1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_media.h> 47 #include <net/ethernet.h> /* XXX for ether_sprintf */ 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_adhoc.h> 51 #include <net80211/ieee80211_sta.h> 52 #include <net80211/ieee80211_hostap.h> 53 #include <net80211/ieee80211_wds.h> 54 #ifdef IEEE80211_SUPPORT_MESH 55 #include <net80211/ieee80211_mesh.h> 56 #endif 57 #include <net80211/ieee80211_monitor.h> 58 #include <net80211/ieee80211_input.h> 59 60 /* XXX tunables */ 61 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 62 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 63 64 const char *ieee80211_mgt_subtype_name[] = { 65 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 66 "probe_req", "probe_resp", "reserved#6", "reserved#7", 67 "beacon", "atim", "disassoc", "auth", 68 "deauth", "action", "action_noack", "reserved#15" 69 }; 70 const char *ieee80211_ctl_subtype_name[] = { 71 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 72 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 73 "reserved#8", "reserved#9", "ps_poll", "rts", 74 "cts", "ack", "cf_end", "cf_end_ack" 75 }; 76 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 77 "IBSS", /* IEEE80211_M_IBSS */ 78 "STA", /* IEEE80211_M_STA */ 79 "WDS", /* IEEE80211_M_WDS */ 80 "AHDEMO", /* IEEE80211_M_AHDEMO */ 81 "HOSTAP", /* IEEE80211_M_HOSTAP */ 82 "MONITOR", /* IEEE80211_M_MONITOR */ 83 "MBSS" /* IEEE80211_M_MBSS */ 84 }; 85 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 86 "INIT", /* IEEE80211_S_INIT */ 87 "SCAN", /* IEEE80211_S_SCAN */ 88 "AUTH", /* IEEE80211_S_AUTH */ 89 "ASSOC", /* IEEE80211_S_ASSOC */ 90 "CAC", /* IEEE80211_S_CAC */ 91 "RUN", /* IEEE80211_S_RUN */ 92 "CSA", /* IEEE80211_S_CSA */ 93 "SLEEP", /* IEEE80211_S_SLEEP */ 94 }; 95 const char *ieee80211_wme_acnames[] = { 96 "WME_AC_BE", 97 "WME_AC_BK", 98 "WME_AC_VI", 99 "WME_AC_VO", 100 "WME_UPSD", 101 }; 102 103 static void beacon_miss(void *, int); 104 static void beacon_swmiss(void *, int); 105 static void parent_updown(void *, int); 106 static void update_mcast(void *, int); 107 static void update_promisc(void *, int); 108 static void update_channel(void *, int); 109 static void update_chw(void *, int); 110 static void update_wme(void *, int); 111 static void restart_vaps(void *, int); 112 static void ieee80211_newstate_cb(void *, int); 113 114 static int 115 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 116 const struct ieee80211_bpf_params *params) 117 { 118 119 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 120 m_freem(m); 121 return ENETDOWN; 122 } 123 124 void 125 ieee80211_proto_attach(struct ieee80211com *ic) 126 { 127 uint8_t hdrlen; 128 129 /* override the 802.3 setting */ 130 hdrlen = ic->ic_headroom 131 + sizeof(struct ieee80211_qosframe_addr4) 132 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 133 + IEEE80211_WEP_EXTIVLEN; 134 /* XXX no way to recalculate on ifdetach */ 135 if (ALIGN(hdrlen) > max_linkhdr) { 136 /* XXX sanity check... */ 137 max_linkhdr = ALIGN(hdrlen); 138 max_hdr = max_linkhdr + max_protohdr; 139 max_datalen = MHLEN - max_hdr; 140 } 141 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 142 143 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 144 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 145 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 146 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 147 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 148 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 149 TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic); 150 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 151 152 ic->ic_wme.wme_hipri_switch_hysteresis = 153 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 154 155 /* initialize management frame handlers */ 156 ic->ic_send_mgmt = ieee80211_send_mgmt; 157 ic->ic_raw_xmit = null_raw_xmit; 158 159 ieee80211_adhoc_attach(ic); 160 ieee80211_sta_attach(ic); 161 ieee80211_wds_attach(ic); 162 ieee80211_hostap_attach(ic); 163 #ifdef IEEE80211_SUPPORT_MESH 164 ieee80211_mesh_attach(ic); 165 #endif 166 ieee80211_monitor_attach(ic); 167 } 168 169 void 170 ieee80211_proto_detach(struct ieee80211com *ic) 171 { 172 ieee80211_monitor_detach(ic); 173 #ifdef IEEE80211_SUPPORT_MESH 174 ieee80211_mesh_detach(ic); 175 #endif 176 ieee80211_hostap_detach(ic); 177 ieee80211_wds_detach(ic); 178 ieee80211_adhoc_detach(ic); 179 ieee80211_sta_detach(ic); 180 } 181 182 static void 183 null_update_beacon(struct ieee80211vap *vap, int item) 184 { 185 } 186 187 void 188 ieee80211_proto_vattach(struct ieee80211vap *vap) 189 { 190 struct ieee80211com *ic = vap->iv_ic; 191 struct ifnet *ifp = vap->iv_ifp; 192 int i; 193 194 /* override the 802.3 setting */ 195 ifp->if_hdrlen = ic->ic_headroom 196 + sizeof(struct ieee80211_qosframe_addr4) 197 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 198 + IEEE80211_WEP_EXTIVLEN; 199 200 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 201 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 202 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 203 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 204 callout_init(&vap->iv_mgtsend, 1); 205 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 206 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 207 /* 208 * Install default tx rate handling: no fixed rate, lowest 209 * supported rate for mgmt and multicast frames. Default 210 * max retry count. These settings can be changed by the 211 * driver and/or user applications. 212 */ 213 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 214 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 215 216 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 217 218 /* 219 * Setting the management rate to MCS 0 assumes that the 220 * BSS Basic rate set is empty and the BSS Basic MCS set 221 * is not. 222 * 223 * Since we're not checking this, default to the lowest 224 * defined rate for this mode. 225 * 226 * At least one 11n AP (DLINK DIR-825) is reported to drop 227 * some MCS management traffic (eg BA response frames.) 228 * 229 * See also: 9.6.0 of the 802.11n-2009 specification. 230 */ 231 #ifdef NOTYET 232 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 233 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 234 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 235 } else { 236 vap->iv_txparms[i].mgmtrate = 237 rs->rs_rates[0] & IEEE80211_RATE_VAL; 238 vap->iv_txparms[i].mcastrate = 239 rs->rs_rates[0] & IEEE80211_RATE_VAL; 240 } 241 #endif 242 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 243 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 244 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 245 } 246 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 247 248 vap->iv_update_beacon = null_update_beacon; 249 vap->iv_deliver_data = ieee80211_deliver_data; 250 251 /* attach support for operating mode */ 252 ic->ic_vattach[vap->iv_opmode](vap); 253 } 254 255 void 256 ieee80211_proto_vdetach(struct ieee80211vap *vap) 257 { 258 #define FREEAPPIE(ie) do { \ 259 if (ie != NULL) \ 260 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 261 } while (0) 262 /* 263 * Detach operating mode module. 264 */ 265 if (vap->iv_opdetach != NULL) 266 vap->iv_opdetach(vap); 267 /* 268 * This should not be needed as we detach when reseting 269 * the state but be conservative here since the 270 * authenticator may do things like spawn kernel threads. 271 */ 272 if (vap->iv_auth->ia_detach != NULL) 273 vap->iv_auth->ia_detach(vap); 274 /* 275 * Detach any ACL'ator. 276 */ 277 if (vap->iv_acl != NULL) 278 vap->iv_acl->iac_detach(vap); 279 280 FREEAPPIE(vap->iv_appie_beacon); 281 FREEAPPIE(vap->iv_appie_probereq); 282 FREEAPPIE(vap->iv_appie_proberesp); 283 FREEAPPIE(vap->iv_appie_assocreq); 284 FREEAPPIE(vap->iv_appie_assocresp); 285 FREEAPPIE(vap->iv_appie_wpa); 286 #undef FREEAPPIE 287 } 288 289 /* 290 * Simple-minded authenticator module support. 