xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 5686c6c38a3e1cc78804eaf5f880bda23dcf592f)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>		/* XXX for ether_sprintf */
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_adhoc.h>
50 #include <net80211/ieee80211_sta.h>
51 #include <net80211/ieee80211_hostap.h>
52 #include <net80211/ieee80211_wds.h>
53 #ifdef IEEE80211_SUPPORT_MESH
54 #include <net80211/ieee80211_mesh.h>
55 #endif
56 #include <net80211/ieee80211_monitor.h>
57 #include <net80211/ieee80211_input.h>
58 
59 /* XXX tunables */
60 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62 
63 const char *ieee80211_mgt_subtype_name[] = {
64 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66 	"beacon",	"atim",		"disassoc",	"auth",
67 	"deauth",	"action",	"action_noack",	"reserved#15"
68 };
69 const char *ieee80211_ctl_subtype_name[] = {
70 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73 	"cts",		"ack",		"cf_end",	"cf_end_ack"
74 };
75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 	"IBSS",		/* IEEE80211_M_IBSS */
77 	"STA",		/* IEEE80211_M_STA */
78 	"WDS",		/* IEEE80211_M_WDS */
79 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81 	"MONITOR",	/* IEEE80211_M_MONITOR */
82 	"MBSS"		/* IEEE80211_M_MBSS */
83 };
84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 	"INIT",		/* IEEE80211_S_INIT */
86 	"SCAN",		/* IEEE80211_S_SCAN */
87 	"AUTH",		/* IEEE80211_S_AUTH */
88 	"ASSOC",	/* IEEE80211_S_ASSOC */
89 	"CAC",		/* IEEE80211_S_CAC */
90 	"RUN",		/* IEEE80211_S_RUN */
91 	"CSA",		/* IEEE80211_S_CSA */
92 	"SLEEP",	/* IEEE80211_S_SLEEP */
93 };
94 const char *ieee80211_wme_acnames[] = {
95 	"WME_AC_BE",
96 	"WME_AC_BK",
97 	"WME_AC_VI",
98 	"WME_AC_VO",
99 	"WME_UPSD",
100 };
101 
102 static void beacon_miss(void *, int);
103 static void beacon_swmiss(void *, int);
104 static void parent_updown(void *, int);
105 static void update_mcast(void *, int);
106 static void update_promisc(void *, int);
107 static void update_channel(void *, int);
108 static void update_chw(void *, int);
109 static void ieee80211_newstate_cb(void *, int);
110 static int ieee80211_new_state_locked(struct ieee80211vap *,
111 	enum ieee80211_state, int);
112 
113 static int
114 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
115 	const struct ieee80211_bpf_params *params)
116 {
117 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
118 
119 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
120 	m_freem(m);
121 	return ENETDOWN;
122 }
123 
124 void
125 ieee80211_proto_attach(struct ieee80211com *ic)
126 {
127 	struct ifnet *ifp = ic->ic_ifp;
128 
129 	/* override the 802.3 setting */
130 	ifp->if_hdrlen = ic->ic_headroom
131 		+ sizeof(struct ieee80211_qosframe_addr4)
132 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
133 		+ IEEE80211_WEP_EXTIVLEN;
134 	/* XXX no way to recalculate on ifdetach */
135 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
136 		/* XXX sanity check... */
137 		max_linkhdr = ALIGN(ifp->if_hdrlen);
138 		max_hdr = max_linkhdr + max_protohdr;
139 		max_datalen = MHLEN - max_hdr;
140 	}
141 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
142 
143 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
144 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
145 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
146 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
147 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
148 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
149 
150 	ic->ic_wme.wme_hipri_switch_hysteresis =
151 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
152 
153 	/* initialize management frame handlers */
154 	ic->ic_send_mgmt = ieee80211_send_mgmt;
155 	ic->ic_raw_xmit = null_raw_xmit;
156 
157 	ieee80211_adhoc_attach(ic);
158 	ieee80211_sta_attach(ic);
159 	ieee80211_wds_attach(ic);
160 	ieee80211_hostap_attach(ic);
161 #ifdef IEEE80211_SUPPORT_MESH
162 	ieee80211_mesh_attach(ic);
163 #endif
164 	ieee80211_monitor_attach(ic);
165 }
166 
167 void
168 ieee80211_proto_detach(struct ieee80211com *ic)
169 {
170 	ieee80211_monitor_detach(ic);
171 #ifdef IEEE80211_SUPPORT_MESH
172 	ieee80211_mesh_detach(ic);
173 #endif
174 	ieee80211_hostap_detach(ic);
175 	ieee80211_wds_detach(ic);
176 	ieee80211_adhoc_detach(ic);
177 	ieee80211_sta_detach(ic);
178 }
179 
180 static void
181 null_update_beacon(struct ieee80211vap *vap, int item)
182 {
183 }
184 
185 void
186 ieee80211_proto_vattach(struct ieee80211vap *vap)
187 {
188 	struct ieee80211com *ic = vap->iv_ic;
189 	struct ifnet *ifp = vap->iv_ifp;
190 	int i;
191 
192 	/* override the 802.3 setting */
193 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
194 
195 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
196 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
197 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
198 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
199 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
200 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
201 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
202 	/*
203 	 * Install default tx rate handling: no fixed rate, lowest
204 	 * supported rate for mgmt and multicast frames.  Default
205 	 * max retry count.  These settings can be changed by the
206 	 * driver and/or user applications.
207 	 */
208 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
209 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
210 
211 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
212 
213 		/*
214 		 * Setting the management rate to MCS 0 assumes that the
215 		 * BSS Basic rate set is empty and the BSS Basic MCS set
216 		 * is not.
217 		 *
218 		 * Since we're not checking this, default to the lowest
219 		 * defined rate for this mode.
220 		 *
221 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
222 		 * some MCS management traffic (eg BA response frames.)
223 		 *
224 		 * See also: 9.6.0 of the 802.11n-2009 specification.
225 		 */
226 #ifdef	NOTYET
227 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
228 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
229 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
230 		} else {
231 			vap->iv_txparms[i].mgmtrate =
232 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233 			vap->iv_txparms[i].mcastrate =
234 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
235 		}
236 #endif
237 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
238 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
239 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
240 	}
241 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
242 
243 	vap->iv_update_beacon = null_update_beacon;
244 	vap->iv_deliver_data = ieee80211_deliver_data;
245 
246 	/* attach support for operating mode */
247 	ic->ic_vattach[vap->iv_opmode](vap);
248 }
249 
250 void
251 ieee80211_proto_vdetach(struct ieee80211vap *vap)
252 {
253 #define	FREEAPPIE(ie) do { \
254 	if (ie != NULL) \
255 		free(ie, M_80211_NODE_IE); \
256 } while (0)
257 	/*
258 	 * Detach operating mode module.
259 	 */
260 	if (vap->iv_opdetach != NULL)
261 		vap->iv_opdetach(vap);
262 	/*
263 	 * This should not be needed as we detach when reseting
264 	 * the state but be conservative here since the
265 	 * authenticator may do things like spawn kernel threads.
266 	 */
267 	if (vap->iv_auth->ia_detach != NULL)
268 		vap->iv_auth->ia_detach(vap);
269 	/*
270 	 * Detach any ACL'ator.
