xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 7fc95c31f007ef01c53aa5f9d8802e9579f408ee)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
6  * Copyright (c) 2012 IEEE
7  * All rights reserved.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 /*
32  * IEEE 802.11 protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/if_private.h>
50 #include <net/ethernet.h>		/* XXX for ether_sprintf */
51 
52 #include <net80211/ieee80211_var.h>
53 #include <net80211/ieee80211_adhoc.h>
54 #include <net80211/ieee80211_sta.h>
55 #include <net80211/ieee80211_hostap.h>
56 #include <net80211/ieee80211_wds.h>
57 #ifdef IEEE80211_SUPPORT_MESH
58 #include <net80211/ieee80211_mesh.h>
59 #endif
60 #include <net80211/ieee80211_monitor.h>
61 #include <net80211/ieee80211_input.h>
62 
63 /* XXX tunables */
64 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
65 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
66 
67 const char *mgt_subtype_name[] = {
68 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
69 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
70 	"beacon",	"atim",		"disassoc",	"auth",
71 	"deauth",	"action",	"action_noack",	"reserved#15"
72 };
73 const char *ctl_subtype_name[] = {
74 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
75 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
76 	"bar",		"ba",		"ps_poll",	"rts",
77 	"cts",		"ack",		"cf_end",	"cf_end_ack"
78 };
79 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
80 	"IBSS",		/* IEEE80211_M_IBSS */
81 	"STA",		/* IEEE80211_M_STA */
82 	"WDS",		/* IEEE80211_M_WDS */
83 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
84 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
85 	"MONITOR",	/* IEEE80211_M_MONITOR */
86 	"MBSS"		/* IEEE80211_M_MBSS */
87 };
88 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
89 	"INIT",		/* IEEE80211_S_INIT */
90 	"SCAN",		/* IEEE80211_S_SCAN */
91 	"AUTH",		/* IEEE80211_S_AUTH */
92 	"ASSOC",	/* IEEE80211_S_ASSOC */
93 	"CAC",		/* IEEE80211_S_CAC */
94 	"RUN",		/* IEEE80211_S_RUN */
95 	"CSA",		/* IEEE80211_S_CSA */
96 	"SLEEP",	/* IEEE80211_S_SLEEP */
97 };
98 const char *ieee80211_wme_acnames[] = {
99 	"WME_AC_BE",
100 	"WME_AC_BK",
101 	"WME_AC_VI",
102 	"WME_AC_VO",
103 	"WME_UPSD",
104 };
105 
106 /*
107  * Reason code descriptions were (mostly) obtained from
108  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109  */
110 const char *
111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 	switch (reason) {
114 	case IEEE80211_REASON_UNSPECIFIED:
115 		return ("unspecified");
116 	case IEEE80211_REASON_AUTH_EXPIRE:
117 		return ("previous authentication is expired");
118 	case IEEE80211_REASON_AUTH_LEAVE:
119 		return ("sending STA is leaving/has left IBSS or ESS");
120 	case IEEE80211_REASON_ASSOC_EXPIRE:
121 		return ("disassociated due to inactivity");
122 	case IEEE80211_REASON_ASSOC_TOOMANY:
123 		return ("too many associated STAs");
124 	case IEEE80211_REASON_NOT_AUTHED:
125 		return ("class 2 frame received from nonauthenticated STA");
126 	case IEEE80211_REASON_NOT_ASSOCED:
127 		return ("class 3 frame received from nonassociated STA");
128 	case IEEE80211_REASON_ASSOC_LEAVE:
129 		return ("sending STA is leaving/has left BSS");
130 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 		return ("STA requesting (re)association is not authenticated");
132 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 		return ("information in the Power Capability element is "
134 			"unacceptable");
135 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 		return ("information in the Supported Channels element is "
137 			"unacceptable");
138 	case IEEE80211_REASON_IE_INVALID:
139 		return ("invalid element");
140 	case IEEE80211_REASON_MIC_FAILURE:
141 		return ("MIC failure");
142 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 		return ("4-Way handshake timeout");
144 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 		return ("group key update timeout");
146 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 		return ("element in 4-Way handshake different from "
148 			"(re)association request/probe response/beacon frame");
149 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 		return ("invalid group cipher");
151 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 		return ("invalid pairwise cipher");
153 	case IEEE80211_REASON_AKMP_INVALID:
154 		return ("invalid AKMP");
155 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 		return ("unsupported version in RSN IE");
157 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 		return ("invalid capabilities in RSN IE");
159 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 		return ("IEEE 802.1X authentication failed");
161 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 		return ("cipher suite rejected because of the security "
163 			"policy");
164 	case IEEE80211_REASON_UNSPECIFIED_QOS:
165 		return ("unspecified (QoS-related)");
166 	case IEEE80211_REASON_INSUFFICIENT_BW:
167 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 	case IEEE80211_REASON_TOOMANY_FRAMES:
169 		return ("too many frames need to be acknowledged");
170 	case IEEE80211_REASON_OUTSIDE_TXOP:
171 		return ("STA is transmitting outside the limits of its TXOPs");
172 	case IEEE80211_REASON_LEAVING_QBSS:
173 		return ("requested from peer STA (the STA is "
174 			"resetting/leaving the BSS)");
175 	case IEEE80211_REASON_BAD_MECHANISM:
176 		return ("requested from peer STA (it does not want to use "
177 			"the mechanism)");
178 	case IEEE80211_REASON_SETUP_NEEDED:
179 		return ("requested from peer STA (setup is required for the "
180 			"used mechanism)");
181 	case IEEE80211_REASON_TIMEOUT:
182 		return ("requested from peer STA (timeout)");
183 	case IEEE80211_REASON_PEER_LINK_CANCELED:
184 		return ("SME cancels the mesh peering instance (not related "
185 			"to the maximum number of peer mesh STAs)");
186 	case IEEE80211_REASON_MESH_MAX_PEERS:
187 		return ("maximum number of peer mesh STAs was reached");
188 	case IEEE80211_REASON_MESH_CPVIOLATION:
189 		return ("the received information violates the Mesh "
190 			"Configuration policy configured in the mesh STA "
191 			"profile");
192 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 		return ("the mesh STA has received a Mesh Peering Close "
194 			"message requesting to close the mesh peering");
195 	case IEEE80211_REASON_MESH_MAX_RETRIES:
196 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 			"Peering Open messages, without receiving a Mesh "
198 			"Peering Confirm message");
199 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 		return ("the confirmTimer for the mesh peering instance times "
201 			"out");
202 	case IEEE80211_REASON_MESH_INVALID_GTK:
203 		return ("the mesh STA fails to unwrap the GTK or the values "
204 			"in the wrapped contents do not match");
205 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 		return ("the mesh STA receives inconsistent information about "
207 			"the mesh parameters between Mesh Peering Management "
208 			"frames");
209 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 		return ("the mesh STA fails the authenticated mesh peering "
211 			"exchange because due to failure in selecting "
212 			"pairwise/group ciphersuite");
213 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 		return ("the mesh STA does not have proxy information for "
215 			"this external destination");
216 	case IEEE80211_REASON_MESH_PERR_NO_FI:
217 		return ("the mesh STA does not have forwarding information "
218 			"for this destination");
219 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 		return ("the mesh STA determines that the link to the next "
221 			"hop of an active path in its forwarding information "
222 			"is no longer usable");
223 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 		return ("the MAC address of the STA already exists in the "
225 			"mesh BSS");
226 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 		return ("the mesh STA performs channel switch to meet "
228 			"regulatory requirements");
229 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 		return ("the mesh STA performs channel switch with "
231 			"unspecified reason");
232 	default:
233 		return ("reserved/unknown");
234 	}
235 }
236 
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void vap_update_wme(void *, int);
245 static void vap_update_slot(void *, int);
246 static void restart_vaps(void *, int);
247 static void vap_update_erp_protmode(void *, int);
248 static void vap_update_preamble(void *, int);
249 static void vap_update_ht_protmode(void *, int);
250 static void ieee80211_newstate_cb(void *, int);
251 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *,
252     struct ieee80211_node *);
253 
254 static int
255 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
256 	const struct ieee80211_bpf_params *params)
257 {
258 
259 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
260 	m_freem(m);
261 	return ENETDOWN;
262 }
263 
264 void
265 ieee80211_proto_attach(struct ieee80211com *ic)
266 {
267 	uint8_t hdrlen;
268 
269 	/* override the 802.3 setting */
270 	hdrlen = ic->ic_headroom
271 		+ sizeof(struct ieee80211_qosframe_addr4)
272 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
273 		+ IEEE80211_WEP_EXTIVLEN;
274 	/* XXX no way to recalculate on ifdetach */
275 	max_linkhdr_grow(ALIGN(hdrlen));
276 	//ic->ic_protmode = IEEE80211_PROT_CTSONLY;
277 
278 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
279 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
280 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
281 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
282 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
283 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
284 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
285 
286 	ic->ic_wme.wme_hipri_switch_hysteresis =
287 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
288 
289 	/* initialize management frame handlers */
290 	ic->ic_send_mgmt = ieee80211_send_mgmt;
291 	ic->ic_raw_xmit = null_raw_xmit;
292 
293 	ieee80211_adhoc_attach(ic);
294 	ieee80211_sta_attach(ic);
295 	ieee80211_wds_attach(ic);
296 	ieee80211_hostap_attach(ic);
297 #ifdef IEEE80211_SUPPORT_MESH
298 	ieee80211_mesh_attach(ic);
299 #endif
300 	ieee80211_monitor_attach(ic);
301 }
302 
303 void
304 ieee80211_proto_detach(struct ieee80211com *ic)
305 {
306 	ieee80211_monitor_detach(ic);
307 #ifdef IEEE80211_SUPPORT_MESH
308 	ieee80211_mesh_detach(ic);
309 #endif
310 	ieee80211_hostap_detach(ic);
311 	ieee80211_wds_detach(ic);
312 	ieee80211_adhoc_detach(ic);
313 	ieee80211_sta_detach(ic);
314 }
315 
316 static void
317 null_update_beacon(struct ieee80211vap *vap, int item)
318 {
319 }
320 
321 void
322 ieee80211_proto_vattach(struct ieee80211vap *vap)
323 {
324 	struct ieee80211com *ic = vap->iv_ic;
325 	struct ifnet *ifp = vap->iv_ifp;
326 	int i;
327 
328 	/* override the 802.3 setting */
329 	ifp->if_hdrlen = ic->ic_headroom
330                 + sizeof(struct ieee80211_qosframe_addr4)
331                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
332                 + IEEE80211_WEP_EXTIVLEN;
333 
334 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
335 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
336 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
337 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
338 	callout_init(&vap->iv_mgtsend, 1);
339 	for (i = 0; i < NET80211_IV_NSTATE_NUM; i++)
340 		TASK_INIT(&vap->iv_nstate_task[i], 0, ieee80211_newstate_cb, vap);
341 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
342 	TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap);
343 	TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap);
344 	TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap);
345 	TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap);
346 	TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap);
347 	/*
348 	 * Install default tx rate handling: no fixed rate, lowest
349 	 * supported rate for mgmt and multicast frames.  Default
350 	 * max retry count.  These settings can be changed by the
351 	 * driver and/or user applications.
352 	 */
353 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
354 		if (isclr(ic->ic_modecaps, i))
355 			continue;
356 
357 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
358 
359 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
360 
361 		/*
362 		 * Setting the management rate to MCS 0 assumes that the
363 		 * BSS Basic rate set is empty and the BSS Basic MCS set
364 		 * is not.
365 		 *
366 		 * Since we're not checking this, default to the lowest
367 		 * defined rate for this mode.
368 		 *
369 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
370 		 * some MCS management traffic (eg BA response frames.)