291 */ 292 293 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 294 /* XXX well-known names */ 295 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 296 "wlan_internal", /* IEEE80211_AUTH_NONE */ 297 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 298 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 299 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 300 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 301 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 302 }; 303 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 304 305 static const struct ieee80211_authenticator auth_internal = { 306 .ia_name = "wlan_internal", 307 .ia_attach = NULL, 308 .ia_detach = NULL, 309 .ia_node_join = NULL, 310 .ia_node_leave = NULL, 311 }; 312 313 /* 314 * Setup internal authenticators once; they are never unregistered. 315 */ 316 static void 317 ieee80211_auth_setup(void) 318 { 319 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 320 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 321 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 322 } 323 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 324 325 const struct ieee80211_authenticator * 326 ieee80211_authenticator_get(int auth) 327 { 328 if (auth >= IEEE80211_AUTH_MAX) 329 return NULL; 330 if (authenticators[auth] == NULL) 331 ieee80211_load_module(auth_modnames[auth]); 332 return authenticators[auth]; 333 } 334 335 void 336 ieee80211_authenticator_register(int type, 337 const struct ieee80211_authenticator *auth) 338 { 339 if (type >= IEEE80211_AUTH_MAX) 340 return; 341 authenticators[type] = auth; 342 } 343 344 void 345 ieee80211_authenticator_unregister(int type) 346 { 347 348 if (type >= IEEE80211_AUTH_MAX) 349 return; 350 authenticators[type] = NULL; 351 } 352 353 /* 354 * Very simple-minded ACL module support. 355 */ 356 /* XXX just one for now */ 357 static const struct ieee80211_aclator *acl = NULL; 358 359 void 360 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 361 { 362 printf("wlan: %s acl policy registered\n", iac->iac_name); 363 acl = iac; 364 } 365 366 void 367 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 368 { 369 if (acl == iac) 370 acl = NULL; 371 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 372 } 373 374 const struct ieee80211_aclator * 375 ieee80211_aclator_get(const char *name) 376 { 377 if (acl == NULL) 378 ieee80211_load_module("wlan_acl"); 379 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 380 } 381 382 void 383 ieee80211_print_essid(const uint8_t *essid, int len) 384 { 385 const uint8_t *p; 386 int i; 387 388 if (len > IEEE80211_NWID_LEN) 389 len = IEEE80211_NWID_LEN; 390 /* determine printable or not */ 391 for (i = 0, p = essid; i < len; i++, p++) { 392 if (*p < ' ' || *p > 0x7e) 393 break; 394 } 395 if (i == len) { 396 printf("\""); 397 for (i = 0, p = essid; i < len; i++, p++) 398 printf("%c", *p); 399 printf("\""); 400 } else { 401 printf("0x"); 402 for (i = 0, p = essid; i < len; i++, p++) 403 printf("%02x", *p); 404 } 405 } 406 407 void 408 ieee80211_dump_pkt(struct ieee80211com *ic, 409 const uint8_t *buf, int len, int rate, int rssi) 410 { 411 const struct ieee80211_frame *wh; 412 int i; 413 414 wh = (const struct ieee80211_frame *)buf; 415 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 416 case IEEE80211_FC1_DIR_NODS: 417 printf("NODS %s", ether_sprintf(wh->i_addr2)); 418 printf("->%s", ether_sprintf(wh->i_addr1)); 419 printf("(%s)", ether_sprintf(wh->i_addr3)); 420 break; 421 case IEEE80211_FC1_DIR_TODS: 422 printf("TODS %s", ether_sprintf(wh->i_addr2)); 423 printf("->%s", ether_sprintf(wh->i_addr3)); 424 printf("(%s)", ether_sprintf(wh->i_addr1)); 425 break; 426 case IEEE80211_FC1_DIR_FROMDS: 427 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 428 printf("->%s", ether_sprintf(wh->i_addr1)); 429 printf("(%s)", ether_sprintf(wh->i_addr2)); 430 break; 431 case IEEE80211_FC1_DIR_DSTODS: 432 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 433 printf("->%s", ether_sprintf(wh->i_addr3)); 434 printf("(%s", ether_sprintf(wh->i_addr2)); 435 printf("->%s)", ether_sprintf(wh->i_addr1)); 436 break; 437 } 438 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 439 case IEEE80211_FC0_TYPE_DATA: 440 printf(" data"); 441 break; 442 case IEEE80211_FC0_TYPE_MGT: 443 printf(" %s", ieee80211_mgt_subtype_name[ 444 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 445 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 446 break; 447 default: 448 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 449 break; 450 } 451 if (IEEE80211_QOS_HAS_SEQ(wh)) { 452 const struct ieee80211_qosframe *qwh = 453 (const struct ieee80211_qosframe *)buf; 454 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 455 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 456 } 457 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 458 int off; 459 460 off = ieee80211_anyhdrspace(ic, wh); 461 printf(" WEP [IV %.02x %.02x %.02x", 462 buf[off+0], buf[off+1], buf[off+2]); 463 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 464 printf(" %.02x %.02x %.02x", 465 buf[off+4], buf[off+5], buf[off+6]); 466 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 467 } 468 if (rate >= 0) 469 printf(" %dM", rate / 2); 470 if (rssi >= 0) 471 printf(" +%d", rssi); 472 printf("\n"); 473 if (len > 0) { 474 for (i = 0; i < len; i++) { 475 if ((i & 1) == 0) 476 printf(" "); 477 printf("%02x", buf[i]); 478 } 479 printf("\n"); 480 } 481 } 482 483 static __inline int 484 findrix(const struct ieee80211_rateset *rs, int r) 485 { 486 int i; 487 488 for (i = 0; i < rs->rs_nrates; i++) 489 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 490 return i; 491 return -1; 492 } 493 494 int 495 ieee80211_fix_rate(struct ieee80211_node *ni, 496 struct ieee80211_rateset *nrs, int flags) 497 { 498 struct ieee80211vap *vap = ni->ni_vap; 499 struct ieee80211com *ic = ni->ni_ic; 500 int i, j, rix, error; 501 int okrate, badrate, fixedrate, ucastrate; 502 const struct ieee80211_rateset *srs; 503 uint8_t r; 504 505 error = 0; 506 okrate = badrate = 0; 507 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 508 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 509 /* 510 * Workaround awkwardness with fixed rate. We are called 511 * to check both the legacy rate set and the HT rate set 512 * but we must apply any legacy fixed rate check only to the 513 * legacy rate set and vice versa. We cannot tell what type 514 * of rate set we've been given (legacy or HT) but we can 515 * distinguish the fixed rate type (MCS have 0x80 set). 516 * So to deal with this the caller communicates whether to 517 * check MCS or legacy rate using the flags and we use the 518 * type of any fixed rate to avoid applying an MCS to a 519 * legacy rate and vice versa. 520 */ 521 if (ucastrate & 0x80) { 522 if (flags & IEEE80211_F_DOFRATE) 523 flags &= ~IEEE80211_F_DOFRATE; 524 } else if ((ucastrate & 0x80) == 0) { 525 if (flags & IEEE80211_F_DOFMCS) 526 flags &= ~IEEE80211_F_DOFMCS; 527 } 528 /* NB: required to make MCS match below work */ 529 ucastrate &= IEEE80211_RATE_VAL; 530 } 531 fixedrate = IEEE80211_FIXED_RATE_NONE; 532 /* 533 * XXX we are called to process both MCS and legacy rates; 534 * we must use the appropriate basic rate set or chaos will 535 * ensue; for now callers that want MCS must supply 536 * IEEE80211_F_DOBRS; at some point we'll need to split this 537 * function so there are two variants, one for MCS and one 538 * for legacy rates. 539 */ 540 if (flags & IEEE80211_F_DOBRS) 541 srs = (const struct ieee80211_rateset *) 542 ieee80211_get_suphtrates(ic, ni->ni_chan); 543 else 544 srs = ieee80211_get_suprates(ic, ni->ni_chan); 545 for (i = 0; i < nrs->rs_nrates; ) { 546 if (flags & IEEE80211_F_DOSORT) { 547 /* 548 * Sort rates. 549 */ 550 for (j = i + 1; j < nrs->rs_nrates; j++) { 551 if (IEEE80211_RV(nrs->rs_rates[i]) > 552 IEEE80211_RV(nrs->rs_rates[j])) { 553 r = nrs->rs_rates[i]; 554 nrs->rs_rates[i] = nrs->rs_rates[j]; 555 nrs->rs_rates[j] = r; 556 } 557 } 558 } 559 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 560 badrate = r; 561 /* 562 * Check for fixed rate. 563 */ 564 if (r == ucastrate) 565 fixedrate = r; 566 /* 567 * Check against supported rates. 568 */ 569 rix = findrix(srs, r); 570 if (flags & IEEE80211_F_DONEGO) { 571 if (rix < 0) { 572 /* 573 * A rate in the node's rate set is not 574 * supported. If this is a basic rate and we 575 * are operating as a STA then this is an error. 