculate agressive mode switching threshold based
949 		 * on beacon interval.  This doesn't need locking since
950 		 * we're only called before entering the RUN state at
951 		 * which point we start sending beacon frames.
952 		 */
953 		wme->wme_hipri_switch_thresh =
954 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
955 		wme->wme_flags &= ~WME_F_AGGRMODE;
956 		ieee80211_wme_updateparams(vap);
957 	}
958 }
959 
960 void
961 ieee80211_wme_initparams(struct ieee80211vap *vap)
962 {
963 	struct ieee80211com *ic = vap->iv_ic;
964 
965 	IEEE80211_LOCK(ic);
966 	ieee80211_wme_initparams_locked(vap);
967 	IEEE80211_UNLOCK(ic);
968 }
969 
970 /*
971  * Update WME parameters for ourself and the BSS.
972  */
973 void
974 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
975 {
976 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
977 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
978 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
979 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
980 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
981 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
982 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
983 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
984 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
985 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
986 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
987 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
988 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
989 	};
990 	struct ieee80211com *ic = vap->iv_ic;
991 	struct ieee80211_wme_state *wme = &ic->ic_wme;
992 	const struct wmeParams *wmep;
993 	struct wmeParams *chanp, *bssp;
994 	enum ieee80211_phymode mode;
995 	int i;
996 	int do_aggrmode = 0;
997 
998        	/*
999 	 * Set up the channel access parameters for the physical
1000 	 * device.  First populate the configured settings.
1001 	 */
1002 	for (i = 0; i < WME_NUM_AC; i++) {
1003 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1004 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1005 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1006 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1007 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1008 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1009 
1010 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1011 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1012 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1013 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1014 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1015 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1016 	}
1017 
1018 	/*
1019 	 * Select mode; we can be called early in which case we
1020 	 * always use auto mode.  We know we'll be called when
1021 	 * entering the RUN state with bsschan setup properly
1022 	 * so state will eventually get set correctly
1023 	 */
1024 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1025 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1026 	else
1027 		mode = IEEE80211_MODE_AUTO;
1028 
1029 	/*
1030 	 * This implements agressive mode as found in certain
1031 	 * vendors' AP's.  When there is significant high
1032 	 * priority (VI/VO) traffic in the BSS throttle back BE
1033 	 * traffic by using conservative parameters.  Otherwise
1034 	 * BE uses agressive params to optimize performance of
1035 	 * legacy/non-QoS traffic.
1036 	 */
1037 
1038 	/* Hostap? Only if aggressive mode is enabled */
1039         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1040 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1041 		do_aggrmode = 1;
1042 
1043 	/*
1044 	 * Station? Only if we're in a non-QoS BSS.
1045 	 */
1046 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1047 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1048 		do_aggrmode = 1;
1049 
1050 	/*
1051 	 * IBSS? Only if we we have WME enabled.
1052 	 */
1053 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1054 	    (vap->iv_flags & IEEE80211_F_WME))
1055 		do_aggrmode = 1;
1056 
1057 	/*
1058 	 * If WME is disabled on this VAP, default to aggressive mode
1059 	 * regardless of the configuration.
1060 	 */
1061 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1062 		do_aggrmode = 1;
1063 
1064 	/* XXX WDS? */
1065 
1066 	/* XXX MBSS? */
1067 
1068 	if (do_aggrmode) {
1069 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1070 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1071 
1072 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1073 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1074 		    aggrParam[mode].logcwmin;
1075 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1076 		    aggrParam[mode].logcwmax;
1077 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1078 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1079 			aggrParam[mode].txopLimit : 0;
1080 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1081 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1082 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1083 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1084 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1085 	}
1086 
1087 
1088 	/*
1089 	 * Change the contention window based on the number of associated
1090 	 * stations.  If the number of associated stations is 1 and
1091 	 * aggressive mode is enabled, lower the contention window even
1092 	 * further.
