1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 /* 32 * IEEE 802.11 protocol support. 33 */ 34 35 #include "opt_inet.h" 36 #include "opt_wlan.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/kernel.h> 41 #include <sys/malloc.h> 42 43 #include <sys/socket.h> 44 #include <sys/sockio.h> 45 46 #include <net/if.h> 47 #include <net/if_var.h> 48 #include <net/if_media.h> 49 #include <net/if_private.h> 50 #include <net/ethernet.h> /* XXX for ether_sprintf */ 51 52 #include <net80211/ieee80211_var.h> 53 #include <net80211/ieee80211_adhoc.h> 54 #include <net80211/ieee80211_sta.h> 55 #include <net80211/ieee80211_hostap.h> 56 #include <net80211/ieee80211_wds.h> 57 #ifdef IEEE80211_SUPPORT_MESH 58 #include <net80211/ieee80211_mesh.h> 59 #endif 60 #include <net80211/ieee80211_monitor.h> 61 #include <net80211/ieee80211_input.h> 62 63 /* XXX tunables */ 64 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 65 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 66 67 const char *mgt_subtype_name[] = { 68 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 69 "probe_req", "probe_resp", "timing_adv", "reserved#7", 70 "beacon", "atim", "disassoc", "auth", 71 "deauth", "action", "action_noack", "reserved#15" 72 }; 73 const char *ctl_subtype_name[] = { 74 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 75 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 76 "bar", "ba", "ps_poll", "rts", 77 "cts", "ack", "cf_end", "cf_end_ack" 78 }; 79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 80 "IBSS", /* IEEE80211_M_IBSS */ 81 "STA", /* IEEE80211_M_STA */ 82 "WDS", /* IEEE80211_M_WDS */ 83 "AHDEMO", /* IEEE80211_M_AHDEMO */ 84 "HOSTAP", /* IEEE80211_M_HOSTAP */ 85 "MONITOR", /* IEEE80211_M_MONITOR */ 86 "MBSS" /* IEEE80211_M_MBSS */ 87 }; 88 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 89 "INIT", /* IEEE80211_S_INIT */ 90 "SCAN", /* IEEE80211_S_SCAN */ 91 "AUTH", /* IEEE80211_S_AUTH */ 92 "ASSOC", /* IEEE80211_S_ASSOC */ 93 "CAC", /* IEEE80211_S_CAC */ 94 "RUN", /* IEEE80211_S_RUN */ 95 "CSA", /* IEEE80211_S_CSA */ 96 "SLEEP", /* IEEE80211_S_SLEEP */ 97 }; 98 const char *ieee80211_wme_acnames[] = { 99 "WME_AC_BE", 100 "WME_AC_BK", 101 "WME_AC_VI", 102 "WME_AC_VO", 103 "WME_UPSD", 104 }; 105 106 /* 107 * Reason code descriptions were (mostly) obtained from 108 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 109 */ 110 const char * 111 ieee80211_reason_to_string(uint16_t reason) 112 { 113 switch (reason) { 114 case IEEE80211_REASON_UNSPECIFIED: 115 return ("unspecified"); 116 case IEEE80211_REASON_AUTH_EXPIRE: 117 return ("previous authentication is expired"); 118 case IEEE80211_REASON_AUTH_LEAVE: 119 return ("sending STA is leaving/has left IBSS or ESS"); 120 case IEEE80211_REASON_ASSOC_EXPIRE: 121 return ("disassociated due to inactivity"); 122 case IEEE80211_REASON_ASSOC_TOOMANY: 123 return ("too many associated STAs"); 124 case IEEE80211_REASON_NOT_AUTHED: 125 return ("class 2 frame received from nonauthenticated STA"); 126 case IEEE80211_REASON_NOT_ASSOCED: 127 return ("class 3 frame received from nonassociated STA"); 128 case IEEE80211_REASON_ASSOC_LEAVE: 129 return ("sending STA is leaving/has left BSS"); 130 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 131 return ("STA requesting (re)association is not authenticated"); 132 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 133 return ("information in the Power Capability element is " 134 "unacceptable"); 135 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 136 return ("information in the Supported Channels element is " 137 "unacceptable"); 138 case IEEE80211_REASON_IE_INVALID: 139 return ("invalid element"); 140 case IEEE80211_REASON_MIC_FAILURE: 141 return ("MIC failure"); 142 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 143 return ("4-Way handshake timeout"); 144 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 145 return ("group key update timeout"); 146 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 147 return ("element in 4-Way handshake different from " 148 "(re)association request/probe response/beacon frame"); 149 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 150 return ("invalid group cipher"); 151 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 152 return ("invalid pairwise cipher"); 153 case IEEE80211_REASON_AKMP_INVALID: 154 return ("invalid AKMP"); 155 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 156 return ("unsupported version in RSN IE"); 157 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 158 return ("invalid capabilities in RSN IE"); 159 case IEEE80211_REASON_802_1X_AUTH_FAILED: 160 return ("IEEE 802.1X authentication failed"); 161 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 162 return ("cipher suite rejected because of the security " 163 "policy"); 164 case IEEE80211_REASON_UNSPECIFIED_QOS: 165 return ("unspecified (QoS-related)"); 166 case IEEE80211_REASON_INSUFFICIENT_BW: 167 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 168 case IEEE80211_REASON_TOOMANY_FRAMES: 169 return ("too many frames need to be acknowledged"); 170 case IEEE80211_REASON_OUTSIDE_TXOP: 171 return ("STA is transmitting outside the limits of its TXOPs"); 172 case IEEE80211_REASON_LEAVING_QBSS: 173 return ("requested from peer STA (the STA is " 174 "resetting/leaving the BSS)"); 175 case IEEE80211_REASON_BAD_MECHANISM: 176 return ("requested from peer STA (it does not want to use " 177 "the mechanism)"); 178 case IEEE80211_REASON_SETUP_NEEDED: 179 return ("requested from peer STA (setup is required for the " 180 "used mechanism)"); 181 case IEEE80211_REASON_TIMEOUT: 182 return ("requested from peer STA (timeout)"); 183 case IEEE80211_REASON_PEER_LINK_CANCELED: 184 return ("SME cancels the mesh peering instance (not related " 185 "to the maximum number of peer mesh STAs)"); 186 case IEEE80211_REASON_MESH_MAX_PEERS: 187 return ("maximum number of peer mesh STAs was reached"); 188 case IEEE80211_REASON_MESH_CPVIOLATION: 189 return ("the received information violates the Mesh " 190 "Configuration policy configured in the mesh STA " 191 "profile"); 192 case IEEE80211_REASON_MESH_CLOSE_RCVD: 193 return ("the mesh STA has received a Mesh Peering Close " 194 "message requesting to close the mesh peering"); 195 case IEEE80211_REASON_MESH_MAX_RETRIES: 196 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 197 "Peering Open messages, without receiving a Mesh " 198 "Peering Confirm message"); 199 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 200 return ("the confirmTimer for the mesh peering instance times " 201 "out"); 202 case IEEE80211_REASON_MESH_INVALID_GTK: 203 return ("the mesh STA fails to unwrap the GTK or the values " 204 "in the wrapped contents do not match"); 205 case IEEE80211_REASON_MESH_INCONS_PARAMS: 206 return ("the mesh STA receives inconsistent information about " 207 "the mesh parameters between Mesh Peering Management " 208 "frames"); 209 case IEEE80211_REASON_MESH_INVALID_SECURITY: 210 return ("the mesh STA fails the authenticated mesh peering " 211 "exchange because due to failure in selecting " 212 "pairwise/group ciphersuite"); 213 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 214 return ("the mesh STA does not have proxy information for " 215 "this external destination"); 216 case IEEE80211_REASON_MESH_PERR_NO_FI: 217 return ("the mesh STA does not have forwarding information " 218 "for this destination"); 219 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 220 return ("the mesh STA determines that the link to the next " 221 "hop of an active path in its forwarding information " 222 "is no longer usable"); 223 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 224 return ("the MAC address of the STA already exists in the " 225 "mesh BSS"); 226 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 227 return ("the mesh STA performs channel switch to meet " 228 "regulatory requirements"); 229 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 230 return ("the mesh STA performs channel switch with " 231 "unspecified reason"); 232 default: 233 return ("reserved/unknown"); 234 } 235 } 236 237 static void beacon_miss(void *, int); 238 static void beacon_swmiss(void *, int); 239 static void parent_updown(void *, int); 240 static void update_mcast(void *, int); 241 static void update_promisc(void *, int); 242 static void update_channel(void *, int); 243 static void update_chw(void *, int); 244 static void vap_update_wme(void *, int); 245 static void vap_update_slot(void *, int); 246 static void restart_vaps(void *, int); 247 static void vap_update_erp_protmode(void *, int); 248 static void vap_update_preamble(void *, int); 249 static void vap_update_ht_protmode(void *, int); 250 static void ieee80211_newstate_cb(void *, int); 251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 252 struct ieee80211_node *); 253 254 static int 255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 256 const struct ieee80211_bpf_params *params) 257 { 258 259 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 260 m_freem(m); 261 return ENETDOWN; 262 } 263 264 void 265 ieee80211_proto_attach(struct ieee80211com *ic) 266 { 267 uint8_t hdrlen; 268 269 /* override the 802.3 setting */ 270 hdrlen = ic->ic_headroom 271 + sizeof(struct ieee80211_qosframe_addr4) 272 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 273 + IEEE80211_WEP_EXTIVLEN; 274 /* XXX no way to recalculate on ifdetach */ 275 max_linkhdr_grow(ALIGN(hdrlen)); 276 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 277 278 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 279 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 280 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 281 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 282 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 283 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 284 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 285 286 ic->ic_wme.wme_hipri_switch_hysteresis = 287 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 288 289 /* initialize management frame handlers */ 290 ic->ic_send_mgmt = ieee80211_send_mgmt; 291 ic->ic_raw_xmit = null_raw_xmit; 292 293 ieee80211_adhoc_attach(ic); 294 ieee80211_sta_attach(ic); 295 ieee80211_wds_attach(ic); 296 ieee80211_hostap_attach(ic); 297 #ifdef IEEE80211_SUPPORT_MESH 298 ieee80211_mesh_attach(ic); 299 #endif 300 ieee80211_monitor_attach(ic); 301 } 302 303 void 304 ieee80211_proto_detach(struct ieee80211com *ic) 305 { 306 ieee80211_monitor_detach(ic); 307 #ifdef IEEE80211_SUPPORT_MESH 308 ieee80211_mesh_detach(ic); 309 #endif 310 ieee80211_hostap_detach(ic); 311 ieee80211_wds_detach(ic); 312 ieee80211_adhoc_detach(ic); 313 ieee80211_sta_detach(ic); 314 } 315 316 static void 317 null_update_beacon(struct ieee80211vap *vap, int item) 318 { 319 } 320 321 void 322 ieee80211_proto_vattach(struct ieee80211vap *vap) 323 { 324 struct ieee80211com *ic = vap->iv_ic; 325 struct ifnet *ifp = vap->iv_ifp; 326 int i; 327 328 /* override the 802.3 setting */ 329 ifp->if_hdrlen = ic->ic_headroom 330 + sizeof(struct ieee80211_qosframe_addr4) 331 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 332 + IEEE80211_WEP_EXTIVLEN; 333 334 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 335 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 336 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 337 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 338 callout_init(&vap->iv_mgtsend, 1); 339 for (i = 0; i < NET80211_IV_NSTATE_NUM; i++) 340 TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap); 341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 343 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 344 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 345 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 346 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 347 /* 348 * Install default tx rate handling: no fixed rate, lowest 349 * supported rate for mgmt and multicast frames. Default 350 * max retry count. These settings can be changed by the 351 * driver and/or user applications. 