1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 /* 108 * Reason code descriptions were (mostly) obtained from 109 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 110 */ 111 const char * 112 ieee80211_reason_to_string(uint16_t reason) 113 { 114 switch (reason) { 115 case IEEE80211_REASON_UNSPECIFIED: 116 return ("unspecified"); 117 case IEEE80211_REASON_AUTH_EXPIRE: 118 return ("previous authentication is expired"); 119 case IEEE80211_REASON_AUTH_LEAVE: 120 return ("sending STA is leaving/has left IBSS or ESS"); 121 case IEEE80211_REASON_ASSOC_EXPIRE: 122 return ("disassociated due to inactivity"); 123 case IEEE80211_REASON_ASSOC_TOOMANY: 124 return ("too many associated STAs"); 125 case IEEE80211_REASON_NOT_AUTHED: 126 return ("class 2 frame received from nonauthenticated STA"); 127 case IEEE80211_REASON_NOT_ASSOCED: 128 return ("class 3 frame received from nonassociated STA"); 129 case IEEE80211_REASON_ASSOC_LEAVE: 130 return ("sending STA is leaving/has left BSS"); 131 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 132 return ("STA requesting (re)association is not authenticated"); 133 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 134 return ("information in the Power Capability element is " 135 "unacceptable"); 136 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 137 return ("information in the Supported Channels element is " 138 "unacceptable"); 139 case IEEE80211_REASON_IE_INVALID: 140 return ("invalid element"); 141 case IEEE80211_REASON_MIC_FAILURE: 142 return ("MIC failure"); 143 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 144 return ("4-Way handshake timeout"); 145 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 146 return ("group key update timeout"); 147 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 148 return ("element in 4-Way handshake different from " 149 "(re)association request/probe response/beacon frame"); 150 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 151 return ("invalid group cipher"); 152 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 153 return ("invalid pairwise cipher"); 154 case IEEE80211_REASON_AKMP_INVALID: 155 return ("invalid AKMP"); 156 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 157 return ("unsupported version in RSN IE"); 158 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 159 return ("invalid capabilities in RSN IE"); 160 case IEEE80211_REASON_802_1X_AUTH_FAILED: 161 return ("IEEE 802.1X authentication failed"); 162 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 163 return ("cipher suite rejected because of the security " 164 "policy"); 165 case IEEE80211_REASON_UNSPECIFIED_QOS: 166 return ("unspecified (QoS-related)"); 167 case IEEE80211_REASON_INSUFFICIENT_BW: 168 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 169 case IEEE80211_REASON_TOOMANY_FRAMES: 170 return ("too many frames need to be acknowledged"); 171 case IEEE80211_REASON_OUTSIDE_TXOP: 172 return ("STA is transmitting outside the limits of its TXOPs"); 173 case IEEE80211_REASON_LEAVING_QBSS: 174 return ("requested from peer STA (the STA is " 175 "resetting/leaving the BSS)"); 176 case IEEE80211_REASON_BAD_MECHANISM: 177 return ("requested from peer STA (it does not want to use " 178 "the mechanism)"); 179 case IEEE80211_REASON_SETUP_NEEDED: 180 return ("requested from peer STA (setup is required for the " 181 "used mechanism)"); 182 case IEEE80211_REASON_TIMEOUT: 183 return ("requested from peer STA (timeout)"); 184 case IEEE80211_REASON_PEER_LINK_CANCELED: 185 return ("SME cancels the mesh peering instance (not related " 186 "to the maximum number of peer mesh STAs)"); 187 case IEEE80211_REASON_MESH_MAX_PEERS: 188 return ("maximum number of peer mesh STAs was reached"); 189 case IEEE80211_REASON_MESH_CPVIOLATION: 190 return ("the received information violates the Mesh " 191 "Configuration policy configured in the mesh STA " 192 "profile"); 193 case IEEE80211_REASON_MESH_CLOSE_RCVD: 194 return ("the mesh STA has received a Mesh Peering Close " 195 "message requesting to close the mesh peering"); 196 case IEEE80211_REASON_MESH_MAX_RETRIES: 197 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 198 "Peering Open messages, without receiving a Mesh " 199 "Peering Confirm message"); 200 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 201 return ("the confirmTimer for the mesh peering instance times " 202 "out"); 203 case IEEE80211_REASON_MESH_INVALID_GTK: 204 return ("the mesh STA fails to unwrap the GTK or the values " 205 "in the wrapped contents do not match"); 206 case IEEE80211_REASON_MESH_INCONS_PARAMS: 207 return ("the mesh STA receives inconsistent information about " 208 "the mesh parameters between Mesh Peering Management " 209 "frames"); 210 case IEEE80211_REASON_MESH_INVALID_SECURITY: 211 return ("the mesh STA fails the authenticated mesh peering " 212 "exchange because due to failure in selecting " 213 "pairwise/group ciphersuite"); 214 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 215 return ("the mesh STA does not have proxy information for " 216 "this external destination"); 217 case IEEE80211_REASON_MESH_PERR_NO_FI: 218 return ("the mesh STA does not have forwarding information " 219 "for this destination"); 220 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 221 return ("the mesh STA determines that the link to the next " 222 "hop of an active path in its forwarding information " 223 "is no longer usable"); 224 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 225 return ("the MAC address of the STA already exists in the " 226 "mesh BSS"); 227 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 228 return ("the mesh STA performs channel switch to meet " 229 "regulatory requirements"); 230 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 231 return ("the mesh STA performs channel switch with " 232 "unspecified reason"); 233 default: 234 return ("reserved/unknown"); 235 } 236 } 237 238 static void beacon_miss(void *, int); 239 static void beacon_swmiss(void *, int); 240 static void parent_updown(void *, int); 241 static void update_mcast(void *, int); 242 static void update_promisc(void *, int); 243 static void update_channel(void *, int); 244 static void update_chw(void *, int); 245 static void vap_update_wme(void *, int); 246 static void vap_update_slot(void *, int); 247 static void restart_vaps(void *, int); 248 static void vap_update_erp_protmode(void *, int); 249 static void vap_update_preamble(void *, int); 250 static void vap_update_ht_protmode(void *, int); 251 static void ieee80211_newstate_cb(void *, int); 252 static struct ieee80211_node *vap_update_bss(struct ieee80211vap *, 253 struct ieee80211_node *); 254 255 static int 256 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 257 const struct ieee80211_bpf_params *params) 258 { 259 260 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 261 m_freem(m); 262 return ENETDOWN; 263 } 264 265 void 266 ieee80211_proto_attach(struct ieee80211com *ic) 267 { 268 uint8_t hdrlen; 269 270 /* override the 802.3 setting */ 271 hdrlen = ic->ic_headroom 272 + sizeof(struct ieee80211_qosframe_addr4) 273 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 274 + IEEE80211_WEP_EXTIVLEN; 275 /* XXX no way to recalculate on ifdetach */ 276 if (ALIGN(hdrlen) > max_linkhdr) { 277 /* XXX sanity check... */ 278 max_linkhdr = ALIGN(hdrlen); 279 max_hdr = max_linkhdr + max_protohdr; 280 max_datalen = MHLEN - max_hdr; 281 } 282 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 283 284 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 285 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 286 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 287 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 288 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 289 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 290 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 291 292 ic->ic_wme.wme_hipri_switch_hysteresis = 293 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 294 295 /* initialize management frame handlers */ 296 ic->ic_send_mgmt = ieee80211_send_mgmt; 297 ic->ic_raw_xmit = null_raw_xmit; 298 299 ieee80211_adhoc_attach(ic); 300 ieee80211_sta_attach(ic); 301 ieee80211_wds_attach(ic); 302 ieee80211_hostap_attach(ic); 303 #ifdef IEEE80211_SUPPORT_MESH 304 ieee80211_mesh_attach(ic); 305 #endif 306 ieee80211_monitor_attach(ic); 307 } 308 309 void 310 ieee80211_proto_detach(struct ieee80211com *ic) 311 { 312 ieee80211_monitor_detach(ic); 313 #ifdef IEEE80211_SUPPORT_MESH 314 ieee80211_mesh_detach(ic); 315 #endif 316 ieee80211_hostap_detach(ic); 317 ieee80211_wds_detach(ic); 318 ieee80211_adhoc_detach(ic); 319 ieee80211_sta_detach(ic); 320 } 321 322 static void 323 null_update_beacon(struct ieee80211vap *vap, int item) 324 { 325 } 326 327 void 328 ieee80211_proto_vattach(struct ieee80211vap *vap) 329 { 330 struct ieee80211com *ic = vap->iv_ic; 331 struct ifnet *ifp = vap->iv_ifp; 332 int i; 333 334 /* override the 802.3 setting */ 335 ifp->if_hdrlen = ic->ic_headroom 336 + sizeof(struct ieee80211_qosframe_addr4) 337 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 338 + IEEE80211_WEP_EXTIVLEN; 339 340 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 341 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 342 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 343 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 344 callout_init(&vap->iv_mgtsend, 1); 345 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 346 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 347 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 348 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 349 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 350 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 351 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 352 /* 353 * Install default tx rate handling: no fixed rate, lowest 354 * supported rate for mgmt and multicast frames. Default 355 * max retry count. These settings can be changed by the 356 * driver and/or user applications. 357 */ 358 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 359 if (isclr(ic->ic_modecaps, i)) 360 continue; 361 362 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 363 364 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 365 366 /* 367 * Setting the management rate to MCS 0 assumes that the 368 * BSS Basic rate set is empty and the BSS Basic MCS set 369 * is not. 370 * 371 * Since we're not checking this, default to the lowest 372 * defined rate for this mode. 373 * 374 * At least one 11n AP (DLINK DIR-825) is reported to drop 375 * some MCS management traffic (eg BA response frames.) 376 * 377 * See also: 9.6.0 of the 802.11n-2009 specification. 