371 		 *
372 		 * See also: 9.6.0 of the 802.11n-2009 specification.
373 		 */
374 #ifdef	NOTYET
375 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
376 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
377 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
378 		} else {
379 			vap->iv_txparms[i].mgmtrate =
380 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
381 			vap->iv_txparms[i].mcastrate =
382 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
383 		}
384 #endif
385 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
386 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
387 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
388 	}
389 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
390 
391 	vap->iv_update_beacon = null_update_beacon;
392 	vap->iv_deliver_data = ieee80211_deliver_data;
393 	vap->iv_protmode = IEEE80211_PROT_CTSONLY;
394 	vap->iv_update_bss = vap_update_bss;
395 
396 	/* attach support for operating mode */
397 	ic->ic_vattach[vap->iv_opmode](vap);
398 }
399 
400 void
401 ieee80211_proto_vdetach(struct ieee80211vap *vap)
402 {
403 #define	FREEAPPIE(ie) do { \
404 	if (ie != NULL) \
405 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
406 } while (0)
407 	/*
408 	 * Detach operating mode module.
409 	 */
410 	if (vap->iv_opdetach != NULL)
411 		vap->iv_opdetach(vap);
412 	/*
413 	 * This should not be needed as we detach when reseting
414 	 * the state but be conservative here since the
415 	 * authenticator may do things like spawn kernel threads.
416 	 */
417 	if (vap->iv_auth->ia_detach != NULL)
418 		vap->iv_auth->ia_detach(vap);
419 	/*
420 	 * Detach any ACL'ator.
421 	 */
422 	if (vap->iv_acl != NULL)
423 		vap->iv_acl->iac_detach(vap);
424 
425 	FREEAPPIE(vap->iv_appie_beacon);
426 	FREEAPPIE(vap->iv_appie_probereq);
427 	FREEAPPIE(vap->iv_appie_proberesp);
428 	FREEAPPIE(vap->iv_appie_assocreq);
429 	FREEAPPIE(vap->iv_appie_assocresp);
430 	FREEAPPIE(vap->iv_appie_wpa);
431 #undef FREEAPPIE
432 }
433 
434 /*
435  * Simple-minded authenticator module support.
436  */
437 
438 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
439 /* XXX well-known names */
440 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
441 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
442 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
443 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
444 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
445 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
446 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
447 };
448 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
449 
450 static const struct ieee80211_authenticator auth_internal = {
451 	.ia_name		= "wlan_internal",
452 	.ia_attach		= NULL,
453 	.ia_detach		= NULL,
454 	.ia_node_join		= NULL,
455 	.ia_node_leave		= NULL,
456 };
457 
458 /*
459  * Setup internal authenticators once; they are never unregistered.
460  */
461 static void
462 ieee80211_auth_setup(void)
463 {
464 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
465 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
466 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
467 }
468 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
469 
470 const struct ieee80211_authenticator *
471 ieee80211_authenticator_get(int auth)
472 {
473 	if (auth >= IEEE80211_AUTH_MAX)
474 		return NULL;
475 	if (authenticators[auth] == NULL)
476 		ieee80211_load_module(auth_modnames[auth]);
477 	return authenticators[auth];
478 }
479 
480 void
481 ieee80211_authenticator_register(int type,
482 	const struct ieee80211_authenticator *auth)
483 {
484 	if (type >= IEEE80211_AUTH_MAX)
485 		return;
486 	authenticators[type] = auth;
487 }
488 
489 void
490 ieee80211_authenticator_unregister(int type)
491 {
492 
493 	if (type >= IEEE80211_AUTH_MAX)
494 		return;
495 	authenticators[type] = NULL;
496 }
497 
498 /*
499  * Very simple-minded ACL module support.
500  */
501 /* XXX just one for now */
502 static	const struct ieee80211_aclator *acl = NULL;
503 
504 void
505 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
506 {
507 	printf("wlan: %s acl policy registered\n", iac->iac_name);
508 	acl = iac;
509 }
510 
511 void
512 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
513 {
514 	if (acl == iac)
515 		acl = NULL;
516 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
517 }
518 
519 const struct ieee80211_aclator *
520 ieee80211_aclator_get(const char *name)
521 {
522 	if (acl == NULL)
523 		ieee80211_load_module("wlan_acl");
524 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
525 }
526 
527 void
528 ieee80211_print_essid(const uint8_t *essid, int len)
529 {
530 	const uint8_t *p;
531 	int i;
532 
533 	if (len > IEEE80211_NWID_LEN)
534 		len = IEEE80211_NWID_LEN;
535 	/* determine printable or not */
536 	for (i = 0, p = essid; i < len; i++, p++) {
537 		if (*p < ' ' || *p > 0x7e)
538 			break;
539 	}
540 	if (i == len) {
541 		printf("\"");
542 		for (i = 0, p = essid; i < len; i++, p++)
543 			printf("%c", *p);
544 		printf("\"");
545 	} else {
546 		printf("0x");
547 		for (i = 0, p = essid; i < len; i++, p++)
548 			printf("%02x", *p);
549 	}
550 }
551 
552 void
553 ieee80211_dump_pkt(struct ieee80211com *ic,
554 	const uint8_t *buf, int len, int rate, int rssi)
555 {
556 	const struct ieee80211_frame *wh;
557 	int i;
558 
559 	wh = (const struct ieee80211_frame *)buf;
560 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
561 	case IEEE80211_FC1_DIR_NODS:
562 		printf("NODS %s", ether_sprintf(wh->i_addr2));
563 		printf("->%s", ether_sprintf(wh->i_addr1));
564 		printf("(%s)", ether_sprintf(wh->i_addr3));
565 		break;
566 	case IEEE80211_FC1_DIR_TODS:
567 		printf("TODS %s", ether_sprintf(wh->i_addr2));
568 		printf("->%s", ether_sprintf(wh->i_addr3));
569 		printf("(%s)", ether_sprintf(wh->i_addr1));
570 		break;
571 	case IEEE80211_FC1_DIR_FROMDS:
572 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
573 		printf("->%s", ether_sprintf(wh->i_addr1));
574 		printf("(%s)", ether_sprintf(wh->i_addr2));
575 		break;
576 	case IEEE80211_FC1_DIR_DSTODS:
577 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
578 		printf("->%s", ether_sprintf(wh->i_addr3));
579 		printf("(%s", ether_sprintf(wh->i_addr2));
580 		printf("->%s)", ether_sprintf(wh->i_addr1));
581 		break;
582 	}
583 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
584 	case IEEE80211_FC0_TYPE_DATA:
585 		printf(" data");
586 		break;
587 	case IEEE80211_FC0_TYPE_MGT:
588 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
589 		break;
590 	default:
591 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
592 		break;
593 	}
594 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
595 		const struct ieee80211_qosframe *qwh =
596 			(const struct ieee80211_qosframe *)buf;
597 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
598 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
599 	}
600 	if (IEEE80211_IS_PROTECTED(wh)) {
601 		int off;
602 
603 		off = ieee80211_anyhdrspace(ic, wh);
604 		printf(" WEP [IV %.02x %.02x %.02x",
605 			buf[off+0], buf[off+1], buf[off+2]);
606 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
607 			printf(" %.02x %.02x %.02x",
608 				buf[off+4], buf[off+5], buf[off+6]);
609 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
610 	}
611 	if (rate >= 0)
612 		printf(" %dM", rate / 2);
613 	if (rssi >= 0)
614 		printf(" +%d", rssi);
615 	printf("\n");
616 	if (len > 0) {
617 		for (i = 0; i < len; i++) {
618 			if ((i & 1) == 0)
619 				printf(" ");
620 			printf("%02x", buf[i]);
621 		}
622 		printf("\n");
623 	}
624 }
625 
626 static __inline int
627 findrix(const struct ieee80211_rateset *rs, int r)
628 {
629 	int i;
630 
631 	for (i = 0; i < rs->rs_nrates; i++)
632 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
633 			return i;
634 	return -1;
635 }
636 
637 int
638 ieee80211_fix_rate(struct ieee80211_node *ni,
639 	struct ieee80211_rateset *nrs, int flags)
640 {
641 	struct ieee80211vap *vap = ni->ni_vap;
642 	struct ieee80211com *ic = ni->ni_ic;
643 	int i, j, rix, error;
644 	int okrate, badrate, fixedrate, ucastrate;
645 	const struct ieee80211_rateset *srs;
646 	uint8_t r;
647 
648 	error = 0;
649 	okrate = badrate = 0;
650 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
651 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
652 		/*
653 		 * Workaround awkwardness with fixed rate.  We are called
654 		 * to check both the legacy rate set and the HT rate set
655 		 * but we must apply any legacy fixed rate check only to the
656 		 * legacy rate set and vice versa.  We cannot tell what type
657 		 * of rate set we've been given (legacy or HT) but we can
658 		 * distinguish the fixed rate type (MCS have 0x80 set).
659 		 * So to deal with this the caller communicates whether to
660 		 * check MCS or legacy rate using the flags and we use the
661 		 * type of any fixed rate to avoid applying an MCS to a
662 		 * legacy rate and vice versa.
663 		 */
664 		if (ucastrate & 0x80) {
665 			if (flags & IEEE80211_F_DOFRATE)
666 				flags &= ~IEEE80211_F_DOFRATE;
667 		} else if ((ucastrate & 0x80) == 0) {
668 			if (flags & IEEE80211_F_DOFMCS)
669 				flags &= ~IEEE80211_F_DOFMCS;
670 		}
671 		/* NB: required to make MCS match below work */
672 		ucastrate &= IEEE80211_RATE_VAL;
673 	}
674 	fixedrate = IEEE80211_FIXED_RATE_NONE;
675 	/*
676 	 * XXX we are called to process both MCS and legacy rates;
677 	 * we must use the appropriate basic rate set or chaos will
678 	 * ensue; for now callers that want MCS must supply
679 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
680 	 * function so there are two variants, one for MCS and one
681 	 * for legacy rates.
682 	 */
683 	if (flags & IEEE80211_F_DOBRS)
684 		srs = (const struct ieee80211_rateset *)
685 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
686 	else
687 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
688 	for (i = 0; i < nrs->rs_nrates; ) {
689 		if (flags & IEEE80211_F_DOSORT) {
690 			/*
691 			 * Sort rates.
692 			 */
693 			for (j = i + 1; j < nrs->rs_nrates; j++) {
694 				if (IEEE80211_RV(nrs->rs_rates[i]) >
695 				    IEEE80211_RV(nrs->rs_rates[j])) {
696 					r = nrs->rs_rates[i];
697 					nrs->rs_rates[i] = nrs->rs_rates[j];
698 					nrs->rs_rates[j] = r;
699 				}
700 			}
701 		}
702 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
703 		badrate = r;
704 		/*
705 		 * Check for fixed rate.
706 		 */
707 		if (r == ucastrate)
708 			fixedrate = r;
709 		/*
710 		 * Check against supported rates.
711 		 */
712 		rix = findrix(srs, r);
713 		if (flags & IEEE80211_F_DONEGO) {
714 			if (rix < 0) {
715 				/*
716 				 * A rate in the node's rate set is not
717 				 * supported.  If this is a basic rate and we
718 				 * are operating as a STA then this is an error.
719 				 * Otherwise we just discard/ignore the rate.
720 				 */
721 				if ((flags & IEEE80211_F_JOIN) &&
722 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
723 					error++;
724 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
725 				/*
726 				 * Overwrite with the supported rate
727 				 * value so any basic rate bit is set.
728 				 */
729 				nrs->rs_rates[i] = srs->rs_rates[rix];
730 			}
731 		}
732 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
733 			/*
734 			 * Delete unacceptable rates.