576 * Otherwise we just discard/ignore the rate. 577 */ 578 if ((flags & IEEE80211_F_JOIN) && 579 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 580 error++; 581 } else if ((flags & IEEE80211_F_JOIN) == 0) { 582 /* 583 * Overwrite with the supported rate 584 * value so any basic rate bit is set. 585 */ 586 nrs->rs_rates[i] = srs->rs_rates[rix]; 587 } 588 } 589 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 590 /* 591 * Delete unacceptable rates. 592 */ 593 nrs->rs_nrates--; 594 for (j = i; j < nrs->rs_nrates; j++) 595 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 596 nrs->rs_rates[j] = 0; 597 continue; 598 } 599 if (rix >= 0) 600 okrate = nrs->rs_rates[i]; 601 i++; 602 } 603 if (okrate == 0 || error != 0 || 604 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 605 fixedrate != ucastrate)) { 606 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 607 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 608 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 609 return badrate | IEEE80211_RATE_BASIC; 610 } else 611 return IEEE80211_RV(okrate); 612 } 613 614 /* 615 * Reset 11g-related state. 616 */ 617 void 618 ieee80211_reset_erp(struct ieee80211com *ic) 619 { 620 ic->ic_flags &= ~IEEE80211_F_USEPROT; 621 ic->ic_nonerpsta = 0; 622 ic->ic_longslotsta = 0; 623 /* 624 * Short slot time is enabled only when operating in 11g 625 * and not in an IBSS. We must also honor whether or not 626 * the driver is capable of doing it. 627 */ 628 ieee80211_set_shortslottime(ic, 629 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 630 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 631 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 632 ic->ic_opmode == IEEE80211_M_HOSTAP && 633 (ic->ic_caps & IEEE80211_C_SHSLOT))); 634 /* 635 * Set short preamble and ERP barker-preamble flags. 636 */ 637 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 638 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 639 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 640 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 641 } else { 642 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 643 ic->ic_flags |= IEEE80211_F_USEBARKER; 644 } 645 } 646 647 /* 648 * Set the short slot time state and notify the driver. 649 */ 650 void 651 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 652 { 653 if (onoff) 654 ic->ic_flags |= IEEE80211_F_SHSLOT; 655 else 656 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 657 /* notify driver */ 658 if (ic->ic_updateslot != NULL) 659 ic->ic_updateslot(ic); 660 } 661 662 /* 663 * Check if the specified rate set supports ERP. 664 * NB: the rate set is assumed to be sorted. 665 */ 666 int 667 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 668 { 669 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 670 int i, j; 671 672 if (rs->rs_nrates < nitems(rates)) 673 return 0; 674 for (i = 0; i < nitems(rates); i++) { 675 for (j = 0; j < rs->rs_nrates; j++) { 676 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 677 if (rates[i] == r) 678 goto next; 679 if (r > rates[i]) 680 return 0; 681 } 682 return 0; 683 next: 684 ; 685 } 686 return 1; 687 } 688 689 /* 690 * Mark the basic rates for the rate table based on the 691 * operating mode. For real 11g we mark all the 11b rates 692 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 693 * 11b rates. There's also a pseudo 11a-mode used to mark only 694 * the basic OFDM rates. 695 */ 696 static void 697 setbasicrates(struct ieee80211_rateset *rs, 698 enum ieee80211_phymode mode, int add) 699 { 700 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 701 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 702 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 703 /* NB: mixed b/g */ 704 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 705 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 706 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 707 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 708 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 709 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 710 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 711 /* NB: mixed b/g */ 712 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 713 }; 714 int i, j; 715 716 for (i = 0; i < rs->rs_nrates; i++) { 717 if (!add) 718 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 719 for (j = 0; j < basic[mode].rs_nrates; j++) 720 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 721 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 722 break; 723 } 724 } 725 } 726 727 /* 728 * Set the basic rates in a rate set. 729 */ 730 void 731 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 732 enum ieee80211_phymode mode) 733 { 734 setbasicrates(rs, mode, 0); 735 } 736 737 /* 738 * Add basic rates to a rate set. 739 */ 740 void 741 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 742 enum ieee80211_phymode mode) 743 { 744 setbasicrates(rs, mode, 1); 745 } 746 747 /* 748 * WME protocol support. 749 * 750 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 751 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 752 * Draft 2.0 Test Plan (Appendix D). 753 * 754 * Static/Dynamic Turbo mode settings come from Atheros. 755 */ 756 typedef struct phyParamType { 757 uint8_t aifsn; 758 uint8_t logcwmin; 759 uint8_t logcwmax; 760 uint16_t txopLimit; 761 uint8_t acm; 762 } paramType; 763 764 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 765 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 767 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 768 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 769 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 770 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 771 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 772 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 773 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 774 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 775 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 776 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 777 }; 778 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 779 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 781 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 782 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 783 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 784 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 785 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 786 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 787 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 788 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 789 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 790 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 791 }; 792 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 793 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 794 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 795 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 796 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 797 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 798 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 799 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 800 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 801 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 802 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 803 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 804 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 805 }; 806 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 807 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 808 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 809 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 810 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 811 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 812 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 813 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 814 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 815 