1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 /* 108 * Reason code descriptions were (mostly) obtained from 109 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 110 */ 111 const char * 112 ieee80211_reason_to_string(uint16_t reason) 113 { 114 switch (reason) { 115 case IEEE80211_REASON_UNSPECIFIED: 116 return ("unspecified"); 117 case IEEE80211_REASON_AUTH_EXPIRE: 118 return ("previous authentication is expired"); 119 case IEEE80211_REASON_AUTH_LEAVE: 120 return ("sending STA is leaving/has left IBSS or ESS"); 121 case IEEE80211_REASON_ASSOC_EXPIRE: 122 return ("disassociated due to inactivity"); 123 case IEEE80211_REASON_ASSOC_TOOMANY: 124 return ("too many associated STAs"); 125 case IEEE80211_REASON_NOT_AUTHED: 126 return ("class 2 frame received from nonauthenticated STA"); 127 case IEEE80211_REASON_NOT_ASSOCED: 128 return ("class 3 frame received from nonassociated STA"); 129 case IEEE80211_REASON_ASSOC_LEAVE: 130 return ("sending STA is leaving/has left BSS"); 131 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 132 return ("STA requesting (re)association is not authenticated"); 133 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 134 return ("information in the Power Capability element is " 135 "unacceptable"); 136 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 137 return ("information in the Supported Channels element is " 138 "unacceptable"); 139 case IEEE80211_REASON_IE_INVALID: 140 return ("invalid element"); 141 case IEEE80211_REASON_MIC_FAILURE: 142 return ("MIC failure"); 143 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 144 return ("4-Way handshake timeout"); 145 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 146 return ("group key update timeout"); 147 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 148 return ("element in 4-Way handshake different from " 149 "(re)association request/probe response/beacon frame"); 150 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 151 return ("invalid group cipher"); 152 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 153 return ("invalid pairwise cipher"); 154 case IEEE80211_REASON_AKMP_INVALID: 155 return ("invalid AKMP"); 156 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 157 return ("unsupported version in RSN IE"); 158 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 159 return ("invalid capabilities in RSN IE"); 160 case IEEE80211_REASON_802_1X_AUTH_FAILED: 161 return ("IEEE 802.1X authentication failed"); 162 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 163 return ("cipher suite rejected because of the security " 164 "policy"); 165 case IEEE80211_REASON_UNSPECIFIED_QOS: 166 return ("unspecified (QoS-related)"); 167 case IEEE80211_REASON_INSUFFICIENT_BW: 168 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 169 case IEEE80211_REASON_TOOMANY_FRAMES: 170 return ("too many frames need to be acknowledged"); 171 case IEEE80211_REASON_OUTSIDE_TXOP: 172 return ("STA is transmitting outside the limits of its TXOPs"); 173 case IEEE80211_REASON_LEAVING_QBSS: 174 return ("requested from peer STA (the STA is " 175 "resetting/leaving the BSS)"); 176 case IEEE80211_REASON_BAD_MECHANISM: 177 return ("requested from peer STA (it does not want to use " 178 "the mechanism)"); 179 case IEEE80211_REASON_SETUP_NEEDED: 180 return ("requested from peer STA (setup is required for the " 181 "used mechanism)"); 182 case IEEE80211_REASON_TIMEOUT: 183 return ("requested from peer STA (timeout)"); 184 case IEEE80211_REASON_PEER_LINK_CANCELED: 185 return ("SME cancels the mesh peering instance (not related " 186 "to the maximum number of peer mesh STAs)"); 187 case IEEE80211_REASON_MESH_MAX_PEERS: 188 return ("maximum number of peer mesh STAs was reached"); 189 case IEEE80211_REASON_MESH_CPVIOLATION: 190 return ("the received information violates the Mesh " 191 "Configuration policy configured in the mesh STA " 192 "profile"); 193 case IEEE80211_REASON_MESH_CLOSE_RCVD: 194 return ("the mesh STA has received a Mesh Peering Close " 195 "message requesting to close the mesh peering"); 196 case IEEE80211_REASON_MESH_MAX_RETRIES: 197 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 198 "Peering Open messages, without receiving a Mesh " 199 "Peering Confirm message"); 200 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 201 return ("the confirmTimer for the mesh peering instance times " 202 "out"); 203 case IEEE80211_REASON_MESH_INVALID_GTK: 204 return ("the mesh STA fails to unwrap the GTK or the values " 205 "in the wrapped contents do not match"); 206 case IEEE80211_REASON_MESH_INCONS_PARAMS: 207 return ("the mesh STA receives inconsistent information about " 208 "the mesh parameters between Mesh Peering Management " 209 "frames"); 210 case IEEE80211_REASON_MESH_INVALID_SECURITY: 211 return ("the mesh STA fails the authenticated mesh peering " 212 "exchange because due to failure in selecting " 213 "pairwise/group ciphersuite"); 214 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 215 return ("the mesh STA does not have proxy information for " 216 "this external destination"); 217 case IEEE80211_REASON_MESH_PERR_NO_FI: 218 return ("the mesh STA does not have forwarding information " 219 "for this destination"); 220 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 221 return ("the mesh STA determines that the link to the next " 222 "hop of an active path in its forwarding information " 223 "is no longer usable"); 224 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 225 return ("the MAC address of the STA already exists in the " 226 "mesh BSS"); 227 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 228 return ("the mesh STA performs channel switch to meet " 229 "regulatory requirements"); 230 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 231 return ("the mesh STA performs channel switch with " 232 "unspecified reason"); 233 default: 234 return ("reserved/unknown"); 235 } 236 } 237 238 static void beacon_miss(void *, int); 239 static void beacon_swmiss(void *, int); 240 static void parent_updown(void *, int); 241 static void update_mcast(void *, int); 242 static void update_promisc(void *, int); 243 static void update_channel(void *, int); 244 static void update_chw(void *, int); 245 static void vap_update_wme(void *, int); 246 static void vap_update_slot(void *, int); 247 static void restart_vaps(void *, int); 248 static void vap_update_erp_protmode(void *, int); 249 static void vap_update_preamble(void *, int); 250 static void vap_update_ht_protmode(void *, int); 251 static void ieee80211_newstate_cb(void *, int); 252 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 253 struct ieee80211_node *); 254 255 static int 256 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 257 const struct ieee80211_bpf_params *params) 258 { 259 260 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 261 m_freem(m); 262 return ENETDOWN; 263 } 264 265 void 266 ieee80211_proto_attach(struct ieee80211com *ic) 267 { 268 uint8_t hdrlen; 269 270 /* override the 802.3 setting */ 271 hdrlen = ic->ic_headroom 272 + sizeof(struct ieee80211_qosframe_addr4) 273 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 274 + IEEE80211_WEP_EXTIVLEN; 275 /* XXX no way to recalculate on ifdetach */ 276 if (ALIGN(hdrlen) > max_linkhdr) { 277 /* XXX sanity check... */ 278 max_linkhdr = ALIGN(hdrlen); 279 max_hdr = max_linkhdr + max_protohdr; 280 max_datalen = MHLEN - max_hdr; 281 } 282 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 283 284 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 285 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 286 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 287 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 288 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 289 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 290 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 291 292 ic->ic_wme.wme_hipri_switch_hysteresis = 293 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 294 295 /* initialize management frame handlers */ 296 ic->ic_send_mgmt = ieee80211_send_mgmt; 297 ic->ic_raw_xmit = null_raw_xmit; 298 299 ieee80211_adhoc_attach(ic); 300 ieee80211_sta_attach(ic); 301 ieee80211_wds_attach(ic); 302 ieee80211_hostap_attach(ic); 303 #ifdef IEEE80211_SUPPORT_MESH 304 ieee80211_mesh_attach(ic); 305 #endif 306 ieee80211_monitor_attach(ic); 307 } 308 309 void 310 ieee80211_proto_detach(struct ieee80211com *ic) 311 { 312 ieee80211_monitor_detach(ic); 313 #ifdef IEEE80211_SUPPORT_MESH 314 ieee80211_mesh_detach(ic); 315 #endif 316 ieee80211_hostap_detach(ic); 317 ieee80211_wds_detach(ic); 318 ieee80211_adhoc_detach(ic); 319 ieee80211_sta_detach(ic); 320 } 321 322 static void 323 null_update_beacon(struct ieee80211vap *vap, int item) 324 { 325 } 326 327 void 328 ieee80211_proto_vattach(struct ieee80211vap *vap) 329 { 330 struct ieee80211com *ic = vap->iv_ic; 331 struct ifnet *ifp = vap->iv_ifp; 332 int i; 333 334 /* override the 802.3 setting */ 335 ifp->if_hdrlen = ic->ic_headroom 336 + sizeof(struct ieee80211_qosframe_addr4) 337 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 338 + IEEE80211_WEP_EXTIVLEN; 339 340 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 341 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 342 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 343 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 344 callout_init(&vap->iv_mgtsend, 1); 345 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 346 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 347 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 348 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 349 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 350 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 351 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 352 /* 353 * Install default tx rate handling: no fixed rate, lowest 354 * supported rate for mgmt and multicast frames. Default 355 * max retry count. These settings can be changed by the 356 * driver and/or user applications. 357 */ 358 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 359 if (isclr(ic->ic_modecaps, i)) 360 continue; 361 362 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 363 364 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 365 366 /* 367 * Setting the management rate to MCS 0 assumes that the 368 * BSS Basic rate set is empty and the BSS Basic MCS set 369 * is not. 370 * 371 * Since we're not checking this, default to the lowest 372 * defined rate for this mode. 373 * 374 * At least one 11n AP (DLINK DIR-825) is reported to drop 375 * some MCS management traffic (eg BA response frames.) 376 * 377 * See also: 9.6.0 of the 802.11n-2009 specification. 378 */ 379 #ifdef NOTYET 380 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 381 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 382 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 383 } else { 384 vap->iv_txparms[i].mgmtrate = 385 rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 vap->iv_txparms[i].mcastrate = 387 rs->rs_rates[0] & IEEE80211_RATE_VAL; 388 } 389 #endif 390 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 391 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 392 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 393 } 394 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 395 396 vap->iv_update_beacon = null_update_beacon; 397 vap->iv_deliver_data = ieee80211_deliver_data; 398 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 399 vap->iv_update_bss = vap_update_bss; 400 401 /* attach support for operating mode */ 402 ic->ic_vattach[vap->iv_opmode](vap); 403 } 404 405 void 406 ieee80211_proto_vdetach(struct ieee80211vap *vap) 407 { 408 #define FREEAPPIE(ie) do { \ 409 if (ie != NULL) \ 410 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 411 } while (0) 412 /* 413 * Detach operating mode module. 