1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void vap_update_slot(void *, int); 248 static void restart_vaps(void *, int); 249 static void vap_update_erp_protmode(void *, int); 250 static void vap_update_preamble(void *, int); 251 static void vap_update_ht_protmode(void *, int); 252 static void ieee80211_newstate_cb(void *, int); 253 254 static int 255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 256 const struct ieee80211_bpf_params *params) 257 { 258 259 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 260 m_freem(m); 261 return ENETDOWN; 262 } 263 264 void 265 ieee80211_proto_attach(struct ieee80211com *ic) 266 { 267 uint8_t hdrlen; 268 269 /* override the 802.3 setting */ 270 hdrlen = ic->ic_headroom 271 + sizeof(struct ieee80211_qosframe_addr4) 272 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 273 + IEEE80211_WEP_EXTIVLEN; 274 /* XXX no way to recalculate on ifdetach */ 275 if (ALIGN(hdrlen) > max_linkhdr) { 276 /* XXX sanity check... */ 277 max_linkhdr = ALIGN(hdrlen); 278 max_hdr = max_linkhdr + max_protohdr; 279 max_datalen = MHLEN - max_hdr; 280 } 281 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 282 283 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 284 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 285 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 286 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 287 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 288 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 289 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 290 291 ic->ic_wme.wme_hipri_switch_hysteresis = 292 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 293 294 /* initialize management frame handlers */ 295 ic->ic_send_mgmt = ieee80211_send_mgmt; 296 ic->ic_raw_xmit = null_raw_xmit; 297 298 ieee80211_adhoc_attach(ic); 299 ieee80211_sta_attach(ic); 300 ieee80211_wds_attach(ic); 301 ieee80211_hostap_attach(ic); 302 #ifdef IEEE80211_SUPPORT_MESH 303 ieee80211_mesh_attach(ic); 304 #endif 305 ieee80211_monitor_attach(ic); 306 } 307 308 void 309 ieee80211_proto_detach(struct ieee80211com *ic) 310 { 311 ieee80211_monitor_detach(ic); 312 #ifdef IEEE80211_SUPPORT_MESH 313 ieee80211_mesh_detach(ic); 314 #endif 315 ieee80211_hostap_detach(ic); 316 ieee80211_wds_detach(ic); 317 ieee80211_adhoc_detach(ic); 318 ieee80211_sta_detach(ic); 319 } 320 321 static void 322 null_update_beacon(struct ieee80211vap *vap, int item) 323 { 324 } 325 326 void 327 ieee80211_proto_vattach(struct ieee80211vap *vap) 328 { 329 struct ieee80211com *ic = vap->iv_ic; 330 struct ifnet *ifp = vap->iv_ifp; 331 int i; 332 333 /* override the 802.3 setting */ 334 ifp->if_hdrlen = ic->ic_headroom 335 + sizeof(struct ieee80211_qosframe_addr4) 336 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 337 + IEEE80211_WEP_EXTIVLEN; 338 339 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 340 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 341 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 342 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 343 callout_init(&vap->iv_mgtsend, 1); 344 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 345 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 346 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 347 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 348 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 349 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 350 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 351 /* 352 * Install default tx rate handling: no fixed rate, lowest 353 * supported rate for mgmt and multicast frames. Default 354 * max retry count. These settings can be changed by the 355 * driver and/or user applications. 356 */ 357 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 358 if (isclr(ic->ic_modecaps, i)) 359 continue; 360 361 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 362 363 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 364 365 /* 366 * Setting the management rate to MCS 0 assumes that the 367 * BSS Basic rate set is empty and the BSS Basic MCS set 368 * is not. 369 * 370 * Since we're not checking this, default to the lowest 371 * defined rate for this mode. 372 * 373 * At least one 11n AP (DLINK DIR-825) is reported to drop 374 * some MCS management traffic (eg BA response frames.) 375 * 376 * See also: 9.6.0 of the 802.11n-2009 specification. 377 */ 378 #ifdef NOTYET 379 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 380 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 381 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 382 } else { 383 vap->iv_txparms[i].mgmtrate = 384 rs->rs_rates[0] & IEEE80211_RATE_VAL; 385 vap->iv_txparms[i].mcastrate = 386 rs->rs_rates[0] & IEEE80211_RATE_VAL; 387 } 388 #endif 389 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 390 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 391 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 392 } 393 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 394 395 vap->iv_update_beacon = null_update_beacon; 396 vap->iv_deliver_data = ieee80211_deliver_data; 397 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 398 399 /* attach support for operating mode */ 400 ic->ic_vattach[vap->iv_opmode](vap); 401 } 402 403 void 404 ieee80211_proto_vdetach(struct ieee80211vap *vap) 405 { 406 #define FREEAPPIE(ie) do { \ 407 if (ie != NULL) \ 408 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 409 } while (0) 410 /* 411 * Detach operating mode module. 412 */ 413 if (vap->iv_opdetach != NULL) 414 vap->iv_opdetach(vap); 415 /* 416 * This should not be needed as we detach when reseting 417 * the state but be conservative here since the 418 * authenticator may do things like spawn kernel threads. 419 */ 420 if (vap->iv_auth->ia_detach != NULL) 421 vap->iv_auth->ia_detach(vap); 422 /* 423 * Detach any ACL'ator. 424 */ 425 if (vap->iv_acl != NULL) 426 vap->iv_acl->iac_detach(vap); 427 428 FREEAPPIE(vap->iv_appie_beacon); 429 FREEAPPIE(vap->iv_appie_probereq); 430 FREEAPPIE(vap->iv_appie_proberesp); 431 FREEAPPIE(vap->iv_appie_assocreq); 432 FREEAPPIE(vap->iv_appie_assocresp); 433 FREEAPPIE(vap->iv_appie_wpa); 434 #undef FREEAPPIE 435 } 436 437 /* 438 * Simple-minded authenticator module support. 439 */ 440 441 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 442 /* XXX well-known names */ 443 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 444 "wlan_internal", /* IEEE80211_AUTH_NONE */ 445 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 446 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 447 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 448 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 449 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 450 }; 451 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 452 453 static const struct ieee80211_authenticator auth_internal = { 454 .ia_name = "wlan_internal", 455 .ia_attach = NULL, 456 .ia_detach = NULL, 457 .ia_node_join = NULL, 458 .ia_node_leave = NULL, 459 }; 460 461 /* 462 * Setup internal authenticators once; they are never unregistered. 463 */ 464 static void 465 ieee80211_auth_setup(void) 466 { 467 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 468 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 469 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 470 } 471 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 472 473 const struct ieee80211_authenticator * 474 ieee80211_authenticator_get(int auth) 475 { 476 if (auth >= IEEE80211_AUTH_MAX) 477 return NULL; 478 if (authenticators[auth] == NULL) 479 ieee80211_load_module(auth_modnames[auth]); 480 return authenticators[auth]; 481 } 482 483 void 484 ieee80211_authenticator_register(int type, 485 const struct ieee80211_authenticator *auth) 486 { 487 if (type >= IEEE80211_AUTH_MAX) 488 return; 489 authenticators[type] = auth; 490 } 491 492 void 493 ieee80211_authenticator_unregister(int type) 494 { 495 496 if (type >= IEEE80211_AUTH_MAX) 497 return; 498 authenticators[type] = NULL; 499 } 500 501 /* 502 * Very simple-minded ACL module support. 503 */ 504 /* XXX just one for now */ 505 static const struct ieee80211_aclator *acl = NULL; 506 507 void 508 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 509 { 510 printf("wlan: %s acl policy registered\n", iac->iac_name); 511 acl = iac; 512 } 513 514 void 515 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 516 { 517 if (acl == iac) 518 acl = NULL; 519 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 520 } 521 522 const struct ieee80211_aclator * 523 ieee80211_aclator_get(const char *name) 524 { 525 if (acl == NULL) 526 ieee80211_load_module("wlan_acl"); 527 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 528 } 529 530 void 531 ieee80211_print_essid(const uint8_t *essid, int len) 532 { 533 const uint8_t *p; 534 int i; 535 536 if (len > IEEE80211_NWID_LEN) 537 len = IEEE80211_NWID_LEN; 538 /* determine printable or not */ 539 for (i = 0, p = essid; i < len; i++, p++) { 540 if (*p < ' ' || *p > 0x7e) 541 break; 542 } 543 if (i == len) { 544 printf("\""); 545 for (i = 0, p = essid; i < len; i++, p++) 546 printf("%c", *p); 547 printf("\""); 548 } else { 549 printf("0x"); 550 for (i = 0, p = essid; i < len; i++, p++) 551 printf("%02x", *p); 552 } 553 } 554 555 void 556 ieee80211_dump_pkt(struct ieee80211com *ic, 557 const uint8_t *buf, int len, int rate, int rssi) 558 { 559 const struct ieee80211_frame *wh; 560 int i; 561 562 wh = (const struct ieee80211_frame *)buf; 563 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 564 case IEEE80211_FC1_DIR_NODS: 565 printf("NODS %s", ether_sprintf(wh->i_addr2)); 566 printf("->%s", ether_sprintf(wh->i_addr1)); 567 printf("(%s)", ether_sprintf(wh->i_addr3)); 568 break; 569 case IEEE80211_FC1_DIR_TODS: 570 printf("TODS %s", ether_sprintf(wh->i_addr2)); 571 printf("->%s", ether_sprintf(wh->i_addr3)); 572 printf("(%s)", ether_sprintf(wh->i_addr1)); 573 break; 574 case IEEE80211_FC1_DIR_FROMDS: 575 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 576 printf("->%s", ether_sprintf(wh->i_addr1)); 577 printf("(%s)", ether_sprintf(wh->i_addr2)); 578 break; 579 case IEEE80211_FC1_DIR_DSTODS: 580 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 581 printf("->%s", ether_sprintf(wh->i_addr3)); 