xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 3fc9e2c36555140de248a0b4def91bbfa44d7c2c)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 /*
31  * IEEE 802.11 protocol support.
32  */
33 
34 #include "opt_inet.h"
35 #include "opt_wlan.h"
36 
37 #include <sys/param.h>
38 #include <sys/kernel.h>
39 #include <sys/systm.h>
40 
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 
44 #include <net/if.h>
45 #include <net/if_media.h>
46 #include <net/ethernet.h>		/* XXX for ether_sprintf */
47 
48 #include <net80211/ieee80211_var.h>
49 #include <net80211/ieee80211_adhoc.h>
50 #include <net80211/ieee80211_sta.h>
51 #include <net80211/ieee80211_hostap.h>
52 #include <net80211/ieee80211_wds.h>
53 #ifdef IEEE80211_SUPPORT_MESH
54 #include <net80211/ieee80211_mesh.h>
55 #endif
56 #include <net80211/ieee80211_monitor.h>
57 #include <net80211/ieee80211_input.h>
58 
59 /* XXX tunables */
60 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
61 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
62 
63 const char *ieee80211_mgt_subtype_name[] = {
64 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
65 	"probe_req",	"probe_resp",	"reserved#6",	"reserved#7",
66 	"beacon",	"atim",		"disassoc",	"auth",
67 	"deauth",	"action",	"action_noack",	"reserved#15"
68 };
69 const char *ieee80211_ctl_subtype_name[] = {
70 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
71 	"reserved#3",	"reserved#5",	"reserved#6",	"reserved#7",
72 	"reserved#8",	"reserved#9",	"ps_poll",	"rts",
73 	"cts",		"ack",		"cf_end",	"cf_end_ack"
74 };
75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
76 	"IBSS",		/* IEEE80211_M_IBSS */
77 	"STA",		/* IEEE80211_M_STA */
78 	"WDS",		/* IEEE80211_M_WDS */
79 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
80 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
81 	"MONITOR",	/* IEEE80211_M_MONITOR */
82 	"MBSS"		/* IEEE80211_M_MBSS */
83 };
84 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
85 	"INIT",		/* IEEE80211_S_INIT */
86 	"SCAN",		/* IEEE80211_S_SCAN */
87 	"AUTH",		/* IEEE80211_S_AUTH */
88 	"ASSOC",	/* IEEE80211_S_ASSOC */
89 	"CAC",		/* IEEE80211_S_CAC */
90 	"RUN",		/* IEEE80211_S_RUN */
91 	"CSA",		/* IEEE80211_S_CSA */
92 	"SLEEP",	/* IEEE80211_S_SLEEP */
93 };
94 const char *ieee80211_wme_acnames[] = {
95 	"WME_AC_BE",
96 	"WME_AC_BK",
97 	"WME_AC_VI",
98 	"WME_AC_VO",
99 	"WME_UPSD",
100 };
101 
102 static void beacon_miss(void *, int);
103 static void beacon_swmiss(void *, int);
104 static void parent_updown(void *, int);
105 static void update_mcast(void *, int);
106 static void update_promisc(void *, int);
107 static void update_channel(void *, int);
108 static void update_chw(void *, int);
109 static void ieee80211_newstate_cb(void *, int);
110 static int ieee80211_new_state_locked(struct ieee80211vap *,
111 	enum ieee80211_state, int);
112 
113 static int
114 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
115 	const struct ieee80211_bpf_params *params)
116 {
117 	struct ifnet *ifp = ni->ni_ic->ic_ifp;
118 
119 	if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n");
120 	m_freem(m);
121 	return ENETDOWN;
122 }
123 
124 void
125 ieee80211_proto_attach(struct ieee80211com *ic)
126 {
127 	struct ifnet *ifp = ic->ic_ifp;
128 
129 	/* override the 802.3 setting */
130 	ifp->if_hdrlen = ic->ic_headroom
131 		+ sizeof(struct ieee80211_qosframe_addr4)
132 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
133 		+ IEEE80211_WEP_EXTIVLEN;
134 	/* XXX no way to recalculate on ifdetach */
135 	if (ALIGN(ifp->if_hdrlen) > max_linkhdr) {
136 		/* XXX sanity check... */
137 		max_linkhdr = ALIGN(ifp->if_hdrlen);
138 		max_hdr = max_linkhdr + max_protohdr;
139 		max_datalen = MHLEN - max_hdr;
140 	}
141 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
142 
143 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp);
144 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
145 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
146 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
147 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
148 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
149 
150 	ic->ic_wme.wme_hipri_switch_hysteresis =
151 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
152 
153 	/* initialize management frame handlers */
154 	ic->ic_send_mgmt = ieee80211_send_mgmt;
155 	ic->ic_raw_xmit = null_raw_xmit;
156 
157 	ieee80211_adhoc_attach(ic);
158 	ieee80211_sta_attach(ic);
159 	ieee80211_wds_attach(ic);
160 	ieee80211_hostap_attach(ic);
161 #ifdef IEEE80211_SUPPORT_MESH
162 	ieee80211_mesh_attach(ic);
163 #endif
164 	ieee80211_monitor_attach(ic);
165 }
166 
167 void
168 ieee80211_proto_detach(struct ieee80211com *ic)
169 {
170 	ieee80211_monitor_detach(ic);
171 #ifdef IEEE80211_SUPPORT_MESH
172 	ieee80211_mesh_detach(ic);
173 #endif
174 	ieee80211_hostap_detach(ic);
175 	ieee80211_wds_detach(ic);
176 	ieee80211_adhoc_detach(ic);
177 	ieee80211_sta_detach(ic);
178 }
179 
180 static void
181 null_update_beacon(struct ieee80211vap *vap, int item)
182 {
183 }
184 
185 void
186 ieee80211_proto_vattach(struct ieee80211vap *vap)
187 {
188 	struct ieee80211com *ic = vap->iv_ic;
189 	struct ifnet *ifp = vap->iv_ifp;
190 	int i;
191 
192 	/* override the 802.3 setting */
193 	ifp->if_hdrlen = ic->ic_ifp->if_hdrlen;
194 
195 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
196 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
197 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
198 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
199 	callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE);
200 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
201 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
202 	/*
203 	 * Install default tx rate handling: no fixed rate, lowest
204 	 * supported rate for mgmt and multicast frames.  Default
205 	 * max retry count.  These settings can be changed by the
206 	 * driver and/or user applications.
207 	 */
208 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
209 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
210 
211 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
212 
213 		/*
214 		 * Setting the management rate to MCS 0 assumes that the
215 		 * BSS Basic rate set is empty and the BSS Basic MCS set
216 		 * is not.
217 		 *
218 		 * Since we're not checking this, default to the lowest
219 		 * defined rate for this mode.
220 		 *
221 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
222 		 * some MCS management traffic (eg BA response frames.)
223 		 *
224 		 * See also: 9.6.0 of the 802.11n-2009 specification.
225 		 */
226 #ifdef	NOTYET
227 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
228 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
229 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
230 		} else {
231 			vap->iv_txparms[i].mgmtrate =
232 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
233 			vap->iv_txparms[i].mcastrate =
234 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
235 		}
236 #endif
237 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
238 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
239 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
240 	}
241 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
242 
243 	vap->iv_update_beacon = null_update_beacon;
244 	vap->iv_deliver_data = ieee80211_deliver_data;
245 
246 	/* attach support for operating mode */
247 	ic->ic_vattach[vap->iv_opmode](vap);
248 }
249 
250 void
251 ieee80211_proto_vdetach(struct ieee80211vap *vap)
252 {
253 #define	FREEAPPIE(ie) do { \
254 	if (ie != NULL) \
255 		free(ie, M_80211_NODE_IE); \
256 } while (0)
257 	/*
258 	 * Detach operating mode module.