271 	 */
272 	if (vap->iv_acl != NULL)
273 		vap->iv_acl->iac_detach(vap);
274 
275 	FREEAPPIE(vap->iv_appie_beacon);
276 	FREEAPPIE(vap->iv_appie_probereq);
277 	FREEAPPIE(vap->iv_appie_proberesp);
278 	FREEAPPIE(vap->iv_appie_assocreq);
279 	FREEAPPIE(vap->iv_appie_assocresp);
280 	FREEAPPIE(vap->iv_appie_wpa);
281 #undef FREEAPPIE
282 }
283 
284 /*
285  * Simple-minded authenticator module support.
286  */
287 
288 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
289 /* XXX well-known names */
290 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
291 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
292 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
293 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
294 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
295 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
296 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
297 };
298 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
299 
300 static const struct ieee80211_authenticator auth_internal = {
301 	.ia_name		= "wlan_internal",
302 	.ia_attach		= NULL,
303 	.ia_detach		= NULL,
304 	.ia_node_join		= NULL,
305 	.ia_node_leave		= NULL,
306 };
307 
308 /*
309  * Setup internal authenticators once; they are never unregistered.
310  */
311 static void
312 ieee80211_auth_setup(void)
313 {
314 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
315 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
316 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
317 }
318 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
319 
320 const struct ieee80211_authenticator *
321 ieee80211_authenticator_get(int auth)
322 {
323 	if (auth >= IEEE80211_AUTH_MAX)
324 		return NULL;
325 	if (authenticators[auth] == NULL)
326 		ieee80211_load_module(auth_modnames[auth]);
327 	return authenticators[auth];
328 }
329 
330 void
331 ieee80211_authenticator_register(int type,
332 	const struct ieee80211_authenticator *auth)
333 {
334 	if (type >= IEEE80211_AUTH_MAX)
335 		return;
336 	authenticators[type] = auth;
337 }
338 
339 void
340 ieee80211_authenticator_unregister(int type)
341 {
342 
343 	if (type >= IEEE80211_AUTH_MAX)
344 		return;
345 	authenticators[type] = NULL;
346 }
347 
348 /*
349  * Very simple-minded ACL module support.
350  */
351 /* XXX just one for now */
352 static	const struct ieee80211_aclator *acl = NULL;
353 
354 void
355 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
356 {
357 	printf("wlan: %s acl policy registered\n", iac->iac_name);
358 	acl = iac;
359 }
360 
361 void
362 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
363 {
364 	if (acl == iac)
365 		acl = NULL;
366 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
367 }
368 
369 const struct ieee80211_aclator *
370 ieee80211_aclator_get(const char *name)
371 {
372 	if (acl == NULL)
373 		ieee80211_load_module("wlan_acl");
374 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
375 }
376 
377 void
378 ieee80211_print_essid(const uint8_t *essid, int len)
379 {
380 	const uint8_t *p;
381 	int i;
382 
383 	if (len > IEEE80211_NWID_LEN)
384 		len = IEEE80211_NWID_LEN;
385 	/* determine printable or not */
386 	for (i = 0, p = essid; i < len; i++, p++) {
387 		if (*p < ' ' || *p > 0x7e)
388 			break;
389 	}
390 	if (i == len) {
391 		printf("\"");
392 		for (i = 0, p = essid; i < len; i++, p++)
393 			printf("%c", *p);
394 		printf("\"");
395 	} else {
396 		printf("0x");
397 		for (i = 0, p = essid; i < len; i++, p++)
398 			printf("%02x", *p);
399 	}
400 }
401 
402 void
403 ieee80211_dump_pkt(struct ieee80211com *ic,
404 	const uint8_t *buf, int len, int rate, int rssi)
405 {
406 	const struct ieee80211_frame *wh;
407 	int i;
408 
409 	wh = (const struct ieee80211_frame *)buf;
410 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
411 	case IEEE80211_FC1_DIR_NODS:
412 		printf("NODS %s", ether_sprintf(wh->i_addr2));
413 		printf("->%s", ether_sprintf(wh->i_addr1));
414 		printf("(%s)", ether_sprintf(wh->i_addr3));
415 		break;
416 	case IEEE80211_FC1_DIR_TODS:
417 		printf("TODS %s", ether_sprintf(wh->i_addr2));
418 		printf("->%s", ether_sprintf(wh->i_addr3));
419 		printf("(%s)", ether_sprintf(wh->i_addr1));
420 		break;
421 	case IEEE80211_FC1_DIR_FROMDS:
422 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
423 		printf("->%s", ether_sprintf(wh->i_addr1));
424 		printf("(%s)", ether_sprintf(wh->i_addr2));
425 		break;
426 	case IEEE80211_FC1_DIR_DSTODS:
427 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
428 		printf("->%s", ether_sprintf(wh->i_addr3));
429 		printf("(%s", ether_sprintf(wh->i_addr2));
430 		printf("->%s)", ether_sprintf(wh->i_addr1));
431 		break;
432 	}
433 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
434 	case IEEE80211_FC0_TYPE_DATA:
435 		printf(" data");
436 		break;
437 	case IEEE80211_FC0_TYPE_MGT:
438 		printf(" %s", ieee80211_mgt_subtype_name[
439 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
440 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
441 		break;
442 	default:
443 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
444 		break;
445 	}
446 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
447 		const struct ieee80211_qosframe *qwh =
448 			(const struct ieee80211_qosframe *)buf;
449 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
450 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
451 	}
452 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
453 		int off;
454 
455 		off = ieee80211_anyhdrspace(ic, wh);
456 		printf(" WEP [IV %.02x %.02x %.02x",
457 			buf[off+0], buf[off+1], buf[off+2]);
458 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
459 			printf(" %.02x %.02x %.02x",
460 				buf[off+4], buf[off+5], buf[off+6]);
461 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
462 	}
463 	if (rate >= 0)
464 		printf(" %dM", rate / 2);
465 	if (rssi >= 0)
466 		printf(" +%d", rssi);
467 	printf("\n");
468 	if (len > 0) {
469 		for (i = 0; i < len; i++) {
470 			if ((i & 1) == 0)
471 				printf(" ");
472 			printf("%02x", buf[i]);
473 		}
474 		printf("\n");
475 	}
476 }
477 
478 static __inline int
479 findrix(const struct ieee80211_rateset *rs, int r)
480 {
481 	int i;
482 
483 	for (i = 0; i < rs->rs_nrates; i++)
484 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
485 			return i;
486 	return -1;
487 }
488 
489 int
490 ieee80211_fix_rate(struct ieee80211_node *ni,
491 	struct ieee80211_rateset *nrs, int flags)
492 {
493 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
494 	struct ieee80211vap *vap = ni->ni_vap;
495 	struct ieee80211com *ic = ni->ni_ic;
496 	int i, j, rix, error;
497 	int okrate, badrate, fixedrate, ucastrate;
498 	const struct ieee80211_rateset *srs;
499 	uint8_t r;
500 
501 	error = 0;
502 	okrate = badrate = 0;
503 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
504 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
505 		/*
506 		 * Workaround awkwardness with fixed rate.  We are called
507 		 * to check both the legacy rate set and the HT rate set
508 		 * but we must apply any legacy fixed rate check only to the
509 		 * legacy rate set and vice versa.  We cannot tell what type
510 		 * of rate set we've been given (legacy or HT) but we can
511 		 * distinguish the fixed rate type (MCS have 0x80 set).
512 		 * So to deal with this the caller communicates whether to
513 		 * check MCS or legacy rate using the flags and we use the
514 		 * type of any fixed rate to avoid applying an MCS to a
515 		 * legacy rate and vice versa.