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 816 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 817 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 818 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 819 }; 820 821 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 822 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 824 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 825 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 826 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 827 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 828 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 829 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 830 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 831 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 832 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 833 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 834 }; 835 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 836 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 837 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 838 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 839 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 840 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 841 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 842 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 843 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 844 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 845 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 846 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 847 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 848 }; 849 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 850 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 851 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 852 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 853 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 854 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 855 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 856 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 857 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 858 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 859 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 860 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 861 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 862 }; 863 864 static void 865 _setifsparams(struct wmeParams *wmep, const paramType *phy) 866 { 867 wmep->wmep_aifsn = phy->aifsn; 868 wmep->wmep_logcwmin = phy->logcwmin; 869 wmep->wmep_logcwmax = phy->logcwmax; 870 wmep->wmep_txopLimit = phy->txopLimit; 871 } 872 873 static void 874 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 875 struct wmeParams *wmep, const paramType *phy) 876 { 877 wmep->wmep_acm = phy->acm; 878 _setifsparams(wmep, phy); 879 880 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 881 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 882 ieee80211_wme_acnames[ac], type, 883 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 884 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 885 } 886 887 static void 888 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 889 { 890 struct ieee80211com *ic = vap->iv_ic; 891 struct ieee80211_wme_state *wme = &ic->ic_wme; 892 const paramType *pPhyParam, *pBssPhyParam; 893 struct wmeParams *wmep; 894 enum ieee80211_phymode mode; 895 int i; 896 897 IEEE80211_LOCK_ASSERT(ic); 898 899 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 900 return; 901 902 /* 903 * Clear the wme cap_info field so a qoscount from a previous 904 * vap doesn't confuse later code which only parses the beacon 905 * field and updates hardware when said field changes. 906 * Otherwise the hardware is programmed with defaults, not what 907 * the beacon actually announces. 908 */ 909 wme->wme_wmeChanParams.cap_info = 0; 910 911 /* 912 * Select mode; we can be called early in which case we 913 * always use auto mode. We know we'll be called when 914 * entering the RUN state with bsschan setup properly 915 * so state will eventually get set correctly 916 */ 917 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 918 mode = ieee80211_chan2mode(ic->ic_bsschan); 919 else 920 mode = IEEE80211_MODE_AUTO; 921 for (i = 0; i < WME_NUM_AC; i++) { 922 switch (i) { 923 case WME_AC_BK: 924 pPhyParam = &phyParamForAC_BK[mode]; 925 pBssPhyParam = &phyParamForAC_BK[mode]; 926 break; 927 case WME_AC_VI: 928 pPhyParam = &phyParamForAC_VI[mode]; 929 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 930 break; 931 case WME_AC_VO: 932 pPhyParam = &phyParamForAC_VO[mode]; 933 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 934 break; 935 case WME_AC_BE: 936 default: 937 pPhyParam = &phyParamForAC_BE[mode]; 938 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 939 break; 940 } 941 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 942 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 943 setwmeparams(vap, "chan", i, wmep, pPhyParam); 944 } else { 945 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 946 } 947 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 948 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 949 } 950 /* NB: check ic_bss to avoid NULL deref on initial attach */ 951 if (vap->iv_bss != NULL) { 952 /* 953 * Calculate agressive mode switching threshold based 954 * on beacon interval. This doesn't need locking since 955 * we're only called before entering the RUN state at 956 * which point we start sending beacon frames. 957 */ 958 wme->wme_hipri_switch_thresh = 959 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 960 wme->wme_flags &= ~WME_F_AGGRMODE; 961 ieee80211_wme_updateparams(vap); 962 } 963 } 964 965 void 966 ieee80211_wme_initparams(struct ieee80211vap *vap) 967 { 968 struct ieee80211com *ic = vap->iv_ic; 969 970 IEEE80211_LOCK(ic); 971 ieee80211_wme_initparams_locked(vap); 972 IEEE80211_UNLOCK(ic); 973 } 974 975 /* 976 * Update WME parameters for ourself and the BSS. 977 */ 978 void 979 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 980 { 981 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 982 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 983 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 984 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 985 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 986 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 987 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 988 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 989 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 990 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 991 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 992 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 993 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 994 }; 995 struct ieee80211com *ic = vap->iv_ic; 996 struct ieee80211_wme_state *wme = &ic->ic_wme; 997 const struct wmeParams *wmep; 998 struct wmeParams *chanp, *bssp; 999 enum ieee80211_phymode mode; 1000 int i; 1001 int do_aggrmode = 0; 1002 1003 /* 1004 * Set up the channel access parameters for the physical 1005 * device. First populate the configured settings. 1006 */ 1007 for (i = 0; i < WME_NUM_AC; i++) { 1008 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1009 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1010 chanp->wmep_aifsn = wmep->wmep_aifsn; 1011 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1012 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1013 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1014 1015 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1016 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1017 chanp->wmep_aifsn = wmep->wmep_aifsn; 1018 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1019 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1020 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1021 } 1022 1023 /* 1024 * Select mode; we can be called early in which case we 1025 * always use auto mode. We know we'll be called when 1026 * entering the RUN state with bsschan setup properly 1027 * so state will eventually get set correctly 1028 */ 1029 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1030 mode = ieee80211_chan2mode(ic->ic_bsschan); 1031 else 1032 mode = IEEE80211_MODE_AUTO; 1033 1034 /* 1035 * This implements agressive mode as found in certain 1036 * vendors' AP's. When there is significant high 1037 * priority (VI/VO) traffic in the BSS throttle back BE 1038 * traffic by using conservative parameters. Otherwise 1039 * BE uses agressive params to optimize performance of 1040 * legacy/non-QoS traffic. 