259 	 */
260 	if (vap->iv_opdetach != NULL)
261 		vap->iv_opdetach(vap);
262 	/*
263 	 * This should not be needed as we detach when reseting
264 	 * the state but be conservative here since the
265 	 * authenticator may do things like spawn kernel threads.
266 	 */
267 	if (vap->iv_auth->ia_detach != NULL)
268 		vap->iv_auth->ia_detach(vap);
269 	/*
270 	 * Detach any ACL'ator.
271 	 */
272 	if (vap->iv_acl != NULL)
273 		vap->iv_acl->iac_detach(vap);
274 
275 	FREEAPPIE(vap->iv_appie_beacon);
276 	FREEAPPIE(vap->iv_appie_probereq);
277 	FREEAPPIE(vap->iv_appie_proberesp);
278 	FREEAPPIE(vap->iv_appie_assocreq);
279 	FREEAPPIE(vap->iv_appie_assocresp);
280 	FREEAPPIE(vap->iv_appie_wpa);
281 #undef FREEAPPIE
282 }
283 
284 /*
285  * Simple-minded authenticator module support.
286  */
287 
288 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
289 /* XXX well-known names */
290 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
291 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
292 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
293 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
294 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
295 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
296 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
297 };
298 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
299 
300 static const struct ieee80211_authenticator auth_internal = {
301 	.ia_name		= "wlan_internal",
302 	.ia_attach		= NULL,
303 	.ia_detach		= NULL,
304 	.ia_node_join		= NULL,
305 	.ia_node_leave		= NULL,
306 };
307 
308 /*
309  * Setup internal authenticators once; they are never unregistered.
310  */
311 static void
312 ieee80211_auth_setup(void)
313 {
314 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
315 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
316 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
317 }
318 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
319 
320 const struct ieee80211_authenticator *
321 ieee80211_authenticator_get(int auth)
322 {
323 	if (auth >= IEEE80211_AUTH_MAX)
324 		return NULL;
325 	if (authenticators[auth] == NULL)
326 		ieee80211_load_module(auth_modnames[auth]);
327 	return authenticators[auth];
328 }
329 
330 void
331 ieee80211_authenticator_register(int type,
332 	const struct ieee80211_authenticator *auth)
333 {
334 	if (type >= IEEE80211_AUTH_MAX)
335 		return;
336 	authenticators[type] = auth;
337 }
338 
339 void
340 ieee80211_authenticator_unregister(int type)
341 {
342 
343 	if (type >= IEEE80211_AUTH_MAX)
344 		return;
345 	authenticators[type] = NULL;
346 }
347 
348 /*
349  * Very simple-minded ACL module support.
350  */
351 /* XXX just one for now */
352 static	const struct ieee80211_aclator *acl = NULL;
353 
354 void
355 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
356 {
357 	printf("wlan: %s acl policy registered\n", iac->iac_name);
358 	acl = iac;
359 }
360 
361 void
362 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
363 {
364 	if (acl == iac)
365 		acl = NULL;
366 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
367 }
368 
369 const struct ieee80211_aclator *
370 ieee80211_aclator_get(const char *name)
371 {
372 	if (acl == NULL)
373 		ieee80211_load_module("wlan_acl");
374 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
375 }
376 
377 void
378 ieee80211_print_essid(const uint8_t *essid, int len)
379 {
380 	const uint8_t *p;
381 	int i;
382 
383 	if (len > IEEE80211_NWID_LEN)
384 		len = IEEE80211_NWID_LEN;
385 	/* determine printable or not */
386 	for (i = 0, p = essid; i < len; i++, p++) {
387 		if (*p < ' ' || *p > 0x7e)
388 			break;
389 	}
390 	if (i == len) {
391 		printf("\"");
392 		for (i = 0, p = essid; i < len; i++, p++)
393 			printf("%c", *p);
394 		printf("\"");
395 	} else {
396 		printf("0x");
397 		for (i = 0, p = essid; i < len; i++, p++)
398 			printf("%02x", *p);
399 	}
400 }
401 
402 void
403 ieee80211_dump_pkt(struct ieee80211com *ic,
404 	const uint8_t *buf, int len, int rate, int rssi)
405 {
406 	const struct ieee80211_frame *wh;
407 	int i;
408 
409 	wh = (const struct ieee80211_frame *)buf;
410 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
411 	case IEEE80211_FC1_DIR_NODS:
412 		printf("NODS %s", ether_sprintf(wh->i_addr2));
413 		printf("->%s", ether_sprintf(wh->i_addr1));
414 		printf("(%s)", ether_sprintf(wh->i_addr3));
415 		break;
416 	case IEEE80211_FC1_DIR_TODS:
417 		printf("TODS %s", ether_sprintf(wh->i_addr2));
418 		printf("->%s", ether_sprintf(wh->i_addr3));
419 		printf("(%s)", ether_sprintf(wh->i_addr1));
420 		break;
421 	case IEEE80211_FC1_DIR_FROMDS:
422 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
423 		printf("->%s", ether_sprintf(wh->i_addr1));
424 		printf("(%s)", ether_sprintf(wh->i_addr2));
425 		break;
426 	case IEEE80211_FC1_DIR_DSTODS:
427 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
428 		printf("->%s", ether_sprintf(wh->i_addr3));
429 		printf("(%s", ether_sprintf(wh->i_addr2));
430 		printf("->%s)", ether_sprintf(wh->i_addr1));
431 		break;
432 	}
433 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
434 	case IEEE80211_FC0_TYPE_DATA:
435 		printf(" data");
436 		break;
437 	case IEEE80211_FC0_TYPE_MGT:
438 		printf(" %s", ieee80211_mgt_subtype_name[
439 		    (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK)
440 		    >> IEEE80211_FC0_SUBTYPE_SHIFT]);
441 		break;
442 	default:
443 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
444 		break;
445 	}
446 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
447 		const struct ieee80211_qosframe *qwh =
448 			(const struct ieee80211_qosframe *)buf;
449 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
450 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
451 	}
452 	if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
453 		int off;
454 
455 		off = ieee80211_anyhdrspace(ic, wh);
456 		printf(" WEP [IV %.02x %.02x %.02x",
457 			buf[off+0], buf[off+1], buf[off+2]);
458 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
459 			printf(" %.02x %.02x %.02x",
460 				buf[off+4], buf[off+5], buf[off+6]);
461 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
462 	}
463 	if (rate >= 0)
464 		printf(" %dM", rate / 2);
465 	if (rssi >= 0)
466 		printf(" +%d", rssi);
467 	printf("\n");
468 	if (len > 0) {
469 		for (i = 0; i < len; i++) {
470 			if ((i & 1) == 0)
471 				printf(" ");
472 			printf("%02x", buf[i]);
473 		}
474 		printf("\n");
475 	}
476 }
477 
478 static __inline int
479 findrix(const struct ieee80211_rateset *rs, int r)
480 {
481 	int i;
482 
483 	for (i = 0; i < rs->rs_nrates; i++)
484 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
485 			return i;
486 	return -1;
487 }
488 
489 int
490 ieee80211_fix_rate(struct ieee80211_node *ni,
491 	struct ieee80211_rateset *nrs, int flags)
492 {
493 #define	RV(v)	((v) & IEEE80211_RATE_VAL)
494 	struct ieee80211vap *vap = ni->ni_vap;
495 	struct ieee80211com *ic = ni->ni_ic;
496 	int i, j, rix, error;
497 	int okrate, badrate, fixedrate, ucastrate;
498 	const struct ieee80211_rateset *srs;
499 	uint8_t r;
500 
501 	error = 0;
502 	okrate = badrate = 0;
503 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
504 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
505 		/*
506 		 * Workaround awkwardness with fixed rate.  We are called
507 		 * to check both the legacy rate set and the HT rate set
508 		 * but we must apply any legacy fixed rate check only to the
509 		 * legacy rate set and vice versa.  We cannot tell what type
510 		 * of rate set we've been given (legacy or HT) but we can
511 		 * distinguish the fixed rate type (MCS have 0x80 set).