582 printf("(%s", ether_sprintf(wh->i_addr2)); 583 printf("->%s)", ether_sprintf(wh->i_addr1)); 584 break; 585 } 586 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 587 case IEEE80211_FC0_TYPE_DATA: 588 printf(" data"); 589 break; 590 case IEEE80211_FC0_TYPE_MGT: 591 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 592 break; 593 default: 594 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 595 break; 596 } 597 if (IEEE80211_QOS_HAS_SEQ(wh)) { 598 const struct ieee80211_qosframe *qwh = 599 (const struct ieee80211_qosframe *)buf; 600 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 601 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 602 } 603 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 604 int off; 605 606 off = ieee80211_anyhdrspace(ic, wh); 607 printf(" WEP [IV %.02x %.02x %.02x", 608 buf[off+0], buf[off+1], buf[off+2]); 609 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 610 printf(" %.02x %.02x %.02x", 611 buf[off+4], buf[off+5], buf[off+6]); 612 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 613 } 614 if (rate >= 0) 615 printf(" %dM", rate / 2); 616 if (rssi >= 0) 617 printf(" +%d", rssi); 618 printf("\n"); 619 if (len > 0) { 620 for (i = 0; i < len; i++) { 621 if ((i & 1) == 0) 622 printf(" "); 623 printf("%02x", buf[i]); 624 } 625 printf("\n"); 626 } 627 } 628 629 static __inline int 630 findrix(const struct ieee80211_rateset *rs, int r) 631 { 632 int i; 633 634 for (i = 0; i < rs->rs_nrates; i++) 635 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 636 return i; 637 return -1; 638 } 639 640 int 641 ieee80211_fix_rate(struct ieee80211_node *ni, 642 struct ieee80211_rateset *nrs, int flags) 643 { 644 struct ieee80211vap *vap = ni->ni_vap; 645 struct ieee80211com *ic = ni->ni_ic; 646 int i, j, rix, error; 647 int okrate, badrate, fixedrate, ucastrate; 648 const struct ieee80211_rateset *srs; 649 uint8_t r; 650 651 error = 0; 652 okrate = badrate = 0; 653 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 654 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 655 /* 656 * Workaround awkwardness with fixed rate. We are called 657 * to check both the legacy rate set and the HT rate set 658 * but we must apply any legacy fixed rate check only to the 659 * legacy rate set and vice versa. We cannot tell what type 660 * of rate set we've been given (legacy or HT) but we can 661 * distinguish the fixed rate type (MCS have 0x80 set). 662 * So to deal with this the caller communicates whether to 663 * check MCS or legacy rate using the flags and we use the 664 * type of any fixed rate to avoid applying an MCS to a 665 * legacy rate and vice versa. 666 */ 667 if (ucastrate & 0x80) { 668 if (flags & IEEE80211_F_DOFRATE) 669 flags &= ~IEEE80211_F_DOFRATE; 670 } else if ((ucastrate & 0x80) == 0) { 671 if (flags & IEEE80211_F_DOFMCS) 672 flags &= ~IEEE80211_F_DOFMCS; 673 } 674 /* NB: required to make MCS match below work */ 675 ucastrate &= IEEE80211_RATE_VAL; 676 } 677 fixedrate = IEEE80211_FIXED_RATE_NONE; 678 /* 679 * XXX we are called to process both MCS and legacy rates; 680 * we must use the appropriate basic rate set or chaos will 681 * ensue; for now callers that want MCS must supply 682 * IEEE80211_F_DOBRS; at some point we'll need to split this 683 * function so there are two variants, one for MCS and one 684 * for legacy rates. 685 */ 686 if (flags & IEEE80211_F_DOBRS) 687 srs = (const struct ieee80211_rateset *) 688 ieee80211_get_suphtrates(ic, ni->ni_chan); 689 else 690 srs = ieee80211_get_suprates(ic, ni->ni_chan); 691 for (i = 0; i < nrs->rs_nrates; ) { 692 if (flags & IEEE80211_F_DOSORT) { 693 /* 694 * Sort rates. 695 */ 696 for (j = i + 1; j < nrs->rs_nrates; j++) { 697 if (IEEE80211_RV(nrs->rs_rates[i]) > 698 IEEE80211_RV(nrs->rs_rates[j])) { 699 r = nrs->rs_rates[i]; 700 nrs->rs_rates[i] = nrs->rs_rates[j]; 701 nrs->rs_rates[j] = r; 702 } 703 } 704 } 705 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 706 badrate = r; 707 /* 708 * Check for fixed rate. 709 */ 710 if (r == ucastrate) 711 fixedrate = r; 712 /* 713 * Check against supported rates. 714 */ 715 rix = findrix(srs, r); 716 if (flags & IEEE80211_F_DONEGO) { 717 if (rix < 0) { 718 /* 719 * A rate in the node's rate set is not 720 * supported. If this is a basic rate and we 721 * are operating as a STA then this is an error. 722 * Otherwise we just discard/ignore the rate. 723 */ 724 if ((flags & IEEE80211_F_JOIN) && 725 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 726 error++; 727 } else if ((flags & IEEE80211_F_JOIN) == 0) { 728 /* 729 * Overwrite with the supported rate 730 * value so any basic rate bit is set. 731 */ 732 nrs->rs_rates[i] = srs->rs_rates[rix]; 733 } 734 } 735 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 736 /* 737 * Delete unacceptable rates. 738 */ 739 nrs->rs_nrates--; 740 for (j = i; j < nrs->rs_nrates; j++) 741 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 742 nrs->rs_rates[j] = 0; 743 continue; 744 } 745 if (rix >= 0) 746 okrate = nrs->rs_rates[i]; 747 i++; 748 } 749 if (okrate == 0 || error != 0 || 750 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 751 fixedrate != ucastrate)) { 752 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 753 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 754 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 755 return badrate | IEEE80211_RATE_BASIC; 756 } else 757 return IEEE80211_RV(okrate); 758 } 759 760 /* 761 * Reset 11g-related state. 762 * 763 * This is for per-VAP ERP/11g state. 764 * 765 * Eventually everything in ieee80211_reset_erp() will be 766 * per-VAP and in here. 767 */ 768 void 769 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 770 { 771 struct ieee80211com *ic = vap->iv_ic; 772 773 vap->iv_nonerpsta = 0; 774 vap->iv_longslotsta = 0; 775 776 vap->iv_flags &= ~IEEE80211_F_USEPROT; 777 /* 778 * Set short preamble and ERP barker-preamble flags. 779 */ 780 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 781 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 782 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 783 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 784 } else { 785 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 786 vap->iv_flags |= IEEE80211_F_USEBARKER; 787 } 788 789 /* 790 * Short slot time is enabled only when operating in 11g 791 * and not in an IBSS. We must also honor whether or not 792 * the driver is capable of doing it. 793 */ 794 ieee80211_vap_set_shortslottime(vap, 795 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 796 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 797 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 798 vap->iv_opmode == IEEE80211_M_HOSTAP && 799 (ic->ic_caps & IEEE80211_C_SHSLOT))); 800 } 801 802 /* 803 * Reset 11g-related state. 804 * 805 * Note this resets the global state and a caller should schedule 806 * a re-check of all the VAPs after setup to update said state. 807 */ 808 void 809 ieee80211_reset_erp(struct ieee80211com *ic) 810 { 811 #if 0 812 ic->ic_flags &= ~IEEE80211_F_USEPROT; 813 /* 814 * Set short preamble and ERP barker-preamble flags. 815 */ 816 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 817 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 818 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 819 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 820 } else { 821 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 822 ic->ic_flags |= IEEE80211_F_USEBARKER; 823 } 824 #endif 825 /* XXX TODO: schedule a new per-VAP ERP calculation */ 826 } 827 828 /* 829 * Deferred slot time update. 830 * 831 * For per-VAP slot time configuration, call the VAP 832 * method if the VAP requires it. Otherwise, just call the 833 * older global method. 834 * 835 * If the per-VAP method is called then it's expected that 836 * the driver/firmware will take care of turning the per-VAP 837 * flags into slot time configuration. 838 * 839 * If the per-VAP method is not called then the global flags will be 840 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 841 * be set only if all of the vaps will have it set. 842 * 843 * Look at the comments for vap_update_erp_protmode() for more 844 * background; this assumes all VAPs are on the same channel. 845 */ 846 static void 847 vap_update_slot(void *arg, int npending) 848 { 849 struct ieee80211vap *vap = arg; 850 struct ieee80211com *ic = vap->iv_ic; 851 struct ieee80211vap *iv; 852 int num_shslot = 0, num_lgslot = 0; 853 854 /* 855 * Per-VAP path - we've already had the flags updated; 856 * so just notify the driver and move on. 857 */ 858 if (vap->iv_updateslot != NULL) { 859 vap->iv_updateslot(vap); 860 return; 861 } 862 863 /* 864 * Iterate over all of the VAP flags to update the 865 * global flag. 866 * 867 * If all vaps have short slot enabled then flip on 868 * short slot. If any vap has it disabled then 869 * we leave it globally disabled. This should provide 870 * correct behaviour in a multi-BSS scenario where 871 * at least one VAP has short slot disabled for some 872 * reason. 873 */ 874 IEEE80211_LOCK(ic); 875 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 876 if (iv->iv_flags & IEEE80211_F_SHSLOT) 877 num_shslot++; 878 else 879 num_lgslot++; 880 } 881 882 /* 883 * It looks backwards but - if the number of short slot VAPs 884 * is zero then we're not short slot. Else, we have one 885 * or more short slot VAPs and we're checking to see if ANY 886 * of them have short slot disabled. 887 */ 888 if (num_shslot == 0) 889 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 890 else if (num_lgslot == 0) 891 ic->ic_flags |= IEEE80211_F_SHSLOT; 892 IEEE80211_UNLOCK(ic); 893 894 /* 895 * Call the driver with our new global slot time flags. 896 */ 897 if (ic->ic_updateslot != NULL) 898 ic->ic_updateslot(ic); 899 } 900 901 /* 902 * Deferred ERP protmode update. 903 * 904 * This currently calculates the global ERP protection mode flag 905 * based on each of the VAPs. Any VAP with it enabled is enough 906 * for the global flag to be enabled. All VAPs with it disabled 907 * is enough for it to be disabled. 908 * 909 * This may make sense right now for the supported hardware where 910 * net80211 is controlling the single channel configuration, but 911 * offload firmware that's doing channel changes (eg off-channel 912 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 913 * silly looking flag updates. 