1041 */ 1042 1043 /* Hostap? Only if aggressive mode is enabled */ 1044 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1045 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1046 do_aggrmode = 1; 1047 1048 /* 1049 * Station? Only if we're in a non-QoS BSS. 1050 */ 1051 else if ((vap->iv_opmode == IEEE80211_M_STA && 1052 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1053 do_aggrmode = 1; 1054 1055 /* 1056 * IBSS? Only if we we have WME enabled. 1057 */ 1058 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1059 (vap->iv_flags & IEEE80211_F_WME)) 1060 do_aggrmode = 1; 1061 1062 /* 1063 * If WME is disabled on this VAP, default to aggressive mode 1064 * regardless of the configuration. 1065 */ 1066 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1067 do_aggrmode = 1; 1068 1069 /* XXX WDS? */ 1070 1071 /* XXX MBSS? */ 1072 1073 if (do_aggrmode) { 1074 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1075 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1076 1077 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1078 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1079 aggrParam[mode].logcwmin; 1080 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1081 aggrParam[mode].logcwmax; 1082 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1083 (vap->iv_flags & IEEE80211_F_BURST) ? 1084 aggrParam[mode].txopLimit : 0; 1085 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1086 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1087 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1088 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1089 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1090 } 1091 1092 1093 /* 1094 * Change the contention window based on the number of associated 1095 * stations. If the number of associated stations is 1 and 1096 * aggressive mode is enabled, lower the contention window even 1097 * further. 1098 */ 1099 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1100 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1101 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1102 [IEEE80211_MODE_AUTO] = 3, 1103 [IEEE80211_MODE_11A] = 3, 1104 [IEEE80211_MODE_11B] = 4, 1105 [IEEE80211_MODE_11G] = 3, 1106 [IEEE80211_MODE_FH] = 4, 1107 [IEEE80211_MODE_TURBO_A] = 3, 1108 [IEEE80211_MODE_TURBO_G] = 3, 1109 [IEEE80211_MODE_STURBO_A] = 3, 1110 [IEEE80211_MODE_HALF] = 3, 1111 [IEEE80211_MODE_QUARTER] = 3, 1112 [IEEE80211_MODE_11NA] = 3, 1113 [IEEE80211_MODE_11NG] = 3, 1114 }; 1115 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1116 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1117 1118 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1119 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1120 "update %s (chan+bss) logcwmin %u\n", 1121 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1122 } 1123 1124 /* 1125 * Arrange for the beacon update. 1126 * 1127 * XXX what about MBSS, WDS? 1128 */ 1129 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1130 || vap->iv_opmode == IEEE80211_M_IBSS) { 1131 /* 1132 * Arrange for a beacon update and bump the parameter 1133 * set number so associated stations load the new values. 1134 */ 1135 wme->wme_bssChanParams.cap_info = 1136 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1137 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1138 } 1139 1140 /* schedule the deferred WME update */ 1141 ieee80211_runtask(ic, &ic->ic_wme_task); 1142 1143 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1144 "%s: WME params updated, cap_info 0x%x\n", __func__, 1145 vap->iv_opmode == IEEE80211_M_STA ? 1146 wme->wme_wmeChanParams.cap_info : 1147 wme->wme_bssChanParams.cap_info); 1148 } 1149 1150 void 1151 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1152 { 1153 struct ieee80211com *ic = vap->iv_ic; 1154 1155 if (ic->ic_caps & IEEE80211_C_WME) { 1156 IEEE80211_LOCK(ic); 1157 ieee80211_wme_updateparams_locked(vap); 1158 IEEE80211_UNLOCK(ic); 1159 } 1160 } 1161 1162 static void 1163 parent_updown(void *arg, int npending) 1164 { 1165 struct ieee80211com *ic = arg; 1166 1167 ic->ic_parent(ic); 1168 } 1169 1170 static void 1171 update_mcast(void *arg, int npending) 1172 { 1173 struct ieee80211com *ic = arg; 1174 1175 ic->ic_update_mcast(ic); 1176 } 1177 1178 static void 1179 update_promisc(void *arg, int npending) 1180 { 1181 struct ieee80211com *ic = arg; 1182 1183 ic->ic_update_promisc(ic); 1184 } 1185 1186 static void 1187 update_channel(void *arg, int npending) 1188 { 1189 struct ieee80211com *ic = arg; 1190 1191 ic->ic_set_channel(ic); 1192 ieee80211_radiotap_chan_change(ic); 1193 } 1194 1195 static void 1196 update_chw(void *arg, int npending) 1197 { 1198 struct ieee80211com *ic = arg; 1199 1200 /* 1201 * XXX should we defer the channel width _config_ update until now? 1202 */ 1203 ic->ic_update_chw(ic); 1204 } 1205 1206 static void 1207 update_wme(void *arg, int npending) 1208 { 1209 struct ieee80211com *ic = arg; 1210 1211 /* 1212 * XXX should we defer the WME configuration update until now? 1213 */ 1214 ic->ic_wme.wme_update(ic); 1215 } 1216 1217 static void 1218 restart_vaps(void *arg, int npending) 1219 { 1220 struct ieee80211com *ic = arg; 1221 1222 ieee80211_suspend_all(ic); 1223 ieee80211_resume_all(ic); 1224 } 1225 1226 /* 1227 * Block until the parent is in a known state. This is 1228 * used after any operations that dispatch a task (e.g. 1229 * to auto-configure the parent device up/down). 1230 */ 1231 void 1232 ieee80211_waitfor_parent(struct ieee80211com *ic) 1233 { 1234 taskqueue_block(ic->ic_tq); 1235 ieee80211_draintask(ic, &ic->ic_parent_task); 1236 ieee80211_draintask(ic, &ic->ic_mcast_task); 1237 ieee80211_draintask(ic, &ic->ic_promisc_task); 1238 ieee80211_draintask(ic, &ic->ic_chan_task); 1239 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1240 ieee80211_draintask(ic, &ic->ic_chw_task); 1241 ieee80211_draintask(ic, &ic->ic_wme_task); 1242 taskqueue_unblock(ic->ic_tq); 1243 } 1244 1245 /* 1246 * Check to see whether the current channel needs reset. 1247 * 1248 * Some devices don't handle being given an invalid channel 1249 * in their operating mode very well (eg wpi(4) will throw a 1250 * firmware exception.) 1251 * 1252 * Return 0 if we're ok, 1 if the channel needs to be reset. 1253 * 1254 * See PR kern/202502. 1255 */ 1256 static int 1257 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1258 { 1259 struct ieee80211com *ic = vap->iv_ic; 1260 1261 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1262 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1263 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1264 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1265 return (1); 1266 return (0); 1267 } 1268 1269 /* 1270 * Reset the curchan to a known good state. 1271 */ 1272 static void 1273 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1274 { 1275 struct ieee80211com *ic = vap->iv_ic; 1276 1277 ic->ic_curchan = &ic->ic_channels[0]; 1278 } 1279 1280 /* 1281 * Start a vap running. If this is the first vap to be 1282 * set running on the underlying device then we 1283 * automatically bring the device up. 1284 */ 1285 void 1286 ieee80211_start_locked(struct ieee80211vap *vap) 1287 { 1288 struct ifnet *ifp = vap->iv_ifp; 1289 struct ieee80211com *ic = vap->iv_ic; 1290 1291 IEEE80211_LOCK_ASSERT(ic); 1292 1293 IEEE80211_DPRINTF(vap, 1294 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1295 "start running, %d vaps running\n", ic->ic_nrunning); 1296 1297 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1298 /* 1299 * Mark us running. Note that it's ok to do this first; 1300 * if we need to bring the parent device up we defer that 1301 * to avoid dropping the com lock. We expect the device 1302 * to respond to being marked up by calling back into us 1303 * through ieee80211_start_all at which point we'll come 1304 * back in here and complete the work. 1305 */ 1306 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1307 /* 1308 * We are not running; if this we are the first vap 1309 * to be brought up auto-up the parent if necessary. 