1093 	 */
1094 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1095 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1096 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1097 		    [IEEE80211_MODE_AUTO]	= 3,
1098 		    [IEEE80211_MODE_11A]	= 3,
1099 		    [IEEE80211_MODE_11B]	= 4,
1100 		    [IEEE80211_MODE_11G]	= 3,
1101 		    [IEEE80211_MODE_FH]		= 4,
1102 		    [IEEE80211_MODE_TURBO_A]	= 3,
1103 		    [IEEE80211_MODE_TURBO_G]	= 3,
1104 		    [IEEE80211_MODE_STURBO_A]	= 3,
1105 		    [IEEE80211_MODE_HALF]	= 3,
1106 		    [IEEE80211_MODE_QUARTER]	= 3,
1107 		    [IEEE80211_MODE_11NA]	= 3,
1108 		    [IEEE80211_MODE_11NG]	= 3,
1109 		};
1110 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1111 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1112 
1113 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1114 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1115 		    "update %s (chan+bss) logcwmin %u\n",
1116 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1117 	}
1118 
1119 	/*
1120 	 * Arrange for the beacon update.
1121 	 *
1122 	 * XXX what about MBSS, WDS?
1123 	 */
1124 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1125 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1126 		/*
1127 		 * Arrange for a beacon update and bump the parameter
1128 		 * set number so associated stations load the new values.
1129 		 */
1130 		wme->wme_bssChanParams.cap_info =
1131 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1132 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1133 	}
1134 
1135 	wme->wme_update(ic);
1136 
1137 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1138 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1139 	    vap->iv_opmode == IEEE80211_M_STA ?
1140 		wme->wme_wmeChanParams.cap_info :
1141 		wme->wme_bssChanParams.cap_info);
1142 }
1143 
1144 void
1145 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1146 {
1147 	struct ieee80211com *ic = vap->iv_ic;
1148 
1149 	if (ic->ic_caps & IEEE80211_C_WME) {
1150 		IEEE80211_LOCK(ic);
1151 		ieee80211_wme_updateparams_locked(vap);
1152 		IEEE80211_UNLOCK(ic);
1153 	}
1154 }
1155 
1156 static void
1157 parent_updown(void *arg, int npending)
1158 {
1159 	struct ifnet *parent = arg;
1160 
1161 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1162 }
1163 
1164 static void
1165 update_mcast(void *arg, int npending)
1166 {
1167 	struct ieee80211com *ic = arg;
1168 	struct ifnet *parent = ic->ic_ifp;
1169 
1170 	ic->ic_update_mcast(parent);
1171 }
1172 
1173 static void
1174 update_promisc(void *arg, int npending)
1175 {
1176 	struct ieee80211com *ic = arg;
1177 	struct ifnet *parent = ic->ic_ifp;
1178 
1179 	ic->ic_update_promisc(parent);
1180 }
1181 
1182 static void
1183 update_channel(void *arg, int npending)
1184 {
1185 	struct ieee80211com *ic = arg;
1186 
1187 	ic->ic_set_channel(ic);
1188 	ieee80211_radiotap_chan_change(ic);
1189 }
1190 
1191 static void
1192 update_chw(void *arg, int npending)
1193 {
1194 	struct ieee80211com *ic = arg;
1195 
1196 	/*
1197 	 * XXX should we defer the channel width _config_ update until now?
1198 	 */
1199 	ic->ic_update_chw(ic);
1200 }
1201 
1202 /*
1203  * Block until the parent is in a known state.  This is
1204  * used after any operations that dispatch a task (e.g.
1205  * to auto-configure the parent device up/down).
1206  */
1207 void
1208 ieee80211_waitfor_parent(struct ieee80211com *ic)
1209 {
1210 	taskqueue_block(ic->ic_tq);
1211 	ieee80211_draintask(ic, &ic->ic_parent_task);
1212 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1213 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1214 	ieee80211_draintask(ic, &ic->ic_chan_task);
1215 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1216 	ieee80211_draintask(ic, &ic->ic_chw_task);
1217 	taskqueue_unblock(ic->ic_tq);
1218 }
1219 
1220 /*
1221  * Start a vap running.  If this is the first vap to be
1222  * set running on the underlying device then we
1223  * automatically bring the device up.
1224  */
1225 void
1226 ieee80211_start_locked(struct ieee80211vap *vap)
1227 {
1228 	struct ifnet *ifp = vap->iv_ifp;
1229 	struct ieee80211com *ic = vap->iv_ic;
1230 	struct ifnet *parent = ic->ic_ifp;
1231 
1232 	IEEE80211_LOCK_ASSERT(ic);
1233 
1234 	IEEE80211_DPRINTF(vap,
1235 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1236 		"start running, %d vaps running\n", ic->ic_nrunning);
1237 
1238 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1239 		/*
1240 		 * Mark us running.  Note that it's ok to do this first;
1241 		 * if we need to bring the parent device up we defer that
1242 		 * to avoid dropping the com lock.  We expect the device
1243 		 * to respond to being marked up by calling back into us
1244 		 * through ieee80211_start_all at which point we'll come
1245 		 * back in here and complete the work.
