xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 97cb52fa9aefd90fad38790fded50905aeeb9b9e)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 /*
34  * IEEE 802.11 protocol support.
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_wlan.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/kernel.h>
43 #include <sys/malloc.h>
44 
45 #include <sys/socket.h>
46 #include <sys/sockio.h>
47 
48 #include <net/if.h>
49 #include <net/if_var.h>
50 #include <net/if_media.h>
51 #include <net/ethernet.h>		/* XXX for ether_sprintf */
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_adhoc.h>
55 #include <net80211/ieee80211_sta.h>
56 #include <net80211/ieee80211_hostap.h>
57 #include <net80211/ieee80211_wds.h>
58 #ifdef IEEE80211_SUPPORT_MESH
59 #include <net80211/ieee80211_mesh.h>
60 #endif
61 #include <net80211/ieee80211_monitor.h>
62 #include <net80211/ieee80211_input.h>
63 
64 /* XXX tunables */
65 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
66 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
67 
68 const char *mgt_subtype_name[] = {
69 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
70 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
71 	"beacon",	"atim",		"disassoc",	"auth",
72 	"deauth",	"action",	"action_noack",	"reserved#15"
73 };
74 const char *ctl_subtype_name[] = {
75 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
76 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
77 	"bar",		"ba",		"ps_poll",	"rts",
78 	"cts",		"ack",		"cf_end",	"cf_end_ack"
79 };
80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
81 	"IBSS",		/* IEEE80211_M_IBSS */
82 	"STA",		/* IEEE80211_M_STA */
83 	"WDS",		/* IEEE80211_M_WDS */
84 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
85 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
86 	"MONITOR",	/* IEEE80211_M_MONITOR */
87 	"MBSS"		/* IEEE80211_M_MBSS */
88 };
89 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
90 	"INIT",		/* IEEE80211_S_INIT */
91 	"SCAN",		/* IEEE80211_S_SCAN */
92 	"AUTH",		/* IEEE80211_S_AUTH */
93 	"ASSOC",	/* IEEE80211_S_ASSOC */
94 	"CAC",		/* IEEE80211_S_CAC */
95 	"RUN",		/* IEEE80211_S_RUN */
96 	"CSA",		/* IEEE80211_S_CSA */
97 	"SLEEP",	/* IEEE80211_S_SLEEP */
98 };
99 const char *ieee80211_wme_acnames[] = {
100 	"WME_AC_BE",
101 	"WME_AC_BK",
102 	"WME_AC_VI",
103 	"WME_AC_VO",
104 	"WME_UPSD",
105 };
106 
107 
108 /*
109  * Reason code descriptions were (mostly) obtained from
110  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
111  */
112 const char *
113 ieee80211_reason_to_string(uint16_t reason)
114 {
115 	switch (reason) {
116 	case IEEE80211_REASON_UNSPECIFIED:
117 		return ("unspecified");
118 	case IEEE80211_REASON_AUTH_EXPIRE:
119 		return ("previous authentication is expired");
120 	case IEEE80211_REASON_AUTH_LEAVE:
121 		return ("sending STA is leaving/has left IBSS or ESS");
122 	case IEEE80211_REASON_ASSOC_EXPIRE:
123 		return ("disassociated due to inactivity");
124 	case IEEE80211_REASON_ASSOC_TOOMANY:
125 		return ("too many associated STAs");
126 	case IEEE80211_REASON_NOT_AUTHED:
127 		return ("class 2 frame received from nonauthenticated STA");
128 	case IEEE80211_REASON_NOT_ASSOCED:
129 		return ("class 3 frame received from nonassociated STA");
130 	case IEEE80211_REASON_ASSOC_LEAVE:
131 		return ("sending STA is leaving/has left BSS");
132 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
133 		return ("STA requesting (re)association is not authenticated");
134 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
135 		return ("information in the Power Capability element is "
136 			"unacceptable");
137 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
138 		return ("information in the Supported Channels element is "
139 			"unacceptable");
140 	case IEEE80211_REASON_IE_INVALID:
141 		return ("invalid element");
142 	case IEEE80211_REASON_MIC_FAILURE:
143 		return ("MIC failure");
144 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
145 		return ("4-Way handshake timeout");
146 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
147 		return ("group key update timeout");
148 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
149 		return ("element in 4-Way handshake different from "
150 			"(re)association request/probe response/beacon frame");
151 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
152 		return ("invalid group cipher");
153 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
154 		return ("invalid pairwise cipher");
155 	case IEEE80211_REASON_AKMP_INVALID:
156 		return ("invalid AKMP");
157 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
158 		return ("unsupported version in RSN IE");
159 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
160 		return ("invalid capabilities in RSN IE");
161 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
162 		return ("IEEE 802.1X authentication failed");
163 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
164 		return ("cipher suite rejected because of the security "
165 			"policy");
166 	case IEEE80211_REASON_UNSPECIFIED_QOS:
167 		return ("unspecified (QoS-related)");
168 	case IEEE80211_REASON_INSUFFICIENT_BW:
169 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
170 	case IEEE80211_REASON_TOOMANY_FRAMES:
171 		return ("too many frames need to be acknowledged");
172 	case IEEE80211_REASON_OUTSIDE_TXOP:
173 		return ("STA is transmitting outside the limits of its TXOPs");
174 	case IEEE80211_REASON_LEAVING_QBSS:
175 		return ("requested from peer STA (the STA is "
176 			"resetting/leaving the BSS)");
177 	case IEEE80211_REASON_BAD_MECHANISM:
178 		return ("requested from peer STA (it does not want to use "
179 			"the mechanism)");
180 	case IEEE80211_REASON_SETUP_NEEDED:
181 		return ("requested from peer STA (setup is required for the "
182 			"used mechanism)");
183 	case IEEE80211_REASON_TIMEOUT:
184 		return ("requested from peer STA (timeout)");
185 	case IEEE80211_REASON_PEER_LINK_CANCELED:
186 		return ("SME cancels the mesh peering instance (not related "
187 			"to the maximum number of peer mesh STAs)");
188 	case IEEE80211_REASON_MESH_MAX_PEERS:
189 		return ("maximum number of peer mesh STAs was reached");
190 	case IEEE80211_REASON_MESH_CPVIOLATION:
191 		return ("the received information violates the Mesh "
192 			"Configuration policy configured in the mesh STA "
193 			"profile");
194 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
195 		return ("the mesh STA has received a Mesh Peering Close "
196 			"message requesting to close the mesh peering");
197 	case IEEE80211_REASON_MESH_MAX_RETRIES:
198 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
199 			"Peering Open messages, without receiving a Mesh "
200 			"Peering Confirm message");
201 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
202 		return ("the confirmTimer for the mesh peering instance times "
203 			"out");
204 	case IEEE80211_REASON_MESH_INVALID_GTK:
205 		return ("the mesh STA fails to unwrap the GTK or the values "
206 			"in the wrapped contents do not match");
207 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
208 		return ("the mesh STA receives inconsistent information about "
209 			"the mesh parameters between Mesh Peering Management "
210 			"frames");
211 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
212 		return ("the mesh STA fails the authenticated mesh peering "
213 			"exchange because due to failure in selecting "
214 			"pairwise/group ciphersuite");
215 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
216 		return ("the mesh STA does not have proxy information for "
217 			"this external destination");
218 	case IEEE80211_REASON_MESH_PERR_NO_FI:
219 		return ("the mesh STA does not have forwarding information "
220 			"for this destination");
221 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
222 		return ("the mesh STA determines that the link to the next "
223 			"hop of an active path in its forwarding information "
224 			"is no longer usable");
225 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
226 		return ("the MAC address of the STA already exists in the "
227 			"mesh BSS");
228 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
229 		return ("the mesh STA performs channel switch to meet "
230 			"regulatory requirements");