512 		 * So to deal with this the caller communicates whether to
513 		 * check MCS or legacy rate using the flags and we use the
514 		 * type of any fixed rate to avoid applying an MCS to a
515 		 * legacy rate and vice versa.
516 		 */
517 		if (ucastrate & 0x80) {
518 			if (flags & IEEE80211_F_DOFRATE)
519 				flags &= ~IEEE80211_F_DOFRATE;
520 		} else if ((ucastrate & 0x80) == 0) {
521 			if (flags & IEEE80211_F_DOFMCS)
522 				flags &= ~IEEE80211_F_DOFMCS;
523 		}
524 		/* NB: required to make MCS match below work */
525 		ucastrate &= IEEE80211_RATE_VAL;
526 	}
527 	fixedrate = IEEE80211_FIXED_RATE_NONE;
528 	/*
529 	 * XXX we are called to process both MCS and legacy rates;
530 	 * we must use the appropriate basic rate set or chaos will
531 	 * ensue; for now callers that want MCS must supply
532 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
533 	 * function so there are two variants, one for MCS and one
534 	 * for legacy rates.
535 	 */
536 	if (flags & IEEE80211_F_DOBRS)
537 		srs = (const struct ieee80211_rateset *)
538 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
539 	else
540 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
541 	for (i = 0; i < nrs->rs_nrates; ) {
542 		if (flags & IEEE80211_F_DOSORT) {
543 			/*
544 			 * Sort rates.
545 			 */
546 			for (j = i + 1; j < nrs->rs_nrates; j++) {
547 				if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) {
548 					r = nrs->rs_rates[i];
549 					nrs->rs_rates[i] = nrs->rs_rates[j];
550 					nrs->rs_rates[j] = r;
551 				}
552 			}
553 		}
554 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
555 		badrate = r;
556 		/*
557 		 * Check for fixed rate.
558 		 */
559 		if (r == ucastrate)
560 			fixedrate = r;
561 		/*
562 		 * Check against supported rates.
563 		 */
564 		rix = findrix(srs, r);
565 		if (flags & IEEE80211_F_DONEGO) {
566 			if (rix < 0) {
567 				/*
568 				 * A rate in the node's rate set is not
569 				 * supported.  If this is a basic rate and we
570 				 * are operating as a STA then this is an error.
571 				 * Otherwise we just discard/ignore the rate.
572 				 */
573 				if ((flags & IEEE80211_F_JOIN) &&
574 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
575 					error++;
576 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
577 				/*
578 				 * Overwrite with the supported rate
579 				 * value so any basic rate bit is set.
580 				 */
581 				nrs->rs_rates[i] = srs->rs_rates[rix];
582 			}
583 		}
584 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
585 			/*
586 			 * Delete unacceptable rates.
587 			 */
588 			nrs->rs_nrates--;
589 			for (j = i; j < nrs->rs_nrates; j++)
590 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
591 			nrs->rs_rates[j] = 0;
592 			continue;
593 		}
594 		if (rix >= 0)
595 			okrate = nrs->rs_rates[i];
596 		i++;
597 	}
598 	if (okrate == 0 || error != 0 ||
599 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
600 	     fixedrate != ucastrate)) {
601 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
602 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
603 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
604 		return badrate | IEEE80211_RATE_BASIC;
605 	} else
606 		return RV(okrate);
607 #undef RV
608 }
609 
610 /*
611  * Reset 11g-related state.
612  */
613 void
614 ieee80211_reset_erp(struct ieee80211com *ic)
615 {
616 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
617 	ic->ic_nonerpsta = 0;
618 	ic->ic_longslotsta = 0;
619 	/*
620 	 * Short slot time is enabled only when operating in 11g
621 	 * and not in an IBSS.  We must also honor whether or not
622 	 * the driver is capable of doing it.
623 	 */
624 	ieee80211_set_shortslottime(ic,
625 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
626 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
627 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
628 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
629 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
630 	/*
631 	 * Set short preamble and ERP barker-preamble flags.
632 	 */
633 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
634 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
635 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
636 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
637 	} else {
638 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
639 		ic->ic_flags |= IEEE80211_F_USEBARKER;
640 	}
641 }
642 
643 /*
644  * Set the short slot time state and notify the driver.
645  */
646 void
647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
648 {
649 	if (onoff)
650 		ic->ic_flags |= IEEE80211_F_SHSLOT;
651 	else
652 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
653 	/* notify driver */
654 	if (ic->ic_updateslot != NULL)
655 		ic->ic_updateslot(ic->ic_ifp);
656 }
657 
658 /*
659  * Check if the specified rate set supports ERP.
660  * NB: the rate set is assumed to be sorted.
661  */
662 int
663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
664 {
665 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
666 	int i, j;
667 
668 	if (rs->rs_nrates < nitems(rates))
669 		return 0;
670 	for (i = 0; i < nitems(rates); i++) {
671 		for (j = 0; j < rs->rs_nrates; j++) {
672 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
673 			if (rates[i] == r)
674 				goto next;
675 			if (r > rates[i])
676 				return 0;
677 		}
678 		return 0;
679 	next:
680 		;
681 	}
682 	return 1;
683 }
684 
685 /*
686  * Mark the basic rates for the rate table based on the
687  * operating mode.  For real 11g we mark all the 11b rates
688  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
689  * 11b rates.  There's also a pseudo 11a-mode used to mark only
690  * the basic OFDM rates.
691  */
692 static void
693 setbasicrates(struct ieee80211_rateset *rs,
694     enum ieee80211_phymode mode, int add)
695 {
696 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
697 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
698 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
699 					    /* NB: mixed b/g */
700 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
701 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
702 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
703 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
704 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
705 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
706 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
707 					    /* NB: mixed b/g */
708 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
709 	};
710 	int i, j;
711 
712 	for (i = 0; i < rs->rs_nrates; i++) {
713 		if (!add)
714 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
715 		for (j = 0; j < basic[mode].rs_nrates; j++)
716 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
717 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
718 				break;
719 			}
720 	}
721 }
722 
723 /*
724  * Set the basic rates in a rate set.
725  */
726 void
727 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
728     enum ieee80211_phymode mode)
729 {
730 	setbasicrates(rs, mode, 0);
731 }
732 
733 /*
734  * Add basic rates to a rate set.
735  */
736 void
737 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
738     enum ieee80211_phymode mode)
739 {
740 	setbasicrates(rs, mode, 1);
741 }
742 
743 /*
744  * WME protocol support.
745  *
746  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
747  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
748  * Draft 2.0 Test Plan (Appendix D).
749  *
750  * Static/Dynamic Turbo mode settings come from Atheros.