352 */ 353 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 354 if (isclr(ic->ic_modecaps, i)) 355 continue; 356 357 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 358 359 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 360 361 /* 362 * Setting the management rate to MCS 0 assumes that the 363 * BSS Basic rate set is empty and the BSS Basic MCS set 364 * is not. 365 * 366 * Since we're not checking this, default to the lowest 367 * defined rate for this mode. 368 * 369 * At least one 11n AP (DLINK DIR-825) is reported to drop 370 * some MCS management traffic (eg BA response frames.) 371 * 372 * See also: 9.6.0 of the 802.11n-2009 specification. 373 */ 374 #ifdef NOTYET 375 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 376 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 377 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 378 } else { 379 vap->iv_txparms[i].mgmtrate = 380 rs->rs_rates[0] & IEEE80211_RATE_VAL; 381 vap->iv_txparms[i].mcastrate = 382 rs->rs_rates[0] & IEEE80211_RATE_VAL; 383 } 384 #endif 385 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 387 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 388 } 389 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 390 391 vap->iv_update_beacon = null_update_beacon; 392 vap->iv_deliver_data = ieee80211_deliver_data; 393 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 394 vap->iv_update_bss = vap_update_bss; 395 396 /* attach support for operating mode */ 397 ic->ic_vattach[vap->iv_opmode](vap); 398 } 399 400 void 401 ieee80211_proto_vdetach(struct ieee80211vap *vap) 402 { 403 #define FREEAPPIE(ie) do { \ 404 if (ie != NULL) \ 405 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 406 } while (0) 407 /* 408 * Detach operating mode module. 409 */ 410 if (vap->iv_opdetach != NULL) 411 vap->iv_opdetach(vap); 412 /* 413 * This should not be needed as we detach when reseting 414 * the state but be conservative here since the 415 * authenticator may do things like spawn kernel threads. 416 */ 417 if (vap->iv_auth->ia_detach != NULL) 418 vap->iv_auth->ia_detach(vap); 419 /* 420 * Detach any ACL'ator. 421 */ 422 if (vap->iv_acl != NULL) 423 vap->iv_acl->iac_detach(vap); 424 425 FREEAPPIE(vap->iv_appie_beacon); 426 FREEAPPIE(vap->iv_appie_probereq); 427 FREEAPPIE(vap->iv_appie_proberesp); 428 FREEAPPIE(vap->iv_appie_assocreq); 429 FREEAPPIE(vap->iv_appie_assocresp); 430 FREEAPPIE(vap->iv_appie_wpa); 431 #undef FREEAPPIE 432 } 433 434 /* 435 * Simple-minded authenticator module support. 436 */ 437 438 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 439 /* XXX well-known names */ 440 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 441 "wlan_internal", /* IEEE80211_AUTH_NONE */ 442 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 443 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 444 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 445 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 446 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 447 }; 448 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 449 450 static const struct ieee80211_authenticator auth_internal = { 451 .ia_name = "wlan_internal", 452 .ia_attach = NULL, 453 .ia_detach = NULL, 454 .ia_node_join = NULL, 455 .ia_node_leave = NULL, 456 }; 457 458 /* 459 * Setup internal authenticators once; they are never unregistered. 460 */ 461 static void 462 ieee80211_auth_setup(void) 463 { 464 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 465 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 466 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 467 } 468 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 469 470 const struct ieee80211_authenticator * 471 ieee80211_authenticator_get(int auth) 472 { 473 if (auth >= IEEE80211_AUTH_MAX) 474 return NULL; 475 if (authenticators[auth] == NULL) 476 ieee80211_load_module(auth_modnames[auth]); 477 return authenticators[auth]; 478 } 479 480 void 481 ieee80211_authenticator_register(int type, 482 const struct ieee80211_authenticator *auth) 483 { 484 if (type >= IEEE80211_AUTH_MAX) 485 return; 486 authenticators[type] = auth; 487 } 488 489 void 490 ieee80211_authenticator_unregister(int type) 491 { 492 493 if (type >= IEEE80211_AUTH_MAX) 494 return; 495 authenticators[type] = NULL; 496 } 497 498 /* 499 * Very simple-minded ACL module support. 500 */ 501 /* XXX just one for now */ 502 static const struct ieee80211_aclator *acl = NULL; 503 504 void 505 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 506 { 507 printf("wlan: %s acl policy registered\n", iac->iac_name); 508 acl = iac; 509 } 510 511 void 512 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 513 { 514 if (acl == iac) 515 acl = NULL; 516 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 517 } 518 519 const struct ieee80211_aclator * 520 ieee80211_aclator_get(const char *name) 521 { 522 if (acl == NULL) 523 ieee80211_load_module("wlan_acl"); 524 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 525 } 526 527 void 528 ieee80211_print_essid(const uint8_t *essid, int len) 529 { 530 const uint8_t *p; 531 int i; 532 533 if (len > IEEE80211_NWID_LEN) 534 len = IEEE80211_NWID_LEN; 535 /* determine printable or not */ 536 for (i = 0, p = essid; i < len; i++, p++) { 537 if (*p < ' ' || *p > 0x7e) 538 break; 539 } 540 if (i == len) { 541 printf("\""); 542 for (i = 0, p = essid; i < len; i++, p++) 543 printf("%c", *p); 544 printf("\""); 545 } else { 546 printf("0x"); 547 for (i = 0, p = essid; i < len; i++, p++) 548 printf("%02x", *p); 549 } 550 } 551 552 void 553 ieee80211_dump_pkt(struct ieee80211com *ic, 554 const uint8_t *buf, int len, int rate, int rssi) 555 { 556 const struct ieee80211_frame *wh; 557 int i; 558 559 wh = (const struct ieee80211_frame *)buf; 560 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 561 case IEEE80211_FC1_DIR_NODS: 562 printf("NODS %s", ether_sprintf(wh->i_addr2)); 563 printf("->%s", ether_sprintf(wh->i_addr1)); 564 printf("(%s)", ether_sprintf(wh->i_addr3)); 565 break; 566 case IEEE80211_FC1_DIR_TODS: 567 printf("TODS %s", ether_sprintf(wh->i_addr2)); 568 printf("->%s", ether_sprintf(wh->i_addr3)); 569 printf("(%s)", ether_sprintf(wh->i_addr1)); 570 break; 571 case IEEE80211_FC1_DIR_FROMDS: 572 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 573 printf("->%s", ether_sprintf(wh->i_addr1)); 574 printf("(%s)", ether_sprintf(wh->i_addr2)); 575 break; 576 case IEEE80211_FC1_DIR_DSTODS: 577 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 578 printf("->%s", ether_sprintf(wh->i_addr3)); 579 printf("(%s", ether_sprintf(wh->i_addr2)); 580 printf("->%s)", ether_sprintf(wh->i_addr1)); 581 break; 582 } 583 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 584 case IEEE80211_FC0_TYPE_DATA: 585 printf(" data"); 586 break; 587 case IEEE80211_FC0_TYPE_MGT: 588 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 589 break; 590 default: 591 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 592 break; 593 } 594 if (IEEE80211_QOS_HAS_SEQ(wh)) { 595 const struct ieee80211_qosframe *qwh = 596 (const struct ieee80211_qosframe *)buf; 597 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 598 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 599 } 600 if (IEEE80211_IS_PROTECTED(wh)) { 601 int off; 602 603 off = ieee80211_anyhdrspace(ic, wh); 604 printf(" WEP [IV %.02x %.02x %.02x", 605 buf[off+0], buf[off+1], buf[off+2]); 606 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 607 printf(" %.02x %.02x %.02x", 608 buf[off+4], buf[off+5], buf[off+6]); 609 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 610 } 611 if (rate >= 0) 612 printf(" %dM", rate / 2); 613 if (rssi >= 0) 614 printf(" +%d", rssi); 615 printf("\n"); 616 if (len > 0) { 617 for (i = 0; i < len; i++) { 618 if ((i & 1) == 0) 619 printf(" "); 620 printf("%02x", buf[i]); 621 } 622 printf("\n"); 623 } 624 } 625 626 static __inline int 627 findrix(const struct ieee80211_rateset *rs, int r) 628 { 629 int i; 630 631 for (i = 0; i < rs->rs_nrates; i++) 632 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 633 return i; 634 return -1; 635 } 636 637 int 638 ieee80211_fix_rate(struct ieee80211_node *ni, 639 struct ieee80211_rateset *nrs, int flags) 640 { 641 struct ieee80211vap *vap = ni->ni_vap; 642 struct ieee80211com *ic = ni->ni_ic; 643 int i, j, rix, error; 644 int okrate, badrate, fixedrate, ucastrate; 645 const struct ieee80211_rateset *srs; 646 uint8_t r; 647 648 error = 0; 649 okrate = badrate = 0; 650 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 651 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 652 /* 653 * Workaround awkwardness with fixed rate. We are called 654 * to check both the legacy rate set and the HT rate set 655 * but we must apply any legacy fixed rate check only to the 656 * legacy rate set and vice versa. We cannot tell what type 657 * of rate set we've been given (legacy or HT) but we can 658 * distinguish the fixed rate type (MCS have 0x80 set). 659 * So to deal with this the caller communicates whether to 660 * check MCS or legacy rate using the flags and we use the 661 * type of any fixed rate to avoid applying an MCS to a 662 * legacy rate and vice versa. 663 */ 664 if (ucastrate & 0x80) { 665 if (flags & IEEE80211_F_DOFRATE) 666 flags &= ~IEEE80211_F_DOFRATE; 667 } else if ((ucastrate & 0x80) == 0) { 668 if (flags & IEEE80211_F_DOFMCS) 669 flags &= ~IEEE80211_F_DOFMCS; 670 } 671 /* NB: required to make MCS match below work */ 672 ucastrate &= IEEE80211_RATE_VAL; 673 } 674 fixedrate = IEEE80211_FIXED_RATE_NONE; 675 /* 676 * XXX we are called to process both MCS and legacy rates; 677 * we must use the appropriate basic rate set or chaos will 678 * ensue; for now callers that want MCS must supply 679 * IEEE80211_F_DOBRS; at some point we'll need to split this 680 * function so there are two variants, one for MCS and one 681 * for legacy rates. 682 */ 683 if (flags & IEEE80211_F_DOBRS) 684 srs = (const struct ieee80211_rateset *) 685 ieee80211_get_suphtrates(ic, ni->ni_chan); 686 else 687 srs = ieee80211_get_suprates(ic, ni->ni_chan); 688 for (i = 0; i < nrs->rs_nrates; ) { 689 if (flags & IEEE80211_F_DOSORT) { 690 /* 691 * Sort rates. 692 */ 693 for (j = i + 1; j < nrs->rs_nrates; j++) { 694 if (IEEE80211_RV(nrs->rs_rates[i]) > 695 IEEE80211_RV(nrs->rs_rates[j])) { 696 r = nrs->rs_rates[i]; 697 nrs->rs_rates[i] = nrs->rs_rates[j]; 698 nrs->rs_rates[j] = r; 699 } 700 } 701 } 702 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 703 badrate = r; 704 /* 705 * Check for fixed rate. 706 */ 707 if (r == ucastrate) 708 fixedrate = r; 709 /* 710 * Check against supported rates. 711 */ 712 rix = findrix(srs, r); 713 if (flags & IEEE80211_F_DONEGO) { 714 if (rix < 0) { 715 /* 716 * A rate in the node's rate set is not 717 * supported. If this is a basic rate and we 718 * are operating as a STA then this is an error. 719 * Otherwise we just discard/ignore the rate. 720 */ 721 if ((flags & IEEE80211_F_JOIN) && 722 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 723 error++; 724 } else if ((flags & IEEE80211_F_JOIN) == 0) { 725 /* 726 * Overwrite with the supported rate 727 * value so any basic rate bit is set. 728 */ 729 nrs->rs_rates[i] = srs->rs_rates[rix]; 730 } 731 } 732 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 733 /* 734 * Delete unacceptable rates. 735 */ 736 nrs->rs_nrates--; 737 for (j = i; j < nrs->rs_nrates; j++) 738 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 739 nrs->rs_rates[j] = 0; 740 continue; 741 } 742 if (rix >= 0) 743 okrate = nrs->rs_rates[i]; 744 i++; 745 } 746 if (okrate == 0 || error != 0 || 747 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 748 fixedrate != ucastrate)) { 749 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 750 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 751 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 752 return badrate | IEEE80211_RATE_BASIC; 753 } else 754 return IEEE80211_RV(okrate); 755 } 756 757 /* 758 * Reset 11g-related state. 