231 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
232 		return ("the mesh STA performs channel switch with "
233 			"unspecified reason");
234 	default:
235 		return ("reserved/unknown");
236 	}
237 }
238 
239 static void beacon_miss(void *, int);
240 static void beacon_swmiss(void *, int);
241 static void parent_updown(void *, int);
242 static void update_mcast(void *, int);
243 static void update_promisc(void *, int);
244 static void update_channel(void *, int);
245 static void update_chw(void *, int);
246 static void vap_update_wme(void *, int);
247 static void restart_vaps(void *, int);
248 static void ieee80211_newstate_cb(void *, int);
249 
250 static int
251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
252 	const struct ieee80211_bpf_params *params)
253 {
254 
255 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
256 	m_freem(m);
257 	return ENETDOWN;
258 }
259 
260 void
261 ieee80211_proto_attach(struct ieee80211com *ic)
262 {
263 	uint8_t hdrlen;
264 
265 	/* override the 802.3 setting */
266 	hdrlen = ic->ic_headroom
267 		+ sizeof(struct ieee80211_qosframe_addr4)
268 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
269 		+ IEEE80211_WEP_EXTIVLEN;
270 	/* XXX no way to recalculate on ifdetach */
271 	if (ALIGN(hdrlen) > max_linkhdr) {
272 		/* XXX sanity check... */
273 		max_linkhdr = ALIGN(hdrlen);
274 		max_hdr = max_linkhdr + max_protohdr;
275 		max_datalen = MHLEN - max_hdr;
276 	}
277 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
278 
279 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
280 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
281 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
282 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
283 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
284 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
285 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
286 
287 	ic->ic_wme.wme_hipri_switch_hysteresis =
288 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
289 
290 	/* initialize management frame handlers */
291 	ic->ic_send_mgmt = ieee80211_send_mgmt;
292 	ic->ic_raw_xmit = null_raw_xmit;
293 
294 	ieee80211_adhoc_attach(ic);
295 	ieee80211_sta_attach(ic);
296 	ieee80211_wds_attach(ic);
297 	ieee80211_hostap_attach(ic);
298 #ifdef IEEE80211_SUPPORT_MESH
299 	ieee80211_mesh_attach(ic);
300 #endif
301 	ieee80211_monitor_attach(ic);
302 }
303 
304 void
305 ieee80211_proto_detach(struct ieee80211com *ic)
306 {
307 	ieee80211_monitor_detach(ic);
308 #ifdef IEEE80211_SUPPORT_MESH
309 	ieee80211_mesh_detach(ic);
310 #endif
311 	ieee80211_hostap_detach(ic);
312 	ieee80211_wds_detach(ic);
313 	ieee80211_adhoc_detach(ic);
314 	ieee80211_sta_detach(ic);
315 }
316 
317 static void
318 null_update_beacon(struct ieee80211vap *vap, int item)
319 {
320 }
321 
322 void
323 ieee80211_proto_vattach(struct ieee80211vap *vap)
324 {
325 	struct ieee80211com *ic = vap->iv_ic;
326 	struct ifnet *ifp = vap->iv_ifp;
327 	int i;
328 
329 	/* override the 802.3 setting */
330 	ifp->if_hdrlen = ic->ic_headroom
331                 + sizeof(struct ieee80211_qosframe_addr4)
332                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
333                 + IEEE80211_WEP_EXTIVLEN;
334 
335 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
336 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
337 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
338 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
339 	callout_init(&vap->iv_mgtsend, 1);
340 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
341 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
343 	/*
344 	 * Install default tx rate handling: no fixed rate, lowest
345 	 * supported rate for mgmt and multicast frames.  Default
346 	 * max retry count.  These settings can be changed by the
347 	 * driver and/or user applications.
348 	 */
349 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
350 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
351 
352 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
353 
354 		/*
355 		 * Setting the management rate to MCS 0 assumes that the
356 		 * BSS Basic rate set is empty and the BSS Basic MCS set
357 		 * is not.
358 		 *
359 		 * Since we're not checking this, default to the lowest
360 		 * defined rate for this mode.
361 		 *
362 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
363 		 * some MCS management traffic (eg BA response frames.)
364 		 *
365 		 * See also: 9.6.0 of the 802.11n-2009 specification.
366 		 */
367 #ifdef	NOTYET
368 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
369 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
370 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
371 		} else {
372 			vap->iv_txparms[i].mgmtrate =
373 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
374 			vap->iv_txparms[i].mcastrate =
375 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
376 		}
377 #endif
378 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
379 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
380 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
381 	}
382 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
383 
384 	vap->iv_update_beacon = null_update_beacon;
385 	vap->iv_deliver_data = ieee80211_deliver_data;
386 
387 	/* attach support for operating mode */
388 	ic->ic_vattach[vap->iv_opmode](vap);
389 }
390 
391 void
392 ieee80211_proto_vdetach(struct ieee80211vap *vap)
393 {
394 #define	FREEAPPIE(ie) do { \
395 	if (ie != NULL) \
396 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
397 } while (0)
398 	/*
399 	 * Detach operating mode module.
400 	 */
401 	if (vap->iv_opdetach != NULL)
402 		vap->iv_opdetach(vap);
403 	/*
404 	 * This should not be needed as we detach when reseting
405 	 * the state but be conservative here since the
406 	 * authenticator may do things like spawn kernel threads.
407 	 */
408 	if (vap->iv_auth->ia_detach != NULL)
409 		vap->iv_auth->ia_detach(vap);
410 	/*
411 	 * Detach any ACL'ator.
412 	 */
413 	if (vap->iv_acl != NULL)
414 		vap->iv_acl->iac_detach(vap);
415 
416 	FREEAPPIE(vap->iv_appie_beacon);
417 	FREEAPPIE(vap->iv_appie_probereq);
418 	FREEAPPIE(vap->iv_appie_proberesp);
419 	FREEAPPIE(vap->iv_appie_assocreq);
420 	FREEAPPIE(vap->iv_appie_assocresp);
421 	FREEAPPIE(vap->iv_appie_wpa);
422 #undef FREEAPPIE
423 }
424 
425 /*
426  * Simple-minded authenticator module support.
427  */
428 
429 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
430 /* XXX well-known names */
431 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
432 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
433 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
434 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
435 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
436 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
437 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
438 };
439 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
440 
441 static const struct ieee80211_authenticator auth_internal = {
442 	.ia_name		= "wlan_internal",
443 	.ia_attach		= NULL,
444 	.ia_detach		= NULL,
445 	.ia_node_join		= NULL,
446 	.ia_node_leave		= NULL,
447 };
448 
449 /*
450  * Setup internal authenticators once; they are never unregistered.
451  */
452 static void
453 ieee80211_auth_setup(void)
454 {
455 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
456 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
457 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
458 }
459 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
460 
461 const struct ieee80211_authenticator *
462 ieee80211_authenticator_get(int auth)
463 {
464 	if (auth >= IEEE80211_AUTH_MAX)
465 		return NULL;
466 	if (authenticators[auth] == NULL)
467 		ieee80211_load_module(auth_modnames[auth]);
468 	return authenticators[auth];
469 }
470 
471 void
472 ieee80211_authenticator_register(int type,
473 	const struct ieee80211_authenticator *auth)
474 {
475 	if (type >= IEEE80211_AUTH_MAX)
476 		return;
477 	authenticators[type] = auth;
478 }
479 
480 void
481 ieee80211_authenticator_unregister(int type)
482 {
483 
484 	if (type >= IEEE80211_AUTH_MAX)
485 		return;
486 	authenticators[type] = NULL;
487 }
488 
489 /*
490  * Very simple-minded ACL module support.