516 		 */
517 		if (ucastrate & 0x80) {
518 			if (flags & IEEE80211_F_DOFRATE)
519 				flags &= ~IEEE80211_F_DOFRATE;
520 		} else if ((ucastrate & 0x80) == 0) {
521 			if (flags & IEEE80211_F_DOFMCS)
522 				flags &= ~IEEE80211_F_DOFMCS;
523 		}
524 		/* NB: required to make MCS match below work */
525 		ucastrate &= IEEE80211_RATE_VAL;
526 	}
527 	fixedrate = IEEE80211_FIXED_RATE_NONE;
528 	/*
529 	 * XXX we are called to process both MCS and legacy rates;
530 	 * we must use the appropriate basic rate set or chaos will
531 	 * ensue; for now callers that want MCS must supply
532 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
533 	 * function so there are two variants, one for MCS and one
534 	 * for legacy rates.
535 	 */
536 	if (flags & IEEE80211_F_DOBRS)
537 		srs = (const struct ieee80211_rateset *)
538 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
539 	else
540 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
541 	for (i = 0; i < nrs->rs_nrates; ) {
542 		if (flags & IEEE80211_F_DOSORT) {
543 			/*
544 			 * Sort rates.
545 			 */
546 			for (j = i + 1; j < nrs->rs_nrates; j++) {
547 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
548 					r = nrs->rs_rates[i];
549 					nrs->rs_rates[i] = nrs->rs_rates[j];
550 					nrs->rs_rates[j] = r;
551 				}
552 			}
553 		}
554 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
555 		badrate = r;
556 		/*
557 		 * Check for fixed rate.
558 		 */
559 		if (r == ucastrate)
560 			fixedrate = r;
561 		/*
562 		 * Check against supported rates.
563 		 */
564 		rix = findrix(srs, r);
565 		if (flags & IEEE80211_F_DONEGO) {
566 			if (rix < 0) {
567 				/*
568 				 * A rate in the node's rate set is not
569 				 * supported.  If this is a basic rate and we
570 				 * are operating as a STA then this is an error.
571 				 * Otherwise we just discard/ignore the rate.
572 				 */
573 				if ((flags & IEEE80211_F_JOIN) &&
574 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
575 					error++;
576 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
577 				/*
578 				 * Overwrite with the supported rate
579 				 * value so any basic rate bit is set.
580 				 */
581 				nrs->rs_rates[i] = srs->rs_rates[rix];
582 			}
583 		}
584 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
585 			/*
586 			 * Delete unacceptable rates.
587 			 */
588 			nrs->rs_nrates--;
589 			for (j = i; j < nrs->rs_nrates; j++)
590 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
591 			nrs->rs_rates[j] = 0;
592 			continue;
593 		}
594 		if (rix >= 0)
595 			okrate = nrs->rs_rates[i];
596 		i++;
597 	}
598 	if (okrate == 0 || error != 0 ||
599 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
600 	     fixedrate != ucastrate)) {
601 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
602 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
603 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
604 		return badrate | IEEE80211_RATE_BASIC;
605 	} else
606 		return RV(okrate);
607 #undef RV
608 }
609 
610 /*
611  * Reset 11g-related state.
612  */
613 void
614 ieee80211_reset_erp(struct ieee80211com *ic)
615 {
616 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
617 	ic->ic_nonerpsta = 0;
618 	ic->ic_longslotsta = 0;
619 	/*
620 	 * Short slot time is enabled only when operating in 11g
621 	 * and not in an IBSS.  We must also honor whether or not
622 	 * the driver is capable of doing it.
623 	 */
624 	ieee80211_set_shortslottime(ic,
625 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
626 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
627 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
628 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
629 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
630 	/*
631 	 * Set short preamble and ERP barker-preamble flags.
632 	 */
633 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
634 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
635 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
636 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
637 	} else {
638 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
639 		ic->ic_flags |= IEEE80211_F_USEBARKER;
640 	}
641 }
642 
643 /*
644  * Set the short slot time state and notify the driver.
645  */
646 void
647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
648 {
649 	if (onoff)
650 		ic->ic_flags |= IEEE80211_F_SHSLOT;
651 	else
652 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
653 	/* notify driver */
654 	if (ic->ic_updateslot != NULL)
655 		ic->ic_updateslot(ic->ic_ifp);
656 }
657 
658 /*
659  * Check if the specified rate set supports ERP.
660  * NB: the rate set is assumed to be sorted.
661  */
662 int
663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
664 {
665 #define N(a)	(sizeof(a) / sizeof(a[0]))
666 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
667 	int i, j;
668 
669 	if (rs->rs_nrates < N(rates))
670 		return 0;
671 	for (i = 0; i < N(rates); i++) {
672 		for (j = 0; j < rs->rs_nrates; j++) {
673 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
674 			if (rates[i] == r)
675 				goto next;
676 			if (r > rates[i])
677 				return 0;
678 		}
679 		return 0;
680 	next:
681 		;
682 	}
683 	return 1;
684 #undef N
685 }
686 
687 /*
688  * Mark the basic rates for the rate table based on the
689  * operating mode.  For real 11g we mark all the 11b rates
690  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
691  * 11b rates.  There's also a pseudo 11a-mode used to mark only
692  * the basic OFDM rates.
693  */
694 static void
695 setbasicrates(struct ieee80211_rateset *rs,
696     enum ieee80211_phymode mode, int add)
697 {
698 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
699 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
700 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
701 					    /* NB: mixed b/g */
702 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
703 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
704 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
705 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
706 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
707 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
708 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
709 					    /* NB: mixed b/g */
710 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
711 	};
712 	int i, j;
713 
714 	for (i = 0; i < rs->rs_nrates; i++) {
715 		if (!add)
716 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
717 		for (j = 0; j < basic[mode].rs_nrates; j++)
718 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
719 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
720 				break;
721 			}
722 	}
723 }
724 
725 /*
726  * Set the basic rates in a rate set.
727  */
728 void
729 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
730     enum ieee80211_phymode mode)
731 {
732 	setbasicrates(rs, mode, 0);
733 }
734 
735 /*
736  * Add basic rates to a rate set.
737  */
738 void
739 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
740     enum ieee80211_phymode mode)
741 {
742 	setbasicrates(rs, mode, 1);
743 }
744 
745 /*
746  * WME protocol support.
747  *
748  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
749  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
750  * Draft 2.0 Test Plan (Appendix D).
751  *
752  * Static/Dynamic Turbo mode settings come from Atheros.
