1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void restart_vaps(void *, int); 248 static void ieee80211_newstate_cb(void *, int); 249 250 static int 251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 252 const struct ieee80211_bpf_params *params) 253 { 254 255 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 256 m_freem(m); 257 return ENETDOWN; 258 } 259 260 void 261 ieee80211_proto_attach(struct ieee80211com *ic) 262 { 263 uint8_t hdrlen; 264 265 /* override the 802.3 setting */ 266 hdrlen = ic->ic_headroom 267 + sizeof(struct ieee80211_qosframe_addr4) 268 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 269 + IEEE80211_WEP_EXTIVLEN; 270 /* XXX no way to recalculate on ifdetach */ 271 if (ALIGN(hdrlen) > max_linkhdr) { 272 /* XXX sanity check... */ 273 max_linkhdr = ALIGN(hdrlen); 274 max_hdr = max_linkhdr + max_protohdr; 275 max_datalen = MHLEN - max_hdr; 276 } 277 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 278 279 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 280 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 281 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 282 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 283 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 284 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 285 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 286 287 ic->ic_wme.wme_hipri_switch_hysteresis = 288 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 289 290 /* initialize management frame handlers */ 291 ic->ic_send_mgmt = ieee80211_send_mgmt; 292 ic->ic_raw_xmit = null_raw_xmit; 293 294 ieee80211_adhoc_attach(ic); 295 ieee80211_sta_attach(ic); 296 ieee80211_wds_attach(ic); 297 ieee80211_hostap_attach(ic); 298 #ifdef IEEE80211_SUPPORT_MESH 299 ieee80211_mesh_attach(ic); 300 #endif 301 ieee80211_monitor_attach(ic); 302 } 303 304 void 305 ieee80211_proto_detach(struct ieee80211com *ic) 306 { 307 ieee80211_monitor_detach(ic); 308 #ifdef IEEE80211_SUPPORT_MESH 309 ieee80211_mesh_detach(ic); 310 #endif 311 ieee80211_hostap_detach(ic); 312 ieee80211_wds_detach(ic); 313 ieee80211_adhoc_detach(ic); 314 ieee80211_sta_detach(ic); 315 } 316 317 static void 318 null_update_beacon(struct ieee80211vap *vap, int item) 319 { 320 } 321 322 void 323 ieee80211_proto_vattach(struct ieee80211vap *vap) 324 { 325 struct ieee80211com *ic = vap->iv_ic; 326 struct ifnet *ifp = vap->iv_ifp; 327 int i; 328 329 /* override the 802.3 setting */ 330 ifp->if_hdrlen = ic->ic_headroom 331 + sizeof(struct ieee80211_qosframe_addr4) 332 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 333 + IEEE80211_WEP_EXTIVLEN; 334 335 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 336 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 337 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 338 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 339 callout_init(&vap->iv_mgtsend, 1); 340 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 343 /* 344 * Install default tx rate handling: no fixed rate, lowest 345 * supported rate for mgmt and multicast frames. Default 346 * max retry count. These settings can be changed by the 347 * driver and/or user applications. 348 */ 349 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 350 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 351 352 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 353 354 /* 355 * Setting the management rate to MCS 0 assumes that the 356 * BSS Basic rate set is empty and the BSS Basic MCS set 357 * is not. 358 * 359 * Since we're not checking this, default to the lowest 360 * defined rate for this mode. 361 * 362 * At least one 11n AP (DLINK DIR-825) is reported to drop 363 * some MCS management traffic (eg BA response frames.) 364 * 365 * See also: 9.6.0 of the 802.11n-2009 specification. 366 */ 367 #ifdef NOTYET 368 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 369 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 370 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 371 } else { 372 vap->iv_txparms[i].mgmtrate = 373 rs->rs_rates[0] & IEEE80211_RATE_VAL; 374 vap->iv_txparms[i].mcastrate = 375 rs->rs_rates[0] & IEEE80211_RATE_VAL; 376 } 377 #endif 378 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 379 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 380 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 381 } 382 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 383 384 vap->iv_update_beacon = null_update_beacon; 385 vap->iv_deliver_data = ieee80211_deliver_data; 386 387 /* attach support for operating mode */ 388 ic->ic_vattach[vap->iv_opmode](vap); 389 } 390 391 void 392 ieee80211_proto_vdetach(struct ieee80211vap *vap) 393 { 394 #define FREEAPPIE(ie) do { \ 395 if (ie != NULL) \ 396 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 397 } while (0) 398 /* 399 * Detach operating mode module. 400 */ 401 if (vap->iv_opdetach != NULL) 402 vap->iv_opdetach(vap); 403 /* 404 * This should not be needed as we detach when reseting 405 * the state but be conservative here since the 406 * authenticator may do things like spawn kernel threads. 407 */ 408 if (vap->iv_auth->ia_detach != NULL) 409 vap->iv_auth->ia_detach(vap); 410 /* 411 * Detach any ACL'ator. 412 */ 413 if (vap->iv_acl != NULL) 414 vap->iv_acl->iac_detach(vap); 415 416 FREEAPPIE(vap->iv_appie_beacon); 417 FREEAPPIE(vap->iv_appie_probereq); 418 FREEAPPIE(vap->iv_appie_proberesp); 419 FREEAPPIE(vap->iv_appie_assocreq); 420 FREEAPPIE(vap->iv_appie_assocresp); 421 FREEAPPIE(vap->iv_appie_wpa); 422 #undef FREEAPPIE 423 } 424 425 /* 426 * Simple-minded authenticator module support. 427 */ 428 429 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 430 /* XXX well-known names */ 431 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 432 "wlan_internal", /* IEEE80211_AUTH_NONE */ 433 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 434 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 435 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 436 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 437 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 438 }; 439 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 440 441 static const struct ieee80211_authenticator auth_internal = { 442 .ia_name = "wlan_internal", 443 .ia_attach = NULL, 444 .ia_detach = NULL, 445 .ia_node_join = NULL, 446 .ia_node_leave = NULL, 447 }; 448 449 /* 450 * Setup internal authenticators once; they are never unregistered. 451 */ 452 static void 453 ieee80211_auth_setup(void) 454 { 455 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 456 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 457 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 458 } 459 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 460 461 const struct ieee80211_authenticator * 462 ieee80211_authenticator_get(int auth) 463 { 464 if (auth >= IEEE80211_AUTH_MAX) 465 return NULL; 466 if (authenticators[auth] == NULL) 467 ieee80211_load_module(auth_modnames[auth]); 468 return authenticators[auth]; 469 } 470 471 void 472 ieee80211_authenticator_register(int type, 473 const struct ieee80211_authenticator *auth) 474 { 475 if (type >= IEEE80211_AUTH_MAX) 476 return; 477 authenticators[type] = auth; 478 } 479 480 void 481 ieee80211_authenticator_unregister(int type) 482 { 483 484 if (type >= IEEE80211_AUTH_MAX) 485 return; 486 authenticators[type] = NULL; 487 } 488 489 /* 490 * Very simple-minded ACL module support. 