414 */ 415 if (vap->iv_opdetach != NULL) 416 vap->iv_opdetach(vap); 417 /* 418 * This should not be needed as we detach when reseting 419 * the state but be conservative here since the 420 * authenticator may do things like spawn kernel threads. 421 */ 422 if (vap->iv_auth->ia_detach != NULL) 423 vap->iv_auth->ia_detach(vap); 424 /* 425 * Detach any ACL'ator. 426 */ 427 if (vap->iv_acl != NULL) 428 vap->iv_acl->iac_detach(vap); 429 430 FREEAPPIE(vap->iv_appie_beacon); 431 FREEAPPIE(vap->iv_appie_probereq); 432 FREEAPPIE(vap->iv_appie_proberesp); 433 FREEAPPIE(vap->iv_appie_assocreq); 434 FREEAPPIE(vap->iv_appie_assocresp); 435 FREEAPPIE(vap->iv_appie_wpa); 436 #undef FREEAPPIE 437 } 438 439 /* 440 * Simple-minded authenticator module support. 441 */ 442 443 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 444 /* XXX well-known names */ 445 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 446 "wlan_internal", /* IEEE80211_AUTH_NONE */ 447 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 448 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 449 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 450 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 451 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 452 }; 453 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 454 455 static const struct ieee80211_authenticator auth_internal = { 456 .ia_name = "wlan_internal", 457 .ia_attach = NULL, 458 .ia_detach = NULL, 459 .ia_node_join = NULL, 460 .ia_node_leave = NULL, 461 }; 462 463 /* 464 * Setup internal authenticators once; they are never unregistered. 465 */ 466 static void 467 ieee80211_auth_setup(void) 468 { 469 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 470 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 471 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 472 } 473 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 474 475 const struct ieee80211_authenticator * 476 ieee80211_authenticator_get(int auth) 477 { 478 if (auth >= IEEE80211_AUTH_MAX) 479 return NULL; 480 if (authenticators[auth] == NULL) 481 ieee80211_load_module(auth_modnames[auth]); 482 return authenticators[auth]; 483 } 484 485 void 486 ieee80211_authenticator_register(int type, 487 const struct ieee80211_authenticator *auth) 488 { 489 if (type >= IEEE80211_AUTH_MAX) 490 return; 491 authenticators[type] = auth; 492 } 493 494 void 495 ieee80211_authenticator_unregister(int type) 496 { 497 498 if (type >= IEEE80211_AUTH_MAX) 499 return; 500 authenticators[type] = NULL; 501 } 502 503 /* 504 * Very simple-minded ACL module support. 505 */ 506 /* XXX just one for now */ 507 static const struct ieee80211_aclator *acl = NULL; 508 509 void 510 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 511 { 512 printf("wlan: %s acl policy registered\n", iac->iac_name); 513 acl = iac; 514 } 515 516 void 517 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 518 { 519 if (acl == iac) 520 acl = NULL; 521 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 522 } 523 524 const struct ieee80211_aclator * 525 ieee80211_aclator_get(const char *name) 526 { 527 if (acl == NULL) 528 ieee80211_load_module("wlan_acl"); 529 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 530 } 531 532 void 533 ieee80211_print_essid(const uint8_t *essid, int len) 534 { 535 const uint8_t *p; 536 int i; 537 538 if (len > IEEE80211_NWID_LEN) 539 len = IEEE80211_NWID_LEN; 540 /* determine printable or not */ 541 for (i = 0, p = essid; i < len; i++, p++) { 542 if (*p < ' ' || *p > 0x7e) 543 break; 544 } 545 if (i == len) { 546 printf("\""); 547 for (i = 0, p = essid; i < len; i++, p++) 548 printf("%c", *p); 549 printf("\""); 550 } else { 551 printf("0x"); 552 for (i = 0, p = essid; i < len; i++, p++) 553 printf("%02x", *p); 554 } 555 } 556 557 void 558 ieee80211_dump_pkt(struct ieee80211com *ic, 559 const uint8_t *buf, int len, int rate, int rssi) 560 { 561 const struct ieee80211_frame *wh; 562 int i; 563 564 wh = (const struct ieee80211_frame *)buf; 565 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 566 case IEEE80211_FC1_DIR_NODS: 567 printf("NODS %s", ether_sprintf(wh->i_addr2)); 568 printf("->%s", ether_sprintf(wh->i_addr1)); 569 printf("(%s)", ether_sprintf(wh->i_addr3)); 570 break; 571 case IEEE80211_FC1_DIR_TODS: 572 printf("TODS %s", ether_sprintf(wh->i_addr2)); 573 printf("->%s", ether_sprintf(wh->i_addr3)); 574 printf("(%s)", ether_sprintf(wh->i_addr1)); 575 break; 576 case IEEE80211_FC1_DIR_FROMDS: 577 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 578 printf("->%s", ether_sprintf(wh->i_addr1)); 579 printf("(%s)", ether_sprintf(wh->i_addr2)); 580 break; 581 case IEEE80211_FC1_DIR_DSTODS: 582 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 583 printf("->%s", ether_sprintf(wh->i_addr3)); 584 printf("(%s", ether_sprintf(wh->i_addr2)); 585 printf("->%s)", ether_sprintf(wh->i_addr1)); 586 break; 587 } 588 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 589 case IEEE80211_FC0_TYPE_DATA: 590 printf(" data"); 591 break; 592 case IEEE80211_FC0_TYPE_MGT: 593 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 594 break; 595 default: 596 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 597 break; 598 } 599 if (IEEE80211_QOS_HAS_SEQ(wh)) { 600 const struct ieee80211_qosframe *qwh = 601 (const struct ieee80211_qosframe *)buf; 602 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 603 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 604 } 605 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 606 int off; 607 608 off = ieee80211_anyhdrspace(ic, wh); 609 printf(" WEP [IV %.02x %.02x %.02x", 610 buf[off+0], buf[off+1], buf[off+2]); 611 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 612 printf(" %.02x %.02x %.02x", 613 buf[off+4], buf[off+5], buf[off+6]); 614 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 615 } 616 if (rate >= 0) 617 printf(" %dM", rate / 2); 618 if (rssi >= 0) 619 printf(" +%d", rssi); 620 printf("\n"); 621 if (len > 0) { 622 for (i = 0; i < len; i++) { 623 if ((i & 1) == 0) 624 printf(" "); 625 printf("%02x", buf[i]); 626 } 627 printf("\n"); 628 } 629 } 630 631 static __inline int 632 findrix(const struct ieee80211_rateset *rs, int r) 633 { 634 int i; 635 636 for (i = 0; i < rs->rs_nrates; i++) 637 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 638 return i; 639 return -1; 640 } 641 642 int 643 ieee80211_fix_rate(struct ieee80211_node *ni, 644 struct ieee80211_rateset *nrs, int flags) 645 { 646 struct ieee80211vap *vap = ni->ni_vap; 647 struct ieee80211com *ic = ni->ni_ic; 648 int i, j, rix, error; 649 int okrate, badrate, fixedrate, ucastrate; 650 const struct ieee80211_rateset *srs; 651 uint8_t r; 652 653 error = 0; 654 okrate = badrate = 0; 655 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 656 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 657 /* 658 * Workaround awkwardness with fixed rate. We are called 659 * to check both the legacy rate set and the HT rate set 660 * but we must apply any legacy fixed rate check only to the 661 * legacy rate set and vice versa. We cannot tell what type 662 * of rate set we've been given (legacy or HT) but we can 663 * distinguish the fixed rate type (MCS have 0x80 set). 664 * So to deal with this the caller communicates whether to 665 * check MCS or legacy rate using the flags and we use the 666 * type of any fixed rate to avoid applying an MCS to a 667 * legacy rate and vice versa. 668 */ 669 if (ucastrate & 0x80) { 670 if (flags & IEEE80211_F_DOFRATE) 671 flags &= ~IEEE80211_F_DOFRATE; 672 } else if ((ucastrate & 0x80) == 0) { 673 if (flags & IEEE80211_F_DOFMCS) 674 flags &= ~IEEE80211_F_DOFMCS; 675 } 676 /* NB: required to make MCS match below work */ 677 ucastrate &= IEEE80211_RATE_VAL; 678 } 679 fixedrate = IEEE80211_FIXED_RATE_NONE; 680 /* 681 * XXX we are called to process both MCS and legacy rates; 682 * we must use the appropriate basic rate set or chaos will 683 * ensue; for now callers that want MCS must supply 684 * IEEE80211_F_DOBRS; at some point we'll need to split this 685 * function so there are two variants, one for MCS and one 686 * for legacy rates. 687 */ 688 if (flags & IEEE80211_F_DOBRS) 689 srs = (const struct ieee80211_rateset *) 690 ieee80211_get_suphtrates(ic, ni->ni_chan); 691 else 692 srs = ieee80211_get_suprates(ic, ni->ni_chan); 693 for (i = 0; i < nrs->rs_nrates; ) { 694 if (flags & IEEE80211_F_DOSORT) { 695 /* 696 * Sort rates. 697 */ 698 for (j = i + 1; j < nrs->rs_nrates; j++) { 699 if (IEEE80211_RV(nrs->rs_rates[i]) > 700 IEEE80211_RV(nrs->rs_rates[j])) { 701 r = nrs->rs_rates[i]; 702 nrs->rs_rates[i] = nrs->rs_rates[j]; 703 nrs->rs_rates[j] = r; 704 } 705 } 706 } 707 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 708 badrate = r; 709 /* 710 * Check for fixed rate. 711 */ 712 if (r == ucastrate) 713 fixedrate = r; 714 /* 715 * Check against supported rates. 716 */ 717 rix = findrix(srs, r); 718 if (flags & IEEE80211_F_DONEGO) { 719 if (rix < 0) { 720 /* 721 * A rate in the node's rate set is not 722 * supported. If this is a basic rate and we 723 * are operating as a STA then this is an error. 724 * Otherwise we just discard/ignore the rate. 725 */ 726 if ((flags & IEEE80211_F_JOIN) && 727 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 728 error++; 729 } else if ((flags & IEEE80211_F_JOIN) == 0) { 730 /* 731 * Overwrite with the supported rate 732 * value so any basic rate bit is set. 733 */ 734 nrs->rs_rates[i] = srs->rs_rates[rix]; 735 } 736 } 737 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 738 /* 739 * Delete unacceptable rates. 740 */ 741 nrs->rs_nrates--; 742 for (j = i; j < nrs->rs_nrates; j++) 743 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 744 nrs->rs_rates[j] = 0; 745 continue; 746 } 747 if (rix >= 0) 748 okrate = nrs->rs_rates[i]; 749 i++; 750 } 751 if (okrate == 0 || error != 0 || 752 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 753 fixedrate != ucastrate)) { 754 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 755 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 756 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 757 return badrate | IEEE80211_RATE_BASIC; 758 } else 759 return IEEE80211_RV(okrate); 760 } 761 762 /* 763 * Reset 11g-related state. 764 * 765 * This is for per-VAP ERP/11g state. 766 * 767 * Eventually everything in ieee80211_reset_erp() will be 768 * per-VAP and in here. 769 */ 770 void 771 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 772 { 773 struct ieee80211com *ic = vap->iv_ic; 774 775 vap->iv_nonerpsta = 0; 776 vap->iv_longslotsta = 0; 777 778 vap->iv_flags &= ~IEEE80211_F_USEPROT; 779 /* 780 * Set short preamble and ERP barker-preamble flags. 