753  */
754 typedef struct phyParamType {
755 	uint8_t		aifsn;
756 	uint8_t		logcwmin;
757 	uint8_t		logcwmax;
758 	uint16_t	txopLimit;
759 	uint8_t 	acm;
760 } paramType;
761 
762 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
763 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
766 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
767 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
768 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
769 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
770 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
771 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
772 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
773 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
774 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
775 };
776 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
777 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
780 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
781 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
782 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
783 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
784 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
785 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
786 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
787 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
788 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
789 };
790 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
791 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
792 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
793 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
794 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
795 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
796 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
797 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
798 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
799 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
800 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
801 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
802 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
803 };
804 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
805 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
806 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
807 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
808 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
809 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
810 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
811 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
812 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
813 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
814 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
815 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
816 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
817 };
818 
819 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
820 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
823 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
824 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
825 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
826 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
827 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
828 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
829 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
830 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
831 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
832 };
833 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
834 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
835 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
836 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
837 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
838 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
839 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
840 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
841 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
842 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
843 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
844 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
845 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
846 };
847 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
848 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
849 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
850 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
851 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
852 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
853 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
854 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
855 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
856 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
857 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
858 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
859 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
860 };
861 
862 static void
863 _setifsparams(struct wmeParams *wmep, const paramType *phy)
864 {
865 	wmep->wmep_aifsn = phy->aifsn;
866 	wmep->wmep_logcwmin = phy->logcwmin;
867 	wmep->wmep_logcwmax = phy->logcwmax;
868 	wmep->wmep_txopLimit = phy->txopLimit;
869 }
870 
871 static void
872 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
873 	struct wmeParams *wmep, const paramType *phy)
874 {
875 	wmep->wmep_acm = phy->acm;
876 	_setifsparams(wmep, phy);
877 
878 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
879 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
880 	    ieee80211_wme_acnames[ac], type,
881 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
882 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
883 }
884 
885 static void
886 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
887 {
888 	struct ieee80211com *ic = vap->iv_ic;
889 	struct ieee80211_wme_state *wme = &ic->ic_wme;
890 	const paramType *pPhyParam, *pBssPhyParam;
891 	struct wmeParams *wmep;
892 	enum ieee80211_phymode mode;
893 	int i;
894 
895 	IEEE80211_LOCK_ASSERT(ic);
896 
897 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
898 		return;
899 
900 	/*
901 	 * Clear the wme cap_info field so a qoscount from a previous
902 	 * vap doesn't confuse later code which only parses the beacon
903 	 * field and updates hardware when said field changes.
904 	 * Otherwise the hardware is programmed with defaults, not what
905 	 * the beacon actually announces.
906 	 */
907 	wme->wme_wmeChanParams.cap_info = 0;
908 
909 	/*
910 	 * Select mode; we can be called early in which case we
911 	 * always use auto mode.  We know we'll be called when
912 	 * entering the RUN state with bsschan setup properly
913 	 * so state will eventually get set correctly
914 	 */
915 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
916 		mode = ieee80211_chan2mode(ic->ic_bsschan);
917 	else
918 		mode = IEEE80211_MODE_AUTO;
919 	for (i = 0; i < WME_NUM_AC; i++) {
920 		switch (i) {
921 		case WME_AC_BK:
922 			pPhyParam = &phyParamForAC_BK[mode];
923 			pBssPhyParam = &phyParamForAC_BK[mode];
924 			break;
925 		case WME_AC_VI:
926 			pPhyParam = &phyParamForAC_VI[mode];
927 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
928 			break;
929 		case WME_AC_VO:
930 			pPhyParam = &phyParamForAC_VO[mode];
931 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
932 			break;
933 		case WME_AC_BE:
934 		default:
935 			pPhyParam = &phyParamForAC_BE[mode];
936 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
937 			break;
938 		}
939 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
940 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
941 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
942 		} else {
943 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
944 		}
945 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
946 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
947 	}
948 	/* NB: check ic_bss to avoid NULL deref on initial attach */
949 	if (vap->iv_bss != NULL) {
950 		/*
951 		 * Calculate agressive mode switching threshold based
952 		 * on beacon interval.  This doesn't need locking since
953 		 * we're only called before entering the RUN state at
954 		 * which point we start sending beacon frames.
955 		 */
956 		wme->wme_hipri_switch_thresh =
957 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
958 		wme->wme_flags &= ~WME_F_AGGRMODE;
959 		ieee80211_wme_updateparams(vap);
960 	}
961 }
962 
963 void
964 ieee80211_wme_initparams(struct ieee80211vap *vap)
965 {
966 	struct ieee80211com *ic = vap->iv_ic;
967 
968 	IEEE80211_LOCK(ic);
969 	ieee80211_wme_initparams_locked(vap);
970 	IEEE80211_UNLOCK(ic);
971 }
972 
973 /*
974  * Update WME parameters for ourself and the BSS.
975  */
976 void
977 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
978 {
979 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
980 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
981 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
982 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
983 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
984 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
985 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
986 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
987 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
988 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
989 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
990 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
991 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
992 	};
993 	struct ieee80211com *ic = vap->iv_ic;
994 	struct ieee80211_wme_state *wme = &ic->ic_wme;
995 	const struct wmeParams *wmep;
996 	struct wmeParams *chanp, *bssp;
997 	enum ieee80211_phymode mode;
998 	int i;
999 	int do_aggrmode = 0;
1000 
1001        	/*
1002 	 * Set up the channel access parameters for the physical
1003 	 * device.  First populate the configured settings.
1004 	 */
1005 	for (i = 0; i < WME_NUM_AC; i++) {
1006 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1007 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1008 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1009 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1010 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1011 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1012 
1013 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1014 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1015 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1016 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1017 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1018 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1019 	}
1020 
1021 	/*
1022 	 * Select mode; we can be called early in which case we
1023 	 * always use auto mode.  We know we'll be called when
1024 	 * entering the RUN state with bsschan setup properly
1025 	 * so state will eventually get set correctly
1026 	 */
1027 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1028 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1029 	else
1030 		mode = IEEE80211_MODE_AUTO;
1031 
1032 	/*
1033 	 * This implements agressive mode as found in certain
1034 	 * vendors' AP's.  When there is significant high
1035 	 * priority (VI/VO) traffic in the BSS throttle back BE
1036 	 * traffic by using conservative parameters.  Otherwise
1037 	 * BE uses agressive params to optimize performance of
1038 	 * legacy/non-QoS traffic.
1039 	 */
1040 
1041 	/* Hostap? Only if aggressive mode is enabled */
1042         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1043 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1044 		do_aggrmode = 1;
1045 
1046 	/*
1047 	 * Station? Only if we're in a non-QoS BSS.
1048 	 */
1049 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1050 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1051 		do_aggrmode = 1;
1052 
1053 	/*
1054 	 * IBSS? Only if we we have WME enabled.
1055 	 */
1056 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1057 	    (vap->iv_flags & IEEE80211_F_WME))
1058 		do_aggrmode = 1;
1059 
1060 	/*
1061 	 * If WME is disabled on this VAP, default to aggressive mode
1062 	 * regardless of the configuration.
1063 	 */
1064 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1065 		do_aggrmode = 1;
1066 
1067 	/* XXX WDS? */
1068 
1069 	/* XXX MBSS? */
1070 
1071 	if (do_aggrmode) {
1072 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1073 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1074 
1075 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1076 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1077 		    aggrParam[mode].logcwmin;
1078 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1079 		    aggrParam[mode].logcwmax;
1080 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1081 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1082 			aggrParam[mode].txopLimit : 0;
1083 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1084 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1085 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1086 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1087 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1088 	}
1089 
1090 
1091 	/*
1092 	 * Change the contention window based on the number of associated
1093 	 * stations.  If the number of associated stations is 1 and
1094 	 * aggressive mode is enabled, lower the contention window even
1095 	 * further.
1096 	 */
1097 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1098 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1099 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1100 		    [IEEE80211_MODE_AUTO]	= 3,
1101 		    [IEEE80211_MODE_11A]	= 3,
1102 		    [IEEE80211_MODE_11B]	= 4,
1103 		    [IEEE80211_MODE_11G]	= 3,
1104 		    [IEEE80211_MODE_FH]		= 4,
1105 		    [IEEE80211_MODE_TURBO_A]	= 3,
1106 		    [IEEE80211_MODE_TURBO_G]	= 3,
1107 		    [IEEE80211_MODE_STURBO_A]	= 3,
1108 		    [IEEE80211_MODE_HALF]	= 3,
1109 		    [IEEE80211_MODE_QUARTER]	= 3,
1110 		    [IEEE80211_MODE_11NA]	= 3,
1111 		    [IEEE80211_MODE_11NG]	= 3,
1112 		};
1113 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1114 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1115 
1116 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1117 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1118 		    "update %s (chan+bss) logcwmin %u\n",
1119 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1120 	}
1121 
1122 	/*
1123 	 * Arrange for the beacon update.