1246 		 */
1247 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1248 		/*
1249 		 * We are not running; if this we are the first vap
1250 		 * to be brought up auto-up the parent if necessary.
1251 		 */
1252 		if (ic->ic_nrunning++ == 0 &&
1253 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1254 			IEEE80211_DPRINTF(vap,
1255 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1256 			    "%s: up parent %s\n", __func__, parent->if_xname);
1257 			parent->if_flags |= IFF_UP;
1258 			ieee80211_runtask(ic, &ic->ic_parent_task);
1259 			return;
1260 		}
1261 	}
1262 	/*
1263 	 * If the parent is up and running, then kick the
1264 	 * 802.11 state machine as appropriate.
1265 	 */
1266 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1267 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1268 		if (vap->iv_opmode == IEEE80211_M_STA) {
1269 #if 0
1270 			/* XXX bypasses scan too easily; disable for now */
1271 			/*
1272 			 * Try to be intelligent about clocking the state
1273 			 * machine.  If we're currently in RUN state then
1274 			 * we should be able to apply any new state/parameters
1275 			 * simply by re-associating.  Otherwise we need to
1276 			 * re-scan to select an appropriate ap.
1277 			 */
1278 			if (vap->iv_state >= IEEE80211_S_RUN)
1279 				ieee80211_new_state_locked(vap,
1280 				    IEEE80211_S_ASSOC, 1);
1281 			else
1282 #endif
1283 				ieee80211_new_state_locked(vap,
1284 				    IEEE80211_S_SCAN, 0);
1285 		} else {
1286 			/*
1287 			 * For monitor+wds mode there's nothing to do but
1288 			 * start running.  Otherwise if this is the first
1289 			 * vap to be brought up, start a scan which may be
1290 			 * preempted if the station is locked to a particular
1291 			 * channel.
1292 			 */
1293 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1294 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1295 			    vap->iv_opmode == IEEE80211_M_WDS)
1296 				ieee80211_new_state_locked(vap,
1297 				    IEEE80211_S_RUN, -1);
1298 			else
1299 				ieee80211_new_state_locked(vap,
1300 				    IEEE80211_S_SCAN, 0);
1301 		}
1302 	}
1303 }
1304 
1305 /*
1306  * Start a single vap.
1307  */
1308 void
1309 ieee80211_init(void *arg)
1310 {
1311 	struct ieee80211vap *vap = arg;
1312 
1313 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1314 	    "%s\n", __func__);
1315 
1316 	IEEE80211_LOCK(vap->iv_ic);
1317 	ieee80211_start_locked(vap);
1318 	IEEE80211_UNLOCK(vap->iv_ic);
1319 }
1320 
1321 /*
1322  * Start all runnable vap's on a device.
1323  */
1324 void
1325 ieee80211_start_all(struct ieee80211com *ic)
1326 {
1327 	struct ieee80211vap *vap;
1328 
1329 	IEEE80211_LOCK(ic);
1330 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1331 		struct ifnet *ifp = vap->iv_ifp;
1332 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1333 			ieee80211_start_locked(vap);
1334 	}
1335 	IEEE80211_UNLOCK(ic);
1336 }
1337 
1338 /*
1339  * Stop a vap.  We force it down using the state machine
1340  * then mark it's ifnet not running.  If this is the last
1341  * vap running on the underlying device then we close it
1342  * too to insure it will be properly initialized when the
1343  * next vap is brought up.