1310 */ 1311 if (ic->ic_nrunning++ == 0) { 1312 1313 /* reset the channel to a known good channel */ 1314 if (ieee80211_start_check_reset_chan(vap)) 1315 ieee80211_start_reset_chan(vap); 1316 1317 IEEE80211_DPRINTF(vap, 1318 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1319 "%s: up parent %s\n", __func__, ic->ic_name); 1320 ieee80211_runtask(ic, &ic->ic_parent_task); 1321 return; 1322 } 1323 } 1324 /* 1325 * If the parent is up and running, then kick the 1326 * 802.11 state machine as appropriate. 1327 */ 1328 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1329 if (vap->iv_opmode == IEEE80211_M_STA) { 1330 #if 0 1331 /* XXX bypasses scan too easily; disable for now */ 1332 /* 1333 * Try to be intelligent about clocking the state 1334 * machine. If we're currently in RUN state then 1335 * we should be able to apply any new state/parameters 1336 * simply by re-associating. Otherwise we need to 1337 * re-scan to select an appropriate ap. 1338 */ 1339 if (vap->iv_state >= IEEE80211_S_RUN) 1340 ieee80211_new_state_locked(vap, 1341 IEEE80211_S_ASSOC, 1); 1342 else 1343 #endif 1344 ieee80211_new_state_locked(vap, 1345 IEEE80211_S_SCAN, 0); 1346 } else { 1347 /* 1348 * For monitor+wds mode there's nothing to do but 1349 * start running. Otherwise if this is the first 1350 * vap to be brought up, start a scan which may be 1351 * preempted if the station is locked to a particular 1352 * channel. 1353 */ 1354 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1355 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1356 vap->iv_opmode == IEEE80211_M_WDS) 1357 ieee80211_new_state_locked(vap, 1358 IEEE80211_S_RUN, -1); 1359 else 1360 ieee80211_new_state_locked(vap, 1361 IEEE80211_S_SCAN, 0); 1362 } 1363 } 1364 } 1365 1366 /* 1367 * Start a single vap. 1368 */ 1369 void 1370 ieee80211_init(void *arg) 1371 { 1372 struct ieee80211vap *vap = arg; 1373 1374 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1375 "%s\n", __func__); 1376 1377 IEEE80211_LOCK(vap->iv_ic); 1378 ieee80211_start_locked(vap); 1379 IEEE80211_UNLOCK(vap->iv_ic); 1380 } 1381 1382 /* 1383 * Start all runnable vap's on a device. 1384 */ 1385 void 1386 ieee80211_start_all(struct ieee80211com *ic) 1387 { 1388 struct ieee80211vap *vap; 1389 1390 IEEE80211_LOCK(ic); 1391 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1392 struct ifnet *ifp = vap->iv_ifp; 1393 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1394 ieee80211_start_locked(vap); 1395 } 1396 IEEE80211_UNLOCK(ic); 1397 } 1398 1399 /* 1400 * Stop a vap. We force it down using the state machine 1401 * then mark it's ifnet not running. If this is the last 1402 * vap running on the underlying device then we close it 1403 * too to insure it will be properly initialized when the 1404 * next vap is brought up. 1405 */ 1406 void 1407 ieee80211_stop_locked(struct ieee80211vap *vap) 1408 { 1409 struct ieee80211com *ic = vap->iv_ic; 1410 struct ifnet *ifp = vap->iv_ifp; 1411 1412 IEEE80211_LOCK_ASSERT(ic); 1413 1414 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1415 "stop running, %d vaps running\n", ic->ic_nrunning); 1416 1417 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1418 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1419 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1420 if (--ic->ic_nrunning == 0) { 1421 IEEE80211_DPRINTF(vap, 1422 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1423 "down parent %s\n", ic->ic_name); 1424 ieee80211_runtask(ic, &ic->ic_parent_task); 1425 } 1426 } 1427 } 1428 1429 void 1430 ieee80211_stop(struct ieee80211vap *vap) 1431 { 1432 struct ieee80211com *ic = vap->iv_ic; 1433 1434 IEEE80211_LOCK(ic); 1435 ieee80211_stop_locked(vap); 1436 IEEE80211_UNLOCK(ic); 1437 } 1438 1439 /* 1440 * Stop all vap's running on a device. 1441 */ 1442 void 1443 ieee80211_stop_all(struct ieee80211com *ic) 1444 { 1445 struct ieee80211vap *vap; 1446 1447 IEEE80211_LOCK(ic); 1448 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1449 struct ifnet *ifp = vap->iv_ifp; 1450 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1451 ieee80211_stop_locked(vap); 1452 } 1453 IEEE80211_UNLOCK(ic); 1454 1455 ieee80211_waitfor_parent(ic); 1456 } 1457 1458 /* 1459 * Stop all vap's running on a device and arrange 1460 * for those that were running to be resumed. 1461 */ 1462 void 1463 ieee80211_suspend_all(struct ieee80211com *ic) 1464 { 1465 struct ieee80211vap *vap; 1466 1467 IEEE80211_LOCK(ic); 1468 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1469 struct ifnet *ifp = vap->iv_ifp; 1470 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1471 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1472 ieee80211_stop_locked(vap); 1473 } 1474 } 1475 IEEE80211_UNLOCK(ic); 1476 1477 ieee80211_waitfor_parent(ic); 1478 } 1479 1480 /* 1481 * Start all vap's marked for resume. 1482 */ 1483 void 1484 ieee80211_resume_all(struct ieee80211com *ic) 1485 { 1486 struct ieee80211vap *vap; 1487 1488 IEEE80211_LOCK(ic); 1489 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1490 struct ifnet *ifp = vap->iv_ifp; 1491 if (!IFNET_IS_UP_RUNNING(ifp) && 1492 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1493 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1494 ieee80211_start_locked(vap); 1495 } 1496 } 1497 IEEE80211_UNLOCK(ic); 1498 } 1499 1500 /* 1501 * Restart all vap's running on a device. 1502 */ 1503 void 1504 ieee80211_restart_all(struct ieee80211com *ic) 1505 { 1506 /* 1507 * NB: do not use ieee80211_runtask here, we will 1508 * block & drain net80211 taskqueue. 1509 */ 1510 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1511 } 1512 1513 void 1514 ieee80211_beacon_miss(struct ieee80211com *ic) 1515 { 1516 IEEE80211_LOCK(ic); 1517 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1518 /* Process in a taskq, the handler may reenter the driver */ 1519 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1520 } 1521 IEEE80211_UNLOCK(ic); 1522 } 1523 1524 static void 1525 beacon_miss(void *arg, int npending) 1526 { 1527 struct ieee80211com *ic = arg; 1528 struct ieee80211vap *vap; 1529 1530 IEEE80211_LOCK(ic); 1531 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1532 /* 1533 * We only pass events through for sta vap's in RUN state; 1534 * may be too restrictive but for now this saves all the 1535 * handlers duplicating these checks. 1536 */ 1537 if (vap->iv_opmode == IEEE80211_M_STA && 1538 vap->iv_state >= IEEE80211_S_RUN && 1539 vap->iv_bmiss != NULL) 1540 vap->iv_bmiss(vap); 1541 } 1542 IEEE80211_UNLOCK(ic); 1543 } 1544 1545 static void 1546 beacon_swmiss(void *arg, int npending) 1547 { 1548 struct ieee80211vap *vap = arg; 1549 struct ieee80211com *ic = vap->iv_ic; 1550 1551 IEEE80211_LOCK(ic); 1552 if (vap->iv_state == IEEE80211_S_RUN) { 1553 /* XXX Call multiple times if npending > zero? */ 1554 vap->iv_bmiss(vap); 1555 } 1556 IEEE80211_UNLOCK(ic); 1557 } 1558 1559 /* 1560 * Software beacon miss handling. Check if any beacons 1561 * were received in the last period. If not post a 1562 * beacon miss; otherwise reset the counter. 