491  */
492 /* XXX just one for now */
493 static	const struct ieee80211_aclator *acl = NULL;
494 
495 void
496 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
497 {
498 	printf("wlan: %s acl policy registered\n", iac->iac_name);
499 	acl = iac;
500 }
501 
502 void
503 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
504 {
505 	if (acl == iac)
506 		acl = NULL;
507 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
508 }
509 
510 const struct ieee80211_aclator *
511 ieee80211_aclator_get(const char *name)
512 {
513 	if (acl == NULL)
514 		ieee80211_load_module("wlan_acl");
515 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
516 }
517 
518 void
519 ieee80211_print_essid(const uint8_t *essid, int len)
520 {
521 	const uint8_t *p;
522 	int i;
523 
524 	if (len > IEEE80211_NWID_LEN)
525 		len = IEEE80211_NWID_LEN;
526 	/* determine printable or not */
527 	for (i = 0, p = essid; i < len; i++, p++) {
528 		if (*p < ' ' || *p > 0x7e)
529 			break;
530 	}
531 	if (i == len) {
532 		printf("\"");
533 		for (i = 0, p = essid; i < len; i++, p++)
534 			printf("%c", *p);
535 		printf("\"");
536 	} else {
537 		printf("0x");
538 		for (i = 0, p = essid; i < len; i++, p++)
539 			printf("%02x", *p);
540 	}
541 }
542 
543 void
544 ieee80211_dump_pkt(struct ieee80211com *ic,
545 	const uint8_t *buf, int len, int rate, int rssi)
546 {
547 	const struct ieee80211_frame *wh;
548 	int i;
549 
550 	wh = (const struct ieee80211_frame *)buf;
551 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
552 	case IEEE80211_FC1_DIR_NODS:
553 		printf("NODS %s", ether_sprintf(wh->i_addr2));
554 		printf("->%s", ether_sprintf(wh->i_addr1));
555 		printf("(%s)", ether_sprintf(wh->i_addr3));
556 		break;
557 	case IEEE80211_FC1_DIR_TODS:
558 		printf("TODS %s", ether_sprintf(wh->i_addr2));
559 		printf("->%s", ether_sprintf(wh->i_addr3));
560 		printf("(%s)", ether_sprintf(wh->i_addr1));
561 		break;
562 	case IEEE80211_FC1_DIR_FROMDS:
563 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
564 		printf("->%s", ether_sprintf(wh->i_addr1));
565 		printf("(%s)", ether_sprintf(wh->i_addr2));
566 		break;
567 	case IEEE80211_FC1_DIR_DSTODS:
568 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
569 		printf("->%s", ether_sprintf(wh->i_addr3));
570 		printf("(%s", ether_sprintf(wh->i_addr2));
571 		printf("->%s)", ether_sprintf(wh->i_addr1));
572 		break;
573 	}
574 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
575 	case IEEE80211_FC0_TYPE_DATA:
576 		printf(" data");
577 		break;
578 	case IEEE80211_FC0_TYPE_MGT:
579 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
580 		break;
581 	default:
582 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
583 		break;
584 	}
585 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
586 		const struct ieee80211_qosframe *qwh =
587 			(const struct ieee80211_qosframe *)buf;
588 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
589 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
590 	}
591 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
592 		int off;
593 
594 		off = ieee80211_anyhdrspace(ic, wh);
595 		printf(" WEP [IV %.02x %.02x %.02x",
596 			buf[off+0], buf[off+1], buf[off+2]);
597 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
598 			printf(" %.02x %.02x %.02x",
599 				buf[off+4], buf[off+5], buf[off+6]);
600 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
601 	}
602 	if (rate >= 0)
603 		printf(" %dM", rate / 2);
604 	if (rssi >= 0)
605 		printf(" +%d", rssi);
606 	printf("\n");
607 	if (len > 0) {
608 		for (i = 0; i < len; i++) {
609 			if ((i & 1) == 0)
610 				printf(" ");
611 			printf("%02x", buf[i]);
612 		}
613 		printf("\n");
614 	}
615 }
616 
617 static __inline int
618 findrix(const struct ieee80211_rateset *rs, int r)
619 {
620 	int i;
621 
622 	for (i = 0; i < rs->rs_nrates; i++)
623 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
624 			return i;
625 	return -1;
626 }
627 
628 int
629 ieee80211_fix_rate(struct ieee80211_node *ni,
630 	struct ieee80211_rateset *nrs, int flags)
631 {
632 	struct ieee80211vap *vap = ni->ni_vap;
633 	struct ieee80211com *ic = ni->ni_ic;
634 	int i, j, rix, error;
635 	int okrate, badrate, fixedrate, ucastrate;
636 	const struct ieee80211_rateset *srs;
637 	uint8_t r;
638 
639 	error = 0;
640 	okrate = badrate = 0;
641 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
642 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
643 		/*
644 		 * Workaround awkwardness with fixed rate.  We are called
645 		 * to check both the legacy rate set and the HT rate set
646 		 * but we must apply any legacy fixed rate check only to the
647 		 * legacy rate set and vice versa.  We cannot tell what type
648 		 * of rate set we've been given (legacy or HT) but we can
649 		 * distinguish the fixed rate type (MCS have 0x80 set).
650 		 * So to deal with this the caller communicates whether to
651 		 * check MCS or legacy rate using the flags and we use the
652 		 * type of any fixed rate to avoid applying an MCS to a
653 		 * legacy rate and vice versa.
654 		 */
655 		if (ucastrate & 0x80) {
656 			if (flags & IEEE80211_F_DOFRATE)
657 				flags &= ~IEEE80211_F_DOFRATE;
658 		} else if ((ucastrate & 0x80) == 0) {
659 			if (flags & IEEE80211_F_DOFMCS)
660 				flags &= ~IEEE80211_F_DOFMCS;
661 		}
662 		/* NB: required to make MCS match below work */
663 		ucastrate &= IEEE80211_RATE_VAL;
664 	}
665 	fixedrate = IEEE80211_FIXED_RATE_NONE;
666 	/*
667 	 * XXX we are called to process both MCS and legacy rates;
668 	 * we must use the appropriate basic rate set or chaos will
669 	 * ensue; for now callers that want MCS must supply
670 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
671 	 * function so there are two variants, one for MCS and one
672 	 * for legacy rates.
673 	 */
674 	if (flags & IEEE80211_F_DOBRS)
675 		srs = (const struct ieee80211_rateset *)
676 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
677 	else
678 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
679 	for (i = 0; i < nrs->rs_nrates; ) {
680 		if (flags & IEEE80211_F_DOSORT) {
681 			/*
682 			 * Sort rates.
683 			 */
684 			for (j = i + 1; j < nrs->rs_nrates; j++) {
685 				if (IEEE80211_RV(nrs->rs_rates[i]) >
686 				    IEEE80211_RV(nrs->rs_rates[j])) {
687 					r = nrs->rs_rates[i];
688 					nrs->rs_rates[i] = nrs->rs_rates[j];
689 					nrs->rs_rates[j] = r;
690 				}
691 			}
692 		}
693 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
694 		badrate = r;
695 		/*
696 		 * Check for fixed rate.
697 		 */
698 		if (r == ucastrate)
699 			fixedrate = r;
700 		/*
701 		 * Check against supported rates.
702 		 */
703 		rix = findrix(srs, r);
704 		if (flags & IEEE80211_F_DONEGO) {
705 			if (rix < 0) {
706 				/*
707 				 * A rate in the node's rate set is not
708 				 * supported.  If this is a basic rate and we
709 				 * are operating as a STA then this is an error.
710 				 * Otherwise we just discard/ignore the rate.
711 				 */
712 				if ((flags & IEEE80211_F_JOIN) &&
713 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
714 					error++;
715 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
716 				/*
717 				 * Overwrite with the supported rate
718 				 * value so any basic rate bit is set.
719 				 */
720 				nrs->rs_rates[i] = srs->rs_rates[rix];
721 			}
722 		}
723 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
724 			/*
725 			 * Delete unacceptable rates.
726 			 */
727 			nrs->rs_nrates--;
728 			for (j = i; j < nrs->rs_nrates; j++)
729 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
730 			nrs->rs_rates[j] = 0;
731 			continue;
732 		}
733 		if (rix >= 0)
734 			okrate = nrs->rs_rates[i];
735 		i++;
736 	}
737 	if (okrate == 0 || error != 0 ||
738 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
739 	     fixedrate != ucastrate)) {
740 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
741 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
742 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
743 		return badrate | IEEE80211_RATE_BASIC;
744 	} else
745 		return IEEE80211_RV(okrate);
746 }
747 
748 /*
749  * Reset 11g-related state.
750  */
751 void
752 ieee80211_reset_erp(struct ieee80211com *ic)
753 {
754 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
755 	ic->ic_nonerpsta = 0;
756 	ic->ic_longslotsta = 0;
757 	/*
758 	 * Short slot time is enabled only when operating in 11g
759 	 * and not in an IBSS.  We must also honor whether or not
760 	 * the driver is capable of doing it.
761 	 */
762 	ieee80211_set_shortslottime(ic,
763 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
764 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
765 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
766 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
767 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
768 	/*
769 	 * Set short preamble and ERP barker-preamble flags.
770 	 */
771 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
772 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
773 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
774 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
775 	} else {
776 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
777 		ic->ic_flags |= IEEE80211_F_USEBARKER;
778 	}
779 }
780 
781 /*
782  * Set the short slot time state and notify the driver.
783  */
784 void
785 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
786 {
787 	if (onoff)
788 		ic->ic_flags |= IEEE80211_F_SHSLOT;
789 	else
790 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
791 	/* notify driver */
792 	if (ic->ic_updateslot != NULL)
793 		ic->ic_updateslot(ic);
794 }
795 
796 /*
797  * Check if the specified rate set supports ERP.
798  * NB: the rate set is assumed to be sorted.
799  */
800 int
801 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
802 {
803 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
804 	int i, j;
805 
806 	if (rs->rs_nrates < nitems(rates))
807 		return 0;
808 	for (i = 0; i < nitems(rates); i++) {
809 		for (j = 0; j < rs->rs_nrates; j++) {
810 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
811 			if (rates[i] == r)
812 				goto next;
813 			if (r > rates[i])
814 				return 0;
815 		}
816 		return 0;
817 	next:
818 		;
819 	}
820 	return 1;
821 }
822 
823 /*
824  * Mark the basic rates for the rate table based on the
825  * operating mode.  For real 11g we mark all the 11b rates
826  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
827  * 11b rates.  There's also a pseudo 11a-mode used to mark only
828  * the basic OFDM rates.