759 * 760 * This is for per-VAP ERP/11g state. 761 * 762 * Eventually everything in ieee80211_reset_erp() will be 763 * per-VAP and in here. 764 */ 765 void 766 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 767 { 768 struct ieee80211com *ic = vap->iv_ic; 769 770 vap->iv_nonerpsta = 0; 771 vap->iv_longslotsta = 0; 772 773 vap->iv_flags &= ~IEEE80211_F_USEPROT; 774 /* 775 * Set short preamble and ERP barker-preamble flags. 776 */ 777 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 778 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 779 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 780 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 781 } else { 782 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 783 vap->iv_flags |= IEEE80211_F_USEBARKER; 784 } 785 786 /* 787 * Short slot time is enabled only when operating in 11g 788 * and not in an IBSS. We must also honor whether or not 789 * the driver is capable of doing it. 790 */ 791 ieee80211_vap_set_shortslottime(vap, 792 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 793 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 794 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 795 vap->iv_opmode == IEEE80211_M_HOSTAP && 796 (ic->ic_caps & IEEE80211_C_SHSLOT))); 797 } 798 799 /* 800 * Reset 11g-related state. 801 * 802 * Note this resets the global state and a caller should schedule 803 * a re-check of all the VAPs after setup to update said state. 804 */ 805 void 806 ieee80211_reset_erp(struct ieee80211com *ic) 807 { 808 #if 0 809 ic->ic_flags &= ~IEEE80211_F_USEPROT; 810 /* 811 * Set short preamble and ERP barker-preamble flags. 812 */ 813 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 814 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 815 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 816 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 817 } else { 818 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 819 ic->ic_flags |= IEEE80211_F_USEBARKER; 820 } 821 #endif 822 /* XXX TODO: schedule a new per-VAP ERP calculation */ 823 } 824 825 static struct ieee80211_node * 826 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 827 { 828 struct ieee80211_node *obss; 829 830 IEEE80211_LOCK_ASSERT(vap->iv_ic); 831 832 obss = vap->iv_bss; 833 vap->iv_bss = ni; 834 835 return (obss); 836 } 837 838 /* 839 * Deferred slot time update. 840 * 841 * For per-VAP slot time configuration, call the VAP 842 * method if the VAP requires it. Otherwise, just call the 843 * older global method. 844 * 845 * If the per-VAP method is called then it's expected that 846 * the driver/firmware will take care of turning the per-VAP 847 * flags into slot time configuration. 848 * 849 * If the per-VAP method is not called then the global flags will be 850 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 851 * be set only if all of the vaps will have it set. 852 * 853 * Look at the comments for vap_update_erp_protmode() for more 854 * background; this assumes all VAPs are on the same channel. 855 */ 856 static void 857 vap_update_slot(void *arg, int npending) 858 { 859 struct ieee80211vap *vap = arg; 860 struct ieee80211com *ic = vap->iv_ic; 861 struct ieee80211vap *iv; 862 int num_shslot = 0, num_lgslot = 0; 863 864 /* 865 * Per-VAP path - we've already had the flags updated; 866 * so just notify the driver and move on. 867 */ 868 if (vap->iv_updateslot != NULL) { 869 vap->iv_updateslot(vap); 870 return; 871 } 872 873 /* 874 * Iterate over all of the VAP flags to update the 875 * global flag. 876 * 877 * If all vaps have short slot enabled then flip on 878 * short slot. If any vap has it disabled then 879 * we leave it globally disabled. This should provide 880 * correct behaviour in a multi-BSS scenario where 881 * at least one VAP has short slot disabled for some 882 * reason. 883 */ 884 IEEE80211_LOCK(ic); 885 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 886 if (iv->iv_flags & IEEE80211_F_SHSLOT) 887 num_shslot++; 888 else 889 num_lgslot++; 890 } 891 892 /* 893 * It looks backwards but - if the number of short slot VAPs 894 * is zero then we're not short slot. Else, we have one 895 * or more short slot VAPs and we're checking to see if ANY 896 * of them have short slot disabled. 897 */ 898 if (num_shslot == 0) 899 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 900 else if (num_lgslot == 0) 901 ic->ic_flags |= IEEE80211_F_SHSLOT; 902 IEEE80211_UNLOCK(ic); 903 904 /* 905 * Call the driver with our new global slot time flags. 906 */ 907 if (ic->ic_updateslot != NULL) 908 ic->ic_updateslot(ic); 909 } 910 911 /* 912 * Deferred ERP protmode update. 913 * 914 * This currently calculates the global ERP protection mode flag 915 * based on each of the VAPs. Any VAP with it enabled is enough 916 * for the global flag to be enabled. All VAPs with it disabled 917 * is enough for it to be disabled. 918 * 919 * This may make sense right now for the supported hardware where 920 * net80211 is controlling the single channel configuration, but 921 * offload firmware that's doing channel changes (eg off-channel 922 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 923 * silly looking flag updates. 924 * 925 * Ideally the protection mode calculation is done based on the 926 * channel, and all VAPs using that channel will inherit it. 927 * But until that's what net80211 does, this wil have to do. 928 */ 929 static void 930 vap_update_erp_protmode(void *arg, int npending) 931 { 932 struct ieee80211vap *vap = arg; 933 struct ieee80211com *ic = vap->iv_ic; 934 struct ieee80211vap *iv; 935 int enable_protmode = 0; 936 int non_erp_present = 0; 937 938 /* 939 * Iterate over all of the VAPs to calculate the overlapping 940 * ERP protection mode configuration and ERP present math. 941 * 942 * For now we assume that if a driver can handle this per-VAP 943 * then it'll ignore the ic->ic_protmode variant and instead 944 * will look at the vap related flags. 945 */ 946 IEEE80211_LOCK(ic); 947 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 948 if (iv->iv_flags & IEEE80211_F_USEPROT) 949 enable_protmode = 1; 950 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 951 non_erp_present = 1; 952 } 953 954 if (enable_protmode) 955 ic->ic_flags |= IEEE80211_F_USEPROT; 956 else 957 ic->ic_flags &= ~IEEE80211_F_USEPROT; 958 959 if (non_erp_present) 960 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 961 else 962 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 963 964 /* Beacon update on all VAPs */ 965 ieee80211_notify_erp_locked(ic); 966 967 IEEE80211_UNLOCK(ic); 968 969 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 970 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 971 __func__, enable_protmode, non_erp_present); 972 973 /* 974 * Now that the global configuration flags are calculated, 975 * notify the VAP about its configuration. 976 * 977 * The global flags will be used when assembling ERP IEs 978 * for multi-VAP operation, even if it's on a different 979 * channel. Yes, that's going to need fixing in the 980 * future. 981 */ 982 if (vap->iv_erp_protmode_update != NULL) 983 vap->iv_erp_protmode_update(vap); 984 } 985 986 /* 987 * Deferred ERP short preamble/barker update. 988 * 989 * All VAPs need to use short preamble for it to be globally 990 * enabled or not. 991 * 992 * Look at the comments for vap_update_erp_protmode() for more 993 * background; this assumes all VAPs are on the same channel. 994 */ 995 static void 996 vap_update_preamble(void *arg, int npending) 997 { 998 struct ieee80211vap *vap = arg; 999 struct ieee80211com *ic = vap->iv_ic; 1000 struct ieee80211vap *iv; 1001 int barker_count = 0, short_preamble_count = 0, count = 0; 1002 1003 /* 1004 * Iterate over all of the VAPs to calculate the overlapping 1005 * short or long preamble configuration. 1006 * 1007 * For now we assume that if a driver can handle this per-VAP 1008 * then it'll ignore the ic->ic_flags variant and instead 1009 * will look at the vap related flags. 1010 */ 1011 IEEE80211_LOCK(ic); 1012 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1013 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1014 barker_count++; 1015 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1016 short_preamble_count++; 1017 count++; 1018 } 1019 1020 /* 1021 * As with vap_update_erp_protmode(), the global flags are 1022 * currently used for beacon IEs. 1023 */ 1024 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1025 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1026 __func__, barker_count, short_preamble_count); 1027 1028 /* 1029 * Only flip on short preamble if all of the VAPs support 1030 * it. 1031 */ 1032 if (barker_count == 0 && short_preamble_count == count) { 1033 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1034 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1035 } else { 1036 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1037 ic->ic_flags |= IEEE80211_F_USEBARKER; 1038 } 1039 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1040 "%s: global barker=%d preamble=%d\n", 1041 __func__, 1042 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1043 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1044 1045 /* Beacon update on all VAPs */ 1046 ieee80211_notify_erp_locked(ic); 1047 1048 IEEE80211_UNLOCK(ic); 1049 1050 /* Driver notification */ 1051 if (vap->iv_preamble_update != NULL) 1052 vap->iv_preamble_update(vap); 1053 } 1054 1055 /* 1056 * Deferred HT protmode update and beacon update. 1057 * 1058 * Look at the comments for vap_update_erp_protmode() for more 1059 * background; this assumes all VAPs are on the same channel. 1060 */ 1061 static void 1062 vap_update_ht_protmode(void *arg, int npending) 1063 { 1064 struct ieee80211vap *vap = arg; 1065 struct ieee80211vap *iv; 1066 struct ieee80211com *ic = vap->iv_ic; 1067 int num_vaps = 0, num_pure = 0; 1068 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1069 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1070 int num_nonhtpr = 0; 1071 1072 /* 1073 * Iterate over all of the VAPs to calculate everything. 1074 * 1075 * There are a few different flags to calculate: 1076 * 1077 * + whether there's HT only or HT+legacy stations; 1078 * + whether there's HT20, HT40, or HT20+HT40 stations; 1079 * + whether the desired protection mode is mixed, pure or 1080 * one of the two above. 1081 * 1082 * For now we assume that if a driver can handle this per-VAP 1083 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1084 * variant and instead will look at the vap related variables. 1085 * 1086 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1087 */ 1088 1089 IEEE80211_LOCK(ic); 1090 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1091 num_vaps++; 1092 /* overlapping BSSes advertising non-HT status present */ 1093 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1094 num_nonht++; 1095 /* Operating mode flags */ 1096 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1097 num_nonhtpr++; 1098 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1099 case IEEE80211_HTINFO_OPMODE_PURE: 1100 num_pure++; 1101 break; 1102 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1103 num_optional++; 1104 break; 1105 case IEEE80211_HTINFO_OPMODE_HT20PR: 1106 num_ht2040++; 1107 break; 1108 } 1109 1110 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1111 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1112 __func__, 1113 ieee80211_get_vap_ifname(iv), 1114 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1115 iv->iv_curhtprotmode); 1116 1117 num_ht_sta += iv->iv_ht_sta_assoc; 1118 num_ht40_sta += iv->iv_ht40_sta_assoc; 1119 num_sta += iv->iv_sta_assoc; 1120 } 1121 1122 /* 1123 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1124 * non-HT present), set it here. This shouldn't be used by 1125 * anything but the old overlapping BSS logic so if any drivers 1126 * consume it, it's up to date. 1127 */ 1128 if (num_nonht > 0) 1129 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1130 else 1131 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1132 1133 /* 1134 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1135 * 1136 * + If all VAPs are PURE, we can stay PURE. 1137 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1138 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1139 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1140 * So we look at the sum ht and sum ht40 sta counts; if we have a 1141 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1142 * Note all stations need to be HT for this to be an option. 