1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void vap_update_slot(void *, int); 248 static void restart_vaps(void *, int); 249 static void ieee80211_newstate_cb(void *, int); 250 251 static int 252 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 253 const struct ieee80211_bpf_params *params) 254 { 255 256 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 257 m_freem(m); 258 return ENETDOWN; 259 } 260 261 void 262 ieee80211_proto_attach(struct ieee80211com *ic) 263 { 264 uint8_t hdrlen; 265 266 /* override the 802.3 setting */ 267 hdrlen = ic->ic_headroom 268 + sizeof(struct ieee80211_qosframe_addr4) 269 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 270 + IEEE80211_WEP_EXTIVLEN; 271 /* XXX no way to recalculate on ifdetach */ 272 if (ALIGN(hdrlen) > max_linkhdr) { 273 /* XXX sanity check... */ 274 max_linkhdr = ALIGN(hdrlen); 275 max_hdr = max_linkhdr + max_protohdr; 276 max_datalen = MHLEN - max_hdr; 277 } 278 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 279 280 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 281 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 282 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 283 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 284 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 285 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 286 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 287 288 ic->ic_wme.wme_hipri_switch_hysteresis = 289 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 290 291 /* initialize management frame handlers */ 292 ic->ic_send_mgmt = ieee80211_send_mgmt; 293 ic->ic_raw_xmit = null_raw_xmit; 294 295 ieee80211_adhoc_attach(ic); 296 ieee80211_sta_attach(ic); 297 ieee80211_wds_attach(ic); 298 ieee80211_hostap_attach(ic); 299 #ifdef IEEE80211_SUPPORT_MESH 300 ieee80211_mesh_attach(ic); 301 #endif 302 ieee80211_monitor_attach(ic); 303 } 304 305 void 306 ieee80211_proto_detach(struct ieee80211com *ic) 307 { 308 ieee80211_monitor_detach(ic); 309 #ifdef IEEE80211_SUPPORT_MESH 310 ieee80211_mesh_detach(ic); 311 #endif 312 ieee80211_hostap_detach(ic); 313 ieee80211_wds_detach(ic); 314 ieee80211_adhoc_detach(ic); 315 ieee80211_sta_detach(ic); 316 } 317 318 static void 319 null_update_beacon(struct ieee80211vap *vap, int item) 320 { 321 } 322 323 void 324 ieee80211_proto_vattach(struct ieee80211vap *vap) 325 { 326 struct ieee80211com *ic = vap->iv_ic; 327 struct ifnet *ifp = vap->iv_ifp; 328 int i; 329 330 /* override the 802.3 setting */ 331 ifp->if_hdrlen = ic->ic_headroom 332 + sizeof(struct ieee80211_qosframe_addr4) 333 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 334 + IEEE80211_WEP_EXTIVLEN; 335 336 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 337 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 338 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 339 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 340 callout_init(&vap->iv_mgtsend, 1); 341 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 342 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 343 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 344 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 345 /* 346 * Install default tx rate handling: no fixed rate, lowest 347 * supported rate for mgmt and multicast frames. Default 348 * max retry count. These settings can be changed by the 349 * driver and/or user applications. 350 */ 351 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 352 if (isclr(ic->ic_modecaps, i)) 353 continue; 354 355 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 356 357 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 358 359 /* 360 * Setting the management rate to MCS 0 assumes that the 361 * BSS Basic rate set is empty and the BSS Basic MCS set 362 * is not. 363 * 364 * Since we're not checking this, default to the lowest 365 * defined rate for this mode. 366 * 367 * At least one 11n AP (DLINK DIR-825) is reported to drop 368 * some MCS management traffic (eg BA response frames.) 369 * 370 * See also: 9.6.0 of the 802.11n-2009 specification. 371 */ 372 #ifdef NOTYET 373 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 374 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 375 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 376 } else { 377 vap->iv_txparms[i].mgmtrate = 378 rs->rs_rates[0] & IEEE80211_RATE_VAL; 379 vap->iv_txparms[i].mcastrate = 380 rs->rs_rates[0] & IEEE80211_RATE_VAL; 381 } 382 #endif 383 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 384 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 385 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 386 } 387 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 388 389 vap->iv_update_beacon = null_update_beacon; 390 vap->iv_deliver_data = ieee80211_deliver_data; 391 392 /* attach support for operating mode */ 393 ic->ic_vattach[vap->iv_opmode](vap); 394 } 395 396 void 397 ieee80211_proto_vdetach(struct ieee80211vap *vap) 398 { 399 #define FREEAPPIE(ie) do { \ 400 if (ie != NULL) \ 401 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 402 } while (0) 403 /* 404 * Detach operating mode module. 405 */ 406 if (vap->iv_opdetach != NULL) 407 vap->iv_opdetach(vap); 408 /* 409 * This should not be needed as we detach when reseting 410 * the state but be conservative here since the 411 * authenticator may do things like spawn kernel threads. 412 */ 413 if (vap->iv_auth->ia_detach != NULL) 414 vap->iv_auth->ia_detach(vap); 415 /* 416 * Detach any ACL'ator. 417 */ 418 if (vap->iv_acl != NULL) 419 vap->iv_acl->iac_detach(vap); 420 421 FREEAPPIE(vap->iv_appie_beacon); 422 FREEAPPIE(vap->iv_appie_probereq); 423 FREEAPPIE(vap->iv_appie_proberesp); 424 FREEAPPIE(vap->iv_appie_assocreq); 425 FREEAPPIE(vap->iv_appie_assocresp); 426 FREEAPPIE(vap->iv_appie_wpa); 427 #undef FREEAPPIE 428 } 429 430 /* 431 * Simple-minded authenticator module support. 432 */ 433 434 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 435 /* XXX well-known names */ 436 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 437 "wlan_internal", /* IEEE80211_AUTH_NONE */ 438 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 439 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 440 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 441 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 442 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 443 }; 444 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 445 446 static const struct ieee80211_authenticator auth_internal = { 447 .ia_name = "wlan_internal", 448 .ia_attach = NULL, 449 .ia_detach = NULL, 450 .ia_node_join = NULL, 451 .ia_node_leave = NULL, 452 }; 453 454 /* 455 * Setup internal authenticators once; they are never unregistered. 456 */ 457 static void 458 ieee80211_auth_setup(void) 459 { 460 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 461 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 462 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 463 } 464 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 465 466 const struct ieee80211_authenticator * 467 ieee80211_authenticator_get(int auth) 468 { 469 if (auth >= IEEE80211_AUTH_MAX) 470 return NULL; 471 if (authenticators[auth] == NULL) 472 ieee80211_load_module(auth_modnames[auth]); 473 return authenticators[auth]; 474 } 475 476 void 477 ieee80211_authenticator_register(int type, 478 const struct ieee80211_authenticator *auth) 479 { 480 if (type >= IEEE80211_AUTH_MAX) 481 return; 482 authenticators[type] = auth; 483 } 484 485 void 486 ieee80211_authenticator_unregister(int type) 487 { 488 489 if (type >= IEEE80211_AUTH_MAX) 490 return; 491 authenticators[type] = NULL; 492 } 493 494 /* 495 * Very simple-minded ACL module support. 