491 */ 492 /* XXX just one for now */ 493 static const struct ieee80211_aclator *acl = NULL; 494 495 void 496 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 497 { 498 printf("wlan: %s acl policy registered\n", iac->iac_name); 499 acl = iac; 500 } 501 502 void 503 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 504 { 505 if (acl == iac) 506 acl = NULL; 507 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 508 } 509 510 const struct ieee80211_aclator * 511 ieee80211_aclator_get(const char *name) 512 { 513 if (acl == NULL) 514 ieee80211_load_module("wlan_acl"); 515 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 516 } 517 518 void 519 ieee80211_print_essid(const uint8_t *essid, int len) 520 { 521 const uint8_t *p; 522 int i; 523 524 if (len > IEEE80211_NWID_LEN) 525 len = IEEE80211_NWID_LEN; 526 /* determine printable or not */ 527 for (i = 0, p = essid; i < len; i++, p++) { 528 if (*p < ' ' || *p > 0x7e) 529 break; 530 } 531 if (i == len) { 532 printf("\""); 533 for (i = 0, p = essid; i < len; i++, p++) 534 printf("%c", *p); 535 printf("\""); 536 } else { 537 printf("0x"); 538 for (i = 0, p = essid; i < len; i++, p++) 539 printf("%02x", *p); 540 } 541 } 542 543 void 544 ieee80211_dump_pkt(struct ieee80211com *ic, 545 const uint8_t *buf, int len, int rate, int rssi) 546 { 547 const struct ieee80211_frame *wh; 548 int i; 549 550 wh = (const struct ieee80211_frame *)buf; 551 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 552 case IEEE80211_FC1_DIR_NODS: 553 printf("NODS %s", ether_sprintf(wh->i_addr2)); 554 printf("->%s", ether_sprintf(wh->i_addr1)); 555 printf("(%s)", ether_sprintf(wh->i_addr3)); 556 break; 557 case IEEE80211_FC1_DIR_TODS: 558 printf("TODS %s", ether_sprintf(wh->i_addr2)); 559 printf("->%s", ether_sprintf(wh->i_addr3)); 560 printf("(%s)", ether_sprintf(wh->i_addr1)); 561 break; 562 case IEEE80211_FC1_DIR_FROMDS: 563 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 564 printf("->%s", ether_sprintf(wh->i_addr1)); 565 printf("(%s)", ether_sprintf(wh->i_addr2)); 566 break; 567 case IEEE80211_FC1_DIR_DSTODS: 568 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 569 printf("->%s", ether_sprintf(wh->i_addr3)); 570 printf("(%s", ether_sprintf(wh->i_addr2)); 571 printf("->%s)", ether_sprintf(wh->i_addr1)); 572 break; 573 } 574 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 575 case IEEE80211_FC0_TYPE_DATA: 576 printf(" data"); 577 break; 578 case IEEE80211_FC0_TYPE_MGT: 579 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 580 break; 581 default: 582 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 583 break; 584 } 585 if (IEEE80211_QOS_HAS_SEQ(wh)) { 586 const struct ieee80211_qosframe *qwh = 587 (const struct ieee80211_qosframe *)buf; 588 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 589 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 590 } 591 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 592 int off; 593 594 off = ieee80211_anyhdrspace(ic, wh); 595 printf(" WEP [IV %.02x %.02x %.02x", 596 buf[off+0], buf[off+1], buf[off+2]); 597 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 598 printf(" %.02x %.02x %.02x", 599 buf[off+4], buf[off+5], buf[off+6]); 600 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 601 } 602 if (rate >= 0) 603 printf(" %dM", rate / 2); 604 if (rssi >= 0) 605 printf(" +%d", rssi); 606 printf("\n"); 607 if (len > 0) { 608 for (i = 0; i < len; i++) { 609 if ((i & 1) == 0) 610 printf(" "); 611 printf("%02x", buf[i]); 612 } 613 printf("\n"); 614 } 615 } 616 617 static __inline int 618 findrix(const struct ieee80211_rateset *rs, int r) 619 { 620 int i; 621 622 for (i = 0; i < rs->rs_nrates; i++) 623 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 624 return i; 625 return -1; 626 } 627 628 int 629 ieee80211_fix_rate(struct ieee80211_node *ni, 630 struct ieee80211_rateset *nrs, int flags) 631 { 632 struct ieee80211vap *vap = ni->ni_vap; 633 struct ieee80211com *ic = ni->ni_ic; 634 int i, j, rix, error; 635 int okrate, badrate, fixedrate, ucastrate; 636 const struct ieee80211_rateset *srs; 637 uint8_t r; 638 639 error = 0; 640 okrate = badrate = 0; 641 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 642 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 643 /* 644 * Workaround awkwardness with fixed rate. We are called 645 * to check both the legacy rate set and the HT rate set 646 * but we must apply any legacy fixed rate check only to the 647 * legacy rate set and vice versa. We cannot tell what type 648 * of rate set we've been given (legacy or HT) but we can 649 * distinguish the fixed rate type (MCS have 0x80 set). 650 * So to deal with this the caller communicates whether to 651 * check MCS or legacy rate using the flags and we use the 652 * type of any fixed rate to avoid applying an MCS to a 653 * legacy rate and vice versa. 654 */ 655 if (ucastrate & 0x80) { 656 if (flags & IEEE80211_F_DOFRATE) 657 flags &= ~IEEE80211_F_DOFRATE; 658 } else if ((ucastrate & 0x80) == 0) { 659 if (flags & IEEE80211_F_DOFMCS) 660 flags &= ~IEEE80211_F_DOFMCS; 661 } 662 /* NB: required to make MCS match below work */ 663 ucastrate &= IEEE80211_RATE_VAL; 664 } 665 fixedrate = IEEE80211_FIXED_RATE_NONE; 666 /* 667 * XXX we are called to process both MCS and legacy rates; 668 * we must use the appropriate basic rate set or chaos will 669 * ensue; for now callers that want MCS must supply 670 * IEEE80211_F_DOBRS; at some point we'll need to split this 671 * function so there are two variants, one for MCS and one 672 * for legacy rates. 673 */ 674 if (flags & IEEE80211_F_DOBRS) 675 srs = (const struct ieee80211_rateset *) 676 ieee80211_get_suphtrates(ic, ni->ni_chan); 677 else 678 srs = ieee80211_get_suprates(ic, ni->ni_chan); 679 for (i = 0; i < nrs->rs_nrates; ) { 680 if (flags & IEEE80211_F_DOSORT) { 681 /* 682 * Sort rates. 683 */ 684 for (j = i + 1; j < nrs->rs_nrates; j++) { 685 if (IEEE80211_RV(nrs->rs_rates[i]) > 686 IEEE80211_RV(nrs->rs_rates[j])) { 687 r = nrs->rs_rates[i]; 688 nrs->rs_rates[i] = nrs->rs_rates[j]; 689 nrs->rs_rates[j] = r; 690 } 691 } 692 } 693 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 694 badrate = r; 695 /* 696 * Check for fixed rate. 697 */ 698 if (r == ucastrate) 699 fixedrate = r; 700 /* 701 * Check against supported rates. 702 */ 703 rix = findrix(srs, r); 704 if (flags & IEEE80211_F_DONEGO) { 705 if (rix < 0) { 706 /* 707 * A rate in the node's rate set is not 708 * supported. If this is a basic rate and we 709 * are operating as a STA then this is an error. 710 * Otherwise we just discard/ignore the rate. 711 */ 712 if ((flags & IEEE80211_F_JOIN) && 713 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 714 error++; 715 } else if ((flags & IEEE80211_F_JOIN) == 0) { 716 /* 717 * Overwrite with the supported rate 718 * value so any basic rate bit is set. 719 */ 720 nrs->rs_rates[i] = srs->rs_rates[rix]; 721 } 722 } 723 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 724 /* 725 * Delete unacceptable rates. 726 */ 727 nrs->rs_nrates--; 728 for (j = i; j < nrs->rs_nrates; j++) 729 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 730 nrs->rs_rates[j] = 0; 731 continue; 732 } 733 if (rix >= 0) 734 okrate = nrs->rs_rates[i]; 735 i++; 736 } 737 if (okrate == 0 || error != 0 || 738 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 739 fixedrate != ucastrate)) { 740 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 741 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 742 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 743 return badrate | IEEE80211_RATE_BASIC; 744 } else 745 return IEEE80211_RV(okrate); 746 } 747 748 /* 749 * Reset 11g-related state. 750 */ 751 void 752 ieee80211_reset_erp(struct ieee80211com *ic) 753 { 754 ic->ic_flags &= ~IEEE80211_F_USEPROT; 755 ic->ic_nonerpsta = 0; 756 ic->ic_longslotsta = 0; 757 /* 758 * Short slot time is enabled only when operating in 11g 759 * and not in an IBSS. We must also honor whether or not 760 * the driver is capable of doing it. 761 */ 762 ieee80211_set_shortslottime(ic, 763 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 764 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 765 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 766 ic->ic_opmode == IEEE80211_M_HOSTAP && 767 (ic->ic_caps & IEEE80211_C_SHSLOT))); 768 /* 769 * Set short preamble and ERP barker-preamble flags. 770 */ 771 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 772 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 773 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 774 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 775 } else { 776 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 777 ic->ic_flags |= IEEE80211_F_USEBARKER; 778 } 779 } 780 781 /* 782 * Set the short slot time state and notify the driver. 