1344  */
1345 void
1346 ieee80211_stop_locked(struct ieee80211vap *vap)
1347 {
1348 	struct ieee80211com *ic = vap->iv_ic;
1349 	struct ifnet *ifp = vap->iv_ifp;
1350 	struct ifnet *parent = ic->ic_ifp;
1351 
1352 	IEEE80211_LOCK_ASSERT(ic);
1353 
1354 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1355 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1356 
1357 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1358 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1359 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1360 		if (--ic->ic_nrunning == 0 &&
1361 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1362 			IEEE80211_DPRINTF(vap,
1363 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1364 			    "down parent %s\n", parent->if_xname);
1365 			parent->if_flags &= ~IFF_UP;
1366 			ieee80211_runtask(ic, &ic->ic_parent_task);
1367 		}
1368 	}
1369 }
1370 
1371 void
1372 ieee80211_stop(struct ieee80211vap *vap)
1373 {
1374 	struct ieee80211com *ic = vap->iv_ic;
1375 
1376 	IEEE80211_LOCK(ic);
1377 	ieee80211_stop_locked(vap);
1378 	IEEE80211_UNLOCK(ic);
1379 }
1380 
1381 /*
1382  * Stop all vap's running on a device.
1383  */
1384 void
1385 ieee80211_stop_all(struct ieee80211com *ic)
1386 {
1387 	struct ieee80211vap *vap;
1388 
1389 	IEEE80211_LOCK(ic);
1390 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1391 		struct ifnet *ifp = vap->iv_ifp;
1392 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1393 			ieee80211_stop_locked(vap);
1394 	}
1395 	IEEE80211_UNLOCK(ic);
1396 
1397 	ieee80211_waitfor_parent(ic);
1398 }
1399 
1400 /*
1401  * Stop all vap's running on a device and arrange
1402  * for those that were running to be resumed.
1403  */
1404 void
1405 ieee80211_suspend_all(struct ieee80211com *ic)
1406 {
1407 	struct ieee80211vap *vap;
1408 
1409 	IEEE80211_LOCK(ic);
1410 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1411 		struct ifnet *ifp = vap->iv_ifp;
1412 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1413 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1414 			ieee80211_stop_locked(vap);
1415 		}
1416 	}
1417 	IEEE80211_UNLOCK(ic);
1418 
1419 	ieee80211_waitfor_parent(ic);
1420 }
1421 
1422 /*
1423  * Start all vap's marked for resume.
1424  */
1425 void
1426 ieee80211_resume_all(struct ieee80211com *ic)
1427 {
1428 	struct ieee80211vap *vap;
1429 
1430 	IEEE80211_LOCK(ic);
1431 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1432 		struct ifnet *ifp = vap->iv_ifp;
1433 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1434 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1435 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1436 			ieee80211_start_locked(vap);
1437 		}
1438 	}
1439 	IEEE80211_UNLOCK(ic);
1440 }
1441 
1442 void
1443 ieee80211_beacon_miss(struct ieee80211com *ic)
1444 {
1445 	IEEE80211_LOCK(ic);
1446 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1447 		/* Process in a taskq, the handler may reenter the driver */
1448 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1449 	}
1450 	IEEE80211_UNLOCK(ic);
1451 }
1452 
1453 static void
1454 beacon_miss(void *arg, int npending)
1455 {
1456 	struct ieee80211com *ic = arg;
1457 	struct ieee80211vap *vap;
1458 
1459 	IEEE80211_LOCK(ic);
1460 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1461 		/*
1462 		 * We only pass events through for sta vap's in RUN state;
1463 		 * may be too restrictive but for now this saves all the
1464 		 * handlers duplicating these checks.
1465 		 */
1466 		if (vap->iv_opmode == IEEE80211_M_STA &&
1467 		    vap->iv_state >= IEEE80211_S_RUN &&
1468 		    vap->iv_bmiss != NULL)
1469 			vap->iv_bmiss(vap);
1470 	}
1471 	IEEE80211_UNLOCK(ic);
1472 }
1473 
1474 static void
1475 beacon_swmiss(void *arg, int npending)
1476 {
1477 	struct ieee80211vap *vap = arg;
1478 	struct ieee80211com *ic = vap->iv_ic;
1479 
1480 	IEEE80211_LOCK(ic);
1481 	if (vap->iv_state == IEEE80211_S_RUN) {
1482 		/* XXX Call multiple times if npending > zero? */
1483 		vap->iv_bmiss(vap);
1484 	}
1485 	IEEE80211_UNLOCK(ic);
1486 }
1487 
1488 /*
1489  * Software beacon miss handling.  Check if any beacons
1490  * were received in the last period.  If not post a
1491  * beacon miss; otherwise reset the counter.