1143 * + The fall-through is MIXED, because it means we have some odd 1144 * non HT40-involved combination of opmode and this is the most 1145 * sensible default. 1146 */ 1147 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1148 1149 if (num_pure == num_vaps) 1150 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1151 1152 if (num_optional == num_vaps) 1153 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1154 1155 /* 1156 * Note: we need /a/ HT40 station somewhere for this to 1157 * be a possibility. 1158 */ 1159 if ((num_ht2040 > 0) || 1160 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1161 (num_ht_sta != num_ht40_sta))) 1162 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1163 1164 /* 1165 * Step 3 - if any of the stations across the VAPs are 1166 * non-HT then this needs to be flipped back to MIXED. 1167 */ 1168 if (num_ht_sta != num_sta) 1169 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1170 1171 /* 1172 * Step 4 - If we see any overlapping BSS non-HT stations 1173 * via beacons then flip on NONHT_PRESENT. 1174 */ 1175 if (num_nonhtpr > 0) 1176 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1177 1178 /* Notify all VAPs to potentially update their beacons */ 1179 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1180 ieee80211_htinfo_notify(iv); 1181 1182 IEEE80211_UNLOCK(ic); 1183 1184 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1185 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1186 __func__, 1187 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1188 ic->ic_curhtprotmode); 1189 1190 /* Driver update */ 1191 if (vap->iv_ht_protmode_update != NULL) 1192 vap->iv_ht_protmode_update(vap); 1193 } 1194 1195 /* 1196 * Set the short slot time state and notify the driver. 1197 * 1198 * This is the per-VAP slot time state. 1199 */ 1200 void 1201 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1202 { 1203 struct ieee80211com *ic = vap->iv_ic; 1204 1205 /* XXX lock? */ 1206 1207 /* 1208 * Only modify the per-VAP slot time. 1209 */ 1210 if (onoff) 1211 vap->iv_flags |= IEEE80211_F_SHSLOT; 1212 else 1213 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1214 1215 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1216 "%s: called; onoff=%d\n", __func__, onoff); 1217 /* schedule the deferred slot flag update and update */ 1218 ieee80211_runtask(ic, &vap->iv_slot_task); 1219 } 1220 1221 /* 1222 * Update the VAP short /long / barker preamble state and 1223 * update beacon state if needed. 1224 * 1225 * For now it simply copies the global flags into the per-vap 1226 * flags and schedules the callback. Later this will support 1227 * both global and per-VAP flags, especially useful for 1228 * and STA+STA multi-channel operation (eg p2p). 1229 */ 1230 void 1231 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1232 { 1233 struct ieee80211com *ic = vap->iv_ic; 1234 1235 /* XXX lock? */ 1236 1237 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1238 "%s: called\n", __func__); 1239 /* schedule the deferred slot flag update and update */ 1240 ieee80211_runtask(ic, &vap->iv_preamble_task); 1241 } 1242 1243 /* 1244 * Update the VAP 11g protection mode and update beacon state 1245 * if needed. 1246 */ 1247 void 1248 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1249 { 1250 struct ieee80211com *ic = vap->iv_ic; 1251 1252 /* XXX lock? */ 1253 1254 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1255 "%s: called\n", __func__); 1256 /* schedule the deferred slot flag update and update */ 1257 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1258 } 1259 1260 /* 1261 * Update the VAP 11n protection mode and update beacon state 1262 * if needed. 1263 */ 1264 void 1265 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1266 { 1267 struct ieee80211com *ic = vap->iv_ic; 1268 1269 /* XXX lock? */ 1270 1271 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1272 "%s: called\n", __func__); 1273 /* schedule the deferred protmode update */ 1274 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1275 } 1276 1277 /* 1278 * Check if the specified rate set supports ERP. 1279 * NB: the rate set is assumed to be sorted. 1280 */ 1281 int 1282 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1283 { 1284 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1285 int i, j; 1286 1287 if (rs->rs_nrates < nitems(rates)) 1288 return 0; 1289 for (i = 0; i < nitems(rates); i++) { 1290 for (j = 0; j < rs->rs_nrates; j++) { 1291 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1292 if (rates[i] == r) 1293 goto next; 1294 if (r > rates[i]) 1295 return 0; 1296 } 1297 return 0; 1298 next: 1299 ; 1300 } 1301 return 1; 1302 } 1303 1304 /* 1305 * Mark the basic rates for the rate table based on the 1306 * operating mode. For real 11g we mark all the 11b rates 1307 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1308 * 11b rates. There's also a pseudo 11a-mode used to mark only 1309 * the basic OFDM rates. 1310 */ 1311 static void 1312 setbasicrates(struct ieee80211_rateset *rs, 1313 enum ieee80211_phymode mode, int add) 1314 { 1315 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1316 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1317 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1318 /* NB: mixed b/g */ 1319 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1320 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1321 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1322 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1323 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1324 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1325 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1326 /* NB: mixed b/g */ 1327 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1328 /* NB: mixed b/g */ 1329 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1330 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1331 }; 1332 int i, j; 1333 1334 for (i = 0; i < rs->rs_nrates; i++) { 1335 if (!add) 1336 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1337 for (j = 0; j < basic[mode].rs_nrates; j++) 1338 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1339 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1340 break; 1341 } 1342 } 1343 } 1344 1345 /* 1346 * Set the basic rates in a rate set. 1347 */ 1348 void 1349 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1350 enum ieee80211_phymode mode) 1351 { 1352 setbasicrates(rs, mode, 0); 1353 } 1354 1355 /* 1356 * Add basic rates to a rate set. 1357 */ 1358 void 1359 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1360 enum ieee80211_phymode mode) 1361 { 1362 setbasicrates(rs, mode, 1); 1363 } 1364 1365 /* 1366 * WME protocol support. 1367 * 1368 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1369 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1370 * Draft 2.0 Test Plan (Appendix D). 1371 * 1372 * Static/Dynamic Turbo mode settings come from Atheros. 1373 */ 1374 typedef struct phyParamType { 1375 uint8_t aifsn; 1376 uint8_t logcwmin; 1377 uint8_t logcwmax; 1378 uint16_t txopLimit; 1379 uint8_t acm; 1380 } paramType; 1381 1382 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1383 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1384 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1386 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1387 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1388 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1389 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1390 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1391 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1392 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1393 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1394 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1395 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1396 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1397 }; 1398 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1399 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1400 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1402 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1403 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1404 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1405 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1406 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1407 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1408 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1409 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1410 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1411 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1412 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1413 }; 1414 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1415 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1416 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1417 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1418 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1419 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1420 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1421 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1422 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1423 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1424 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1425 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1426 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1427 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1428 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1429 }; 1430 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1431 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1432 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1433 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1434 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1435 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1436 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1437 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1438 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1439 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1440 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1441 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1442 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1443 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1444 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1445 }; 1446 1447 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1448 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1449 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1451 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1452 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1453 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1454 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1455 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1456 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1457 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1458 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1459 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1460 }; 1461 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1462 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1463 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1464 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1465 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1466 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1467 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1468 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1469 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1470 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1471 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1472 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1473 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1474 }; 1475 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1476 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1477 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1478 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1479 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1480 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1481 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1482 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1483 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1484 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1485 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1486 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1487 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1488 }; 1489 1490 static void 1491 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1492 { 1493 wmep->wmep_aifsn = phy->aifsn; 1494 wmep->wmep_logcwmin = phy->logcwmin; 1495 wmep->wmep_logcwmax = phy->logcwmax; 1496 wmep->wmep_txopLimit = phy->txopLimit; 1497 } 1498 1499 static void 1500 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1501 struct wmeParams *wmep, const paramType *phy) 1502 { 1503 wmep->wmep_acm = phy->acm; 1504 _setifsparams(wmep, phy); 1505 1506 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1507 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1508 ieee80211_wme_acnames[ac], type, 1509 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1510 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1511 } 1512 1513 static void 1514 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1515 { 1516 struct ieee80211com *ic = vap->iv_ic; 1517 struct ieee80211_wme_state *wme = &ic->ic_wme; 1518 const paramType *pPhyParam, *pBssPhyParam; 1519 struct wmeParams *wmep; 1520 enum ieee80211_phymode mode; 1521 int i; 1522 1523 IEEE80211_LOCK_ASSERT(ic); 1524 1525 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1526 return; 1527 1528 /* 1529 * Clear the wme cap_info field so a qoscount from a previous 1530 * vap doesn't confuse later code which only parses the beacon 1531 * field and updates hardware when said field changes. 1532 * Otherwise the hardware is programmed with defaults, not what 1533 * the beacon actually announces. 1534 * 1535 * Note that we can't ever have 0xff as an actual value; 1536 * the only valid values are 0..15. 1537 */ 1538 wme->wme_wmeChanParams.cap_info = 0xfe; 1539 1540 /* 1541 * Select mode; we can be called early in which case we 1542 * always use auto mode. We know we'll be called when 1543 * entering the RUN state with bsschan setup properly 1544 * so state will eventually get set correctly 1545 */ 1546 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1547 mode = ieee80211_chan2mode(ic->ic_bsschan); 1548 else 1549 mode = IEEE80211_MODE_AUTO; 1550 for (i = 0; i < WME_NUM_AC; i++) { 1551 switch (i) { 1552 case WME_AC_BK: 1553 pPhyParam = &phyParamForAC_BK[mode]; 1554 pBssPhyParam = &phyParamForAC_BK[mode]; 1555 break; 1556 case WME_AC_VI: 1557 pPhyParam = &phyParamForAC_VI[mode]; 1558 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1559 break; 1560 case WME_AC_VO: 1561 pPhyParam = &phyParamForAC_VO[mode]; 1562 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1563 break; 1564 case WME_AC_BE: 1565 default: 1566 pPhyParam = &phyParamForAC_BE[mode]; 1567 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1568 break; 1569 } 1570 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1571 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1572 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1573 } else { 1574 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1575 } 1576 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1577 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1578 } 1579 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1580 if (vap->iv_bss != NULL) { 1581 /* 1582 * Calculate aggressive mode switching threshold based 1583 * on beacon interval. This doesn't need locking since 1584 * we're only called before entering the RUN state at 1585 * which point we start sending beacon frames. 1586 */ 1587 wme->wme_hipri_switch_thresh = 1588 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1589 wme->wme_flags &= ~WME_F_AGGRMODE; 1590 ieee80211_wme_updateparams(vap); 1591 } 1592 } 1593 1594 void 1595 ieee80211_wme_initparams(struct ieee80211vap *vap) 1596 { 1597 struct ieee80211com *ic = vap->iv_ic; 1598 1599 IEEE80211_LOCK(ic); 1600 ieee80211_wme_initparams_locked(vap); 1601 IEEE80211_UNLOCK(ic); 1602 } 1603 1604 /* 1605 * Update WME parameters for ourself and the BSS. 1606 */ 1607 void 1608 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1609 { 1610 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1611 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1612 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1613 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1614 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1615 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1616 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1617 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1618 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1619 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1620 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1621 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1622 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1623 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1624 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1625 }; 1626 struct ieee80211com *ic = vap->iv_ic; 1627 struct ieee80211_wme_state *wme = &ic->ic_wme; 1628 const struct wmeParams *wmep; 1629 struct wmeParams *chanp, *bssp; 1630 enum ieee80211_phymode mode; 1631 int i; 1632 int do_aggrmode = 0; 1633 1634 /* 1635 * Set up the channel access parameters for the physical 1636 * device. First populate the configured settings. 1637 */ 1638 for (i = 0; i < WME_NUM_AC; i++) { 1639 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1640 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1641 chanp->wmep_aifsn = wmep->wmep_aifsn; 1642 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1643 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1644 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1645 1646 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1647 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1648 chanp->wmep_aifsn = wmep->wmep_aifsn; 1649 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1650 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1651 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1652 } 1653 1654 /* 1655 * Select mode; we can be called early in which case we 1656 * always use auto mode. We know we'll be called when 1657 * entering the RUN state with bsschan setup properly 1658 * so state will eventually get set correctly 1659 */ 1660 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1661 mode = ieee80211_chan2mode(ic->ic_bsschan); 1662 else 1663 mode = IEEE80211_MODE_AUTO; 1664 1665 /* 1666 * This implements aggressive mode as found in certain 1667 * vendors' AP's. When there is significant high 1668 * priority (VI/VO) traffic in the BSS throttle back BE 1669 * traffic by using conservative parameters. Otherwise 1670 * BE uses aggressive params to optimize performance of 1671 * legacy/non-QoS traffic. 1672 */ 1673 1674 /* Hostap? Only if aggressive mode is enabled */ 1675 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1676 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1677 do_aggrmode = 1; 1678 1679 /* 1680 * Station? Only if we're in a non-QoS BSS. 1681 */ 1682 else if ((vap->iv_opmode == IEEE80211_M_STA && 1683 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1684 do_aggrmode = 1; 1685 1686 /* 1687 * IBSS? Only if we have WME enabled. 1688 */ 1689 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1690 (vap->iv_flags & IEEE80211_F_WME)) 1691 do_aggrmode = 1; 1692 1693 /* 1694 * If WME is disabled on this VAP, default to aggressive mode 1695 * regardless of the configuration. 1696 */ 1697 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1698 do_aggrmode = 1; 1699 1700 /* XXX WDS? */ 1701 1702 /* XXX MBSS? */ 1703 1704 if (do_aggrmode) { 1705 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1706 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1707 1708 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1709 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1710 aggrParam[mode].logcwmin; 1711 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1712 aggrParam[mode].logcwmax; 1713 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1714 (vap->iv_flags & IEEE80211_F_BURST) ? 1715 aggrParam[mode].txopLimit : 0; 1716 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1717 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1718 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1719 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1720 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1721 } 1722 1723 /* 1724 * Change the contention window based on the number of associated 1725 * stations. If the number of associated stations is 1 and 1726 * aggressive mode is enabled, lower the contention window even 1727 * further. 1728 */ 1729 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1730 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1731 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1732 [IEEE80211_MODE_AUTO] = 3, 1733 [IEEE80211_MODE_11A] = 3, 1734 [IEEE80211_MODE_11B] = 4, 1735 [IEEE80211_MODE_11G] = 3, 1736 [IEEE80211_MODE_FH] = 4, 1737 [IEEE80211_MODE_TURBO_A] = 3, 1738 [IEEE80211_MODE_TURBO_G] = 3, 1739 [IEEE80211_MODE_STURBO_A] = 3, 1740 [IEEE80211_MODE_HALF] = 3, 1741 [IEEE80211_MODE_QUARTER] = 3, 1742 [IEEE80211_MODE_11NA] = 3, 1743 [IEEE80211_MODE_11NG] = 3, 1744 [IEEE80211_MODE_VHT_2GHZ] = 3, 1745 [IEEE80211_MODE_VHT_5GHZ] = 3, 1746 }; 1747 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1748 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1749 1750 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1751 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1752 "update %s (chan+bss) logcwmin %u\n", 1753 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1754 } 1755 1756 /* schedule the deferred WME update */ 1757 ieee80211_runtask(ic, &vap->iv_wme_task); 1758 1759 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1760 "%s: WME params updated, cap_info 0x%x\n", __func__, 1761 vap->iv_opmode == IEEE80211_M_STA ? 1762 wme->wme_wmeChanParams.cap_info : 1763 wme->wme_bssChanParams.cap_info); 1764 } 1765 1766 void 1767 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1768 { 1769 struct ieee80211com *ic = vap->iv_ic; 1770 1771 if (ic->ic_caps & IEEE80211_C_WME) { 1772 IEEE80211_LOCK(ic); 1773 ieee80211_wme_updateparams_locked(vap); 1774 IEEE80211_UNLOCK(ic); 1775 } 1776 } 1777 1778 /* 1779 * Fetch the WME parameters for the given VAP. 1780 * 1781 * When net80211 grows p2p, etc support, this may return different 1782 * parameters for each VAP. 1783 */ 1784 void 1785 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1786 { 1787 1788 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1789 } 1790 1791 /* 1792 * For NICs which only support one set of WME parameters (ie, softmac NICs) 1793 * there may be different VAP WME parameters but only one is "active". 