1124 	 *
1125 	 * XXX what about MBSS, WDS?
1126 	 */
1127 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1128 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1129 		/*
1130 		 * Arrange for a beacon update and bump the parameter
1131 		 * set number so associated stations load the new values.
1132 		 */
1133 		wme->wme_bssChanParams.cap_info =
1134 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1135 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1136 	}
1137 
1138 	wme->wme_update(ic);
1139 
1140 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1141 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1142 	    vap->iv_opmode == IEEE80211_M_STA ?
1143 		wme->wme_wmeChanParams.cap_info :
1144 		wme->wme_bssChanParams.cap_info);
1145 }
1146 
1147 void
1148 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1149 {
1150 	struct ieee80211com *ic = vap->iv_ic;
1151 
1152 	if (ic->ic_caps & IEEE80211_C_WME) {
1153 		IEEE80211_LOCK(ic);
1154 		ieee80211_wme_updateparams_locked(vap);
1155 		IEEE80211_UNLOCK(ic);
1156 	}
1157 }
1158 
1159 static void
1160 parent_updown(void *arg, int npending)
1161 {
1162 	struct ifnet *parent = arg;
1163 
1164 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1165 }
1166 
1167 static void
1168 update_mcast(void *arg, int npending)
1169 {
1170 	struct ieee80211com *ic = arg;
1171 	struct ifnet *parent = ic->ic_ifp;
1172 
1173 	ic->ic_update_mcast(parent);
1174 }
1175 
1176 static void
1177 update_promisc(void *arg, int npending)
1178 {
1179 	struct ieee80211com *ic = arg;
1180 	struct ifnet *parent = ic->ic_ifp;
1181 
1182 	ic->ic_update_promisc(parent);
1183 }
1184 
1185 static void
1186 update_channel(void *arg, int npending)
1187 {
1188 	struct ieee80211com *ic = arg;
1189 
1190 	ic->ic_set_channel(ic);
1191 	ieee80211_radiotap_chan_change(ic);
1192 }
1193 
1194 static void
1195 update_chw(void *arg, int npending)
1196 {
1197 	struct ieee80211com *ic = arg;
1198 
1199 	/*
1200 	 * XXX should we defer the channel width _config_ update until now?
1201 	 */
1202 	ic->ic_update_chw(ic);
1203 }
1204 
1205 /*
1206  * Block until the parent is in a known state.  This is
1207  * used after any operations that dispatch a task (e.g.
1208  * to auto-configure the parent device up/down).
1209  */
1210 void
1211 ieee80211_waitfor_parent(struct ieee80211com *ic)
1212 {
1213 	taskqueue_block(ic->ic_tq);
1214 	ieee80211_draintask(ic, &ic->ic_parent_task);
1215 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1216 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1217 	ieee80211_draintask(ic, &ic->ic_chan_task);
1218 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1219 	ieee80211_draintask(ic, &ic->ic_chw_task);
1220 	taskqueue_unblock(ic->ic_tq);
1221 }
1222 
1223 /*
1224  * Start a vap running.  If this is the first vap to be
1225  * set running on the underlying device then we
1226  * automatically bring the device up.
1227  */
1228 void
1229 ieee80211_start_locked(struct ieee80211vap *vap)
1230 {
1231 	struct ifnet *ifp = vap->iv_ifp;
1232 	struct ieee80211com *ic = vap->iv_ic;
1233 	struct ifnet *parent = ic->ic_ifp;
1234 
1235 	IEEE80211_LOCK_ASSERT(ic);
1236 
1237 	IEEE80211_DPRINTF(vap,
1238 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1239 		"start running, %d vaps running\n", ic->ic_nrunning);
1240 
1241 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1242 		/*
1243 		 * Mark us running.  Note that it's ok to do this first;
1244 		 * if we need to bring the parent device up we defer that
1245 		 * to avoid dropping the com lock.  We expect the device
1246 		 * to respond to being marked up by calling back into us
1247 		 * through ieee80211_start_all at which point we'll come
1248 		 * back in here and complete the work.
1249 		 */
1250 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1251 		/*
1252 		 * We are not running; if this we are the first vap
1253 		 * to be brought up auto-up the parent if necessary.
1254 		 */
1255 		if (ic->ic_nrunning++ == 0 &&
1256 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1257 			IEEE80211_DPRINTF(vap,
1258 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1259 			    "%s: up parent %s\n", __func__, parent->if_xname);
1260 			parent->if_flags |= IFF_UP;
1261 			ieee80211_runtask(ic, &ic->ic_parent_task);
1262 			return;
1263 		}
1264 	}
1265 	/*
1266 	 * If the parent is up and running, then kick the
1267 	 * 802.11 state machine as appropriate.
1268 	 */
1269 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1270 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1271 		if (vap->iv_opmode == IEEE80211_M_STA) {
1272 #if 0
1273 			/* XXX bypasses scan too easily; disable for now */
1274 			/*
1275 			 * Try to be intelligent about clocking the state
1276 			 * machine.  If we're currently in RUN state then
1277 			 * we should be able to apply any new state/parameters
1278 			 * simply by re-associating.  Otherwise we need to
1279 			 * re-scan to select an appropriate ap.
1280 			 */
1281 			if (vap->iv_state >= IEEE80211_S_RUN)
1282 				ieee80211_new_state_locked(vap,
1283 				    IEEE80211_S_ASSOC, 1);
1284 			else
1285 #endif
1286 				ieee80211_new_state_locked(vap,
1287 				    IEEE80211_S_SCAN, 0);
1288 		} else {
1289 			/*
1290 			 * For monitor+wds mode there's nothing to do but
1291 			 * start running.  Otherwise if this is the first
1292 			 * vap to be brought up, start a scan which may be
1293 			 * preempted if the station is locked to a particular
1294 			 * channel.
1295 			 */
1296 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1297 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1298 			    vap->iv_opmode == IEEE80211_M_WDS)
1299 				ieee80211_new_state_locked(vap,
1300 				    IEEE80211_S_RUN, -1);
1301 			else
1302 				ieee80211_new_state_locked(vap,
1303 				    IEEE80211_S_SCAN, 0);
1304 		}
1305 	}
1306 }
1307 
1308 /*
1309  * Start a single vap.
1310  */
1311 void
1312 ieee80211_init(void *arg)
1313 {
1314 	struct ieee80211vap *vap = arg;
1315 
1316 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1317 	    "%s\n", __func__);
1318 
1319 	IEEE80211_LOCK(vap->iv_ic);
1320 	ieee80211_start_locked(vap);
1321 	IEEE80211_UNLOCK(vap->iv_ic);
1322 }
1323 
1324 /*
1325  * Start all runnable vap's on a device.
1326  */
1327 void
1328 ieee80211_start_all(struct ieee80211com *ic)
1329 {
1330 	struct ieee80211vap *vap;
1331 
1332 	IEEE80211_LOCK(ic);
1333 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1334 		struct ifnet *ifp = vap->iv_ifp;
1335 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1336 			ieee80211_start_locked(vap);
1337 	}
1338 	IEEE80211_UNLOCK(ic);
1339 }
1340 
1341 /*
1342  * Stop a vap.  We force it down using the state machine
1343  * then mark it's ifnet not running.  If this is the last
1344  * vap running on the underlying device then we close it
1345  * too to insure it will be properly initialized when the
1346  * next vap is brought up.