829  */
830 static void
831 setbasicrates(struct ieee80211_rateset *rs,
832     enum ieee80211_phymode mode, int add)
833 {
834 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
835 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
836 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
837 					    /* NB: mixed b/g */
838 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
839 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
840 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
841 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
842 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
843 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
844 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
845 					    /* NB: mixed b/g */
846 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
847 					    /* NB: mixed b/g */
848 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
849 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
850 	};
851 	int i, j;
852 
853 	for (i = 0; i < rs->rs_nrates; i++) {
854 		if (!add)
855 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
856 		for (j = 0; j < basic[mode].rs_nrates; j++)
857 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
858 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
859 				break;
860 			}
861 	}
862 }
863 
864 /*
865  * Set the basic rates in a rate set.
866  */
867 void
868 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
869     enum ieee80211_phymode mode)
870 {
871 	setbasicrates(rs, mode, 0);
872 }
873 
874 /*
875  * Add basic rates to a rate set.
876  */
877 void
878 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
879     enum ieee80211_phymode mode)
880 {
881 	setbasicrates(rs, mode, 1);
882 }
883 
884 /*
885  * WME protocol support.
886  *
887  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
888  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
889  * Draft 2.0 Test Plan (Appendix D).
890  *
891  * Static/Dynamic Turbo mode settings come from Atheros.
892  */
893 typedef struct phyParamType {
894 	uint8_t		aifsn;
895 	uint8_t		logcwmin;
896 	uint8_t		logcwmax;
897 	uint16_t	txopLimit;
898 	uint8_t 	acm;
899 } paramType;
900 
901 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
902 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
903 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
904 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
905 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
906 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
907 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
908 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
909 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
910 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
911 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
912 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
913 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
914 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
915 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
916 };
917 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
918 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
919 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
920 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
921 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
922 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
923 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
924 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
925 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
926 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
927 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
928 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
929 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
930 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
931 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
932 };
933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
934 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
935 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
936 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
937 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
938 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
939 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
940 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
941 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
942 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
943 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
944 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
945 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
946 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
947 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
948 };
949 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
950 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
951 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
952 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
953 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
954 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
955 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
956 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
957 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
958 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
959 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
960 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
961 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
962 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
963 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
964 };
965 
966 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
967 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
968 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
969 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
970 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
971 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
972 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
973 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
974 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
975 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
976 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
977 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
978 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
979 };
980 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
981 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
982 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
983 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
984 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
985 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
986 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
987 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
988 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
989 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
990 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
991 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
992 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
993 };
994 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
995 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
996 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
997 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
998 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
999 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1000 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1001 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1002 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1003 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1004 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1005 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1006 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1007 };
1008 
1009 static void
1010 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1011 {
1012 	wmep->wmep_aifsn = phy->aifsn;
1013 	wmep->wmep_logcwmin = phy->logcwmin;
1014 	wmep->wmep_logcwmax = phy->logcwmax;
1015 	wmep->wmep_txopLimit = phy->txopLimit;
1016 }
1017 
1018 static void
1019 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1020 	struct wmeParams *wmep, const paramType *phy)
1021 {
1022 	wmep->wmep_acm = phy->acm;
1023 	_setifsparams(wmep, phy);
1024 
1025 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1026 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1027 	    ieee80211_wme_acnames[ac], type,
1028 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1029 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1030 }
1031 
1032 static void
1033 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1034 {
1035 	struct ieee80211com *ic = vap->iv_ic;
1036 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1037 	const paramType *pPhyParam, *pBssPhyParam;
1038 	struct wmeParams *wmep;
1039 	enum ieee80211_phymode mode;
1040 	int i;
1041 
1042 	IEEE80211_LOCK_ASSERT(ic);
1043 
1044 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1045 		return;
1046 
1047 	/*
1048 	 * Clear the wme cap_info field so a qoscount from a previous
1049 	 * vap doesn't confuse later code which only parses the beacon
1050 	 * field and updates hardware when said field changes.
1051 	 * Otherwise the hardware is programmed with defaults, not what
1052 	 * the beacon actually announces.
1053 	 */
1054 	wme->wme_wmeChanParams.cap_info = 0;
1055 
1056 	/*
1057 	 * Select mode; we can be called early in which case we
1058 	 * always use auto mode.  We know we'll be called when
1059 	 * entering the RUN state with bsschan setup properly
1060 	 * so state will eventually get set correctly
1061 	 */
1062 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1063 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1064 	else
1065 		mode = IEEE80211_MODE_AUTO;
1066 	for (i = 0; i < WME_NUM_AC; i++) {
1067 		switch (i) {
1068 		case WME_AC_BK:
1069 			pPhyParam = &phyParamForAC_BK[mode];
1070 			pBssPhyParam = &phyParamForAC_BK[mode];
1071 			break;
1072 		case WME_AC_VI:
1073 			pPhyParam = &phyParamForAC_VI[mode];
1074 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1075 			break;
1076 		case WME_AC_VO:
1077 			pPhyParam = &phyParamForAC_VO[mode];
1078 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1079 			break;
1080 		case WME_AC_BE:
1081 		default:
1082 			pPhyParam = &phyParamForAC_BE[mode];
1083 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1084 			break;
1085 		}
1086 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1087 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1088 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1089 		} else {
1090 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1091 		}
1092 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1093 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1094 	}
1095 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1096 	if (vap->iv_bss != NULL) {
1097 		/*
1098 		 * Calculate aggressive mode switching threshold based
1099 		 * on beacon interval.  This doesn't need locking since
1100 		 * we're only called before entering the RUN state at
1101 		 * which point we start sending beacon frames.
1102 		 */
1103 		wme->wme_hipri_switch_thresh =
1104 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1105 		wme->wme_flags &= ~WME_F_AGGRMODE;
1106 		ieee80211_wme_updateparams(vap);
1107 	}
1108 }
1109 
1110 void
1111 ieee80211_wme_initparams(struct ieee80211vap *vap)
1112 {
1113 	struct ieee80211com *ic = vap->iv_ic;
1114 
1115 	IEEE80211_LOCK(ic);
1116 	ieee80211_wme_initparams_locked(vap);
1117 	IEEE80211_UNLOCK(ic);
1118 }
1119 
1120 /*
1121  * Update WME parameters for ourself and the BSS.
1122  */
1123 void
1124 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1125 {
1126 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1127 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1128 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1129 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1130 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1131 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1132 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1133 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1134 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1135 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1136 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1137 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1138 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1139 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1140 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1141 	};
1142 	struct ieee80211com *ic = vap->iv_ic;
1143 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1144 	const struct wmeParams *wmep;
1145 	struct wmeParams *chanp, *bssp;
1146 	enum ieee80211_phymode mode;
1147 	int i;
1148 	int do_aggrmode = 0;
1149 
1150        	/*
1151 	 * Set up the channel access parameters for the physical
1152 	 * device.  First populate the configured settings.
1153 	 */
1154 	for (i = 0; i < WME_NUM_AC; i++) {
1155 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1156 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1157 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1158 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1159 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1160 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1161 
1162 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1163 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1164 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1165 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1166 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1167 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1168 	}
1169 
1170 	/*
1171 	 * Select mode; we can be called early in which case we
1172 	 * always use auto mode.  We know we'll be called when
1173 	 * entering the RUN state with bsschan setup properly
1174 	 * so state will eventually get set correctly
1175 	 */
1176 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1177 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1178 	else
1179 		mode = IEEE80211_MODE_AUTO;
1180 
1181 	/*
1182 	 * This implements aggressive mode as found in certain
1183 	 * vendors' AP's.  When there is significant high
1184 	 * priority (VI/VO) traffic in the BSS throttle back BE
1185 	 * traffic by using conservative parameters.  Otherwise
1186 	 * BE uses aggressive params to optimize performance of
1187 	 * legacy/non-QoS traffic.
1188 	 */
1189 
1190 	/* Hostap? Only if aggressive mode is enabled */
1191         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1192 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1193 		do_aggrmode = 1;
1194 
1195 	/*
1196 	 * Station? Only if we're in a non-QoS BSS.
1197 	 */
1198 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1199 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1200 		do_aggrmode = 1;
1201 
1202 	/*
1203 	 * IBSS? Only if we we have WME enabled.