1794 * This returns the "NIC" WME parameters for the currently active 1795 * context. 1796 */ 1797 void 1798 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1799 { 1800 1801 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1802 } 1803 1804 /* 1805 * Return whether to use QoS on a given WME queue. 1806 * 1807 * This is intended to be called from the transmit path of softmac drivers 1808 * which are setting NoAck bits in transmit descriptors. 1809 * 1810 * Ideally this would be set in some transmit field before the packet is 1811 * queued to the driver but net80211 isn't quite there yet. 1812 */ 1813 int 1814 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1815 { 1816 /* Bounds/sanity check */ 1817 if (ac < 0 || ac >= WME_NUM_AC) 1818 return (0); 1819 1820 /* Again, there's only one global context for now */ 1821 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1822 } 1823 1824 static void 1825 parent_updown(void *arg, int npending) 1826 { 1827 struct ieee80211com *ic = arg; 1828 1829 ic->ic_parent(ic); 1830 } 1831 1832 static void 1833 update_mcast(void *arg, int npending) 1834 { 1835 struct ieee80211com *ic = arg; 1836 1837 ic->ic_update_mcast(ic); 1838 } 1839 1840 static void 1841 update_promisc(void *arg, int npending) 1842 { 1843 struct ieee80211com *ic = arg; 1844 1845 ic->ic_update_promisc(ic); 1846 } 1847 1848 static void 1849 update_channel(void *arg, int npending) 1850 { 1851 struct ieee80211com *ic = arg; 1852 1853 ic->ic_set_channel(ic); 1854 ieee80211_radiotap_chan_change(ic); 1855 } 1856 1857 static void 1858 update_chw(void *arg, int npending) 1859 { 1860 struct ieee80211com *ic = arg; 1861 1862 /* 1863 * XXX should we defer the channel width _config_ update until now? 1864 */ 1865 ic->ic_update_chw(ic); 1866 } 1867 1868 /* 1869 * Deferred WME parameter and beacon update. 1870 * 1871 * In preparation for per-VAP WME configuration, call the VAP 1872 * method if the VAP requires it. Otherwise, just call the 1873 * older global method. There isn't a per-VAP WME configuration 1874 * just yet so for now just use the global configuration. 1875 */ 1876 static void 1877 vap_update_wme(void *arg, int npending) 1878 { 1879 struct ieee80211vap *vap = arg; 1880 struct ieee80211com *ic = vap->iv_ic; 1881 struct ieee80211_wme_state *wme = &ic->ic_wme; 1882 1883 /* Driver update */ 1884 if (vap->iv_wme_update != NULL) 1885 vap->iv_wme_update(vap, 1886 ic->ic_wme.wme_chanParams.cap_wmeParams); 1887 else 1888 ic->ic_wme.wme_update(ic); 1889 1890 IEEE80211_LOCK(ic); 1891 /* 1892 * Arrange for the beacon update. 1893 * 1894 * XXX what about MBSS, WDS? 1895 */ 1896 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1897 || vap->iv_opmode == IEEE80211_M_IBSS) { 1898 /* 1899 * Arrange for a beacon update and bump the parameter 1900 * set number so associated stations load the new values. 1901 */ 1902 wme->wme_bssChanParams.cap_info = 1903 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1904 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1905 } 1906 IEEE80211_UNLOCK(ic); 1907 } 1908 1909 static void 1910 restart_vaps(void *arg, int npending) 1911 { 1912 struct ieee80211com *ic = arg; 1913 1914 ieee80211_suspend_all(ic); 1915 ieee80211_resume_all(ic); 1916 } 1917 1918 /* 1919 * Block until the parent is in a known state. This is 1920 * used after any operations that dispatch a task (e.g. 1921 * to auto-configure the parent device up/down). 1922 */ 1923 void 1924 ieee80211_waitfor_parent(struct ieee80211com *ic) 1925 { 1926 taskqueue_block(ic->ic_tq); 1927 ieee80211_draintask(ic, &ic->ic_parent_task); 1928 ieee80211_draintask(ic, &ic->ic_mcast_task); 1929 ieee80211_draintask(ic, &ic->ic_promisc_task); 1930 ieee80211_draintask(ic, &ic->ic_chan_task); 1931 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1932 ieee80211_draintask(ic, &ic->ic_chw_task); 1933 taskqueue_unblock(ic->ic_tq); 1934 } 1935 1936 /* 1937 * Check to see whether the current channel needs reset. 1938 * 1939 * Some devices don't handle being given an invalid channel 1940 * in their operating mode very well (eg wpi(4) will throw a 1941 * firmware exception.) 1942 * 1943 * Return 0 if we're ok, 1 if the channel needs to be reset. 1944 * 1945 * See PR kern/202502. 1946 */ 1947 static int 1948 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1949 { 1950 struct ieee80211com *ic = vap->iv_ic; 1951 1952 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1953 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1954 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1955 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1956 return (1); 1957 return (0); 1958 } 1959 1960 /* 1961 * Reset the curchan to a known good state. 1962 */ 1963 static void 1964 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1965 { 1966 struct ieee80211com *ic = vap->iv_ic; 1967 1968 ic->ic_curchan = &ic->ic_channels[0]; 1969 } 1970 1971 /* 1972 * Start a vap running. If this is the first vap to be 1973 * set running on the underlying device then we 1974 * automatically bring the device up. 1975 */ 1976 void 1977 ieee80211_start_locked(struct ieee80211vap *vap) 1978 { 1979 struct ifnet *ifp = vap->iv_ifp; 1980 struct ieee80211com *ic = vap->iv_ic; 1981 1982 IEEE80211_LOCK_ASSERT(ic); 1983 1984 IEEE80211_DPRINTF(vap, 1985 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1986 "start running, %d vaps running\n", ic->ic_nrunning); 1987 1988 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1989 /* 1990 * Mark us running. Note that it's ok to do this first; 1991 * if we need to bring the parent device up we defer that 1992 * to avoid dropping the com lock. We expect the device 1993 * to respond to being marked up by calling back into us 1994 * through ieee80211_start_all at which point we'll come 1995 * back in here and complete the work. 1996 */ 1997 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1998 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 1999 2000 /* 2001 * We are not running; if this we are the first vap 2002 * to be brought up auto-up the parent if necessary. 2003 */ 2004 if (ic->ic_nrunning++ == 0) { 2005 /* reset the channel to a known good channel */ 2006 if (ieee80211_start_check_reset_chan(vap)) 2007 ieee80211_start_reset_chan(vap); 2008 2009 IEEE80211_DPRINTF(vap, 2010 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2011 "%s: up parent %s\n", __func__, ic->ic_name); 2012 ieee80211_runtask(ic, &ic->ic_parent_task); 2013 return; 2014 } 2015 } 2016 /* 2017 * If the parent is up and running, then kick the 2018 * 802.11 state machine as appropriate. 2019 */ 2020 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2021 if (vap->iv_opmode == IEEE80211_M_STA) { 2022 #if 0 2023 /* XXX bypasses scan too easily; disable for now */ 2024 /* 2025 * Try to be intelligent about clocking the state 2026 * machine. If we're currently in RUN state then 2027 * we should be able to apply any new state/parameters 2028 * simply by re-associating. Otherwise we need to 2029 * re-scan to select an appropriate ap. 2030 */ 2031 if (vap->iv_state >= IEEE80211_S_RUN) 2032 ieee80211_new_state_locked(vap, 2033 IEEE80211_S_ASSOC, 1); 2034 else 2035 #endif 2036 ieee80211_new_state_locked(vap, 2037 IEEE80211_S_SCAN, 0); 2038 } else { 2039 /* 2040 * For monitor+wds mode there's nothing to do but 2041 * start running. Otherwise if this is the first 2042 * vap to be brought up, start a scan which may be 2043 * preempted if the station is locked to a particular 2044 * channel. 2045 */ 2046 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2047 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2048 vap->iv_opmode == IEEE80211_M_WDS) 2049 ieee80211_new_state_locked(vap, 2050 IEEE80211_S_RUN, -1); 2051 else 2052 ieee80211_new_state_locked(vap, 2053 IEEE80211_S_SCAN, 0); 2054 } 2055 } 2056 } 2057 2058 /* 2059 * Start a single vap. 2060 */ 2061 void 2062 ieee80211_init(void *arg) 2063 { 2064 struct ieee80211vap *vap = arg; 2065 2066 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2067 "%s\n", __func__); 2068 2069 IEEE80211_LOCK(vap->iv_ic); 2070 ieee80211_start_locked(vap); 2071 IEEE80211_UNLOCK(vap->iv_ic); 2072 } 2073 2074 /* 2075 * Start all runnable vap's on a device. 2076 */ 2077 void 2078 ieee80211_start_all(struct ieee80211com *ic) 2079 { 2080 struct ieee80211vap *vap; 2081 2082 IEEE80211_LOCK(ic); 2083 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2084 struct ifnet *ifp = vap->iv_ifp; 2085 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2086 ieee80211_start_locked(vap); 2087 } 2088 IEEE80211_UNLOCK(ic); 2089 } 2090 2091 /* 2092 * Stop a vap. We force it down using the state machine 2093 * then mark it's ifnet not running. If this is the last 2094 * vap running on the underlying device then we close it 2095 * too to insure it will be properly initialized when the 2096 * next vap is brought up. 2097 */ 2098 void 2099 ieee80211_stop_locked(struct ieee80211vap *vap) 2100 { 2101 struct ieee80211com *ic = vap->iv_ic; 2102 struct ifnet *ifp = vap->iv_ifp; 2103 2104 IEEE80211_LOCK_ASSERT(ic); 2105 2106 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2107 "stop running, %d vaps running\n", ic->ic_nrunning); 2108 2109 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2110 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2111 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2112 ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING); 2113 if (--ic->ic_nrunning == 0) { 2114 IEEE80211_DPRINTF(vap, 2115 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2116 "down parent %s\n", ic->ic_name); 2117 ieee80211_runtask(ic, &ic->ic_parent_task); 2118 } 2119 } 2120 } 2121 2122 void 2123 ieee80211_stop(struct ieee80211vap *vap) 2124 { 2125 struct ieee80211com *ic = vap->iv_ic; 2126 2127 IEEE80211_LOCK(ic); 2128 ieee80211_stop_locked(vap); 2129 IEEE80211_UNLOCK(ic); 2130 } 2131 2132 /* 2133 * Stop all vap's running on a device. 2134 */ 2135 void 2136 ieee80211_stop_all(struct ieee80211com *ic) 2137 { 2138 struct ieee80211vap *vap; 2139 2140 IEEE80211_LOCK(ic); 2141 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2142 struct ifnet *ifp = vap->iv_ifp; 2143 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2144 ieee80211_stop_locked(vap); 2145 } 2146 IEEE80211_UNLOCK(ic); 2147 2148 ieee80211_waitfor_parent(ic); 2149 } 2150 2151 /* 2152 * Stop all vap's running on a device and arrange 2153 * for those that were running to be resumed. 2154 */ 2155 void 2156 ieee80211_suspend_all(struct ieee80211com *ic) 2157 { 2158 struct ieee80211vap *vap; 2159 2160 IEEE80211_LOCK(ic); 2161 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2162 struct ifnet *ifp = vap->iv_ifp; 2163 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2164 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2165 ieee80211_stop_locked(vap); 2166 } 2167 } 2168 IEEE80211_UNLOCK(ic); 2169 2170 ieee80211_waitfor_parent(ic); 2171 } 2172 2173 /* 2174 * Start all vap's marked for resume. 2175 */ 2176 void 2177 ieee80211_resume_all(struct ieee80211com *ic) 2178 { 2179 struct ieee80211vap *vap; 2180 2181 IEEE80211_LOCK(ic); 2182 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2183 struct ifnet *ifp = vap->iv_ifp; 2184 if (!IFNET_IS_UP_RUNNING(ifp) && 2185 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2186 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2187 ieee80211_start_locked(vap); 2188 } 2189 } 2190 IEEE80211_UNLOCK(ic); 2191 } 2192 2193 /* 2194 * Restart all vap's running on a device. 2195 */ 2196 void 2197 ieee80211_restart_all(struct ieee80211com *ic) 2198 { 2199 /* 2200 * NB: do not use ieee80211_runtask here, we will 2201 * block & drain net80211 taskqueue. 