914 * 915 * Ideally the protection mode calculation is done based on the 916 * channel, and all VAPs using that channel will inherit it. 917 * But until that's what net80211 does, this wil have to do. 918 */ 919 static void 920 vap_update_erp_protmode(void *arg, int npending) 921 { 922 struct ieee80211vap *vap = arg; 923 struct ieee80211com *ic = vap->iv_ic; 924 struct ieee80211vap *iv; 925 int enable_protmode = 0; 926 int non_erp_present = 0; 927 928 /* 929 * Iterate over all of the VAPs to calculate the overlapping 930 * ERP protection mode configuration and ERP present math. 931 * 932 * For now we assume that if a driver can handle this per-VAP 933 * then it'll ignore the ic->ic_protmode variant and instead 934 * will look at the vap related flags. 935 */ 936 IEEE80211_LOCK(ic); 937 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 938 if (iv->iv_flags & IEEE80211_F_USEPROT) 939 enable_protmode = 1; 940 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 941 non_erp_present = 1; 942 } 943 944 if (enable_protmode) 945 ic->ic_flags |= IEEE80211_F_USEPROT; 946 else 947 ic->ic_flags &= ~IEEE80211_F_USEPROT; 948 949 if (non_erp_present) 950 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 951 else 952 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 953 954 /* Beacon update on all VAPs */ 955 ieee80211_notify_erp_locked(ic); 956 957 IEEE80211_UNLOCK(ic); 958 959 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 960 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 961 __func__, enable_protmode, non_erp_present); 962 963 /* 964 * Now that the global configuration flags are calculated, 965 * notify the VAP about its configuration. 966 * 967 * The global flags will be used when assembling ERP IEs 968 * for multi-VAP operation, even if it's on a different 969 * channel. Yes, that's going to need fixing in the 970 * future. 971 */ 972 if (vap->iv_erp_protmode_update != NULL) 973 vap->iv_erp_protmode_update(vap); 974 } 975 976 /* 977 * Deferred ERP short preamble/barker update. 978 * 979 * All VAPs need to use short preamble for it to be globally 980 * enabled or not. 981 * 982 * Look at the comments for vap_update_erp_protmode() for more 983 * background; this assumes all VAPs are on the same channel. 984 */ 985 static void 986 vap_update_preamble(void *arg, int npending) 987 { 988 struct ieee80211vap *vap = arg; 989 struct ieee80211com *ic = vap->iv_ic; 990 struct ieee80211vap *iv; 991 int barker_count = 0, short_preamble_count = 0, count = 0; 992 993 /* 994 * Iterate over all of the VAPs to calculate the overlapping 995 * short or long preamble configuration. 996 * 997 * For now we assume that if a driver can handle this per-VAP 998 * then it'll ignore the ic->ic_flags variant and instead 999 * will look at the vap related flags. 1000 */ 1001 IEEE80211_LOCK(ic); 1002 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1003 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1004 barker_count++; 1005 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1006 short_preamble_count++; 1007 count++; 1008 } 1009 1010 /* 1011 * As with vap_update_erp_protmode(), the global flags are 1012 * currently used for beacon IEs. 1013 */ 1014 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1015 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1016 __func__, barker_count, short_preamble_count); 1017 1018 /* 1019 * Only flip on short preamble if all of the VAPs support 1020 * it. 1021 */ 1022 if (barker_count == 0 && short_preamble_count == count) { 1023 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1024 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1025 } else { 1026 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1027 ic->ic_flags |= IEEE80211_F_USEBARKER; 1028 } 1029 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1030 "%s: global barker=%d preamble=%d\n", 1031 __func__, 1032 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1033 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1034 1035 /* Beacon update on all VAPs */ 1036 ieee80211_notify_erp_locked(ic); 1037 1038 IEEE80211_UNLOCK(ic); 1039 1040 /* Driver notification */ 1041 if (vap->iv_erp_protmode_update != NULL) 1042 vap->iv_preamble_update(vap); 1043 } 1044 1045 /* 1046 * Deferred HT protmode update and beacon update. 1047 * 1048 * Look at the comments for vap_update_erp_protmode() for more 1049 * background; this assumes all VAPs are on the same channel. 1050 */ 1051 static void 1052 vap_update_ht_protmode(void *arg, int npending) 1053 { 1054 struct ieee80211vap *vap = arg; 1055 struct ieee80211vap *iv; 1056 struct ieee80211com *ic = vap->iv_ic; 1057 int num_vaps = 0, num_pure = 0, num_mixed = 0; 1058 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1059 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1060 int num_nonhtpr = 0; 1061 1062 /* 1063 * Iterate over all of the VAPs to calculate everything. 1064 * 1065 * There are a few different flags to calculate: 1066 * 1067 * + whether there's HT only or HT+legacy stations; 1068 * + whether there's HT20, HT40, or HT20+HT40 stations; 1069 * + whether the desired protection mode is mixed, pure or 1070 * one of the two above. 1071 * 1072 * For now we assume that if a driver can handle this per-VAP 1073 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1074 * variant and instead will look at the vap related variables. 1075 * 1076 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1077 */ 1078 1079 IEEE80211_LOCK(ic); 1080 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1081 num_vaps++; 1082 /* overlapping BSSes advertising non-HT status present */ 1083 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1084 num_nonht++; 1085 /* Operating mode flags */ 1086 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1087 num_nonhtpr++; 1088 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1089 case IEEE80211_HTINFO_OPMODE_PURE: 1090 num_pure++; 1091 break; 1092 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1093 num_optional++; 1094 break; 1095 case IEEE80211_HTINFO_OPMODE_HT20PR: 1096 num_ht2040++; 1097 break; 1098 case IEEE80211_HTINFO_OPMODE_MIXED: 1099 num_mixed++; 1100 break; 1101 } 1102 1103 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1104 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1105 __func__, 1106 ieee80211_get_vap_ifname(iv), 1107 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1108 iv->iv_curhtprotmode); 1109 1110 num_ht_sta += iv->iv_ht_sta_assoc; 1111 num_ht40_sta += iv->iv_ht40_sta_assoc; 1112 num_sta += iv->iv_sta_assoc; 1113 } 1114 1115 /* 1116 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1117 * non-HT present), set it here. This shouldn't be used by 1118 * anything but the old overlapping BSS logic so if any drivers 1119 * consume it, it's up to date. 1120 */ 1121 if (num_nonht > 0) 1122 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1123 else 1124 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1125 1126 /* 1127 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1128 * 1129 * + If all VAPs are PURE, we can stay PURE. 1130 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1131 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1132 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1133 * So we look at the sum ht and sum ht40 sta counts; if we have a 1134 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1135 * Note all stations need to be HT for this to be an option. 1136 * + The fall-through is MIXED, because it means we have some odd 1137 * non HT40-involved combination of opmode and this is the most 1138 * sensible default. 1139 */ 1140 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1141 1142 if (num_pure == num_vaps) 1143 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1144 1145 if (num_optional == num_vaps) 1146 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1147 1148 /* 1149 * Note: we need /a/ HT40 station somewhere for this to 1150 * be a possibility. 1151 */ 1152 if ((num_ht2040 > 0) || 1153 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1154 (num_ht_sta != num_ht40_sta))) 1155 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1156 1157 /* 1158 * Step 3 - if any of the stations across the VAPs are 1159 * non-HT then this needs to be flipped back to MIXED. 1160 */ 1161 if (num_ht_sta != num_sta) 1162 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1163 1164 /* 1165 * Step 4 - If we see any overlapping BSS non-HT stations 1166 * via beacons then flip on NONHT_PRESENT. 1167 */ 1168 if (num_nonhtpr > 0) 1169 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1170 1171 /* Notify all VAPs to potentially update their beacons */ 1172 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1173 ieee80211_htinfo_notify(iv); 1174 1175 IEEE80211_UNLOCK(ic); 1176 1177 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1178 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1179 __func__, 1180 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1181 ic->ic_curhtprotmode); 1182 1183 /* Driver update */ 1184 if (vap->iv_erp_protmode_update != NULL) 1185 vap->iv_ht_protmode_update(vap); 1186 } 1187 1188 /* 1189 * Set the short slot time state and notify the driver. 1190 * 1191 * This is the per-VAP slot time state. 1192 */ 1193 void 1194 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1195 { 1196 struct ieee80211com *ic = vap->iv_ic; 1197 1198 /* XXX lock? */ 1199 1200 /* 1201 * Only modify the per-VAP slot time. 1202 */ 1203 if (onoff) 1204 vap->iv_flags |= IEEE80211_F_SHSLOT; 1205 else 1206 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1207 1208 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1209 "%s: called; onoff=%d\n", __func__, onoff); 1210 /* schedule the deferred slot flag update and update */ 1211 ieee80211_runtask(ic, &vap->iv_slot_task); 1212 } 1213 1214 /* 1215 * Update the VAP short /long / barker preamble state and 1216 * update beacon state if needed. 1217 * 1218 * For now it simply copies the global flags into the per-vap 1219 * flags and schedules the callback. Later this will support 1220 * both global and per-VAP flags, especially useful for 1221 * and STA+STA multi-channel operation (eg p2p). 