1204 	 */
1205 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1206 	    (vap->iv_flags & IEEE80211_F_WME))
1207 		do_aggrmode = 1;
1208 
1209 	/*
1210 	 * If WME is disabled on this VAP, default to aggressive mode
1211 	 * regardless of the configuration.
1212 	 */
1213 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1214 		do_aggrmode = 1;
1215 
1216 	/* XXX WDS? */
1217 
1218 	/* XXX MBSS? */
1219 
1220 	if (do_aggrmode) {
1221 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1222 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1223 
1224 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1225 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1226 		    aggrParam[mode].logcwmin;
1227 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1228 		    aggrParam[mode].logcwmax;
1229 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1230 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1231 			aggrParam[mode].txopLimit : 0;
1232 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1233 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1234 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1235 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1236 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1237 	}
1238 
1239 
1240 	/*
1241 	 * Change the contention window based on the number of associated
1242 	 * stations.  If the number of associated stations is 1 and
1243 	 * aggressive mode is enabled, lower the contention window even
1244 	 * further.
1245 	 */
1246 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1247 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1248 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1249 		    [IEEE80211_MODE_AUTO]	= 3,
1250 		    [IEEE80211_MODE_11A]	= 3,
1251 		    [IEEE80211_MODE_11B]	= 4,
1252 		    [IEEE80211_MODE_11G]	= 3,
1253 		    [IEEE80211_MODE_FH]		= 4,
1254 		    [IEEE80211_MODE_TURBO_A]	= 3,
1255 		    [IEEE80211_MODE_TURBO_G]	= 3,
1256 		    [IEEE80211_MODE_STURBO_A]	= 3,
1257 		    [IEEE80211_MODE_HALF]	= 3,
1258 		    [IEEE80211_MODE_QUARTER]	= 3,
1259 		    [IEEE80211_MODE_11NA]	= 3,
1260 		    [IEEE80211_MODE_11NG]	= 3,
1261 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1262 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1263 		};
1264 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1265 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1266 
1267 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1268 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1269 		    "update %s (chan+bss) logcwmin %u\n",
1270 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1271 	}
1272 
1273 	/*
1274 	 * Arrange for the beacon update.
1275 	 *
1276 	 * XXX what about MBSS, WDS?
1277 	 */
1278 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1279 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1280 		/*
1281 		 * Arrange for a beacon update and bump the parameter
1282 		 * set number so associated stations load the new values.
1283 		 */
1284 		wme->wme_bssChanParams.cap_info =
1285 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1286 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1287 	}
1288 
1289 	/* schedule the deferred WME update */
1290 	ieee80211_runtask(ic, &vap->iv_wme_task);
1291 
1292 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1293 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1294 	    vap->iv_opmode == IEEE80211_M_STA ?
1295 		wme->wme_wmeChanParams.cap_info :
1296 		wme->wme_bssChanParams.cap_info);
1297 }
1298 
1299 void
1300 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1301 {
1302 	struct ieee80211com *ic = vap->iv_ic;
1303 
1304 	if (ic->ic_caps & IEEE80211_C_WME) {
1305 		IEEE80211_LOCK(ic);
1306 		ieee80211_wme_updateparams_locked(vap);
1307 		IEEE80211_UNLOCK(ic);
1308 	}
1309 }
1310 
1311 void
1312 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1313 {
1314 
1315 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1316 }
1317 
1318 void
1319 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1320 {
1321 
1322 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1323 }
1324 
1325 static void
1326 parent_updown(void *arg, int npending)
1327 {
1328 	struct ieee80211com *ic = arg;
1329 
1330 	ic->ic_parent(ic);
1331 }
1332 
1333 static void
1334 update_mcast(void *arg, int npending)
1335 {
1336 	struct ieee80211com *ic = arg;
1337 
1338 	ic->ic_update_mcast(ic);
1339 }
1340 
1341 static void
1342 update_promisc(void *arg, int npending)
1343 {
1344 	struct ieee80211com *ic = arg;
1345 
1346 	ic->ic_update_promisc(ic);
1347 }
1348 
1349 static void
1350 update_channel(void *arg, int npending)
1351 {
1352 	struct ieee80211com *ic = arg;
1353 
1354 	ic->ic_set_channel(ic);
1355 	ieee80211_radiotap_chan_change(ic);
1356 }
1357 
1358 static void
1359 update_chw(void *arg, int npending)
1360 {
1361 	struct ieee80211com *ic = arg;
1362 
1363 	/*
1364 	 * XXX should we defer the channel width _config_ update until now?
1365 	 */
1366 	ic->ic_update_chw(ic);
1367 }
1368 
1369 /*
1370  * Deferred WME update.
1371  *
1372  * In preparation for per-VAP WME configuration, call the VAP
1373  * method if the VAP requires it.  Otherwise, just call the
1374  * older global method.  There isn't a per-VAP WME configuration
1375  * just yet so for now just use the global configuration.
1376  */
1377 static void
1378 vap_update_wme(void *arg, int npending)
1379 {
1380 	struct ieee80211vap *vap = arg;
1381 	struct ieee80211com *ic = vap->iv_ic;
1382 
1383 	if (vap->iv_wme_update != NULL)
1384 		vap->iv_wme_update(vap,
1385 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1386 	else
1387 		ic->ic_wme.wme_update(ic);
1388 }
1389 
1390 static void
1391 restart_vaps(void *arg, int npending)
1392 {
1393 	struct ieee80211com *ic = arg;
1394 
1395 	ieee80211_suspend_all(ic);
1396 	ieee80211_resume_all(ic);
1397 }
1398 
1399 /*
1400  * Block until the parent is in a known state.  This is
1401  * used after any operations that dispatch a task (e.g.
1402  * to auto-configure the parent device up/down).
1403  */
1404 void
1405 ieee80211_waitfor_parent(struct ieee80211com *ic)
1406 {
1407 	taskqueue_block(ic->ic_tq);
1408 	ieee80211_draintask(ic, &ic->ic_parent_task);
1409 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1410 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1411 	ieee80211_draintask(ic, &ic->ic_chan_task);
1412 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1413 	ieee80211_draintask(ic, &ic->ic_chw_task);
1414 	taskqueue_unblock(ic->ic_tq);
1415 }
1416 
1417 /*
1418  * Check to see whether the current channel needs reset.
1419  *
1420  * Some devices don't handle being given an invalid channel
1421  * in their operating mode very well (eg wpi(4) will throw a
1422  * firmware exception.)
1423  *
1424  * Return 0 if we're ok, 1 if the channel needs to be reset.
1425  *
1426  * See PR kern/202502.
1427  */
1428 static int
1429 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1430 {
1431 	struct ieee80211com *ic = vap->iv_ic;
1432 
1433 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1434 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1435 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1436 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1437 		return (1);
1438 	return (0);
1439 }
1440 
1441 /*
1442  * Reset the curchan to a known good state.
1443  */
1444 static void
1445 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1446 {
1447 	struct ieee80211com *ic = vap->iv_ic;
1448 
1449 	ic->ic_curchan = &ic->ic_channels[0];
1450 }
1451 
1452 /*
1453  * Start a vap running.  If this is the first vap to be
1454  * set running on the underlying device then we
1455  * automatically bring the device up.
1456  */
1457 void
1458 ieee80211_start_locked(struct ieee80211vap *vap)
1459 {
1460 	struct ifnet *ifp = vap->iv_ifp;
1461 	struct ieee80211com *ic = vap->iv_ic;
1462 
1463 	IEEE80211_LOCK_ASSERT(ic);
1464 
1465 	IEEE80211_DPRINTF(vap,
1466 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1467 		"start running, %d vaps running\n", ic->ic_nrunning);
1468 
1469 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1470 		/*
1471 		 * Mark us running.  Note that it's ok to do this first;
1472 		 * if we need to bring the parent device up we defer that
1473 		 * to avoid dropping the com lock.  We expect the device
1474 		 * to respond to being marked up by calling back into us
1475 		 * through ieee80211_start_all at which point we'll come
1476 		 * back in here and complete the work.
1477 		 */
1478 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1479 		/*
1480 		 * We are not running; if this we are the first vap
1481 		 * to be brought up auto-up the parent if necessary.
1482 		 */
1483 		if (ic->ic_nrunning++ == 0) {
1484 
1485 			/* reset the channel to a known good channel */
1486 			if (ieee80211_start_check_reset_chan(vap))
1487 				ieee80211_start_reset_chan(vap);
1488 
1489 			IEEE80211_DPRINTF(vap,
1490 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1491 			    "%s: up parent %s\n", __func__, ic->ic_name);
1492 			ieee80211_runtask(ic, &ic->ic_parent_task);
1493 			return;
1494 		}
1495 	}
1496 	/*
1497 	 * If the parent is up and running, then kick the
1498 	 * 802.11 state machine as appropriate.