781 */ 782 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 783 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 784 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 785 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 786 } else { 787 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 788 vap->iv_flags |= IEEE80211_F_USEBARKER; 789 } 790 791 /* 792 * Short slot time is enabled only when operating in 11g 793 * and not in an IBSS. We must also honor whether or not 794 * the driver is capable of doing it. 795 */ 796 ieee80211_vap_set_shortslottime(vap, 797 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 798 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 799 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 800 vap->iv_opmode == IEEE80211_M_HOSTAP && 801 (ic->ic_caps & IEEE80211_C_SHSLOT))); 802 } 803 804 /* 805 * Reset 11g-related state. 806 * 807 * Note this resets the global state and a caller should schedule 808 * a re-check of all the VAPs after setup to update said state. 809 */ 810 void 811 ieee80211_reset_erp(struct ieee80211com *ic) 812 { 813 #if 0 814 ic->ic_flags &= ~IEEE80211_F_USEPROT; 815 /* 816 * Set short preamble and ERP barker-preamble flags. 817 */ 818 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 819 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 820 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 821 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 822 } else { 823 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 824 ic->ic_flags |= IEEE80211_F_USEBARKER; 825 } 826 #endif 827 /* XXX TODO: schedule a new per-VAP ERP calculation */ 828 } 829 830 static struct ieee80211_node * 831 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 832 { 833 struct ieee80211_node *obss; 834 835 obss = vap->iv_bss; 836 vap->iv_bss = ni; 837 838 return (obss); 839 } 840 841 /* 842 * Deferred slot time update. 843 * 844 * For per-VAP slot time configuration, call the VAP 845 * method if the VAP requires it. Otherwise, just call the 846 * older global method. 847 * 848 * If the per-VAP method is called then it's expected that 849 * the driver/firmware will take care of turning the per-VAP 850 * flags into slot time configuration. 851 * 852 * If the per-VAP method is not called then the global flags will be 853 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 854 * be set only if all of the vaps will have it set. 855 * 856 * Look at the comments for vap_update_erp_protmode() for more 857 * background; this assumes all VAPs are on the same channel. 858 */ 859 static void 860 vap_update_slot(void *arg, int npending) 861 { 862 struct ieee80211vap *vap = arg; 863 struct ieee80211com *ic = vap->iv_ic; 864 struct ieee80211vap *iv; 865 int num_shslot = 0, num_lgslot = 0; 866 867 /* 868 * Per-VAP path - we've already had the flags updated; 869 * so just notify the driver and move on. 870 */ 871 if (vap->iv_updateslot != NULL) { 872 vap->iv_updateslot(vap); 873 return; 874 } 875 876 /* 877 * Iterate over all of the VAP flags to update the 878 * global flag. 879 * 880 * If all vaps have short slot enabled then flip on 881 * short slot. If any vap has it disabled then 882 * we leave it globally disabled. This should provide 883 * correct behaviour in a multi-BSS scenario where 884 * at least one VAP has short slot disabled for some 885 * reason. 886 */ 887 IEEE80211_LOCK(ic); 888 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 889 if (iv->iv_flags & IEEE80211_F_SHSLOT) 890 num_shslot++; 891 else 892 num_lgslot++; 893 } 894 895 /* 896 * It looks backwards but - if the number of short slot VAPs 897 * is zero then we're not short slot. Else, we have one 898 * or more short slot VAPs and we're checking to see if ANY 899 * of them have short slot disabled. 900 */ 901 if (num_shslot == 0) 902 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 903 else if (num_lgslot == 0) 904 ic->ic_flags |= IEEE80211_F_SHSLOT; 905 IEEE80211_UNLOCK(ic); 906 907 /* 908 * Call the driver with our new global slot time flags. 909 */ 910 if (ic->ic_updateslot != NULL) 911 ic->ic_updateslot(ic); 912 } 913 914 /* 915 * Deferred ERP protmode update. 916 * 917 * This currently calculates the global ERP protection mode flag 918 * based on each of the VAPs. Any VAP with it enabled is enough 919 * for the global flag to be enabled. All VAPs with it disabled 920 * is enough for it to be disabled. 921 * 922 * This may make sense right now for the supported hardware where 923 * net80211 is controlling the single channel configuration, but 924 * offload firmware that's doing channel changes (eg off-channel 925 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 926 * silly looking flag updates. 927 * 928 * Ideally the protection mode calculation is done based on the 929 * channel, and all VAPs using that channel will inherit it. 930 * But until that's what net80211 does, this wil have to do. 931 */ 932 static void 933 vap_update_erp_protmode(void *arg, int npending) 934 { 935 struct ieee80211vap *vap = arg; 936 struct ieee80211com *ic = vap->iv_ic; 937 struct ieee80211vap *iv; 938 int enable_protmode = 0; 939 int non_erp_present = 0; 940 941 /* 942 * Iterate over all of the VAPs to calculate the overlapping 943 * ERP protection mode configuration and ERP present math. 944 * 945 * For now we assume that if a driver can handle this per-VAP 946 * then it'll ignore the ic->ic_protmode variant and instead 947 * will look at the vap related flags. 948 */ 949 IEEE80211_LOCK(ic); 950 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 951 if (iv->iv_flags & IEEE80211_F_USEPROT) 952 enable_protmode = 1; 953 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 954 non_erp_present = 1; 955 } 956 957 if (enable_protmode) 958 ic->ic_flags |= IEEE80211_F_USEPROT; 959 else 960 ic->ic_flags &= ~IEEE80211_F_USEPROT; 961 962 if (non_erp_present) 963 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 964 else 965 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 966 967 /* Beacon update on all VAPs */ 968 ieee80211_notify_erp_locked(ic); 969 970 IEEE80211_UNLOCK(ic); 971 972 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 973 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 974 __func__, enable_protmode, non_erp_present); 975 976 /* 977 * Now that the global configuration flags are calculated, 978 * notify the VAP about its configuration. 979 * 980 * The global flags will be used when assembling ERP IEs 981 * for multi-VAP operation, even if it's on a different 982 * channel. Yes, that's going to need fixing in the 983 * future. 984 */ 985 if (vap->iv_erp_protmode_update != NULL) 986 vap->iv_erp_protmode_update(vap); 987 } 988 989 /* 990 * Deferred ERP short preamble/barker update. 991 * 992 * All VAPs need to use short preamble for it to be globally 993 * enabled or not. 994 * 995 * Look at the comments for vap_update_erp_protmode() for more 996 * background; this assumes all VAPs are on the same channel. 997 */ 998 static void 999 vap_update_preamble(void *arg, int npending) 1000 { 1001 struct ieee80211vap *vap = arg; 1002 struct ieee80211com *ic = vap->iv_ic; 1003 struct ieee80211vap *iv; 1004 int barker_count = 0, short_preamble_count = 0, count = 0; 1005 1006 /* 1007 * Iterate over all of the VAPs to calculate the overlapping 1008 * short or long preamble configuration. 1009 * 1010 * For now we assume that if a driver can handle this per-VAP 1011 * then it'll ignore the ic->ic_flags variant and instead 1012 * will look at the vap related flags. 1013 */ 1014 IEEE80211_LOCK(ic); 1015 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1016 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1017 barker_count++; 1018 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1019 short_preamble_count++; 1020 count++; 1021 } 1022 1023 /* 1024 * As with vap_update_erp_protmode(), the global flags are 1025 * currently used for beacon IEs. 1026 */ 1027 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1028 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1029 __func__, barker_count, short_preamble_count); 1030 1031 /* 1032 * Only flip on short preamble if all of the VAPs support 1033 * it. 1034 */ 1035 if (barker_count == 0 && short_preamble_count == count) { 1036 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1037 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1038 } else { 1039 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1040 ic->ic_flags |= IEEE80211_F_USEBARKER; 1041 } 1042 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1043 "%s: global barker=%d preamble=%d\n", 1044 __func__, 1045 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1046 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1047 1048 /* Beacon update on all VAPs */ 1049 ieee80211_notify_erp_locked(ic); 1050 1051 IEEE80211_UNLOCK(ic); 1052 1053 /* Driver notification */ 1054 if (vap->iv_erp_protmode_update != NULL) 1055 vap->iv_preamble_update(vap); 1056 } 1057 1058 /* 1059 * Deferred HT protmode update and beacon update. 1060 * 1061 * Look at the comments for vap_update_erp_protmode() for more 1062 * background; this assumes all VAPs are on the same channel. 1063 */ 1064 static void 1065 vap_update_ht_protmode(void *arg, int npending) 1066 { 1067 struct ieee80211vap *vap = arg; 1068 struct ieee80211vap *iv; 1069 struct ieee80211com *ic = vap->iv_ic; 1070 int num_vaps = 0, num_pure = 0; 1071 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1072 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1073 int num_nonhtpr = 0; 1074 1075 /* 1076 * Iterate over all of the VAPs to calculate everything. 1077 * 1078 * There are a few different flags to calculate: 1079 * 1080 * + whether there's HT only or HT+legacy stations; 1081 * + whether there's HT20, HT40, or HT20+HT40 stations; 1082 * + whether the desired protection mode is mixed, pure or 1083 * one of the two above. 1084 * 1085 * For now we assume that if a driver can handle this per-VAP 1086 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1087 * variant and instead will look at the vap related variables. 1088 * 1089 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1090 */ 1091 1092 IEEE80211_LOCK(ic); 1093 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1094 num_vaps++; 1095 /* overlapping BSSes advertising non-HT status present */ 1096 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1097 num_nonht++; 1098 /* Operating mode flags */ 1099 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1100 num_nonhtpr++; 1101 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1102 case IEEE80211_HTINFO_OPMODE_PURE: 1103 num_pure++; 1104 break; 1105 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1106 num_optional++; 1107 break; 1108 case IEEE80211_HTINFO_OPMODE_HT20PR: 1109 num_ht2040++; 1110 break; 1111 } 1112 1113 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1114 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1115 __func__, 1116 ieee80211_get_vap_ifname(iv), 1117 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1118 iv->iv_curhtprotmode); 1119 1120 num_ht_sta += iv->iv_ht_sta_assoc; 1121 num_ht40_sta += iv->iv_ht40_sta_assoc; 1122 num_sta += iv->iv_sta_assoc; 1123 } 1124 1125 /* 1126 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1127 * non-HT present), set it here. This shouldn't be used by 1128 * anything but the old overlapping BSS logic so if any drivers 1129 * consume it, it's up to date. 1130 */ 1131 if (num_nonht > 0) 1132 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1133 else 1134 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1135 1136 /* 1137 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1138 * 1139 * + If all VAPs are PURE, we can stay PURE. 1140 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1141 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1142 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1143 * So we look at the sum ht and sum ht40 sta counts; if we have a 1144 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1145 * Note all stations need to be HT for this to be an option. 