378 */ 379 #ifdef NOTYET 380 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 381 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 382 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 383 } else { 384 vap->iv_txparms[i].mgmtrate = 385 rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 vap->iv_txparms[i].mcastrate = 387 rs->rs_rates[0] & IEEE80211_RATE_VAL; 388 } 389 #endif 390 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 391 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 392 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 393 } 394 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 395 396 vap->iv_update_beacon = null_update_beacon; 397 vap->iv_deliver_data = ieee80211_deliver_data; 398 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 399 vap->iv_update_bss = vap_update_bss; 400 401 /* attach support for operating mode */ 402 ic->ic_vattach[vap->iv_opmode](vap); 403 } 404 405 void 406 ieee80211_proto_vdetach(struct ieee80211vap *vap) 407 { 408 #define FREEAPPIE(ie) do { \ 409 if (ie != NULL) \ 410 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 411 } while (0) 412 /* 413 * Detach operating mode module. 414 */ 415 if (vap->iv_opdetach != NULL) 416 vap->iv_opdetach(vap); 417 /* 418 * This should not be needed as we detach when reseting 419 * the state but be conservative here since the 420 * authenticator may do things like spawn kernel threads. 421 */ 422 if (vap->iv_auth->ia_detach != NULL) 423 vap->iv_auth->ia_detach(vap); 424 /* 425 * Detach any ACL'ator. 426 */ 427 if (vap->iv_acl != NULL) 428 vap->iv_acl->iac_detach(vap); 429 430 FREEAPPIE(vap->iv_appie_beacon); 431 FREEAPPIE(vap->iv_appie_probereq); 432 FREEAPPIE(vap->iv_appie_proberesp); 433 FREEAPPIE(vap->iv_appie_assocreq); 434 FREEAPPIE(vap->iv_appie_assocresp); 435 FREEAPPIE(vap->iv_appie_wpa); 436 #undef FREEAPPIE 437 } 438 439 /* 440 * Simple-minded authenticator module support. 441 */ 442 443 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 444 /* XXX well-known names */ 445 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 446 "wlan_internal", /* IEEE80211_AUTH_NONE */ 447 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 448 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 449 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 450 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 451 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 452 }; 453 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 454 455 static const struct ieee80211_authenticator auth_internal = { 456 .ia_name = "wlan_internal", 457 .ia_attach = NULL, 458 .ia_detach = NULL, 459 .ia_node_join = NULL, 460 .ia_node_leave = NULL, 461 }; 462 463 /* 464 * Setup internal authenticators once; they are never unregistered. 465 */ 466 static void 467 ieee80211_auth_setup(void) 468 { 469 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 470 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 471 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 472 } 473 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 474 475 const struct ieee80211_authenticator * 476 ieee80211_authenticator_get(int auth) 477 { 478 if (auth >= IEEE80211_AUTH_MAX) 479 return NULL; 480 if (authenticators[auth] == NULL) 481 ieee80211_load_module(auth_modnames[auth]); 482 return authenticators[auth]; 483 } 484 485 void 486 ieee80211_authenticator_register(int type, 487 const struct ieee80211_authenticator *auth) 488 { 489 if (type >= IEEE80211_AUTH_MAX) 490 return; 491 authenticators[type] = auth; 492 } 493 494 void 495 ieee80211_authenticator_unregister(int type) 496 { 497 498 if (type >= IEEE80211_AUTH_MAX) 499 return; 500 authenticators[type] = NULL; 501 } 502 503 /* 504 * Very simple-minded ACL module support. 505 */ 506 /* XXX just one for now */ 507 static const struct ieee80211_aclator *acl = NULL; 508 509 void 510 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 511 { 512 printf("wlan: %s acl policy registered\n", iac->iac_name); 513 acl = iac; 514 } 515 516 void 517 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 518 { 519 if (acl == iac) 520 acl = NULL; 521 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 522 } 523 524 const struct ieee80211_aclator * 525 ieee80211_aclator_get(const char *name) 526 { 527 if (acl == NULL) 528 ieee80211_load_module("wlan_acl"); 529 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 530 } 531 532 void 533 ieee80211_print_essid(const uint8_t *essid, int len) 534 { 535 const uint8_t *p; 536 int i; 537 538 if (len > IEEE80211_NWID_LEN) 539 len = IEEE80211_NWID_LEN; 540 /* determine printable or not */ 541 for (i = 0, p = essid; i < len; i++, p++) { 542 if (*p < ' ' || *p > 0x7e) 543 break; 544 } 545 if (i == len) { 546 printf("\""); 547 for (i = 0, p = essid; i < len; i++, p++) 548 printf("%c", *p); 549 printf("\""); 550 } else { 551 printf("0x"); 552 for (i = 0, p = essid; i < len; i++, p++) 553 printf("%02x", *p); 554 } 555 } 556 557 void 558 ieee80211_dump_pkt(struct ieee80211com *ic, 559 const uint8_t *buf, int len, int rate, int rssi) 560 { 561 const struct ieee80211_frame *wh; 562 int i; 563 564 wh = (const struct ieee80211_frame *)buf; 565 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 566 case IEEE80211_FC1_DIR_NODS: 567 printf("NODS %s", ether_sprintf(wh->i_addr2)); 568 printf("->%s", ether_sprintf(wh->i_addr1)); 569 printf("(%s)", ether_sprintf(wh->i_addr3)); 570 break; 571 case IEEE80211_FC1_DIR_TODS: 572 printf("TODS %s", ether_sprintf(wh->i_addr2)); 573 printf("->%s", ether_sprintf(wh->i_addr3)); 574 printf("(%s)", ether_sprintf(wh->i_addr1)); 575 break; 576 case IEEE80211_FC1_DIR_FROMDS: 577 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 578 printf("->%s", ether_sprintf(wh->i_addr1)); 579 printf("(%s)", ether_sprintf(wh->i_addr2)); 580 break; 581 case IEEE80211_FC1_DIR_DSTODS: 582 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 583 printf("->%s", ether_sprintf(wh->i_addr3)); 584 printf("(%s", ether_sprintf(wh->i_addr2)); 585 printf("->%s)", ether_sprintf(wh->i_addr1)); 586 break; 587 } 588 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 589 case IEEE80211_FC0_TYPE_DATA: 590 printf(" data"); 591 break; 592 case IEEE80211_FC0_TYPE_MGT: 593 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 594 break; 595 default: 596 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 597 break; 598 } 599 if (IEEE80211_QOS_HAS_SEQ(wh)) { 600 const struct ieee80211_qosframe *qwh = 601 (const struct ieee80211_qosframe *)buf; 602 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 603 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 604 } 605 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 606 int off; 607 608 off = ieee80211_anyhdrspace(ic, wh); 609 printf(" WEP [IV %.02x %.02x %.02x", 610 buf[off+0], buf[off+1], buf[off+2]); 611 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 612 printf(" %.02x %.02x %.02x", 613 buf[off+4], buf[off+5], buf[off+6]); 614 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 615 } 616 if (rate >= 0) 617 printf(" %dM", rate / 2); 618 if (rssi >= 0) 619 printf(" +%d", rssi); 620 printf("\n"); 621 if (len > 0) { 622 for (i = 0; i < len; i++) { 623 if ((i & 1) == 0) 624 printf(" "); 625 printf("%02x", buf[i]); 626 } 627 printf("\n"); 628 } 629 } 630 631 static __inline int 632 findrix(const struct ieee80211_rateset *rs, int r) 633 { 634 int i; 635 636 for (i = 0; i < rs->rs_nrates; i++) 637 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 638 return i; 639 return -1; 640 } 641 642 int 643 ieee80211_fix_rate(struct ieee80211_node *ni, 644 struct ieee80211_rateset *nrs, int flags) 645 { 646 struct ieee80211vap *vap = ni->ni_vap; 647 struct ieee80211com *ic = ni->ni_ic; 648 int i, j, rix, error; 649 int okrate, badrate, fixedrate, ucastrate; 650 const struct ieee80211_rateset *srs; 651 uint8_t r; 652 653 error = 0; 654 okrate = badrate = 0; 655 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 656 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 657 /* 658 * Workaround awkwardness with fixed rate. We are called 659 * to check both the legacy rate set and the HT rate set 660 * but we must apply any legacy fixed rate check only to the 661 * legacy rate set and vice versa. We cannot tell what type 662 * of rate set we've been given (legacy or HT) but we can 663 * distinguish the fixed rate type (MCS have 0x80 set). 664 * So to deal with this the caller communicates whether to 665 * check MCS or legacy rate using the flags and we use the 666 * type of any fixed rate to avoid applying an MCS to a 667 * legacy rate and vice versa. 668 */ 669 if (ucastrate & 0x80) { 670 if (flags & IEEE80211_F_DOFRATE) 671 flags &= ~IEEE80211_F_DOFRATE; 672 } else if ((ucastrate & 0x80) == 0) { 673 if (flags & IEEE80211_F_DOFMCS) 674 flags &= ~IEEE80211_F_DOFMCS; 675 } 676 /* NB: required to make MCS match below work */ 677 ucastrate &= IEEE80211_RATE_VAL; 678 } 679 fixedrate = IEEE80211_FIXED_RATE_NONE; 680 /* 681 * XXX we are called to process both MCS and legacy rates; 682 * we must use the appropriate basic rate set or chaos will 683 * ensue; for now callers that want MCS must supply 684 * IEEE80211_F_DOBRS; at some point we'll need to split this 685 * function so there are two variants, one for MCS and one 686 * for legacy rates. 687 */ 688 if (flags & IEEE80211_F_DOBRS) 689 srs = (const struct ieee80211_rateset *) 690 ieee80211_get_suphtrates(ic, ni->ni_chan); 691 else 692 srs = ieee80211_get_suprates(ic, ni->ni_chan); 693 for (i = 0; i < nrs->rs_nrates; ) { 694 if (flags & IEEE80211_F_DOSORT) { 695 /* 696 * Sort rates. 697 */ 698 for (j = i + 1; j < nrs->rs_nrates; j++) { 699 if (IEEE80211_RV(nrs->rs_rates[i]) > 700 IEEE80211_RV(nrs->rs_rates[j])) { 701 r = nrs->rs_rates[i]; 702 nrs->rs_rates[i] = nrs->rs_rates[j]; 703 nrs->rs_rates[j] = r; 704 } 705 } 706 } 707 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 708 badrate = r; 709 /* 710 * Check for fixed rate. 711 */ 712 if (r == ucastrate) 713 fixedrate = r; 714 /* 715 * Check against supported rates. 716 */ 717 rix = findrix(srs, r); 718 if (flags & IEEE80211_F_DONEGO) { 719 if (rix < 0) { 720 /* 721 * A rate in the node's rate set is not 722 * supported. If this is a basic rate and we 723 * are operating as a STA then this is an error. 724 * Otherwise we just discard/ignore the rate. 725 */ 726 if ((flags & IEEE80211_F_JOIN) && 727 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 728 error++; 729 } else if ((flags & IEEE80211_F_JOIN) == 0) { 730 /* 731 * Overwrite with the supported rate 732 * value so any basic rate bit is set. 733 */ 734 nrs->rs_rates[i] = srs->rs_rates[rix]; 735 } 736 } 737 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 738 /* 739 * Delete unacceptable rates. 740 */ 741 nrs->rs_nrates--; 742 for (j = i; j < nrs->rs_nrates; j++) 743 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 744 nrs->rs_rates[j] = 0; 745 continue; 746 } 747 if (rix >= 0) 748 okrate = nrs->rs_rates[i]; 749 i++; 750 } 751 if (okrate == 0 || error != 0 || 752 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 753 fixedrate != ucastrate)) { 754 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 755 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 756 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 757 return badrate | IEEE80211_RATE_BASIC; 758 } else 759 return IEEE80211_RV(okrate); 760 } 761 762 /* 763 * Reset 11g-related state. 764 * 765 * This is for per-VAP ERP/11g state. 