783 */ 784 void 785 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 786 { 787 if (onoff) 788 ic->ic_flags |= IEEE80211_F_SHSLOT; 789 else 790 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 791 /* notify driver */ 792 if (ic->ic_updateslot != NULL) 793 ic->ic_updateslot(ic); 794 } 795 796 /* 797 * Check if the specified rate set supports ERP. 798 * NB: the rate set is assumed to be sorted. 799 */ 800 int 801 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 802 { 803 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 804 int i, j; 805 806 if (rs->rs_nrates < nitems(rates)) 807 return 0; 808 for (i = 0; i < nitems(rates); i++) { 809 for (j = 0; j < rs->rs_nrates; j++) { 810 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 811 if (rates[i] == r) 812 goto next; 813 if (r > rates[i]) 814 return 0; 815 } 816 return 0; 817 next: 818 ; 819 } 820 return 1; 821 } 822 823 /* 824 * Mark the basic rates for the rate table based on the 825 * operating mode. For real 11g we mark all the 11b rates 826 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 827 * 11b rates. There's also a pseudo 11a-mode used to mark only 828 * the basic OFDM rates. 829 */ 830 static void 831 setbasicrates(struct ieee80211_rateset *rs, 832 enum ieee80211_phymode mode, int add) 833 { 834 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 835 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 836 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 837 /* NB: mixed b/g */ 838 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 839 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 840 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 841 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 842 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 843 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 844 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 845 /* NB: mixed b/g */ 846 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 847 /* NB: mixed b/g */ 848 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 849 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 850 }; 851 int i, j; 852 853 for (i = 0; i < rs->rs_nrates; i++) { 854 if (!add) 855 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 856 for (j = 0; j < basic[mode].rs_nrates; j++) 857 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 858 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 859 break; 860 } 861 } 862 } 863 864 /* 865 * Set the basic rates in a rate set. 866 */ 867 void 868 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 869 enum ieee80211_phymode mode) 870 { 871 setbasicrates(rs, mode, 0); 872 } 873 874 /* 875 * Add basic rates to a rate set. 876 */ 877 void 878 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 879 enum ieee80211_phymode mode) 880 { 881 setbasicrates(rs, mode, 1); 882 } 883 884 /* 885 * WME protocol support. 886 * 887 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 888 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 889 * Draft 2.0 Test Plan (Appendix D). 890 * 891 * Static/Dynamic Turbo mode settings come from Atheros. 892 */ 893 typedef struct phyParamType { 894 uint8_t aifsn; 895 uint8_t logcwmin; 896 uint8_t logcwmax; 897 uint16_t txopLimit; 898 uint8_t acm; 899 } paramType; 900 901 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 902 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 903 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 904 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 905 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 906 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 907 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 908 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 909 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 910 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 911 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 912 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 913 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 914 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 915 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 916 }; 917 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 918 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 919 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 920 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 921 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 922 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 923 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 924 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 925 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 926 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 927 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 928 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 929 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 930 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 931 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 932 }; 933 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 934 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 935 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 936 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 937 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 938 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 939 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 940 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 941 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 942 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 943 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 944 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 945 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 946 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 947 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 948 }; 949 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 950 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 951 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 952 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 953 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 954 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 955 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 956 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 957 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 958 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 959 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 960 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 961 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 962 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 963 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 964 }; 965 966 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 967 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 968 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 969 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 970 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 971 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 972 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 973 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 974 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 975 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 976 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 977 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 978 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 979 }; 980 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 981 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 982 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 983 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 984 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 985 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 986 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 987 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 988 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 989 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 990 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 991 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 992 