1222 */ 1223 void 1224 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1225 { 1226 struct ieee80211com *ic = vap->iv_ic; 1227 1228 /* XXX lock? */ 1229 1230 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1231 "%s: called\n", __func__); 1232 /* schedule the deferred slot flag update and update */ 1233 ieee80211_runtask(ic, &vap->iv_preamble_task); 1234 } 1235 1236 /* 1237 * Update the VAP 11g protection mode and update beacon state 1238 * if needed. 1239 */ 1240 void 1241 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1242 { 1243 struct ieee80211com *ic = vap->iv_ic; 1244 1245 /* XXX lock? */ 1246 1247 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1248 "%s: called\n", __func__); 1249 /* schedule the deferred slot flag update and update */ 1250 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1251 } 1252 1253 /* 1254 * Update the VAP 11n protection mode and update beacon state 1255 * if needed. 1256 */ 1257 void 1258 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1259 { 1260 struct ieee80211com *ic = vap->iv_ic; 1261 1262 /* XXX lock? */ 1263 1264 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1265 "%s: called\n", __func__); 1266 /* schedule the deferred protmode update */ 1267 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1268 } 1269 1270 /* 1271 * Check if the specified rate set supports ERP. 1272 * NB: the rate set is assumed to be sorted. 1273 */ 1274 int 1275 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1276 { 1277 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1278 int i, j; 1279 1280 if (rs->rs_nrates < nitems(rates)) 1281 return 0; 1282 for (i = 0; i < nitems(rates); i++) { 1283 for (j = 0; j < rs->rs_nrates; j++) { 1284 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1285 if (rates[i] == r) 1286 goto next; 1287 if (r > rates[i]) 1288 return 0; 1289 } 1290 return 0; 1291 next: 1292 ; 1293 } 1294 return 1; 1295 } 1296 1297 /* 1298 * Mark the basic rates for the rate table based on the 1299 * operating mode. For real 11g we mark all the 11b rates 1300 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1301 * 11b rates. There's also a pseudo 11a-mode used to mark only 1302 * the basic OFDM rates. 1303 */ 1304 static void 1305 setbasicrates(struct ieee80211_rateset *rs, 1306 enum ieee80211_phymode mode, int add) 1307 { 1308 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1309 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1310 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1311 /* NB: mixed b/g */ 1312 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1313 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1314 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1315 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1316 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1317 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1318 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1319 /* NB: mixed b/g */ 1320 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1321 /* NB: mixed b/g */ 1322 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1323 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1324 }; 1325 int i, j; 1326 1327 for (i = 0; i < rs->rs_nrates; i++) { 1328 if (!add) 1329 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1330 for (j = 0; j < basic[mode].rs_nrates; j++) 1331 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1332 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1333 break; 1334 } 1335 } 1336 } 1337 1338 /* 1339 * Set the basic rates in a rate set. 1340 */ 1341 void 1342 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1343 enum ieee80211_phymode mode) 1344 { 1345 setbasicrates(rs, mode, 0); 1346 } 1347 1348 /* 1349 * Add basic rates to a rate set. 1350 */ 1351 void 1352 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1353 enum ieee80211_phymode mode) 1354 { 1355 setbasicrates(rs, mode, 1); 1356 } 1357 1358 /* 1359 * WME protocol support. 1360 * 1361 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1362 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1363 * Draft 2.0 Test Plan (Appendix D). 1364 * 1365 * Static/Dynamic Turbo mode settings come from Atheros. 1366 */ 1367 typedef struct phyParamType { 1368 uint8_t aifsn; 1369 uint8_t logcwmin; 1370 uint8_t logcwmax; 1371 uint16_t txopLimit; 1372 uint8_t acm; 1373 } paramType; 1374 1375 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1376 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1377 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1378 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1379 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1380 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1381 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1382 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1383 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1384 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1386 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1387 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1388 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1389 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1390 }; 1391 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1392 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1393 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1394 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1395 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1396 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1397 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1398 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1399 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1400 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1402 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1403 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1404 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1405 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1406 }; 1407 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1408 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1409 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1410 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1411 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1412 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1413 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1414 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1415 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1416 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1417 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1418 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1419 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1420 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1421 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1422 }; 1423 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1424 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1425 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1426 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1427 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1428 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1429 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1430 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1431 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1432 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1433 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1434 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1435 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1436 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1437 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1438 }; 1439 1440 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1441 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1442 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1443 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1444 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1445 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1446 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1447 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1448 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1449 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1451 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1452 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1453 }; 1454 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1455 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1456 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1457 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1458 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1459 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1460 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1461 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1462 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1463 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1464 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1465 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1466 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1467 }; 1468 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1469 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1470 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1471 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1472 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1473 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1474 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1475 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1476 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1477 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1478 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1479 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1480 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1481 }; 1482 1483 static void 1484 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1485 { 1486 wmep->wmep_aifsn = phy->aifsn; 1487 wmep->wmep_logcwmin = phy->logcwmin; 1488 wmep->wmep_logcwmax = phy->logcwmax; 1489 wmep->wmep_txopLimit = phy->txopLimit; 1490 } 1491 1492 static void 1493 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1494 struct wmeParams *wmep, const paramType *phy) 1495 { 1496 wmep->wmep_acm = phy->acm; 1497 _setifsparams(wmep, phy); 1498 1499 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1500 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1501 ieee80211_wme_acnames[ac], type, 1502 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1503 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1504 } 1505 1506 static void 1507 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1508 { 1509 struct ieee80211com *ic = vap->iv_ic; 1510 struct ieee80211_wme_state *wme = &ic->ic_wme; 1511 const paramType *pPhyParam, *pBssPhyParam; 1512 struct wmeParams *wmep; 1513 enum ieee80211_phymode mode; 1514 int i; 1515 1516 IEEE80211_LOCK_ASSERT(ic); 1517 1518 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1519 return; 1520 1521 /* 1522 * Clear the wme cap_info field so a qoscount from a previous 1523 * vap doesn't confuse later code which only parses the beacon 1524 * field and updates hardware when said field changes. 