751  */
752 typedef struct phyParamType {
753 	uint8_t		aifsn;
754 	uint8_t		logcwmin;
755 	uint8_t		logcwmax;
756 	uint16_t	txopLimit;
757 	uint8_t 	acm;
758 } paramType;
759 
760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
761 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
762 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
763 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
764 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
765 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
766 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
767 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
768 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
769 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
770 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
771 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
772 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
773 };
774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
775 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
776 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
777 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
778 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
779 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
780 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
781 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
782 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
783 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
784 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
785 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
786 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
787 };
788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
789 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
790 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
791 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
792 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
793 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
794 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
795 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
796 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
797 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
798 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
799 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
800 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
801 };
802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
803 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
804 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
805 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
806 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
807 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
808 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
809 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
810 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
811 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
812 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
813 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
814 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
815 };
816 
817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
818 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
819 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
820 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
821 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
822 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
823 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
824 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
825 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
826 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
827 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
828 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
829 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
830 };
831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
832 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
833 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
834 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
835 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
836 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
837 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
838 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
839 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
840 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
841 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
842 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
843 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
844 };
845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
846 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
847 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
848 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
849 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
850 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
851 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
852 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
853 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
854 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
855 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
856 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
857 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
858 };
859 
860 static void
861 _setifsparams(struct wmeParams *wmep, const paramType *phy)
862 {
863 	wmep->wmep_aifsn = phy->aifsn;
864 	wmep->wmep_logcwmin = phy->logcwmin;
865 	wmep->wmep_logcwmax = phy->logcwmax;
866 	wmep->wmep_txopLimit = phy->txopLimit;
867 }
868 
869 static void
870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
871 	struct wmeParams *wmep, const paramType *phy)
872 {
873 	wmep->wmep_acm = phy->acm;
874 	_setifsparams(wmep, phy);
875 
876 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
877 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
878 	    ieee80211_wme_acnames[ac], type,
879 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
880 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
881 }
882 
883 static void
884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
885 {
886 	struct ieee80211com *ic = vap->iv_ic;
887 	struct ieee80211_wme_state *wme = &ic->ic_wme;
888 	const paramType *pPhyParam, *pBssPhyParam;
889 	struct wmeParams *wmep;
890 	enum ieee80211_phymode mode;
891 	int i;
892 
893 	IEEE80211_LOCK_ASSERT(ic);
894 
895 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
896 		return;
897 
898 	/*
899 	 * Clear the wme cap_info field so a qoscount from a previous
900 	 * vap doesn't confuse later code which only parses the beacon
901 	 * field and updates hardware when said field changes.
902 	 * Otherwise the hardware is programmed with defaults, not what
903 	 * the beacon actually announces.
904 	 */
905 	wme->wme_wmeChanParams.cap_info = 0;
906 
907 	/*
908 	 * Select mode; we can be called early in which case we
909 	 * always use auto mode.  We know we'll be called when
910 	 * entering the RUN state with bsschan setup properly
911 	 * so state will eventually get set correctly
912 	 */
913 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
914 		mode = ieee80211_chan2mode(ic->ic_bsschan);
915 	else
916 		mode = IEEE80211_MODE_AUTO;
917 	for (i = 0; i < WME_NUM_AC; i++) {
918 		switch (i) {
919 		case WME_AC_BK:
920 			pPhyParam = &phyParamForAC_BK[mode];
921 			pBssPhyParam = &phyParamForAC_BK[mode];
922 			break;
923 		case WME_AC_VI:
924 			pPhyParam = &phyParamForAC_VI[mode];
925 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
926 			break;
927 		case WME_AC_VO:
928 			pPhyParam = &phyParamForAC_VO[mode];
929 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
930 			break;
931 		case WME_AC_BE:
932 		default:
933 			pPhyParam = &phyParamForAC_BE[mode];
934 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
935 			break;
936 		}
937 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
938 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
939 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
940 		} else {
941 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
942 		}
943 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
944 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
945 	}
946 	/* NB: check ic_bss to avoid NULL deref on initial attach */
947 	if (vap->iv_bss != NULL) {
948 		/*
949 		 * Calculate agressive mode switching threshold based
950 		 * on beacon interval.  This doesn't need locking since
951 		 * we're only called before entering the RUN state at
952 		 * which point we start sending beacon frames.
953 		 */
954 		wme->wme_hipri_switch_thresh =
955 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
956 		wme->wme_flags &= ~WME_F_AGGRMODE;
957 		ieee80211_wme_updateparams(vap);
958 	}
959 }
960 
961 void
962 ieee80211_wme_initparams(struct ieee80211vap *vap)
963 {
964 	struct ieee80211com *ic = vap->iv_ic;
965 
966 	IEEE80211_LOCK(ic);
967 	ieee80211_wme_initparams_locked(vap);
968 	IEEE80211_UNLOCK(ic);
969 }
970 
971 /*
972  * Update WME parameters for ourself and the BSS.
973  */
974 void
975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
976 {
977 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
978 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
979 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
980 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
981 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
982 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
983 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
984 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
985 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
986 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
987 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
988 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
989 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
990 	};
991 	struct ieee80211com *ic = vap->iv_ic;
992 	struct ieee80211_wme_state *wme = &ic->ic_wme;
993 	const struct wmeParams *wmep;
994 	struct wmeParams *chanp, *bssp;
995 	enum ieee80211_phymode mode;
996 	int i;
997 	int do_aggrmode = 0;
998 
999        	/*
1000 	 * Set up the channel access parameters for the physical
1001 	 * device.  First populate the configured settings.
1002 	 */
1003 	for (i = 0; i < WME_NUM_AC; i++) {
1004 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1005 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1006 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1007 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1008 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1009 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1010 
1011 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1012 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1013 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1014 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1015 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1016 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1017 	}
1018 
1019 	/*
1020 	 * Select mode; we can be called early in which case we
1021 	 * always use auto mode.  We know we'll be called when
1022 	 * entering the RUN state with bsschan setup properly
1023 	 * so state will eventually get set correctly
1024 	 */
1025 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1026 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1027 	else
1028 		mode = IEEE80211_MODE_AUTO;
1029 
1030 	/*
1031 	 * This implements agressive mode as found in certain
1032 	 * vendors' AP's.  When there is significant high
1033 	 * priority (VI/VO) traffic in the BSS throttle back BE
1034 	 * traffic by using conservative parameters.  Otherwise
1035 	 * BE uses agressive params to optimize performance of
1036 	 * legacy/non-QoS traffic.
1037 	 */
1038 
1039 	/* Hostap? Only if aggressive mode is enabled */
1040         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1041 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1042 		do_aggrmode = 1;
1043 
1044 	/*
1045 	 * Station? Only if we're in a non-QoS BSS.
1046 	 */
1047 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1048 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1049 		do_aggrmode = 1;
1050 
1051 	/*
1052 	 * IBSS? Only if we we have WME enabled.
1053 	 */
1054 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1055 	    (vap->iv_flags & IEEE80211_F_WME))
1056 		do_aggrmode = 1;
1057 
1058 	/*
1059 	 * If WME is disabled on this VAP, default to aggressive mode
1060 	 * regardless of the configuration.
1061 	 */
1062 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1063 		do_aggrmode = 1;
1064 
1065 	/* XXX WDS? */
1066 
1067 	/* XXX MBSS? */
1068 
1069 	if (do_aggrmode) {
1070 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1071 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1072 
1073 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1074 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1075 		    aggrParam[mode].logcwmin;
1076 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1077 		    aggrParam[mode].logcwmax;
1078 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1079 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1080 			aggrParam[mode].txopLimit : 0;
1081 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1082 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1083 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1084 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1085 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1086 	}
1087 
1088 
1089 	/*
1090 	 * Change the contention window based on the number of associated
1091 	 * stations.  If the number of associated stations is 1 and
1092 	 * aggressive mode is enabled, lower the contention window even
1093 	 * further.