735 			 */
736 			nrs->rs_nrates--;
737 			for (j = i; j < nrs->rs_nrates; j++)
738 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
739 			nrs->rs_rates[j] = 0;
740 			continue;
741 		}
742 		if (rix >= 0)
743 			okrate = nrs->rs_rates[i];
744 		i++;
745 	}
746 	if (okrate == 0 || error != 0 ||
747 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
748 	     fixedrate != ucastrate)) {
749 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
750 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
751 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
752 		return badrate | IEEE80211_RATE_BASIC;
753 	} else
754 		return IEEE80211_RV(okrate);
755 }
756 
757 /*
758  * Reset 11g-related state.
759  *
760  * This is for per-VAP ERP/11g state.
761  *
762  * Eventually everything in ieee80211_reset_erp() will be
763  * per-VAP and in here.
764  */
765 void
766 ieee80211_vap_reset_erp(struct ieee80211vap *vap)
767 {
768 	struct ieee80211com *ic = vap->iv_ic;
769 
770 	vap->iv_nonerpsta = 0;
771 	vap->iv_longslotsta = 0;
772 
773 	vap->iv_flags &= ~IEEE80211_F_USEPROT;
774 	/*
775 	 * Set short preamble and ERP barker-preamble flags.
776 	 */
777 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
778 	    (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) {
779 		vap->iv_flags |= IEEE80211_F_SHPREAMBLE;
780 		vap->iv_flags &= ~IEEE80211_F_USEBARKER;
781 	} else {
782 		vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE;
783 		vap->iv_flags |= IEEE80211_F_USEBARKER;
784 	}
785 
786 	/*
787 	 * Short slot time is enabled only when operating in 11g
788 	 * and not in an IBSS.  We must also honor whether or not
789 	 * the driver is capable of doing it.
790 	 */
791 	ieee80211_vap_set_shortslottime(vap,
792 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
793 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
794 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
795 		vap->iv_opmode == IEEE80211_M_HOSTAP &&
796 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
797 }
798 
799 /*
800  * Reset 11g-related state.
801  *
802  * Note this resets the global state and a caller should schedule
803  * a re-check of all the VAPs after setup to update said state.
804  */
805 void
806 ieee80211_reset_erp(struct ieee80211com *ic)
807 {
808 #if 0
809 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
810 	/*
811 	 * Set short preamble and ERP barker-preamble flags.
812 	 */
813 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
814 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
815 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
816 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
817 	} else {
818 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
819 		ic->ic_flags |= IEEE80211_F_USEBARKER;
820 	}
821 #endif
822 	/* XXX TODO: schedule a new per-VAP ERP calculation */
823 }
824 
825 static struct ieee80211_node *
826 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni)
827 {
828 	struct ieee80211_node *obss;
829 
830 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
831 
832 	obss = vap->iv_bss;
833 	vap->iv_bss = ni;
834 
835 	return (obss);
836 }
837 
838 /*
839  * Deferred slot time update.
840  *
841  * For per-VAP slot time configuration, call the VAP
842  * method if the VAP requires it.  Otherwise, just call the
843  * older global method.
844  *
845  * If the per-VAP method is called then it's expected that
846  * the driver/firmware will take care of turning the per-VAP
847  * flags into slot time configuration.
848  *
849  * If the per-VAP method is not called then the global flags will be
850  * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will
851  * be set only if all of the vaps will have it set.
852  *
853  * Look at the comments for vap_update_erp_protmode() for more
854  * background; this assumes all VAPs are on the same channel.
855  */
856 static void
857 vap_update_slot(void *arg, int npending)
858 {
859 	struct ieee80211vap *vap = arg;
860 	struct ieee80211com *ic = vap->iv_ic;
861 	struct ieee80211vap *iv;
862 	int num_shslot = 0, num_lgslot = 0;
863 
864 	/*
865 	 * Per-VAP path - we've already had the flags updated;
866 	 * so just notify the driver and move on.
867 	 */
868 	if (vap->iv_updateslot != NULL) {
869 		vap->iv_updateslot(vap);
870 		return;
871 	}
872 
873 	/*
874 	 * Iterate over all of the VAP flags to update the
875 	 * global flag.
876 	 *
877 	 * If all vaps have short slot enabled then flip on
878 	 * short slot.  If any vap has it disabled then
879 	 * we leave it globally disabled.  This should provide
880 	 * correct behaviour in a multi-BSS scenario where
881 	 * at least one VAP has short slot disabled for some
882 	 * reason.
883 	 */
884 	IEEE80211_LOCK(ic);
885 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
886 		if (iv->iv_flags & IEEE80211_F_SHSLOT)
887 			num_shslot++;
888 		else
889 			num_lgslot++;
890 	}
891 
892 	/*
893 	 * It looks backwards but - if the number of short slot VAPs
894 	 * is zero then we're not short slot.  Else, we have one
895 	 * or more short slot VAPs and we're checking to see if ANY
896 	 * of them have short slot disabled.
897 	 */
898 	if (num_shslot == 0)
899 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
900 	else if (num_lgslot == 0)
901 		ic->ic_flags |= IEEE80211_F_SHSLOT;
902 	IEEE80211_UNLOCK(ic);
903 
904 	/*
905 	 * Call the driver with our new global slot time flags.
906 	 */
907 	if (ic->ic_updateslot != NULL)
908 		ic->ic_updateslot(ic);
909 }
910 
911 /*
912  * Deferred ERP protmode update.
913  *
914  * This currently calculates the global ERP protection mode flag
915  * based on each of the VAPs.  Any VAP with it enabled is enough
916  * for the global flag to be enabled.  All VAPs with it disabled
917  * is enough for it to be disabled.
918  *
919  * This may make sense right now for the supported hardware where
920  * net80211 is controlling the single channel configuration, but
921  * offload firmware that's doing channel changes (eg off-channel
922  * TDLS, off-channel STA, off-channel P2P STA/AP) may get some
923  * silly looking flag updates.
924  *
925  * Ideally the protection mode calculation is done based on the
926  * channel, and all VAPs using that channel will inherit it.
927  * But until that's what net80211 does, this wil have to do.
928  */
929 static void
930 vap_update_erp_protmode(void *arg, int npending)
931 {
932 	struct ieee80211vap *vap = arg;
933 	struct ieee80211com *ic = vap->iv_ic;
934 	struct ieee80211vap *iv;
935 	int enable_protmode = 0;
936 	int non_erp_present = 0;
937 
938 	/*
939 	 * Iterate over all of the VAPs to calculate the overlapping
940 	 * ERP protection mode configuration and ERP present math.
941 	 *
942 	 * For now we assume that if a driver can handle this per-VAP
943 	 * then it'll ignore the ic->ic_protmode variant and instead
944 	 * will look at the vap related flags.
945 	 */
946 	IEEE80211_LOCK(ic);
947 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
948 		if (iv->iv_flags & IEEE80211_F_USEPROT)
949 			enable_protmode = 1;
950 		if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR)
951 			non_erp_present = 1;
952 	}
953 
954 	if (enable_protmode)
955 		ic->ic_flags |= IEEE80211_F_USEPROT;
956 	else
957 		ic->ic_flags &= ~IEEE80211_F_USEPROT;
958 
959 	if (non_erp_present)
960 		ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR;
961 	else
962 		ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR;
963 
964 	/* Beacon update on all VAPs */
965 	ieee80211_notify_erp_locked(ic);
966 
967 	IEEE80211_UNLOCK(ic);
968 
969 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
970 	    "%s: called; enable_protmode=%d, non_erp_present=%d\n",
971 	    __func__, enable_protmode, non_erp_present);
972 
973 	/*
974 	 * Now that the global configuration flags are calculated,
975 	 * notify the VAP about its configuration.
976 	 *
977 	 * The global flags will be used when assembling ERP IEs
978 	 * for multi-VAP operation, even if it's on a different
979 	 * channel.  Yes, that's going to need fixing in the
980 	 * future.
981 	 */
982 	if (vap->iv_erp_protmode_update != NULL)
983 		vap->iv_erp_protmode_update(vap);
984 }
985 
986 /*
987  * Deferred ERP short preamble/barker update.
988  *
989  * All VAPs need to use short preamble for it to be globally
990  * enabled or not.
991  *
992  * Look at the comments for vap_update_erp_protmode() for more
993  * background; this assumes all VAPs are on the same channel.
994  */
995 static void
996 vap_update_preamble(void *arg, int npending)
997 {
998 	struct ieee80211vap *vap = arg;
999 	struct ieee80211com *ic = vap->iv_ic;
1000 	struct ieee80211vap *iv;
1001 	int barker_count = 0, short_preamble_count = 0, count = 0;
1002 
1003 	/*
1004 	 * Iterate over all of the VAPs to calculate the overlapping
1005 	 * short or long preamble configuration.
1006 	 *
1007 	 * For now we assume that if a driver can handle this per-VAP
1008 	 * then it'll ignore the ic->ic_flags variant and instead
1009 	 * will look at the vap related flags.
1010 	 */
1011 	IEEE80211_LOCK(ic);
1012 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1013 		if (iv->iv_flags & IEEE80211_F_USEBARKER)
1014 			barker_count++;
1015 		if (iv->iv_flags & IEEE80211_F_SHPREAMBLE)
1016 			short_preamble_count++;
1017 		count++;
1018 	}
1019 
1020 	/*
1021 	 * As with vap_update_erp_protmode(), the global flags are
1022 	 * currently used for beacon IEs.
1023 	 */
1024 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1025 	    "%s: called; barker_count=%d, short_preamble_count=%d\n",
1026 	    __func__, barker_count, short_preamble_count);
1027 
1028 	/*
1029 	 * Only flip on short preamble if all of the VAPs support
1030 	 * it.
1031 	 */
1032 	if (barker_count == 0 && short_preamble_count == count) {
1033 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
1034 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
1035 	} else {
1036 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
1037 		ic->ic_flags |= IEEE80211_F_USEBARKER;
1038 	}
1039 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1040 	  "%s: global barker=%d preamble=%d\n",
1041 	  __func__,
1042 	  !! (ic->ic_flags & IEEE80211_F_USEBARKER),
1043 	  !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE));
1044 
1045 	/* Beacon update on all VAPs */
1046 	ieee80211_notify_erp_locked(ic);
1047 
1048 	IEEE80211_UNLOCK(ic);
1049 
1050 	/* Driver notification */
1051 	if (vap->iv_preamble_update != NULL)
1052 		vap->iv_preamble_update(vap);
1053 }
1054 
1055 /*
1056  * Deferred HT protmode update and beacon update.
1057  *
1058  * Look at the comments for vap_update_erp_protmode() for more
1059  * background; this assumes all VAPs are on the same channel.
1060  */
1061 static void
1062 vap_update_ht_protmode(void *arg, int npending)
1063 {
1064 	struct ieee80211vap *vap = arg;
1065 	struct ieee80211vap *iv;
1066 	struct ieee80211com *ic = vap->iv_ic;
1067 	int num_vaps = 0, num_pure = 0;
1068 	int num_optional = 0, num_ht2040 = 0, num_nonht = 0;
1069 	int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0;
1070 	int num_nonhtpr = 0;
1071 
1072 	/*
1073 	 * Iterate over all of the VAPs to calculate everything.
1074 	 *
1075 	 * There are a few different flags to calculate:
1076 	 *
1077 	 * + whether there's HT only or HT+legacy stations;
1078 	 * + whether there's HT20, HT40, or HT20+HT40 stations;
1079 	 * + whether the desired protection mode is mixed, pure or
1080 	 *   one of the two above.
1081 	 *
1082 	 * For now we assume that if a driver can handle this per-VAP
1083 	 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode
1084 	 * variant and instead will look at the vap related variables.