496 */ 497 /* XXX just one for now */ 498 static const struct ieee80211_aclator *acl = NULL; 499 500 void 501 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 502 { 503 printf("wlan: %s acl policy registered\n", iac->iac_name); 504 acl = iac; 505 } 506 507 void 508 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 509 { 510 if (acl == iac) 511 acl = NULL; 512 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 513 } 514 515 const struct ieee80211_aclator * 516 ieee80211_aclator_get(const char *name) 517 { 518 if (acl == NULL) 519 ieee80211_load_module("wlan_acl"); 520 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 521 } 522 523 void 524 ieee80211_print_essid(const uint8_t *essid, int len) 525 { 526 const uint8_t *p; 527 int i; 528 529 if (len > IEEE80211_NWID_LEN) 530 len = IEEE80211_NWID_LEN; 531 /* determine printable or not */ 532 for (i = 0, p = essid; i < len; i++, p++) { 533 if (*p < ' ' || *p > 0x7e) 534 break; 535 } 536 if (i == len) { 537 printf("\""); 538 for (i = 0, p = essid; i < len; i++, p++) 539 printf("%c", *p); 540 printf("\""); 541 } else { 542 printf("0x"); 543 for (i = 0, p = essid; i < len; i++, p++) 544 printf("%02x", *p); 545 } 546 } 547 548 void 549 ieee80211_dump_pkt(struct ieee80211com *ic, 550 const uint8_t *buf, int len, int rate, int rssi) 551 { 552 const struct ieee80211_frame *wh; 553 int i; 554 555 wh = (const struct ieee80211_frame *)buf; 556 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 557 case IEEE80211_FC1_DIR_NODS: 558 printf("NODS %s", ether_sprintf(wh->i_addr2)); 559 printf("->%s", ether_sprintf(wh->i_addr1)); 560 printf("(%s)", ether_sprintf(wh->i_addr3)); 561 break; 562 case IEEE80211_FC1_DIR_TODS: 563 printf("TODS %s", ether_sprintf(wh->i_addr2)); 564 printf("->%s", ether_sprintf(wh->i_addr3)); 565 printf("(%s)", ether_sprintf(wh->i_addr1)); 566 break; 567 case IEEE80211_FC1_DIR_FROMDS: 568 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 569 printf("->%s", ether_sprintf(wh->i_addr1)); 570 printf("(%s)", ether_sprintf(wh->i_addr2)); 571 break; 572 case IEEE80211_FC1_DIR_DSTODS: 573 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 574 printf("->%s", ether_sprintf(wh->i_addr3)); 575 printf("(%s", ether_sprintf(wh->i_addr2)); 576 printf("->%s)", ether_sprintf(wh->i_addr1)); 577 break; 578 } 579 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 580 case IEEE80211_FC0_TYPE_DATA: 581 printf(" data"); 582 break; 583 case IEEE80211_FC0_TYPE_MGT: 584 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 585 break; 586 default: 587 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 588 break; 589 } 590 if (IEEE80211_QOS_HAS_SEQ(wh)) { 591 const struct ieee80211_qosframe *qwh = 592 (const struct ieee80211_qosframe *)buf; 593 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 594 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 595 } 596 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 597 int off; 598 599 off = ieee80211_anyhdrspace(ic, wh); 600 printf(" WEP [IV %.02x %.02x %.02x", 601 buf[off+0], buf[off+1], buf[off+2]); 602 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 603 printf(" %.02x %.02x %.02x", 604 buf[off+4], buf[off+5], buf[off+6]); 605 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 606 } 607 if (rate >= 0) 608 printf(" %dM", rate / 2); 609 if (rssi >= 0) 610 printf(" +%d", rssi); 611 printf("\n"); 612 if (len > 0) { 613 for (i = 0; i < len; i++) { 614 if ((i & 1) == 0) 615 printf(" "); 616 printf("%02x", buf[i]); 617 } 618 printf("\n"); 619 } 620 } 621 622 static __inline int 623 findrix(const struct ieee80211_rateset *rs, int r) 624 { 625 int i; 626 627 for (i = 0; i < rs->rs_nrates; i++) 628 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 629 return i; 630 return -1; 631 } 632 633 int 634 ieee80211_fix_rate(struct ieee80211_node *ni, 635 struct ieee80211_rateset *nrs, int flags) 636 { 637 struct ieee80211vap *vap = ni->ni_vap; 638 struct ieee80211com *ic = ni->ni_ic; 639 int i, j, rix, error; 640 int okrate, badrate, fixedrate, ucastrate; 641 const struct ieee80211_rateset *srs; 642 uint8_t r; 643 644 error = 0; 645 okrate = badrate = 0; 646 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 647 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 648 /* 649 * Workaround awkwardness with fixed rate. We are called 650 * to check both the legacy rate set and the HT rate set 651 * but we must apply any legacy fixed rate check only to the 652 * legacy rate set and vice versa. We cannot tell what type 653 * of rate set we've been given (legacy or HT) but we can 654 * distinguish the fixed rate type (MCS have 0x80 set). 655 * So to deal with this the caller communicates whether to 656 * check MCS or legacy rate using the flags and we use the 657 * type of any fixed rate to avoid applying an MCS to a 658 * legacy rate and vice versa. 659 */ 660 if (ucastrate & 0x80) { 661 if (flags & IEEE80211_F_DOFRATE) 662 flags &= ~IEEE80211_F_DOFRATE; 663 } else if ((ucastrate & 0x80) == 0) { 664 if (flags & IEEE80211_F_DOFMCS) 665 flags &= ~IEEE80211_F_DOFMCS; 666 } 667 /* NB: required to make MCS match below work */ 668 ucastrate &= IEEE80211_RATE_VAL; 669 } 670 fixedrate = IEEE80211_FIXED_RATE_NONE; 671 /* 672 * XXX we are called to process both MCS and legacy rates; 673 * we must use the appropriate basic rate set or chaos will 674 * ensue; for now callers that want MCS must supply 675 * IEEE80211_F_DOBRS; at some point we'll need to split this 676 * function so there are two variants, one for MCS and one 677 * for legacy rates. 678 */ 679 if (flags & IEEE80211_F_DOBRS) 680 srs = (const struct ieee80211_rateset *) 681 ieee80211_get_suphtrates(ic, ni->ni_chan); 682 else 683 srs = ieee80211_get_suprates(ic, ni->ni_chan); 684 for (i = 0; i < nrs->rs_nrates; ) { 685 if (flags & IEEE80211_F_DOSORT) { 686 /* 687 * Sort rates. 688 */ 689 for (j = i + 1; j < nrs->rs_nrates; j++) { 690 if (IEEE80211_RV(nrs->rs_rates[i]) > 691 IEEE80211_RV(nrs->rs_rates[j])) { 692 r = nrs->rs_rates[i]; 693 nrs->rs_rates[i] = nrs->rs_rates[j]; 694 nrs->rs_rates[j] = r; 695 } 696 } 697 } 698 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 699 badrate = r; 700 /* 701 * Check for fixed rate. 702 */ 703 if (r == ucastrate) 704 fixedrate = r; 705 /* 706 * Check against supported rates. 707 */ 708 rix = findrix(srs, r); 709 if (flags & IEEE80211_F_DONEGO) { 710 if (rix < 0) { 711 /* 712 * A rate in the node's rate set is not 713 * supported. If this is a basic rate and we 714 * are operating as a STA then this is an error. 715 * Otherwise we just discard/ignore the rate. 716 */ 717 if ((flags & IEEE80211_F_JOIN) && 718 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 719 error++; 720 } else if ((flags & IEEE80211_F_JOIN) == 0) { 721 /* 722 * Overwrite with the supported rate 723 * value so any basic rate bit is set. 724 */ 725 nrs->rs_rates[i] = srs->rs_rates[rix]; 726 } 727 } 728 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 729 /* 730 * Delete unacceptable rates. 731 */ 732 nrs->rs_nrates--; 733 for (j = i; j < nrs->rs_nrates; j++) 734 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 735 nrs->rs_rates[j] = 0; 736 continue; 737 } 738 if (rix >= 0) 739 okrate = nrs->rs_rates[i]; 740 i++; 741 } 742 if (okrate == 0 || error != 0 || 743 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 744 fixedrate != ucastrate)) { 745 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 746 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 747 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 748 return badrate | IEEE80211_RATE_BASIC; 749 } else 750 return IEEE80211_RV(okrate); 751 } 752 753 /* 754 * Reset 11g-related state. 755 * 756 * This is for per-VAP ERP/11g state. 757 * 758 * Eventually everything in ieee80211_reset_erp() will be 759 * per-VAP and in here. 760 */ 761 void 762 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 763 { 764 struct ieee80211com *ic = vap->iv_ic; 765 766 /* 767 * Short slot time is enabled only when operating in 11g 768 * and not in an IBSS. We must also honor whether or not 769 * the driver is capable of doing it. 770 */ 771 ieee80211_vap_set_shortslottime(vap, 772 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 773 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 774 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 775 vap->iv_opmode == IEEE80211_M_HOSTAP && 776 (ic->ic_caps & IEEE80211_C_SHSLOT))); 777 } 778 779 /* 780 * Reset 11g-related state. 781 */ 782 void 783 ieee80211_reset_erp(struct ieee80211com *ic) 784 { 785 ic->ic_flags &= ~IEEE80211_F_USEPROT; 786 ic->ic_nonerpsta = 0; 787 ic->ic_longslotsta = 0; 788 /* 789 * Set short preamble and ERP barker-preamble flags. 790 */ 791 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 792 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 793 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 794 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 795 } else { 796 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 797 ic->ic_flags |= IEEE80211_F_USEBARKER; 798 } 799 } 800 801 /* 802 * Deferred slot time update. 803 * 804 * For per-VAP slot time configuration, call the VAP 805 * method if the VAP requires it. Otherwise, just call the 806 * older global method. 807 * 808 * If the per-VAP method is called then it's expected that 809 * the driver/firmware will take care of turning the per-VAP 810 * flags into slot time configuration. 