1094 	 */
1095 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1096 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1097 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1098 		    [IEEE80211_MODE_AUTO]	= 3,
1099 		    [IEEE80211_MODE_11A]	= 3,
1100 		    [IEEE80211_MODE_11B]	= 4,
1101 		    [IEEE80211_MODE_11G]	= 3,
1102 		    [IEEE80211_MODE_FH]		= 4,
1103 		    [IEEE80211_MODE_TURBO_A]	= 3,
1104 		    [IEEE80211_MODE_TURBO_G]	= 3,
1105 		    [IEEE80211_MODE_STURBO_A]	= 3,
1106 		    [IEEE80211_MODE_HALF]	= 3,
1107 		    [IEEE80211_MODE_QUARTER]	= 3,
1108 		    [IEEE80211_MODE_11NA]	= 3,
1109 		    [IEEE80211_MODE_11NG]	= 3,
1110 		};
1111 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1112 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1113 
1114 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1115 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1116 		    "update %s (chan+bss) logcwmin %u\n",
1117 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1118 	}
1119 
1120 	/*
1121 	 * Arrange for the beacon update.
1122 	 *
1123 	 * XXX what about MBSS, WDS?
1124 	 */
1125 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1126 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1127 		/*
1128 		 * Arrange for a beacon update and bump the parameter
1129 		 * set number so associated stations load the new values.
1130 		 */
1131 		wme->wme_bssChanParams.cap_info =
1132 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1133 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1134 	}
1135 
1136 	wme->wme_update(ic);
1137 
1138 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1139 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1140 	    vap->iv_opmode == IEEE80211_M_STA ?
1141 		wme->wme_wmeChanParams.cap_info :
1142 		wme->wme_bssChanParams.cap_info);
1143 }
1144 
1145 void
1146 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1147 {
1148 	struct ieee80211com *ic = vap->iv_ic;
1149 
1150 	if (ic->ic_caps & IEEE80211_C_WME) {
1151 		IEEE80211_LOCK(ic);
1152 		ieee80211_wme_updateparams_locked(vap);
1153 		IEEE80211_UNLOCK(ic);
1154 	}
1155 }
1156 
1157 static void
1158 parent_updown(void *arg, int npending)
1159 {
1160 	struct ifnet *parent = arg;
1161 
1162 	parent->if_ioctl(parent, SIOCSIFFLAGS, NULL);
1163 }
1164 
1165 static void
1166 update_mcast(void *arg, int npending)
1167 {
1168 	struct ieee80211com *ic = arg;
1169 	struct ifnet *parent = ic->ic_ifp;
1170 
1171 	ic->ic_update_mcast(parent);
1172 }
1173 
1174 static void
1175 update_promisc(void *arg, int npending)
1176 {
1177 	struct ieee80211com *ic = arg;
1178 	struct ifnet *parent = ic->ic_ifp;
1179 
1180 	ic->ic_update_promisc(parent);
1181 }
1182 
1183 static void
1184 update_channel(void *arg, int npending)
1185 {
1186 	struct ieee80211com *ic = arg;
1187 
1188 	ic->ic_set_channel(ic);
1189 	ieee80211_radiotap_chan_change(ic);
1190 }
1191 
1192 static void
1193 update_chw(void *arg, int npending)
1194 {
1195 	struct ieee80211com *ic = arg;
1196 
1197 	/*
1198 	 * XXX should we defer the channel width _config_ update until now?
1199 	 */
1200 	ic->ic_update_chw(ic);
1201 }
1202 
1203 /*
1204  * Block until the parent is in a known state.  This is
1205  * used after any operations that dispatch a task (e.g.
1206  * to auto-configure the parent device up/down).
1207  */
1208 void
1209 ieee80211_waitfor_parent(struct ieee80211com *ic)
1210 {
1211 	taskqueue_block(ic->ic_tq);
1212 	ieee80211_draintask(ic, &ic->ic_parent_task);
1213 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1214 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1215 	ieee80211_draintask(ic, &ic->ic_chan_task);
1216 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1217 	ieee80211_draintask(ic, &ic->ic_chw_task);
1218 	taskqueue_unblock(ic->ic_tq);
1219 }
1220 
1221 /*
1222  * Start a vap running.  If this is the first vap to be
1223  * set running on the underlying device then we
1224  * automatically bring the device up.
1225  */
1226 void
1227 ieee80211_start_locked(struct ieee80211vap *vap)
1228 {
1229 	struct ifnet *ifp = vap->iv_ifp;
1230 	struct ieee80211com *ic = vap->iv_ic;
1231 	struct ifnet *parent = ic->ic_ifp;
1232 
1233 	IEEE80211_LOCK_ASSERT(ic);
1234 
1235 	IEEE80211_DPRINTF(vap,
1236 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1237 		"start running, %d vaps running\n", ic->ic_nrunning);
1238 
1239 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1240 		/*
1241 		 * Mark us running.  Note that it's ok to do this first;
1242 		 * if we need to bring the parent device up we defer that
1243 		 * to avoid dropping the com lock.  We expect the device
1244 		 * to respond to being marked up by calling back into us
1245 		 * through ieee80211_start_all at which point we'll come
1246 		 * back in here and complete the work.
1247 		 */
1248 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1249 		/*
1250 		 * We are not running; if this we are the first vap
1251 		 * to be brought up auto-up the parent if necessary.
1252 		 */
1253 		if (ic->ic_nrunning++ == 0 &&
1254 		    (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1255 			IEEE80211_DPRINTF(vap,
1256 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1257 			    "%s: up parent %s\n", __func__, parent->if_xname);
1258 			parent->if_flags |= IFF_UP;
1259 			ieee80211_runtask(ic, &ic->ic_parent_task);
1260 			return;
1261 		}
1262 	}
1263 	/*
1264 	 * If the parent is up and running, then kick the
1265 	 * 802.11 state machine as appropriate.
1266 	 */
1267 	if ((parent->if_drv_flags & IFF_DRV_RUNNING) &&
1268 	    vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1269 		if (vap->iv_opmode == IEEE80211_M_STA) {
1270 #if 0
1271 			/* XXX bypasses scan too easily; disable for now */
1272 			/*
1273 			 * Try to be intelligent about clocking the state
1274 			 * machine.  If we're currently in RUN state then
1275 			 * we should be able to apply any new state/parameters
1276 			 * simply by re-associating.  Otherwise we need to
1277 			 * re-scan to select an appropriate ap.
1278 			 */
1279 			if (vap->iv_state >= IEEE80211_S_RUN)
1280 				ieee80211_new_state_locked(vap,
1281 				    IEEE80211_S_ASSOC, 1);
1282 			else
1283 #endif
1284 				ieee80211_new_state_locked(vap,
1285 				    IEEE80211_S_SCAN, 0);
1286 		} else {
1287 			/*
1288 			 * For monitor+wds mode there's nothing to do but
1289 			 * start running.  Otherwise if this is the first
1290 			 * vap to be brought up, start a scan which may be
1291 			 * preempted if the station is locked to a particular
1292 			 * channel.
1293 			 */
1294 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1295 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1296 			    vap->iv_opmode == IEEE80211_M_WDS)
1297 				ieee80211_new_state_locked(vap,
1298 				    IEEE80211_S_RUN, -1);
1299 			else
1300 				ieee80211_new_state_locked(vap,
1301 				    IEEE80211_S_SCAN, 0);
1302 		}
1303 	}
1304 }
1305 
1306 /*
1307  * Start a single vap.
1308  */
1309 void
1310 ieee80211_init(void *arg)
1311 {
1312 	struct ieee80211vap *vap = arg;
1313 
1314 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1315 	    "%s\n", __func__);
1316 
1317 	IEEE80211_LOCK(vap->iv_ic);
1318 	ieee80211_start_locked(vap);
1319 	IEEE80211_UNLOCK(vap->iv_ic);
1320 }
1321 
1322 /*
1323  * Start all runnable vap's on a device.