1085 	 *
1086 	 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) !
1087 	 */
1088 
1089 	IEEE80211_LOCK(ic);
1090 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) {
1091 		num_vaps++;
1092 		/* overlapping BSSes advertising non-HT status present */
1093 		if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR)
1094 			num_nonht++;
1095 		/* Operating mode flags */
1096 		if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT)
1097 			num_nonhtpr++;
1098 		switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) {
1099 		case IEEE80211_HTINFO_OPMODE_PURE:
1100 			num_pure++;
1101 			break;
1102 		case IEEE80211_HTINFO_OPMODE_PROTOPT:
1103 			num_optional++;
1104 			break;
1105 		case IEEE80211_HTINFO_OPMODE_HT20PR:
1106 			num_ht2040++;
1107 			break;
1108 		}
1109 
1110 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1111 		    "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n",
1112 		    __func__,
1113 		    ieee80211_get_vap_ifname(iv),
1114 		    !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR),
1115 		    iv->iv_curhtprotmode);
1116 
1117 		num_ht_sta += iv->iv_ht_sta_assoc;
1118 		num_ht40_sta += iv->iv_ht40_sta_assoc;
1119 		num_sta += iv->iv_sta_assoc;
1120 	}
1121 
1122 	/*
1123 	 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS
1124 	 * non-HT present), set it here.  This shouldn't be used by
1125 	 * anything but the old overlapping BSS logic so if any drivers
1126 	 * consume it, it's up to date.
1127 	 */
1128 	if (num_nonht > 0)
1129 		ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR;
1130 	else
1131 		ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR;
1132 
1133 	/*
1134 	 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.)
1135 	 *
1136 	 * + If all VAPs are PURE, we can stay PURE.
1137 	 * + If all VAPs are PROTOPT, we can go to PROTOPT.
1138 	 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station.
1139 	 *   Note that we may have a VAP with one HT20 and a VAP with one HT40;
1140 	 *   So we look at the sum ht and sum ht40 sta counts; if we have a
1141 	 *   HT station and the HT20 != HT40 count, we have to do HT20PR here.
1142 	 *   Note all stations need to be HT for this to be an option.
1143 	 * + The fall-through is MIXED, because it means we have some odd
1144 	 *   non HT40-involved combination of opmode and this is the most
1145 	 *   sensible default.
1146 	 */
1147 	ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1148 
1149 	if (num_pure == num_vaps)
1150 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE;
1151 
1152 	if (num_optional == num_vaps)
1153 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT;
1154 
1155 	/*
1156 	 * Note: we need /a/ HT40 station somewhere for this to
1157 	 * be a possibility.
1158 	 */
1159 	if ((num_ht2040 > 0) ||
1160 	    ((num_ht_sta > 0) && (num_ht40_sta > 0) &&
1161 	     (num_ht_sta != num_ht40_sta)))
1162 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR;
1163 
1164 	/*
1165 	 * Step 3 - if any of the stations across the VAPs are
1166 	 * non-HT then this needs to be flipped back to MIXED.
1167 	 */
1168 	if (num_ht_sta != num_sta)
1169 		ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED;
1170 
1171 	/*
1172 	 * Step 4 - If we see any overlapping BSS non-HT stations
1173 	 * via beacons then flip on NONHT_PRESENT.
1174 	 */
1175 	if (num_nonhtpr > 0)
1176 		ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT;
1177 
1178 	/* Notify all VAPs to potentially update their beacons */
1179 	TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next)
1180 		ieee80211_htinfo_notify(iv);
1181 
1182 	IEEE80211_UNLOCK(ic);
1183 
1184 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N,
1185 	  "%s: global: nonht_pr=%d ht_opmode=0x%02x\n",
1186 	  __func__,
1187 	  !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR),
1188 	  ic->ic_curhtprotmode);
1189 
1190 	/* Driver update */
1191 	if (vap->iv_ht_protmode_update != NULL)
1192 		vap->iv_ht_protmode_update(vap);
1193 }
1194 
1195 /*
1196  * Set the short slot time state and notify the driver.
1197  *
1198  * This is the per-VAP slot time state.
1199  */
1200 void
1201 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff)
1202 {
1203 	struct ieee80211com *ic = vap->iv_ic;
1204 
1205 	/* XXX lock? */
1206 
1207 	/*
1208 	 * Only modify the per-VAP slot time.
1209 	 */
1210 	if (onoff)
1211 		vap->iv_flags |= IEEE80211_F_SHSLOT;
1212 	else
1213 		vap->iv_flags &= ~IEEE80211_F_SHSLOT;
1214 
1215 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1216 	    "%s: called; onoff=%d\n", __func__, onoff);
1217 	/* schedule the deferred slot flag update and update */
1218 	ieee80211_runtask(ic, &vap->iv_slot_task);
1219 }
1220 
1221 /*
1222  * Update the VAP short /long / barker preamble state and
1223  * update beacon state if needed.
1224  *
1225  * For now it simply copies the global flags into the per-vap
1226  * flags and schedules the callback.  Later this will support
1227  * both global and per-VAP flags, especially useful for
1228  * and STA+STA multi-channel operation (eg p2p).
1229  */
1230 void
1231 ieee80211_vap_update_preamble(struct ieee80211vap *vap)
1232 {
1233 	struct ieee80211com *ic = vap->iv_ic;
1234 
1235 	/* XXX lock? */
1236 
1237 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1238 	    "%s: called\n", __func__);
1239 	/* schedule the deferred slot flag update and update */
1240 	ieee80211_runtask(ic, &vap->iv_preamble_task);
1241 }
1242 
1243 /*
1244  * Update the VAP 11g protection mode and update beacon state
1245  * if needed.
1246  */
1247 void
1248 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap)
1249 {
1250 	struct ieee80211com *ic = vap->iv_ic;
1251 
1252 	/* XXX lock? */
1253 
1254 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1255 	    "%s: called\n", __func__);
1256 	/* schedule the deferred slot flag update and update */
1257 	ieee80211_runtask(ic, &vap->iv_erp_protmode_task);
1258 }
1259 
1260 /*
1261  * Update the VAP 11n protection mode and update beacon state
1262  * if needed.
1263  */
1264 void
1265 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap)
1266 {
1267 	struct ieee80211com *ic = vap->iv_ic;
1268 
1269 	/* XXX lock? */
1270 
1271 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG,
1272 	    "%s: called\n", __func__);
1273 	/* schedule the deferred protmode update */
1274 	ieee80211_runtask(ic, &vap->iv_ht_protmode_task);
1275 }
1276 
1277 /*
1278  * Check if the specified rate set supports ERP.
1279  * NB: the rate set is assumed to be sorted.
1280  */
1281 int
1282 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
1283 {
1284 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
1285 	int i, j;
1286 
1287 	if (rs->rs_nrates < nitems(rates))
1288 		return 0;
1289 	for (i = 0; i < nitems(rates); i++) {
1290 		for (j = 0; j < rs->rs_nrates; j++) {
1291 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
1292 			if (rates[i] == r)
1293 				goto next;
1294 			if (r > rates[i])
1295 				return 0;
1296 		}
1297 		return 0;
1298 	next:
1299 		;
1300 	}
1301 	return 1;
1302 }
1303 
1304 /*
1305  * Mark the basic rates for the rate table based on the
1306  * operating mode.  For real 11g we mark all the 11b rates
1307  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
1308  * 11b rates.  There's also a pseudo 11a-mode used to mark only
1309  * the basic OFDM rates.
1310  */
1311 static void
1312 setbasicrates(struct ieee80211_rateset *rs,
1313     enum ieee80211_phymode mode, int add)
1314 {
1315 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
1316 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
1317 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
1318 					    /* NB: mixed b/g */
1319 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
1320 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
1321 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
1322 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
1323 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
1324 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
1325 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
1326 					    /* NB: mixed b/g */
1327 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
1328 					    /* NB: mixed b/g */
1329 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
1330 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
1331 	};
1332 	int i, j;
1333 
1334 	for (i = 0; i < rs->rs_nrates; i++) {
1335 		if (!add)
1336 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
1337 		for (j = 0; j < basic[mode].rs_nrates; j++)
1338 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
1339 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
1340 				break;
1341 			}
1342 	}
1343 }
1344 
1345 /*
1346  * Set the basic rates in a rate set.
1347  */
1348 void
1349 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
1350     enum ieee80211_phymode mode)
1351 {
1352 	setbasicrates(rs, mode, 0);
1353 }
1354 
1355 /*
1356  * Add basic rates to a rate set.
1357  */
1358 void
1359 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
1360     enum ieee80211_phymode mode)
1361 {
1362 	setbasicrates(rs, mode, 1);
1363 }
1364 
1365 /*
1366  * WME protocol support.
1367  *
1368  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
1369  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
1370  * Draft 2.0 Test Plan (Appendix D).
1371  *
1372  * Static/Dynamic Turbo mode settings come from Atheros.
1373  */
1374 typedef struct phyParamType {
1375 	uint8_t		aifsn;
1376 	uint8_t		logcwmin;
1377 	uint8_t		logcwmax;
1378 	uint16_t	txopLimit;
1379 	uint8_t 	acm;
1380 } paramType;
1381 
1382 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
1383 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
1384 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
1385 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
1386 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
1387 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
1388 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
1389 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
1390 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
1391 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
1392 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
1393 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
1394 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
1395 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
1396 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
1397 };
1398 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
1399 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
1400 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
1401 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
1402 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
1403 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
1404 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
1405 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
1406 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
1407 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
1408 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
1409 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
1410 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
1411 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
1412 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
1413 };
1414 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
1415 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
1416 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
1417 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
1418 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
1419 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
1420 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
1421 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
1422 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
1423 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
1424 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
1425 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
1426 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
1427 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
1428 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
1429 };
1430 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
1431 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
1432 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
1433 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
1434 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
1435 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
1436 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1437 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1438 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1439 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
1440 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
1441 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
1442 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
1443 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
1444 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
1445 };
1446 
1447 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
1448 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
1449 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
1450 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
1451 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
1452 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
1453 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
1454 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
1455 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
1456 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
1457 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
1458 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
1459 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
1460 };
1461 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
1462 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
1463 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
1464 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
1465 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
1466 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
1467 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
1468 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
1469 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
1470 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
1471 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
1472 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
1473 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
1474 };
1475 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
1476 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
1477 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
1478 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
1479 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
1480 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
1481 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
1482 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1483 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1484 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1485 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1486 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1487 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1488 };
1489 
1490 static void
1491 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1492 {
1493 	wmep->wmep_aifsn = phy->aifsn;
1494 	wmep->wmep_logcwmin = phy->logcwmin;
1495 	wmep->wmep_logcwmax = phy->logcwmax;
1496 	wmep->wmep_txopLimit = phy->txopLimit;
1497 }
1498 
1499 static void
1500 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1501 	struct wmeParams *wmep, const paramType *phy)
1502 {
1503 	wmep->wmep_acm = phy->acm;
1504 	_setifsparams(wmep, phy);
1505 
1506 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1507 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1508 	    ieee80211_wme_acnames[ac], type,
1509 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1510 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1511 }
1512 
1513 static void
1514 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1515 {
1516 	struct ieee80211com *ic = vap->iv_ic;
1517 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1518 	const paramType *pPhyParam, *pBssPhyParam;
1519 	struct wmeParams *wmep;
1520 	enum ieee80211_phymode mode;
1521 	int i;
1522 
1523 	IEEE80211_LOCK_ASSERT(ic);
1524 
1525 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1526 		return;
1527 
1528 	/*
1529 	 * Clear the wme cap_info field so a qoscount from a previous
1530 	 * vap doesn't confuse later code which only parses the beacon
1531 	 * field and updates hardware when said field changes.