811 * 812 * If the per-VAP method is not called then the global flags will be 813 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 814 * be set only if all of the vaps will have it set. 815 */ 816 static void 817 vap_update_slot(void *arg, int npending) 818 { 819 struct ieee80211vap *vap = arg; 820 struct ieee80211com *ic = vap->iv_ic; 821 struct ieee80211vap *iv; 822 int num_shslot = 0, num_lgslot = 0; 823 824 /* 825 * Per-VAP path - we've already had the flags updated; 826 * so just notify the driver and move on. 827 */ 828 if (vap->iv_updateslot != NULL) { 829 vap->iv_updateslot(vap); 830 return; 831 } 832 833 /* 834 * Iterate over all of the VAP flags to update the 835 * global flag. 836 * 837 * If all vaps have short slot enabled then flip on 838 * short slot. If any vap has it disabled then 839 * we leave it globally disabled. This should provide 840 * correct behaviour in a multi-BSS scenario where 841 * at least one VAP has short slot disabled for some 842 * reason. 843 */ 844 IEEE80211_LOCK(ic); 845 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 846 if (iv->iv_flags & IEEE80211_F_SHSLOT) 847 num_shslot++; 848 else 849 num_lgslot++; 850 } 851 IEEE80211_UNLOCK(ic); 852 853 /* 854 * It looks backwards but - if the number of short slot VAPs 855 * is zero then we're not short slot. Else, we have one 856 * or more short slot VAPs and we're checking to see if ANY 857 * of them have short slot disabled. 858 */ 859 if (num_shslot == 0) 860 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 861 else if (num_lgslot == 0) 862 ic->ic_flags |= IEEE80211_F_SHSLOT; 863 864 /* 865 * Call the driver with our new global slot time flags. 866 */ 867 if (ic->ic_updateslot != NULL) 868 ic->ic_updateslot(ic); 869 } 870 871 /* 872 * Set the short slot time state and notify the driver. 873 * 874 * This is the per-VAP slot time state. 875 */ 876 void 877 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 878 { 879 struct ieee80211com *ic = vap->iv_ic; 880 881 /* 882 * Only modify the per-VAP slot time. 883 */ 884 if (onoff) 885 vap->iv_flags |= IEEE80211_F_SHSLOT; 886 else 887 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 888 889 /* schedule the deferred slot flag update and update */ 890 ieee80211_runtask(ic, &vap->iv_slot_task); 891 } 892 893 /* 894 * Check if the specified rate set supports ERP. 895 * NB: the rate set is assumed to be sorted. 896 */ 897 int 898 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 899 { 900 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 901 int i, j; 902 903 if (rs->rs_nrates < nitems(rates)) 904 return 0; 905 for (i = 0; i < nitems(rates); i++) { 906 for (j = 0; j < rs->rs_nrates; j++) { 907 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 908 if (rates[i] == r) 909 goto next; 910 if (r > rates[i]) 911 return 0; 912 } 913 return 0; 914 next: 915 ; 916 } 917 return 1; 918 } 919 920 /* 921 * Mark the basic rates for the rate table based on the 922 * operating mode. For real 11g we mark all the 11b rates 923 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 924 * 11b rates. There's also a pseudo 11a-mode used to mark only 925 * the basic OFDM rates. 926 */ 927 static void 928 setbasicrates(struct ieee80211_rateset *rs, 929 enum ieee80211_phymode mode, int add) 930 { 931 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 932 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 933 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 934 /* NB: mixed b/g */ 935 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 936 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 937 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 938 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 939 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 940 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 941 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 942 /* NB: mixed b/g */ 943 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 944 /* NB: mixed b/g */ 945 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 946 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 947 }; 948 int i, j; 949 950 for (i = 0; i < rs->rs_nrates; i++) { 951 if (!add) 952 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 953 for (j = 0; j < basic[mode].rs_nrates; j++) 954 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 955 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 956 break; 957 } 958 } 959 } 960 961 /* 962 * Set the basic rates in a rate set. 963 */ 964 void 965 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 966 enum ieee80211_phymode mode) 967 { 968 setbasicrates(rs, mode, 0); 969 } 970 971 /* 972 * Add basic rates to a rate set. 973 */ 974 void 975 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 976 enum ieee80211_phymode mode) 977 { 978 setbasicrates(rs, mode, 1); 979 } 980 981 /* 982 * WME protocol support. 983 * 984 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 985 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 986 * Draft 2.0 Test Plan (Appendix D). 987 * 988 * Static/Dynamic Turbo mode settings come from Atheros. 989 */ 990 typedef struct phyParamType { 991 uint8_t aifsn; 992 uint8_t logcwmin; 993 uint8_t logcwmax; 994 uint16_t txopLimit; 995 uint8_t acm; 996 } paramType; 997 998 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 999 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1000 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1001 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1002 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1003 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1004 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1005 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1006 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1007 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1008 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1009 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1010 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1011 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1012 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1013 }; 1014 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1015 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1016 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1017 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1018 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1019 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1020 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1021 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1022 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1023 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1024 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1025 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1026 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1027 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1028 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1029 }; 1030 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1031 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1032 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1033 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1034 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1035 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1036 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1037 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1038 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1039 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1040 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1041 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1042 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1043 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1044 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1045 }; 1046 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1047 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1048 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1049 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1050 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1051 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1052 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1053 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1054 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1055 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1056 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1057 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1058 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1059 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1060 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1061 }; 1062 1063 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1064 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1065 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1066 