1563 */ 1564 void 1565 ieee80211_swbmiss(void *arg) 1566 { 1567 struct ieee80211vap *vap = arg; 1568 struct ieee80211com *ic = vap->iv_ic; 1569 1570 IEEE80211_LOCK_ASSERT(ic); 1571 1572 /* XXX sleep state? */ 1573 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1574 ("wrong state %d", vap->iv_state)); 1575 1576 if (ic->ic_flags & IEEE80211_F_SCAN) { 1577 /* 1578 * If scanning just ignore and reset state. If we get a 1579 * bmiss after coming out of scan because we haven't had 1580 * time to receive a beacon then we should probe the AP 1581 * before posting a real bmiss (unless iv_bmiss_max has 1582 * been artifiically lowered). A cleaner solution might 1583 * be to disable the timer on scan start/end but to handle 1584 * case of multiple sta vap's we'd need to disable the 1585 * timers of all affected vap's. 1586 */ 1587 vap->iv_swbmiss_count = 0; 1588 } else if (vap->iv_swbmiss_count == 0) { 1589 if (vap->iv_bmiss != NULL) 1590 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1591 } else 1592 vap->iv_swbmiss_count = 0; 1593 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1594 ieee80211_swbmiss, vap); 1595 } 1596 1597 /* 1598 * Start an 802.11h channel switch. We record the parameters, 1599 * mark the operation pending, notify each vap through the 1600 * beacon update mechanism so it can update the beacon frame 1601 * contents, and then switch vap's to CSA state to block outbound 1602 * traffic. Devices that handle CSA directly can use the state 1603 * switch to do the right thing so long as they call 1604 * ieee80211_csa_completeswitch when it's time to complete the 1605 * channel change. Devices that depend on the net80211 layer can 1606 * use ieee80211_beacon_update to handle the countdown and the 1607 * channel switch. 1608 */ 1609 void 1610 ieee80211_csa_startswitch(struct ieee80211com *ic, 1611 struct ieee80211_channel *c, int mode, int count) 1612 { 1613 struct ieee80211vap *vap; 1614 1615 IEEE80211_LOCK_ASSERT(ic); 1616 1617 ic->ic_csa_newchan = c; 1618 ic->ic_csa_mode = mode; 1619 ic->ic_csa_count = count; 1620 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1621 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1622 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1623 vap->iv_opmode == IEEE80211_M_IBSS || 1624 vap->iv_opmode == IEEE80211_M_MBSS) 1625 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1626 /* switch to CSA state to block outbound traffic */ 1627 if (vap->iv_state == IEEE80211_S_RUN) 1628 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1629 } 1630 ieee80211_notify_csa(ic, c, mode, count); 1631 } 1632 1633 /* 1634 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1635 * This is called by both the completion and cancellation functions 1636 * so each VAP is placed back in the RUN state and can thus transmit. 1637 */ 1638 static void 1639 csa_completeswitch(struct ieee80211com *ic) 1640 { 1641 struct ieee80211vap *vap; 1642 1643 ic->ic_csa_newchan = NULL; 1644 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1645 1646 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1647 if (vap->iv_state == IEEE80211_S_CSA) 1648 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1649 } 1650 1651 /* 1652 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1653 * We clear state and move all vap's in CSA state to RUN state 1654 * so they can again transmit. 1655 * 1656 * Although this may not be completely correct, update the BSS channel 1657 * for each VAP to the newly configured channel. The setcurchan sets 1658 * the current operating channel for the interface (so the radio does 1659 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1660 * reported information via ioctl. 1661 */ 1662 void 1663 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1664 { 1665 struct ieee80211vap *vap; 1666 1667 IEEE80211_LOCK_ASSERT(ic); 1668 1669 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1670 1671 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1672 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1673 if (vap->iv_state == IEEE80211_S_CSA) 1674 vap->iv_bss->ni_chan = ic->ic_curchan; 1675 1676 csa_completeswitch(ic); 1677 } 1678 1679 /* 1680 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1681 * We clear state and move all vap's in CSA state to RUN state 1682 * so they can again transmit. 1683 */ 1684 void 1685 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1686 { 1687 IEEE80211_LOCK_ASSERT(ic); 1688 1689 csa_completeswitch(ic); 1690 } 1691 1692 /* 1693 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1694 * We clear state and move all vap's in CAC state to RUN state. 1695 */ 1696 void 1697 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1698 { 1699 struct ieee80211com *ic = vap0->iv_ic; 1700 struct ieee80211vap *vap; 1701 1702 IEEE80211_LOCK(ic); 1703 /* 1704 * Complete CAC state change for lead vap first; then 1705 * clock all the other vap's waiting. 1706 */ 1707 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1708 ("wrong state %d", vap0->iv_state)); 1709 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1710 1711 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1712 if (vap->iv_state == IEEE80211_S_CAC) 1713 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1714 IEEE80211_UNLOCK(ic); 1715 } 1716 1717 /* 1718 * Force all vap's other than the specified vap to the INIT state 1719 * and mark them as waiting for a scan to complete. These vaps 1720 * will be brought up when the scan completes and the scanning vap 1721 * reaches RUN state by wakeupwaiting. 1722 */ 1723 static void 1724 markwaiting(struct ieee80211vap *vap0) 1725 { 1726 struct ieee80211com *ic = vap0->iv_ic; 1727 struct ieee80211vap *vap; 1728 1729 IEEE80211_LOCK_ASSERT(ic); 1730 1731 /* 1732 * A vap list entry can not disappear since we are running on the 1733 * taskqueue and a vap destroy will queue and drain another state 1734 * change task. 1735 */ 1736 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1737 if (vap == vap0) 1738 continue; 1739 if (vap->iv_state != IEEE80211_S_INIT) { 1740 /* NB: iv_newstate may drop the lock */ 1741 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1742 IEEE80211_LOCK_ASSERT(ic); 1743 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1744 } 1745 } 1746 } 1747 1748 /* 1749 * Wakeup all vap's waiting for a scan to complete. This is the 1750 * companion to markwaiting (above) and is used to coordinate 1751 * multiple vaps scanning. 1752 * This is called from the state taskqueue. 1753 */ 1754 static void 1755 wakeupwaiting(struct ieee80211vap *vap0) 1756 { 1757 struct ieee80211com *ic = vap0->iv_ic; 1758 struct ieee80211vap *vap; 1759 1760 IEEE80211_LOCK_ASSERT(ic); 1761 1762 /* 1763 * A vap list entry can not disappear since we are running on the 1764 * taskqueue and a vap destroy will queue and drain another state 1765 * change task. 1766 */ 1767 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1768 if (vap == vap0) 1769 continue; 1770 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1771 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1772 /* NB: sta's cannot go INIT->RUN */ 1773 /* NB: iv_newstate may drop the lock */ 1774 vap->iv_newstate(vap, 1775 vap->iv_opmode == IEEE80211_M_STA ? 1776 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1777 IEEE80211_LOCK_ASSERT(ic); 1778 } 1779 } 1780 } 1781 1782 /* 1783 * Handle post state change work common to all operating modes. 1784 */ 1785 static void 1786 ieee80211_newstate_cb(void *xvap, int npending) 1787 { 1788 struct ieee80211vap *vap = xvap; 1789 struct ieee80211com *ic = vap->iv_ic; 1790 enum ieee80211_state nstate, ostate; 1791 int arg, rc; 1792 1793 IEEE80211_LOCK(ic); 1794 nstate = vap->iv_nstate; 1795 arg = vap->iv_nstate_arg; 1796 1797 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1798 /* 1799 * We have been requested to drop back to the INIT before 1800 * proceeding to the new state. 1801 */ 1802 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1803 "%s: %s -> %s arg %d\n", __func__, 1804 ieee80211_state_name[vap->iv_state], 1805 ieee80211_state_name[IEEE80211_S_INIT], arg); 1806 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1807 IEEE80211_LOCK_ASSERT(ic); 1808 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1809 } 1810 1811 ostate = vap->iv_state; 1812 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1813 /* 1814 * SCAN was forced; e.g. on beacon miss. Force other running 1815 * vap's to INIT state and mark them as waiting for the scan to 1816 * complete. This insures they don't interfere with our 1817 * scanning. Since we are single threaded the vaps can not 1818 * transition again while we are executing. 