1146 * + The fall-through is MIXED, because it means we have some odd 1147 * non HT40-involved combination of opmode and this is the most 1148 * sensible default. 1149 */ 1150 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1151 1152 if (num_pure == num_vaps) 1153 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1154 1155 if (num_optional == num_vaps) 1156 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1157 1158 /* 1159 * Note: we need /a/ HT40 station somewhere for this to 1160 * be a possibility. 1161 */ 1162 if ((num_ht2040 > 0) || 1163 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1164 (num_ht_sta != num_ht40_sta))) 1165 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1166 1167 /* 1168 * Step 3 - if any of the stations across the VAPs are 1169 * non-HT then this needs to be flipped back to MIXED. 1170 */ 1171 if (num_ht_sta != num_sta) 1172 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1173 1174 /* 1175 * Step 4 - If we see any overlapping BSS non-HT stations 1176 * via beacons then flip on NONHT_PRESENT. 1177 */ 1178 if (num_nonhtpr > 0) 1179 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1180 1181 /* Notify all VAPs to potentially update their beacons */ 1182 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1183 ieee80211_htinfo_notify(iv); 1184 1185 IEEE80211_UNLOCK(ic); 1186 1187 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1188 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1189 __func__, 1190 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1191 ic->ic_curhtprotmode); 1192 1193 /* Driver update */ 1194 if (vap->iv_erp_protmode_update != NULL) 1195 vap->iv_ht_protmode_update(vap); 1196 } 1197 1198 /* 1199 * Set the short slot time state and notify the driver. 1200 * 1201 * This is the per-VAP slot time state. 1202 */ 1203 void 1204 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1205 { 1206 struct ieee80211com *ic = vap->iv_ic; 1207 1208 /* XXX lock? */ 1209 1210 /* 1211 * Only modify the per-VAP slot time. 1212 */ 1213 if (onoff) 1214 vap->iv_flags |= IEEE80211_F_SHSLOT; 1215 else 1216 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1217 1218 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1219 "%s: called; onoff=%d\n", __func__, onoff); 1220 /* schedule the deferred slot flag update and update */ 1221 ieee80211_runtask(ic, &vap->iv_slot_task); 1222 } 1223 1224 /* 1225 * Update the VAP short /long / barker preamble state and 1226 * update beacon state if needed. 1227 * 1228 * For now it simply copies the global flags into the per-vap 1229 * flags and schedules the callback. Later this will support 1230 * both global and per-VAP flags, especially useful for 1231 * and STA+STA multi-channel operation (eg p2p). 1232 */ 1233 void 1234 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1235 { 1236 struct ieee80211com *ic = vap->iv_ic; 1237 1238 /* XXX lock? */ 1239 1240 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1241 "%s: called\n", __func__); 1242 /* schedule the deferred slot flag update and update */ 1243 ieee80211_runtask(ic, &vap->iv_preamble_task); 1244 } 1245 1246 /* 1247 * Update the VAP 11g protection mode and update beacon state 1248 * if needed. 1249 */ 1250 void 1251 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1252 { 1253 struct ieee80211com *ic = vap->iv_ic; 1254 1255 /* XXX lock? */ 1256 1257 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1258 "%s: called\n", __func__); 1259 /* schedule the deferred slot flag update and update */ 1260 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1261 } 1262 1263 /* 1264 * Update the VAP 11n protection mode and update beacon state 1265 * if needed. 1266 */ 1267 void 1268 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1269 { 1270 struct ieee80211com *ic = vap->iv_ic; 1271 1272 /* XXX lock? */ 1273 1274 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1275 "%s: called\n", __func__); 1276 /* schedule the deferred protmode update */ 1277 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1278 } 1279 1280 /* 1281 * Check if the specified rate set supports ERP. 1282 * NB: the rate set is assumed to be sorted. 1283 */ 1284 int 1285 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1286 { 1287 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1288 int i, j; 1289 1290 if (rs->rs_nrates < nitems(rates)) 1291 return 0; 1292 for (i = 0; i < nitems(rates); i++) { 1293 for (j = 0; j < rs->rs_nrates; j++) { 1294 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1295 if (rates[i] == r) 1296 goto next; 1297 if (r > rates[i]) 1298 return 0; 1299 } 1300 return 0; 1301 next: 1302 ; 1303 } 1304 return 1; 1305 } 1306 1307 /* 1308 * Mark the basic rates for the rate table based on the 1309 * operating mode. For real 11g we mark all the 11b rates 1310 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1311 * 11b rates. There's also a pseudo 11a-mode used to mark only 1312 * the basic OFDM rates. 1313 */ 1314 static void 1315 setbasicrates(struct ieee80211_rateset *rs, 1316 enum ieee80211_phymode mode, int add) 1317 { 1318 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1319 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1320 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1321 /* NB: mixed b/g */ 1322 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1323 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1324 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1325 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1326 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1327 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1328 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1329 /* NB: mixed b/g */ 1330 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1331 /* NB: mixed b/g */ 1332 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1333 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1334 }; 1335 int i, j; 1336 1337 for (i = 0; i < rs->rs_nrates; i++) { 1338 if (!add) 1339 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1340 for (j = 0; j < basic[mode].rs_nrates; j++) 1341 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1342 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1343 break; 1344 } 1345 } 1346 } 1347 1348 /* 1349 * Set the basic rates in a rate set. 1350 */ 1351 void 1352 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1353 enum ieee80211_phymode mode) 1354 { 1355 setbasicrates(rs, mode, 0); 1356 } 1357 1358 /* 1359 * Add basic rates to a rate set. 1360 */ 1361 void 1362 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1363 enum ieee80211_phymode mode) 1364 { 1365 setbasicrates(rs, mode, 1); 1366 } 1367 1368 /* 1369 * WME protocol support. 1370 * 1371 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1372 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1373 * Draft 2.0 Test Plan (Appendix D). 1374 * 1375 * Static/Dynamic Turbo mode settings come from Atheros. 1376 */ 1377 typedef struct phyParamType { 1378 uint8_t aifsn; 1379 uint8_t logcwmin; 1380 uint8_t logcwmax; 1381 uint16_t txopLimit; 1382 uint8_t acm; 1383 } paramType; 1384 1385 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1386 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1387 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1388 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1389 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1390 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1391 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1392 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1393 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1394 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1395 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1396 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1397 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1398 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1399 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1400 }; 1401 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1402 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1403 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1404 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1405 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1406 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1407 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1408 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1409 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1410 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1411 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1412 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1413 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1414 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1415 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1416 }; 1417 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1418 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1419 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1420 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1421 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1422 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1423 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1424 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1425 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1426 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1427 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1428 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1429 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1430 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1431 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1432 }; 1433 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1434 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1435 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1436 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1437 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1438 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1439 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1440 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1441 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1442 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1443 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1444 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1445 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1446 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1447 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1448 }; 1449 1450 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1451 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1452 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1453 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1454 