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1067 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1068 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1069 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1070 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1071 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1072 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1073 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1074 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1075 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1076 }; 1077 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1078 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1079 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1080 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1081 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1082 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1083 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1084 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1085 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1086 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1087 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1088 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1089 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1090 }; 1091 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1092 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1093 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1094 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1095 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1096 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1097 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1098 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1099 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1100 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1101 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1102 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1103 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1104 }; 1105 1106 static void 1107 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1108 { 1109 wmep->wmep_aifsn = phy->aifsn; 1110 wmep->wmep_logcwmin = phy->logcwmin; 1111 wmep->wmep_logcwmax = phy->logcwmax; 1112 wmep->wmep_txopLimit = phy->txopLimit; 1113 } 1114 1115 static void 1116 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1117 struct wmeParams *wmep, const paramType *phy) 1118 { 1119 wmep->wmep_acm = phy->acm; 1120 _setifsparams(wmep, phy); 1121 1122 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1123 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1124 ieee80211_wme_acnames[ac], type, 1125 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1126 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1127 } 1128 1129 static void 1130 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1131 { 1132 struct ieee80211com *ic = vap->iv_ic; 1133 struct ieee80211_wme_state *wme = &ic->ic_wme; 1134 const paramType *pPhyParam, *pBssPhyParam; 1135 struct wmeParams *wmep; 1136 enum ieee80211_phymode mode; 1137 int i; 1138 1139 IEEE80211_LOCK_ASSERT(ic); 1140 1141 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1142 return; 1143 1144 /* 1145 * Clear the wme cap_info field so a qoscount from a previous 1146 * vap doesn't confuse later code which only parses the beacon 1147 * field and updates hardware when said field changes. 1148 * Otherwise the hardware is programmed with defaults, not what 1149 * the beacon actually announces. 1150 * 1151 * Note that we can't ever have 0xff as an actual value; 1152 * the only valid values are 0..15. 1153 */ 1154 wme->wme_wmeChanParams.cap_info = 0xfe; 1155 1156 /* 1157 * Select mode; we can be called early in which case we 1158 * always use auto mode. We know we'll be called when 1159 * entering the RUN state with bsschan setup properly 1160 * so state will eventually get set correctly 1161 */ 1162 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1163 mode = ieee80211_chan2mode(ic->ic_bsschan); 1164 else 1165 mode = IEEE80211_MODE_AUTO; 1166 for (i = 0; i < WME_NUM_AC; i++) { 1167 switch (i) { 1168 case WME_AC_BK: 1169 pPhyParam = &phyParamForAC_BK[mode]; 1170 pBssPhyParam = &phyParamForAC_BK[mode]; 1171 break; 1172 case WME_AC_VI: 1173 pPhyParam = &phyParamForAC_VI[mode]; 1174 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1175 break; 1176 case WME_AC_VO: 1177 pPhyParam = &phyParamForAC_VO[mode]; 1178 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1179 break; 1180 case WME_AC_BE: 1181 default: 1182 pPhyParam = &phyParamForAC_BE[mode]; 1183 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1184 break; 1185 } 1186 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1187 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1188 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1189 } else { 1190 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1191 } 1192 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1193 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1194 } 1195 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1196 if (vap->iv_bss != NULL) { 1197 /* 1198 * Calculate aggressive mode switching threshold based 1199 * on beacon interval. This doesn't need locking since 1200 * we're only called before entering the RUN state at 1201 * which point we start sending beacon frames. 1202 */ 1203 wme->wme_hipri_switch_thresh = 1204 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1205 wme->wme_flags &= ~WME_F_AGGRMODE; 1206 ieee80211_wme_updateparams(vap); 1207 } 1208 } 1209 1210 void 1211 ieee80211_wme_initparams(struct ieee80211vap *vap) 1212 { 1213 struct ieee80211com *ic = vap->iv_ic; 1214 1215 IEEE80211_LOCK(ic); 1216 ieee80211_wme_initparams_locked(vap); 1217 IEEE80211_UNLOCK(ic); 1218 } 1219 1220 /* 1221 * Update WME parameters for ourself and the BSS. 1222 */ 1223 void 1224 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1225 { 1226 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1227 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1228 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1229 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1230 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1231 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1232 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1233 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1234 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1235 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1236 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1237 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1238 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1239 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1240 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1241 }; 1242 struct ieee80211com *ic = vap->iv_ic; 1243 struct ieee80211_wme_state *wme = &ic->ic_wme; 1244 const struct wmeParams *wmep; 1245 struct wmeParams *chanp, *bssp; 1246 enum ieee80211_phymode mode; 1247 int i; 1248 int do_aggrmode = 0; 1249 1250 /* 1251 * Set up the channel access parameters for the physical 1252 * device. First populate the configured settings. 1253 */ 1254 for (i = 0; i < WME_NUM_AC; i++) { 1255 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1256 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1257 chanp->wmep_aifsn = wmep->wmep_aifsn; 1258 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1259 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1260 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1261 1262 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1263 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1264 chanp->wmep_aifsn = wmep->wmep_aifsn; 1265 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1266 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1267 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1268 } 1269 1270 /* 1271 * Select mode; we can be called early in which case we 1272 * always use auto mode. We know we'll be called when 1273 * entering the RUN state with bsschan setup properly 1274 * so state will eventually get set correctly 1275 */ 1276 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1277 mode = ieee80211_chan2mode(ic->ic_bsschan); 1278 else 1279 mode = IEEE80211_MODE_AUTO; 1280 1281 /* 1282 * This implements aggressive mode as found in certain 1283 * vendors' AP's. When there is significant high 1284 * priority (VI/VO) traffic in the BSS throttle back BE 1285 * traffic by using conservative parameters. Otherwise 1286 * BE uses aggressive params to optimize performance of 1287 * legacy/non-QoS traffic. 