1499 	 */
1500 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1501 		if (vap->iv_opmode == IEEE80211_M_STA) {
1502 #if 0
1503 			/* XXX bypasses scan too easily; disable for now */
1504 			/*
1505 			 * Try to be intelligent about clocking the state
1506 			 * machine.  If we're currently in RUN state then
1507 			 * we should be able to apply any new state/parameters
1508 			 * simply by re-associating.  Otherwise we need to
1509 			 * re-scan to select an appropriate ap.
1510 			 */
1511 			if (vap->iv_state >= IEEE80211_S_RUN)
1512 				ieee80211_new_state_locked(vap,
1513 				    IEEE80211_S_ASSOC, 1);
1514 			else
1515 #endif
1516 				ieee80211_new_state_locked(vap,
1517 				    IEEE80211_S_SCAN, 0);
1518 		} else {
1519 			/*
1520 			 * For monitor+wds mode there's nothing to do but
1521 			 * start running.  Otherwise if this is the first
1522 			 * vap to be brought up, start a scan which may be
1523 			 * preempted if the station is locked to a particular
1524 			 * channel.
1525 			 */
1526 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1527 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1528 			    vap->iv_opmode == IEEE80211_M_WDS)
1529 				ieee80211_new_state_locked(vap,
1530 				    IEEE80211_S_RUN, -1);
1531 			else
1532 				ieee80211_new_state_locked(vap,
1533 				    IEEE80211_S_SCAN, 0);
1534 		}
1535 	}
1536 }
1537 
1538 /*
1539  * Start a single vap.
1540  */
1541 void
1542 ieee80211_init(void *arg)
1543 {
1544 	struct ieee80211vap *vap = arg;
1545 
1546 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1547 	    "%s\n", __func__);
1548 
1549 	IEEE80211_LOCK(vap->iv_ic);
1550 	ieee80211_start_locked(vap);
1551 	IEEE80211_UNLOCK(vap->iv_ic);
1552 }
1553 
1554 /*
1555  * Start all runnable vap's on a device.
1556  */
1557 void
1558 ieee80211_start_all(struct ieee80211com *ic)
1559 {
1560 	struct ieee80211vap *vap;
1561 
1562 	IEEE80211_LOCK(ic);
1563 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1564 		struct ifnet *ifp = vap->iv_ifp;
1565 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1566 			ieee80211_start_locked(vap);
1567 	}
1568 	IEEE80211_UNLOCK(ic);
1569 }
1570 
1571 /*
1572  * Stop a vap.  We force it down using the state machine
1573  * then mark it's ifnet not running.  If this is the last
1574  * vap running on the underlying device then we close it
1575  * too to insure it will be properly initialized when the
1576  * next vap is brought up.
1577  */
1578 void
1579 ieee80211_stop_locked(struct ieee80211vap *vap)
1580 {
1581 	struct ieee80211com *ic = vap->iv_ic;
1582 	struct ifnet *ifp = vap->iv_ifp;
1583 
1584 	IEEE80211_LOCK_ASSERT(ic);
1585 
1586 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1587 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1588 
1589 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1590 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1591 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1592 		if (--ic->ic_nrunning == 0) {
1593 			IEEE80211_DPRINTF(vap,
1594 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1595 			    "down parent %s\n", ic->ic_name);
1596 			ieee80211_runtask(ic, &ic->ic_parent_task);
1597 		}
1598 	}
1599 }
1600 
1601 void
1602 ieee80211_stop(struct ieee80211vap *vap)
1603 {
1604 	struct ieee80211com *ic = vap->iv_ic;
1605 
1606 	IEEE80211_LOCK(ic);
1607 	ieee80211_stop_locked(vap);
1608 	IEEE80211_UNLOCK(ic);
1609 }
1610 
1611 /*
1612  * Stop all vap's running on a device.
1613  */
1614 void
1615 ieee80211_stop_all(struct ieee80211com *ic)
1616 {
1617 	struct ieee80211vap *vap;
1618 
1619 	IEEE80211_LOCK(ic);
1620 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1621 		struct ifnet *ifp = vap->iv_ifp;
1622 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1623 			ieee80211_stop_locked(vap);
1624 	}
1625 	IEEE80211_UNLOCK(ic);
1626 
1627 	ieee80211_waitfor_parent(ic);
1628 }
1629 
1630 /*
1631  * Stop all vap's running on a device and arrange
1632  * for those that were running to be resumed.
1633  */
1634 void
1635 ieee80211_suspend_all(struct ieee80211com *ic)
1636 {
1637 	struct ieee80211vap *vap;
1638 
1639 	IEEE80211_LOCK(ic);
1640 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1641 		struct ifnet *ifp = vap->iv_ifp;
1642 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1643 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1644 			ieee80211_stop_locked(vap);
1645 		}
1646 	}
1647 	IEEE80211_UNLOCK(ic);
1648 
1649 	ieee80211_waitfor_parent(ic);
1650 }
1651 
1652 /*
1653  * Start all vap's marked for resume.
1654  */
1655 void
1656 ieee80211_resume_all(struct ieee80211com *ic)
1657 {
1658 	struct ieee80211vap *vap;
1659 
1660 	IEEE80211_LOCK(ic);
1661 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1662 		struct ifnet *ifp = vap->iv_ifp;
1663 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1664 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1665 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1666 			ieee80211_start_locked(vap);
1667 		}
1668 	}
1669 	IEEE80211_UNLOCK(ic);
1670 }
1671 
1672 /*
1673  * Restart all vap's running on a device.
1674  */
1675 void
1676 ieee80211_restart_all(struct ieee80211com *ic)
1677 {
1678 	/*
1679 	 * NB: do not use ieee80211_runtask here, we will
1680 	 * block & drain net80211 taskqueue.
1681 	 */
1682 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1683 }
1684 
1685 void
1686 ieee80211_beacon_miss(struct ieee80211com *ic)
1687 {
1688 	IEEE80211_LOCK(ic);
1689 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1690 		/* Process in a taskq, the handler may reenter the driver */
1691 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1692 	}
1693 	IEEE80211_UNLOCK(ic);
1694 }
1695 
1696 static void
1697 beacon_miss(void *arg, int npending)
1698 {
1699 	struct ieee80211com *ic = arg;
1700 	struct ieee80211vap *vap;
1701 
1702 	IEEE80211_LOCK(ic);
1703 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1704 		/*
1705 		 * We only pass events through for sta vap's in RUN+ state;
1706 		 * may be too restrictive but for now this saves all the
1707 		 * handlers duplicating these checks.
1708 		 */
1709 		if (vap->iv_opmode == IEEE80211_M_STA &&
1710 		    vap->iv_state >= IEEE80211_S_RUN &&
1711 		    vap->iv_bmiss != NULL)
1712 			vap->iv_bmiss(vap);
1713 	}
1714 	IEEE80211_UNLOCK(ic);
1715 }
1716 
1717 static void
1718 beacon_swmiss(void *arg, int npending)
1719 {
1720 	struct ieee80211vap *vap = arg;
1721 	struct ieee80211com *ic = vap->iv_ic;
1722 
1723 	IEEE80211_LOCK(ic);
1724 	if (vap->iv_state >= IEEE80211_S_RUN) {
1725 		/* XXX Call multiple times if npending > zero? */
1726 		vap->iv_bmiss(vap);
1727 	}
1728 	IEEE80211_UNLOCK(ic);
1729 }
1730 
1731 /*
1732  * Software beacon miss handling.  Check if any beacons
1733  * were received in the last period.  If not post a
1734  * beacon miss; otherwise reset the counter.
1735  */
1736 void
1737 ieee80211_swbmiss(void *arg)
1738 {
1739 	struct ieee80211vap *vap = arg;
1740 	struct ieee80211com *ic = vap->iv_ic;
1741 
1742 	IEEE80211_LOCK_ASSERT(ic);
1743 
1744 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1745 	    ("wrong state %d", vap->iv_state));
1746 
1747 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1748 		/*
1749 		 * If scanning just ignore and reset state.  If we get a
1750 		 * bmiss after coming out of scan because we haven't had
1751 		 * time to receive a beacon then we should probe the AP
1752 		 * before posting a real bmiss (unless iv_bmiss_max has
1753 		 * been artifiically lowered).  A cleaner solution might
1754 		 * be to disable the timer on scan start/end but to handle
1755 		 * case of multiple sta vap's we'd need to disable the
1756 		 * timers of all affected vap's.