766 * 767 * Eventually everything in ieee80211_reset_erp() will be 768 * per-VAP and in here. 769 */ 770 void 771 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 772 { 773 struct ieee80211com *ic = vap->iv_ic; 774 775 vap->iv_nonerpsta = 0; 776 vap->iv_longslotsta = 0; 777 778 vap->iv_flags &= ~IEEE80211_F_USEPROT; 779 /* 780 * Set short preamble and ERP barker-preamble flags. 781 */ 782 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 783 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 784 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 785 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 786 } else { 787 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 788 vap->iv_flags |= IEEE80211_F_USEBARKER; 789 } 790 791 /* 792 * Short slot time is enabled only when operating in 11g 793 * and not in an IBSS. We must also honor whether or not 794 * the driver is capable of doing it. 795 */ 796 ieee80211_vap_set_shortslottime(vap, 797 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 798 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 799 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 800 vap->iv_opmode == IEEE80211_M_HOSTAP && 801 (ic->ic_caps & IEEE80211_C_SHSLOT))); 802 } 803 804 /* 805 * Reset 11g-related state. 806 * 807 * Note this resets the global state and a caller should schedule 808 * a re-check of all the VAPs after setup to update said state. 809 */ 810 void 811 ieee80211_reset_erp(struct ieee80211com *ic) 812 { 813 #if 0 814 ic->ic_flags &= ~IEEE80211_F_USEPROT; 815 /* 816 * Set short preamble and ERP barker-preamble flags. 817 */ 818 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 819 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 820 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 821 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 822 } else { 823 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 824 ic->ic_flags |= IEEE80211_F_USEBARKER; 825 } 826 #endif 827 /* XXX TODO: schedule a new per-VAP ERP calculation */ 828 } 829 830 static struct ieee80211_node * 831 vap_update_bss(struct ieee80211vap *vap, struct ieee80211_node *ni) 832 { 833 struct ieee80211_node *obss; 834 835 obss = vap->iv_bss; 836 vap->iv_bss = ni; 837 838 return (obss); 839 } 840 841 /* 842 * Deferred slot time update. 843 * 844 * For per-VAP slot time configuration, call the VAP 845 * method if the VAP requires it. Otherwise, just call the 846 * older global method. 847 * 848 * If the per-VAP method is called then it's expected that 849 * the driver/firmware will take care of turning the per-VAP 850 * flags into slot time configuration. 851 * 852 * If the per-VAP method is not called then the global flags will be 853 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 854 * be set only if all of the vaps will have it set. 855 * 856 * Look at the comments for vap_update_erp_protmode() for more 857 * background; this assumes all VAPs are on the same channel. 858 */ 859 static void 860 vap_update_slot(void *arg, int npending) 861 { 862 struct ieee80211vap *vap = arg; 863 struct ieee80211com *ic = vap->iv_ic; 864 struct ieee80211vap *iv; 865 int num_shslot = 0, num_lgslot = 0; 866 867 /* 868 * Per-VAP path - we've already had the flags updated; 869 * so just notify the driver and move on. 870 */ 871 if (vap->iv_updateslot != NULL) { 872 vap->iv_updateslot(vap); 873 return; 874 } 875 876 /* 877 * Iterate over all of the VAP flags to update the 878 * global flag. 879 * 880 * If all vaps have short slot enabled then flip on 881 * short slot. If any vap has it disabled then 882 * we leave it globally disabled. This should provide 883 * correct behaviour in a multi-BSS scenario where 884 * at least one VAP has short slot disabled for some 885 * reason. 886 */ 887 IEEE80211_LOCK(ic); 888 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 889 if (iv->iv_flags & IEEE80211_F_SHSLOT) 890 num_shslot++; 891 else 892 num_lgslot++; 893 } 894 895 /* 896 * It looks backwards but - if the number of short slot VAPs 897 * is zero then we're not short slot. Else, we have one 898 * or more short slot VAPs and we're checking to see if ANY 899 * of them have short slot disabled. 900 */ 901 if (num_shslot == 0) 902 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 903 else if (num_lgslot == 0) 904 ic->ic_flags |= IEEE80211_F_SHSLOT; 905 IEEE80211_UNLOCK(ic); 906 907 /* 908 * Call the driver with our new global slot time flags. 909 */ 910 if (ic->ic_updateslot != NULL) 911 ic->ic_updateslot(ic); 912 } 913 914 /* 915 * Deferred ERP protmode update. 916 * 917 * This currently calculates the global ERP protection mode flag 918 * based on each of the VAPs. Any VAP with it enabled is enough 919 * for the global flag to be enabled. All VAPs with it disabled 920 * is enough for it to be disabled. 921 * 922 * This may make sense right now for the supported hardware where 923 * net80211 is controlling the single channel configuration, but 924 * offload firmware that's doing channel changes (eg off-channel 925 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 926 * silly looking flag updates. 927 * 928 * Ideally the protection mode calculation is done based on the 929 * channel, and all VAPs using that channel will inherit it. 930 * But until that's what net80211 does, this wil have to do. 931 */ 932 static void 933 vap_update_erp_protmode(void *arg, int npending) 934 { 935 struct ieee80211vap *vap = arg; 936 struct ieee80211com *ic = vap->iv_ic; 937 struct ieee80211vap *iv; 938 int enable_protmode = 0; 939 int non_erp_present = 0; 940 941 /* 942 * Iterate over all of the VAPs to calculate the overlapping 943 * ERP protection mode configuration and ERP present math. 944 * 945 * For now we assume that if a driver can handle this per-VAP 946 * then it'll ignore the ic->ic_protmode variant and instead 947 * will look at the vap related flags. 948 */ 949 IEEE80211_LOCK(ic); 950 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 951 if (iv->iv_flags & IEEE80211_F_USEPROT) 952 enable_protmode = 1; 953 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 954 non_erp_present = 1; 955 } 956 957 if (enable_protmode) 958 ic->ic_flags |= IEEE80211_F_USEPROT; 959 else 960 ic->ic_flags &= ~IEEE80211_F_USEPROT; 961 962 if (non_erp_present) 963 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 964 else 965 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 966 967 /* Beacon update on all VAPs */ 968 ieee80211_notify_erp_locked(ic); 969 970 IEEE80211_UNLOCK(ic); 971 972 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 973 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 974 __func__, enable_protmode, non_erp_present); 975 976 /* 977 * Now that the global configuration flags are calculated, 978 * notify the VAP about its configuration. 979 * 980 * The global flags will be used when assembling ERP IEs 981 * for multi-VAP operation, even if it's on a different 982 * channel. Yes, that's going to need fixing in the 983 * future. 984 */ 985 if (vap->iv_erp_protmode_update != NULL) 986 vap->iv_erp_protmode_update(vap); 987 } 988 989 /* 990 * Deferred ERP short preamble/barker update. 991 * 992 * All VAPs need to use short preamble for it to be globally 993 * enabled or not. 994 * 995 * Look at the comments for vap_update_erp_protmode() for more 996 * background; this assumes all VAPs are on the same channel. 997 */ 998 static void 999 vap_update_preamble(void *arg, int npending) 1000 { 1001 struct ieee80211vap *vap = arg; 1002 struct ieee80211com *ic = vap->iv_ic; 1003 struct ieee80211vap *iv; 1004 int barker_count = 0, short_preamble_count = 0, count = 0; 1005 1006 /* 1007 * Iterate over all of the VAPs to calculate the overlapping 1008 * short or long preamble configuration. 1009 * 1010 * For now we assume that if a driver can handle this per-VAP 1011 * then it'll ignore the ic->ic_flags variant and instead 1012 * will look at the vap related flags. 1013 */ 1014 IEEE80211_LOCK(ic); 1015 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1016 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1017 barker_count++; 1018 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1019 short_preamble_count++; 1020 count++; 1021 } 1022 1023 /* 1024 * As with vap_update_erp_protmode(), the global flags are 1025 * currently used for beacon IEs. 1026 */ 1027 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1028 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1029 __func__, barker_count, short_preamble_count); 1030 1031 /* 1032 * Only flip on short preamble if all of the VAPs support 1033 * it. 1034 */ 1035 if (barker_count == 0 && short_preamble_count == count) { 1036 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1037 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1038 } else { 1039 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1040 ic->ic_flags |= IEEE80211_F_USEBARKER; 1041 } 1042 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1043 "%s: global barker=%d preamble=%d\n", 1044 __func__, 1045 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1046 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1047 1048 /* Beacon update on all VAPs */ 1049 ieee80211_notify_erp_locked(ic); 1050 1051 IEEE80211_UNLOCK(ic); 1052 1053 /* Driver notification */ 1054 if (vap->iv_erp_protmode_update != NULL) 1055 vap->iv_preamble_update(vap); 1056 } 1057 1058 /* 1059 * Deferred HT protmode update and beacon update. 1060 * 1061 * Look at the comments for vap_update_erp_protmode() for more 1062 * background; this assumes all VAPs are on the same channel. 1063 */ 1064 static void 1065 vap_update_ht_protmode(void *arg, int npending) 1066 { 1067 struct ieee80211vap *vap = arg; 1068 struct ieee80211vap *iv; 1069 struct ieee80211com *ic = vap->iv_ic; 1070 int num_vaps = 0, num_pure = 0, num_mixed = 0; 1071 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1072 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1073 int num_nonhtpr = 0; 1074 1075 /* 1076 * Iterate over all of the VAPs to calculate everything. 1077 * 1078 * There are a few different flags to calculate: 1079 * 1080 * + whether there's HT only or HT+legacy stations; 1081 * + whether there's HT20, HT40, or HT20+HT40 stations; 1082 * + whether the desired protection mode is mixed, pure or 1083 * one of the two above. 1084 * 1085 * For now we assume that if a driver can handle this per-VAP 1086 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1087 * variant and instead will look at the vap related variables. 