1288 */ 1289 1290 /* Hostap? Only if aggressive mode is enabled */ 1291 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1292 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1293 do_aggrmode = 1; 1294 1295 /* 1296 * Station? Only if we're in a non-QoS BSS. 1297 */ 1298 else if ((vap->iv_opmode == IEEE80211_M_STA && 1299 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1300 do_aggrmode = 1; 1301 1302 /* 1303 * IBSS? Only if we we have WME enabled. 1304 */ 1305 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1306 (vap->iv_flags & IEEE80211_F_WME)) 1307 do_aggrmode = 1; 1308 1309 /* 1310 * If WME is disabled on this VAP, default to aggressive mode 1311 * regardless of the configuration. 1312 */ 1313 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1314 do_aggrmode = 1; 1315 1316 /* XXX WDS? */ 1317 1318 /* XXX MBSS? */ 1319 1320 if (do_aggrmode) { 1321 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1322 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1323 1324 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1325 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1326 aggrParam[mode].logcwmin; 1327 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1328 aggrParam[mode].logcwmax; 1329 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1330 (vap->iv_flags & IEEE80211_F_BURST) ? 1331 aggrParam[mode].txopLimit : 0; 1332 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1333 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1334 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1335 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1336 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1337 } 1338 1339 1340 /* 1341 * Change the contention window based on the number of associated 1342 * stations. If the number of associated stations is 1 and 1343 * aggressive mode is enabled, lower the contention window even 1344 * further. 1345 */ 1346 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1347 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1348 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1349 [IEEE80211_MODE_AUTO] = 3, 1350 [IEEE80211_MODE_11A] = 3, 1351 [IEEE80211_MODE_11B] = 4, 1352 [IEEE80211_MODE_11G] = 3, 1353 [IEEE80211_MODE_FH] = 4, 1354 [IEEE80211_MODE_TURBO_A] = 3, 1355 [IEEE80211_MODE_TURBO_G] = 3, 1356 [IEEE80211_MODE_STURBO_A] = 3, 1357 [IEEE80211_MODE_HALF] = 3, 1358 [IEEE80211_MODE_QUARTER] = 3, 1359 [IEEE80211_MODE_11NA] = 3, 1360 [IEEE80211_MODE_11NG] = 3, 1361 [IEEE80211_MODE_VHT_2GHZ] = 3, 1362 [IEEE80211_MODE_VHT_5GHZ] = 3, 1363 }; 1364 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1365 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1366 1367 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1368 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1369 "update %s (chan+bss) logcwmin %u\n", 1370 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1371 } 1372 1373 /* 1374 * Arrange for the beacon update. 1375 * 1376 * XXX what about MBSS, WDS? 1377 */ 1378 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1379 || vap->iv_opmode == IEEE80211_M_IBSS) { 1380 /* 1381 * Arrange for a beacon update and bump the parameter 1382 * set number so associated stations load the new values. 1383 */ 1384 wme->wme_bssChanParams.cap_info = 1385 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1386 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1387 } 1388 1389 /* schedule the deferred WME update */ 1390 ieee80211_runtask(ic, &vap->iv_wme_task); 1391 1392 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1393 "%s: WME params updated, cap_info 0x%x\n", __func__, 1394 vap->iv_opmode == IEEE80211_M_STA ? 1395 wme->wme_wmeChanParams.cap_info : 1396 wme->wme_bssChanParams.cap_info); 1397 } 1398 1399 void 1400 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1401 { 1402 struct ieee80211com *ic = vap->iv_ic; 1403 1404 if (ic->ic_caps & IEEE80211_C_WME) { 1405 IEEE80211_LOCK(ic); 1406 ieee80211_wme_updateparams_locked(vap); 1407 IEEE80211_UNLOCK(ic); 1408 } 1409 } 1410 1411 /* 1412 * Fetch the WME parameters for the given VAP. 1413 * 1414 * When net80211 grows p2p, etc support, this may return different 1415 * parameters for each VAP. 1416 */ 1417 void 1418 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1419 { 1420 1421 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1422 } 1423 1424 /* 1425 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1426 * there may be different VAP WME parameters but only one is "active". 1427 * This returns the "NIC" WME parameters for the currently active 1428 * context. 1429 */ 1430 void 1431 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1432 { 1433 1434 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1435 } 1436 1437 /* 1438 * Return whether to use QoS on a given WME queue. 1439 * 1440 * This is intended to be called from the transmit path of softmac drivers 1441 * which are setting NoAck bits in transmit descriptors. 1442 * 1443 * Ideally this would be set in some transmit field before the packet is 1444 * queued to the driver but net80211 isn't quite there yet. 1445 */ 1446 int 1447 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1448 { 1449 /* Bounds/sanity check */ 1450 if (ac < 0 || ac >= WME_NUM_AC) 1451 return (0); 1452 1453 /* Again, there's only one global context for now */ 1454 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1455 } 1456 1457 static void 1458 parent_updown(void *arg, int npending) 1459 { 1460 struct ieee80211com *ic = arg; 1461 1462 ic->ic_parent(ic); 1463 } 1464 1465 static void 1466 update_mcast(void *arg, int npending) 1467 { 1468 struct ieee80211com *ic = arg; 1469 1470 ic->ic_update_mcast(ic); 1471 } 1472 1473 static void 1474 update_promisc(void *arg, int npending) 1475 { 1476 struct ieee80211com *ic = arg; 1477 1478 ic->ic_update_promisc(ic); 1479 } 1480 1481 static void 1482 update_channel(void *arg, int npending) 1483 { 1484 struct ieee80211com *ic = arg; 1485 1486 ic->ic_set_channel(ic); 1487 ieee80211_radiotap_chan_change(ic); 1488 } 1489 1490 static void 1491 update_chw(void *arg, int npending) 1492 { 1493 struct ieee80211com *ic = arg; 1494 1495 /* 1496 * XXX should we defer the channel width _config_ update until now? 1497 */ 1498 ic->ic_update_chw(ic); 1499 } 1500 1501 /* 1502 * Deferred WME update. 1503 * 1504 * In preparation for per-VAP WME configuration, call the VAP 1505 * method if the VAP requires it. Otherwise, just call the 1506 * older global method. There isn't a per-VAP WME configuration 1507 * just yet so for now just use the global configuration. 1508 */ 1509 static void 1510 vap_update_wme(void *arg, int npending) 1511 { 1512 struct ieee80211vap *vap = arg; 1513 struct ieee80211com *ic = vap->iv_ic; 1514 1515 if (vap->iv_wme_update != NULL) 1516 vap->iv_wme_update(vap, 1517 ic->ic_wme.wme_chanParams.cap_wmeParams); 1518 else 1519 ic->ic_wme.wme_update(ic); 1520 } 1521 1522 static void 1523 restart_vaps(void *arg, int npending) 1524 { 1525 struct ieee80211com *ic = arg; 1526 1527 ieee80211_suspend_all(ic); 1528 ieee80211_resume_all(ic); 1529 } 1530 1531 /* 1532 * Block until the parent is in a known state. This is 1533 * used after any operations that dispatch a task (e.g. 1534 * to auto-configure the parent device up/down). 1535 */ 1536 void 1537 ieee80211_waitfor_parent(struct ieee80211com *ic) 1538 { 1539 taskqueue_block(ic->ic_tq); 1540 ieee80211_draintask(ic, &ic->ic_parent_task); 1541 ieee80211_draintask(ic, &ic->ic_mcast_task); 1542 ieee80211_draintask(ic, &ic->ic_promisc_task); 1543 ieee80211_draintask(ic, &ic->ic_chan_task); 1544 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1545 ieee80211_draintask(ic, &ic->ic_chw_task); 1546 taskqueue_unblock(ic->ic_tq); 1547 } 1548 1549 /* 1550 * Check to see whether the current channel needs reset. 1551 * 1552 * Some devices don't handle being given an invalid channel 1553 * in their operating mode very well (eg wpi(4) will throw a 1554 * firmware exception.) 1555 * 1556 * Return 0 if we're ok, 1 if the channel needs to be reset. 1557 * 1558 * See PR kern/202502. 1559 */ 1560 static int 1561 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1562 { 1563 struct ieee80211com *ic = vap->iv_ic; 1564 1565 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1566 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1567 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1568 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1569 return (1); 1570 return (0); 1571 } 1572 1573 /* 1574 * Reset the curchan to a known good state. 