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 993 }; 994 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 995 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 996 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 997 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 998 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 999 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1000 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1001 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1002 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1003 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1004 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1005 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1006 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1007 }; 1008 1009 static void 1010 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1011 { 1012 wmep->wmep_aifsn = phy->aifsn; 1013 wmep->wmep_logcwmin = phy->logcwmin; 1014 wmep->wmep_logcwmax = phy->logcwmax; 1015 wmep->wmep_txopLimit = phy->txopLimit; 1016 } 1017 1018 static void 1019 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1020 struct wmeParams *wmep, const paramType *phy) 1021 { 1022 wmep->wmep_acm = phy->acm; 1023 _setifsparams(wmep, phy); 1024 1025 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1026 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1027 ieee80211_wme_acnames[ac], type, 1028 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1029 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1030 } 1031 1032 static void 1033 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1034 { 1035 struct ieee80211com *ic = vap->iv_ic; 1036 struct ieee80211_wme_state *wme = &ic->ic_wme; 1037 const paramType *pPhyParam, *pBssPhyParam; 1038 struct wmeParams *wmep; 1039 enum ieee80211_phymode mode; 1040 int i; 1041 1042 IEEE80211_LOCK_ASSERT(ic); 1043 1044 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1045 return; 1046 1047 /* 1048 * Clear the wme cap_info field so a qoscount from a previous 1049 * vap doesn't confuse later code which only parses the beacon 1050 * field and updates hardware when said field changes. 1051 * Otherwise the hardware is programmed with defaults, not what 1052 * the beacon actually announces. 1053 */ 1054 wme->wme_wmeChanParams.cap_info = 0; 1055 1056 /* 1057 * Select mode; we can be called early in which case we 1058 * always use auto mode. We know we'll be called when 1059 * entering the RUN state with bsschan setup properly 1060 * so state will eventually get set correctly 1061 */ 1062 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1063 mode = ieee80211_chan2mode(ic->ic_bsschan); 1064 else 1065 mode = IEEE80211_MODE_AUTO; 1066 for (i = 0; i < WME_NUM_AC; i++) { 1067 switch (i) { 1068 case WME_AC_BK: 1069 pPhyParam = &phyParamForAC_BK[mode]; 1070 pBssPhyParam = &phyParamForAC_BK[mode]; 1071 break; 1072 case WME_AC_VI: 1073 pPhyParam = &phyParamForAC_VI[mode]; 1074 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1075 break; 1076 case WME_AC_VO: 1077 pPhyParam = &phyParamForAC_VO[mode]; 1078 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1079 break; 1080 case WME_AC_BE: 1081 default: 1082 pPhyParam = &phyParamForAC_BE[mode]; 1083 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1084 break; 1085 } 1086 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1087 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1088 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1089 } else { 1090 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1091 } 1092 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1093 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1094 } 1095 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1096 if (vap->iv_bss != NULL) { 1097 /* 1098 * Calculate aggressive mode switching threshold based 1099 * on beacon interval. This doesn't need locking since 1100 * we're only called before entering the RUN state at 1101 * which point we start sending beacon frames. 1102 */ 1103 wme->wme_hipri_switch_thresh = 1104 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1105 wme->wme_flags &= ~WME_F_AGGRMODE; 1106 ieee80211_wme_updateparams(vap); 1107 } 1108 } 1109 1110 void 1111 ieee80211_wme_initparams(struct ieee80211vap *vap) 1112 { 1113 struct ieee80211com *ic = vap->iv_ic; 1114 1115 IEEE80211_LOCK(ic); 1116 ieee80211_wme_initparams_locked(vap); 1117 IEEE80211_UNLOCK(ic); 1118 } 1119 1120 /* 1121 * Update WME parameters for ourself and the BSS. 1122 */ 1123 void 1124 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1125 { 1126 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1127 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1128 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1129 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1130 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1131 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1132 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1133 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1134 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1135 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1136 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1137 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1138 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1139 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1140 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1141 }; 1142 struct ieee80211com *ic = vap->iv_ic; 1143 struct ieee80211_wme_state *wme = &ic->ic_wme; 1144 const struct wmeParams *wmep; 1145 struct wmeParams *chanp, *bssp; 1146 enum ieee80211_phymode mode; 1147 int i; 1148 int do_aggrmode = 0; 1149 1150 /* 1151 * Set up the channel access parameters for the physical 1152 * device. First populate the configured settings. 1153 */ 1154 for (i = 0; i < WME_NUM_AC; i++) { 1155 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1156 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1157 chanp->wmep_aifsn = wmep->wmep_aifsn; 1158 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1159 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1160 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1161 1162 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1163 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1164 chanp->wmep_aifsn = wmep->wmep_aifsn; 1165 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1166 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1167 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1168 } 1169 1170 /* 1171 * Select mode; we can be called early in which case we 1172 * always use auto mode. We know we'll be called when 1173 * entering the RUN state with bsschan setup properly 1174 * so state will eventually get set correctly 1175 */ 1176 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1177 mode = ieee80211_chan2mode(ic->ic_bsschan); 1178 else 1179 mode = IEEE80211_MODE_AUTO; 1180 1181 /* 1182 * This implements aggressive mode as found in certain 1183 * vendors' AP's. When there is significant high 1184 * priority (VI/VO) traffic in the BSS throttle back BE 1185 * traffic by using conservative parameters. Otherwise 1186 * BE uses aggressive params to optimize performance of 1187 * legacy/non-QoS traffic. 1188 */ 1189 1190 /* Hostap? Only if aggressive mode is enabled */ 1191 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1192 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1193 do_aggrmode = 1; 1194 1195 /* 1196 * Station? Only if we're in a non-QoS BSS. 1197 */ 1198 else if ((vap->iv_opmode == IEEE80211_M_STA && 1199 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1200 do_aggrmode = 1; 1201 1202 /* 1203 * IBSS? Only if we we have WME enabled. 1204 */ 1205 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1206 (vap->iv_flags & IEEE80211_F_WME)) 1207 do_aggrmode = 1; 1208 1209 /* 1210 * If WME is disabled on this VAP, default to aggressive mode 1211 * regardless of the configuration. 