1757 		 */
1758 		vap->iv_swbmiss_count = 0;
1759 	} else if (vap->iv_swbmiss_count == 0) {
1760 		if (vap->iv_bmiss != NULL)
1761 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1762 	} else
1763 		vap->iv_swbmiss_count = 0;
1764 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1765 		ieee80211_swbmiss, vap);
1766 }
1767 
1768 /*
1769  * Start an 802.11h channel switch.  We record the parameters,
1770  * mark the operation pending, notify each vap through the
1771  * beacon update mechanism so it can update the beacon frame
1772  * contents, and then switch vap's to CSA state to block outbound
1773  * traffic.  Devices that handle CSA directly can use the state
1774  * switch to do the right thing so long as they call
1775  * ieee80211_csa_completeswitch when it's time to complete the
1776  * channel change.  Devices that depend on the net80211 layer can
1777  * use ieee80211_beacon_update to handle the countdown and the
1778  * channel switch.
1779  */
1780 void
1781 ieee80211_csa_startswitch(struct ieee80211com *ic,
1782 	struct ieee80211_channel *c, int mode, int count)
1783 {
1784 	struct ieee80211vap *vap;
1785 
1786 	IEEE80211_LOCK_ASSERT(ic);
1787 
1788 	ic->ic_csa_newchan = c;
1789 	ic->ic_csa_mode = mode;
1790 	ic->ic_csa_count = count;
1791 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1792 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1793 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1794 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1795 		    vap->iv_opmode == IEEE80211_M_MBSS)
1796 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1797 		/* switch to CSA state to block outbound traffic */
1798 		if (vap->iv_state == IEEE80211_S_RUN)
1799 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1800 	}
1801 	ieee80211_notify_csa(ic, c, mode, count);
1802 }
1803 
1804 /*
1805  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1806  * This is called by both the completion and cancellation functions
1807  * so each VAP is placed back in the RUN state and can thus transmit.
1808  */
1809 static void
1810 csa_completeswitch(struct ieee80211com *ic)
1811 {
1812 	struct ieee80211vap *vap;
1813 
1814 	ic->ic_csa_newchan = NULL;
1815 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1816 
1817 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1818 		if (vap->iv_state == IEEE80211_S_CSA)
1819 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1820 }
1821 
1822 /*
1823  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1824  * We clear state and move all vap's in CSA state to RUN state
1825  * so they can again transmit.
1826  *
1827  * Although this may not be completely correct, update the BSS channel
1828  * for each VAP to the newly configured channel. The setcurchan sets
1829  * the current operating channel for the interface (so the radio does
1830  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1831  * reported information via ioctl.
1832  */
1833 void
1834 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1835 {
1836 	struct ieee80211vap *vap;
1837 
1838 	IEEE80211_LOCK_ASSERT(ic);
1839 
1840 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1841 
1842 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1843 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1844 		if (vap->iv_state == IEEE80211_S_CSA)
1845 			vap->iv_bss->ni_chan = ic->ic_curchan;
1846 
1847 	csa_completeswitch(ic);
1848 }
1849 
1850 /*
1851  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1852  * We clear state and move all vap's in CSA state to RUN state
1853  * so they can again transmit.
1854  */
1855 void
1856 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1857 {
1858 	IEEE80211_LOCK_ASSERT(ic);
1859 
1860 	csa_completeswitch(ic);
1861 }
1862 
1863 /*
1864  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1865  * We clear state and move all vap's in CAC state to RUN state.
1866  */
1867 void
1868 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1869 {
1870 	struct ieee80211com *ic = vap0->iv_ic;
1871 	struct ieee80211vap *vap;
1872 
1873 	IEEE80211_LOCK(ic);
1874 	/*
1875 	 * Complete CAC state change for lead vap first; then
1876 	 * clock all the other vap's waiting.
1877 	 */
1878 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1879 	    ("wrong state %d", vap0->iv_state));
1880 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1881 
1882 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1883 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1884 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1885 	IEEE80211_UNLOCK(ic);
1886 }
1887 
1888 /*
1889  * Force all vap's other than the specified vap to the INIT state
1890  * and mark them as waiting for a scan to complete.  These vaps
1891  * will be brought up when the scan completes and the scanning vap
1892  * reaches RUN state by wakeupwaiting.
1893  */
1894 static void
1895 markwaiting(struct ieee80211vap *vap0)
1896 {
1897 	struct ieee80211com *ic = vap0->iv_ic;
1898 	struct ieee80211vap *vap;
1899 
1900 	IEEE80211_LOCK_ASSERT(ic);
1901 
1902 	/*
1903 	 * A vap list entry can not disappear since we are running on the
1904 	 * taskqueue and a vap destroy will queue and drain another state
1905 	 * change task.
1906 	 */
1907 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1908 		if (vap == vap0)
1909 			continue;
1910 		if (vap->iv_state != IEEE80211_S_INIT) {
1911 			/* NB: iv_newstate may drop the lock */
1912 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1913 			IEEE80211_LOCK_ASSERT(ic);
1914 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1915 		}
1916 	}
1917 }
1918 
1919 /*
1920  * Wakeup all vap's waiting for a scan to complete.  This is the
1921  * companion to markwaiting (above) and is used to coordinate
1922  * multiple vaps scanning.
1923  * This is called from the state taskqueue.
1924  */
1925 static void
1926 wakeupwaiting(struct ieee80211vap *vap0)
1927 {
1928 	struct ieee80211com *ic = vap0->iv_ic;
1929 	struct ieee80211vap *vap;
1930 
1931 	IEEE80211_LOCK_ASSERT(ic);
1932 
1933 	/*
1934 	 * A vap list entry can not disappear since we are running on the
1935 	 * taskqueue and a vap destroy will queue and drain another state
1936 	 * change task.
1937 	 */
1938 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1939 		if (vap == vap0)
1940 			continue;
1941 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1942 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1943 			/* NB: sta's cannot go INIT->RUN */
1944 			/* NB: iv_newstate may drop the lock */
1945 			vap->iv_newstate(vap,
1946 			    vap->iv_opmode == IEEE80211_M_STA ?
1947 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1948 			IEEE80211_LOCK_ASSERT(ic);
1949 		}
1950 	}
1951 }
1952 
1953 /*
1954  * Handle post state change work common to all operating modes.
1955  */
1956 static void
1957 ieee80211_newstate_cb(void *xvap, int npending)
1958 {
1959 	struct ieee80211vap *vap = xvap;
1960 	struct ieee80211com *ic = vap->iv_ic;
1961 	enum ieee80211_state nstate, ostate;
1962 	int arg, rc;
1963 
1964 	IEEE80211_LOCK(ic);
1965 	nstate = vap->iv_nstate;
1966 	arg = vap->iv_nstate_arg;
1967 
1968 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1969 		/*
1970 		 * We have been requested to drop back to the INIT before
1971 		 * proceeding to the new state.
1972 		 */
1973 		/* Deny any state changes while we are here. */
1974 		vap->iv_nstate = IEEE80211_S_INIT;
1975 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1976 		    "%s: %s -> %s arg %d\n", __func__,
1977 		    ieee80211_state_name[vap->iv_state],
1978 		    ieee80211_state_name[vap->iv_nstate], arg);
1979 		vap->iv_newstate(vap, vap->iv_nstate, 0);
1980 		IEEE80211_LOCK_ASSERT(ic);
1981 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1982 		    IEEE80211_FEXT_STATEWAIT);
1983 		/* enqueue new state transition after cancel_scan() task */
1984 		ieee80211_new_state_locked(vap, nstate, arg);
1985 		goto done;
1986 	}
1987 
1988 	ostate = vap->iv_state;
1989 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1990 		/*
1991 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1992 		 * vap's to INIT state and mark them as waiting for the scan to
1993 		 * complete.  This insures they don't interfere with our
1994 		 * scanning.  Since we are single threaded the vaps can not
1995 		 * transition again while we are executing.
1996 		 *
1997 		 * XXX not always right, assumes ap follows sta
1998 		 */
1999 		markwaiting(vap);
2000 	}
2001 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2002 	    "%s: %s -> %s arg %d\n", __func__,
2003 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2004 
2005 	rc = vap->iv_newstate(vap, nstate, arg);
2006 	IEEE80211_LOCK_ASSERT(ic);
2007 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2008 	if (rc != 0) {
2009 		/* State transition failed */
2010 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2011 		KASSERT(nstate != IEEE80211_S_INIT,
2012 		    ("INIT state change failed"));
2013 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2014 		    "%s: %s returned error %d\n", __func__,
2015 		    ieee80211_state_name[nstate], rc);
2016 		goto done;
2017 	}
2018 
2019 	/* No actual transition, skip post processing */
2020 	if (ostate == nstate)
2021 		goto done;
2022 
2023 	if (nstate == IEEE80211_S_RUN) {
2024 		/*
2025 		 * OACTIVE may be set on the vap if the upper layer
2026 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2027 		 * RUN state.  Clear it and restart xmit.