1575 */ 1576 static void 1577 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1578 { 1579 struct ieee80211com *ic = vap->iv_ic; 1580 1581 ic->ic_curchan = &ic->ic_channels[0]; 1582 } 1583 1584 /* 1585 * Start a vap running. If this is the first vap to be 1586 * set running on the underlying device then we 1587 * automatically bring the device up. 1588 */ 1589 void 1590 ieee80211_start_locked(struct ieee80211vap *vap) 1591 { 1592 struct ifnet *ifp = vap->iv_ifp; 1593 struct ieee80211com *ic = vap->iv_ic; 1594 1595 IEEE80211_LOCK_ASSERT(ic); 1596 1597 IEEE80211_DPRINTF(vap, 1598 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1599 "start running, %d vaps running\n", ic->ic_nrunning); 1600 1601 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1602 /* 1603 * Mark us running. Note that it's ok to do this first; 1604 * if we need to bring the parent device up we defer that 1605 * to avoid dropping the com lock. We expect the device 1606 * to respond to being marked up by calling back into us 1607 * through ieee80211_start_all at which point we'll come 1608 * back in here and complete the work. 1609 */ 1610 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1611 ieee80211_notify_ifnet_change(vap); 1612 1613 /* 1614 * We are not running; if this we are the first vap 1615 * to be brought up auto-up the parent if necessary. 1616 */ 1617 if (ic->ic_nrunning++ == 0) { 1618 1619 /* reset the channel to a known good channel */ 1620 if (ieee80211_start_check_reset_chan(vap)) 1621 ieee80211_start_reset_chan(vap); 1622 1623 IEEE80211_DPRINTF(vap, 1624 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1625 "%s: up parent %s\n", __func__, ic->ic_name); 1626 ieee80211_runtask(ic, &ic->ic_parent_task); 1627 return; 1628 } 1629 } 1630 /* 1631 * If the parent is up and running, then kick the 1632 * 802.11 state machine as appropriate. 1633 */ 1634 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1635 if (vap->iv_opmode == IEEE80211_M_STA) { 1636 #if 0 1637 /* XXX bypasses scan too easily; disable for now */ 1638 /* 1639 * Try to be intelligent about clocking the state 1640 * machine. If we're currently in RUN state then 1641 * we should be able to apply any new state/parameters 1642 * simply by re-associating. Otherwise we need to 1643 * re-scan to select an appropriate ap. 1644 */ 1645 if (vap->iv_state >= IEEE80211_S_RUN) 1646 ieee80211_new_state_locked(vap, 1647 IEEE80211_S_ASSOC, 1); 1648 else 1649 #endif 1650 ieee80211_new_state_locked(vap, 1651 IEEE80211_S_SCAN, 0); 1652 } else { 1653 /* 1654 * For monitor+wds mode there's nothing to do but 1655 * start running. Otherwise if this is the first 1656 * vap to be brought up, start a scan which may be 1657 * preempted if the station is locked to a particular 1658 * channel. 1659 */ 1660 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1661 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1662 vap->iv_opmode == IEEE80211_M_WDS) 1663 ieee80211_new_state_locked(vap, 1664 IEEE80211_S_RUN, -1); 1665 else 1666 ieee80211_new_state_locked(vap, 1667 IEEE80211_S_SCAN, 0); 1668 } 1669 } 1670 } 1671 1672 /* 1673 * Start a single vap. 1674 */ 1675 void 1676 ieee80211_init(void *arg) 1677 { 1678 struct ieee80211vap *vap = arg; 1679 1680 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1681 "%s\n", __func__); 1682 1683 IEEE80211_LOCK(vap->iv_ic); 1684 ieee80211_start_locked(vap); 1685 IEEE80211_UNLOCK(vap->iv_ic); 1686 } 1687 1688 /* 1689 * Start all runnable vap's on a device. 1690 */ 1691 void 1692 ieee80211_start_all(struct ieee80211com *ic) 1693 { 1694 struct ieee80211vap *vap; 1695 1696 IEEE80211_LOCK(ic); 1697 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1698 struct ifnet *ifp = vap->iv_ifp; 1699 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1700 ieee80211_start_locked(vap); 1701 } 1702 IEEE80211_UNLOCK(ic); 1703 } 1704 1705 /* 1706 * Stop a vap. We force it down using the state machine 1707 * then mark it's ifnet not running. If this is the last 1708 * vap running on the underlying device then we close it 1709 * too to insure it will be properly initialized when the 1710 * next vap is brought up. 1711 */ 1712 void 1713 ieee80211_stop_locked(struct ieee80211vap *vap) 1714 { 1715 struct ieee80211com *ic = vap->iv_ic; 1716 struct ifnet *ifp = vap->iv_ifp; 1717 1718 IEEE80211_LOCK_ASSERT(ic); 1719 1720 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1721 "stop running, %d vaps running\n", ic->ic_nrunning); 1722 1723 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1724 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1725 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1726 ieee80211_notify_ifnet_change(vap); 1727 if (--ic->ic_nrunning == 0) { 1728 IEEE80211_DPRINTF(vap, 1729 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1730 "down parent %s\n", ic->ic_name); 1731 ieee80211_runtask(ic, &ic->ic_parent_task); 1732 } 1733 } 1734 } 1735 1736 void 1737 ieee80211_stop(struct ieee80211vap *vap) 1738 { 1739 struct ieee80211com *ic = vap->iv_ic; 1740 1741 IEEE80211_LOCK(ic); 1742 ieee80211_stop_locked(vap); 1743 IEEE80211_UNLOCK(ic); 1744 } 1745 1746 /* 1747 * Stop all vap's running on a device. 1748 */ 1749 void 1750 ieee80211_stop_all(struct ieee80211com *ic) 1751 { 1752 struct ieee80211vap *vap; 1753 1754 IEEE80211_LOCK(ic); 1755 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1756 struct ifnet *ifp = vap->iv_ifp; 1757 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1758 ieee80211_stop_locked(vap); 1759 } 1760 IEEE80211_UNLOCK(ic); 1761 1762 ieee80211_waitfor_parent(ic); 1763 } 1764 1765 /* 1766 * Stop all vap's running on a device and arrange 1767 * for those that were running to be resumed. 1768 */ 1769 void 1770 ieee80211_suspend_all(struct ieee80211com *ic) 1771 { 1772 struct ieee80211vap *vap; 1773 1774 IEEE80211_LOCK(ic); 1775 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1776 struct ifnet *ifp = vap->iv_ifp; 1777 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1778 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1779 ieee80211_stop_locked(vap); 1780 } 1781 } 1782 IEEE80211_UNLOCK(ic); 1783 1784 ieee80211_waitfor_parent(ic); 1785 } 1786 1787 /* 1788 * Start all vap's marked for resume. 1789 */ 1790 void 1791 ieee80211_resume_all(struct ieee80211com *ic) 1792 { 1793 struct ieee80211vap *vap; 1794 1795 IEEE80211_LOCK(ic); 1796 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1797 struct ifnet *ifp = vap->iv_ifp; 1798 if (!IFNET_IS_UP_RUNNING(ifp) && 1799 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1800 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1801 ieee80211_start_locked(vap); 1802 } 1803 } 1804 IEEE80211_UNLOCK(ic); 1805 } 1806 1807 /* 1808 * Restart all vap's running on a device. 1809 */ 1810 void 1811 ieee80211_restart_all(struct ieee80211com *ic) 1812 { 1813 /* 1814 * NB: do not use ieee80211_runtask here, we will 1815 * block & drain net80211 taskqueue. 1816 */ 1817 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1818 } 1819 1820 void 1821 ieee80211_beacon_miss(struct ieee80211com *ic) 1822 { 1823 IEEE80211_LOCK(ic); 1824 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1825 /* Process in a taskq, the handler may reenter the driver */ 1826 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1827 } 1828 IEEE80211_UNLOCK(ic); 1829 } 1830 1831 static void 1832 beacon_miss(void *arg, int npending) 1833 { 1834 struct ieee80211com *ic = arg; 1835 struct ieee80211vap *vap; 1836 1837 IEEE80211_LOCK(ic); 1838 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1839 /* 1840 * We only pass events through for sta vap's in RUN+ state; 1841 * may be too restrictive but for now this saves all the 1842 * handlers duplicating these checks. 1843 */ 1844 if (vap->iv_opmode == IEEE80211_M_STA && 1845 vap->iv_state >= IEEE80211_S_RUN && 1846 vap->iv_bmiss != NULL) 1847 vap->iv_bmiss(vap); 1848 } 1849 IEEE80211_UNLOCK(ic); 1850 } 1851 1852 static void 1853 beacon_swmiss(void *arg, int npending) 1854 { 1855 struct ieee80211vap *vap = arg; 1856 struct ieee80211com *ic = vap->iv_ic; 1857 1858 IEEE80211_LOCK(ic); 1859 if (vap->iv_state >= IEEE80211_S_RUN) { 1860 /* XXX Call multiple times if npending > zero? */ 1861 vap->iv_bmiss(vap); 1862 } 1863 IEEE80211_UNLOCK(ic); 1864 } 1865 1866 /* 1867 * Software beacon miss handling. Check if any beacons 1868 * were received in the last period. If not post a 1869 * beacon miss; otherwise reset the counter. 