1324  */
1325 void
1326 ieee80211_start_all(struct ieee80211com *ic)
1327 {
1328 	struct ieee80211vap *vap;
1329 
1330 	IEEE80211_LOCK(ic);
1331 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1332 		struct ifnet *ifp = vap->iv_ifp;
1333 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1334 			ieee80211_start_locked(vap);
1335 	}
1336 	IEEE80211_UNLOCK(ic);
1337 }
1338 
1339 /*
1340  * Stop a vap.  We force it down using the state machine
1341  * then mark it's ifnet not running.  If this is the last
1342  * vap running on the underlying device then we close it
1343  * too to insure it will be properly initialized when the
1344  * next vap is brought up.
1345  */
1346 void
1347 ieee80211_stop_locked(struct ieee80211vap *vap)
1348 {
1349 	struct ieee80211com *ic = vap->iv_ic;
1350 	struct ifnet *ifp = vap->iv_ifp;
1351 	struct ifnet *parent = ic->ic_ifp;
1352 
1353 	IEEE80211_LOCK_ASSERT(ic);
1354 
1355 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1356 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1357 
1358 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1359 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1360 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1361 		if (--ic->ic_nrunning == 0 &&
1362 		    (parent->if_drv_flags & IFF_DRV_RUNNING)) {
1363 			IEEE80211_DPRINTF(vap,
1364 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1365 			    "down parent %s\n", parent->if_xname);
1366 			parent->if_flags &= ~IFF_UP;
1367 			ieee80211_runtask(ic, &ic->ic_parent_task);
1368 		}
1369 	}
1370 }
1371 
1372 void
1373 ieee80211_stop(struct ieee80211vap *vap)
1374 {
1375 	struct ieee80211com *ic = vap->iv_ic;
1376 
1377 	IEEE80211_LOCK(ic);
1378 	ieee80211_stop_locked(vap);
1379 	IEEE80211_UNLOCK(ic);
1380 }
1381 
1382 /*
1383  * Stop all vap's running on a device.
1384  */
1385 void
1386 ieee80211_stop_all(struct ieee80211com *ic)
1387 {
1388 	struct ieee80211vap *vap;
1389 
1390 	IEEE80211_LOCK(ic);
1391 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1392 		struct ifnet *ifp = vap->iv_ifp;
1393 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1394 			ieee80211_stop_locked(vap);
1395 	}
1396 	IEEE80211_UNLOCK(ic);
1397 
1398 	ieee80211_waitfor_parent(ic);
1399 }
1400 
1401 /*
1402  * Stop all vap's running on a device and arrange
1403  * for those that were running to be resumed.
1404  */
1405 void
1406 ieee80211_suspend_all(struct ieee80211com *ic)
1407 {
1408 	struct ieee80211vap *vap;
1409 
1410 	IEEE80211_LOCK(ic);
1411 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1412 		struct ifnet *ifp = vap->iv_ifp;
1413 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1414 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1415 			ieee80211_stop_locked(vap);
1416 		}
1417 	}
1418 	IEEE80211_UNLOCK(ic);
1419 
1420 	ieee80211_waitfor_parent(ic);
1421 }
1422 
1423 /*
1424  * Start all vap's marked for resume.
1425  */
1426 void
1427 ieee80211_resume_all(struct ieee80211com *ic)
1428 {
1429 	struct ieee80211vap *vap;
1430 
1431 	IEEE80211_LOCK(ic);
1432 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1433 		struct ifnet *ifp = vap->iv_ifp;
1434 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1435 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1436 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1437 			ieee80211_start_locked(vap);
1438 		}
1439 	}
1440 	IEEE80211_UNLOCK(ic);
1441 }
1442 
1443 void
1444 ieee80211_beacon_miss(struct ieee80211com *ic)
1445 {
1446 	IEEE80211_LOCK(ic);
1447 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1448 		/* Process in a taskq, the handler may reenter the driver */
1449 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1450 	}
1451 	IEEE80211_UNLOCK(ic);
1452 }
1453 
1454 static void
1455 beacon_miss(void *arg, int npending)
1456 {
1457 	struct ieee80211com *ic = arg;
1458 	struct ieee80211vap *vap;
1459 
1460 	IEEE80211_LOCK(ic);
1461 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1462 		/*
1463 		 * We only pass events through for sta vap's in RUN state;
1464 		 * may be too restrictive but for now this saves all the
1465 		 * handlers duplicating these checks.
1466 		 */
1467 		if (vap->iv_opmode == IEEE80211_M_STA &&
1468 		    vap->iv_state >= IEEE80211_S_RUN &&
1469 		    vap->iv_bmiss != NULL)
1470 			vap->iv_bmiss(vap);
1471 	}
1472 	IEEE80211_UNLOCK(ic);
1473 }
1474 
1475 static void
1476 beacon_swmiss(void *arg, int npending)
1477 {
1478 	struct ieee80211vap *vap = arg;
1479 	struct ieee80211com *ic = vap->iv_ic;
1480 
1481 	IEEE80211_LOCK(ic);
1482 	if (vap->iv_state == IEEE80211_S_RUN) {
1483 		/* XXX Call multiple times if npending > zero? */
1484 		vap->iv_bmiss(vap);
1485 	}
1486 	IEEE80211_UNLOCK(ic);
1487 }
1488 
1489 /*
1490  * Software beacon miss handling.  Check if any beacons
1491  * were received in the last period.  If not post a
1492  * beacon miss; otherwise reset the counter.
1493  */
1494 void
1495 ieee80211_swbmiss(void *arg)
1496 {
1497 	struct ieee80211vap *vap = arg;
1498 	struct ieee80211com *ic = vap->iv_ic;
1499 
1500 	IEEE80211_LOCK_ASSERT(ic);
1501 
1502 	/* XXX sleep state? */
1503 	KASSERT(vap->iv_state == IEEE80211_S_RUN,
1504 	    ("wrong state %d", vap->iv_state));
1505 
1506 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1507 		/*
1508 		 * If scanning just ignore and reset state.  If we get a
1509 		 * bmiss after coming out of scan because we haven't had
1510 		 * time to receive a beacon then we should probe the AP
1511 		 * before posting a real bmiss (unless iv_bmiss_max has
1512 		 * been artifiically lowered).  A cleaner solution might
1513 		 * be to disable the timer on scan start/end but to handle
1514 		 * case of multiple sta vap's we'd need to disable the
1515 		 * timers of all affected vap's.
1516 		 */
1517 		vap->iv_swbmiss_count = 0;
1518 	} else if (vap->iv_swbmiss_count == 0) {
1519 		if (vap->iv_bmiss != NULL)
1520 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1521 	} else
1522 		vap->iv_swbmiss_count = 0;
1523 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1524 		ieee80211_swbmiss, vap);
1525 }
1526 
1527 /*
1528  * Start an 802.11h channel switch.  We record the parameters,
1529  * mark the operation pending, notify each vap through the
1530  * beacon update mechanism so it can update the beacon frame
1531  * contents, and then switch vap's to CSA state to block outbound
1532  * traffic.  Devices that handle CSA directly can use the state
1533  * switch to do the right thing so long as they call
1534  * ieee80211_csa_completeswitch when it's time to complete the
1535  * channel change.  Devices that depend on the net80211 layer can
1536  * use ieee80211_beacon_update to handle the countdown and the
1537  * channel switch.
1538  */
1539 void
1540 ieee80211_csa_startswitch(struct ieee80211com *ic,
1541 	struct ieee80211_channel *c, int mode, int count)
1542 {
1543 	struct ieee80211vap *vap;
1544 
1545 	IEEE80211_LOCK_ASSERT(ic);
1546 
1547 	ic->ic_csa_newchan = c;
1548 	ic->ic_csa_mode = mode;
1549 	ic->ic_csa_count = count;
1550 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1551 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1552 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1553 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1554 		    vap->iv_opmode == IEEE80211_M_MBSS)
1555 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1556 		/* switch to CSA state to block outbound traffic */
1557 		if (vap->iv_state == IEEE80211_S_RUN)
1558 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1559 	}
1560 	ieee80211_notify_csa(ic, c, mode, count);
1561 }
1562 
1563 /*
1564  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1565  * This is called by both the completion and cancellation functions
1566  * so each VAP is placed back in the RUN state and can thus transmit.