1525 * Otherwise the hardware is programmed with defaults, not what 1526 * the beacon actually announces. 1527 * 1528 * Note that we can't ever have 0xff as an actual value; 1529 * the only valid values are 0..15. 1530 */ 1531 wme->wme_wmeChanParams.cap_info = 0xfe; 1532 1533 /* 1534 * Select mode; we can be called early in which case we 1535 * always use auto mode. We know we'll be called when 1536 * entering the RUN state with bsschan setup properly 1537 * so state will eventually get set correctly 1538 */ 1539 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1540 mode = ieee80211_chan2mode(ic->ic_bsschan); 1541 else 1542 mode = IEEE80211_MODE_AUTO; 1543 for (i = 0; i < WME_NUM_AC; i++) { 1544 switch (i) { 1545 case WME_AC_BK: 1546 pPhyParam = &phyParamForAC_BK[mode]; 1547 pBssPhyParam = &phyParamForAC_BK[mode]; 1548 break; 1549 case WME_AC_VI: 1550 pPhyParam = &phyParamForAC_VI[mode]; 1551 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1552 break; 1553 case WME_AC_VO: 1554 pPhyParam = &phyParamForAC_VO[mode]; 1555 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1556 break; 1557 case WME_AC_BE: 1558 default: 1559 pPhyParam = &phyParamForAC_BE[mode]; 1560 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1561 break; 1562 } 1563 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1564 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1565 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1566 } else { 1567 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1568 } 1569 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1570 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1571 } 1572 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1573 if (vap->iv_bss != NULL) { 1574 /* 1575 * Calculate aggressive mode switching threshold based 1576 * on beacon interval. This doesn't need locking since 1577 * we're only called before entering the RUN state at 1578 * which point we start sending beacon frames. 1579 */ 1580 wme->wme_hipri_switch_thresh = 1581 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1582 wme->wme_flags &= ~WME_F_AGGRMODE; 1583 ieee80211_wme_updateparams(vap); 1584 } 1585 } 1586 1587 void 1588 ieee80211_wme_initparams(struct ieee80211vap *vap) 1589 { 1590 struct ieee80211com *ic = vap->iv_ic; 1591 1592 IEEE80211_LOCK(ic); 1593 ieee80211_wme_initparams_locked(vap); 1594 IEEE80211_UNLOCK(ic); 1595 } 1596 1597 /* 1598 * Update WME parameters for ourself and the BSS. 1599 */ 1600 void 1601 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1602 { 1603 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1604 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1605 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1606 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1607 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1608 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1609 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1610 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1611 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1612 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1613 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1614 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1615 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1616 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1617 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1618 }; 1619 struct ieee80211com *ic = vap->iv_ic; 1620 struct ieee80211_wme_state *wme = &ic->ic_wme; 1621 const struct wmeParams *wmep; 1622 struct wmeParams *chanp, *bssp; 1623 enum ieee80211_phymode mode; 1624 int i; 1625 int do_aggrmode = 0; 1626 1627 /* 1628 * Set up the channel access parameters for the physical 1629 * device. First populate the configured settings. 1630 */ 1631 for (i = 0; i < WME_NUM_AC; i++) { 1632 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1633 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1634 chanp->wmep_aifsn = wmep->wmep_aifsn; 1635 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1636 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1637 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1638 1639 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1640 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1641 chanp->wmep_aifsn = wmep->wmep_aifsn; 1642 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1643 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1644 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1645 } 1646 1647 /* 1648 * Select mode; we can be called early in which case we 1649 * always use auto mode. We know we'll be called when 1650 * entering the RUN state with bsschan setup properly 1651 * so state will eventually get set correctly 1652 */ 1653 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1654 mode = ieee80211_chan2mode(ic->ic_bsschan); 1655 else 1656 mode = IEEE80211_MODE_AUTO; 1657 1658 /* 1659 * This implements aggressive mode as found in certain 1660 * vendors' AP's. When there is significant high 1661 * priority (VI/VO) traffic in the BSS throttle back BE 1662 * traffic by using conservative parameters. Otherwise 1663 * BE uses aggressive params to optimize performance of 1664 * legacy/non-QoS traffic. 1665 */ 1666 1667 /* Hostap? Only if aggressive mode is enabled */ 1668 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1669 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1670 do_aggrmode = 1; 1671 1672 /* 1673 * Station? Only if we're in a non-QoS BSS. 1674 */ 1675 else if ((vap->iv_opmode == IEEE80211_M_STA && 1676 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1677 do_aggrmode = 1; 1678 1679 /* 1680 * IBSS? Only if we we have WME enabled. 1681 */ 1682 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1683 (vap->iv_flags & IEEE80211_F_WME)) 1684 do_aggrmode = 1; 1685 1686 /* 1687 * If WME is disabled on this VAP, default to aggressive mode 1688 * regardless of the configuration. 1689 */ 1690 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1691 do_aggrmode = 1; 1692 1693 /* XXX WDS? */ 1694 1695 /* XXX MBSS? */ 1696 1697 if (do_aggrmode) { 1698 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1699 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1700 1701 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1702 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1703 aggrParam[mode].logcwmin; 1704 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1705 aggrParam[mode].logcwmax; 1706 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1707 (vap->iv_flags & IEEE80211_F_BURST) ? 1708 aggrParam[mode].txopLimit : 0; 1709 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1710 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1711 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1712 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1713 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1714 } 1715 1716 1717 /* 1718 * Change the contention window based on the number of associated 1719 * stations. If the number of associated stations is 1 and 1720 * aggressive mode is enabled, lower the contention window even 1721 * further. 1722 */ 1723 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1724 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1725 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1726 [IEEE80211_MODE_AUTO] = 3, 1727 [IEEE80211_MODE_11A] = 3, 1728 [IEEE80211_MODE_11B] = 4, 1729 [IEEE80211_MODE_11G] = 3, 1730 [IEEE80211_MODE_FH] = 4, 1731 [IEEE80211_MODE_TURBO_A] = 3, 1732 [IEEE80211_MODE_TURBO_G] = 3, 1733 [IEEE80211_MODE_STURBO_A] = 3, 1734 [IEEE80211_MODE_HALF] = 3, 1735 [IEEE80211_MODE_QUARTER] = 3, 1736 [IEEE80211_MODE_11NA] = 3, 1737 [IEEE80211_MODE_11NG] = 3, 1738 [IEEE80211_MODE_VHT_2GHZ] = 3, 1739 [IEEE80211_MODE_VHT_5GHZ] = 3, 1740 }; 1741 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1742 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1743 1744 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1745 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1746 "update %s (chan+bss) logcwmin %u\n", 1747 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1748 } 1749 1750 /* schedule the deferred WME update */ 1751 ieee80211_runtask(ic, &vap->iv_wme_task); 1752 1753 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1754 "%s: WME params updated, cap_info 0x%x\n", __func__, 1755 vap->iv_opmode == IEEE80211_M_STA ? 1756 wme->wme_wmeChanParams.cap_info : 1757 wme->wme_bssChanParams.cap_info); 1758 } 1759 1760 void 1761 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1762 { 1763 struct ieee80211com *ic = vap->iv_ic; 1764 1765 if (ic->ic_caps & IEEE80211_C_WME) { 1766 IEEE80211_LOCK(ic); 1767 ieee80211_wme_updateparams_locked(vap); 1768 IEEE80211_UNLOCK(ic); 1769 } 1770 } 1771 1772 /* 1773 * Fetch the WME parameters for the given VAP. 1774 * 1775 * When net80211 grows p2p, etc support, this may return different 1776 * parameters for each VAP. 1777 */ 1778 void 1779 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1780 { 1781 1782 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1783 } 1784 1785 /* 1786 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1787 * there may be different VAP WME parameters but only one is "active". 