2202 */ 2203 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2204 } 2205 2206 void 2207 ieee80211_beacon_miss(struct ieee80211com *ic) 2208 { 2209 IEEE80211_LOCK(ic); 2210 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2211 /* Process in a taskq, the handler may reenter the driver */ 2212 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2213 } 2214 IEEE80211_UNLOCK(ic); 2215 } 2216 2217 static void 2218 beacon_miss(void *arg, int npending) 2219 { 2220 struct ieee80211com *ic = arg; 2221 struct ieee80211vap *vap; 2222 2223 IEEE80211_LOCK(ic); 2224 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2225 /* 2226 * We only pass events through for sta vap's in RUN+ state; 2227 * may be too restrictive but for now this saves all the 2228 * handlers duplicating these checks. 2229 */ 2230 if (vap->iv_opmode == IEEE80211_M_STA && 2231 vap->iv_state >= IEEE80211_S_RUN && 2232 vap->iv_bmiss != NULL) 2233 vap->iv_bmiss(vap); 2234 } 2235 IEEE80211_UNLOCK(ic); 2236 } 2237 2238 static void 2239 beacon_swmiss(void *arg, int npending) 2240 { 2241 struct ieee80211vap *vap = arg; 2242 struct ieee80211com *ic = vap->iv_ic; 2243 2244 IEEE80211_LOCK(ic); 2245 if (vap->iv_state >= IEEE80211_S_RUN) { 2246 /* XXX Call multiple times if npending > zero? */ 2247 vap->iv_bmiss(vap); 2248 } 2249 IEEE80211_UNLOCK(ic); 2250 } 2251 2252 /* 2253 * Software beacon miss handling. Check if any beacons 2254 * were received in the last period. If not post a 2255 * beacon miss; otherwise reset the counter. 2256 */ 2257 void 2258 ieee80211_swbmiss(void *arg) 2259 { 2260 struct ieee80211vap *vap = arg; 2261 struct ieee80211com *ic = vap->iv_ic; 2262 2263 IEEE80211_LOCK_ASSERT(ic); 2264 2265 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2266 ("wrong state %d", vap->iv_state)); 2267 2268 if (ic->ic_flags & IEEE80211_F_SCAN) { 2269 /* 2270 * If scanning just ignore and reset state. If we get a 2271 * bmiss after coming out of scan because we haven't had 2272 * time to receive a beacon then we should probe the AP 2273 * before posting a real bmiss (unless iv_bmiss_max has 2274 * been artifiically lowered). A cleaner solution might 2275 * be to disable the timer on scan start/end but to handle 2276 * case of multiple sta vap's we'd need to disable the 2277 * timers of all affected vap's. 2278 */ 2279 vap->iv_swbmiss_count = 0; 2280 } else if (vap->iv_swbmiss_count == 0) { 2281 if (vap->iv_bmiss != NULL) 2282 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2283 } else 2284 vap->iv_swbmiss_count = 0; 2285 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2286 ieee80211_swbmiss, vap); 2287 } 2288 2289 /* 2290 * Start an 802.11h channel switch. We record the parameters, 2291 * mark the operation pending, notify each vap through the 2292 * beacon update mechanism so it can update the beacon frame 2293 * contents, and then switch vap's to CSA state to block outbound 2294 * traffic. Devices that handle CSA directly can use the state 2295 * switch to do the right thing so long as they call 2296 * ieee80211_csa_completeswitch when it's time to complete the 2297 * channel change. Devices that depend on the net80211 layer can 2298 * use ieee80211_beacon_update to handle the countdown and the 2299 * channel switch. 2300 */ 2301 void 2302 ieee80211_csa_startswitch(struct ieee80211com *ic, 2303 struct ieee80211_channel *c, int mode, int count) 2304 { 2305 struct ieee80211vap *vap; 2306 2307 IEEE80211_LOCK_ASSERT(ic); 2308 2309 ic->ic_csa_newchan = c; 2310 ic->ic_csa_mode = mode; 2311 ic->ic_csa_count = count; 2312 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2313 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2314 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2315 vap->iv_opmode == IEEE80211_M_IBSS || 2316 vap->iv_opmode == IEEE80211_M_MBSS) 2317 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2318 /* switch to CSA state to block outbound traffic */ 2319 if (vap->iv_state == IEEE80211_S_RUN) 2320 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2321 } 2322 ieee80211_notify_csa(ic, c, mode, count); 2323 } 2324 2325 /* 2326 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2327 * This is called by both the completion and cancellation functions 2328 * so each VAP is placed back in the RUN state and can thus transmit. 2329 */ 2330 static void 2331 csa_completeswitch(struct ieee80211com *ic) 2332 { 2333 struct ieee80211vap *vap; 2334 2335 ic->ic_csa_newchan = NULL; 2336 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2337 2338 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2339 if (vap->iv_state == IEEE80211_S_CSA) 2340 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2341 } 2342 2343 /* 2344 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2345 * We clear state and move all vap's in CSA state to RUN state 2346 * so they can again transmit. 2347 * 2348 * Although this may not be completely correct, update the BSS channel 2349 * for each VAP to the newly configured channel. The setcurchan sets 2350 * the current operating channel for the interface (so the radio does 2351 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2352 * reported information via ioctl. 2353 */ 2354 void 2355 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2356 { 2357 struct ieee80211vap *vap; 2358 2359 IEEE80211_LOCK_ASSERT(ic); 2360 2361 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2362 2363 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2364 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2365 if (vap->iv_state == IEEE80211_S_CSA) 2366 vap->iv_bss->ni_chan = ic->ic_curchan; 2367 2368 csa_completeswitch(ic); 2369 } 2370 2371 /* 2372 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2373 * We clear state and move all vap's in CSA state to RUN state 2374 * so they can again transmit. 2375 */ 2376 void 2377 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2378 { 2379 IEEE80211_LOCK_ASSERT(ic); 2380 2381 csa_completeswitch(ic); 2382 } 2383 2384 /* 2385 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2386 * We clear state and move all vap's in CAC state to RUN state. 2387 */ 2388 void 2389 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2390 { 2391 struct ieee80211com *ic = vap0->iv_ic; 2392 struct ieee80211vap *vap; 2393 2394 IEEE80211_LOCK(ic); 2395 /* 2396 * Complete CAC state change for lead vap first; then 2397 * clock all the other vap's waiting. 2398 */ 2399 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2400 ("wrong state %d", vap0->iv_state)); 2401 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2402 2403 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2404 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2405 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2406 IEEE80211_UNLOCK(ic); 2407 } 2408 2409 /* 2410 * Force all vap's other than the specified vap to the INIT state 2411 * and mark them as waiting for a scan to complete. These vaps 2412 * will be brought up when the scan completes and the scanning vap 2413 * reaches RUN state by wakeupwaiting. 2414 */ 2415 static void 2416 markwaiting(struct ieee80211vap *vap0) 2417 { 2418 struct ieee80211com *ic = vap0->iv_ic; 2419 struct ieee80211vap *vap; 2420 2421 IEEE80211_LOCK_ASSERT(ic); 2422 2423 /* 2424 * A vap list entry can not disappear since we are running on the 2425 * taskqueue and a vap destroy will queue and drain another state 2426 * change task. 2427 */ 2428 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2429 if (vap == vap0) 2430 continue; 2431 if (vap->iv_state != IEEE80211_S_INIT) { 2432 /* NB: iv_newstate may drop the lock */ 2433 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2434 IEEE80211_LOCK_ASSERT(ic); 2435 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2436 } 2437 } 2438 } 2439 2440 /* 2441 * Wakeup all vap's waiting for a scan to complete. This is the 2442 * companion to markwaiting (above) and is used to coordinate 2443 * multiple vaps scanning. 2444 * This is called from the state taskqueue. 2445 */ 2446 static void 2447 wakeupwaiting(struct ieee80211vap *vap0) 2448 { 2449 struct ieee80211com *ic = vap0->iv_ic; 2450 struct ieee80211vap *vap; 2451 2452 IEEE80211_LOCK_ASSERT(ic); 2453 2454 /* 2455 * A vap list entry can not disappear since we are running on the 2456 * taskqueue and a vap destroy will queue and drain another state 2457 * change task. 2458 */ 2459 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2460 if (vap == vap0) 2461 continue; 2462 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2463 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2464 /* NB: sta's cannot go INIT->RUN */ 2465 /* NB: iv_newstate may drop the lock */ 2466 2467 /* 2468 * This is problematic if the interface has OACTIVE 2469 * set. Only the deferred ieee80211_newstate_cb() 2470 * will end up actually /clearing/ the OACTIVE 2471 * flag on a state transition to RUN from a non-RUN 2472 * state. 2473 * 2474 * But, we're not actually deferring this callback; 2475 * and when the deferred call occurs it shows up as 2476 * a RUN->RUN transition! So the flag isn't/wasn't 2477 * cleared! 2478 * 2479 * I'm also not sure if it's correct to actually 2480 * do the transitions here fully through the deferred 2481 * paths either as other things can be invoked as 2482 * part of that state machine. 2483 * 2484 * So just keep this in mind when looking at what 2485 * the markwaiting/wakeupwaiting routines are doing 2486 * and how they invoke vap state changes. 2487 */ 2488 2489 vap->iv_newstate(vap, 2490 vap->iv_opmode == IEEE80211_M_STA ? 2491 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2492 IEEE80211_LOCK_ASSERT(ic); 2493 } 2494 } 2495 } 2496 2497 static int 2498 _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap) 2499 { 2500 int nstate_num; 2501 2502 IEEE80211_LOCK_ASSERT(vap->iv_ic); 2503 2504 if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM) 2505 return (-1); 2506 2507 nstate_num = vap->iv_nstate_b + vap->iv_nstate_n; 2508 nstate_num %= NET80211_IV_NSTATE_NUM; 2509 vap->iv_nstate_n++; 2510 2511 return (nstate_num); 2512 } 2513 2514 static int 2515 _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap) 2516 { 2517 int nstate_num; 2518 2519 IEEE80211_LOCK_ASSERT(vap->iv_ic); 2520 2521 KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n", 2522 __func__, vap, vap->iv_nstate_n)); 2523 2524 nstate_num = vap->iv_nstate_b; 2525 vap->iv_nstate_b++; 2526 if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM) 2527 vap->iv_nstate_b = 0; 2528 vap->iv_nstate_n--; 2529 2530 return (nstate_num); 2531 } 2532 2533 static int 2534 _ieee80211_newstate_get_npending(struct ieee80211vap *vap) 2535 { 2536 2537 IEEE80211_LOCK_ASSERT(vap->iv_ic); 2538 2539 return (vap->iv_nstate_n); 2540 } 2541 2542 /* 2543 * Handle post state change work common to all operating modes. 2544 */ 2545 static void 2546 ieee80211_newstate_cb(void *xvap, int npending) 2547 { 2548 struct ieee80211vap *vap = xvap; 2549 struct ieee80211com *ic = vap->iv_ic; 2550 enum ieee80211_state nstate, ostate; 2551 int arg, rc, nstate_num; 2552 2553 KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n", 2554 __func__, vap, npending)); 2555 IEEE80211_LOCK(ic); 2556 nstate_num = _ieee80211_newstate_get_next_pending_slot(vap); 2557 2558 /* 2559 * Update the historic fields for now as they are used in some 2560 * drivers and reduce code changes for now. 2561 */ 2562 vap->iv_nstate = nstate = vap->iv_nstates[nstate_num]; 2563 arg = vap->iv_nstate_args[nstate_num]; 2564 2565 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2566 "%s:%d: running state update %s -> %s (%d)\n", 2567 __func__, __LINE__, 2568 ieee80211_state_name[vap->iv_state], 2569 ieee80211_state_name[nstate], 2570 npending); 2571 2572 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2573 /* 2574 * We have been requested to drop back to the INIT before 2575 * proceeding to the new state. 