1088 * 1089 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1090 */ 1091 1092 IEEE80211_LOCK(ic); 1093 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1094 num_vaps++; 1095 /* overlapping BSSes advertising non-HT status present */ 1096 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1097 num_nonht++; 1098 /* Operating mode flags */ 1099 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1100 num_nonhtpr++; 1101 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1102 case IEEE80211_HTINFO_OPMODE_PURE: 1103 num_pure++; 1104 break; 1105 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1106 num_optional++; 1107 break; 1108 case IEEE80211_HTINFO_OPMODE_HT20PR: 1109 num_ht2040++; 1110 break; 1111 case IEEE80211_HTINFO_OPMODE_MIXED: 1112 num_mixed++; 1113 break; 1114 } 1115 1116 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1117 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1118 __func__, 1119 ieee80211_get_vap_ifname(iv), 1120 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1121 iv->iv_curhtprotmode); 1122 1123 num_ht_sta += iv->iv_ht_sta_assoc; 1124 num_ht40_sta += iv->iv_ht40_sta_assoc; 1125 num_sta += iv->iv_sta_assoc; 1126 } 1127 1128 /* 1129 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1130 * non-HT present), set it here. This shouldn't be used by 1131 * anything but the old overlapping BSS logic so if any drivers 1132 * consume it, it's up to date. 1133 */ 1134 if (num_nonht > 0) 1135 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1136 else 1137 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1138 1139 /* 1140 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1141 * 1142 * + If all VAPs are PURE, we can stay PURE. 1143 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1144 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1145 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1146 * So we look at the sum ht and sum ht40 sta counts; if we have a 1147 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1148 * Note all stations need to be HT for this to be an option. 1149 * + The fall-through is MIXED, because it means we have some odd 1150 * non HT40-involved combination of opmode and this is the most 1151 * sensible default. 1152 */ 1153 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1154 1155 if (num_pure == num_vaps) 1156 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1157 1158 if (num_optional == num_vaps) 1159 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1160 1161 /* 1162 * Note: we need /a/ HT40 station somewhere for this to 1163 * be a possibility. 1164 */ 1165 if ((num_ht2040 > 0) || 1166 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1167 (num_ht_sta != num_ht40_sta))) 1168 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1169 1170 /* 1171 * Step 3 - if any of the stations across the VAPs are 1172 * non-HT then this needs to be flipped back to MIXED. 1173 */ 1174 if (num_ht_sta != num_sta) 1175 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1176 1177 /* 1178 * Step 4 - If we see any overlapping BSS non-HT stations 1179 * via beacons then flip on NONHT_PRESENT. 1180 */ 1181 if (num_nonhtpr > 0) 1182 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1183 1184 /* Notify all VAPs to potentially update their beacons */ 1185 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1186 ieee80211_htinfo_notify(iv); 1187 1188 IEEE80211_UNLOCK(ic); 1189 1190 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1191 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1192 __func__, 1193 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1194 ic->ic_curhtprotmode); 1195 1196 /* Driver update */ 1197 if (vap->iv_erp_protmode_update != NULL) 1198 vap->iv_ht_protmode_update(vap); 1199 } 1200 1201 /* 1202 * Set the short slot time state and notify the driver. 1203 * 1204 * This is the per-VAP slot time state. 1205 */ 1206 void 1207 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1208 { 1209 struct ieee80211com *ic = vap->iv_ic; 1210 1211 /* XXX lock? */ 1212 1213 /* 1214 * Only modify the per-VAP slot time. 1215 */ 1216 if (onoff) 1217 vap->iv_flags |= IEEE80211_F_SHSLOT; 1218 else 1219 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1220 1221 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1222 "%s: called; onoff=%d\n", __func__, onoff); 1223 /* schedule the deferred slot flag update and update */ 1224 ieee80211_runtask(ic, &vap->iv_slot_task); 1225 } 1226 1227 /* 1228 * Update the VAP short /long / barker preamble state and 1229 * update beacon state if needed. 1230 * 1231 * For now it simply copies the global flags into the per-vap 1232 * flags and schedules the callback. Later this will support 1233 * both global and per-VAP flags, especially useful for 1234 * and STA+STA multi-channel operation (eg p2p). 1235 */ 1236 void 1237 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1238 { 1239 struct ieee80211com *ic = vap->iv_ic; 1240 1241 /* XXX lock? */ 1242 1243 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1244 "%s: called\n", __func__); 1245 /* schedule the deferred slot flag update and update */ 1246 ieee80211_runtask(ic, &vap->iv_preamble_task); 1247 } 1248 1249 /* 1250 * Update the VAP 11g protection mode and update beacon state 1251 * if needed. 1252 */ 1253 void 1254 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1255 { 1256 struct ieee80211com *ic = vap->iv_ic; 1257 1258 /* XXX lock? */ 1259 1260 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1261 "%s: called\n", __func__); 1262 /* schedule the deferred slot flag update and update */ 1263 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1264 } 1265 1266 /* 1267 * Update the VAP 11n protection mode and update beacon state 1268 * if needed. 1269 */ 1270 void 1271 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1272 { 1273 struct ieee80211com *ic = vap->iv_ic; 1274 1275 /* XXX lock? */ 1276 1277 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1278 "%s: called\n", __func__); 1279 /* schedule the deferred protmode update */ 1280 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1281 } 1282 1283 /* 1284 * Check if the specified rate set supports ERP. 1285 * NB: the rate set is assumed to be sorted. 1286 */ 1287 int 1288 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1289 { 1290 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1291 int i, j; 1292 1293 if (rs->rs_nrates < nitems(rates)) 1294 return 0; 1295 for (i = 0; i < nitems(rates); i++) { 1296 for (j = 0; j < rs->rs_nrates; j++) { 1297 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1298 if (rates[i] == r) 1299 goto next; 1300 if (r > rates[i]) 1301 return 0; 1302 } 1303 return 0; 1304 next: 1305 ; 1306 } 1307 return 1; 1308 } 1309 1310 /* 1311 * Mark the basic rates for the rate table based on the 1312 * operating mode. For real 11g we mark all the 11b rates 1313 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1314 * 11b rates. There's also a pseudo 11a-mode used to mark only 1315 * the basic OFDM rates. 1316 */ 1317 static void 1318 setbasicrates(struct ieee80211_rateset *rs, 1319 enum ieee80211_phymode mode, int add) 1320 { 1321 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1322 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1323 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1324 /* NB: mixed b/g */ 1325 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1326 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1327 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1328 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1329 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1330 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1331 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1332 /* NB: mixed b/g */ 1333 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1334 /* NB: mixed b/g */ 1335 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1336 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1337 }; 1338 int i, j; 1339 1340 for (i = 0; i < rs->rs_nrates; i++) { 1341 if (!add) 1342 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1343 for (j = 0; j < basic[mode].rs_nrates; j++) 1344 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1345 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1346 break; 1347 } 1348 } 1349 } 1350 1351 /* 1352 * Set the basic rates in a rate set. 1353 */ 1354 void 1355 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1356 enum ieee80211_phymode mode) 1357 { 1358 setbasicrates(rs, mode, 0); 1359 } 1360 1361 /* 1362 * Add basic rates to a rate set. 1363 */ 1364 void 1365 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1366 enum ieee80211_phymode mode) 1367 { 1368 setbasicrates(rs, mode, 1); 1369 } 1370 1371 /* 1372 * WME protocol support. 1373 * 1374 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1375 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1376 * Draft 2.0 Test Plan (Appendix D). 1377 * 1378 * Static/Dynamic Turbo mode settings come from Atheros. 1379 */ 1380 typedef struct phyParamType { 1381 uint8_t aifsn; 1382 uint8_t logcwmin; 1383 uint8_t logcwmax; 1384 uint16_t txopLimit; 1385 uint8_t acm; 1386 } paramType; 1387 1388 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1389 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1390 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1391 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1392 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1393 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1394 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1395 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1396 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1397 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1398 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1399 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1400 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1401 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1402 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1403 }; 1404 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1405 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1406 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1407 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1408 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1409 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1410 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1411 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1412 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1413 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1414 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1415 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1416 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1417 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1418 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1419 }; 1420 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1421 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1422 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1423 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1424 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1425 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1426 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1427 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1428 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1429 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1430 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1431 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1432 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1433 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1434 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1435 }; 1436 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1437 