1819 * 1820 * XXX not always right, assumes ap follows sta 1821 */ 1822 markwaiting(vap); 1823 } 1824 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1825 "%s: %s -> %s arg %d\n", __func__, 1826 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1827 1828 rc = vap->iv_newstate(vap, nstate, arg); 1829 IEEE80211_LOCK_ASSERT(ic); 1830 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1831 if (rc != 0) { 1832 /* State transition failed */ 1833 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1834 KASSERT(nstate != IEEE80211_S_INIT, 1835 ("INIT state change failed")); 1836 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1837 "%s: %s returned error %d\n", __func__, 1838 ieee80211_state_name[nstate], rc); 1839 goto done; 1840 } 1841 1842 /* No actual transition, skip post processing */ 1843 if (ostate == nstate) 1844 goto done; 1845 1846 if (nstate == IEEE80211_S_RUN) { 1847 /* 1848 * OACTIVE may be set on the vap if the upper layer 1849 * tried to transmit (e.g. IPv6 NDP) before we reach 1850 * RUN state. Clear it and restart xmit. 1851 * 1852 * Note this can also happen as a result of SLEEP->RUN 1853 * (i.e. coming out of power save mode). 1854 */ 1855 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1856 1857 /* 1858 * XXX TODO Kick-start a VAP queue - this should be a method! 1859 */ 1860 1861 /* bring up any vaps waiting on us */ 1862 wakeupwaiting(vap); 1863 } else if (nstate == IEEE80211_S_INIT) { 1864 /* 1865 * Flush the scan cache if we did the last scan (XXX?) 1866 * and flush any frames on send queues from this vap. 1867 * Note the mgt q is used only for legacy drivers and 1868 * will go away shortly. 1869 */ 1870 ieee80211_scan_flush(vap); 1871 1872 /* 1873 * XXX TODO: ic/vap queue flush 1874 */ 1875 } 1876 done: 1877 IEEE80211_UNLOCK(ic); 1878 } 1879 1880 /* 1881 * Public interface for initiating a state machine change. 1882 * This routine single-threads the request and coordinates 1883 * the scheduling of multiple vaps for the purpose of selecting 1884 * an operating channel. Specifically the following scenarios 1885 * are handled: 1886 * o only one vap can be selecting a channel so on transition to 1887 * SCAN state if another vap is already scanning then 1888 * mark the caller for later processing and return without 1889 * doing anything (XXX? expectations by caller of synchronous operation) 1890 * o only one vap can be doing CAC of a channel so on transition to 1891 * CAC state if another vap is already scanning for radar then 1892 * mark the caller for later processing and return without 1893 * doing anything (XXX? expectations by caller of synchronous operation) 1894 * o if another vap is already running when a request is made 1895 * to SCAN then an operating channel has been chosen; bypass 1896 * the scan and just join the channel 1897 * 1898 * Note that the state change call is done through the iv_newstate 1899 * method pointer so any driver routine gets invoked. The driver 1900 * will normally call back into operating mode-specific 1901 * ieee80211_newstate routines (below) unless it needs to completely 1902 * bypass the state machine (e.g. because the firmware has it's 1903 * own idea how things should work). Bypassing the net80211 layer 1904 * is usually a mistake and indicates lack of proper integration 1905 * with the net80211 layer. 1906 */ 1907 int 1908 ieee80211_new_state_locked(struct ieee80211vap *vap, 1909 enum ieee80211_state nstate, int arg) 1910 { 1911 struct ieee80211com *ic = vap->iv_ic; 1912 struct ieee80211vap *vp; 1913 enum ieee80211_state ostate; 1914 int nrunning, nscanning; 1915 1916 IEEE80211_LOCK_ASSERT(ic); 1917 1918 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1919 if (vap->iv_nstate == IEEE80211_S_INIT) { 1920 /* 1921 * XXX The vap is being stopped, do no allow any other 1922 * state changes until this is completed. 1923 */ 1924 return -1; 1925 } else if (vap->iv_state != vap->iv_nstate) { 1926 #if 0 1927 /* Warn if the previous state hasn't completed. */ 1928 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1929 "%s: pending %s -> %s transition lost\n", __func__, 1930 ieee80211_state_name[vap->iv_state], 1931 ieee80211_state_name[vap->iv_nstate]); 1932 #else 1933 /* XXX temporarily enable to identify issues */ 1934 if_printf(vap->iv_ifp, 1935 "%s: pending %s -> %s transition lost\n", 1936 __func__, ieee80211_state_name[vap->iv_state], 1937 ieee80211_state_name[vap->iv_nstate]); 1938 #endif 1939 } 1940 } 1941 1942 nrunning = nscanning = 0; 1943 /* XXX can track this state instead of calculating */ 1944 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1945 if (vp != vap) { 1946 if (vp->iv_state >= IEEE80211_S_RUN) 1947 nrunning++; 1948 /* XXX doesn't handle bg scan */ 1949 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1950 else if (vp->iv_state > IEEE80211_S_INIT) 1951 nscanning++; 1952 } 1953 } 1954 ostate = vap->iv_state; 1955 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1956 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1957 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1958 nrunning, nscanning); 1959 switch (nstate) { 1960 case IEEE80211_S_SCAN: 1961 if (ostate == IEEE80211_S_INIT) { 1962 /* 1963 * INIT -> SCAN happens on initial bringup. 1964 */ 1965 KASSERT(!(nscanning && nrunning), 1966 ("%d scanning and %d running", nscanning, nrunning)); 1967 if (nscanning) { 1968 /* 1969 * Someone is scanning, defer our state 1970 * change until the work has completed. 1971 */ 1972 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1973 "%s: defer %s -> %s\n", 1974 __func__, ieee80211_state_name[ostate], 1975 ieee80211_state_name[nstate]); 1976 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1977 return 0; 1978 } 1979 if (nrunning) { 1980 /* 1981 * Someone is operating; just join the channel 1982 * they have chosen. 1983 */ 1984 /* XXX kill arg? */ 1985 /* XXX check each opmode, adhoc? */ 1986 if (vap->iv_opmode == IEEE80211_M_STA) 1987 nstate = IEEE80211_S_SCAN; 1988 else 1989 nstate = IEEE80211_S_RUN; 1990 #ifdef IEEE80211_DEBUG 1991 if (nstate != IEEE80211_S_SCAN) { 1992 IEEE80211_DPRINTF(vap, 1993 IEEE80211_MSG_STATE, 1994 "%s: override, now %s -> %s\n", 1995 __func__, 1996 ieee80211_state_name[ostate], 1997 ieee80211_state_name[nstate]); 1998 } 1999 #endif 2000 } 2001 } 2002 break; 2003 case IEEE80211_S_RUN: 2004 if (vap->iv_opmode == IEEE80211_M_WDS && 2005 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2006 nscanning) { 2007 /* 2008 * Legacy WDS with someone else scanning; don't 2009 * go online until that completes as we should 2010 * follow the other vap to the channel they choose. 2011 */ 2012 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2013 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2014 ieee80211_state_name[ostate], 2015 ieee80211_state_name[nstate]); 2016 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2017 return 0; 2018 } 2019 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2020 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2021 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2022 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2023 /* 2024 * This is a DFS channel, transition to CAC state 2025 * instead of RUN. This allows us to initiate 2026 * Channel Availability Check (CAC) as specified 2027 * by 11h/DFS. 2028 */ 2029 nstate = IEEE80211_S_CAC; 2030 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2031 "%s: override %s -> %s (DFS)\n", __func__, 2032 ieee80211_state_name[ostate], 2033 ieee80211_state_name[nstate]); 2034 } 2035 break; 2036 case IEEE80211_S_INIT: 2037 /* cancel any scan in progress */ 2038 ieee80211_cancel_scan(vap); 2039 if (ostate == IEEE80211_S_INIT ) { 2040 /* XXX don't believe this */ 2041 /* INIT -> INIT. nothing to do */ 2042 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2043 } 2044 /* fall thru... */ 2045 default: 2046 break; 2047 } 2048 /* defer the state change to a thread */ 2049 vap->iv_nstate = nstate; 2050 vap->iv_nstate_arg = arg; 2051 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2052 ieee80211_runtask(ic, &vap->iv_nstate_task); 2053 return EINPROGRESS; 2054 } 2055 2056 int 2057 ieee80211_new_state(struct ieee80211vap *vap, 2058 enum ieee80211_state nstate, int arg) 2059 { 2060 struct ieee80211com *ic = vap->iv_ic; 2061 int rc; 2062 2063 IEEE80211_LOCK(ic); 2064 rc = ieee80211_new_state_locked(vap, nstate, arg); 2065 IEEE80211_UNLOCK(ic); 2066 return rc; 2067 } 2068