1532 	 * Otherwise the hardware is programmed with defaults, not what
1533 	 * the beacon actually announces.
1534 	 *
1535 	 * Note that we can't ever have 0xff as an actual value;
1536 	 * the only valid values are 0..15.
1537 	 */
1538 	wme->wme_wmeChanParams.cap_info = 0xfe;
1539 
1540 	/*
1541 	 * Select mode; we can be called early in which case we
1542 	 * always use auto mode.  We know we'll be called when
1543 	 * entering the RUN state with bsschan setup properly
1544 	 * so state will eventually get set correctly
1545 	 */
1546 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1547 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1548 	else
1549 		mode = IEEE80211_MODE_AUTO;
1550 	for (i = 0; i < WME_NUM_AC; i++) {
1551 		switch (i) {
1552 		case WME_AC_BK:
1553 			pPhyParam = &phyParamForAC_BK[mode];
1554 			pBssPhyParam = &phyParamForAC_BK[mode];
1555 			break;
1556 		case WME_AC_VI:
1557 			pPhyParam = &phyParamForAC_VI[mode];
1558 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1559 			break;
1560 		case WME_AC_VO:
1561 			pPhyParam = &phyParamForAC_VO[mode];
1562 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1563 			break;
1564 		case WME_AC_BE:
1565 		default:
1566 			pPhyParam = &phyParamForAC_BE[mode];
1567 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1568 			break;
1569 		}
1570 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1571 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1572 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1573 		} else {
1574 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1575 		}
1576 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1577 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1578 	}
1579 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1580 	if (vap->iv_bss != NULL) {
1581 		/*
1582 		 * Calculate aggressive mode switching threshold based
1583 		 * on beacon interval.  This doesn't need locking since
1584 		 * we're only called before entering the RUN state at
1585 		 * which point we start sending beacon frames.
1586 		 */
1587 		wme->wme_hipri_switch_thresh =
1588 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1589 		wme->wme_flags &= ~WME_F_AGGRMODE;
1590 		ieee80211_wme_updateparams(vap);
1591 	}
1592 }
1593 
1594 void
1595 ieee80211_wme_initparams(struct ieee80211vap *vap)
1596 {
1597 	struct ieee80211com *ic = vap->iv_ic;
1598 
1599 	IEEE80211_LOCK(ic);
1600 	ieee80211_wme_initparams_locked(vap);
1601 	IEEE80211_UNLOCK(ic);
1602 }
1603 
1604 /*
1605  * Update WME parameters for ourself and the BSS.
1606  */
1607 void
1608 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1609 {
1610 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1611 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1612 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1613 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1614 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1615 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1616 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1617 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1618 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1619 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1620 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1621 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1622 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1623 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1624 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1625 	};
1626 	struct ieee80211com *ic = vap->iv_ic;
1627 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1628 	const struct wmeParams *wmep;
1629 	struct wmeParams *chanp, *bssp;
1630 	enum ieee80211_phymode mode;
1631 	int i;
1632 	int do_aggrmode = 0;
1633 
1634        	/*
1635 	 * Set up the channel access parameters for the physical
1636 	 * device.  First populate the configured settings.
1637 	 */
1638 	for (i = 0; i < WME_NUM_AC; i++) {
1639 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1640 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1641 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1642 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1643 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1644 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1645 
1646 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1647 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1648 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1649 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1650 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1651 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1652 	}
1653 
1654 	/*
1655 	 * Select mode; we can be called early in which case we
1656 	 * always use auto mode.  We know we'll be called when
1657 	 * entering the RUN state with bsschan setup properly
1658 	 * so state will eventually get set correctly
1659 	 */
1660 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1661 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1662 	else
1663 		mode = IEEE80211_MODE_AUTO;
1664 
1665 	/*
1666 	 * This implements aggressive mode as found in certain
1667 	 * vendors' AP's.  When there is significant high
1668 	 * priority (VI/VO) traffic in the BSS throttle back BE
1669 	 * traffic by using conservative parameters.  Otherwise
1670 	 * BE uses aggressive params to optimize performance of
1671 	 * legacy/non-QoS traffic.
1672 	 */
1673 
1674 	/* Hostap? Only if aggressive mode is enabled */
1675         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1676 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1677 		do_aggrmode = 1;
1678 
1679 	/*
1680 	 * Station? Only if we're in a non-QoS BSS.
1681 	 */
1682 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1683 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1684 		do_aggrmode = 1;
1685 
1686 	/*
1687 	 * IBSS? Only if we have WME enabled.
1688 	 */
1689 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1690 	    (vap->iv_flags & IEEE80211_F_WME))
1691 		do_aggrmode = 1;
1692 
1693 	/*
1694 	 * If WME is disabled on this VAP, default to aggressive mode
1695 	 * regardless of the configuration.
1696 	 */
1697 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1698 		do_aggrmode = 1;
1699 
1700 	/* XXX WDS? */
1701 
1702 	/* XXX MBSS? */
1703 
1704 	if (do_aggrmode) {
1705 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1706 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1707 
1708 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1709 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1710 		    aggrParam[mode].logcwmin;
1711 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1712 		    aggrParam[mode].logcwmax;
1713 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1714 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1715 			aggrParam[mode].txopLimit : 0;
1716 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1717 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1718 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1719 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1720 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1721 	}
1722 
1723 	/*
1724 	 * Change the contention window based on the number of associated
1725 	 * stations.  If the number of associated stations is 1 and
1726 	 * aggressive mode is enabled, lower the contention window even
1727 	 * further.
1728 	 */
1729 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1730 	    vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1731 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1732 		    [IEEE80211_MODE_AUTO]	= 3,
1733 		    [IEEE80211_MODE_11A]	= 3,
1734 		    [IEEE80211_MODE_11B]	= 4,
1735 		    [IEEE80211_MODE_11G]	= 3,
1736 		    [IEEE80211_MODE_FH]		= 4,
1737 		    [IEEE80211_MODE_TURBO_A]	= 3,
1738 		    [IEEE80211_MODE_TURBO_G]	= 3,
1739 		    [IEEE80211_MODE_STURBO_A]	= 3,
1740 		    [IEEE80211_MODE_HALF]	= 3,
1741 		    [IEEE80211_MODE_QUARTER]	= 3,
1742 		    [IEEE80211_MODE_11NA]	= 3,
1743 		    [IEEE80211_MODE_11NG]	= 3,
1744 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1745 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1746 		};
1747 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1748 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1749 
1750 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1751 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1752 		    "update %s (chan+bss) logcwmin %u\n",
1753 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1754 	}
1755 
1756 	/* schedule the deferred WME update */
1757 	ieee80211_runtask(ic, &vap->iv_wme_task);
1758 
1759 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1760 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1761 	    vap->iv_opmode == IEEE80211_M_STA ?
1762 		wme->wme_wmeChanParams.cap_info :
1763 		wme->wme_bssChanParams.cap_info);
1764 }
1765 
1766 void
1767 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1768 {
1769 	struct ieee80211com *ic = vap->iv_ic;
1770 
1771 	if (ic->ic_caps & IEEE80211_C_WME) {
1772 		IEEE80211_LOCK(ic);
1773 		ieee80211_wme_updateparams_locked(vap);
1774 		IEEE80211_UNLOCK(ic);
1775 	}
1776 }
1777 
1778 /*
1779  * Fetch the WME parameters for the given VAP.
1780  *
1781  * When net80211 grows p2p, etc support, this may return different
1782  * parameters for each VAP.
1783  */
1784 void
1785 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp)
1786 {
1787 
1788 	memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp));
1789 }
1790 
1791 /*
1792  * For NICs which only support one set of WME parameters (ie, softmac NICs)
1793  * there may be different VAP WME parameters but only one is "active".
1794  * This returns the "NIC" WME parameters for the currently active
1795  * context.
1796  */
1797 void
1798 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp)
1799 {
1800 
1801 	memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp));
1802 }
1803 
1804 /*
1805  * Return whether to use QoS on a given WME queue.
1806  *
1807  * This is intended to be called from the transmit path of softmac drivers
1808  * which are setting NoAck bits in transmit descriptors.
1809  *
1810  * Ideally this would be set in some transmit field before the packet is
1811  * queued to the driver but net80211 isn't quite there yet.
1812  */
1813 int
1814 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac)
1815 {
1816 	/* Bounds/sanity check */
1817 	if (ac < 0 || ac >= WME_NUM_AC)
1818 		return (0);
1819 
1820 	/* Again, there's only one global context for now */
1821 	return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy);
1822 }
1823 
1824 static void
1825 parent_updown(void *arg, int npending)
1826 {
1827 	struct ieee80211com *ic = arg;
1828 
1829 	ic->ic_parent(ic);
1830 }
1831 
1832 static void
1833 update_mcast(void *arg, int npending)
1834 {
1835 	struct ieee80211com *ic = arg;
1836 
1837 	ic->ic_update_mcast(ic);
1838 }
1839 
1840 static void
1841 update_promisc(void *arg, int npending)
1842 {
1843 	struct ieee80211com *ic = arg;
1844 
1845 	ic->ic_update_promisc(ic);
1846 }
1847 
1848 static void
1849 update_channel(void *arg, int npending)
1850 {
1851 	struct ieee80211com *ic = arg;
1852 
1853 	ic->ic_set_channel(ic);
1854 	ieee80211_radiotap_chan_change(ic);
1855 }
1856 
1857 static void
1858 update_chw(void *arg, int npending)
1859 {
1860 	struct ieee80211com *ic = arg;
1861 
1862 	/*
1863 	 * XXX should we defer the channel width _config_ update until now?
1864 	 */
1865 	ic->ic_update_chw(ic);
1866 }
1867 
1868 /*
1869  * Deferred WME parameter and beacon update.
1870  *
1871  * In preparation for per-VAP WME configuration, call the VAP
1872  * method if the VAP requires it.  Otherwise, just call the
1873  * older global method.  There isn't a per-VAP WME configuration
1874  * just yet so for now just use the global configuration.
1875  */
1876 static void
1877 vap_update_wme(void *arg, int npending)
1878 {
1879 	struct ieee80211vap *vap = arg;
1880 	struct ieee80211com *ic = vap->iv_ic;
1881 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1882 
1883 	/* Driver update */
1884 	if (vap->iv_wme_update != NULL)
1885 		vap->iv_wme_update(vap,
1886 		    ic->ic_wme.wme_chanParams.cap_wmeParams);
1887 	else
1888 		ic->ic_wme.wme_update(ic);
1889 
1890 	IEEE80211_LOCK(ic);
1891 	/*
1892 	 * Arrange for the beacon update.
1893 	 *
1894 	 * XXX what about MBSS, WDS?
1895 	 */
1896 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1897 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1898 		/*
1899 		 * Arrange for a beacon update and bump the parameter
1900 		 * set number so associated stations load the new values.
1901 		 */
1902 		wme->wme_bssChanParams.cap_info =
1903 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1904 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1905 	}
1906 	IEEE80211_UNLOCK(ic);
1907 }
1908 
1909 static void
1910 restart_vaps(void *arg, int npending)
1911 {
1912 	struct ieee80211com *ic = arg;
1913 
1914 	ieee80211_suspend_all(ic);
1915 	ieee80211_resume_all(ic);
1916 }
1917 
1918 /*
1919  * Block until the parent is in a known state.  This is
1920  * used after any operations that dispatch a task (e.g.
1921  * to auto-configure the parent device up/down).
1922  */
1923 void
1924 ieee80211_waitfor_parent(struct ieee80211com *ic)
1925 {
1926 	taskqueue_block(ic->ic_tq);
1927 	ieee80211_draintask(ic, &ic->ic_parent_task);
1928 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1929 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1930 	ieee80211_draintask(ic, &ic->ic_chan_task);
1931 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1932 	ieee80211_draintask(ic, &ic->ic_chw_task);
1933 	taskqueue_unblock(ic->ic_tq);
1934 }
1935 
1936 /*
1937  * Check to see whether the current channel needs reset.