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1438 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1439 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1440 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1441 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1442 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1443 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1444 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1445 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1446 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1447 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1448 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1449 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1450 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1451 }; 1452 1453 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1454 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1455 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1456 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1457 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1458 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1459 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1460 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1461 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1462 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1463 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1464 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1465 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1466 }; 1467 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1468 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1469 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1470 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1471 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1472 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1473 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1474 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1475 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1476 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1477 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1478 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1479 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1480 }; 1481 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1482 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1483 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1484 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1485 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1486 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1487 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1488 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1489 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1490 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1491 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1492 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1493 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1494 }; 1495 1496 static void 1497 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1498 { 1499 wmep->wmep_aifsn = phy->aifsn; 1500 wmep->wmep_logcwmin = phy->logcwmin; 1501 wmep->wmep_logcwmax = phy->logcwmax; 1502 wmep->wmep_txopLimit = phy->txopLimit; 1503 } 1504 1505 static void 1506 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1507 struct wmeParams *wmep, const paramType *phy) 1508 { 1509 wmep->wmep_acm = phy->acm; 1510 _setifsparams(wmep, phy); 1511 1512 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1513 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1514 ieee80211_wme_acnames[ac], type, 1515 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1516 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1517 } 1518 1519 static void 1520 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1521 { 1522 struct ieee80211com *ic = vap->iv_ic; 1523 struct ieee80211_wme_state *wme = &ic->ic_wme; 1524 const paramType *pPhyParam, *pBssPhyParam; 1525 struct wmeParams *wmep; 1526 enum ieee80211_phymode mode; 1527 int i; 1528 1529 IEEE80211_LOCK_ASSERT(ic); 1530 1531 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1532 return; 1533 1534 /* 1535 * Clear the wme cap_info field so a qoscount from a previous 1536 * vap doesn't confuse later code which only parses the beacon 1537 * field and updates hardware when said field changes. 1538 * Otherwise the hardware is programmed with defaults, not what 1539 * the beacon actually announces. 1540 * 1541 * Note that we can't ever have 0xff as an actual value; 1542 * the only valid values are 0..15. 1543 */ 1544 wme->wme_wmeChanParams.cap_info = 0xfe; 1545 1546 /* 1547 * Select mode; we can be called early in which case we 1548 * always use auto mode. We know we'll be called when 1549 * entering the RUN state with bsschan setup properly 1550 * so state will eventually get set correctly 1551 */ 1552 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1553 mode = ieee80211_chan2mode(ic->ic_bsschan); 1554 else 1555 mode = IEEE80211_MODE_AUTO; 1556 for (i = 0; i < WME_NUM_AC; i++) { 1557 switch (i) { 1558 case WME_AC_BK: 1559 pPhyParam = &phyParamForAC_BK[mode]; 1560 pBssPhyParam = &phyParamForAC_BK[mode]; 1561 break; 1562 case WME_AC_VI: 1563 pPhyParam = &phyParamForAC_VI[mode]; 1564 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1565 break; 1566 case WME_AC_VO: 1567 pPhyParam = &phyParamForAC_VO[mode]; 1568 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1569 break; 1570 case WME_AC_BE: 1571 default: 1572 pPhyParam = &phyParamForAC_BE[mode]; 1573 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1574 break; 1575 } 1576 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1577 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1578 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1579 } else { 1580 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1581 } 1582 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1583 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1584 } 1585 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1586 if (vap->iv_bss != NULL) { 1587 /* 1588 * Calculate aggressive mode switching threshold based 1589 * on beacon interval. This doesn't need locking since 1590 * we're only called before entering the RUN state at 1591 * which point we start sending beacon frames. 1592 */ 1593 wme->wme_hipri_switch_thresh = 1594 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1595 wme->wme_flags &= ~WME_F_AGGRMODE; 1596 ieee80211_wme_updateparams(vap); 1597 } 1598 } 1599 1600 void 1601 ieee80211_wme_initparams(struct ieee80211vap *vap) 1602 { 1603 struct ieee80211com *ic = vap->iv_ic; 1604 1605 IEEE80211_LOCK(ic); 1606 ieee80211_wme_initparams_locked(vap); 1607 IEEE80211_UNLOCK(ic); 1608 } 1609 1610 /* 1611 * Update WME parameters for ourself and the BSS. 1612 */ 1613 void 1614 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1615 { 1616 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1617 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1618 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1619 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1620 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1621 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1622 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1623 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1624 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1625 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1626 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1627 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1628 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1629 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1630 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1631 }; 1632 struct ieee80211com *ic = vap->iv_ic; 1633 struct ieee80211_wme_state *wme = &ic->ic_wme; 1634 const struct wmeParams *wmep; 1635 struct wmeParams *chanp, *bssp; 1636 enum ieee80211_phymode mode; 1637 int i; 1638 int do_aggrmode = 0; 1639 1640 /* 1641 * Set up the channel access parameters for the physical 1642 * device. First populate the configured settings. 1643 */ 1644 for (i = 0; i < WME_NUM_AC; i++) { 1645 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1646 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1647 chanp->wmep_aifsn = wmep->wmep_aifsn; 1648 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1649 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1650 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1651 1652 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1653 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1654 chanp->wmep_aifsn = wmep->wmep_aifsn; 1655 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1656 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1657 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1658 } 1659 1660 /* 1661 * Select mode; we can be called early in which case we 1662 * always use auto mode. We know we'll be called when 1663 * entering the RUN state with bsschan setup properly 1664 * so state will eventually get set correctly 1665 */ 1666 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1667 mode = ieee80211_chan2mode(ic->ic_bsschan); 1668 else 1669 mode = IEEE80211_MODE_AUTO; 1670 1671 /* 1672 * This implements aggressive mode as found in certain 1673 * vendors' AP's. When there is significant high 1674 * priority (VI/VO) traffic in the BSS throttle back BE 1675 * traffic by using conservative parameters. Otherwise 1676 * BE uses aggressive params to optimize performance of 1677 * legacy/non-QoS traffic. 1678 */ 1679 1680 /* Hostap? Only if aggressive mode is enabled */ 1681 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1682 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1683 do_aggrmode = 1; 1684 1685 /* 1686 * Station? Only if we're in a non-QoS BSS. 1687 */ 1688 else if ((vap->iv_opmode == IEEE80211_M_STA && 1689 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1690 do_aggrmode = 1; 1691 1692 /* 1693 * IBSS? Only if we we have WME enabled. 1694 */ 1695 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1696 (vap->iv_flags & IEEE80211_F_WME)) 1697 do_aggrmode = 1; 1698 1699 /* 1700 * If WME is disabled on this VAP, default to aggressive mode 1701 * regardless of the configuration. 1702 */ 1703 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1704 do_aggrmode = 1; 1705 1706 /* XXX WDS? */ 1707 1708 /* XXX MBSS? */ 1709 1710 if (do_aggrmode) { 1711 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1712 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1713 1714 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1715 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1716 aggrParam[mode].logcwmin; 1717 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1718 aggrParam[mode].logcwmax; 1719 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1720 (vap->iv_flags & IEEE80211_F_BURST) ? 