1212 */ 1213 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1214 do_aggrmode = 1; 1215 1216 /* XXX WDS? */ 1217 1218 /* XXX MBSS? */ 1219 1220 if (do_aggrmode) { 1221 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1222 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1223 1224 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1225 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1226 aggrParam[mode].logcwmin; 1227 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1228 aggrParam[mode].logcwmax; 1229 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1230 (vap->iv_flags & IEEE80211_F_BURST) ? 1231 aggrParam[mode].txopLimit : 0; 1232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1233 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1234 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1235 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1236 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1237 } 1238 1239 1240 /* 1241 * Change the contention window based on the number of associated 1242 * stations. If the number of associated stations is 1 and 1243 * aggressive mode is enabled, lower the contention window even 1244 * further. 1245 */ 1246 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1247 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1248 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1249 [IEEE80211_MODE_AUTO] = 3, 1250 [IEEE80211_MODE_11A] = 3, 1251 [IEEE80211_MODE_11B] = 4, 1252 [IEEE80211_MODE_11G] = 3, 1253 [IEEE80211_MODE_FH] = 4, 1254 [IEEE80211_MODE_TURBO_A] = 3, 1255 [IEEE80211_MODE_TURBO_G] = 3, 1256 [IEEE80211_MODE_STURBO_A] = 3, 1257 [IEEE80211_MODE_HALF] = 3, 1258 [IEEE80211_MODE_QUARTER] = 3, 1259 [IEEE80211_MODE_11NA] = 3, 1260 [IEEE80211_MODE_11NG] = 3, 1261 [IEEE80211_MODE_VHT_2GHZ] = 3, 1262 [IEEE80211_MODE_VHT_5GHZ] = 3, 1263 }; 1264 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1265 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1266 1267 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1269 "update %s (chan+bss) logcwmin %u\n", 1270 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1271 } 1272 1273 /* 1274 * Arrange for the beacon update. 1275 * 1276 * XXX what about MBSS, WDS? 1277 */ 1278 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1279 || vap->iv_opmode == IEEE80211_M_IBSS) { 1280 /* 1281 * Arrange for a beacon update and bump the parameter 1282 * set number so associated stations load the new values. 1283 */ 1284 wme->wme_bssChanParams.cap_info = 1285 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1286 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1287 } 1288 1289 /* schedule the deferred WME update */ 1290 ieee80211_runtask(ic, &vap->iv_wme_task); 1291 1292 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1293 "%s: WME params updated, cap_info 0x%x\n", __func__, 1294 vap->iv_opmode == IEEE80211_M_STA ? 1295 wme->wme_wmeChanParams.cap_info : 1296 wme->wme_bssChanParams.cap_info); 1297 } 1298 1299 void 1300 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1301 { 1302 struct ieee80211com *ic = vap->iv_ic; 1303 1304 if (ic->ic_caps & IEEE80211_C_WME) { 1305 IEEE80211_LOCK(ic); 1306 ieee80211_wme_updateparams_locked(vap); 1307 IEEE80211_UNLOCK(ic); 1308 } 1309 } 1310 1311 void 1312 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1313 { 1314 1315 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1316 } 1317 1318 void 1319 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1320 { 1321 1322 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1323 } 1324 1325 static void 1326 parent_updown(void *arg, int npending) 1327 { 1328 struct ieee80211com *ic = arg; 1329 1330 ic->ic_parent(ic); 1331 } 1332 1333 static void 1334 update_mcast(void *arg, int npending) 1335 { 1336 struct ieee80211com *ic = arg; 1337 1338 ic->ic_update_mcast(ic); 1339 } 1340 1341 static void 1342 update_promisc(void *arg, int npending) 1343 { 1344 struct ieee80211com *ic = arg; 1345 1346 ic->ic_update_promisc(ic); 1347 } 1348 1349 static void 1350 update_channel(void *arg, int npending) 1351 { 1352 struct ieee80211com *ic = arg; 1353 1354 ic->ic_set_channel(ic); 1355 ieee80211_radiotap_chan_change(ic); 1356 } 1357 1358 static void 1359 update_chw(void *arg, int npending) 1360 { 1361 struct ieee80211com *ic = arg; 1362 1363 /* 1364 * XXX should we defer the channel width _config_ update until now? 1365 */ 1366 ic->ic_update_chw(ic); 1367 } 1368 1369 /* 1370 * Deferred WME update. 1371 * 1372 * In preparation for per-VAP WME configuration, call the VAP 1373 * method if the VAP requires it. Otherwise, just call the 1374 * older global method. There isn't a per-VAP WME configuration 1375 * just yet so for now just use the global configuration. 1376 */ 1377 static void 1378 vap_update_wme(void *arg, int npending) 1379 { 1380 struct ieee80211vap *vap = arg; 1381 struct ieee80211com *ic = vap->iv_ic; 1382 1383 if (vap->iv_wme_update != NULL) 1384 vap->iv_wme_update(vap, 1385 ic->ic_wme.wme_chanParams.cap_wmeParams); 1386 else 1387 ic->ic_wme.wme_update(ic); 1388 } 1389 1390 static void 1391 restart_vaps(void *arg, int npending) 1392 { 1393 struct ieee80211com *ic = arg; 1394 1395 ieee80211_suspend_all(ic); 1396 ieee80211_resume_all(ic); 1397 } 1398 1399 /* 1400 * Block until the parent is in a known state. This is 1401 * used after any operations that dispatch a task (e.g. 1402 * to auto-configure the parent device up/down). 1403 */ 1404 void 1405 ieee80211_waitfor_parent(struct ieee80211com *ic) 1406 { 1407 taskqueue_block(ic->ic_tq); 1408 ieee80211_draintask(ic, &ic->ic_parent_task); 1409 ieee80211_draintask(ic, &ic->ic_mcast_task); 1410 ieee80211_draintask(ic, &ic->ic_promisc_task); 1411 ieee80211_draintask(ic, &ic->ic_chan_task); 1412 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1413 ieee80211_draintask(ic, &ic->ic_chw_task); 1414 taskqueue_unblock(ic->ic_tq); 1415 } 1416 1417 /* 1418 * Check to see whether the current channel needs reset. 1419 * 1420 * Some devices don't handle being given an invalid channel 1421 * in their operating mode very well (eg wpi(4) will throw a 1422 * firmware exception.) 1423 * 1424 * Return 0 if we're ok, 1 if the channel needs to be reset. 1425 * 1426 * See PR kern/202502. 1427 */ 1428 static int 1429 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1430 { 1431 struct ieee80211com *ic = vap->iv_ic; 1432 1433 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1434 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1435 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1436 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1437 return (1); 1438 return (0); 1439 } 1440 1441 /* 1442 * Reset the curchan to a known good state. 1443 */ 1444 static void 1445 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1446 { 1447 struct ieee80211com *ic = vap->iv_ic; 1448 1449 ic->ic_curchan = &ic->ic_channels[0]; 1450 } 1451 1452 /* 1453 * Start a vap running. If this is the first vap to be 1454 * set running on the underlying device then we 1455 * automatically bring the device up. 1456 */ 1457 void 1458 ieee80211_start_locked(struct ieee80211vap *vap) 1459 { 1460 struct ifnet *ifp = vap->iv_ifp; 1461 struct ieee80211com *ic = vap->iv_ic; 1462 1463 IEEE80211_LOCK_ASSERT(ic); 1464 1465 IEEE80211_DPRINTF(vap, 1466 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1467 "start running, %d vaps running\n", ic->ic_nrunning); 1468 1469 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1470 /* 1471 * Mark us running. Note that it's ok to do this first; 1472 * if we need to bring the parent device up we defer that 1473 * to avoid dropping the com lock. We expect the device 1474 * to respond to being marked up by calling back into us 1475 * through ieee80211_start_all at which point we'll come 1476 * back in here and complete the work. 1477 */ 1478 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1479 /* 1480 * We are not running; if this we are the first vap 1481 * to be brought up auto-up the parent if necessary. 1482 */ 1483 if (ic->ic_nrunning++ == 0) { 1484 1485 /* reset the channel to a known good channel */ 1486 if (ieee80211_start_check_reset_chan(vap)) 1487 ieee80211_start_reset_chan(vap); 1488 1489 IEEE80211_DPRINTF(vap, 1490 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1491 "%s: up parent %s\n", __func__, ic->ic_name); 1492 ieee80211_runtask(ic, &ic->ic_parent_task); 1493 return; 1494 } 1495 } 1496 /* 1497 * If the parent is up and running, then kick the 1498 * 802.11 state machine as appropriate. 