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1455 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1456 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1457 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1458 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1459 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1460 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1461 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1462 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1463 }; 1464 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1465 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1466 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1467 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1468 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1469 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1470 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1471 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1472 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1473 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1474 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1475 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1476 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1477 }; 1478 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1479 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1480 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1481 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1482 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1483 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1484 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1485 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1486 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1487 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1488 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1489 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1490 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1491 }; 1492 1493 static void 1494 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1495 { 1496 wmep->wmep_aifsn = phy->aifsn; 1497 wmep->wmep_logcwmin = phy->logcwmin; 1498 wmep->wmep_logcwmax = phy->logcwmax; 1499 wmep->wmep_txopLimit = phy->txopLimit; 1500 } 1501 1502 static void 1503 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1504 struct wmeParams *wmep, const paramType *phy) 1505 { 1506 wmep->wmep_acm = phy->acm; 1507 _setifsparams(wmep, phy); 1508 1509 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1510 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1511 ieee80211_wme_acnames[ac], type, 1512 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1513 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1514 } 1515 1516 static void 1517 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1518 { 1519 struct ieee80211com *ic = vap->iv_ic; 1520 struct ieee80211_wme_state *wme = &ic->ic_wme; 1521 const paramType *pPhyParam, *pBssPhyParam; 1522 struct wmeParams *wmep; 1523 enum ieee80211_phymode mode; 1524 int i; 1525 1526 IEEE80211_LOCK_ASSERT(ic); 1527 1528 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1529 return; 1530 1531 /* 1532 * Clear the wme cap_info field so a qoscount from a previous 1533 * vap doesn't confuse later code which only parses the beacon 1534 * field and updates hardware when said field changes. 1535 * Otherwise the hardware is programmed with defaults, not what 1536 * the beacon actually announces. 1537 * 1538 * Note that we can't ever have 0xff as an actual value; 1539 * the only valid values are 0..15. 1540 */ 1541 wme->wme_wmeChanParams.cap_info = 0xfe; 1542 1543 /* 1544 * Select mode; we can be called early in which case we 1545 * always use auto mode. We know we'll be called when 1546 * entering the RUN state with bsschan setup properly 1547 * so state will eventually get set correctly 1548 */ 1549 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1550 mode = ieee80211_chan2mode(ic->ic_bsschan); 1551 else 1552 mode = IEEE80211_MODE_AUTO; 1553 for (i = 0; i < WME_NUM_AC; i++) { 1554 switch (i) { 1555 case WME_AC_BK: 1556 pPhyParam = &phyParamForAC_BK[mode]; 1557 pBssPhyParam = &phyParamForAC_BK[mode]; 1558 break; 1559 case WME_AC_VI: 1560 pPhyParam = &phyParamForAC_VI[mode]; 1561 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1562 break; 1563 case WME_AC_VO: 1564 pPhyParam = &phyParamForAC_VO[mode]; 1565 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1566 break; 1567 case WME_AC_BE: 1568 default: 1569 pPhyParam = &phyParamForAC_BE[mode]; 1570 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1571 break; 1572 } 1573 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1574 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1575 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1576 } else { 1577 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1578 } 1579 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1580 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1581 } 1582 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1583 if (vap->iv_bss != NULL) { 1584 /* 1585 * Calculate aggressive mode switching threshold based 1586 * on beacon interval. This doesn't need locking since 1587 * we're only called before entering the RUN state at 1588 * which point we start sending beacon frames. 1589 */ 1590 wme->wme_hipri_switch_thresh = 1591 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1592 wme->wme_flags &= ~WME_F_AGGRMODE; 1593 ieee80211_wme_updateparams(vap); 1594 } 1595 } 1596 1597 void 1598 ieee80211_wme_initparams(struct ieee80211vap *vap) 1599 { 1600 struct ieee80211com *ic = vap->iv_ic; 1601 1602 IEEE80211_LOCK(ic); 1603 ieee80211_wme_initparams_locked(vap); 1604 IEEE80211_UNLOCK(ic); 1605 } 1606 1607 /* 1608 * Update WME parameters for ourself and the BSS. 1609 */ 1610 void 1611 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1612 { 1613 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1614 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1615 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1616 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1617 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1618 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1619 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1620 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1621 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1622 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1623 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1624 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1625 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1626 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1627 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1628 }; 1629 struct ieee80211com *ic = vap->iv_ic; 1630 struct ieee80211_wme_state *wme = &ic->ic_wme; 1631 const struct wmeParams *wmep; 1632 struct wmeParams *chanp, *bssp; 1633 enum ieee80211_phymode mode; 1634 int i; 1635 int do_aggrmode = 0; 1636 1637 /* 1638 * Set up the channel access parameters for the physical 1639 * device. First populate the configured settings. 1640 */ 1641 for (i = 0; i < WME_NUM_AC; i++) { 1642 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1643 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1644 chanp->wmep_aifsn = wmep->wmep_aifsn; 1645 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1646 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1647 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1648 1649 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1650 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1651 chanp->wmep_aifsn = wmep->wmep_aifsn; 1652 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1653 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1654 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1655 } 1656 1657 /* 1658 * Select mode; we can be called early in which case we 1659 * always use auto mode. We know we'll be called when 1660 * entering the RUN state with bsschan setup properly 1661 * so state will eventually get set correctly 1662 */ 1663 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1664 mode = ieee80211_chan2mode(ic->ic_bsschan); 1665 else 1666 mode = IEEE80211_MODE_AUTO; 1667 1668 /* 1669 * This implements aggressive mode as found in certain 1670 * vendors' AP's. When there is significant high 1671 * priority (VI/VO) traffic in the BSS throttle back BE 1672 * traffic by using conservative parameters. Otherwise 1673 * BE uses aggressive params to optimize performance of 1674 * legacy/non-QoS traffic. 1675 */ 1676 1677 /* Hostap? Only if aggressive mode is enabled */ 1678 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1679 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1680 do_aggrmode = 1; 1681 1682 /* 1683 * Station? Only if we're in a non-QoS BSS. 1684 */ 1685 else if ((vap->iv_opmode == IEEE80211_M_STA && 1686 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1687 do_aggrmode = 1; 1688 1689 /* 1690 * IBSS? Only if we we have WME enabled. 1691 */ 1692 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1693 (vap->iv_flags & IEEE80211_F_WME)) 1694 do_aggrmode = 1; 1695 1696 /* 1697 * If WME is disabled on this VAP, default to aggressive mode 1698 * regardless of the configuration. 1699 */ 1700 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1701 do_aggrmode = 1; 1702 1703 /* XXX WDS? */ 1704 1705 /* XXX MBSS? */ 1706 1707 if (do_aggrmode) { 1708 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1709 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1710 1711 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1712 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1713 aggrParam[mode].logcwmin; 1714 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1715 aggrParam[mode].logcwmax; 1716 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1717 (vap->iv_flags & IEEE80211_F_BURST) ? 1718 aggrParam[mode].txopLimit : 0; 1719 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1720 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1721 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1722 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1723 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1724 } 1725 1726 /* 1727 * Change the contention window based on the number of associated 1728 * stations. If the number of associated stations is 1 and 1729 * aggressive mode is enabled, lower the contention window even 1730 * further. 1731 */ 1732 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1733 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1734 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1735 [IEEE80211_MODE_AUTO] = 3, 1736 [IEEE80211_MODE_11A] = 3, 1737 [IEEE80211_MODE_11B] = 4, 1738 [IEEE80211_MODE_11G] = 3, 1739 [IEEE80211_MODE_FH] = 4, 1740 [IEEE80211_MODE_TURBO_A] = 3, 1741 [IEEE80211_MODE_TURBO_G] = 3, 1742 [IEEE80211_MODE_STURBO_A] = 3, 1743 [IEEE80211_MODE_HALF] = 3, 1744 [IEEE80211_MODE_QUARTER] = 3, 1745 [IEEE80211_MODE_11NA] = 3, 1746 [IEEE80211_MODE_11NG] = 3, 1747 [IEEE80211_MODE_VHT_2GHZ] = 3, 1748 [IEEE80211_MODE_VHT_5GHZ] = 3, 1749 }; 1750 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1751 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1752 1753 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1754 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1755 "update %s (chan+bss) logcwmin %u\n", 1756 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1757 } 1758 1759 /* schedule the deferred WME update */ 1760 ieee80211_runtask(ic, &vap->iv_wme_task); 1761 1762 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1763 "%s: WME params updated, cap_info 0x%x\n", __func__, 1764 vap->iv_opmode == IEEE80211_M_STA ? 