1492  */
1493 void
1494 ieee80211_swbmiss(void *arg)
1495 {
1496 	struct ieee80211vap *vap = arg;
1497 	struct ieee80211com *ic = vap->iv_ic;
1498 
1499 	IEEE80211_LOCK_ASSERT(ic);
1500 
1501 	/* XXX sleep state? */
1502 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1503 	    ("wrong state %d", vap->iv_state));
1504 
1505 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1506 		/*
1507 		 * If scanning just ignore and reset state.  If we get a
1508 		 * bmiss after coming out of scan because we haven't had
1509 		 * time to receive a beacon then we should probe the AP
1510 		 * before posting a real bmiss (unless iv_bmiss_max has
1511 		 * been artifiically lowered).  A cleaner solution might
1512 		 * be to disable the timer on scan start/end but to handle
1513 		 * case of multiple sta vap's we'd need to disable the
1514 		 * timers of all affected vap's.
1515 		 */
1516 		vap->iv_swbmiss_count = 0;
1517 	} else if (vap->iv_swbmiss_count == 0) {
1518 		if (vap->iv_bmiss != NULL)
1519 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1520 	} else
1521 		vap->iv_swbmiss_count = 0;
1522 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1523 		ieee80211_swbmiss, vap);
1524 }
1525 
1526 /*
1527  * Start an 802.11h channel switch.  We record the parameters,
1528  * mark the operation pending, notify each vap through the
1529  * beacon update mechanism so it can update the beacon frame
1530  * contents, and then switch vap's to CSA state to block outbound
1531  * traffic.  Devices that handle CSA directly can use the state
1532  * switch to do the right thing so long as they call
1533  * ieee80211_csa_completeswitch when it's time to complete the
1534  * channel change.  Devices that depend on the net80211 layer can
1535  * use ieee80211_beacon_update to handle the countdown and the
1536  * channel switch.
1537  */
1538 void
1539 ieee80211_csa_startswitch(struct ieee80211com *ic,
1540 	struct ieee80211_channel *c, int mode, int count)
1541 {
1542 	struct ieee80211vap *vap;
1543 
1544 	IEEE80211_LOCK_ASSERT(ic);
1545 
1546 	ic->ic_csa_newchan = c;
1547 	ic->ic_csa_mode = mode;
1548 	ic->ic_csa_count = count;
1549 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1550 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1551 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1552 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1553 		    vap->iv_opmode == IEEE80211_M_MBSS)
1554 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1555 		/* switch to CSA state to block outbound traffic */
1556 		if (vap->iv_state == IEEE80211_S_RUN)
1557 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1558 	}
1559 	ieee80211_notify_csa(ic, c, mode, count);
1560 }
1561 
1562 /*
1563  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1564  * This is called by both the completion and cancellation functions
1565  * so each VAP is placed back in the RUN state and can thus transmit.
1566  */
1567 static void
1568 csa_completeswitch(struct ieee80211com *ic)
1569 {
1570 	struct ieee80211vap *vap;
1571 
1572 	ic->ic_csa_newchan = NULL;
1573 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1574 
1575 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1576 		if (vap->iv_state == IEEE80211_S_CSA)
1577 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1578 }
1579 
1580 /*
1581  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1582  * We clear state and move all vap's in CSA state to RUN state
1583  * so they can again transmit.
1584  *
1585  * Although this may not be completely correct, update the BSS channel
1586  * for each VAP to the newly configured channel. The setcurchan sets
1587  * the current operating channel for the interface (so the radio does
1588  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1589  * reported information via ioctl.
1590  */
1591 void
1592 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1593 {
1594 	struct ieee80211vap *vap;
1595 
1596 	IEEE80211_LOCK_ASSERT(ic);
1597 
1598 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1599 
1600 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1601 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1602 		if (vap->iv_state == IEEE80211_S_CSA)
1603 			vap->iv_bss->ni_chan = ic->ic_curchan;
1604 
1605 	csa_completeswitch(ic);
1606 }
1607 
1608 /*
1609  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1610  * We clear state and move all vap's in CSA state to RUN state
1611  * so they can again transmit.
1612  */
1613 void
1614 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1615 {
1616 	IEEE80211_LOCK_ASSERT(ic);
1617 
1618 	csa_completeswitch(ic);
1619 }
1620 
1621 /*
1622  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1623  * We clear state and move all vap's in CAC state to RUN state.