1938  *
1939  * Some devices don't handle being given an invalid channel
1940  * in their operating mode very well (eg wpi(4) will throw a
1941  * firmware exception.)
1942  *
1943  * Return 0 if we're ok, 1 if the channel needs to be reset.
1944  *
1945  * See PR kern/202502.
1946  */
1947 static int
1948 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1949 {
1950 	struct ieee80211com *ic = vap->iv_ic;
1951 
1952 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1953 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1954 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1955 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1956 		return (1);
1957 	return (0);
1958 }
1959 
1960 /*
1961  * Reset the curchan to a known good state.
1962  */
1963 static void
1964 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1965 {
1966 	struct ieee80211com *ic = vap->iv_ic;
1967 
1968 	ic->ic_curchan = &ic->ic_channels[0];
1969 }
1970 
1971 /*
1972  * Start a vap running.  If this is the first vap to be
1973  * set running on the underlying device then we
1974  * automatically bring the device up.
1975  */
1976 void
1977 ieee80211_start_locked(struct ieee80211vap *vap)
1978 {
1979 	struct ifnet *ifp = vap->iv_ifp;
1980 	struct ieee80211com *ic = vap->iv_ic;
1981 
1982 	IEEE80211_LOCK_ASSERT(ic);
1983 
1984 	IEEE80211_DPRINTF(vap,
1985 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1986 		"start running, %d vaps running\n", ic->ic_nrunning);
1987 
1988 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1989 		/*
1990 		 * Mark us running.  Note that it's ok to do this first;
1991 		 * if we need to bring the parent device up we defer that
1992 		 * to avoid dropping the com lock.  We expect the device
1993 		 * to respond to being marked up by calling back into us
1994 		 * through ieee80211_start_all at which point we'll come
1995 		 * back in here and complete the work.
1996 		 */
1997 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1998 		ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
1999 
2000 		/*
2001 		 * We are not running; if this we are the first vap
2002 		 * to be brought up auto-up the parent if necessary.
2003 		 */
2004 		if (ic->ic_nrunning++ == 0) {
2005 			/* reset the channel to a known good channel */
2006 			if (ieee80211_start_check_reset_chan(vap))
2007 				ieee80211_start_reset_chan(vap);
2008 
2009 			IEEE80211_DPRINTF(vap,
2010 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2011 			    "%s: up parent %s\n", __func__, ic->ic_name);
2012 			ieee80211_runtask(ic, &ic->ic_parent_task);
2013 			return;
2014 		}
2015 	}
2016 	/*
2017 	 * If the parent is up and running, then kick the
2018 	 * 802.11 state machine as appropriate.
2019 	 */
2020 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
2021 		if (vap->iv_opmode == IEEE80211_M_STA) {
2022 #if 0
2023 			/* XXX bypasses scan too easily; disable for now */
2024 			/*
2025 			 * Try to be intelligent about clocking the state
2026 			 * machine.  If we're currently in RUN state then
2027 			 * we should be able to apply any new state/parameters
2028 			 * simply by re-associating.  Otherwise we need to
2029 			 * re-scan to select an appropriate ap.
2030 			 */
2031 			if (vap->iv_state >= IEEE80211_S_RUN)
2032 				ieee80211_new_state_locked(vap,
2033 				    IEEE80211_S_ASSOC, 1);
2034 			else
2035 #endif
2036 				ieee80211_new_state_locked(vap,
2037 				    IEEE80211_S_SCAN, 0);
2038 		} else {
2039 			/*
2040 			 * For monitor+wds mode there's nothing to do but
2041 			 * start running.  Otherwise if this is the first
2042 			 * vap to be brought up, start a scan which may be
2043 			 * preempted if the station is locked to a particular
2044 			 * channel.
2045 			 */
2046 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
2047 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
2048 			    vap->iv_opmode == IEEE80211_M_WDS)
2049 				ieee80211_new_state_locked(vap,
2050 				    IEEE80211_S_RUN, -1);
2051 			else
2052 				ieee80211_new_state_locked(vap,
2053 				    IEEE80211_S_SCAN, 0);
2054 		}
2055 	}
2056 }
2057 
2058 /*
2059  * Start a single vap.
2060  */
2061 void
2062 ieee80211_init(void *arg)
2063 {
2064 	struct ieee80211vap *vap = arg;
2065 
2066 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2067 	    "%s\n", __func__);
2068 
2069 	IEEE80211_LOCK(vap->iv_ic);
2070 	ieee80211_start_locked(vap);
2071 	IEEE80211_UNLOCK(vap->iv_ic);
2072 }
2073 
2074 /*
2075  * Start all runnable vap's on a device.
2076  */
2077 void
2078 ieee80211_start_all(struct ieee80211com *ic)
2079 {
2080 	struct ieee80211vap *vap;
2081 
2082 	IEEE80211_LOCK(ic);
2083 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2084 		struct ifnet *ifp = vap->iv_ifp;
2085 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2086 			ieee80211_start_locked(vap);
2087 	}
2088 	IEEE80211_UNLOCK(ic);
2089 }
2090 
2091 /*
2092  * Stop a vap.  We force it down using the state machine
2093  * then mark it's ifnet not running.  If this is the last
2094  * vap running on the underlying device then we close it
2095  * too to insure it will be properly initialized when the
2096  * next vap is brought up.
2097  */
2098 void
2099 ieee80211_stop_locked(struct ieee80211vap *vap)
2100 {
2101 	struct ieee80211com *ic = vap->iv_ic;
2102 	struct ifnet *ifp = vap->iv_ifp;
2103 
2104 	IEEE80211_LOCK_ASSERT(ic);
2105 
2106 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2107 	    "stop running, %d vaps running\n", ic->ic_nrunning);
2108 
2109 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
2110 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2111 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
2112 		ieee80211_notify_ifnet_change(vap, IFF_DRV_RUNNING);
2113 		if (--ic->ic_nrunning == 0) {
2114 			IEEE80211_DPRINTF(vap,
2115 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
2116 			    "down parent %s\n", ic->ic_name);
2117 			ieee80211_runtask(ic, &ic->ic_parent_task);
2118 		}
2119 	}
2120 }
2121 
2122 void
2123 ieee80211_stop(struct ieee80211vap *vap)
2124 {
2125 	struct ieee80211com *ic = vap->iv_ic;
2126 
2127 	IEEE80211_LOCK(ic);
2128 	ieee80211_stop_locked(vap);
2129 	IEEE80211_UNLOCK(ic);
2130 }
2131 
2132 /*
2133  * Stop all vap's running on a device.
2134  */
2135 void
2136 ieee80211_stop_all(struct ieee80211com *ic)
2137 {
2138 	struct ieee80211vap *vap;
2139 
2140 	IEEE80211_LOCK(ic);
2141 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2142 		struct ifnet *ifp = vap->iv_ifp;
2143 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
2144 			ieee80211_stop_locked(vap);
2145 	}
2146 	IEEE80211_UNLOCK(ic);
2147 
2148 	ieee80211_waitfor_parent(ic);
2149 }
2150 
2151 /*
2152  * Stop all vap's running on a device and arrange
2153  * for those that were running to be resumed.
2154  */
2155 void
2156 ieee80211_suspend_all(struct ieee80211com *ic)
2157 {
2158 	struct ieee80211vap *vap;
2159 
2160 	IEEE80211_LOCK(ic);
2161 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2162 		struct ifnet *ifp = vap->iv_ifp;
2163 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
2164 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
2165 			ieee80211_stop_locked(vap);
2166 		}
2167 	}
2168 	IEEE80211_UNLOCK(ic);
2169 
2170 	ieee80211_waitfor_parent(ic);
2171 }
2172 
2173 /*
2174  * Start all vap's marked for resume.
2175  */
2176 void
2177 ieee80211_resume_all(struct ieee80211com *ic)
2178 {
2179 	struct ieee80211vap *vap;
2180 
2181 	IEEE80211_LOCK(ic);
2182 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2183 		struct ifnet *ifp = vap->iv_ifp;
2184 		if (!IFNET_IS_UP_RUNNING(ifp) &&
2185 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
2186 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
2187 			ieee80211_start_locked(vap);
2188 		}
2189 	}
2190 	IEEE80211_UNLOCK(ic);
2191 }
2192 
2193 /*
2194  * Restart all vap's running on a device.
2195  */
2196 void
2197 ieee80211_restart_all(struct ieee80211com *ic)
2198 {
2199 	/*
2200 	 * NB: do not use ieee80211_runtask here, we will
2201 	 * block & drain net80211 taskqueue.
2202 	 */
2203 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
2204 }
2205 
2206 void
2207 ieee80211_beacon_miss(struct ieee80211com *ic)
2208 {
2209 	IEEE80211_LOCK(ic);
2210 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2211 		/* Process in a taskq, the handler may reenter the driver */
2212 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
2213 	}
2214 	IEEE80211_UNLOCK(ic);
2215 }
2216 
2217 static void
2218 beacon_miss(void *arg, int npending)
2219 {
2220 	struct ieee80211com *ic = arg;
2221 	struct ieee80211vap *vap;
2222 
2223 	IEEE80211_LOCK(ic);
2224 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2225 		/*
2226 		 * We only pass events through for sta vap's in RUN+ state;
2227 		 * may be too restrictive but for now this saves all the
2228 		 * handlers duplicating these checks.
2229 		 */
2230 		if (vap->iv_opmode == IEEE80211_M_STA &&
2231 		    vap->iv_state >= IEEE80211_S_RUN &&
2232 		    vap->iv_bmiss != NULL)
2233 			vap->iv_bmiss(vap);
2234 	}
2235 	IEEE80211_UNLOCK(ic);
2236 }
2237 
2238 static void
2239 beacon_swmiss(void *arg, int npending)
2240 {
2241 	struct ieee80211vap *vap = arg;
2242 	struct ieee80211com *ic = vap->iv_ic;
2243 
2244 	IEEE80211_LOCK(ic);
2245 	if (vap->iv_state >= IEEE80211_S_RUN) {
2246 		/* XXX Call multiple times if npending > zero? */
2247 		vap->iv_bmiss(vap);
2248 	}
2249 	IEEE80211_UNLOCK(ic);
2250 }
2251 
2252 /*
2253  * Software beacon miss handling.  Check if any beacons
2254  * were received in the last period.  If not post a
2255  * beacon miss; otherwise reset the counter.
2256  */
2257 void
2258 ieee80211_swbmiss(void *arg)
2259 {
2260 	struct ieee80211vap *vap = arg;
2261 	struct ieee80211com *ic = vap->iv_ic;
2262 
2263 	IEEE80211_LOCK_ASSERT(ic);
2264 
2265 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2266 	    ("wrong state %d", vap->iv_state));
2267 
2268 	if (ic->ic_flags & IEEE80211_F_SCAN) {
2269 		/*
2270 		 * If scanning just ignore and reset state.  If we get a
2271 		 * bmiss after coming out of scan because we haven't had
2272 		 * time to receive a beacon then we should probe the AP
2273 		 * before posting a real bmiss (unless iv_bmiss_max has
2274 		 * been artifiically lowered).  A cleaner solution might
2275 		 * be to disable the timer on scan start/end but to handle
2276 		 * case of multiple sta vap's we'd need to disable the
2277 		 * timers of all affected vap's.