2028 		 *
2029 		 * Note this can also happen as a result of SLEEP->RUN
2030 		 * (i.e. coming out of power save mode).
2031 		 */
2032 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2033 
2034 		/*
2035 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2036 		 */
2037 
2038 		/* bring up any vaps waiting on us */
2039 		wakeupwaiting(vap);
2040 	} else if (nstate == IEEE80211_S_INIT) {
2041 		/*
2042 		 * Flush the scan cache if we did the last scan (XXX?)
2043 		 * and flush any frames on send queues from this vap.
2044 		 * Note the mgt q is used only for legacy drivers and
2045 		 * will go away shortly.
2046 		 */
2047 		ieee80211_scan_flush(vap);
2048 
2049 		/*
2050 		 * XXX TODO: ic/vap queue flush
2051 		 */
2052 	}
2053 done:
2054 	IEEE80211_UNLOCK(ic);
2055 }
2056 
2057 /*
2058  * Public interface for initiating a state machine change.
2059  * This routine single-threads the request and coordinates
2060  * the scheduling of multiple vaps for the purpose of selecting
2061  * an operating channel.  Specifically the following scenarios
2062  * are handled:
2063  * o only one vap can be selecting a channel so on transition to
2064  *   SCAN state if another vap is already scanning then
2065  *   mark the caller for later processing and return without
2066  *   doing anything (XXX? expectations by caller of synchronous operation)
2067  * o only one vap can be doing CAC of a channel so on transition to
2068  *   CAC state if another vap is already scanning for radar then
2069  *   mark the caller for later processing and return without
2070  *   doing anything (XXX? expectations by caller of synchronous operation)
2071  * o if another vap is already running when a request is made
2072  *   to SCAN then an operating channel has been chosen; bypass
2073  *   the scan and just join the channel
2074  *
2075  * Note that the state change call is done through the iv_newstate
2076  * method pointer so any driver routine gets invoked.  The driver
2077  * will normally call back into operating mode-specific
2078  * ieee80211_newstate routines (below) unless it needs to completely
2079  * bypass the state machine (e.g. because the firmware has it's
2080  * own idea how things should work).  Bypassing the net80211 layer
2081  * is usually a mistake and indicates lack of proper integration
2082  * with the net80211 layer.
2083  */
2084 int
2085 ieee80211_new_state_locked(struct ieee80211vap *vap,
2086 	enum ieee80211_state nstate, int arg)
2087 {
2088 	struct ieee80211com *ic = vap->iv_ic;
2089 	struct ieee80211vap *vp;
2090 	enum ieee80211_state ostate;
2091 	int nrunning, nscanning;
2092 
2093 	IEEE80211_LOCK_ASSERT(ic);
2094 
2095 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2096 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2097 		    ((vap->iv_state == IEEE80211_S_INIT ||
2098 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2099 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2100 		    nstate > IEEE80211_S_SCAN)) {
2101 			/*
2102 			 * XXX The vap is being stopped/started,
2103 			 * do not allow any other state changes
2104 			 * until this is completed.
2105 			 */
2106 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2107 			    "%s: %s -> %s (%s) transition discarded\n",
2108 			    __func__,
2109 			    ieee80211_state_name[vap->iv_state],
2110 			    ieee80211_state_name[nstate],
2111 			    ieee80211_state_name[vap->iv_nstate]);
2112 			return -1;
2113 		} else if (vap->iv_state != vap->iv_nstate) {
2114 #if 0
2115 			/* Warn if the previous state hasn't completed. */
2116 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2117 			    "%s: pending %s -> %s transition lost\n", __func__,
2118 			    ieee80211_state_name[vap->iv_state],
2119 			    ieee80211_state_name[vap->iv_nstate]);
2120 #else
2121 			/* XXX temporarily enable to identify issues */
2122 			if_printf(vap->iv_ifp,
2123 			    "%s: pending %s -> %s transition lost\n",
2124 			    __func__, ieee80211_state_name[vap->iv_state],
2125 			    ieee80211_state_name[vap->iv_nstate]);
2126 #endif
2127 		}
2128 	}
2129 
2130 	nrunning = nscanning = 0;
2131 	/* XXX can track this state instead of calculating */
2132 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2133 		if (vp != vap) {
2134 			if (vp->iv_state >= IEEE80211_S_RUN)
2135 				nrunning++;
2136 			/* XXX doesn't handle bg scan */
2137 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2138 			else if (vp->iv_state > IEEE80211_S_INIT)
2139 				nscanning++;
2140 		}
2141 	}
2142 	ostate = vap->iv_state;
2143 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2144 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2145 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2146 	    nrunning, nscanning);
2147 	switch (nstate) {
2148 	case IEEE80211_S_SCAN:
2149 		if (ostate == IEEE80211_S_INIT) {
2150 			/*
2151 			 * INIT -> SCAN happens on initial bringup.
2152 			 */
2153 			KASSERT(!(nscanning && nrunning),
2154 			    ("%d scanning and %d running", nscanning, nrunning));
2155 			if (nscanning) {
2156 				/*
2157 				 * Someone is scanning, defer our state
2158 				 * change until the work has completed.
2159 				 */
2160 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2161 				    "%s: defer %s -> %s\n",
2162 				    __func__, ieee80211_state_name[ostate],
2163 				    ieee80211_state_name[nstate]);
2164 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2165 				return 0;
2166 			}
2167 			if (nrunning) {
2168 				/*
2169 				 * Someone is operating; just join the channel
2170 				 * they have chosen.
2171 				 */
2172 				/* XXX kill arg? */
2173 				/* XXX check each opmode, adhoc? */
2174 				if (vap->iv_opmode == IEEE80211_M_STA)
2175 					nstate = IEEE80211_S_SCAN;
2176 				else
2177 					nstate = IEEE80211_S_RUN;
2178 #ifdef IEEE80211_DEBUG
2179 				if (nstate != IEEE80211_S_SCAN) {
2180 					IEEE80211_DPRINTF(vap,
2181 					    IEEE80211_MSG_STATE,
2182 					    "%s: override, now %s -> %s\n",
2183 					    __func__,
2184 					    ieee80211_state_name[ostate],
2185 					    ieee80211_state_name[nstate]);
2186 				}
2187 #endif
2188 			}
2189 		}
2190 		break;
2191 	case IEEE80211_S_RUN:
2192 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2193 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2194 		    nscanning) {
2195 			/*
2196 			 * Legacy WDS with someone else scanning; don't
2197 			 * go online until that completes as we should
2198 			 * follow the other vap to the channel they choose.
2199 			 */
2200 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2201 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2202 			     ieee80211_state_name[ostate],
2203 			     ieee80211_state_name[nstate]);
2204 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2205 			return 0;
2206 		}
2207 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2208 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2209 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2210 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2211 			/*
2212 			 * This is a DFS channel, transition to CAC state
2213 			 * instead of RUN.  This allows us to initiate
2214 			 * Channel Availability Check (CAC) as specified
2215 			 * by 11h/DFS.
2216 			 */
2217 			nstate = IEEE80211_S_CAC;
2218 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2219 			     "%s: override %s -> %s (DFS)\n", __func__,
2220 			     ieee80211_state_name[ostate],
2221 			     ieee80211_state_name[nstate]);
2222 		}
2223 		break;
2224 	case IEEE80211_S_INIT:
2225 		/* cancel any scan in progress */
2226 		ieee80211_cancel_scan(vap);
2227 		if (ostate == IEEE80211_S_INIT ) {
2228 			/* XXX don't believe this */
2229 			/* INIT -> INIT. nothing to do */
2230 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2231 		}
2232 		/* fall thru... */
2233 	default:
2234 		break;
2235 	}
2236 	/* defer the state change to a thread */
2237 	vap->iv_nstate = nstate;
2238 	vap->iv_nstate_arg = arg;
2239 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2240 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2241 	return EINPROGRESS;
2242 }
2243 
2244 int
2245 ieee80211_new_state(struct ieee80211vap *vap,
2246 	enum ieee80211_state nstate, int arg)
2247 {
2248 	struct ieee80211com *ic = vap->iv_ic;
2249 	int rc;
2250 
2251 	IEEE80211_LOCK(ic);
2252 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2253 	IEEE80211_UNLOCK(ic);
2254 	return rc;
2255 }
2256