1499 */ 1500 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1501 if (vap->iv_opmode == IEEE80211_M_STA) { 1502 #if 0 1503 /* XXX bypasses scan too easily; disable for now */ 1504 /* 1505 * Try to be intelligent about clocking the state 1506 * machine. If we're currently in RUN state then 1507 * we should be able to apply any new state/parameters 1508 * simply by re-associating. Otherwise we need to 1509 * re-scan to select an appropriate ap. 1510 */ 1511 if (vap->iv_state >= IEEE80211_S_RUN) 1512 ieee80211_new_state_locked(vap, 1513 IEEE80211_S_ASSOC, 1); 1514 else 1515 #endif 1516 ieee80211_new_state_locked(vap, 1517 IEEE80211_S_SCAN, 0); 1518 } else { 1519 /* 1520 * For monitor+wds mode there's nothing to do but 1521 * start running. Otherwise if this is the first 1522 * vap to be brought up, start a scan which may be 1523 * preempted if the station is locked to a particular 1524 * channel. 1525 */ 1526 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1527 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1528 vap->iv_opmode == IEEE80211_M_WDS) 1529 ieee80211_new_state_locked(vap, 1530 IEEE80211_S_RUN, -1); 1531 else 1532 ieee80211_new_state_locked(vap, 1533 IEEE80211_S_SCAN, 0); 1534 } 1535 } 1536 } 1537 1538 /* 1539 * Start a single vap. 1540 */ 1541 void 1542 ieee80211_init(void *arg) 1543 { 1544 struct ieee80211vap *vap = arg; 1545 1546 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1547 "%s\n", __func__); 1548 1549 IEEE80211_LOCK(vap->iv_ic); 1550 ieee80211_start_locked(vap); 1551 IEEE80211_UNLOCK(vap->iv_ic); 1552 } 1553 1554 /* 1555 * Start all runnable vap's on a device. 1556 */ 1557 void 1558 ieee80211_start_all(struct ieee80211com *ic) 1559 { 1560 struct ieee80211vap *vap; 1561 1562 IEEE80211_LOCK(ic); 1563 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1564 struct ifnet *ifp = vap->iv_ifp; 1565 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1566 ieee80211_start_locked(vap); 1567 } 1568 IEEE80211_UNLOCK(ic); 1569 } 1570 1571 /* 1572 * Stop a vap. We force it down using the state machine 1573 * then mark it's ifnet not running. If this is the last 1574 * vap running on the underlying device then we close it 1575 * too to insure it will be properly initialized when the 1576 * next vap is brought up. 1577 */ 1578 void 1579 ieee80211_stop_locked(struct ieee80211vap *vap) 1580 { 1581 struct ieee80211com *ic = vap->iv_ic; 1582 struct ifnet *ifp = vap->iv_ifp; 1583 1584 IEEE80211_LOCK_ASSERT(ic); 1585 1586 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1587 "stop running, %d vaps running\n", ic->ic_nrunning); 1588 1589 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1590 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1591 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1592 if (--ic->ic_nrunning == 0) { 1593 IEEE80211_DPRINTF(vap, 1594 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1595 "down parent %s\n", ic->ic_name); 1596 ieee80211_runtask(ic, &ic->ic_parent_task); 1597 } 1598 } 1599 } 1600 1601 void 1602 ieee80211_stop(struct ieee80211vap *vap) 1603 { 1604 struct ieee80211com *ic = vap->iv_ic; 1605 1606 IEEE80211_LOCK(ic); 1607 ieee80211_stop_locked(vap); 1608 IEEE80211_UNLOCK(ic); 1609 } 1610 1611 /* 1612 * Stop all vap's running on a device. 1613 */ 1614 void 1615 ieee80211_stop_all(struct ieee80211com *ic) 1616 { 1617 struct ieee80211vap *vap; 1618 1619 IEEE80211_LOCK(ic); 1620 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1621 struct ifnet *ifp = vap->iv_ifp; 1622 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1623 ieee80211_stop_locked(vap); 1624 } 1625 IEEE80211_UNLOCK(ic); 1626 1627 ieee80211_waitfor_parent(ic); 1628 } 1629 1630 /* 1631 * Stop all vap's running on a device and arrange 1632 * for those that were running to be resumed. 1633 */ 1634 void 1635 ieee80211_suspend_all(struct ieee80211com *ic) 1636 { 1637 struct ieee80211vap *vap; 1638 1639 IEEE80211_LOCK(ic); 1640 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1641 struct ifnet *ifp = vap->iv_ifp; 1642 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1643 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1644 ieee80211_stop_locked(vap); 1645 } 1646 } 1647 IEEE80211_UNLOCK(ic); 1648 1649 ieee80211_waitfor_parent(ic); 1650 } 1651 1652 /* 1653 * Start all vap's marked for resume. 1654 */ 1655 void 1656 ieee80211_resume_all(struct ieee80211com *ic) 1657 { 1658 struct ieee80211vap *vap; 1659 1660 IEEE80211_LOCK(ic); 1661 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1662 struct ifnet *ifp = vap->iv_ifp; 1663 if (!IFNET_IS_UP_RUNNING(ifp) && 1664 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1665 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1666 ieee80211_start_locked(vap); 1667 } 1668 } 1669 IEEE80211_UNLOCK(ic); 1670 } 1671 1672 /* 1673 * Restart all vap's running on a device. 1674 */ 1675 void 1676 ieee80211_restart_all(struct ieee80211com *ic) 1677 { 1678 /* 1679 * NB: do not use ieee80211_runtask here, we will 1680 * block & drain net80211 taskqueue. 1681 */ 1682 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1683 } 1684 1685 void 1686 ieee80211_beacon_miss(struct ieee80211com *ic) 1687 { 1688 IEEE80211_LOCK(ic); 1689 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1690 /* Process in a taskq, the handler may reenter the driver */ 1691 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1692 } 1693 IEEE80211_UNLOCK(ic); 1694 } 1695 1696 static void 1697 beacon_miss(void *arg, int npending) 1698 { 1699 struct ieee80211com *ic = arg; 1700 struct ieee80211vap *vap; 1701 1702 IEEE80211_LOCK(ic); 1703 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1704 /* 1705 * We only pass events through for sta vap's in RUN+ state; 1706 * may be too restrictive but for now this saves all the 1707 * handlers duplicating these checks. 1708 */ 1709 if (vap->iv_opmode == IEEE80211_M_STA && 1710 vap->iv_state >= IEEE80211_S_RUN && 1711 vap->iv_bmiss != NULL) 1712 vap->iv_bmiss(vap); 1713 } 1714 IEEE80211_UNLOCK(ic); 1715 } 1716 1717 static void 1718 beacon_swmiss(void *arg, int npending) 1719 { 1720 struct ieee80211vap *vap = arg; 1721 struct ieee80211com *ic = vap->iv_ic; 1722 1723 IEEE80211_LOCK(ic); 1724 if (vap->iv_state >= IEEE80211_S_RUN) { 1725 /* XXX Call multiple times if npending > zero? */ 1726 vap->iv_bmiss(vap); 1727 } 1728 IEEE80211_UNLOCK(ic); 1729 } 1730 1731 /* 1732 * Software beacon miss handling. Check if any beacons 1733 * were received in the last period. If not post a 1734 * beacon miss; otherwise reset the counter. 1735 */ 1736 void 1737 ieee80211_swbmiss(void *arg) 1738 { 1739 struct ieee80211vap *vap = arg; 1740 struct ieee80211com *ic = vap->iv_ic; 1741 1742 IEEE80211_LOCK_ASSERT(ic); 1743 1744 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1745 ("wrong state %d", vap->iv_state)); 1746 1747 if (ic->ic_flags & IEEE80211_F_SCAN) { 1748 /* 1749 * If scanning just ignore and reset state. If we get a 1750 * bmiss after coming out of scan because we haven't had 1751 * time to receive a beacon then we should probe the AP 1752 * before posting a real bmiss (unless iv_bmiss_max has 1753 * been artifiically lowered). A cleaner solution might 1754 * be to disable the timer on scan start/end but to handle 1755 * case of multiple sta vap's we'd need to disable the 1756 * timers of all affected vap's. 1757 */ 1758 vap->iv_swbmiss_count = 0; 1759 } else if (vap->iv_swbmiss_count == 0) { 1760 if (vap->iv_bmiss != NULL) 1761 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1762 } else 1763 vap->iv_swbmiss_count = 0; 1764 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1765 ieee80211_swbmiss, vap); 1766 } 1767 1768 /* 1769 * Start an 802.11h channel switch. We record the parameters, 1770 * mark the operation pending, notify each vap through the 1771 * beacon update mechanism so it can update the beacon frame 1772 * contents, and then switch vap's to CSA state to block outbound 1773 * traffic. Devices that handle CSA directly can use the state 1774 * switch to do the right thing so long as they call 1775 * ieee80211_csa_completeswitch when it's time to complete the 1776 * channel change. Devices that depend on the net80211 layer can 1777 * use ieee80211_beacon_update to handle the countdown and the 1778 * channel switch. 