2278 		 */
2279 		vap->iv_swbmiss_count = 0;
2280 	} else if (vap->iv_swbmiss_count == 0) {
2281 		if (vap->iv_bmiss != NULL)
2282 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
2283 	} else
2284 		vap->iv_swbmiss_count = 0;
2285 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
2286 		ieee80211_swbmiss, vap);
2287 }
2288 
2289 /*
2290  * Start an 802.11h channel switch.  We record the parameters,
2291  * mark the operation pending, notify each vap through the
2292  * beacon update mechanism so it can update the beacon frame
2293  * contents, and then switch vap's to CSA state to block outbound
2294  * traffic.  Devices that handle CSA directly can use the state
2295  * switch to do the right thing so long as they call
2296  * ieee80211_csa_completeswitch when it's time to complete the
2297  * channel change.  Devices that depend on the net80211 layer can
2298  * use ieee80211_beacon_update to handle the countdown and the
2299  * channel switch.
2300  */
2301 void
2302 ieee80211_csa_startswitch(struct ieee80211com *ic,
2303 	struct ieee80211_channel *c, int mode, int count)
2304 {
2305 	struct ieee80211vap *vap;
2306 
2307 	IEEE80211_LOCK_ASSERT(ic);
2308 
2309 	ic->ic_csa_newchan = c;
2310 	ic->ic_csa_mode = mode;
2311 	ic->ic_csa_count = count;
2312 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
2313 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2314 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2315 		    vap->iv_opmode == IEEE80211_M_IBSS ||
2316 		    vap->iv_opmode == IEEE80211_M_MBSS)
2317 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
2318 		/* switch to CSA state to block outbound traffic */
2319 		if (vap->iv_state == IEEE80211_S_RUN)
2320 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
2321 	}
2322 	ieee80211_notify_csa(ic, c, mode, count);
2323 }
2324 
2325 /*
2326  * Complete the channel switch by transitioning all CSA VAPs to RUN.
2327  * This is called by both the completion and cancellation functions
2328  * so each VAP is placed back in the RUN state and can thus transmit.
2329  */
2330 static void
2331 csa_completeswitch(struct ieee80211com *ic)
2332 {
2333 	struct ieee80211vap *vap;
2334 
2335 	ic->ic_csa_newchan = NULL;
2336 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
2337 
2338 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2339 		if (vap->iv_state == IEEE80211_S_CSA)
2340 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2341 }
2342 
2343 /*
2344  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
2345  * We clear state and move all vap's in CSA state to RUN state
2346  * so they can again transmit.
2347  *
2348  * Although this may not be completely correct, update the BSS channel
2349  * for each VAP to the newly configured channel. The setcurchan sets
2350  * the current operating channel for the interface (so the radio does
2351  * switch over) but the VAP BSS isn't updated, leading to incorrectly
2352  * reported information via ioctl.
2353  */
2354 void
2355 ieee80211_csa_completeswitch(struct ieee80211com *ic)
2356 {
2357 	struct ieee80211vap *vap;
2358 
2359 	IEEE80211_LOCK_ASSERT(ic);
2360 
2361 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
2362 
2363 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
2364 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2365 		if (vap->iv_state == IEEE80211_S_CSA)
2366 			vap->iv_bss->ni_chan = ic->ic_curchan;
2367 
2368 	csa_completeswitch(ic);
2369 }
2370 
2371 /*
2372  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
2373  * We clear state and move all vap's in CSA state to RUN state
2374  * so they can again transmit.
2375  */
2376 void
2377 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
2378 {
2379 	IEEE80211_LOCK_ASSERT(ic);
2380 
2381 	csa_completeswitch(ic);
2382 }
2383 
2384 /*
2385  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
2386  * We clear state and move all vap's in CAC state to RUN state.
2387  */
2388 void
2389 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
2390 {
2391 	struct ieee80211com *ic = vap0->iv_ic;
2392 	struct ieee80211vap *vap;
2393 
2394 	IEEE80211_LOCK(ic);
2395 	/*
2396 	 * Complete CAC state change for lead vap first; then
2397 	 * clock all the other vap's waiting.
2398 	 */
2399 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
2400 	    ("wrong state %d", vap0->iv_state));
2401 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
2402 
2403 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
2404 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
2405 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
2406 	IEEE80211_UNLOCK(ic);
2407 }
2408 
2409 /*
2410  * Force all vap's other than the specified vap to the INIT state
2411  * and mark them as waiting for a scan to complete.  These vaps
2412  * will be brought up when the scan completes and the scanning vap
2413  * reaches RUN state by wakeupwaiting.
2414  */
2415 static void
2416 markwaiting(struct ieee80211vap *vap0)
2417 {
2418 	struct ieee80211com *ic = vap0->iv_ic;
2419 	struct ieee80211vap *vap;
2420 
2421 	IEEE80211_LOCK_ASSERT(ic);
2422 
2423 	/*
2424 	 * A vap list entry can not disappear since we are running on the
2425 	 * taskqueue and a vap destroy will queue and drain another state
2426 	 * change task.
2427 	 */
2428 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2429 		if (vap == vap0)
2430 			continue;
2431 		if (vap->iv_state != IEEE80211_S_INIT) {
2432 			/* NB: iv_newstate may drop the lock */
2433 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
2434 			IEEE80211_LOCK_ASSERT(ic);
2435 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2436 		}
2437 	}
2438 }
2439 
2440 /*
2441  * Wakeup all vap's waiting for a scan to complete.  This is the
2442  * companion to markwaiting (above) and is used to coordinate
2443  * multiple vaps scanning.
2444  * This is called from the state taskqueue.
2445  */
2446 static void
2447 wakeupwaiting(struct ieee80211vap *vap0)
2448 {
2449 	struct ieee80211com *ic = vap0->iv_ic;
2450 	struct ieee80211vap *vap;
2451 
2452 	IEEE80211_LOCK_ASSERT(ic);
2453 
2454 	/*
2455 	 * A vap list entry can not disappear since we are running on the
2456 	 * taskqueue and a vap destroy will queue and drain another state
2457 	 * change task.
2458 	 */
2459 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
2460 		if (vap == vap0)
2461 			continue;
2462 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
2463 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2464 			/* NB: sta's cannot go INIT->RUN */
2465 			/* NB: iv_newstate may drop the lock */
2466 
2467 			/*
2468 			 * This is problematic if the interface has OACTIVE
2469 			 * set.  Only the deferred ieee80211_newstate_cb()
2470 			 * will end up actually /clearing/ the OACTIVE
2471 			 * flag on a state transition to RUN from a non-RUN
2472 			 * state.
2473 			 *
2474 			 * But, we're not actually deferring this callback;
2475 			 * and when the deferred call occurs it shows up as
2476 			 * a RUN->RUN transition!  So the flag isn't/wasn't
2477 			 * cleared!
2478 			 *
2479 			 * I'm also not sure if it's correct to actually
2480 			 * do the transitions here fully through the deferred
2481 			 * paths either as other things can be invoked as
2482 			 * part of that state machine.
2483 			 *
2484 			 * So just keep this in mind when looking at what
2485 			 * the markwaiting/wakeupwaiting routines are doing
2486 			 * and how they invoke vap state changes.
2487 			 */
2488 
2489 			vap->iv_newstate(vap,
2490 			    vap->iv_opmode == IEEE80211_M_STA ?
2491 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
2492 			IEEE80211_LOCK_ASSERT(ic);
2493 		}
2494 	}
2495 }
2496 
2497 static int
2498 _ieee80211_newstate_get_next_empty_slot(struct ieee80211vap *vap)
2499 {
2500 	int nstate_num;
2501 
2502 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2503 
2504 	if (vap->iv_nstate_n >= NET80211_IV_NSTATE_NUM)
2505 		return (-1);
2506 
2507 	nstate_num = vap->iv_nstate_b + vap->iv_nstate_n;
2508 	nstate_num %= NET80211_IV_NSTATE_NUM;
2509 	vap->iv_nstate_n++;
2510 
2511 	return (nstate_num);
2512 }
2513 
2514 static int
2515 _ieee80211_newstate_get_next_pending_slot(struct ieee80211vap *vap)
2516 {
2517 	int nstate_num;
2518 
2519 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2520 
2521 	KASSERT(vap->iv_nstate_n > 0, ("%s: vap %p iv_nstate_n %d\n",
2522 	    __func__, vap, vap->iv_nstate_n));
2523 
2524 	nstate_num = vap->iv_nstate_b;
2525 	vap->iv_nstate_b++;
2526 	if (vap->iv_nstate_b >= NET80211_IV_NSTATE_NUM)
2527 		vap->iv_nstate_b = 0;
2528 	vap->iv_nstate_n--;
2529 
2530 	return (nstate_num);
2531 }
2532 
2533 static int
2534 _ieee80211_newstate_get_npending(struct ieee80211vap *vap)
2535 {
2536 
2537 	IEEE80211_LOCK_ASSERT(vap->iv_ic);
2538 
2539 	return (vap->iv_nstate_n);
2540 }
2541 
2542 /*
2543  * Handle post state change work common to all operating modes.
2544  */
2545 static void
2546 ieee80211_newstate_cb(void *xvap, int npending)
2547 {
2548 	struct ieee80211vap *vap = xvap;
2549 	struct ieee80211com *ic = vap->iv_ic;
2550 	enum ieee80211_state nstate, ostate;
2551 	int arg, rc, nstate_num;
2552 
2553 	KASSERT(npending == 1, ("%s: vap %p with npending %d != 1\n",
2554 	    __func__, vap, npending));
2555 	IEEE80211_LOCK(ic);
2556 	nstate_num = _ieee80211_newstate_get_next_pending_slot(vap);
2557 
2558 	/*
2559 	 * Update the historic fields for now as they are used in some
2560 	 * drivers and reduce code changes for now.
2561 	 */
2562 	vap->iv_nstate = nstate = vap->iv_nstates[nstate_num];
2563 	arg = vap->iv_nstate_args[nstate_num];
2564 
2565 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2566 	    "%s:%d: running state update %s -> %s (%d)\n",
2567 	    __func__, __LINE__,
2568 	    ieee80211_state_name[vap->iv_state],
2569 	    ieee80211_state_name[nstate],
2570 	    npending);
2571 
2572 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
2573 		/*
2574 		 * We have been requested to drop back to the INIT before
2575 		 * proceeding to the new state.
2576 		 */
2577 		/* Deny any state changes while we are here. */
2578 		vap->iv_nstate = IEEE80211_S_INIT;
2579 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2580 		    "%s: %s -> %s arg %d -> %s arg %d\n", __func__,
2581 		    ieee80211_state_name[vap->iv_state],
2582 		    ieee80211_state_name[vap->iv_nstate], 0,
2583 		    ieee80211_state_name[nstate], arg);
2584 		vap->iv_newstate(vap, vap->iv_nstate, 0);
2585 		IEEE80211_LOCK_ASSERT(ic);
2586 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
2587 		    IEEE80211_FEXT_STATEWAIT);
2588 		/* enqueue new state transition after cancel_scan() task */
2589 		ieee80211_new_state_locked(vap, nstate, arg);
2590 		goto done;
2591 	}
2592 
2593 	ostate = vap->iv_state;
2594 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
2595 		/*
2596 		 * SCAN was forced; e.g. on beacon miss.  Force other running
2597 		 * vap's to INIT state and mark them as waiting for the scan to
2598 		 * complete.  This insures they don't interfere with our
2599 		 * scanning.  Since we are single threaded the vaps can not
2600 		 * transition again while we are executing.