1624  */
1625 void
1626 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1627 {
1628 	struct ieee80211com *ic = vap0->iv_ic;
1629 	struct ieee80211vap *vap;
1630 
1631 	IEEE80211_LOCK(ic);
1632 	/*
1633 	 * Complete CAC state change for lead vap first; then
1634 	 * clock all the other vap's waiting.
1635 	 */
1636 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1637 	    ("wrong state %d", vap0->iv_state));
1638 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1639 
1640 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1641 		if (vap->iv_state == IEEE80211_S_CAC)
1642 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1643 	IEEE80211_UNLOCK(ic);
1644 }
1645 
1646 /*
1647  * Force all vap's other than the specified vap to the INIT state
1648  * and mark them as waiting for a scan to complete.  These vaps
1649  * will be brought up when the scan completes and the scanning vap
1650  * reaches RUN state by wakeupwaiting.
1651  */
1652 static void
1653 markwaiting(struct ieee80211vap *vap0)
1654 {
1655 	struct ieee80211com *ic = vap0->iv_ic;
1656 	struct ieee80211vap *vap;
1657 
1658 	IEEE80211_LOCK_ASSERT(ic);
1659 
1660 	/*
1661 	 * A vap list entry can not disappear since we are running on the
1662 	 * taskqueue and a vap destroy will queue and drain another state
1663 	 * change task.
1664 	 */
1665 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1666 		if (vap == vap0)
1667 			continue;
1668 		if (vap->iv_state != IEEE80211_S_INIT) {
1669 			/* NB: iv_newstate may drop the lock */
1670 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1671 			IEEE80211_LOCK_ASSERT(ic);
1672 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1673 		}
1674 	}
1675 }
1676 
1677 /*
1678  * Wakeup all vap's waiting for a scan to complete.  This is the
1679  * companion to markwaiting (above) and is used to coordinate
1680  * multiple vaps scanning.
1681  * This is called from the state taskqueue.
1682  */
1683 static void
1684 wakeupwaiting(struct ieee80211vap *vap0)
1685 {
1686 	struct ieee80211com *ic = vap0->iv_ic;
1687 	struct ieee80211vap *vap;
1688 
1689 	IEEE80211_LOCK_ASSERT(ic);
1690 
1691 	/*
1692 	 * A vap list entry can not disappear since we are running on the
1693 	 * taskqueue and a vap destroy will queue and drain another state
1694 	 * change task.
1695 	 */
1696 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1697 		if (vap == vap0)
1698 			continue;
1699 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1700 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1701 			/* NB: sta's cannot go INIT->RUN */
1702 			/* NB: iv_newstate may drop the lock */
1703 			vap->iv_newstate(vap,
1704 			    vap->iv_opmode == IEEE80211_M_STA ?
1705 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1706 			IEEE80211_LOCK_ASSERT(ic);
1707 		}
1708 	}
1709 }
1710 
1711 /*
1712  * Handle post state change work common to all operating modes.
1713  */
1714 static void
1715 ieee80211_newstate_cb(void *xvap, int npending)
1716 {
1717 	struct ieee80211vap *vap = xvap;
1718 	struct ieee80211com *ic = vap->iv_ic;
1719 	enum ieee80211_state nstate, ostate;
1720 	int arg, rc;
1721 
1722 	IEEE80211_LOCK(ic);
1723 	nstate = vap->iv_nstate;
1724 	arg = vap->iv_nstate_arg;
1725 
1726 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1727 		/*
1728 		 * We have been requested to drop back to the INIT before
1729 		 * proceeding to the new state.
1730 		 */
1731 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1732 		    "%s: %s -> %s arg %d\n", __func__,
1733 		    ieee80211_state_name[vap->iv_state],
1734 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1735 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1736 		IEEE80211_LOCK_ASSERT(ic);
1737 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1738 	}
1739 
1740 	ostate = vap->iv_state;
1741 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1742 		/*
1743 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1744 		 * vap's to INIT state and mark them as waiting for the scan to
1745 		 * complete.  This insures they don't interfere with our
1746 		 * scanning.  Since we are single threaded the vaps can not
1747 		 * transition again while we are executing.