1779 */ 1780 void 1781 ieee80211_csa_startswitch(struct ieee80211com *ic, 1782 struct ieee80211_channel *c, int mode, int count) 1783 { 1784 struct ieee80211vap *vap; 1785 1786 IEEE80211_LOCK_ASSERT(ic); 1787 1788 ic->ic_csa_newchan = c; 1789 ic->ic_csa_mode = mode; 1790 ic->ic_csa_count = count; 1791 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1792 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1793 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1794 vap->iv_opmode == IEEE80211_M_IBSS || 1795 vap->iv_opmode == IEEE80211_M_MBSS) 1796 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1797 /* switch to CSA state to block outbound traffic */ 1798 if (vap->iv_state == IEEE80211_S_RUN) 1799 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1800 } 1801 ieee80211_notify_csa(ic, c, mode, count); 1802 } 1803 1804 /* 1805 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1806 * This is called by both the completion and cancellation functions 1807 * so each VAP is placed back in the RUN state and can thus transmit. 1808 */ 1809 static void 1810 csa_completeswitch(struct ieee80211com *ic) 1811 { 1812 struct ieee80211vap *vap; 1813 1814 ic->ic_csa_newchan = NULL; 1815 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1816 1817 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1818 if (vap->iv_state == IEEE80211_S_CSA) 1819 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1820 } 1821 1822 /* 1823 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1824 * We clear state and move all vap's in CSA state to RUN state 1825 * so they can again transmit. 1826 * 1827 * Although this may not be completely correct, update the BSS channel 1828 * for each VAP to the newly configured channel. The setcurchan sets 1829 * the current operating channel for the interface (so the radio does 1830 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1831 * reported information via ioctl. 1832 */ 1833 void 1834 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1835 { 1836 struct ieee80211vap *vap; 1837 1838 IEEE80211_LOCK_ASSERT(ic); 1839 1840 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1841 1842 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1843 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1844 if (vap->iv_state == IEEE80211_S_CSA) 1845 vap->iv_bss->ni_chan = ic->ic_curchan; 1846 1847 csa_completeswitch(ic); 1848 } 1849 1850 /* 1851 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1852 * We clear state and move all vap's in CSA state to RUN state 1853 * so they can again transmit. 1854 */ 1855 void 1856 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1857 { 1858 IEEE80211_LOCK_ASSERT(ic); 1859 1860 csa_completeswitch(ic); 1861 } 1862 1863 /* 1864 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1865 * We clear state and move all vap's in CAC state to RUN state. 1866 */ 1867 void 1868 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1869 { 1870 struct ieee80211com *ic = vap0->iv_ic; 1871 struct ieee80211vap *vap; 1872 1873 IEEE80211_LOCK(ic); 1874 /* 1875 * Complete CAC state change for lead vap first; then 1876 * clock all the other vap's waiting. 1877 */ 1878 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1879 ("wrong state %d", vap0->iv_state)); 1880 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1881 1882 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1883 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 1884 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1885 IEEE80211_UNLOCK(ic); 1886 } 1887 1888 /* 1889 * Force all vap's other than the specified vap to the INIT state 1890 * and mark them as waiting for a scan to complete. These vaps 1891 * will be brought up when the scan completes and the scanning vap 1892 * reaches RUN state by wakeupwaiting. 1893 */ 1894 static void 1895 markwaiting(struct ieee80211vap *vap0) 1896 { 1897 struct ieee80211com *ic = vap0->iv_ic; 1898 struct ieee80211vap *vap; 1899 1900 IEEE80211_LOCK_ASSERT(ic); 1901 1902 /* 1903 * A vap list entry can not disappear since we are running on the 1904 * taskqueue and a vap destroy will queue and drain another state 1905 * change task. 1906 */ 1907 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1908 if (vap == vap0) 1909 continue; 1910 if (vap->iv_state != IEEE80211_S_INIT) { 1911 /* NB: iv_newstate may drop the lock */ 1912 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1913 IEEE80211_LOCK_ASSERT(ic); 1914 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1915 } 1916 } 1917 } 1918 1919 /* 1920 * Wakeup all vap's waiting for a scan to complete. This is the 1921 * companion to markwaiting (above) and is used to coordinate 1922 * multiple vaps scanning. 1923 * This is called from the state taskqueue. 1924 */ 1925 static void 1926 wakeupwaiting(struct ieee80211vap *vap0) 1927 { 1928 struct ieee80211com *ic = vap0->iv_ic; 1929 struct ieee80211vap *vap; 1930 1931 IEEE80211_LOCK_ASSERT(ic); 1932 1933 /* 1934 * A vap list entry can not disappear since we are running on the 1935 * taskqueue and a vap destroy will queue and drain another state 1936 * change task. 1937 */ 1938 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1939 if (vap == vap0) 1940 continue; 1941 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1942 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1943 /* NB: sta's cannot go INIT->RUN */ 1944 /* NB: iv_newstate may drop the lock */ 1945 vap->iv_newstate(vap, 1946 vap->iv_opmode == IEEE80211_M_STA ? 1947 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1948 IEEE80211_LOCK_ASSERT(ic); 1949 } 1950 } 1951 } 1952 1953 /* 1954 * Handle post state change work common to all operating modes. 1955 */ 1956 static void 1957 ieee80211_newstate_cb(void *xvap, int npending) 1958 { 1959 struct ieee80211vap *vap = xvap; 1960 struct ieee80211com *ic = vap->iv_ic; 1961 enum ieee80211_state nstate, ostate; 1962 int arg, rc; 1963 1964 IEEE80211_LOCK(ic); 1965 nstate = vap->iv_nstate; 1966 arg = vap->iv_nstate_arg; 1967 1968 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1969 /* 1970 * We have been requested to drop back to the INIT before 1971 * proceeding to the new state. 1972 */ 1973 /* Deny any state changes while we are here. */ 1974 vap->iv_nstate = IEEE80211_S_INIT; 1975 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1976 "%s: %s -> %s arg %d\n", __func__, 1977 ieee80211_state_name[vap->iv_state], 1978 ieee80211_state_name[vap->iv_nstate], arg); 1979 vap->iv_newstate(vap, vap->iv_nstate, 0); 1980 IEEE80211_LOCK_ASSERT(ic); 1981 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 1982 IEEE80211_FEXT_STATEWAIT); 1983 /* enqueue new state transition after cancel_scan() task */ 1984 ieee80211_new_state_locked(vap, nstate, arg); 1985 goto done; 1986 } 1987 1988 ostate = vap->iv_state; 1989 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1990 /* 1991 * SCAN was forced; e.g. on beacon miss. Force other running 1992 * vap's to INIT state and mark them as waiting for the scan to 1993 * complete. This insures they don't interfere with our 1994 * scanning. Since we are single threaded the vaps can not 1995 * transition again while we are executing. 1996 * 1997 * XXX not always right, assumes ap follows sta 1998 */ 1999 markwaiting(vap); 2000 } 2001 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2002 "%s: %s -> %s arg %d\n", __func__, 2003 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2004 2005 rc = vap->iv_newstate(vap, nstate, arg); 2006 IEEE80211_LOCK_ASSERT(ic); 2007 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2008 if (rc != 0) { 2009 /* State transition failed */ 2010 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2011 KASSERT(nstate != IEEE80211_S_INIT, 2012 ("INIT state change failed")); 2013 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2014 "%s: %s returned error %d\n", __func__, 2015 ieee80211_state_name[nstate], rc); 2016 goto done; 2017 } 2018 2019 /* No actual transition, skip post processing */ 2020 if (ostate == nstate) 2021 goto done; 2022 2023 if (nstate == IEEE80211_S_RUN) { 2024 /* 2025 * OACTIVE may be set on the vap if the upper layer 2026 * tried to transmit (e.g. IPv6 NDP) before we reach 2027 * RUN state. Clear it and restart xmit. 2028 * 2029 * Note this can also happen as a result of SLEEP->RUN 2030 * (i.e. coming out of power save mode). 