2576 */ 2577 /* Deny any state changes while we are here. */ 2578 vap->iv_nstate = IEEE80211_S_INIT; 2579 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2580 "%s: %s -> %s arg %d -> %s arg %d\n", __func__, 2581 ieee80211_state_name[vap->iv_state], 2582 ieee80211_state_name[vap->iv_nstate], 0, 2583 ieee80211_state_name[nstate], arg); 2584 vap->iv_newstate(vap, vap->iv_nstate, 0); 2585 IEEE80211_LOCK_ASSERT(ic); 2586 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2587 IEEE80211_FEXT_STATEWAIT); 2588 /* enqueue new state transition after cancel_scan() task */ 2589 ieee80211_new_state_locked(vap, nstate, arg); 2590 goto done; 2591 } 2592 2593 ostate = vap->iv_state; 2594 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2595 /* 2596 * SCAN was forced; e.g. on beacon miss. Force other running 2597 * vap's to INIT state and mark them as waiting for the scan to 2598 * complete. This insures they don't interfere with our 2599 * scanning. Since we are single threaded the vaps can not 2600 * transition again while we are executing. 2601 * 2602 * XXX not always right, assumes ap follows sta 2603 */ 2604 markwaiting(vap); 2605 } 2606 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2607 "%s: %s -> %s arg %d\n", __func__, 2608 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2609 2610 rc = vap->iv_newstate(vap, nstate, arg); 2611 IEEE80211_LOCK_ASSERT(ic); 2612 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2613 if (rc != 0) { 2614 /* State transition failed */ 2615 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2616 KASSERT(nstate != IEEE80211_S_INIT, 2617 ("INIT state change failed")); 2618 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2619 "%s: %s returned error %d\n", __func__, 2620 ieee80211_state_name[nstate], rc); 2621 goto done; 2622 } 2623 2624 /* 2625 * Handle the case of a RUN->RUN transition occuring when STA + AP 2626 * VAPs occur on the same radio. 2627 * 2628 * The mark and wakeup waiting routines call iv_newstate() directly, 2629 * but they do not end up deferring state changes here. 2630 * Thus, although the VAP newstate method sees a transition 2631 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN 2632 * transition. If OACTIVE is set then it is never cleared. 2633 * 2634 * So, if we're here and the state is RUN, just clear OACTIVE. 2635 * At some point if the markwaiting/wakeupwaiting paths end up 2636 * also invoking the deferred state updates then this will 2637 * be no-op code - and also if OACTIVE is finally retired, it'll 2638 * also be no-op code. 2639 */ 2640 if (nstate == IEEE80211_S_RUN) { 2641 /* 2642 * OACTIVE may be set on the vap if the upper layer 2643 * tried to transmit (e.g. IPv6 NDP) before we reach 2644 * RUN state. Clear it and restart xmit. 2645 * 2646 * Note this can also happen as a result of SLEEP->RUN 2647 * (i.e. coming out of power save mode). 2648 * 2649 * Historically this was done only for a state change 2650 * but is needed earlier; see next comment. The 2nd half 2651 * of the work is still only done in case of an actual 2652 * state change below. 2653 */ 2654 /* 2655 * Unblock the VAP queue; a RUN->RUN state can happen 2656 * on a STA+AP setup on the AP vap. See wakeupwaiting(). 2657 */ 2658 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2659 2660 /* 2661 * XXX TODO Kick-start a VAP queue - this should be a method! 2662 */ 2663 } 2664 2665 /* No actual transition, skip post processing */ 2666 if (ostate == nstate) 2667 goto done; 2668 2669 if (nstate == IEEE80211_S_RUN) { 2670 2671 /* bring up any vaps waiting on us */ 2672 wakeupwaiting(vap); 2673 } else if (nstate == IEEE80211_S_INIT) { 2674 /* 2675 * Flush the scan cache if we did the last scan (XXX?) 2676 * and flush any frames on send queues from this vap. 2677 * Note the mgt q is used only for legacy drivers and 2678 * will go away shortly. 2679 */ 2680 ieee80211_scan_flush(vap); 2681 2682 /* 2683 * XXX TODO: ic/vap queue flush 2684 */ 2685 } 2686 done: 2687 IEEE80211_UNLOCK(ic); 2688 } 2689 2690 /* 2691 * Public interface for initiating a state machine change. 2692 * This routine single-threads the request and coordinates 2693 * the scheduling of multiple vaps for the purpose of selecting 2694 * an operating channel. Specifically the following scenarios 2695 * are handled: 2696 * o only one vap can be selecting a channel so on transition to 2697 * SCAN state if another vap is already scanning then 2698 * mark the caller for later processing and return without 2699 * doing anything (XXX? expectations by caller of synchronous operation) 2700 * o only one vap can be doing CAC of a channel so on transition to 2701 * CAC state if another vap is already scanning for radar then 2702 * mark the caller for later processing and return without 2703 * doing anything (XXX? expectations by caller of synchronous operation) 2704 * o if another vap is already running when a request is made 2705 * to SCAN then an operating channel has been chosen; bypass 2706 * the scan and just join the channel 2707 * 2708 * Note that the state change call is done through the iv_newstate 2709 * method pointer so any driver routine gets invoked. The driver 2710 * will normally call back into operating mode-specific 2711 * ieee80211_newstate routines (below) unless it needs to completely 2712 * bypass the state machine (e.g. because the firmware has it's 2713 * own idea how things should work). Bypassing the net80211 layer 2714 * is usually a mistake and indicates lack of proper integration 2715 * with the net80211 layer. 2716 */ 2717 int 2718 ieee80211_new_state_locked(struct ieee80211vap *vap, 2719 enum ieee80211_state nstate, int arg) 2720 { 2721 struct ieee80211com *ic = vap->iv_ic; 2722 struct ieee80211vap *vp; 2723 enum ieee80211_state ostate; 2724 int nrunning, nscanning, nstate_num; 2725 2726 IEEE80211_LOCK_ASSERT(ic); 2727 2728 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2729 if (vap->iv_nstate == IEEE80211_S_INIT || 2730 ((vap->iv_state == IEEE80211_S_INIT || 2731 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2732 vap->iv_nstate == IEEE80211_S_SCAN && 2733 nstate > IEEE80211_S_SCAN)) { 2734 /* 2735 * XXX The vap is being stopped/started, 2736 * do not allow any other state changes 2737 * until this is completed. 2738 */ 2739 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2740 "%s:%d: %s -> %s (%s) transition discarded\n", 2741 __func__, __LINE__, 2742 ieee80211_state_name[vap->iv_state], 2743 ieee80211_state_name[nstate], 2744 ieee80211_state_name[vap->iv_nstate]); 2745 return -1; 2746 } 2747 } 2748 2749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2750 "%s:%d: starting state update %s -> %s (%s)\n", 2751 __func__, __LINE__, 2752 ieee80211_state_name[vap->iv_state], 2753 ieee80211_state_name[vap->iv_nstate], 2754 ieee80211_state_name[nstate]); 2755 2756 nrunning = nscanning = 0; 2757 /* XXX can track this state instead of calculating */ 2758 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2759 if (vp != vap) { 2760 if (vp->iv_state >= IEEE80211_S_RUN) 2761 nrunning++; 2762 /* XXX doesn't handle bg scan */ 2763 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2764 else if (vp->iv_state > IEEE80211_S_INIT) 2765 nscanning++; 2766 } 2767 } 2768 /* 2769 * Look ahead for the "old state" at that point when the last queued 2770 * state transition is run. 2771 */ 2772 if (vap->iv_nstate_n == 0) { 2773 ostate = vap->iv_state; 2774 } else { 2775 nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM; 2776 ostate = vap->iv_nstates[nstate_num]; 2777 } 2778 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2779 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2780 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2781 nrunning, nscanning); 2782 switch (nstate) { 2783 case IEEE80211_S_SCAN: 2784 if (ostate == IEEE80211_S_INIT) { 2785 /* 2786 * INIT -> SCAN happens on initial bringup. 2787 */ 2788 KASSERT(!(nscanning && nrunning), 2789 ("%d scanning and %d running", nscanning, nrunning)); 2790 if (nscanning) { 2791 /* 2792 * Someone is scanning, defer our state 2793 * change until the work has completed. 2794 */ 2795 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2796 "%s: defer %s -> %s\n", 2797 __func__, ieee80211_state_name[ostate], 2798 ieee80211_state_name[nstate]); 2799 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2800 return 0; 2801 } 2802 if (nrunning) { 2803 /* 2804 * Someone is operating; just join the channel 2805 * they have chosen. 2806 */ 2807 /* XXX kill arg? */ 2808 /* XXX check each opmode, adhoc? */ 2809 if (vap->iv_opmode == IEEE80211_M_STA) 2810 nstate = IEEE80211_S_SCAN; 2811 else 2812 nstate = IEEE80211_S_RUN; 2813 #ifdef IEEE80211_DEBUG 2814 if (nstate != IEEE80211_S_SCAN) { 2815 IEEE80211_DPRINTF(vap, 2816 IEEE80211_MSG_STATE, 2817 "%s: override, now %s -> %s\n", 2818 __func__, 2819 ieee80211_state_name[ostate], 2820 ieee80211_state_name[nstate]); 2821 } 2822 #endif 2823 } 2824 } 2825 break; 2826 case IEEE80211_S_RUN: 2827 if (vap->iv_opmode == IEEE80211_M_WDS && 2828 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2829 nscanning) { 2830 /* 2831 * Legacy WDS with someone else scanning; don't 2832 * go online until that completes as we should 2833 * follow the other vap to the channel they choose. 2834 */ 2835 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2836 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2837 ieee80211_state_name[ostate], 2838 ieee80211_state_name[nstate]); 2839 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2840 return 0; 2841 } 2842 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2843 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2844 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2845 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2846 /* 2847 * This is a DFS channel, transition to CAC state 2848 * instead of RUN. This allows us to initiate 2849 * Channel Availability Check (CAC) as specified 2850 * by 11h/DFS. 2851 */ 2852 nstate = IEEE80211_S_CAC; 2853 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2854 "%s: override %s -> %s (DFS)\n", __func__, 2855 ieee80211_state_name[ostate], 2856 ieee80211_state_name[nstate]); 2857 } 2858 break; 2859 case IEEE80211_S_INIT: 2860 /* cancel any scan in progress */ 2861 ieee80211_cancel_scan(vap); 2862 if (ostate == IEEE80211_S_INIT ) { 2863 /* XXX don't believe this */ 2864 /* INIT -> INIT. nothing to do */ 2865 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2866 } 2867 /* fall thru... */ 2868 default: 2869 break; 2870 } 2871 /* 2872 * Defer the state change to a thread. 2873 * We support up-to NET80211_IV_NSTATE_NUM pending state changes 2874 * using a separate task for each. Otherwise, if we enqueue 2875 * more than one state change they will be folded together, 2876 * npedning will be > 1 and we may run then out of sequence with 2877 * other events. 2878 * This is kind-of a hack after 10 years but we know how to provoke 2879 * these cases now (and seen them in the wild). 2880 */ 2881 nstate_num = _ieee80211_newstate_get_next_empty_slot(vap); 2882 if (nstate_num == -1) { 2883 /* 2884 * This is really bad and we should just go kaboom. 2885 * Instead drop it. No one checks the return code anyway. 2886 */ 2887 ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) " 2888 "transition lost. %d/%d pending state changes:\n", 2889 __func__, __LINE__, 2890 ieee80211_state_name[vap->iv_state], 2891 ieee80211_state_name[vap->iv_nstate], 2892 ieee80211_state_name[nstate], 2893 _ieee80211_newstate_get_npending(vap), 2894 NET80211_IV_NSTATE_NUM); 2895 2896 return (EAGAIN); 2897 } 2898 vap->iv_nstates[nstate_num] = nstate; 2899 vap->iv_nstate_args[nstate_num] = arg; 2900 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2901 ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]); 2902 return EINPROGRESS; 2903 } 2904 2905 int 2906 ieee80211_new_state(struct ieee80211vap *vap, 2907 enum ieee80211_state nstate, int arg) 2908 { 2909 struct ieee80211com *ic = vap->iv_ic; 2910 int rc; 2911 2912 IEEE80211_LOCK(ic); 2913 rc = ieee80211_new_state_locked(vap, nstate, arg); 2914 IEEE80211_UNLOCK(ic); 2915 return rc; 2916 } 2917