1748 		 *
1749 		 * XXX not always right, assumes ap follows sta
1750 		 */
1751 		markwaiting(vap);
1752 	}
1753 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1754 	    "%s: %s -> %s arg %d\n", __func__,
1755 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1756 
1757 	rc = vap->iv_newstate(vap, nstate, arg);
1758 	IEEE80211_LOCK_ASSERT(ic);
1759 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1760 	if (rc != 0) {
1761 		/* State transition failed */
1762 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1763 		KASSERT(nstate != IEEE80211_S_INIT,
1764 		    ("INIT state change failed"));
1765 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1766 		    "%s: %s returned error %d\n", __func__,
1767 		    ieee80211_state_name[nstate], rc);
1768 		goto done;
1769 	}
1770 
1771 	/* No actual transition, skip post processing */
1772 	if (ostate == nstate)
1773 		goto done;
1774 
1775 	if (nstate == IEEE80211_S_RUN) {
1776 		/*
1777 		 * OACTIVE may be set on the vap if the upper layer
1778 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1779 		 * RUN state.  Clear it and restart xmit.
1780 		 *
1781 		 * Note this can also happen as a result of SLEEP->RUN
1782 		 * (i.e. coming out of power save mode).
1783 		 */
1784 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1785 
1786 		/*
1787 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1788 		 */
1789 
1790 		/* bring up any vaps waiting on us */
1791 		wakeupwaiting(vap);
1792 	} else if (nstate == IEEE80211_S_INIT) {
1793 		/*
1794 		 * Flush the scan cache if we did the last scan (XXX?)
1795 		 * and flush any frames on send queues from this vap.
1796 		 * Note the mgt q is used only for legacy drivers and
1797 		 * will go away shortly.
1798 		 */
1799 		ieee80211_scan_flush(vap);
1800 
1801 		/*
1802 		 * XXX TODO: ic/vap queue flush
1803 		 */
1804 	}
1805 done:
1806 	IEEE80211_UNLOCK(ic);
1807 }
1808 
1809 /*
1810  * Public interface for initiating a state machine change.
1811  * This routine single-threads the request and coordinates
1812  * the scheduling of multiple vaps for the purpose of selecting
1813  * an operating channel.  Specifically the following scenarios
1814  * are handled:
1815  * o only one vap can be selecting a channel so on transition to
1816  *   SCAN state if another vap is already scanning then
1817  *   mark the caller for later processing and return without
1818  *   doing anything (XXX? expectations by caller of synchronous operation)
1819  * o only one vap can be doing CAC of a channel so on transition to
1820  *   CAC state if another vap is already scanning for radar then
1821  *   mark the caller for later processing and return without
1822  *   doing anything (XXX? expectations by caller of synchronous operation)
1823  * o if another vap is already running when a request is made
1824  *   to SCAN then an operating channel has been chosen; bypass
1825  *   the scan and just join the channel
1826  *
1827  * Note that the state change call is done through the iv_newstate
1828  * method pointer so any driver routine gets invoked.  The driver
1829  * will normally call back into operating mode-specific
1830  * ieee80211_newstate routines (below) unless it needs to completely
1831  * bypass the state machine (e.g. because the firmware has it's
1832  * own idea how things should work).  Bypassing the net80211 layer
1833  * is usually a mistake and indicates lack of proper integration
1834  * with the net80211 layer.
1835  */
1836 int
1837 ieee80211_new_state_locked(struct ieee80211vap *vap,
1838 	enum ieee80211_state nstate, int arg)
1839 {
1840 	struct ieee80211com *ic = vap->iv_ic;
1841 	struct ieee80211vap *vp;
1842 	enum ieee80211_state ostate;
1843 	int nrunning, nscanning;
1844 
1845 	IEEE80211_LOCK_ASSERT(ic);
1846 
1847 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1848 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1849 			/*
1850 			 * XXX The vap is being stopped, do no allow any other
1851 			 * state changes until this is completed.