1788 * This returns the "NIC" WME parameters for the currently active 1789 * context. 1790 */ 1791 void 1792 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1793 { 1794 1795 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1796 } 1797 1798 /* 1799 * Return whether to use QoS on a given WME queue. 1800 * 1801 * This is intended to be called from the transmit path of softmac drivers 1802 * which are setting NoAck bits in transmit descriptors. 1803 * 1804 * Ideally this would be set in some transmit field before the packet is 1805 * queued to the driver but net80211 isn't quite there yet. 1806 */ 1807 int 1808 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1809 { 1810 /* Bounds/sanity check */ 1811 if (ac < 0 || ac >= WME_NUM_AC) 1812 return (0); 1813 1814 /* Again, there's only one global context for now */ 1815 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1816 } 1817 1818 static void 1819 parent_updown(void *arg, int npending) 1820 { 1821 struct ieee80211com *ic = arg; 1822 1823 ic->ic_parent(ic); 1824 } 1825 1826 static void 1827 update_mcast(void *arg, int npending) 1828 { 1829 struct ieee80211com *ic = arg; 1830 1831 ic->ic_update_mcast(ic); 1832 } 1833 1834 static void 1835 update_promisc(void *arg, int npending) 1836 { 1837 struct ieee80211com *ic = arg; 1838 1839 ic->ic_update_promisc(ic); 1840 } 1841 1842 static void 1843 update_channel(void *arg, int npending) 1844 { 1845 struct ieee80211com *ic = arg; 1846 1847 ic->ic_set_channel(ic); 1848 ieee80211_radiotap_chan_change(ic); 1849 } 1850 1851 static void 1852 update_chw(void *arg, int npending) 1853 { 1854 struct ieee80211com *ic = arg; 1855 1856 /* 1857 * XXX should we defer the channel width _config_ update until now? 1858 */ 1859 ic->ic_update_chw(ic); 1860 } 1861 1862 /* 1863 * Deferred WME parameter and beacon update. 1864 * 1865 * In preparation for per-VAP WME configuration, call the VAP 1866 * method if the VAP requires it. Otherwise, just call the 1867 * older global method. There isn't a per-VAP WME configuration 1868 * just yet so for now just use the global configuration. 1869 */ 1870 static void 1871 vap_update_wme(void *arg, int npending) 1872 { 1873 struct ieee80211vap *vap = arg; 1874 struct ieee80211com *ic = vap->iv_ic; 1875 struct ieee80211_wme_state *wme = &ic->ic_wme; 1876 1877 /* Driver update */ 1878 if (vap->iv_wme_update != NULL) 1879 vap->iv_wme_update(vap, 1880 ic->ic_wme.wme_chanParams.cap_wmeParams); 1881 else 1882 ic->ic_wme.wme_update(ic); 1883 1884 IEEE80211_LOCK(ic); 1885 /* 1886 * Arrange for the beacon update. 1887 * 1888 * XXX what about MBSS, WDS? 1889 */ 1890 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1891 || vap->iv_opmode == IEEE80211_M_IBSS) { 1892 /* 1893 * Arrange for a beacon update and bump the parameter 1894 * set number so associated stations load the new values. 1895 */ 1896 wme->wme_bssChanParams.cap_info = 1897 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1898 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1899 } 1900 IEEE80211_UNLOCK(ic); 1901 } 1902 1903 static void 1904 restart_vaps(void *arg, int npending) 1905 { 1906 struct ieee80211com *ic = arg; 1907 1908 ieee80211_suspend_all(ic); 1909 ieee80211_resume_all(ic); 1910 } 1911 1912 /* 1913 * Block until the parent is in a known state. This is 1914 * used after any operations that dispatch a task (e.g. 1915 * to auto-configure the parent device up/down). 1916 */ 1917 void 1918 ieee80211_waitfor_parent(struct ieee80211com *ic) 1919 { 1920 taskqueue_block(ic->ic_tq); 1921 ieee80211_draintask(ic, &ic->ic_parent_task); 1922 ieee80211_draintask(ic, &ic->ic_mcast_task); 1923 ieee80211_draintask(ic, &ic->ic_promisc_task); 1924 ieee80211_draintask(ic, &ic->ic_chan_task); 1925 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1926 ieee80211_draintask(ic, &ic->ic_chw_task); 1927 taskqueue_unblock(ic->ic_tq); 1928 } 1929 1930 /* 1931 * Check to see whether the current channel needs reset. 1932 * 1933 * Some devices don't handle being given an invalid channel 1934 * in their operating mode very well (eg wpi(4) will throw a 1935 * firmware exception.) 1936 * 1937 * Return 0 if we're ok, 1 if the channel needs to be reset. 1938 * 1939 * See PR kern/202502. 1940 */ 1941 static int 1942 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1943 { 1944 struct ieee80211com *ic = vap->iv_ic; 1945 1946 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1947 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1948 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1949 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1950 return (1); 1951 return (0); 1952 } 1953 1954 /* 1955 * Reset the curchan to a known good state. 1956 */ 1957 static void 1958 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1959 { 1960 struct ieee80211com *ic = vap->iv_ic; 1961 1962 ic->ic_curchan = &ic->ic_channels[0]; 1963 } 1964 1965 /* 1966 * Start a vap running. If this is the first vap to be 1967 * set running on the underlying device then we 1968 * automatically bring the device up. 1969 */ 1970 void 1971 ieee80211_start_locked(struct ieee80211vap *vap) 1972 { 1973 struct ifnet *ifp = vap->iv_ifp; 1974 struct ieee80211com *ic = vap->iv_ic; 1975 1976 IEEE80211_LOCK_ASSERT(ic); 1977 1978 IEEE80211_DPRINTF(vap, 1979 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1980 "start running, %d vaps running\n", ic->ic_nrunning); 1981 1982 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1983 /* 1984 * Mark us running. Note that it's ok to do this first; 1985 * if we need to bring the parent device up we defer that 1986 * to avoid dropping the com lock. We expect the device 1987 * to respond to being marked up by calling back into us 1988 * through ieee80211_start_all at which point we'll come 1989 * back in here and complete the work. 1990 */ 1991 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1992 ieee80211_notify_ifnet_change(vap); 1993 1994 /* 1995 * We are not running; if this we are the first vap 1996 * to be brought up auto-up the parent if necessary. 1997 */ 1998 if (ic->ic_nrunning++ == 0) { 1999 2000 /* reset the channel to a known good channel */ 2001 if (ieee80211_start_check_reset_chan(vap)) 2002 ieee80211_start_reset_chan(vap); 2003 2004 IEEE80211_DPRINTF(vap, 2005 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2006 "%s: up parent %s\n", __func__, ic->ic_name); 2007 ieee80211_runtask(ic, &ic->ic_parent_task); 2008 return; 2009 } 2010 } 2011 /* 2012 * If the parent is up and running, then kick the 2013 * 802.11 state machine as appropriate. 2014 */ 2015 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2016 if (vap->iv_opmode == IEEE80211_M_STA) { 2017 #if 0 2018 /* XXX bypasses scan too easily; disable for now */ 2019 /* 2020 * Try to be intelligent about clocking the state 2021 * machine. If we're currently in RUN state then 2022 * we should be able to apply any new state/parameters 2023 * simply by re-associating. Otherwise we need to 2024 * re-scan to select an appropriate ap. 2025 */ 2026 if (vap->iv_state >= IEEE80211_S_RUN) 2027 ieee80211_new_state_locked(vap, 2028 IEEE80211_S_ASSOC, 1); 2029 else 2030 #endif 2031 ieee80211_new_state_locked(vap, 2032 IEEE80211_S_SCAN, 0); 2033 } else { 2034 /* 2035 * For monitor+wds mode there's nothing to do but 2036 * start running. Otherwise if this is the first 2037 * vap to be brought up, start a scan which may be 2038 * preempted if the station is locked to a particular 2039 * channel. 2040 */ 2041 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2042 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2043 vap->iv_opmode == IEEE80211_M_WDS) 2044 ieee80211_new_state_locked(vap, 2045 IEEE80211_S_RUN, -1); 2046 else 2047 ieee80211_new_state_locked(vap, 2048 IEEE80211_S_SCAN, 0); 2049 } 2050 } 2051 } 2052 2053 /* 2054 * Start a single vap. 2055 */ 2056 void 2057 ieee80211_init(void *arg) 2058 { 2059 struct ieee80211vap *vap = arg; 2060 2061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2062 "%s\n", __func__); 2063 2064 IEEE80211_LOCK(vap->iv_ic); 2065 ieee80211_start_locked(vap); 2066 IEEE80211_UNLOCK(vap->iv_ic); 2067 } 2068 2069 /* 2070 * Start all runnable vap's on a device. 2071 */ 2072 void 2073 ieee80211_start_all(struct ieee80211com *ic) 2074 { 2075 struct ieee80211vap *vap; 2076 2077 IEEE80211_LOCK(ic); 2078 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2079 struct ifnet *ifp = vap->iv_ifp; 2080 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2081 ieee80211_start_locked(vap); 2082 } 2083 IEEE80211_UNLOCK(ic); 2084 } 2085 2086 /* 2087 * Stop a vap. We force it down using the state machine 2088 * then mark it's ifnet not running. If this is the last 2089 * vap running on the underlying device then we close it 2090 * too to insure it will be properly initialized when the 2091 * next vap is brought up. 2092 */ 2093 void 2094 ieee80211_stop_locked(struct ieee80211vap *vap) 2095 { 2096 struct ieee80211com *ic = vap->iv_ic; 2097 struct ifnet *ifp = vap->iv_ifp; 2098 2099 IEEE80211_LOCK_ASSERT(ic); 2100 2101 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2102 "stop running, %d vaps running\n", ic->ic_nrunning); 2103 2104 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2105 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2106 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2107 ieee80211_notify_ifnet_change(vap); 2108 if (--ic->ic_nrunning == 0) { 2109 IEEE80211_DPRINTF(vap, 2110 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2111 "down parent %s\n", ic->ic_name); 2112 ieee80211_runtask(ic, &ic->ic_parent_task); 2113 } 2114 } 2115 } 2116 2117 void 2118 ieee80211_stop(struct ieee80211vap *vap) 2119 { 2120 struct ieee80211com *ic = vap->iv_ic; 2121 2122 IEEE80211_LOCK(ic); 2123 ieee80211_stop_locked(vap); 2124 IEEE80211_UNLOCK(ic); 2125 } 2126 2127 /* 2128 * Stop all vap's running on a device. 2129 */ 2130 void 2131 ieee80211_stop_all(struct ieee80211com *ic) 2132 { 2133 struct ieee80211vap *vap; 2134 2135 IEEE80211_LOCK(ic); 2136 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2137 struct ifnet *ifp = vap->iv_ifp; 2138 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2139 ieee80211_stop_locked(vap); 2140 } 2141 IEEE80211_UNLOCK(ic); 2142 2143 ieee80211_waitfor_parent(ic); 2144 } 2145 2146 /* 2147 * Stop all vap's running on a device and arrange 2148 * for those that were running to be resumed. 