1567  */
1568 static void
1569 csa_completeswitch(struct ieee80211com *ic)
1570 {
1571 	struct ieee80211vap *vap;
1572 
1573 	ic->ic_csa_newchan = NULL;
1574 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1575 
1576 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1577 		if (vap->iv_state == IEEE80211_S_CSA)
1578 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1579 }
1580 
1581 /*
1582  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1583  * We clear state and move all vap's in CSA state to RUN state
1584  * so they can again transmit.
1585  *
1586  * Although this may not be completely correct, update the BSS channel
1587  * for each VAP to the newly configured channel. The setcurchan sets
1588  * the current operating channel for the interface (so the radio does
1589  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1590  * reported information via ioctl.
1591  */
1592 void
1593 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1594 {
1595 	struct ieee80211vap *vap;
1596 
1597 	IEEE80211_LOCK_ASSERT(ic);
1598 
1599 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1600 
1601 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1602 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1603 		if (vap->iv_state == IEEE80211_S_CSA)
1604 			vap->iv_bss->ni_chan = ic->ic_curchan;
1605 
1606 	csa_completeswitch(ic);
1607 }
1608 
1609 /*
1610  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1611  * We clear state and move all vap's in CSA state to RUN state
1612  * so they can again transmit.
1613  */
1614 void
1615 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1616 {
1617 	IEEE80211_LOCK_ASSERT(ic);
1618 
1619 	csa_completeswitch(ic);
1620 }
1621 
1622 /*
1623  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1624  * We clear state and move all vap's in CAC state to RUN state.
1625  */
1626 void
1627 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1628 {
1629 	struct ieee80211com *ic = vap0->iv_ic;
1630 	struct ieee80211vap *vap;
1631 
1632 	IEEE80211_LOCK(ic);
1633 	/*
1634 	 * Complete CAC state change for lead vap first; then
1635 	 * clock all the other vap's waiting.
1636 	 */
1637 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1638 	    ("wrong state %d", vap0->iv_state));
1639 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1640 
1641 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1642 		if (vap->iv_state == IEEE80211_S_CAC)
1643 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1644 	IEEE80211_UNLOCK(ic);
1645 }
1646 
1647 /*
1648  * Force all vap's other than the specified vap to the INIT state
1649  * and mark them as waiting for a scan to complete.  These vaps
1650  * will be brought up when the scan completes and the scanning vap
1651  * reaches RUN state by wakeupwaiting.
1652  */
1653 static void
1654 markwaiting(struct ieee80211vap *vap0)
1655 {
1656 	struct ieee80211com *ic = vap0->iv_ic;
1657 	struct ieee80211vap *vap;
1658 
1659 	IEEE80211_LOCK_ASSERT(ic);
1660 
1661 	/*
1662 	 * A vap list entry can not disappear since we are running on the
1663 	 * taskqueue and a vap destroy will queue and drain another state
1664 	 * change task.
1665 	 */
1666 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1667 		if (vap == vap0)
1668 			continue;
1669 		if (vap->iv_state != IEEE80211_S_INIT) {
1670 			/* NB: iv_newstate may drop the lock */
1671 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1672 			IEEE80211_LOCK_ASSERT(ic);
1673 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1674 		}
1675 	}
1676 }
1677 
1678 /*
1679  * Wakeup all vap's waiting for a scan to complete.  This is the
1680  * companion to markwaiting (above) and is used to coordinate
1681  * multiple vaps scanning.
1682  * This is called from the state taskqueue.
1683  */
1684 static void
1685 wakeupwaiting(struct ieee80211vap *vap0)
1686 {
1687 	struct ieee80211com *ic = vap0->iv_ic;
1688 	struct ieee80211vap *vap;
1689 
1690 	IEEE80211_LOCK_ASSERT(ic);
1691 
1692 	/*
1693 	 * A vap list entry can not disappear since we are running on the
1694 	 * taskqueue and a vap destroy will queue and drain another state
1695 	 * change task.
1696 	 */
1697 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1698 		if (vap == vap0)
1699 			continue;
1700 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1701 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1702 			/* NB: sta's cannot go INIT->RUN */
1703 			/* NB: iv_newstate may drop the lock */
1704 			vap->iv_newstate(vap,
1705 			    vap->iv_opmode == IEEE80211_M_STA ?
1706 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1707 			IEEE80211_LOCK_ASSERT(ic);
1708 		}
1709 	}
1710 }
1711 
1712 /*
1713  * Handle post state change work common to all operating modes.
1714  */
1715 static void
1716 ieee80211_newstate_cb(void *xvap, int npending)
1717 {
1718 	struct ieee80211vap *vap = xvap;
1719 	struct ieee80211com *ic = vap->iv_ic;
1720 	enum ieee80211_state nstate, ostate;
1721 	int arg, rc;
1722 
1723 	IEEE80211_LOCK(ic);
1724 	nstate = vap->iv_nstate;
1725 	arg = vap->iv_nstate_arg;
1726 
1727 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1728 		/*
1729 		 * We have been requested to drop back to the INIT before
1730 		 * proceeding to the new state.
1731 		 */
1732 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1733 		    "%s: %s -> %s arg %d\n", __func__,
1734 		    ieee80211_state_name[vap->iv_state],
1735 		    ieee80211_state_name[IEEE80211_S_INIT], arg);
1736 		vap->iv_newstate(vap, IEEE80211_S_INIT, arg);
1737 		IEEE80211_LOCK_ASSERT(ic);
1738 		vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT;
1739 	}
1740 
1741 	ostate = vap->iv_state;
1742 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1743 		/*
1744 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1745 		 * vap's to INIT state and mark them as waiting for the scan to
1746 		 * complete.  This insures they don't interfere with our
1747 		 * scanning.  Since we are single threaded the vaps can not
1748 		 * transition again while we are executing.
1749 		 *
1750 		 * XXX not always right, assumes ap follows sta
1751 		 */
1752 		markwaiting(vap);
1753 	}
1754 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1755 	    "%s: %s -> %s arg %d\n", __func__,
1756 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1757 
1758 	rc = vap->iv_newstate(vap, nstate, arg);
1759 	IEEE80211_LOCK_ASSERT(ic);
1760 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1761 	if (rc != 0) {
1762 		/* State transition failed */
1763 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1764 		KASSERT(nstate != IEEE80211_S_INIT,
1765 		    ("INIT state change failed"));
1766 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1767 		    "%s: %s returned error %d\n", __func__,
1768 		    ieee80211_state_name[nstate], rc);
1769 		goto done;
1770 	}
1771 
1772 	/* No actual transition, skip post processing */
1773 	if (ostate == nstate)
1774 		goto done;
1775 
1776 	if (nstate == IEEE80211_S_RUN) {
1777 		/*
1778 		 * OACTIVE may be set on the vap if the upper layer
1779 		 * tried to transmit (e.g. IPv6 NDP) before we reach
1780 		 * RUN state.  Clear it and restart xmit.
1781 		 *
1782 		 * Note this can also happen as a result of SLEEP->RUN
1783 		 * (i.e. coming out of power save mode).
1784 		 */
1785 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
1786 
1787 		/*
1788 		 * XXX TODO Kick-start a VAP queue - this should be a method!
1789 		 */
1790 
1791 		/* bring up any vaps waiting on us */
1792 		wakeupwaiting(vap);
1793 	} else if (nstate == IEEE80211_S_INIT) {
1794 		/*
1795 		 * Flush the scan cache if we did the last scan (XXX?)