2601 		 *
2602 		 * XXX not always right, assumes ap follows sta
2603 		 */
2604 		markwaiting(vap);
2605 	}
2606 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2607 	    "%s: %s -> %s arg %d\n", __func__,
2608 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
2609 
2610 	rc = vap->iv_newstate(vap, nstate, arg);
2611 	IEEE80211_LOCK_ASSERT(ic);
2612 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
2613 	if (rc != 0) {
2614 		/* State transition failed */
2615 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
2616 		KASSERT(nstate != IEEE80211_S_INIT,
2617 		    ("INIT state change failed"));
2618 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2619 		    "%s: %s returned error %d\n", __func__,
2620 		    ieee80211_state_name[nstate], rc);
2621 		goto done;
2622 	}
2623 
2624 	/*
2625 	 * Handle the case of a RUN->RUN transition occuring when STA + AP
2626 	 * VAPs occur on the same radio.
2627 	 *
2628 	 * The mark and wakeup waiting routines call iv_newstate() directly,
2629 	 * but they do not end up deferring state changes here.
2630 	 * Thus, although the VAP newstate method sees a transition
2631 	 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN
2632 	 * transition.  If OACTIVE is set then it is never cleared.
2633 	 *
2634 	 * So, if we're here and the state is RUN, just clear OACTIVE.
2635 	 * At some point if the markwaiting/wakeupwaiting paths end up
2636 	 * also invoking the deferred state updates then this will
2637 	 * be no-op code - and also if OACTIVE is finally retired, it'll
2638 	 * also be no-op code.
2639 	 */
2640 	if (nstate == IEEE80211_S_RUN) {
2641 		/*
2642 		 * OACTIVE may be set on the vap if the upper layer
2643 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2644 		 * RUN state.  Clear it and restart xmit.
2645 		 *
2646 		 * Note this can also happen as a result of SLEEP->RUN
2647 		 * (i.e. coming out of power save mode).
2648 		 *
2649 		 * Historically this was done only for a state change
2650 		 * but is needed earlier; see next comment.  The 2nd half
2651 		 * of the work is still only done in case of an actual
2652 		 * state change below.
2653 		 */
2654 		/*
2655 		 * Unblock the VAP queue; a RUN->RUN state can happen
2656 		 * on a STA+AP setup on the AP vap.  See wakeupwaiting().
2657 		 */
2658 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2659 
2660 		/*
2661 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2662 		 */
2663 	}
2664 
2665 	/* No actual transition, skip post processing */
2666 	if (ostate == nstate)
2667 		goto done;
2668 
2669 	if (nstate == IEEE80211_S_RUN) {
2670 
2671 		/* bring up any vaps waiting on us */
2672 		wakeupwaiting(vap);
2673 	} else if (nstate == IEEE80211_S_INIT) {
2674 		/*
2675 		 * Flush the scan cache if we did the last scan (XXX?)
2676 		 * and flush any frames on send queues from this vap.
2677 		 * Note the mgt q is used only for legacy drivers and
2678 		 * will go away shortly.
2679 		 */
2680 		ieee80211_scan_flush(vap);
2681 
2682 		/*
2683 		 * XXX TODO: ic/vap queue flush
2684 		 */
2685 	}
2686 done:
2687 	IEEE80211_UNLOCK(ic);
2688 }
2689 
2690 /*
2691  * Public interface for initiating a state machine change.
2692  * This routine single-threads the request and coordinates
2693  * the scheduling of multiple vaps for the purpose of selecting
2694  * an operating channel.  Specifically the following scenarios
2695  * are handled:
2696  * o only one vap can be selecting a channel so on transition to
2697  *   SCAN state if another vap is already scanning then
2698  *   mark the caller for later processing and return without
2699  *   doing anything (XXX? expectations by caller of synchronous operation)
2700  * o only one vap can be doing CAC of a channel so on transition to
2701  *   CAC state if another vap is already scanning for radar then
2702  *   mark the caller for later processing and return without
2703  *   doing anything (XXX? expectations by caller of synchronous operation)
2704  * o if another vap is already running when a request is made
2705  *   to SCAN then an operating channel has been chosen; bypass
2706  *   the scan and just join the channel
2707  *
2708  * Note that the state change call is done through the iv_newstate
2709  * method pointer so any driver routine gets invoked.  The driver
2710  * will normally call back into operating mode-specific
2711  * ieee80211_newstate routines (below) unless it needs to completely
2712  * bypass the state machine (e.g. because the firmware has it's
2713  * own idea how things should work).  Bypassing the net80211 layer
2714  * is usually a mistake and indicates lack of proper integration
2715  * with the net80211 layer.
2716  */
2717 int
2718 ieee80211_new_state_locked(struct ieee80211vap *vap,
2719 	enum ieee80211_state nstate, int arg)
2720 {
2721 	struct ieee80211com *ic = vap->iv_ic;
2722 	struct ieee80211vap *vp;
2723 	enum ieee80211_state ostate;
2724 	int nrunning, nscanning, nstate_num;
2725 
2726 	IEEE80211_LOCK_ASSERT(ic);
2727 
2728 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2729 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2730 		    ((vap->iv_state == IEEE80211_S_INIT ||
2731 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2732 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2733 		    nstate > IEEE80211_S_SCAN)) {
2734 			/*
2735 			 * XXX The vap is being stopped/started,
2736 			 * do not allow any other state changes
2737 			 * until this is completed.
2738 			 */
2739 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2740 			    "%s:%d: %s -> %s (%s) transition discarded\n",
2741 			    __func__, __LINE__,
2742 			    ieee80211_state_name[vap->iv_state],
2743 			    ieee80211_state_name[nstate],
2744 			    ieee80211_state_name[vap->iv_nstate]);
2745 			return -1;
2746 		}
2747 	}
2748 
2749 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2750 	    "%s:%d: starting state update %s -> %s (%s)\n",
2751 	    __func__, __LINE__,
2752 	    ieee80211_state_name[vap->iv_state],
2753 	    ieee80211_state_name[vap->iv_nstate],
2754 	    ieee80211_state_name[nstate]);
2755 
2756 	nrunning = nscanning = 0;
2757 	/* XXX can track this state instead of calculating */
2758 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2759 		if (vp != vap) {
2760 			if (vp->iv_state >= IEEE80211_S_RUN)
2761 				nrunning++;
2762 			/* XXX doesn't handle bg scan */
2763 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2764 			else if (vp->iv_state > IEEE80211_S_INIT)
2765 				nscanning++;
2766 		}
2767 	}
2768 	/*
2769 	 * Look ahead for the "old state" at that point when the last queued
2770 	 * state transition is run.
2771 	 */
2772 	if (vap->iv_nstate_n == 0) {
2773 		ostate = vap->iv_state;
2774 	} else {
2775 		nstate_num = (vap->iv_nstate_b + vap->iv_nstate_n - 1) % NET80211_IV_NSTATE_NUM;
2776 		ostate = vap->iv_nstates[nstate_num];
2777 	}
2778 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2779 	    "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__,
2780 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg,
2781 	    nrunning, nscanning);
2782 	switch (nstate) {
2783 	case IEEE80211_S_SCAN:
2784 		if (ostate == IEEE80211_S_INIT) {
2785 			/*
2786 			 * INIT -> SCAN happens on initial bringup.
2787 			 */
2788 			KASSERT(!(nscanning && nrunning),
2789 			    ("%d scanning and %d running", nscanning, nrunning));
2790 			if (nscanning) {
2791 				/*
2792 				 * Someone is scanning, defer our state
2793 				 * change until the work has completed.
2794 				 */
2795 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2796 				    "%s: defer %s -> %s\n",
2797 				    __func__, ieee80211_state_name[ostate],
2798 				    ieee80211_state_name[nstate]);
2799 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2800 				return 0;
2801 			}
2802 			if (nrunning) {
2803 				/*
2804 				 * Someone is operating; just join the channel
2805 				 * they have chosen.
2806 				 */
2807 				/* XXX kill arg? */
2808 				/* XXX check each opmode, adhoc? */
2809 				if (vap->iv_opmode == IEEE80211_M_STA)
2810 					nstate = IEEE80211_S_SCAN;
2811 				else
2812 					nstate = IEEE80211_S_RUN;
2813 #ifdef IEEE80211_DEBUG
2814 				if (nstate != IEEE80211_S_SCAN) {
2815 					IEEE80211_DPRINTF(vap,
2816 					    IEEE80211_MSG_STATE,
2817 					    "%s: override, now %s -> %s\n",
2818 					    __func__,
2819 					    ieee80211_state_name[ostate],
2820 					    ieee80211_state_name[nstate]);
2821 				}
2822 #endif
2823 			}
2824 		}
2825 		break;
2826 	case IEEE80211_S_RUN:
2827 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2828 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2829 		    nscanning) {
2830 			/*
2831 			 * Legacy WDS with someone else scanning; don't
2832 			 * go online until that completes as we should
2833 			 * follow the other vap to the channel they choose.
2834 			 */
2835 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2836 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2837 			     ieee80211_state_name[ostate],
2838 			     ieee80211_state_name[nstate]);
2839 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2840 			return 0;
2841 		}
2842 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2843 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2844 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2845 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2846 			/*
2847 			 * This is a DFS channel, transition to CAC state
2848 			 * instead of RUN.  This allows us to initiate
2849 			 * Channel Availability Check (CAC) as specified
2850 			 * by 11h/DFS.
2851 			 */
2852 			nstate = IEEE80211_S_CAC;
2853 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2854 			     "%s: override %s -> %s (DFS)\n", __func__,
2855 			     ieee80211_state_name[ostate],
2856 			     ieee80211_state_name[nstate]);
2857 		}
2858 		break;
2859 	case IEEE80211_S_INIT:
2860 		/* cancel any scan in progress */
2861 		ieee80211_cancel_scan(vap);
2862 		if (ostate == IEEE80211_S_INIT ) {
2863 			/* XXX don't believe this */
2864 			/* INIT -> INIT. nothing to do */
2865 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2866 		}
2867 		/* fall thru... */
2868 	default:
2869 		break;
2870 	}
2871 	/*
2872 	 * Defer the state change to a thread.
2873 	 * We support up-to NET80211_IV_NSTATE_NUM pending state changes
2874 	 * using a separate task for each. Otherwise, if we enqueue
2875 	 * more than one state change they will be folded together,
2876 	 * npedning will be > 1 and we may run then out of sequence with
2877 	 * other events.
2878 	 * This is kind-of a hack after 10 years but we know how to provoke
2879 	 * these cases now (and seen them in the wild).
2880 	 */
2881 	nstate_num = _ieee80211_newstate_get_next_empty_slot(vap);
2882 	if (nstate_num == -1) {
2883 		/*
2884 		 * This is really bad and we should just go kaboom.
2885 		 * Instead drop it.  No one checks the return code anyway.
2886 		 */
2887 		ic_printf(ic, "%s:%d: pending %s -> %s (now to %s) "
2888 		    "transition lost. %d/%d pending state changes:\n",
2889 		    __func__, __LINE__,
2890 		    ieee80211_state_name[vap->iv_state],
2891 		    ieee80211_state_name[vap->iv_nstate],
2892 		    ieee80211_state_name[nstate],
2893 		    _ieee80211_newstate_get_npending(vap),
2894 		    NET80211_IV_NSTATE_NUM);
2895 
2896 		return (EAGAIN);
2897 	}
2898 	vap->iv_nstates[nstate_num] = nstate;
2899 	vap->iv_nstate_args[nstate_num] = arg;
2900 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2901 	ieee80211_runtask(ic, &vap->iv_nstate_task[nstate_num]);
2902 	return EINPROGRESS;
2903 }
2904 
2905 int
2906 ieee80211_new_state(struct ieee80211vap *vap,
2907 	enum ieee80211_state nstate, int arg)
2908 {
2909 	struct ieee80211com *ic = vap->iv_ic;
2910 	int rc;
2911 
2912 	IEEE80211_LOCK(ic);
2913 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2914 	IEEE80211_UNLOCK(ic);
2915 	return rc;
2916 }
2917