2149 */ 2150 void 2151 ieee80211_suspend_all(struct ieee80211com *ic) 2152 { 2153 struct ieee80211vap *vap; 2154 2155 IEEE80211_LOCK(ic); 2156 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2157 struct ifnet *ifp = vap->iv_ifp; 2158 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2159 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2160 ieee80211_stop_locked(vap); 2161 } 2162 } 2163 IEEE80211_UNLOCK(ic); 2164 2165 ieee80211_waitfor_parent(ic); 2166 } 2167 2168 /* 2169 * Start all vap's marked for resume. 2170 */ 2171 void 2172 ieee80211_resume_all(struct ieee80211com *ic) 2173 { 2174 struct ieee80211vap *vap; 2175 2176 IEEE80211_LOCK(ic); 2177 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2178 struct ifnet *ifp = vap->iv_ifp; 2179 if (!IFNET_IS_UP_RUNNING(ifp) && 2180 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2181 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2182 ieee80211_start_locked(vap); 2183 } 2184 } 2185 IEEE80211_UNLOCK(ic); 2186 } 2187 2188 /* 2189 * Restart all vap's running on a device. 2190 */ 2191 void 2192 ieee80211_restart_all(struct ieee80211com *ic) 2193 { 2194 /* 2195 * NB: do not use ieee80211_runtask here, we will 2196 * block & drain net80211 taskqueue. 2197 */ 2198 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2199 } 2200 2201 void 2202 ieee80211_beacon_miss(struct ieee80211com *ic) 2203 { 2204 IEEE80211_LOCK(ic); 2205 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2206 /* Process in a taskq, the handler may reenter the driver */ 2207 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2208 } 2209 IEEE80211_UNLOCK(ic); 2210 } 2211 2212 static void 2213 beacon_miss(void *arg, int npending) 2214 { 2215 struct ieee80211com *ic = arg; 2216 struct ieee80211vap *vap; 2217 2218 IEEE80211_LOCK(ic); 2219 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2220 /* 2221 * We only pass events through for sta vap's in RUN+ state; 2222 * may be too restrictive but for now this saves all the 2223 * handlers duplicating these checks. 2224 */ 2225 if (vap->iv_opmode == IEEE80211_M_STA && 2226 vap->iv_state >= IEEE80211_S_RUN && 2227 vap->iv_bmiss != NULL) 2228 vap->iv_bmiss(vap); 2229 } 2230 IEEE80211_UNLOCK(ic); 2231 } 2232 2233 static void 2234 beacon_swmiss(void *arg, int npending) 2235 { 2236 struct ieee80211vap *vap = arg; 2237 struct ieee80211com *ic = vap->iv_ic; 2238 2239 IEEE80211_LOCK(ic); 2240 if (vap->iv_state >= IEEE80211_S_RUN) { 2241 /* XXX Call multiple times if npending > zero? */ 2242 vap->iv_bmiss(vap); 2243 } 2244 IEEE80211_UNLOCK(ic); 2245 } 2246 2247 /* 2248 * Software beacon miss handling. Check if any beacons 2249 * were received in the last period. If not post a 2250 * beacon miss; otherwise reset the counter. 2251 */ 2252 void 2253 ieee80211_swbmiss(void *arg) 2254 { 2255 struct ieee80211vap *vap = arg; 2256 struct ieee80211com *ic = vap->iv_ic; 2257 2258 IEEE80211_LOCK_ASSERT(ic); 2259 2260 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2261 ("wrong state %d", vap->iv_state)); 2262 2263 if (ic->ic_flags & IEEE80211_F_SCAN) { 2264 /* 2265 * If scanning just ignore and reset state. If we get a 2266 * bmiss after coming out of scan because we haven't had 2267 * time to receive a beacon then we should probe the AP 2268 * before posting a real bmiss (unless iv_bmiss_max has 2269 * been artifiically lowered). A cleaner solution might 2270 * be to disable the timer on scan start/end but to handle 2271 * case of multiple sta vap's we'd need to disable the 2272 * timers of all affected vap's. 2273 */ 2274 vap->iv_swbmiss_count = 0; 2275 } else if (vap->iv_swbmiss_count == 0) { 2276 if (vap->iv_bmiss != NULL) 2277 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2278 } else 2279 vap->iv_swbmiss_count = 0; 2280 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2281 ieee80211_swbmiss, vap); 2282 } 2283 2284 /* 2285 * Start an 802.11h channel switch. We record the parameters, 2286 * mark the operation pending, notify each vap through the 2287 * beacon update mechanism so it can update the beacon frame 2288 * contents, and then switch vap's to CSA state to block outbound 2289 * traffic. Devices that handle CSA directly can use the state 2290 * switch to do the right thing so long as they call 2291 * ieee80211_csa_completeswitch when it's time to complete the 2292 * channel change. Devices that depend on the net80211 layer can 2293 * use ieee80211_beacon_update to handle the countdown and the 2294 * channel switch. 2295 */ 2296 void 2297 ieee80211_csa_startswitch(struct ieee80211com *ic, 2298 struct ieee80211_channel *c, int mode, int count) 2299 { 2300 struct ieee80211vap *vap; 2301 2302 IEEE80211_LOCK_ASSERT(ic); 2303 2304 ic->ic_csa_newchan = c; 2305 ic->ic_csa_mode = mode; 2306 ic->ic_csa_count = count; 2307 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2308 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2309 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2310 vap->iv_opmode == IEEE80211_M_IBSS || 2311 vap->iv_opmode == IEEE80211_M_MBSS) 2312 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2313 /* switch to CSA state to block outbound traffic */ 2314 if (vap->iv_state == IEEE80211_S_RUN) 2315 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2316 } 2317 ieee80211_notify_csa(ic, c, mode, count); 2318 } 2319 2320 /* 2321 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2322 * This is called by both the completion and cancellation functions 2323 * so each VAP is placed back in the RUN state and can thus transmit. 2324 */ 2325 static void 2326 csa_completeswitch(struct ieee80211com *ic) 2327 { 2328 struct ieee80211vap *vap; 2329 2330 ic->ic_csa_newchan = NULL; 2331 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2332 2333 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2334 if (vap->iv_state == IEEE80211_S_CSA) 2335 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2336 } 2337 2338 /* 2339 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2340 * We clear state and move all vap's in CSA state to RUN state 2341 * so they can again transmit. 2342 * 2343 * Although this may not be completely correct, update the BSS channel 2344 * for each VAP to the newly configured channel. The setcurchan sets 2345 * the current operating channel for the interface (so the radio does 2346 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2347 * reported information via ioctl. 2348 */ 2349 void 2350 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2351 { 2352 struct ieee80211vap *vap; 2353 2354 IEEE80211_LOCK_ASSERT(ic); 2355 2356 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2357 2358 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2359 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2360 if (vap->iv_state == IEEE80211_S_CSA) 2361 vap->iv_bss->ni_chan = ic->ic_curchan; 2362 2363 csa_completeswitch(ic); 2364 } 2365 2366 /* 2367 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2368 * We clear state and move all vap's in CSA state to RUN state 2369 * so they can again transmit. 2370 */ 2371 void 2372 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2373 { 2374 IEEE80211_LOCK_ASSERT(ic); 2375 2376 csa_completeswitch(ic); 2377 } 2378 2379 /* 2380 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2381 * We clear state and move all vap's in CAC state to RUN state. 2382 */ 2383 void 2384 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2385 { 2386 struct ieee80211com *ic = vap0->iv_ic; 2387 struct ieee80211vap *vap; 2388 2389 IEEE80211_LOCK(ic); 2390 /* 2391 * Complete CAC state change for lead vap first; then 2392 * clock all the other vap's waiting. 2393 */ 2394 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2395 ("wrong state %d", vap0->iv_state)); 2396 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2397 2398 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2399 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2400 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2401 IEEE80211_UNLOCK(ic); 2402 } 2403 2404 /* 2405 * Force all vap's other than the specified vap to the INIT state 2406 * and mark them as waiting for a scan to complete. These vaps 2407 * will be brought up when the scan completes and the scanning vap 2408 * reaches RUN state by wakeupwaiting. 2409 */ 2410 static void 2411 markwaiting(struct ieee80211vap *vap0) 2412 { 2413 struct ieee80211com *ic = vap0->iv_ic; 2414 struct ieee80211vap *vap; 2415 2416 IEEE80211_LOCK_ASSERT(ic); 2417 2418 /* 2419 * A vap list entry can not disappear since we are running on the 2420 * taskqueue and a vap destroy will queue and drain another state 2421 * change task. 2422 */ 2423 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2424 if (vap == vap0) 2425 continue; 2426 if (vap->iv_state != IEEE80211_S_INIT) { 2427 /* NB: iv_newstate may drop the lock */ 2428 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2429 IEEE80211_LOCK_ASSERT(ic); 2430 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2431 } 2432 } 2433 } 2434 2435 /* 2436 * Wakeup all vap's waiting for a scan to complete. This is the 2437 * companion to markwaiting (above) and is used to coordinate 2438 * multiple vaps scanning. 2439 * This is called from the state taskqueue. 2440 */ 2441 static void 2442 wakeupwaiting(struct ieee80211vap *vap0) 2443 { 2444 struct ieee80211com *ic = vap0->iv_ic; 2445 struct ieee80211vap *vap; 2446 2447 IEEE80211_LOCK_ASSERT(ic); 2448 2449 /* 2450 * A vap list entry can not disappear since we are running on the 2451 * taskqueue and a vap destroy will queue and drain another state 2452 * change task. 2453 */ 2454 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2455 if (vap == vap0) 2456 continue; 2457 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2458 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2459 /* NB: sta's cannot go INIT->RUN */ 2460 /* NB: iv_newstate may drop the lock */ 2461 vap->iv_newstate(vap, 2462 vap->iv_opmode == IEEE80211_M_STA ? 2463 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2464 IEEE80211_LOCK_ASSERT(ic); 2465 } 2466 } 2467 } 2468 2469 /* 2470 * Handle post state change work common to all operating modes. 