1765 wme->wme_wmeChanParams.cap_info : 1766 wme->wme_bssChanParams.cap_info); 1767 } 1768 1769 void 1770 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1771 { 1772 struct ieee80211com *ic = vap->iv_ic; 1773 1774 if (ic->ic_caps & IEEE80211_C_WME) { 1775 IEEE80211_LOCK(ic); 1776 ieee80211_wme_updateparams_locked(vap); 1777 IEEE80211_UNLOCK(ic); 1778 } 1779 } 1780 1781 /* 1782 * Fetch the WME parameters for the given VAP. 1783 * 1784 * When net80211 grows p2p, etc support, this may return different 1785 * parameters for each VAP. 1786 */ 1787 void 1788 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1789 { 1790 1791 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1792 } 1793 1794 /* 1795 * For NICs which only support one set of WME parameters (ie, softmac NICs) 1796 * there may be different VAP WME parameters but only one is "active". 1797 * This returns the "NIC" WME parameters for the currently active 1798 * context. 1799 */ 1800 void 1801 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1802 { 1803 1804 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1805 } 1806 1807 /* 1808 * Return whether to use QoS on a given WME queue. 1809 * 1810 * This is intended to be called from the transmit path of softmac drivers 1811 * which are setting NoAck bits in transmit descriptors. 1812 * 1813 * Ideally this would be set in some transmit field before the packet is 1814 * queued to the driver but net80211 isn't quite there yet. 1815 */ 1816 int 1817 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1818 { 1819 /* Bounds/sanity check */ 1820 if (ac < 0 || ac >= WME_NUM_AC) 1821 return (0); 1822 1823 /* Again, there's only one global context for now */ 1824 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1825 } 1826 1827 static void 1828 parent_updown(void *arg, int npending) 1829 { 1830 struct ieee80211com *ic = arg; 1831 1832 ic->ic_parent(ic); 1833 } 1834 1835 static void 1836 update_mcast(void *arg, int npending) 1837 { 1838 struct ieee80211com *ic = arg; 1839 1840 ic->ic_update_mcast(ic); 1841 } 1842 1843 static void 1844 update_promisc(void *arg, int npending) 1845 { 1846 struct ieee80211com *ic = arg; 1847 1848 ic->ic_update_promisc(ic); 1849 } 1850 1851 static void 1852 update_channel(void *arg, int npending) 1853 { 1854 struct ieee80211com *ic = arg; 1855 1856 ic->ic_set_channel(ic); 1857 ieee80211_radiotap_chan_change(ic); 1858 } 1859 1860 static void 1861 update_chw(void *arg, int npending) 1862 { 1863 struct ieee80211com *ic = arg; 1864 1865 /* 1866 * XXX should we defer the channel width _config_ update until now? 1867 */ 1868 ic->ic_update_chw(ic); 1869 } 1870 1871 /* 1872 * Deferred WME parameter and beacon update. 1873 * 1874 * In preparation for per-VAP WME configuration, call the VAP 1875 * method if the VAP requires it. Otherwise, just call the 1876 * older global method. There isn't a per-VAP WME configuration 1877 * just yet so for now just use the global configuration. 1878 */ 1879 static void 1880 vap_update_wme(void *arg, int npending) 1881 { 1882 struct ieee80211vap *vap = arg; 1883 struct ieee80211com *ic = vap->iv_ic; 1884 struct ieee80211_wme_state *wme = &ic->ic_wme; 1885 1886 /* Driver update */ 1887 if (vap->iv_wme_update != NULL) 1888 vap->iv_wme_update(vap, 1889 ic->ic_wme.wme_chanParams.cap_wmeParams); 1890 else 1891 ic->ic_wme.wme_update(ic); 1892 1893 IEEE80211_LOCK(ic); 1894 /* 1895 * Arrange for the beacon update. 1896 * 1897 * XXX what about MBSS, WDS? 1898 */ 1899 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1900 || vap->iv_opmode == IEEE80211_M_IBSS) { 1901 /* 1902 * Arrange for a beacon update and bump the parameter 1903 * set number so associated stations load the new values. 1904 */ 1905 wme->wme_bssChanParams.cap_info = 1906 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1907 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1908 } 1909 IEEE80211_UNLOCK(ic); 1910 } 1911 1912 static void 1913 restart_vaps(void *arg, int npending) 1914 { 1915 struct ieee80211com *ic = arg; 1916 1917 ieee80211_suspend_all(ic); 1918 ieee80211_resume_all(ic); 1919 } 1920 1921 /* 1922 * Block until the parent is in a known state. This is 1923 * used after any operations that dispatch a task (e.g. 1924 * to auto-configure the parent device up/down). 1925 */ 1926 void 1927 ieee80211_waitfor_parent(struct ieee80211com *ic) 1928 { 1929 taskqueue_block(ic->ic_tq); 1930 ieee80211_draintask(ic, &ic->ic_parent_task); 1931 ieee80211_draintask(ic, &ic->ic_mcast_task); 1932 ieee80211_draintask(ic, &ic->ic_promisc_task); 1933 ieee80211_draintask(ic, &ic->ic_chan_task); 1934 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1935 ieee80211_draintask(ic, &ic->ic_chw_task); 1936 taskqueue_unblock(ic->ic_tq); 1937 } 1938 1939 /* 1940 * Check to see whether the current channel needs reset. 1941 * 1942 * Some devices don't handle being given an invalid channel 1943 * in their operating mode very well (eg wpi(4) will throw a 1944 * firmware exception.) 1945 * 1946 * Return 0 if we're ok, 1 if the channel needs to be reset. 1947 * 1948 * See PR kern/202502. 1949 */ 1950 static int 1951 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1952 { 1953 struct ieee80211com *ic = vap->iv_ic; 1954 1955 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1956 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1957 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1958 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1959 return (1); 1960 return (0); 1961 } 1962 1963 /* 1964 * Reset the curchan to a known good state. 1965 */ 1966 static void 1967 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1968 { 1969 struct ieee80211com *ic = vap->iv_ic; 1970 1971 ic->ic_curchan = &ic->ic_channels[0]; 1972 } 1973 1974 /* 1975 * Start a vap running. If this is the first vap to be 1976 * set running on the underlying device then we 1977 * automatically bring the device up. 1978 */ 1979 void 1980 ieee80211_start_locked(struct ieee80211vap *vap) 1981 { 1982 struct ifnet *ifp = vap->iv_ifp; 1983 struct ieee80211com *ic = vap->iv_ic; 1984 1985 IEEE80211_LOCK_ASSERT(ic); 1986 1987 IEEE80211_DPRINTF(vap, 1988 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1989 "start running, %d vaps running\n", ic->ic_nrunning); 1990 1991 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1992 /* 1993 * Mark us running. Note that it's ok to do this first; 1994 * if we need to bring the parent device up we defer that 1995 * to avoid dropping the com lock. We expect the device 1996 * to respond to being marked up by calling back into us 1997 * through ieee80211_start_all at which point we'll come 1998 * back in here and complete the work. 1999 */ 2000 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2001 ieee80211_notify_ifnet_change(vap); 2002 2003 /* 2004 * We are not running; if this we are the first vap 2005 * to be brought up auto-up the parent if necessary. 2006 */ 2007 if (ic->ic_nrunning++ == 0) { 2008 /* reset the channel to a known good channel */ 2009 if (ieee80211_start_check_reset_chan(vap)) 2010 ieee80211_start_reset_chan(vap); 2011 2012 IEEE80211_DPRINTF(vap, 2013 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2014 "%s: up parent %s\n", __func__, ic->ic_name); 2015 ieee80211_runtask(ic, &ic->ic_parent_task); 2016 return; 2017 } 2018 } 2019 /* 2020 * If the parent is up and running, then kick the 2021 * 802.11 state machine as appropriate. 2022 */ 2023 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2024 if (vap->iv_opmode == IEEE80211_M_STA) { 2025 #if 0 2026 /* XXX bypasses scan too easily; disable for now */ 2027 /* 2028 * Try to be intelligent about clocking the state 2029 * machine. If we're currently in RUN state then 2030 * we should be able to apply any new state/parameters 2031 * simply by re-associating. Otherwise we need to 2032 * re-scan to select an appropriate ap. 2033 */ 2034 if (vap->iv_state >= IEEE80211_S_RUN) 2035 ieee80211_new_state_locked(vap, 2036 IEEE80211_S_ASSOC, 1); 2037 else 2038 #endif 2039 ieee80211_new_state_locked(vap, 2040 IEEE80211_S_SCAN, 0); 2041 } else { 2042 /* 2043 * For monitor+wds mode there's nothing to do but 2044 * start running. Otherwise if this is the first 2045 * vap to be brought up, start a scan which may be 2046 * preempted if the station is locked to a particular 2047 * channel. 2048 */ 2049 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2050 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2051 vap->iv_opmode == IEEE80211_M_WDS) 2052 ieee80211_new_state_locked(vap, 2053 IEEE80211_S_RUN, -1); 2054 else 2055 ieee80211_new_state_locked(vap, 2056 IEEE80211_S_SCAN, 0); 2057 } 2058 } 2059 } 2060 2061 /* 2062 * Start a single vap. 2063 */ 2064 void 2065 ieee80211_init(void *arg) 2066 { 2067 struct ieee80211vap *vap = arg; 2068 2069 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2070 "%s\n", __func__); 2071 2072 IEEE80211_LOCK(vap->iv_ic); 2073 ieee80211_start_locked(vap); 2074 IEEE80211_UNLOCK(vap->iv_ic); 2075 } 2076 2077 /* 2078 * Start all runnable vap's on a device. 2079 */ 2080 void 2081 ieee80211_start_all(struct ieee80211com *ic) 2082 { 2083 struct ieee80211vap *vap; 2084 2085 IEEE80211_LOCK(ic); 2086 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2087 struct ifnet *ifp = vap->iv_ifp; 2088 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2089 ieee80211_start_locked(vap); 2090 } 2091 IEEE80211_UNLOCK(ic); 2092 } 2093 2094 /* 2095 * Stop a vap. We force it down using the state machine 2096 * then mark it's ifnet not running. If this is the last 2097 * vap running on the underlying device then we close it 2098 * too to insure it will be properly initialized when the 2099 * next vap is brought up. 2100 */ 2101 void 2102 ieee80211_stop_locked(struct ieee80211vap *vap) 2103 { 2104 struct ieee80211com *ic = vap->iv_ic; 2105 struct ifnet *ifp = vap->iv_ifp; 2106 2107 IEEE80211_LOCK_ASSERT(ic); 2108 2109 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2110 "stop running, %d vaps running\n", ic->ic_nrunning); 2111 2112 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2113 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2114 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2115 ieee80211_notify_ifnet_change(vap); 2116 if (--ic->ic_nrunning == 0) { 2117 IEEE80211_DPRINTF(vap, 2118 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2119 "down parent %s\n", ic->ic_name); 2120 ieee80211_runtask(ic, &ic->ic_parent_task); 2121 } 2122 } 2123 } 2124 2125 void 2126 ieee80211_stop(struct ieee80211vap *vap) 2127 { 2128 struct ieee80211com *ic = vap->iv_ic; 2129 2130 IEEE80211_LOCK(ic); 2131 ieee80211_stop_locked(vap); 2132 IEEE80211_UNLOCK(ic); 2133 } 2134 2135 /* 2136 * Stop all vap's running on a device. 