1347  */
1348 void
1349 ieee80211_stop_locked(struct ieee80211vap *vap)
1350 {
1351 	struct ieee80211com *ic = vap->iv_ic;
1352 	struct ifnet *ifp = vap->iv_ifp;
1353 	struct ifnet *parent = ic->ic_ifp;
1354 
1355 	IEEE80211_LOCK_ASSERT(ic);
1356 
1357 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1358 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1359 
1360 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1361 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1362 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1363 		if (--ic->ic_nrunning == 0 &&
1364 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1365 			IEEE80211_DPRINTF(vap,
1366 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1367 			    "down parent %s\n", parent->if_xname);
1368 			parent->if_flags &= ~IFF_UP;
1369 			ieee80211_runtask(ic, &ic->ic_parent_task);
1370 		}
1371 	}
1372 }
1373 
1374 void
1375 ieee80211_stop(struct ieee80211vap *vap)
1376 {
1377 	struct ieee80211com *ic = vap->iv_ic;
1378 
1379 	IEEE80211_LOCK(ic);
1380 	ieee80211_stop_locked(vap);
1381 	IEEE80211_UNLOCK(ic);
1382 }
1383 
1384 /*
1385  * Stop all vap's running on a device.
1386  */
1387 void
1388 ieee80211_stop_all(struct ieee80211com *ic)
1389 {
1390 	struct ieee80211vap *vap;
1391 
1392 	IEEE80211_LOCK(ic);
1393 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1394 		struct ifnet *ifp = vap->iv_ifp;
1395 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1396 			ieee80211_stop_locked(vap);
1397 	}
1398 	IEEE80211_UNLOCK(ic);
1399 
1400 	ieee80211_waitfor_parent(ic);
1401 }
1402 
1403 /*
1404  * Stop all vap's running on a device and arrange
1405  * for those that were running to be resumed.
1406  */
1407 void
1408 ieee80211_suspend_all(struct ieee80211com *ic)
1409 {
1410 	struct ieee80211vap *vap;
1411 
1412 	IEEE80211_LOCK(ic);
1413 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1414 		struct ifnet *ifp = vap->iv_ifp;
1415 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1416 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1417 			ieee80211_stop_locked(vap);
1418 		}
1419 	}
1420 	IEEE80211_UNLOCK(ic);
1421 
1422 	ieee80211_waitfor_parent(ic);
1423 }
1424 
1425 /*
1426  * Start all vap's marked for resume.
1427  */
1428 void
1429 ieee80211_resume_all(struct ieee80211com *ic)
1430 {
1431 	struct ieee80211vap *vap;
1432 
1433 	IEEE80211_LOCK(ic);
1434 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1435 		struct ifnet *ifp = vap->iv_ifp;
1436 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1437 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1438 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1439 			ieee80211_start_locked(vap);
1440 		}
1441 	}
1442 	IEEE80211_UNLOCK(ic);
1443 }
1444 
1445 void
1446 ieee80211_beacon_miss(struct ieee80211com *ic)
1447 {
1448 	IEEE80211_LOCK(ic);
1449 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1450 		/* Process in a taskq, the handler may reenter the driver */
1451 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1452 	}
1453 	IEEE80211_UNLOCK(ic);
1454 }
1455 
1456 static void
1457 beacon_miss(void *arg, int npending)
1458 {
1459 	struct ieee80211com *ic = arg;
1460 	struct ieee80211vap *vap;
1461 
1462 	IEEE80211_LOCK(ic);
1463 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1464 		/*
1465 		 * We only pass events through for sta vap's in RUN state;
1466 		 * may be too restrictive but for now this saves all the
1467 		 * handlers duplicating these checks.
1468 		 */
1469 		if (vap->iv_opmode == IEEE80211_M_STA &&
1470 		    vap->iv_state >= IEEE80211_S_RUN &&
1471 		    vap->iv_bmiss != NULL)
1472 			vap->iv_bmiss(vap);
1473 	}
1474 	IEEE80211_UNLOCK(ic);
1475 }
1476 
1477 static void
1478 beacon_swmiss(void *arg, int npending)
1479 {
1480 	struct ieee80211vap *vap = arg;
1481 	struct ieee80211com *ic = vap->iv_ic;
1482 
1483 	IEEE80211_LOCK(ic);
1484 	if (vap->iv_state == IEEE80211_S_RUN) {
1485 		/* XXX Call multiple times if npending > zero? */
1486 		vap->iv_bmiss(vap);
1487 	}
1488 	IEEE80211_UNLOCK(ic);
1489 }
1490 
1491 /*
1492  * Software beacon miss handling.  Check if any beacons
1493  * were received in the last period.  If not post a
1494  * beacon miss; otherwise reset the counter.
1495  */
1496 void
1497 ieee80211_swbmiss(void *arg)
1498 {
1499 	struct ieee80211vap *vap = arg;
1500 	struct ieee80211com *ic = vap->iv_ic;
1501 
1502 	IEEE80211_LOCK_ASSERT(ic);
1503 
1504 	/* XXX sleep state? */
1505 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1506 	    ("wrong state %d", vap->iv_state));
1507 
1508 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1509 		/*
1510 		 * If scanning just ignore and reset state.  If we get a
1511 		 * bmiss after coming out of scan because we haven't had
1512 		 * time to receive a beacon then we should probe the AP
1513 		 * before posting a real bmiss (unless iv_bmiss_max has
1514 		 * been artifiically lowered).  A cleaner solution might
1515 		 * be to disable the timer on scan start/end but to handle
1516 		 * case of multiple sta vap's we'd need to disable the
1517 		 * timers of all affected vap's.
1518 		 */
1519 		vap->iv_swbmiss_count = 0;
1520 	} else if (vap->iv_swbmiss_count == 0) {
1521 		if (vap->iv_bmiss != NULL)
1522 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1523 	} else
1524 		vap->iv_swbmiss_count = 0;
1525 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1526 		ieee80211_swbmiss, vap);
1527 }
1528 
1529 /*
1530  * Start an 802.11h channel switch.  We record the parameters,
1531  * mark the operation pending, notify each vap through the
1532  * beacon update mechanism so it can update the beacon frame
1533  * contents, and then switch vap's to CSA state to block outbound
1534  * traffic.  Devices that handle CSA directly can use the state
1535  * switch to do the right thing so long as they call
1536  * ieee80211_csa_completeswitch when it's time to complete the
1537  * channel change.  Devices that depend on the net80211 layer can
1538  * use ieee80211_beacon_update to handle the countdown and the
1539  * channel switch.
1540  */
1541 void
1542 ieee80211_csa_startswitch(struct ieee80211com *ic,
1543 	struct ieee80211_channel *c, int mode, int count)
1544 {
1545 	struct ieee80211vap *vap;
1546 
1547 	IEEE80211_LOCK_ASSERT(ic);
1548 
1549 	ic->ic_csa_newchan = c;
1550 	ic->ic_csa_mode = mode;
1551 	ic->ic_csa_count = count;
1552 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1553 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1554 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1555 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1556 		    vap->iv_opmode == IEEE80211_M_MBSS)
1557 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1558 		/* switch to CSA state to block outbound traffic */
1559 		if (vap->iv_state == IEEE80211_S_RUN)
1560 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1561 	}
1562 	ieee80211_notify_csa(ic, c, mode, count);
1563 }
1564 
1565 /*
1566  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1567  * This is called by both the completion and cancellation functions
1568  * so each VAP is placed back in the RUN state and can thus transmit.