2471 */ 2472 static void 2473 ieee80211_newstate_cb(void *xvap, int npending) 2474 { 2475 struct ieee80211vap *vap = xvap; 2476 struct ieee80211com *ic = vap->iv_ic; 2477 enum ieee80211_state nstate, ostate; 2478 int arg, rc; 2479 2480 IEEE80211_LOCK(ic); 2481 nstate = vap->iv_nstate; 2482 arg = vap->iv_nstate_arg; 2483 2484 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2485 /* 2486 * We have been requested to drop back to the INIT before 2487 * proceeding to the new state. 2488 */ 2489 /* Deny any state changes while we are here. */ 2490 vap->iv_nstate = IEEE80211_S_INIT; 2491 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2492 "%s: %s -> %s arg %d\n", __func__, 2493 ieee80211_state_name[vap->iv_state], 2494 ieee80211_state_name[vap->iv_nstate], arg); 2495 vap->iv_newstate(vap, vap->iv_nstate, 0); 2496 IEEE80211_LOCK_ASSERT(ic); 2497 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2498 IEEE80211_FEXT_STATEWAIT); 2499 /* enqueue new state transition after cancel_scan() task */ 2500 ieee80211_new_state_locked(vap, nstate, arg); 2501 goto done; 2502 } 2503 2504 ostate = vap->iv_state; 2505 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2506 /* 2507 * SCAN was forced; e.g. on beacon miss. Force other running 2508 * vap's to INIT state and mark them as waiting for the scan to 2509 * complete. This insures they don't interfere with our 2510 * scanning. Since we are single threaded the vaps can not 2511 * transition again while we are executing. 2512 * 2513 * XXX not always right, assumes ap follows sta 2514 */ 2515 markwaiting(vap); 2516 } 2517 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2518 "%s: %s -> %s arg %d\n", __func__, 2519 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2520 2521 rc = vap->iv_newstate(vap, nstate, arg); 2522 IEEE80211_LOCK_ASSERT(ic); 2523 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2524 if (rc != 0) { 2525 /* State transition failed */ 2526 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2527 KASSERT(nstate != IEEE80211_S_INIT, 2528 ("INIT state change failed")); 2529 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2530 "%s: %s returned error %d\n", __func__, 2531 ieee80211_state_name[nstate], rc); 2532 goto done; 2533 } 2534 2535 /* No actual transition, skip post processing */ 2536 if (ostate == nstate) 2537 goto done; 2538 2539 if (nstate == IEEE80211_S_RUN) { 2540 /* 2541 * OACTIVE may be set on the vap if the upper layer 2542 * tried to transmit (e.g. IPv6 NDP) before we reach 2543 * RUN state. Clear it and restart xmit. 2544 * 2545 * Note this can also happen as a result of SLEEP->RUN 2546 * (i.e. coming out of power save mode). 2547 */ 2548 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2549 2550 /* 2551 * XXX TODO Kick-start a VAP queue - this should be a method! 2552 */ 2553 2554 /* bring up any vaps waiting on us */ 2555 wakeupwaiting(vap); 2556 } else if (nstate == IEEE80211_S_INIT) { 2557 /* 2558 * Flush the scan cache if we did the last scan (XXX?) 2559 * and flush any frames on send queues from this vap. 2560 * Note the mgt q is used only for legacy drivers and 2561 * will go away shortly. 2562 */ 2563 ieee80211_scan_flush(vap); 2564 2565 /* 2566 * XXX TODO: ic/vap queue flush 2567 */ 2568 } 2569 done: 2570 IEEE80211_UNLOCK(ic); 2571 } 2572 2573 /* 2574 * Public interface for initiating a state machine change. 2575 * This routine single-threads the request and coordinates 2576 * the scheduling of multiple vaps for the purpose of selecting 2577 * an operating channel. Specifically the following scenarios 2578 * are handled: 2579 * o only one vap can be selecting a channel so on transition to 2580 * SCAN state if another vap is already scanning then 2581 * mark the caller for later processing and return without 2582 * doing anything (XXX? expectations by caller of synchronous operation) 2583 * o only one vap can be doing CAC of a channel so on transition to 2584 * CAC state if another vap is already scanning for radar then 2585 * mark the caller for later processing and return without 2586 * doing anything (XXX? expectations by caller of synchronous operation) 2587 * o if another vap is already running when a request is made 2588 * to SCAN then an operating channel has been chosen; bypass 2589 * the scan and just join the channel 2590 * 2591 * Note that the state change call is done through the iv_newstate 2592 * method pointer so any driver routine gets invoked. The driver 2593 * will normally call back into operating mode-specific 2594 * ieee80211_newstate routines (below) unless it needs to completely 2595 * bypass the state machine (e.g. because the firmware has it's 2596 * own idea how things should work). Bypassing the net80211 layer 2597 * is usually a mistake and indicates lack of proper integration 2598 * with the net80211 layer. 2599 */ 2600 int 2601 ieee80211_new_state_locked(struct ieee80211vap *vap, 2602 enum ieee80211_state nstate, int arg) 2603 { 2604 struct ieee80211com *ic = vap->iv_ic; 2605 struct ieee80211vap *vp; 2606 enum ieee80211_state ostate; 2607 int nrunning, nscanning; 2608 2609 IEEE80211_LOCK_ASSERT(ic); 2610 2611 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2612 if (vap->iv_nstate == IEEE80211_S_INIT || 2613 ((vap->iv_state == IEEE80211_S_INIT || 2614 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2615 vap->iv_nstate == IEEE80211_S_SCAN && 2616 nstate > IEEE80211_S_SCAN)) { 2617 /* 2618 * XXX The vap is being stopped/started, 2619 * do not allow any other state changes 2620 * until this is completed. 2621 */ 2622 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2623 "%s: %s -> %s (%s) transition discarded\n", 2624 __func__, 2625 ieee80211_state_name[vap->iv_state], 2626 ieee80211_state_name[nstate], 2627 ieee80211_state_name[vap->iv_nstate]); 2628 return -1; 2629 } else if (vap->iv_state != vap->iv_nstate) { 2630 #if 0 2631 /* Warn if the previous state hasn't completed. */ 2632 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2633 "%s: pending %s -> %s transition lost\n", __func__, 2634 ieee80211_state_name[vap->iv_state], 2635 ieee80211_state_name[vap->iv_nstate]); 2636 #else 2637 /* XXX temporarily enable to identify issues */ 2638 if_printf(vap->iv_ifp, 2639 "%s: pending %s -> %s transition lost\n", 2640 __func__, ieee80211_state_name[vap->iv_state], 2641 ieee80211_state_name[vap->iv_nstate]); 2642 #endif 2643 } 2644 } 2645 2646 nrunning = nscanning = 0; 2647 /* XXX can track this state instead of calculating */ 2648 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2649 if (vp != vap) { 2650 if (vp->iv_state >= IEEE80211_S_RUN) 2651 nrunning++; 2652 /* XXX doesn't handle bg scan */ 2653 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2654 else if (vp->iv_state > IEEE80211_S_INIT) 2655 nscanning++; 2656 } 2657 } 2658 ostate = vap->iv_state; 2659 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2660 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2661 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2662 nrunning, nscanning); 2663 switch (nstate) { 2664 case IEEE80211_S_SCAN: 2665 if (ostate == IEEE80211_S_INIT) { 2666 /* 2667 * INIT -> SCAN happens on initial bringup. 2668 */ 2669 KASSERT(!(nscanning && nrunning), 2670 ("%d scanning and %d running", nscanning, nrunning)); 2671 if (nscanning) { 2672 /* 2673 * Someone is scanning, defer our state 2674 * change until the work has completed. 2675 */ 2676 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2677 "%s: defer %s -> %s\n", 2678 __func__, ieee80211_state_name[ostate], 2679 ieee80211_state_name[nstate]); 2680 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2681 return 0; 2682 } 2683 if (nrunning) { 2684 /* 2685 * Someone is operating; just join the channel 2686 * they have chosen. 2687 */ 2688 /* XXX kill arg? */ 2689 /* XXX check each opmode, adhoc? */ 2690 if (vap->iv_opmode == IEEE80211_M_STA) 2691 nstate = IEEE80211_S_SCAN; 2692 else 2693 nstate = IEEE80211_S_RUN; 2694 #ifdef IEEE80211_DEBUG 2695 if (nstate != IEEE80211_S_SCAN) { 2696 IEEE80211_DPRINTF(vap, 2697 IEEE80211_MSG_STATE, 2698 "%s: override, now %s -> %s\n", 2699 __func__, 2700 ieee80211_state_name[ostate], 2701 ieee80211_state_name[nstate]); 2702 } 2703 #endif 2704 } 2705 } 2706 break; 2707 case IEEE80211_S_RUN: 2708 if (vap->iv_opmode == IEEE80211_M_WDS && 2709 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2710 nscanning) { 2711 /* 2712 * Legacy WDS with someone else scanning; don't 2713 * go online until that completes as we should 2714 * follow the other vap to the channel they choose. 2715 */ 2716 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2717 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2718 ieee80211_state_name[ostate], 2719 ieee80211_state_name[nstate]); 2720 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2721 return 0; 2722 } 2723 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2724 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2725 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2726 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2727 /* 2728 * This is a DFS channel, transition to CAC state 2729 * instead of RUN. This allows us to initiate 2730 * Channel Availability Check (CAC) as specified 2731 * by 11h/DFS. 2732 */ 2733 nstate = IEEE80211_S_CAC; 2734 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2735 "%s: override %s -> %s (DFS)\n", __func__, 2736 ieee80211_state_name[ostate], 2737 ieee80211_state_name[nstate]); 2738 } 2739 break; 2740 case IEEE80211_S_INIT: 2741 /* cancel any scan in progress */ 2742 ieee80211_cancel_scan(vap); 2743 if (ostate == IEEE80211_S_INIT ) { 2744 /* XXX don't believe this */ 2745 /* INIT -> INIT. nothing to do */ 2746 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2747 } 2748 /* fall thru... */ 2749 default: 2750 break; 2751 } 2752 /* defer the state change to a thread */ 2753 vap->iv_nstate = nstate; 2754 vap->iv_nstate_arg = arg; 2755 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2756 ieee80211_runtask(ic, &vap->iv_nstate_task); 2757 return EINPROGRESS; 2758 } 2759 2760 int 2761 ieee80211_new_state(struct ieee80211vap *vap, 2762 enum ieee80211_state nstate, int arg) 2763 { 2764 struct ieee80211com *ic = vap->iv_ic; 2765 int rc; 2766 2767 IEEE80211_LOCK(ic); 2768 rc = ieee80211_new_state_locked(vap, nstate, arg); 2769 IEEE80211_UNLOCK(ic); 2770 return rc; 2771 } 2772