1852 			 */
1853 			return -1;
1854 		} else if (vap->iv_state != vap->iv_nstate) {
1855 #if 0
1856 			/* Warn if the previous state hasn't completed. */
1857 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1858 			    "%s: pending %s -> %s transition lost\n", __func__,
1859 			    ieee80211_state_name[vap->iv_state],
1860 			    ieee80211_state_name[vap->iv_nstate]);
1861 #else
1862 			/* XXX temporarily enable to identify issues */
1863 			if_printf(vap->iv_ifp,
1864 			    "%s: pending %s -> %s transition lost\n",
1865 			    __func__, ieee80211_state_name[vap->iv_state],
1866 			    ieee80211_state_name[vap->iv_nstate]);
1867 #endif
1868 		}
1869 	}
1870 
1871 	nrunning = nscanning = 0;
1872 	/* XXX can track this state instead of calculating */
1873 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1874 		if (vp != vap) {
1875 			if (vp->iv_state >= IEEE80211_S_RUN)
1876 				nrunning++;
1877 			/* XXX doesn't handle bg scan */
1878 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1879 			else if (vp->iv_state > IEEE80211_S_INIT)
1880 				nscanning++;
1881 		}
1882 	}
1883 	ostate = vap->iv_state;
1884 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1885 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1886 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1887 	    nrunning, nscanning);
1888 	switch (nstate) {
1889 	case IEEE80211_S_SCAN:
1890 		if (ostate == IEEE80211_S_INIT) {
1891 			/*
1892 			 * INIT -> SCAN happens on initial bringup.
1893 			 */
1894 			KASSERT(!(nscanning && nrunning),
1895 			    ("%d scanning and %d running", nscanning, nrunning));
1896 			if (nscanning) {
1897 				/*
1898 				 * Someone is scanning, defer our state
1899 				 * change until the work has completed.
1900 				 */
1901 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1902 				    "%s: defer %s -> %s\n",
1903 				    __func__, ieee80211_state_name[ostate],
1904 				    ieee80211_state_name[nstate]);
1905 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1906 				return 0;
1907 			}
1908 			if (nrunning) {
1909 				/*
1910 				 * Someone is operating; just join the channel
1911 				 * they have chosen.
1912 				 */
1913 				/* XXX kill arg? */
1914 				/* XXX check each opmode, adhoc? */
1915 				if (vap->iv_opmode == IEEE80211_M_STA)
1916 					nstate = IEEE80211_S_SCAN;
1917 				else
1918 					nstate = IEEE80211_S_RUN;
1919 #ifdef IEEE80211_DEBUG
1920 				if (nstate != IEEE80211_S_SCAN) {
1921 					IEEE80211_DPRINTF(vap,
1922 					    IEEE80211_MSG_STATE,
1923 					    "%s: override, now %s -> %s\n",
1924 					    __func__,
1925 					    ieee80211_state_name[ostate],
1926 					    ieee80211_state_name[nstate]);
1927 				}
1928 #endif
1929 			}
1930 		}
1931 		break;
1932 	case IEEE80211_S_RUN:
1933 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1934 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1935 		    nscanning) {
1936 			/*
1937 			 * Legacy WDS with someone else scanning; don't
1938 			 * go online until that completes as we should
1939 			 * follow the other vap to the channel they choose.
1940 			 */
1941 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1942 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1943 			     ieee80211_state_name[ostate],
1944 			     ieee80211_state_name[nstate]);
1945 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1946 			return 0;
1947 		}
1948 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1949 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1950 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1951 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1952 			/*
1953 			 * This is a DFS channel, transition to CAC state
1954 			 * instead of RUN.  This allows us to initiate
1955 			 * Channel Availability Check (CAC) as specified
1956 			 * by 11h/DFS.
1957 			 */
1958 			nstate = IEEE80211_S_CAC;
1959 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1960 			     "%s: override %s -> %s (DFS)\n", __func__,
1961 			     ieee80211_state_name[ostate],
1962 			     ieee80211_state_name[nstate]);
1963 		}
1964 		break;
1965 	case IEEE80211_S_INIT:
1966 		/* cancel any scan in progress */
1967 		ieee80211_cancel_scan(vap);
1968 		if (ostate == IEEE80211_S_INIT ) {
1969 			/* XXX don't believe this */
1970 			/* INIT -> INIT. nothing to do */
1971 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1972 		}
1973 		/* fall thru... */
1974 	default:
1975 		break;
1976 	}
1977 	/* defer the state change to a thread */
1978 	vap->iv_nstate = nstate;
1979 	vap->iv_nstate_arg = arg;
1980 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1981 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1982 	return EINPROGRESS;
1983 }
1984 
1985 int
1986 ieee80211_new_state(struct ieee80211vap *vap,
1987 	enum ieee80211_state nstate, int arg)
1988 {
1989 	struct ieee80211com *ic = vap->iv_ic;
1990 	int rc;
1991 
1992 	IEEE80211_LOCK(ic);
1993 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1994 	IEEE80211_UNLOCK(ic);
1995 	return rc;
1996 }
1997