1870 */ 1871 void 1872 ieee80211_swbmiss(void *arg) 1873 { 1874 struct ieee80211vap *vap = arg; 1875 struct ieee80211com *ic = vap->iv_ic; 1876 1877 IEEE80211_LOCK_ASSERT(ic); 1878 1879 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1880 ("wrong state %d", vap->iv_state)); 1881 1882 if (ic->ic_flags & IEEE80211_F_SCAN) { 1883 /* 1884 * If scanning just ignore and reset state. If we get a 1885 * bmiss after coming out of scan because we haven't had 1886 * time to receive a beacon then we should probe the AP 1887 * before posting a real bmiss (unless iv_bmiss_max has 1888 * been artifiically lowered). A cleaner solution might 1889 * be to disable the timer on scan start/end but to handle 1890 * case of multiple sta vap's we'd need to disable the 1891 * timers of all affected vap's. 1892 */ 1893 vap->iv_swbmiss_count = 0; 1894 } else if (vap->iv_swbmiss_count == 0) { 1895 if (vap->iv_bmiss != NULL) 1896 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1897 } else 1898 vap->iv_swbmiss_count = 0; 1899 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1900 ieee80211_swbmiss, vap); 1901 } 1902 1903 /* 1904 * Start an 802.11h channel switch. We record the parameters, 1905 * mark the operation pending, notify each vap through the 1906 * beacon update mechanism so it can update the beacon frame 1907 * contents, and then switch vap's to CSA state to block outbound 1908 * traffic. Devices that handle CSA directly can use the state 1909 * switch to do the right thing so long as they call 1910 * ieee80211_csa_completeswitch when it's time to complete the 1911 * channel change. Devices that depend on the net80211 layer can 1912 * use ieee80211_beacon_update to handle the countdown and the 1913 * channel switch. 1914 */ 1915 void 1916 ieee80211_csa_startswitch(struct ieee80211com *ic, 1917 struct ieee80211_channel *c, int mode, int count) 1918 { 1919 struct ieee80211vap *vap; 1920 1921 IEEE80211_LOCK_ASSERT(ic); 1922 1923 ic->ic_csa_newchan = c; 1924 ic->ic_csa_mode = mode; 1925 ic->ic_csa_count = count; 1926 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1927 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1928 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1929 vap->iv_opmode == IEEE80211_M_IBSS || 1930 vap->iv_opmode == IEEE80211_M_MBSS) 1931 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1932 /* switch to CSA state to block outbound traffic */ 1933 if (vap->iv_state == IEEE80211_S_RUN) 1934 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1935 } 1936 ieee80211_notify_csa(ic, c, mode, count); 1937 } 1938 1939 /* 1940 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1941 * This is called by both the completion and cancellation functions 1942 * so each VAP is placed back in the RUN state and can thus transmit. 1943 */ 1944 static void 1945 csa_completeswitch(struct ieee80211com *ic) 1946 { 1947 struct ieee80211vap *vap; 1948 1949 ic->ic_csa_newchan = NULL; 1950 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1951 1952 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1953 if (vap->iv_state == IEEE80211_S_CSA) 1954 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1955 } 1956 1957 /* 1958 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1959 * We clear state and move all vap's in CSA state to RUN state 1960 * so they can again transmit. 1961 * 1962 * Although this may not be completely correct, update the BSS channel 1963 * for each VAP to the newly configured channel. The setcurchan sets 1964 * the current operating channel for the interface (so the radio does 1965 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1966 * reported information via ioctl. 1967 */ 1968 void 1969 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1970 { 1971 struct ieee80211vap *vap; 1972 1973 IEEE80211_LOCK_ASSERT(ic); 1974 1975 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1976 1977 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1978 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1979 if (vap->iv_state == IEEE80211_S_CSA) 1980 vap->iv_bss->ni_chan = ic->ic_curchan; 1981 1982 csa_completeswitch(ic); 1983 } 1984 1985 /* 1986 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1987 * We clear state and move all vap's in CSA state to RUN state 1988 * so they can again transmit. 1989 */ 1990 void 1991 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1992 { 1993 IEEE80211_LOCK_ASSERT(ic); 1994 1995 csa_completeswitch(ic); 1996 } 1997 1998 /* 1999 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2000 * We clear state and move all vap's in CAC state to RUN state. 2001 */ 2002 void 2003 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2004 { 2005 struct ieee80211com *ic = vap0->iv_ic; 2006 struct ieee80211vap *vap; 2007 2008 IEEE80211_LOCK(ic); 2009 /* 2010 * Complete CAC state change for lead vap first; then 2011 * clock all the other vap's waiting. 2012 */ 2013 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2014 ("wrong state %d", vap0->iv_state)); 2015 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2016 2017 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2018 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2019 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2020 IEEE80211_UNLOCK(ic); 2021 } 2022 2023 /* 2024 * Force all vap's other than the specified vap to the INIT state 2025 * and mark them as waiting for a scan to complete. These vaps 2026 * will be brought up when the scan completes and the scanning vap 2027 * reaches RUN state by wakeupwaiting. 2028 */ 2029 static void 2030 markwaiting(struct ieee80211vap *vap0) 2031 { 2032 struct ieee80211com *ic = vap0->iv_ic; 2033 struct ieee80211vap *vap; 2034 2035 IEEE80211_LOCK_ASSERT(ic); 2036 2037 /* 2038 * A vap list entry can not disappear since we are running on the 2039 * taskqueue and a vap destroy will queue and drain another state 2040 * change task. 2041 */ 2042 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2043 if (vap == vap0) 2044 continue; 2045 if (vap->iv_state != IEEE80211_S_INIT) { 2046 /* NB: iv_newstate may drop the lock */ 2047 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2048 IEEE80211_LOCK_ASSERT(ic); 2049 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2050 } 2051 } 2052 } 2053 2054 /* 2055 * Wakeup all vap's waiting for a scan to complete. This is the 2056 * companion to markwaiting (above) and is used to coordinate 2057 * multiple vaps scanning. 2058 * This is called from the state taskqueue. 2059 */ 2060 static void 2061 wakeupwaiting(struct ieee80211vap *vap0) 2062 { 2063 struct ieee80211com *ic = vap0->iv_ic; 2064 struct ieee80211vap *vap; 2065 2066 IEEE80211_LOCK_ASSERT(ic); 2067 2068 /* 2069 * A vap list entry can not disappear since we are running on the 2070 * taskqueue and a vap destroy will queue and drain another state 2071 * change task. 2072 */ 2073 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2074 if (vap == vap0) 2075 continue; 2076 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2077 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2078 /* NB: sta's cannot go INIT->RUN */ 2079 /* NB: iv_newstate may drop the lock */ 2080 vap->iv_newstate(vap, 2081 vap->iv_opmode == IEEE80211_M_STA ? 2082 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2083 IEEE80211_LOCK_ASSERT(ic); 2084 } 2085 } 2086 } 2087 2088 /* 2089 * Handle post state change work common to all operating modes. 2090 */ 2091 static void 2092 ieee80211_newstate_cb(void *xvap, int npending) 2093 { 2094 struct ieee80211vap *vap = xvap; 2095 struct ieee80211com *ic = vap->iv_ic; 2096 enum ieee80211_state nstate, ostate; 2097 int arg, rc; 2098 2099 IEEE80211_LOCK(ic); 2100 nstate = vap->iv_nstate; 2101 arg = vap->iv_nstate_arg; 2102 2103 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2104 /* 2105 * We have been requested to drop back to the INIT before 2106 * proceeding to the new state. 2107 */ 2108 /* Deny any state changes while we are here. */ 2109 vap->iv_nstate = IEEE80211_S_INIT; 2110 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2111 "%s: %s -> %s arg %d\n", __func__, 2112 ieee80211_state_name[vap->iv_state], 2113 ieee80211_state_name[vap->iv_nstate], arg); 2114 vap->iv_newstate(vap, vap->iv_nstate, 0); 2115 IEEE80211_LOCK_ASSERT(ic); 2116 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2117 IEEE80211_FEXT_STATEWAIT); 2118 /* enqueue new state transition after cancel_scan() task */ 2119 ieee80211_new_state_locked(vap, nstate, arg); 2120 goto done; 2121 } 2122 2123 ostate = vap->iv_state; 2124 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2125 /* 2126 * SCAN was forced; e.g. on beacon miss. Force other running 2127 * vap's to INIT state and mark them as waiting for the scan to 2128 * complete. This insures they don't interfere with our 2129 * scanning. Since we are single threaded the vaps can not 2130 * transition again while we are executing. 