2031 */ 2032 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2033 2034 /* 2035 * XXX TODO Kick-start a VAP queue - this should be a method! 2036 */ 2037 2038 /* bring up any vaps waiting on us */ 2039 wakeupwaiting(vap); 2040 } else if (nstate == IEEE80211_S_INIT) { 2041 /* 2042 * Flush the scan cache if we did the last scan (XXX?) 2043 * and flush any frames on send queues from this vap. 2044 * Note the mgt q is used only for legacy drivers and 2045 * will go away shortly. 2046 */ 2047 ieee80211_scan_flush(vap); 2048 2049 /* 2050 * XXX TODO: ic/vap queue flush 2051 */ 2052 } 2053 done: 2054 IEEE80211_UNLOCK(ic); 2055 } 2056 2057 /* 2058 * Public interface for initiating a state machine change. 2059 * This routine single-threads the request and coordinates 2060 * the scheduling of multiple vaps for the purpose of selecting 2061 * an operating channel. Specifically the following scenarios 2062 * are handled: 2063 * o only one vap can be selecting a channel so on transition to 2064 * SCAN state if another vap is already scanning then 2065 * mark the caller for later processing and return without 2066 * doing anything (XXX? expectations by caller of synchronous operation) 2067 * o only one vap can be doing CAC of a channel so on transition to 2068 * CAC state if another vap is already scanning for radar then 2069 * mark the caller for later processing and return without 2070 * doing anything (XXX? expectations by caller of synchronous operation) 2071 * o if another vap is already running when a request is made 2072 * to SCAN then an operating channel has been chosen; bypass 2073 * the scan and just join the channel 2074 * 2075 * Note that the state change call is done through the iv_newstate 2076 * method pointer so any driver routine gets invoked. The driver 2077 * will normally call back into operating mode-specific 2078 * ieee80211_newstate routines (below) unless it needs to completely 2079 * bypass the state machine (e.g. because the firmware has it's 2080 * own idea how things should work). Bypassing the net80211 layer 2081 * is usually a mistake and indicates lack of proper integration 2082 * with the net80211 layer. 2083 */ 2084 int 2085 ieee80211_new_state_locked(struct ieee80211vap *vap, 2086 enum ieee80211_state nstate, int arg) 2087 { 2088 struct ieee80211com *ic = vap->iv_ic; 2089 struct ieee80211vap *vp; 2090 enum ieee80211_state ostate; 2091 int nrunning, nscanning; 2092 2093 IEEE80211_LOCK_ASSERT(ic); 2094 2095 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2096 if (vap->iv_nstate == IEEE80211_S_INIT || 2097 ((vap->iv_state == IEEE80211_S_INIT || 2098 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2099 vap->iv_nstate == IEEE80211_S_SCAN && 2100 nstate > IEEE80211_S_SCAN)) { 2101 /* 2102 * XXX The vap is being stopped/started, 2103 * do not allow any other state changes 2104 * until this is completed. 2105 */ 2106 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2107 "%s: %s -> %s (%s) transition discarded\n", 2108 __func__, 2109 ieee80211_state_name[vap->iv_state], 2110 ieee80211_state_name[nstate], 2111 ieee80211_state_name[vap->iv_nstate]); 2112 return -1; 2113 } else if (vap->iv_state != vap->iv_nstate) { 2114 #if 0 2115 /* Warn if the previous state hasn't completed. */ 2116 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2117 "%s: pending %s -> %s transition lost\n", __func__, 2118 ieee80211_state_name[vap->iv_state], 2119 ieee80211_state_name[vap->iv_nstate]); 2120 #else 2121 /* XXX temporarily enable to identify issues */ 2122 if_printf(vap->iv_ifp, 2123 "%s: pending %s -> %s transition lost\n", 2124 __func__, ieee80211_state_name[vap->iv_state], 2125 ieee80211_state_name[vap->iv_nstate]); 2126 #endif 2127 } 2128 } 2129 2130 nrunning = nscanning = 0; 2131 /* XXX can track this state instead of calculating */ 2132 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2133 if (vp != vap) { 2134 if (vp->iv_state >= IEEE80211_S_RUN) 2135 nrunning++; 2136 /* XXX doesn't handle bg scan */ 2137 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2138 else if (vp->iv_state > IEEE80211_S_INIT) 2139 nscanning++; 2140 } 2141 } 2142 ostate = vap->iv_state; 2143 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2144 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2145 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2146 nrunning, nscanning); 2147 switch (nstate) { 2148 case IEEE80211_S_SCAN: 2149 if (ostate == IEEE80211_S_INIT) { 2150 /* 2151 * INIT -> SCAN happens on initial bringup. 2152 */ 2153 KASSERT(!(nscanning && nrunning), 2154 ("%d scanning and %d running", nscanning, nrunning)); 2155 if (nscanning) { 2156 /* 2157 * Someone is scanning, defer our state 2158 * change until the work has completed. 2159 */ 2160 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2161 "%s: defer %s -> %s\n", 2162 __func__, ieee80211_state_name[ostate], 2163 ieee80211_state_name[nstate]); 2164 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2165 return 0; 2166 } 2167 if (nrunning) { 2168 /* 2169 * Someone is operating; just join the channel 2170 * they have chosen. 2171 */ 2172 /* XXX kill arg? */ 2173 /* XXX check each opmode, adhoc? */ 2174 if (vap->iv_opmode == IEEE80211_M_STA) 2175 nstate = IEEE80211_S_SCAN; 2176 else 2177 nstate = IEEE80211_S_RUN; 2178 #ifdef IEEE80211_DEBUG 2179 if (nstate != IEEE80211_S_SCAN) { 2180 IEEE80211_DPRINTF(vap, 2181 IEEE80211_MSG_STATE, 2182 "%s: override, now %s -> %s\n", 2183 __func__, 2184 ieee80211_state_name[ostate], 2185 ieee80211_state_name[nstate]); 2186 } 2187 #endif 2188 } 2189 } 2190 break; 2191 case IEEE80211_S_RUN: 2192 if (vap->iv_opmode == IEEE80211_M_WDS && 2193 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2194 nscanning) { 2195 /* 2196 * Legacy WDS with someone else scanning; don't 2197 * go online until that completes as we should 2198 * follow the other vap to the channel they choose. 2199 */ 2200 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2201 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2202 ieee80211_state_name[ostate], 2203 ieee80211_state_name[nstate]); 2204 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2205 return 0; 2206 } 2207 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2208 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2209 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2210 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2211 /* 2212 * This is a DFS channel, transition to CAC state 2213 * instead of RUN. This allows us to initiate 2214 * Channel Availability Check (CAC) as specified 2215 * by 11h/DFS. 2216 */ 2217 nstate = IEEE80211_S_CAC; 2218 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2219 "%s: override %s -> %s (DFS)\n", __func__, 2220 ieee80211_state_name[ostate], 2221 ieee80211_state_name[nstate]); 2222 } 2223 break; 2224 case IEEE80211_S_INIT: 2225 /* cancel any scan in progress */ 2226 ieee80211_cancel_scan(vap); 2227 if (ostate == IEEE80211_S_INIT ) { 2228 /* XXX don't believe this */ 2229 /* INIT -> INIT. nothing to do */ 2230 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2231 } 2232 /* fall thru... */ 2233 default: 2234 break; 2235 } 2236 /* defer the state change to a thread */ 2237 vap->iv_nstate = nstate; 2238 vap->iv_nstate_arg = arg; 2239 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2240 ieee80211_runtask(ic, &vap->iv_nstate_task); 2241 return EINPROGRESS; 2242 } 2243 2244 int 2245 ieee80211_new_state(struct ieee80211vap *vap, 2246 enum ieee80211_state nstate, int arg) 2247 { 2248 struct ieee80211com *ic = vap->iv_ic; 2249 int rc; 2250 2251 IEEE80211_LOCK(ic); 2252 rc = ieee80211_new_state_locked(vap, nstate, arg); 2253 IEEE80211_UNLOCK(ic); 2254 return rc; 2255 } 2256