2137 */ 2138 void 2139 ieee80211_stop_all(struct ieee80211com *ic) 2140 { 2141 struct ieee80211vap *vap; 2142 2143 IEEE80211_LOCK(ic); 2144 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2145 struct ifnet *ifp = vap->iv_ifp; 2146 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2147 ieee80211_stop_locked(vap); 2148 } 2149 IEEE80211_UNLOCK(ic); 2150 2151 ieee80211_waitfor_parent(ic); 2152 } 2153 2154 /* 2155 * Stop all vap's running on a device and arrange 2156 * for those that were running to be resumed. 2157 */ 2158 void 2159 ieee80211_suspend_all(struct ieee80211com *ic) 2160 { 2161 struct ieee80211vap *vap; 2162 2163 IEEE80211_LOCK(ic); 2164 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2165 struct ifnet *ifp = vap->iv_ifp; 2166 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2167 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2168 ieee80211_stop_locked(vap); 2169 } 2170 } 2171 IEEE80211_UNLOCK(ic); 2172 2173 ieee80211_waitfor_parent(ic); 2174 } 2175 2176 /* 2177 * Start all vap's marked for resume. 2178 */ 2179 void 2180 ieee80211_resume_all(struct ieee80211com *ic) 2181 { 2182 struct ieee80211vap *vap; 2183 2184 IEEE80211_LOCK(ic); 2185 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2186 struct ifnet *ifp = vap->iv_ifp; 2187 if (!IFNET_IS_UP_RUNNING(ifp) && 2188 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2189 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2190 ieee80211_start_locked(vap); 2191 } 2192 } 2193 IEEE80211_UNLOCK(ic); 2194 } 2195 2196 /* 2197 * Restart all vap's running on a device. 2198 */ 2199 void 2200 ieee80211_restart_all(struct ieee80211com *ic) 2201 { 2202 /* 2203 * NB: do not use ieee80211_runtask here, we will 2204 * block & drain net80211 taskqueue. 2205 */ 2206 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2207 } 2208 2209 void 2210 ieee80211_beacon_miss(struct ieee80211com *ic) 2211 { 2212 IEEE80211_LOCK(ic); 2213 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2214 /* Process in a taskq, the handler may reenter the driver */ 2215 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2216 } 2217 IEEE80211_UNLOCK(ic); 2218 } 2219 2220 static void 2221 beacon_miss(void *arg, int npending) 2222 { 2223 struct ieee80211com *ic = arg; 2224 struct ieee80211vap *vap; 2225 2226 IEEE80211_LOCK(ic); 2227 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2228 /* 2229 * We only pass events through for sta vap's in RUN+ state; 2230 * may be too restrictive but for now this saves all the 2231 * handlers duplicating these checks. 2232 */ 2233 if (vap->iv_opmode == IEEE80211_M_STA && 2234 vap->iv_state >= IEEE80211_S_RUN && 2235 vap->iv_bmiss != NULL) 2236 vap->iv_bmiss(vap); 2237 } 2238 IEEE80211_UNLOCK(ic); 2239 } 2240 2241 static void 2242 beacon_swmiss(void *arg, int npending) 2243 { 2244 struct ieee80211vap *vap = arg; 2245 struct ieee80211com *ic = vap->iv_ic; 2246 2247 IEEE80211_LOCK(ic); 2248 if (vap->iv_state >= IEEE80211_S_RUN) { 2249 /* XXX Call multiple times if npending > zero? */ 2250 vap->iv_bmiss(vap); 2251 } 2252 IEEE80211_UNLOCK(ic); 2253 } 2254 2255 /* 2256 * Software beacon miss handling. Check if any beacons 2257 * were received in the last period. If not post a 2258 * beacon miss; otherwise reset the counter. 2259 */ 2260 void 2261 ieee80211_swbmiss(void *arg) 2262 { 2263 struct ieee80211vap *vap = arg; 2264 struct ieee80211com *ic = vap->iv_ic; 2265 2266 IEEE80211_LOCK_ASSERT(ic); 2267 2268 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2269 ("wrong state %d", vap->iv_state)); 2270 2271 if (ic->ic_flags & IEEE80211_F_SCAN) { 2272 /* 2273 * If scanning just ignore and reset state. If we get a 2274 * bmiss after coming out of scan because we haven't had 2275 * time to receive a beacon then we should probe the AP 2276 * before posting a real bmiss (unless iv_bmiss_max has 2277 * been artifiically lowered). A cleaner solution might 2278 * be to disable the timer on scan start/end but to handle 2279 * case of multiple sta vap's we'd need to disable the 2280 * timers of all affected vap's. 2281 */ 2282 vap->iv_swbmiss_count = 0; 2283 } else if (vap->iv_swbmiss_count == 0) { 2284 if (vap->iv_bmiss != NULL) 2285 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2286 } else 2287 vap->iv_swbmiss_count = 0; 2288 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2289 ieee80211_swbmiss, vap); 2290 } 2291 2292 /* 2293 * Start an 802.11h channel switch. We record the parameters, 2294 * mark the operation pending, notify each vap through the 2295 * beacon update mechanism so it can update the beacon frame 2296 * contents, and then switch vap's to CSA state to block outbound 2297 * traffic. Devices that handle CSA directly can use the state 2298 * switch to do the right thing so long as they call 2299 * ieee80211_csa_completeswitch when it's time to complete the 2300 * channel change. Devices that depend on the net80211 layer can 2301 * use ieee80211_beacon_update to handle the countdown and the 2302 * channel switch. 2303 */ 2304 void 2305 ieee80211_csa_startswitch(struct ieee80211com *ic, 2306 struct ieee80211_channel *c, int mode, int count) 2307 { 2308 struct ieee80211vap *vap; 2309 2310 IEEE80211_LOCK_ASSERT(ic); 2311 2312 ic->ic_csa_newchan = c; 2313 ic->ic_csa_mode = mode; 2314 ic->ic_csa_count = count; 2315 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2316 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2317 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2318 vap->iv_opmode == IEEE80211_M_IBSS || 2319 vap->iv_opmode == IEEE80211_M_MBSS) 2320 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2321 /* switch to CSA state to block outbound traffic */ 2322 if (vap->iv_state == IEEE80211_S_RUN) 2323 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2324 } 2325 ieee80211_notify_csa(ic, c, mode, count); 2326 } 2327 2328 /* 2329 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2330 * This is called by both the completion and cancellation functions 2331 * so each VAP is placed back in the RUN state and can thus transmit. 2332 */ 2333 static void 2334 csa_completeswitch(struct ieee80211com *ic) 2335 { 2336 struct ieee80211vap *vap; 2337 2338 ic->ic_csa_newchan = NULL; 2339 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2340 2341 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2342 if (vap->iv_state == IEEE80211_S_CSA) 2343 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2344 } 2345 2346 /* 2347 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2348 * We clear state and move all vap's in CSA state to RUN state 2349 * so they can again transmit. 2350 * 2351 * Although this may not be completely correct, update the BSS channel 2352 * for each VAP to the newly configured channel. The setcurchan sets 2353 * the current operating channel for the interface (so the radio does 2354 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2355 * reported information via ioctl. 2356 */ 2357 void 2358 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2359 { 2360 struct ieee80211vap *vap; 2361 2362 IEEE80211_LOCK_ASSERT(ic); 2363 2364 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2365 2366 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2367 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2368 if (vap->iv_state == IEEE80211_S_CSA) 2369 vap->iv_bss->ni_chan = ic->ic_curchan; 2370 2371 csa_completeswitch(ic); 2372 } 2373 2374 /* 2375 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2376 * We clear state and move all vap's in CSA state to RUN state 2377 * so they can again transmit. 2378 */ 2379 void 2380 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2381 { 2382 IEEE80211_LOCK_ASSERT(ic); 2383 2384 csa_completeswitch(ic); 2385 } 2386 2387 /* 2388 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2389 * We clear state and move all vap's in CAC state to RUN state. 2390 */ 2391 void 2392 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2393 { 2394 struct ieee80211com *ic = vap0->iv_ic; 2395 struct ieee80211vap *vap; 2396 2397 IEEE80211_LOCK(ic); 2398 /* 2399 * Complete CAC state change for lead vap first; then 2400 * clock all the other vap's waiting. 2401 */ 2402 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2403 ("wrong state %d", vap0->iv_state)); 2404 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2405 2406 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2407 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2408 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2409 IEEE80211_UNLOCK(ic); 2410 } 2411 2412 /* 2413 * Force all vap's other than the specified vap to the INIT state 2414 * and mark them as waiting for a scan to complete. These vaps 2415 * will be brought up when the scan completes and the scanning vap 2416 * reaches RUN state by wakeupwaiting. 2417 */ 2418 static void 2419 markwaiting(struct ieee80211vap *vap0) 2420 { 2421 struct ieee80211com *ic = vap0->iv_ic; 2422 struct ieee80211vap *vap; 2423 2424 IEEE80211_LOCK_ASSERT(ic); 2425 2426 /* 2427 * A vap list entry can not disappear since we are running on the 2428 * taskqueue and a vap destroy will queue and drain another state 2429 * change task. 2430 */ 2431 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2432 if (vap == vap0) 2433 continue; 2434 if (vap->iv_state != IEEE80211_S_INIT) { 2435 /* NB: iv_newstate may drop the lock */ 2436 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2437 IEEE80211_LOCK_ASSERT(ic); 2438 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2439 } 2440 } 2441 } 2442 2443 /* 2444 * Wakeup all vap's waiting for a scan to complete. This is the 2445 * companion to markwaiting (above) and is used to coordinate 2446 * multiple vaps scanning. 2447 * This is called from the state taskqueue. 2448 */ 2449 static void 2450 wakeupwaiting(struct ieee80211vap *vap0) 2451 { 2452 struct ieee80211com *ic = vap0->iv_ic; 2453 struct ieee80211vap *vap; 2454 2455 IEEE80211_LOCK_ASSERT(ic); 2456 2457 /* 2458 * A vap list entry can not disappear since we are running on the 2459 * taskqueue and a vap destroy will queue and drain another state 2460 * change task. 2461 */ 2462 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2463 if (vap == vap0) 2464 continue; 2465 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2466 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2467 /* NB: sta's cannot go INIT->RUN */ 2468 /* NB: iv_newstate may drop the lock */ 2469 2470 /* 2471 * This is problematic if the interface has OACTIVE 2472 * set. Only the deferred ieee80211_newstate_cb() 2473 * will end up actually /clearing/ the OACTIVE 2474 * flag on a state transition to RUN from a non-RUN 2475 * state. 2476 * 2477 * But, we're not actually deferring this callback; 2478 * and when the deferred call occurs it shows up as 2479 * a RUN->RUN transition! So the flag isn't/wasn't 2480 * cleared! 2481 * 2482 * I'm also not sure if it's correct to actually 2483 * do the transitions here fully through the deferred 2484 * paths either as other things can be invoked as 2485 * part of that state machine. 2486 * 2487 * So just keep this in mind when looking at what 2488 * the markwaiting/wakeupwaiting routines are doing 2489 * and how they invoke vap state changes. 2490 */ 2491 2492 vap->iv_newstate(vap, 2493 vap->iv_opmode == IEEE80211_M_STA ? 2494 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2495 IEEE80211_LOCK_ASSERT(ic); 2496 } 2497 } 2498 } 2499 2500 /* 2501 * Handle post state change work common to all operating modes. 