1569  */
1570 static void
1571 csa_completeswitch(struct ieee80211com *ic)
1572 {
1573 	struct ieee80211vap *vap;
1574 
1575 	ic->ic_csa_newchan = NULL;
1576 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1577 
1578 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1579 		if (vap->iv_state == IEEE80211_S_CSA)
1580 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1581 }
1582 
1583 /*
1584  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1585  * We clear state and move all vap's in CSA state to RUN state
1586  * so they can again transmit.
1587  *
1588  * Although this may not be completely correct, update the BSS channel
1589  * for each VAP to the newly configured channel. The setcurchan sets
1590  * the current operating channel for the interface (so the radio does
1591  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1592  * reported information via ioctl.
1593  */
1594 void
1595 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1596 {
1597 	struct ieee80211vap *vap;
1598 
1599 	IEEE80211_LOCK_ASSERT(ic);
1600 
1601 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1602 
1603 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1604 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1605 		if (vap->iv_state == IEEE80211_S_CSA)
1606 			vap->iv_bss->ni_chan = ic->ic_curchan;
1607 
1608 	csa_completeswitch(ic);
1609 }
1610 
1611 /*
1612  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1613  * We clear state and move all vap's in CSA state to RUN state
1614  * so they can again transmit.
1615  */
1616 void
1617 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1618 {
1619 	IEEE80211_LOCK_ASSERT(ic);
1620 
1621 	csa_completeswitch(ic);
1622 }
1623 
1624 /*
1625  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1626  * We clear state and move all vap's in CAC state to RUN state.
1627  */
1628 void
1629 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1630 {
1631 	struct ieee80211com *ic = vap0->iv_ic;
1632 	struct ieee80211vap *vap;
1633 
1634 	IEEE80211_LOCK(ic);
1635 	/*
1636 	 * Complete CAC state change for lead vap first; then
1637 	 * clock all the other vap's waiting.
1638 	 */
1639 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1640 	    ("wrong state %d", vap0->iv_state));
1641 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1642 
1643 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1644 		if (vap->iv_state == IEEE80211_S_CAC)
1645 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1646 	IEEE80211_UNLOCK(ic);
1647 }
1648 
1649 /*
1650  * Force all vap's other than the specified vap to the INIT state
1651  * and mark them as waiting for a scan to complete.  These vaps
1652  * will be brought up when the scan completes and the scanning vap
1653  * reaches RUN state by wakeupwaiting.
1654  */
1655 static void
1656 markwaiting(struct ieee80211vap *vap0)
1657 {
1658 	struct ieee80211com *ic = vap0->iv_ic;
1659 	struct ieee80211vap *vap;
1660 
1661 	IEEE80211_LOCK_ASSERT(ic);
1662 
1663 	/*
1664 	 * A vap list entry can not disappear since we are running on the
1665 	 * taskqueue and a vap destroy will queue and drain another state
1666 	 * change task.
1667 	 */
1668 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1669 		if (vap == vap0)
1670 			continue;
1671 		if (vap->iv_state != IEEE80211_S_INIT) {
1672 			/* NB: iv_newstate may drop the lock */
1673 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1674 			IEEE80211_LOCK_ASSERT(ic);
1675 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1676 		}
1677 	}
1678 }
1679 
1680 /*
1681  * Wakeup all vap's waiting for a scan to complete.  This is the
1682  * companion to markwaiting (above) and is used to coordinate
1683  * multiple vaps scanning.
1684  * This is called from the state taskqueue.
1685  */
1686 static void
1687 wakeupwaiting(struct ieee80211vap *vap0)
1688 {
1689 	struct ieee80211com *ic = vap0->iv_ic;
1690 	struct ieee80211vap *vap;
1691 
1692 	IEEE80211_LOCK_ASSERT(ic);
1693 
1694 	/*
1695 	 * A vap list entry can not disappear since we are running on the
1696 	 * taskqueue and a vap destroy will queue and drain another state
1697 	 * change task.
1698 	 */
1699 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1700 		if (vap == vap0)
1701 			continue;
1702 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1703 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1704 			/* NB: sta's cannot go INIT->RUN */
1705 			/* NB: iv_newstate may drop the lock */
1706 			vap->iv_newstate(vap,
1707 			    vap->iv_opmode == IEEE80211_M_STA ?
1708 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1709 			IEEE80211_LOCK_ASSERT(ic);
1710 		}
1711 	}
1712 }
1713 
1714 /*
1715  * Handle post state change work common to all operating modes.
1716  */
1717 static void
1718 ieee80211_newstate_cb(void *xvap, int npending)
1719 {
1720 	struct ieee80211vap *vap = xvap;
1721 	struct ieee80211com *ic = vap->iv_ic;
1722 	enum ieee80211_state nstate, ostate;
1723 	int arg, rc;
1724 
1725 	IEEE80211_LOCK(ic);
1726 	nstate = vap->iv_nstate;
1727 	arg = vap->iv_nstate_arg;
1728 
1729 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1730 		/*
1731 		 * We have been requested to drop back to the INIT before
1732 		 * proceeding to the new state.
1733 		 */
1734 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1735 		    "%s: %s -> %s arg %d\n", __func__,
1736 		    ieee80211_state_name[vap->iv_state],
1737 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1738 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1739 		IEEE80211_LOCK_ASSERT(ic);
1740 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1741 	}
1742 
1743 	ostate = vap->iv_state;
1744 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1745 		/*
1746 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1747 		 * vap's to INIT state and mark them as waiting for the scan to
1748 		 * complete.  This insures they don't interfere with our
1749 		 * scanning.  Since we are single threaded the vaps can not
1750 		 * transition again while we are executing.
1751 		 *
1752 		 * XXX not always right, assumes ap follows sta
1753 		 */
1754 		markwaiting(vap);
1755 	}
1756 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1757 	    "%s: %s -> %s arg %d\n", __func__,
1758 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1759 
1760 	rc = vap->iv_newstate(vap, nstate, arg);
1761 	IEEE80211_LOCK_ASSERT(ic);
1762 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1763 	if (rc != 0) {
1764 		/* State transition failed */
1765 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1766 		KASSERT(nstate != IEEE80211_S_INIT,
1767 		    ("INIT state change failed"));
1768 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1769 		    "%s: %s returned error %d\n", __func__,
1770 		    ieee80211_state_name[nstate], rc);
1771 		goto done;
1772 	}
1773 
1774 	/* No actual transition, skip post processing */
1775 	if (ostate == nstate)
1776 		goto done;
1777 
1778 	if (nstate == IEEE80211_S_RUN) {
1779 		/*
1780 		 * OACTIVE may be set on the vap if the upper layer
1781 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1782 		 * RUN state.  Clear it and restart xmit.
1783 		 *
1784 		 * Note this can also happen as a result of SLEEP->RUN
1785 		 * (i.e. coming out of power save mode).
1786 		 */
1787 		IF_LOCK(&vap->iv_ifp->if_snd);
1788 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1789 		IF_UNLOCK(&vap->iv_ifp->if_snd);
1790 
1791 		/*
1792 		 * XXX Kick-start a VAP queue - this should be a method,
1793 		 * not if_start()!
1794 		 */
1795 		if_start(vap->iv_ifp);
1796 
1797 		/* bring up any vaps waiting on us */
1798 		wakeupwaiting(vap);
1799 	} else if (nstate == IEEE80211_S_INIT) {
1800 		/*
1801 		 * Flush the scan cache if we did the last scan (XXX?)