1721 aggrParam[mode].txopLimit : 0; 1722 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1723 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1724 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1725 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1726 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1727 } 1728 1729 /* 1730 * Change the contention window based on the number of associated 1731 * stations. If the number of associated stations is 1 and 1732 * aggressive mode is enabled, lower the contention window even 1733 * further. 1734 */ 1735 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1736 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1737 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1738 [IEEE80211_MODE_AUTO] = 3, 1739 [IEEE80211_MODE_11A] = 3, 1740 [IEEE80211_MODE_11B] = 4, 1741 [IEEE80211_MODE_11G] = 3, 1742 [IEEE80211_MODE_FH] = 4, 1743 [IEEE80211_MODE_TURBO_A] = 3, 1744 [IEEE80211_MODE_TURBO_G] = 3, 1745 [IEEE80211_MODE_STURBO_A] = 3, 1746 [IEEE80211_MODE_HALF] = 3, 1747 [IEEE80211_MODE_QUARTER] = 3, 1748 [IEEE80211_MODE_11NA] = 3, 1749 [IEEE80211_MODE_11NG] = 3, 1750 [IEEE80211_MODE_VHT_2GHZ] = 3, 1751 [IEEE80211_MODE_VHT_5GHZ] = 3, 1752 }; 1753 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1754 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1755 1756 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1757 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1758 "update %s (chan+bss) logcwmin %u\n", 1759 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1760 } 1761 1762 /* schedule the deferred WME update */ 1763 ieee80211_runtask(ic, &vap->iv_wme_task); 1764 1765 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1766 "%s: WME params updated, cap_info 0x%x\n", __func__, 1767 vap->iv_opmode == IEEE80211_M_STA ? 1768 wme->wme_wmeChanParams.cap_info : 1769 wme->wme_bssChanParams.cap_info); 1770 } 1771 1772 void 1773 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1774 { 1775 struct ieee80211com *ic = vap->iv_ic; 1776 1777 if (ic->ic_caps & IEEE80211_C_WME) { 1778 IEEE80211_LOCK(ic); 1779 ieee80211_wme_updateparams_locked(vap); 1780 IEEE80211_UNLOCK(ic); 1781 } 1782 } 1783 1784 /* 1785 * Fetch the WME parameters for the given VAP. 1786 * 1787 * When net80211 grows p2p, etc support, this may return different 1788 * parameters for each VAP. 1789 */ 1790 void 1791 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1792 { 1793 1794 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1795 } 1796 1797 /* 1798 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1799 * there may be different VAP WME parameters but only one is "active". 1800 * This returns the "NIC" WME parameters for the currently active 1801 * context. 1802 */ 1803 void 1804 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1805 { 1806 1807 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1808 } 1809 1810 /* 1811 * Return whether to use QoS on a given WME queue. 1812 * 1813 * This is intended to be called from the transmit path of softmac drivers 1814 * which are setting NoAck bits in transmit descriptors. 1815 * 1816 * Ideally this would be set in some transmit field before the packet is 1817 * queued to the driver but net80211 isn't quite there yet. 1818 */ 1819 int 1820 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1821 { 1822 /* Bounds/sanity check */ 1823 if (ac < 0 || ac >= WME_NUM_AC) 1824 return (0); 1825 1826 /* Again, there's only one global context for now */ 1827 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1828 } 1829 1830 static void 1831 parent_updown(void *arg, int npending) 1832 { 1833 struct ieee80211com *ic = arg; 1834 1835 ic->ic_parent(ic); 1836 } 1837 1838 static void 1839 update_mcast(void *arg, int npending) 1840 { 1841 struct ieee80211com *ic = arg; 1842 1843 ic->ic_update_mcast(ic); 1844 } 1845 1846 static void 1847 update_promisc(void *arg, int npending) 1848 { 1849 struct ieee80211com *ic = arg; 1850 1851 ic->ic_update_promisc(ic); 1852 } 1853 1854 static void 1855 update_channel(void *arg, int npending) 1856 { 1857 struct ieee80211com *ic = arg; 1858 1859 ic->ic_set_channel(ic); 1860 ieee80211_radiotap_chan_change(ic); 1861 } 1862 1863 static void 1864 update_chw(void *arg, int npending) 1865 { 1866 struct ieee80211com *ic = arg; 1867 1868 /* 1869 * XXX should we defer the channel width _config_ update until now? 1870 */ 1871 ic->ic_update_chw(ic); 1872 } 1873 1874 /* 1875 * Deferred WME parameter and beacon update. 1876 * 1877 * In preparation for per-VAP WME configuration, call the VAP 1878 * method if the VAP requires it. Otherwise, just call the 1879 * older global method. There isn't a per-VAP WME configuration 1880 * just yet so for now just use the global configuration. 1881 */ 1882 static void 1883 vap_update_wme(void *arg, int npending) 1884 { 1885 struct ieee80211vap *vap = arg; 1886 struct ieee80211com *ic = vap->iv_ic; 1887 struct ieee80211_wme_state *wme = &ic->ic_wme; 1888 1889 /* Driver update */ 1890 if (vap->iv_wme_update != NULL) 1891 vap->iv_wme_update(vap, 1892 ic->ic_wme.wme_chanParams.cap_wmeParams); 1893 else 1894 ic->ic_wme.wme_update(ic); 1895 1896 IEEE80211_LOCK(ic); 1897 /* 1898 * Arrange for the beacon update. 1899 * 1900 * XXX what about MBSS, WDS? 1901 */ 1902 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1903 || vap->iv_opmode == IEEE80211_M_IBSS) { 1904 /* 1905 * Arrange for a beacon update and bump the parameter 1906 * set number so associated stations load the new values. 1907 */ 1908 wme->wme_bssChanParams.cap_info = 1909 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1910 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1911 } 1912 IEEE80211_UNLOCK(ic); 1913 } 1914 1915 static void 1916 restart_vaps(void *arg, int npending) 1917 { 1918 struct ieee80211com *ic = arg; 1919 1920 ieee80211_suspend_all(ic); 1921 ieee80211_resume_all(ic); 1922 } 1923 1924 /* 1925 * Block until the parent is in a known state. This is 1926 * used after any operations that dispatch a task (e.g. 1927 * to auto-configure the parent device up/down). 1928 */ 1929 void 1930 ieee80211_waitfor_parent(struct ieee80211com *ic) 1931 { 1932 taskqueue_block(ic->ic_tq); 1933 ieee80211_draintask(ic, &ic->ic_parent_task); 1934 ieee80211_draintask(ic, &ic->ic_mcast_task); 1935 ieee80211_draintask(ic, &ic->ic_promisc_task); 1936 ieee80211_draintask(ic, &ic->ic_chan_task); 1937 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1938 ieee80211_draintask(ic, &ic->ic_chw_task); 1939 taskqueue_unblock(ic->ic_tq); 1940 } 1941 1942 /* 1943 * Check to see whether the current channel needs reset. 1944 * 1945 * Some devices don't handle being given an invalid channel 1946 * in their operating mode very well (eg wpi(4) will throw a 1947 * firmware exception.) 1948 * 1949 * Return 0 if we're ok, 1 if the channel needs to be reset. 1950 * 1951 * See PR kern/202502. 1952 */ 1953 static int 1954 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1955 { 1956 struct ieee80211com *ic = vap->iv_ic; 1957 1958 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1959 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1960 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1961 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1962 return (1); 1963 return (0); 1964 } 1965 1966 /* 1967 * Reset the curchan to a known good state. 1968 */ 1969 static void 1970 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1971 { 1972 struct ieee80211com *ic = vap->iv_ic; 1973 1974 ic->ic_curchan = &ic->ic_channels[0]; 1975 } 1976 1977 /* 1978 * Start a vap running. If this is the first vap to be 1979 * set running on the underlying device then we 1980 * automatically bring the device up. 1981 */ 1982 void 1983 ieee80211_start_locked(struct ieee80211vap *vap) 1984 { 1985 struct ifnet *ifp = vap->iv_ifp; 1986 struct ieee80211com *ic = vap->iv_ic; 1987 1988 IEEE80211_LOCK_ASSERT(ic); 1989 1990 IEEE80211_DPRINTF(vap, 1991 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1992 "start running, %d vaps running\n", ic->ic_nrunning); 1993 1994 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1995 /* 1996 * Mark us running. Note that it's ok to do this first; 1997 * if we need to bring the parent device up we defer that 1998 * to avoid dropping the com lock. We expect the device 1999 * to respond to being marked up by calling back into us 2000 * through ieee80211_start_all at which point we'll come 2001 * back in here and complete the work. 2002 */ 2003 ifp->if_drv_flags |= IFF_DRV_RUNNING; 2004 ieee80211_notify_ifnet_change(vap); 2005 2006 /* 2007 * We are not running; if this we are the first vap 2008 * to be brought up auto-up the parent if necessary. 2009 */ 2010 if (ic->ic_nrunning++ == 0) { 2011 /* reset the channel to a known good channel */ 2012 if (ieee80211_start_check_reset_chan(vap)) 2013 ieee80211_start_reset_chan(vap); 2014 2015 IEEE80211_DPRINTF(vap, 2016 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2017 "%s: up parent %s\n", __func__, ic->ic_name); 2018 ieee80211_runtask(ic, &ic->ic_parent_task); 2019 return; 2020 } 2021 } 2022 /* 2023 * If the parent is up and running, then kick the 2024 * 802.11 state machine as appropriate. 2025 */ 2026 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2027 if (vap->iv_opmode == IEEE80211_M_STA) { 2028 #if 0 2029 /* XXX bypasses scan too easily; disable for now */ 2030 /* 2031 * Try to be intelligent about clocking the state 2032 * machine. If we're currently in RUN state then 2033 * we should be able to apply any new state/parameters 2034 * simply by re-associating. Otherwise we need to 2035 * re-scan to select an appropriate ap. 2036 */ 2037 if (vap->iv_state >= IEEE80211_S_RUN) 2038 ieee80211_new_state_locked(vap, 2039 IEEE80211_S_ASSOC, 1); 2040 else 2041 #endif 2042 ieee80211_new_state_locked(vap, 2043 IEEE80211_S_SCAN, 0); 2044 } else { 2045 /* 2046 * For monitor+wds mode there's nothing to do but 2047 * start running. Otherwise if this is the first 2048 * vap to be brought up, start a scan which may be 2049 * preempted if the station is locked to a particular 2050 * channel. 2051 */ 2052 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2053 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2054 vap->iv_opmode == IEEE80211_M_WDS) 2055 ieee80211_new_state_locked(vap, 2056 IEEE80211_S_RUN, -1); 2057 else 2058 ieee80211_new_state_locked(vap, 2059 IEEE80211_S_SCAN, 0); 2060 } 2061 } 2062 } 2063 2064 /* 2065 * Start a single vap. 2066 */ 2067 void 2068 ieee80211_init(void *arg) 2069 { 2070 struct ieee80211vap *vap = arg; 2071 2072 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2073 "%s\n", __func__); 2074 2075 IEEE80211_LOCK(vap->iv_ic); 2076 ieee80211_start_locked(vap); 2077 IEEE80211_UNLOCK(vap->iv_ic); 2078 } 2079 2080 /* 2081 * Start all runnable vap's on a device. 