2131 * 2132 * XXX not always right, assumes ap follows sta 2133 */ 2134 markwaiting(vap); 2135 } 2136 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2137 "%s: %s -> %s arg %d\n", __func__, 2138 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2139 2140 rc = vap->iv_newstate(vap, nstate, arg); 2141 IEEE80211_LOCK_ASSERT(ic); 2142 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2143 if (rc != 0) { 2144 /* State transition failed */ 2145 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2146 KASSERT(nstate != IEEE80211_S_INIT, 2147 ("INIT state change failed")); 2148 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2149 "%s: %s returned error %d\n", __func__, 2150 ieee80211_state_name[nstate], rc); 2151 goto done; 2152 } 2153 2154 /* No actual transition, skip post processing */ 2155 if (ostate == nstate) 2156 goto done; 2157 2158 if (nstate == IEEE80211_S_RUN) { 2159 /* 2160 * OACTIVE may be set on the vap if the upper layer 2161 * tried to transmit (e.g. IPv6 NDP) before we reach 2162 * RUN state. Clear it and restart xmit. 2163 * 2164 * Note this can also happen as a result of SLEEP->RUN 2165 * (i.e. coming out of power save mode). 2166 */ 2167 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2168 2169 /* 2170 * XXX TODO Kick-start a VAP queue - this should be a method! 2171 */ 2172 2173 /* bring up any vaps waiting on us */ 2174 wakeupwaiting(vap); 2175 } else if (nstate == IEEE80211_S_INIT) { 2176 /* 2177 * Flush the scan cache if we did the last scan (XXX?) 2178 * and flush any frames on send queues from this vap. 2179 * Note the mgt q is used only for legacy drivers and 2180 * will go away shortly. 2181 */ 2182 ieee80211_scan_flush(vap); 2183 2184 /* 2185 * XXX TODO: ic/vap queue flush 2186 */ 2187 } 2188 done: 2189 IEEE80211_UNLOCK(ic); 2190 } 2191 2192 /* 2193 * Public interface for initiating a state machine change. 2194 * This routine single-threads the request and coordinates 2195 * the scheduling of multiple vaps for the purpose of selecting 2196 * an operating channel. Specifically the following scenarios 2197 * are handled: 2198 * o only one vap can be selecting a channel so on transition to 2199 * SCAN state if another vap is already scanning then 2200 * mark the caller for later processing and return without 2201 * doing anything (XXX? expectations by caller of synchronous operation) 2202 * o only one vap can be doing CAC of a channel so on transition to 2203 * CAC state if another vap is already scanning for radar then 2204 * mark the caller for later processing and return without 2205 * doing anything (XXX? expectations by caller of synchronous operation) 2206 * o if another vap is already running when a request is made 2207 * to SCAN then an operating channel has been chosen; bypass 2208 * the scan and just join the channel 2209 * 2210 * Note that the state change call is done through the iv_newstate 2211 * method pointer so any driver routine gets invoked. The driver 2212 * will normally call back into operating mode-specific 2213 * ieee80211_newstate routines (below) unless it needs to completely 2214 * bypass the state machine (e.g. because the firmware has it's 2215 * own idea how things should work). Bypassing the net80211 layer 2216 * is usually a mistake and indicates lack of proper integration 2217 * with the net80211 layer. 2218 */ 2219 int 2220 ieee80211_new_state_locked(struct ieee80211vap *vap, 2221 enum ieee80211_state nstate, int arg) 2222 { 2223 struct ieee80211com *ic = vap->iv_ic; 2224 struct ieee80211vap *vp; 2225 enum ieee80211_state ostate; 2226 int nrunning, nscanning; 2227 2228 IEEE80211_LOCK_ASSERT(ic); 2229 2230 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2231 if (vap->iv_nstate == IEEE80211_S_INIT || 2232 ((vap->iv_state == IEEE80211_S_INIT || 2233 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2234 vap->iv_nstate == IEEE80211_S_SCAN && 2235 nstate > IEEE80211_S_SCAN)) { 2236 /* 2237 * XXX The vap is being stopped/started, 2238 * do not allow any other state changes 2239 * until this is completed. 2240 */ 2241 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2242 "%s: %s -> %s (%s) transition discarded\n", 2243 __func__, 2244 ieee80211_state_name[vap->iv_state], 2245 ieee80211_state_name[nstate], 2246 ieee80211_state_name[vap->iv_nstate]); 2247 return -1; 2248 } else if (vap->iv_state != vap->iv_nstate) { 2249 #if 0 2250 /* Warn if the previous state hasn't completed. */ 2251 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2252 "%s: pending %s -> %s transition lost\n", __func__, 2253 ieee80211_state_name[vap->iv_state], 2254 ieee80211_state_name[vap->iv_nstate]); 2255 #else 2256 /* XXX temporarily enable to identify issues */ 2257 if_printf(vap->iv_ifp, 2258 "%s: pending %s -> %s transition lost\n", 2259 __func__, ieee80211_state_name[vap->iv_state], 2260 ieee80211_state_name[vap->iv_nstate]); 2261 #endif 2262 } 2263 } 2264 2265 nrunning = nscanning = 0; 2266 /* XXX can track this state instead of calculating */ 2267 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2268 if (vp != vap) { 2269 if (vp->iv_state >= IEEE80211_S_RUN) 2270 nrunning++; 2271 /* XXX doesn't handle bg scan */ 2272 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2273 else if (vp->iv_state > IEEE80211_S_INIT) 2274 nscanning++; 2275 } 2276 } 2277 ostate = vap->iv_state; 2278 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2279 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2280 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2281 nrunning, nscanning); 2282 switch (nstate) { 2283 case IEEE80211_S_SCAN: 2284 if (ostate == IEEE80211_S_INIT) { 2285 /* 2286 * INIT -> SCAN happens on initial bringup. 2287 */ 2288 KASSERT(!(nscanning && nrunning), 2289 ("%d scanning and %d running", nscanning, nrunning)); 2290 if (nscanning) { 2291 /* 2292 * Someone is scanning, defer our state 2293 * change until the work has completed. 2294 */ 2295 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2296 "%s: defer %s -> %s\n", 2297 __func__, ieee80211_state_name[ostate], 2298 ieee80211_state_name[nstate]); 2299 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2300 return 0; 2301 } 2302 if (nrunning) { 2303 /* 2304 * Someone is operating; just join the channel 2305 * they have chosen. 2306 */ 2307 /* XXX kill arg? */ 2308 /* XXX check each opmode, adhoc? */ 2309 if (vap->iv_opmode == IEEE80211_M_STA) 2310 nstate = IEEE80211_S_SCAN; 2311 else 2312 nstate = IEEE80211_S_RUN; 2313 #ifdef IEEE80211_DEBUG 2314 if (nstate != IEEE80211_S_SCAN) { 2315 IEEE80211_DPRINTF(vap, 2316 IEEE80211_MSG_STATE, 2317 "%s: override, now %s -> %s\n", 2318 __func__, 2319 ieee80211_state_name[ostate], 2320 ieee80211_state_name[nstate]); 2321 } 2322 #endif 2323 } 2324 } 2325 break; 2326 case IEEE80211_S_RUN: 2327 if (vap->iv_opmode == IEEE80211_M_WDS && 2328 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2329 nscanning) { 2330 /* 2331 * Legacy WDS with someone else scanning; don't 2332 * go online until that completes as we should 2333 * follow the other vap to the channel they choose. 2334 */ 2335 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2336 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2337 ieee80211_state_name[ostate], 2338 ieee80211_state_name[nstate]); 2339 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2340 return 0; 2341 } 2342 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2343 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2344 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2345 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2346 /* 2347 * This is a DFS channel, transition to CAC state 2348 * instead of RUN. This allows us to initiate 2349 * Channel Availability Check (CAC) as specified 2350 * by 11h/DFS. 2351 */ 2352 nstate = IEEE80211_S_CAC; 2353 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2354 "%s: override %s -> %s (DFS)\n", __func__, 2355 ieee80211_state_name[ostate], 2356 ieee80211_state_name[nstate]); 2357 } 2358 break; 2359 case IEEE80211_S_INIT: 2360 /* cancel any scan in progress */ 2361 ieee80211_cancel_scan(vap); 2362 if (ostate == IEEE80211_S_INIT ) { 2363 /* XXX don't believe this */ 2364 /* INIT -> INIT. nothing to do */ 2365 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2366 } 2367 /* fall thru... */ 2368 default: 2369 break; 2370 } 2371 /* defer the state change to a thread */ 2372 vap->iv_nstate = nstate; 2373 vap->iv_nstate_arg = arg; 2374 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2375 ieee80211_runtask(ic, &vap->iv_nstate_task); 2376 return EINPROGRESS; 2377 } 2378 2379 int 2380 ieee80211_new_state(struct ieee80211vap *vap, 2381 enum ieee80211_state nstate, int arg) 2382 { 2383 struct ieee80211com *ic = vap->iv_ic; 2384 int rc; 2385 2386 IEEE80211_LOCK(ic); 2387 rc = ieee80211_new_state_locked(vap, nstate, arg); 2388 IEEE80211_UNLOCK(ic); 2389 return rc; 2390 } 2391