2502 */ 2503 static void 2504 ieee80211_newstate_cb(void *xvap, int npending) 2505 { 2506 struct ieee80211vap *vap = xvap; 2507 struct ieee80211com *ic = vap->iv_ic; 2508 enum ieee80211_state nstate, ostate; 2509 int arg, rc; 2510 2511 IEEE80211_LOCK(ic); 2512 nstate = vap->iv_nstate; 2513 arg = vap->iv_nstate_arg; 2514 2515 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2516 /* 2517 * We have been requested to drop back to the INIT before 2518 * proceeding to the new state. 2519 */ 2520 /* Deny any state changes while we are here. */ 2521 vap->iv_nstate = IEEE80211_S_INIT; 2522 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2523 "%s: %s -> %s arg %d\n", __func__, 2524 ieee80211_state_name[vap->iv_state], 2525 ieee80211_state_name[vap->iv_nstate], arg); 2526 vap->iv_newstate(vap, vap->iv_nstate, 0); 2527 IEEE80211_LOCK_ASSERT(ic); 2528 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2529 IEEE80211_FEXT_STATEWAIT); 2530 /* enqueue new state transition after cancel_scan() task */ 2531 ieee80211_new_state_locked(vap, nstate, arg); 2532 goto done; 2533 } 2534 2535 ostate = vap->iv_state; 2536 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2537 /* 2538 * SCAN was forced; e.g. on beacon miss. Force other running 2539 * vap's to INIT state and mark them as waiting for the scan to 2540 * complete. This insures they don't interfere with our 2541 * scanning. Since we are single threaded the vaps can not 2542 * transition again while we are executing. 2543 * 2544 * XXX not always right, assumes ap follows sta 2545 */ 2546 markwaiting(vap); 2547 } 2548 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2549 "%s: %s -> %s arg %d\n", __func__, 2550 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2551 2552 rc = vap->iv_newstate(vap, nstate, arg); 2553 IEEE80211_LOCK_ASSERT(ic); 2554 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2555 if (rc != 0) { 2556 /* State transition failed */ 2557 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2558 KASSERT(nstate != IEEE80211_S_INIT, 2559 ("INIT state change failed")); 2560 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2561 "%s: %s returned error %d\n", __func__, 2562 ieee80211_state_name[nstate], rc); 2563 goto done; 2564 } 2565 2566 /* 2567 * Handle the case of a RUN->RUN transition occuring when STA + AP 2568 * VAPs occur on the same radio. 2569 * 2570 * The mark and wakeup waiting routines call iv_newstate() directly, 2571 * but they do not end up deferring state changes here. 2572 * Thus, although the VAP newstate method sees a transition 2573 * of RUN->INIT->RUN, the deferred path here only sees a RUN->RUN 2574 * transition. If OACTIVE is set then it is never cleared. 2575 * 2576 * So, if we're here and the state is RUN, just clear OACTIVE. 2577 * At some point if the markwaiting/wakeupwaiting paths end up 2578 * also invoking the deferred state updates then this will 2579 * be no-op code - and also if OACTIVE is finally retired, it'll 2580 * also be no-op code. 2581 */ 2582 if (nstate == IEEE80211_S_RUN) { 2583 /* 2584 * OACTIVE may be set on the vap if the upper layer 2585 * tried to transmit (e.g. IPv6 NDP) before we reach 2586 * RUN state. Clear it and restart xmit. 2587 * 2588 * Note this can also happen as a result of SLEEP->RUN 2589 * (i.e. coming out of power save mode). 2590 * 2591 * Historically this was done only for a state change 2592 * but is needed earlier; see next comment. The 2nd half 2593 * of the work is still only done in case of an actual 2594 * state change below. 2595 */ 2596 /* 2597 * Unblock the VAP queue; a RUN->RUN state can happen 2598 * on a STA+AP setup on the AP vap. See wakeupwaiting(). 2599 */ 2600 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2601 2602 /* 2603 * XXX TODO Kick-start a VAP queue - this should be a method! 2604 */ 2605 } 2606 2607 /* No actual transition, skip post processing */ 2608 if (ostate == nstate) 2609 goto done; 2610 2611 if (nstate == IEEE80211_S_RUN) { 2612 2613 /* bring up any vaps waiting on us */ 2614 wakeupwaiting(vap); 2615 } else if (nstate == IEEE80211_S_INIT) { 2616 /* 2617 * Flush the scan cache if we did the last scan (XXX?) 2618 * and flush any frames on send queues from this vap. 2619 * Note the mgt q is used only for legacy drivers and 2620 * will go away shortly. 2621 */ 2622 ieee80211_scan_flush(vap); 2623 2624 /* 2625 * XXX TODO: ic/vap queue flush 2626 */ 2627 } 2628 done: 2629 IEEE80211_UNLOCK(ic); 2630 } 2631 2632 /* 2633 * Public interface for initiating a state machine change. 2634 * This routine single-threads the request and coordinates 2635 * the scheduling of multiple vaps for the purpose of selecting 2636 * an operating channel. Specifically the following scenarios 2637 * are handled: 2638 * o only one vap can be selecting a channel so on transition to 2639 * SCAN state if another vap is already scanning then 2640 * mark the caller for later processing and return without 2641 * doing anything (XXX? expectations by caller of synchronous operation) 2642 * o only one vap can be doing CAC of a channel so on transition to 2643 * CAC state if another vap is already scanning for radar then 2644 * mark the caller for later processing and return without 2645 * doing anything (XXX? expectations by caller of synchronous operation) 2646 * o if another vap is already running when a request is made 2647 * to SCAN then an operating channel has been chosen; bypass 2648 * the scan and just join the channel 2649 * 2650 * Note that the state change call is done through the iv_newstate 2651 * method pointer so any driver routine gets invoked. The driver 2652 * will normally call back into operating mode-specific 2653 * ieee80211_newstate routines (below) unless it needs to completely 2654 * bypass the state machine (e.g. because the firmware has it's 2655 * own idea how things should work). Bypassing the net80211 layer 2656 * is usually a mistake and indicates lack of proper integration 2657 * with the net80211 layer. 2658 */ 2659 int 2660 ieee80211_new_state_locked(struct ieee80211vap *vap, 2661 enum ieee80211_state nstate, int arg) 2662 { 2663 struct ieee80211com *ic = vap->iv_ic; 2664 struct ieee80211vap *vp; 2665 enum ieee80211_state ostate; 2666 int nrunning, nscanning; 2667 2668 IEEE80211_LOCK_ASSERT(ic); 2669 2670 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2671 if (vap->iv_nstate == IEEE80211_S_INIT || 2672 ((vap->iv_state == IEEE80211_S_INIT || 2673 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2674 vap->iv_nstate == IEEE80211_S_SCAN && 2675 nstate > IEEE80211_S_SCAN)) { 2676 /* 2677 * XXX The vap is being stopped/started, 2678 * do not allow any other state changes 2679 * until this is completed. 2680 */ 2681 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2682 "%s: %s -> %s (%s) transition discarded\n", 2683 __func__, 2684 ieee80211_state_name[vap->iv_state], 2685 ieee80211_state_name[nstate], 2686 ieee80211_state_name[vap->iv_nstate]); 2687 return -1; 2688 } else if (vap->iv_state != vap->iv_nstate) { 2689 #if 0 2690 /* Warn if the previous state hasn't completed. */ 2691 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2692 "%s: pending %s -> %s transition lost\n", __func__, 2693 ieee80211_state_name[vap->iv_state], 2694 ieee80211_state_name[vap->iv_nstate]); 2695 #else 2696 /* XXX temporarily enable to identify issues */ 2697 if_printf(vap->iv_ifp, 2698 "%s: pending %s -> %s transition lost\n", 2699 __func__, ieee80211_state_name[vap->iv_state], 2700 ieee80211_state_name[vap->iv_nstate]); 2701 #endif 2702 } 2703 } 2704 2705 nrunning = nscanning = 0; 2706 /* XXX can track this state instead of calculating */ 2707 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2708 if (vp != vap) { 2709 if (vp->iv_state >= IEEE80211_S_RUN) 2710 nrunning++; 2711 /* XXX doesn't handle bg scan */ 2712 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2713 else if (vp->iv_state > IEEE80211_S_INIT) 2714 nscanning++; 2715 } 2716 } 2717 ostate = vap->iv_state; 2718 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2719 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2720 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2721 nrunning, nscanning); 2722 switch (nstate) { 2723 case IEEE80211_S_SCAN: 2724 if (ostate == IEEE80211_S_INIT) { 2725 /* 2726 * INIT -> SCAN happens on initial bringup. 2727 */ 2728 KASSERT(!(nscanning && nrunning), 2729 ("%d scanning and %d running", nscanning, nrunning)); 2730 if (nscanning) { 2731 /* 2732 * Someone is scanning, defer our state 2733 * change until the work has completed. 2734 */ 2735 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2736 "%s: defer %s -> %s\n", 2737 __func__, ieee80211_state_name[ostate], 2738 ieee80211_state_name[nstate]); 2739 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2740 return 0; 2741 } 2742 if (nrunning) { 2743 /* 2744 * Someone is operating; just join the channel 2745 * they have chosen. 2746 */ 2747 /* XXX kill arg? */ 2748 /* XXX check each opmode, adhoc? */ 2749 if (vap->iv_opmode == IEEE80211_M_STA) 2750 nstate = IEEE80211_S_SCAN; 2751 else 2752 nstate = IEEE80211_S_RUN; 2753 #ifdef IEEE80211_DEBUG 2754 if (nstate != IEEE80211_S_SCAN) { 2755 IEEE80211_DPRINTF(vap, 2756 IEEE80211_MSG_STATE, 2757 "%s: override, now %s -> %s\n", 2758 __func__, 2759 ieee80211_state_name[ostate], 2760 ieee80211_state_name[nstate]); 2761 } 2762 #endif 2763 } 2764 } 2765 break; 2766 case IEEE80211_S_RUN: 2767 if (vap->iv_opmode == IEEE80211_M_WDS && 2768 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2769 nscanning) { 2770 /* 2771 * Legacy WDS with someone else scanning; don't 2772 * go online until that completes as we should 2773 * follow the other vap to the channel they choose. 2774 */ 2775 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2776 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2777 ieee80211_state_name[ostate], 2778 ieee80211_state_name[nstate]); 2779 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2780 return 0; 2781 } 2782 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2783 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2784 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2785 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2786 /* 2787 * This is a DFS channel, transition to CAC state 2788 * instead of RUN. This allows us to initiate 2789 * Channel Availability Check (CAC) as specified 2790 * by 11h/DFS. 2791 */ 2792 nstate = IEEE80211_S_CAC; 2793 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2794 "%s: override %s -> %s (DFS)\n", __func__, 2795 ieee80211_state_name[ostate], 2796 ieee80211_state_name[nstate]); 2797 } 2798 break; 2799 case IEEE80211_S_INIT: 2800 /* cancel any scan in progress */ 2801 ieee80211_cancel_scan(vap); 2802 if (ostate == IEEE80211_S_INIT ) { 2803 /* XXX don't believe this */ 2804 /* INIT -> INIT. nothing to do */ 2805 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2806 } 2807 /* fall thru... */ 2808 default: 2809 break; 2810 } 2811 /* defer the state change to a thread */ 2812 vap->iv_nstate = nstate; 2813 vap->iv_nstate_arg = arg; 2814 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2815 ieee80211_runtask(ic, &vap->iv_nstate_task); 2816 return EINPROGRESS; 2817 } 2818 2819 int 2820 ieee80211_new_state(struct ieee80211vap *vap, 2821 enum ieee80211_state nstate, int arg) 2822 { 2823 struct ieee80211com *ic = vap->iv_ic; 2824 int rc; 2825 2826 IEEE80211_LOCK(ic); 2827 rc = ieee80211_new_state_locked(vap, nstate, arg); 2828 IEEE80211_UNLOCK(ic); 2829 return rc; 2830 } 2831