2082 */ 2083 void 2084 ieee80211_start_all(struct ieee80211com *ic) 2085 { 2086 struct ieee80211vap *vap; 2087 2088 IEEE80211_LOCK(ic); 2089 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2090 struct ifnet *ifp = vap->iv_ifp; 2091 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2092 ieee80211_start_locked(vap); 2093 } 2094 IEEE80211_UNLOCK(ic); 2095 } 2096 2097 /* 2098 * Stop a vap. We force it down using the state machine 2099 * then mark it's ifnet not running. If this is the last 2100 * vap running on the underlying device then we close it 2101 * too to insure it will be properly initialized when the 2102 * next vap is brought up. 2103 */ 2104 void 2105 ieee80211_stop_locked(struct ieee80211vap *vap) 2106 { 2107 struct ieee80211com *ic = vap->iv_ic; 2108 struct ifnet *ifp = vap->iv_ifp; 2109 2110 IEEE80211_LOCK_ASSERT(ic); 2111 2112 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2113 "stop running, %d vaps running\n", ic->ic_nrunning); 2114 2115 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2116 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2117 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2118 ieee80211_notify_ifnet_change(vap); 2119 if (--ic->ic_nrunning == 0) { 2120 IEEE80211_DPRINTF(vap, 2121 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2122 "down parent %s\n", ic->ic_name); 2123 ieee80211_runtask(ic, &ic->ic_parent_task); 2124 } 2125 } 2126 } 2127 2128 void 2129 ieee80211_stop(struct ieee80211vap *vap) 2130 { 2131 struct ieee80211com *ic = vap->iv_ic; 2132 2133 IEEE80211_LOCK(ic); 2134 ieee80211_stop_locked(vap); 2135 IEEE80211_UNLOCK(ic); 2136 } 2137 2138 /* 2139 * Stop all vap's running on a device. 2140 */ 2141 void 2142 ieee80211_stop_all(struct ieee80211com *ic) 2143 { 2144 struct ieee80211vap *vap; 2145 2146 IEEE80211_LOCK(ic); 2147 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2148 struct ifnet *ifp = vap->iv_ifp; 2149 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2150 ieee80211_stop_locked(vap); 2151 } 2152 IEEE80211_UNLOCK(ic); 2153 2154 ieee80211_waitfor_parent(ic); 2155 } 2156 2157 /* 2158 * Stop all vap's running on a device and arrange 2159 * for those that were running to be resumed. 2160 */ 2161 void 2162 ieee80211_suspend_all(struct ieee80211com *ic) 2163 { 2164 struct ieee80211vap *vap; 2165 2166 IEEE80211_LOCK(ic); 2167 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2168 struct ifnet *ifp = vap->iv_ifp; 2169 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2170 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2171 ieee80211_stop_locked(vap); 2172 } 2173 } 2174 IEEE80211_UNLOCK(ic); 2175 2176 ieee80211_waitfor_parent(ic); 2177 } 2178 2179 /* 2180 * Start all vap's marked for resume. 2181 */ 2182 void 2183 ieee80211_resume_all(struct ieee80211com *ic) 2184 { 2185 struct ieee80211vap *vap; 2186 2187 IEEE80211_LOCK(ic); 2188 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2189 struct ifnet *ifp = vap->iv_ifp; 2190 if (!IFNET_IS_UP_RUNNING(ifp) && 2191 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2192 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2193 ieee80211_start_locked(vap); 2194 } 2195 } 2196 IEEE80211_UNLOCK(ic); 2197 } 2198 2199 /* 2200 * Restart all vap's running on a device. 2201 */ 2202 void 2203 ieee80211_restart_all(struct ieee80211com *ic) 2204 { 2205 /* 2206 * NB: do not use ieee80211_runtask here, we will 2207 * block & drain net80211 taskqueue. 2208 */ 2209 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2210 } 2211 2212 void 2213 ieee80211_beacon_miss(struct ieee80211com *ic) 2214 { 2215 IEEE80211_LOCK(ic); 2216 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2217 /* Process in a taskq, the handler may reenter the driver */ 2218 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2219 } 2220 IEEE80211_UNLOCK(ic); 2221 } 2222 2223 static void 2224 beacon_miss(void *arg, int npending) 2225 { 2226 struct ieee80211com *ic = arg; 2227 struct ieee80211vap *vap; 2228 2229 IEEE80211_LOCK(ic); 2230 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2231 /* 2232 * We only pass events through for sta vap's in RUN+ state; 2233 * may be too restrictive but for now this saves all the 2234 * handlers duplicating these checks. 2235 */ 2236 if (vap->iv_opmode == IEEE80211_M_STA && 2237 vap->iv_state >= IEEE80211_S_RUN && 2238 vap->iv_bmiss != NULL) 2239 vap->iv_bmiss(vap); 2240 } 2241 IEEE80211_UNLOCK(ic); 2242 } 2243 2244 static void 2245 beacon_swmiss(void *arg, int npending) 2246 { 2247 struct ieee80211vap *vap = arg; 2248 struct ieee80211com *ic = vap->iv_ic; 2249 2250 IEEE80211_LOCK(ic); 2251 if (vap->iv_state >= IEEE80211_S_RUN) { 2252 /* XXX Call multiple times if npending > zero? */ 2253 vap->iv_bmiss(vap); 2254 } 2255 IEEE80211_UNLOCK(ic); 2256 } 2257 2258 /* 2259 * Software beacon miss handling. Check if any beacons 2260 * were received in the last period. If not post a 2261 * beacon miss; otherwise reset the counter. 2262 */ 2263 void 2264 ieee80211_swbmiss(void *arg) 2265 { 2266 struct ieee80211vap *vap = arg; 2267 struct ieee80211com *ic = vap->iv_ic; 2268 2269 IEEE80211_LOCK_ASSERT(ic); 2270 2271 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2272 ("wrong state %d", vap->iv_state)); 2273 2274 if (ic->ic_flags & IEEE80211_F_SCAN) { 2275 /* 2276 * If scanning just ignore and reset state. If we get a 2277 * bmiss after coming out of scan because we haven't had 2278 * time to receive a beacon then we should probe the AP 2279 * before posting a real bmiss (unless iv_bmiss_max has 2280 * been artifiically lowered). A cleaner solution might 2281 * be to disable the timer on scan start/end but to handle 2282 * case of multiple sta vap's we'd need to disable the 2283 * timers of all affected vap's. 2284 */ 2285 vap->iv_swbmiss_count = 0; 2286 } else if (vap->iv_swbmiss_count == 0) { 2287 if (vap->iv_bmiss != NULL) 2288 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2289 } else 2290 vap->iv_swbmiss_count = 0; 2291 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2292 ieee80211_swbmiss, vap); 2293 } 2294 2295 /* 2296 * Start an 802.11h channel switch. We record the parameters, 2297 * mark the operation pending, notify each vap through the 2298 * beacon update mechanism so it can update the beacon frame 2299 * contents, and then switch vap's to CSA state to block outbound 2300 * traffic. Devices that handle CSA directly can use the state 2301 * switch to do the right thing so long as they call 2302 * ieee80211_csa_completeswitch when it's time to complete the 2303 * channel change. Devices that depend on the net80211 layer can 2304 * use ieee80211_beacon_update to handle the countdown and the 2305 * channel switch. 2306 */ 2307 void 2308 ieee80211_csa_startswitch(struct ieee80211com *ic, 2309 struct ieee80211_channel *c, int mode, int count) 2310 { 2311 struct ieee80211vap *vap; 2312 2313 IEEE80211_LOCK_ASSERT(ic); 2314 2315 ic->ic_csa_newchan = c; 2316 ic->ic_csa_mode = mode; 2317 ic->ic_csa_count = count; 2318 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2319 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2320 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2321 vap->iv_opmode == IEEE80211_M_IBSS || 2322 vap->iv_opmode == IEEE80211_M_MBSS) 2323 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2324 /* switch to CSA state to block outbound traffic */ 2325 if (vap->iv_state == IEEE80211_S_RUN) 2326 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2327 } 2328 ieee80211_notify_csa(ic, c, mode, count); 2329 } 2330 2331 /* 2332 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2333 * This is called by both the completion and cancellation functions 2334 * so each VAP is placed back in the RUN state and can thus transmit. 2335 */ 2336 static void 2337 csa_completeswitch(struct ieee80211com *ic) 2338 { 2339 struct ieee80211vap *vap; 2340 2341 ic->ic_csa_newchan = NULL; 2342 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2343 2344 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2345 if (vap->iv_state == IEEE80211_S_CSA) 2346 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2347 } 2348 2349 /* 2350 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2351 * We clear state and move all vap's in CSA state to RUN state 2352 * so they can again transmit. 2353 * 2354 * Although this may not be completely correct, update the BSS channel 2355 * for each VAP to the newly configured channel. The setcurchan sets 2356 * the current operating channel for the interface (so the radio does 2357 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2358 * reported information via ioctl. 2359 */ 2360 void 2361 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2362 { 2363 struct ieee80211vap *vap; 2364 2365 IEEE80211_LOCK_ASSERT(ic); 2366 2367 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2368 2369 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2370 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2371 if (vap->iv_state == IEEE80211_S_CSA) 2372 vap->iv_bss->ni_chan = ic->ic_curchan; 2373 2374 csa_completeswitch(ic); 2375 } 2376 2377 /* 2378 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2379 * We clear state and move all vap's in CSA state to RUN state 2380 * so they can again transmit. 2381 */ 2382 void 2383 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2384 { 2385 IEEE80211_LOCK_ASSERT(ic); 2386 2387 csa_completeswitch(ic); 2388 } 2389 2390 /* 2391 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2392 * We clear state and move all vap's in CAC state to RUN state. 2393 */ 2394 void 2395 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2396 { 2397 struct ieee80211com *ic = vap0->iv_ic; 2398 struct ieee80211vap *vap; 2399 2400 IEEE80211_LOCK(ic); 2401 /* 2402 * Complete CAC state change for lead vap first; then 2403 * clock all the other vap's waiting. 2404 */ 2405 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2406 ("wrong state %d", vap0->iv_state)); 2407 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2408 2409 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2410 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2411 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2412 IEEE80211_UNLOCK(ic); 2413 } 2414 2415 /* 2416 * Force all vap's other than the specified vap to the INIT state 2417 * and mark them as waiting for a scan to complete. These vaps 2418 * will be brought up when the scan completes and the scanning vap 2419 * reaches RUN state by wakeupwaiting. 2420 */ 2421 static void 2422 markwaiting(struct ieee80211vap *vap0) 2423 { 2424 struct ieee80211com *ic = vap0->iv_ic; 2425 struct ieee80211vap *vap; 2426 2427 IEEE80211_LOCK_ASSERT(ic); 2428 2429 /* 2430 * A vap list entry can not disappear since we are running on the 2431 * taskqueue and a vap destroy will queue and drain another state 2432 * change task. 2433 */ 2434 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2435 if (vap == vap0) 2436 continue; 2437 if (vap->iv_state != IEEE80211_S_INIT) { 2438 /* NB: iv_newstate may drop the lock */ 2439 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2440 IEEE80211_LOCK_ASSERT(ic); 2441 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2442 } 2443 } 2444 } 2445 2446 /* 2447 * Wakeup all vap's waiting for a scan to complete. This is the 2448 * companion to markwaiting (above) and is used to coordinate 2449 * multiple vaps scanning. 2450 * This is called from the state taskqueue. 