1802 		 * and flush any frames on send queues from this vap.
1803 		 * Note the mgt q is used only for legacy drivers and
1804 		 * will go away shortly.
1805 		 */
1806 		ieee80211_scan_flush(vap);
1807 
1808 		/* XXX NB: cast for altq */
1809 		ieee80211_flush_ifq((struct ifqueue *)&ic->ic_ifp->if_snd, vap);
1810 	}
1811 done:
1812 	IEEE80211_UNLOCK(ic);
1813 }
1814 
1815 /*
1816  * Public interface for initiating a state machine change.
1817  * This routine single-threads the request and coordinates
1818  * the scheduling of multiple vaps for the purpose of selecting
1819  * an operating channel.  Specifically the following scenarios
1820  * are handled:
1821  * o only one vap can be selecting a channel so on transition to
1822  *   SCAN state if another vap is already scanning then
1823  *   mark the caller for later processing and return without
1824  *   doing anything (XXX? expectations by caller of synchronous operation)
1825  * o only one vap can be doing CAC of a channel so on transition to
1826  *   CAC state if another vap is already scanning for radar then
1827  *   mark the caller for later processing and return without
1828  *   doing anything (XXX? expectations by caller of synchronous operation)
1829  * o if another vap is already running when a request is made
1830  *   to SCAN then an operating channel has been chosen; bypass
1831  *   the scan and just join the channel
1832  *
1833  * Note that the state change call is done through the iv_newstate
1834  * method pointer so any driver routine gets invoked.  The driver
1835  * will normally call back into operating mode-specific
1836  * ieee80211_newstate routines (below) unless it needs to completely
1837  * bypass the state machine (e.g. because the firmware has it's
1838  * own idea how things should work).  Bypassing the net80211 layer
1839  * is usually a mistake and indicates lack of proper integration
1840  * with the net80211 layer.
1841  */
1842 static int
1843 ieee80211_new_state_locked(struct ieee80211vap *vap,
1844 	enum ieee80211_state nstate, int arg)
1845 {
1846 	struct ieee80211com *ic = vap->iv_ic;
1847 	struct ieee80211vap *vp;
1848 	enum ieee80211_state ostate;
1849 	int nrunning, nscanning;
1850 
1851 	IEEE80211_LOCK_ASSERT(ic);
1852 
1853 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1854 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1855 			/*
1856 			 * XXX The vap is being stopped, do no allow any other
1857 			 * state changes until this is completed.
1858 			 */
1859 			return -1;
1860 		} else if (vap->iv_state != vap->iv_nstate) {
1861 #if 0
1862 			/* Warn if the previous state hasn't completed. */
1863 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1864 			    "%s: pending %s -> %s transition lost\n", __func__,
1865 			    ieee80211_state_name[vap->iv_state],
1866 			    ieee80211_state_name[vap->iv_nstate]);
1867 #else
1868 			/* XXX temporarily enable to identify issues */
1869 			if_printf(vap->iv_ifp,
1870 			    "%s: pending %s -> %s transition lost\n",
1871 			    __func__, ieee80211_state_name[vap->iv_state],
1872 			    ieee80211_state_name[vap->iv_nstate]);
1873 #endif
1874 		}
1875 	}
1876 
1877 	nrunning = nscanning = 0;
1878 	/* XXX can track this state instead of calculating */
1879 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1880 		if (vp != vap) {
1881 			if (vp->iv_state >= IEEE80211_S_RUN)
1882 				nrunning++;
1883 			/* XXX doesn't handle bg scan */
1884 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1885 			else if (vp->iv_state > IEEE80211_S_INIT)
1886 				nscanning++;
1887 		}
1888 	}
1889 	ostate = vap->iv_state;
1890 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1891 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1892 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1893 	    nrunning, nscanning);
1894 	switch (nstate) {
1895 	case IEEE80211_S_SCAN:
1896 		if (ostate == IEEE80211_S_INIT) {
1897 			/*
1898 			 * INIT -> SCAN happens on initial bringup.
1899 			 */
1900 			KASSERT(!(nscanning && nrunning),
1901 			    ("%d scanning and %d running", nscanning, nrunning));
1902 			if (nscanning) {
1903 				/*
1904 				 * Someone is scanning, defer our state
1905 				 * change until the work has completed.
1906 				 */
1907 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1908 				    "%s: defer %s -> %s\n",
1909 				    __func__, ieee80211_state_name[ostate],
1910 				    ieee80211_state_name[nstate]);
1911 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1912 				return 0;
1913 			}
1914 			if (nrunning) {
1915 				/*
1916 				 * Someone is operating; just join the channel
1917 				 * they have chosen.
1918 				 */
1919 				/* XXX kill arg? */
1920 				/* XXX check each opmode, adhoc? */
1921 				if (vap->iv_opmode == IEEE80211_M_STA)
1922 					nstate = IEEE80211_S_SCAN;
1923 				else
1924 					nstate = IEEE80211_S_RUN;
1925 #ifdef IEEE80211_DEBUG
1926 				if (nstate != IEEE80211_S_SCAN) {
1927 					IEEE80211_DPRINTF(vap,
1928 					    IEEE80211_MSG_STATE,
1929 					    "%s: override, now %s -> %s\n",
1930 					    __func__,
1931 					    ieee80211_state_name[ostate],
1932 					    ieee80211_state_name[nstate]);
1933 				}
1934 #endif
1935 			}
1936 		}
1937 		break;
1938 	case IEEE80211_S_RUN:
1939 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1940 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1941 		    nscanning) {
1942 			/*
1943 			 * Legacy WDS with someone else scanning; don't
1944 			 * go online until that completes as we should
1945 			 * follow the other vap to the channel they choose.
1946 			 */
1947 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1948 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1949 			     ieee80211_state_name[ostate],
1950 			     ieee80211_state_name[nstate]);
1951 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1952 			return 0;
1953 		}
1954 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1955 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1956 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1957 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1958 			/*
1959 			 * This is a DFS channel, transition to CAC state
1960 			 * instead of RUN.  This allows us to initiate
1961 			 * Channel Availability Check (CAC) as specified
1962 			 * by 11h/DFS.
1963 			 */
1964 			nstate = IEEE80211_S_CAC;
1965 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1966 			     "%s: override %s -> %s (DFS)\n", __func__,
1967 			     ieee80211_state_name[ostate],
1968 			     ieee80211_state_name[nstate]);
1969 		}
1970 		break;
1971 	case IEEE80211_S_INIT:
1972 		/* cancel any scan in progress */
1973 		ieee80211_cancel_scan(vap);
1974 		if (ostate == IEEE80211_S_INIT ) {
1975 			/* XXX don't believe this */
1976 			/* INIT -> INIT. nothing to do */
1977 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1978 		}
1979 		/* fall thru... */
1980 	default:
1981 		break;
1982 	}
1983 	/* defer the state change to a thread */
1984 	vap->iv_nstate = nstate;
1985 	vap->iv_nstate_arg = arg;
1986 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1987 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1988 	return EINPROGRESS;
1989 }
1990 
1991 int
1992 ieee80211_new_state(struct ieee80211vap *vap,
1993 	enum ieee80211_state nstate, int arg)
1994 {
1995 	struct ieee80211com *ic = vap->iv_ic;
1996 	int rc;
1997 
1998 	IEEE80211_LOCK(ic);
1999 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2000 	IEEE80211_UNLOCK(ic);
2001 	return rc;
2002 }
2003