1796 		 * and flush any frames on send queues from this vap.
1797 		 * Note the mgt q is used only for legacy drivers and
1798 		 * will go away shortly.
1799 		 */
1800 		ieee80211_scan_flush(vap);
1801 
1802 		/*
1803 		 * XXX TODO: ic/vap queue flush
1804 		 */
1805 	}
1806 done:
1807 	IEEE80211_UNLOCK(ic);
1808 }
1809 
1810 /*
1811  * Public interface for initiating a state machine change.
1812  * This routine single-threads the request and coordinates
1813  * the scheduling of multiple vaps for the purpose of selecting
1814  * an operating channel.  Specifically the following scenarios
1815  * are handled:
1816  * o only one vap can be selecting a channel so on transition to
1817  *   SCAN state if another vap is already scanning then
1818  *   mark the caller for later processing and return without
1819  *   doing anything (XXX? expectations by caller of synchronous operation)
1820  * o only one vap can be doing CAC of a channel so on transition to
1821  *   CAC state if another vap is already scanning for radar then
1822  *   mark the caller for later processing and return without
1823  *   doing anything (XXX? expectations by caller of synchronous operation)
1824  * o if another vap is already running when a request is made
1825  *   to SCAN then an operating channel has been chosen; bypass
1826  *   the scan and just join the channel
1827  *
1828  * Note that the state change call is done through the iv_newstate
1829  * method pointer so any driver routine gets invoked.  The driver
1830  * will normally call back into operating mode-specific
1831  * ieee80211_newstate routines (below) unless it needs to completely
1832  * bypass the state machine (e.g. because the firmware has it's
1833  * own idea how things should work).  Bypassing the net80211 layer
1834  * is usually a mistake and indicates lack of proper integration
1835  * with the net80211 layer.
1836  */
1837 static int
1838 ieee80211_new_state_locked(struct ieee80211vap *vap,
1839 	enum ieee80211_state nstate, int arg)
1840 {
1841 	struct ieee80211com *ic = vap->iv_ic;
1842 	struct ieee80211vap *vp;
1843 	enum ieee80211_state ostate;
1844 	int nrunning, nscanning;
1845 
1846 	IEEE80211_LOCK_ASSERT(ic);
1847 
1848 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
1849 		if (vap->iv_nstate == IEEE80211_S_INIT) {
1850 			/*
1851 			 * XXX The vap is being stopped, do no allow any other
1852 			 * state changes until this is completed.
1853 			 */
1854 			return -1;
1855 		} else if (vap->iv_state != vap->iv_nstate) {
1856 #if 0
1857 			/* Warn if the previous state hasn't completed. */
1858 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1859 			    "%s: pending %s -> %s transition lost\n", __func__,
1860 			    ieee80211_state_name[vap->iv_state],
1861 			    ieee80211_state_name[vap->iv_nstate]);
1862 #else
1863 			/* XXX temporarily enable to identify issues */
1864 			if_printf(vap->iv_ifp,
1865 			    "%s: pending %s -> %s transition lost\n",
1866 			    __func__, ieee80211_state_name[vap->iv_state],
1867 			    ieee80211_state_name[vap->iv_nstate]);
1868 #endif
1869 		}
1870 	}
1871 
1872 	nrunning = nscanning = 0;
1873 	/* XXX can track this state instead of calculating */
1874 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
1875 		if (vp != vap) {
1876 			if (vp->iv_state >= IEEE80211_S_RUN)
1877 				nrunning++;
1878 			/* XXX doesn't handle bg scan */
1879 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
1880 			else if (vp->iv_state > IEEE80211_S_INIT)
1881 				nscanning++;
1882 		}
1883 	}
1884 	ostate = vap->iv_state;
1885 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1886 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
1887 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
1888 	    nrunning, nscanning);
1889 	switch (nstate) {
1890 	case IEEE80211_S_SCAN:
1891 		if (ostate == IEEE80211_S_INIT) {
1892 			/*
1893 			 * INIT -> SCAN happens on initial bringup.
1894 			 */
1895 			KASSERT(!(nscanning && nrunning),
1896 			    ("%d scanning and %d running", nscanning, nrunning));
1897 			if (nscanning) {
1898 				/*
1899 				 * Someone is scanning, defer our state
1900 				 * change until the work has completed.
1901 				 */
1902 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1903 				    "%s: defer %s -> %s\n",
1904 				    __func__, ieee80211_state_name[ostate],
1905 				    ieee80211_state_name[nstate]);
1906 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1907 				return 0;
1908 			}
1909 			if (nrunning) {
1910 				/*
1911 				 * Someone is operating; just join the channel
1912 				 * they have chosen.
1913 				 */
1914 				/* XXX kill arg? */
1915 				/* XXX check each opmode, adhoc? */
1916 				if (vap->iv_opmode == IEEE80211_M_STA)
1917 					nstate = IEEE80211_S_SCAN;
1918 				else
1919 					nstate = IEEE80211_S_RUN;
1920 #ifdef IEEE80211_DEBUG
1921 				if (nstate != IEEE80211_S_SCAN) {
1922 					IEEE80211_DPRINTF(vap,
1923 					    IEEE80211_MSG_STATE,
1924 					    "%s: override, now %s -> %s\n",
1925 					    __func__,
1926 					    ieee80211_state_name[ostate],
1927 					    ieee80211_state_name[nstate]);
1928 				}
1929 #endif
1930 			}
1931 		}
1932 		break;
1933 	case IEEE80211_S_RUN:
1934 		if (vap->iv_opmode == IEEE80211_M_WDS &&
1935 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
1936 		    nscanning) {
1937 			/*
1938 			 * Legacy WDS with someone else scanning; don't
1939 			 * go online until that completes as we should
1940 			 * follow the other vap to the channel they choose.
1941 			 */
1942 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1943 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
1944 			     ieee80211_state_name[ostate],
1945 			     ieee80211_state_name[nstate]);
1946 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1947 			return 0;
1948 		}
1949 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1950 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
1951 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
1952 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
1953 			/*
1954 			 * This is a DFS channel, transition to CAC state
1955 			 * instead of RUN.  This allows us to initiate
1956 			 * Channel Availability Check (CAC) as specified
1957 			 * by 11h/DFS.
1958 			 */
1959 			nstate = IEEE80211_S_CAC;
1960 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1961 			     "%s: override %s -> %s (DFS)\n", __func__,
1962 			     ieee80211_state_name[ostate],
1963 			     ieee80211_state_name[nstate]);
1964 		}
1965 		break;
1966 	case IEEE80211_S_INIT:
1967 		/* cancel any scan in progress */
1968 		ieee80211_cancel_scan(vap);
1969 		if (ostate == IEEE80211_S_INIT ) {
1970 			/* XXX don't believe this */
1971 			/* INIT -> INIT. nothing to do */
1972 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1973 		}
1974 		/* fall thru... */
1975 	default:
1976 		break;
1977 	}
1978 	/* defer the state change to a thread */
1979 	vap->iv_nstate = nstate;
1980 	vap->iv_nstate_arg = arg;
1981 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
1982 	ieee80211_runtask(ic, &vap->iv_nstate_task);
1983 	return EINPROGRESS;
1984 }
1985 
1986 int
1987 ieee80211_new_state(struct ieee80211vap *vap,
1988 	enum ieee80211_state nstate, int arg)
1989 {
1990 	struct ieee80211com *ic = vap->iv_ic;
1991 	int rc;
1992 
1993 	IEEE80211_LOCK(ic);
1994 	rc = ieee80211_new_state_locked(vap, nstate, arg);
1995 	IEEE80211_UNLOCK(ic);
1996 	return rc;
1997 }
1998