2451 */ 2452 static void 2453 wakeupwaiting(struct ieee80211vap *vap0) 2454 { 2455 struct ieee80211com *ic = vap0->iv_ic; 2456 struct ieee80211vap *vap; 2457 2458 IEEE80211_LOCK_ASSERT(ic); 2459 2460 /* 2461 * A vap list entry can not disappear since we are running on the 2462 * taskqueue and a vap destroy will queue and drain another state 2463 * change task. 2464 */ 2465 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2466 if (vap == vap0) 2467 continue; 2468 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2469 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2470 /* NB: sta's cannot go INIT->RUN */ 2471 /* NB: iv_newstate may drop the lock */ 2472 vap->iv_newstate(vap, 2473 vap->iv_opmode == IEEE80211_M_STA ? 2474 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2475 IEEE80211_LOCK_ASSERT(ic); 2476 } 2477 } 2478 } 2479 2480 /* 2481 * Handle post state change work common to all operating modes. 2482 */ 2483 static void 2484 ieee80211_newstate_cb(void *xvap, int npending) 2485 { 2486 struct ieee80211vap *vap = xvap; 2487 struct ieee80211com *ic = vap->iv_ic; 2488 enum ieee80211_state nstate, ostate; 2489 int arg, rc; 2490 2491 IEEE80211_LOCK(ic); 2492 nstate = vap->iv_nstate; 2493 arg = vap->iv_nstate_arg; 2494 2495 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2496 /* 2497 * We have been requested to drop back to the INIT before 2498 * proceeding to the new state. 2499 */ 2500 /* Deny any state changes while we are here. */ 2501 vap->iv_nstate = IEEE80211_S_INIT; 2502 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2503 "%s: %s -> %s arg %d\n", __func__, 2504 ieee80211_state_name[vap->iv_state], 2505 ieee80211_state_name[vap->iv_nstate], arg); 2506 vap->iv_newstate(vap, vap->iv_nstate, 0); 2507 IEEE80211_LOCK_ASSERT(ic); 2508 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2509 IEEE80211_FEXT_STATEWAIT); 2510 /* enqueue new state transition after cancel_scan() task */ 2511 ieee80211_new_state_locked(vap, nstate, arg); 2512 goto done; 2513 } 2514 2515 ostate = vap->iv_state; 2516 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2517 /* 2518 * SCAN was forced; e.g. on beacon miss. Force other running 2519 * vap's to INIT state and mark them as waiting for the scan to 2520 * complete. This insures they don't interfere with our 2521 * scanning. Since we are single threaded the vaps can not 2522 * transition again while we are executing. 2523 * 2524 * XXX not always right, assumes ap follows sta 2525 */ 2526 markwaiting(vap); 2527 } 2528 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2529 "%s: %s -> %s arg %d\n", __func__, 2530 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2531 2532 rc = vap->iv_newstate(vap, nstate, arg); 2533 IEEE80211_LOCK_ASSERT(ic); 2534 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2535 if (rc != 0) { 2536 /* State transition failed */ 2537 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2538 KASSERT(nstate != IEEE80211_S_INIT, 2539 ("INIT state change failed")); 2540 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2541 "%s: %s returned error %d\n", __func__, 2542 ieee80211_state_name[nstate], rc); 2543 goto done; 2544 } 2545 2546 /* No actual transition, skip post processing */ 2547 if (ostate == nstate) 2548 goto done; 2549 2550 if (nstate == IEEE80211_S_RUN) { 2551 /* 2552 * OACTIVE may be set on the vap if the upper layer 2553 * tried to transmit (e.g. IPv6 NDP) before we reach 2554 * RUN state. Clear it and restart xmit. 2555 * 2556 * Note this can also happen as a result of SLEEP->RUN 2557 * (i.e. coming out of power save mode). 2558 */ 2559 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2560 2561 /* 2562 * XXX TODO Kick-start a VAP queue - this should be a method! 2563 */ 2564 2565 /* bring up any vaps waiting on us */ 2566 wakeupwaiting(vap); 2567 } else if (nstate == IEEE80211_S_INIT) { 2568 /* 2569 * Flush the scan cache if we did the last scan (XXX?) 2570 * and flush any frames on send queues from this vap. 2571 * Note the mgt q is used only for legacy drivers and 2572 * will go away shortly. 2573 */ 2574 ieee80211_scan_flush(vap); 2575 2576 /* 2577 * XXX TODO: ic/vap queue flush 2578 */ 2579 } 2580 done: 2581 IEEE80211_UNLOCK(ic); 2582 } 2583 2584 /* 2585 * Public interface for initiating a state machine change. 2586 * This routine single-threads the request and coordinates 2587 * the scheduling of multiple vaps for the purpose of selecting 2588 * an operating channel. Specifically the following scenarios 2589 * are handled: 2590 * o only one vap can be selecting a channel so on transition to 2591 * SCAN state if another vap is already scanning then 2592 * mark the caller for later processing and return without 2593 * doing anything (XXX? expectations by caller of synchronous operation) 2594 * o only one vap can be doing CAC of a channel so on transition to 2595 * CAC state if another vap is already scanning for radar then 2596 * mark the caller for later processing and return without 2597 * doing anything (XXX? expectations by caller of synchronous operation) 2598 * o if another vap is already running when a request is made 2599 * to SCAN then an operating channel has been chosen; bypass 2600 * the scan and just join the channel 2601 * 2602 * Note that the state change call is done through the iv_newstate 2603 * method pointer so any driver routine gets invoked. The driver 2604 * will normally call back into operating mode-specific 2605 * ieee80211_newstate routines (below) unless it needs to completely 2606 * bypass the state machine (e.g. because the firmware has it's 2607 * own idea how things should work). Bypassing the net80211 layer 2608 * is usually a mistake and indicates lack of proper integration 2609 * with the net80211 layer. 2610 */ 2611 int 2612 ieee80211_new_state_locked(struct ieee80211vap *vap, 2613 enum ieee80211_state nstate, int arg) 2614 { 2615 struct ieee80211com *ic = vap->iv_ic; 2616 struct ieee80211vap *vp; 2617 enum ieee80211_state ostate; 2618 int nrunning, nscanning; 2619 2620 IEEE80211_LOCK_ASSERT(ic); 2621 2622 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2623 if (vap->iv_nstate == IEEE80211_S_INIT || 2624 ((vap->iv_state == IEEE80211_S_INIT || 2625 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2626 vap->iv_nstate == IEEE80211_S_SCAN && 2627 nstate > IEEE80211_S_SCAN)) { 2628 /* 2629 * XXX The vap is being stopped/started, 2630 * do not allow any other state changes 2631 * until this is completed. 2632 */ 2633 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2634 "%s: %s -> %s (%s) transition discarded\n", 2635 __func__, 2636 ieee80211_state_name[vap->iv_state], 2637 ieee80211_state_name[nstate], 2638 ieee80211_state_name[vap->iv_nstate]); 2639 return -1; 2640 } else if (vap->iv_state != vap->iv_nstate) { 2641 #if 0 2642 /* Warn if the previous state hasn't completed. */ 2643 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2644 "%s: pending %s -> %s transition lost\n", __func__, 2645 ieee80211_state_name[vap->iv_state], 2646 ieee80211_state_name[vap->iv_nstate]); 2647 #else 2648 /* XXX temporarily enable to identify issues */ 2649 if_printf(vap->iv_ifp, 2650 "%s: pending %s -> %s transition lost\n", 2651 __func__, ieee80211_state_name[vap->iv_state], 2652 ieee80211_state_name[vap->iv_nstate]); 2653 #endif 2654 } 2655 } 2656 2657 nrunning = nscanning = 0; 2658 /* XXX can track this state instead of calculating */ 2659 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2660 if (vp != vap) { 2661 if (vp->iv_state >= IEEE80211_S_RUN) 2662 nrunning++; 2663 /* XXX doesn't handle bg scan */ 2664 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2665 else if (vp->iv_state > IEEE80211_S_INIT) 2666 nscanning++; 2667 } 2668 } 2669 ostate = vap->iv_state; 2670 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2671 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2672 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2673 nrunning, nscanning); 2674 switch (nstate) { 2675 case IEEE80211_S_SCAN: 2676 if (ostate == IEEE80211_S_INIT) { 2677 /* 2678 * INIT -> SCAN happens on initial bringup. 2679 */ 2680 KASSERT(!(nscanning && nrunning), 2681 ("%d scanning and %d running", nscanning, nrunning)); 2682 if (nscanning) { 2683 /* 2684 * Someone is scanning, defer our state 2685 * change until the work has completed. 2686 */ 2687 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2688 "%s: defer %s -> %s\n", 2689 __func__, ieee80211_state_name[ostate], 2690 ieee80211_state_name[nstate]); 2691 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2692 return 0; 2693 } 2694 if (nrunning) { 2695 /* 2696 * Someone is operating; just join the channel 2697 * they have chosen. 2698 */ 2699 /* XXX kill arg? */ 2700 /* XXX check each opmode, adhoc? */ 2701 if (vap->iv_opmode == IEEE80211_M_STA) 2702 nstate = IEEE80211_S_SCAN; 2703 else 2704 nstate = IEEE80211_S_RUN; 2705 #ifdef IEEE80211_DEBUG 2706 if (nstate != IEEE80211_S_SCAN) { 2707 IEEE80211_DPRINTF(vap, 2708 IEEE80211_MSG_STATE, 2709 "%s: override, now %s -> %s\n", 2710 __func__, 2711 ieee80211_state_name[ostate], 2712 ieee80211_state_name[nstate]); 2713 } 2714 #endif 2715 } 2716 } 2717 break; 2718 case IEEE80211_S_RUN: 2719 if (vap->iv_opmode == IEEE80211_M_WDS && 2720 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2721 nscanning) { 2722 /* 2723 * Legacy WDS with someone else scanning; don't 2724 * go online until that completes as we should 2725 * follow the other vap to the channel they choose. 2726 */ 2727 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2728 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2729 ieee80211_state_name[ostate], 2730 ieee80211_state_name[nstate]); 2731 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2732 return 0; 2733 } 2734 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2735 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2736 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2737 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2738 /* 2739 * This is a DFS channel, transition to CAC state 2740 * instead of RUN. This allows us to initiate 2741 * Channel Availability Check (CAC) as specified 2742 * by 11h/DFS. 2743 */ 2744 nstate = IEEE80211_S_CAC; 2745 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2746 "%s: override %s -> %s (DFS)\n", __func__, 2747 ieee80211_state_name[ostate], 2748 ieee80211_state_name[nstate]); 2749 } 2750 break; 2751 case IEEE80211_S_INIT: 2752 /* cancel any scan in progress */ 2753 ieee80211_cancel_scan(vap); 2754 if (ostate == IEEE80211_S_INIT ) { 2755 /* XXX don't believe this */ 2756 /* INIT -> INIT. nothing to do */ 2757 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2758 } 2759 /* fall thru... */ 2760 default: 2761 break; 2762 } 2763 /* defer the state change to a thread */ 2764 vap->iv_nstate = nstate; 2765 vap->iv_nstate_arg = arg; 2766 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2767 ieee80211_runtask(ic, &vap->iv_nstate_task); 2768 return EINPROGRESS; 2769 } 2770 2771 int 2772 ieee80211_new_state(struct ieee80211vap *vap, 2773 enum ieee80211_state nstate, int arg) 2774 { 2775 struct ieee80211com *ic = vap->iv_ic; 2776 int rc; 2777 2778 IEEE80211_LOCK(ic); 2779 rc = ieee80211_new_state_locked(vap, nstate, arg); 2780 IEEE80211_UNLOCK(ic); 2781 return rc; 2782 } 2783