1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 /* 31 * IEEE 802.11 protocol support. 32 */ 33 34 #include "opt_inet.h" 35 #include "opt_wlan.h" 36 37 #include <sys/param.h> 38 #include <sys/kernel.h> 39 #include <sys/systm.h> 40 41 #include <sys/socket.h> 42 #include <sys/sockio.h> 43 44 #include <net/if.h> 45 #include <net/if_media.h> 46 #include <net/ethernet.h> /* XXX for ether_sprintf */ 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_adhoc.h> 50 #include <net80211/ieee80211_sta.h> 51 #include <net80211/ieee80211_hostap.h> 52 #include <net80211/ieee80211_wds.h> 53 #ifdef IEEE80211_SUPPORT_MESH 54 #include <net80211/ieee80211_mesh.h> 55 #endif 56 #include <net80211/ieee80211_monitor.h> 57 #include <net80211/ieee80211_input.h> 58 59 /* XXX tunables */ 60 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 61 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 62 63 const char *ieee80211_mgt_subtype_name[] = { 64 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 65 "probe_req", "probe_resp", "reserved#6", "reserved#7", 66 "beacon", "atim", "disassoc", "auth", 67 "deauth", "action", "action_noack", "reserved#15" 68 }; 69 const char *ieee80211_ctl_subtype_name[] = { 70 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 71 "reserved#3", "reserved#5", "reserved#6", "reserved#7", 72 "reserved#8", "reserved#9", "ps_poll", "rts", 73 "cts", "ack", "cf_end", "cf_end_ack" 74 }; 75 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 76 "IBSS", /* IEEE80211_M_IBSS */ 77 "STA", /* IEEE80211_M_STA */ 78 "WDS", /* IEEE80211_M_WDS */ 79 "AHDEMO", /* IEEE80211_M_AHDEMO */ 80 "HOSTAP", /* IEEE80211_M_HOSTAP */ 81 "MONITOR", /* IEEE80211_M_MONITOR */ 82 "MBSS" /* IEEE80211_M_MBSS */ 83 }; 84 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 85 "INIT", /* IEEE80211_S_INIT */ 86 "SCAN", /* IEEE80211_S_SCAN */ 87 "AUTH", /* IEEE80211_S_AUTH */ 88 "ASSOC", /* IEEE80211_S_ASSOC */ 89 "CAC", /* IEEE80211_S_CAC */ 90 "RUN", /* IEEE80211_S_RUN */ 91 "CSA", /* IEEE80211_S_CSA */ 92 "SLEEP", /* IEEE80211_S_SLEEP */ 93 }; 94 const char *ieee80211_wme_acnames[] = { 95 "WME_AC_BE", 96 "WME_AC_BK", 97 "WME_AC_VI", 98 "WME_AC_VO", 99 "WME_UPSD", 100 }; 101 102 static void beacon_miss(void *, int); 103 static void beacon_swmiss(void *, int); 104 static void parent_updown(void *, int); 105 static void update_mcast(void *, int); 106 static void update_promisc(void *, int); 107 static void update_channel(void *, int); 108 static void update_chw(void *, int); 109 static void ieee80211_newstate_cb(void *, int); 110 static int ieee80211_new_state_locked(struct ieee80211vap *, 111 enum ieee80211_state, int); 112 113 static int 114 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 115 const struct ieee80211_bpf_params *params) 116 { 117 struct ifnet *ifp = ni->ni_ic->ic_ifp; 118 119 if_printf(ifp, "missing ic_raw_xmit callback, drop frame\n"); 120 m_freem(m); 121 return ENETDOWN; 122 } 123 124 void 125 ieee80211_proto_attach(struct ieee80211com *ic) 126 { 127 struct ifnet *ifp = ic->ic_ifp; 128 129 /* override the 802.3 setting */ 130 ifp->if_hdrlen = ic->ic_headroom 131 + sizeof(struct ieee80211_qosframe_addr4) 132 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 133 + IEEE80211_WEP_EXTIVLEN; 134 /* XXX no way to recalculate on ifdetach */ 135 if (ALIGN(ifp->if_hdrlen) > max_linkhdr) { 136 /* XXX sanity check... */ 137 max_linkhdr = ALIGN(ifp->if_hdrlen); 138 max_hdr = max_linkhdr + max_protohdr; 139 max_datalen = MHLEN - max_hdr; 140 } 141 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 142 143 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ifp); 144 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 145 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 146 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 147 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 148 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 149 150 ic->ic_wme.wme_hipri_switch_hysteresis = 151 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 152 153 /* initialize management frame handlers */ 154 ic->ic_send_mgmt = ieee80211_send_mgmt; 155 ic->ic_raw_xmit = null_raw_xmit; 156 157 ieee80211_adhoc_attach(ic); 158 ieee80211_sta_attach(ic); 159 ieee80211_wds_attach(ic); 160 ieee80211_hostap_attach(ic); 161 #ifdef IEEE80211_SUPPORT_MESH 162 ieee80211_mesh_attach(ic); 163 #endif 164 ieee80211_monitor_attach(ic); 165 } 166 167 void 168 ieee80211_proto_detach(struct ieee80211com *ic) 169 { 170 ieee80211_monitor_detach(ic); 171 #ifdef IEEE80211_SUPPORT_MESH 172 ieee80211_mesh_detach(ic); 173 #endif 174 ieee80211_hostap_detach(ic); 175 ieee80211_wds_detach(ic); 176 ieee80211_adhoc_detach(ic); 177 ieee80211_sta_detach(ic); 178 } 179 180 static void 181 null_update_beacon(struct ieee80211vap *vap, int item) 182 { 183 } 184 185 void 186 ieee80211_proto_vattach(struct ieee80211vap *vap) 187 { 188 struct ieee80211com *ic = vap->iv_ic; 189 struct ifnet *ifp = vap->iv_ifp; 190 int i; 191 192 /* override the 802.3 setting */ 193 ifp->if_hdrlen = ic->ic_ifp->if_hdrlen; 194 195 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 196 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 197 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 198 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 199 callout_init(&vap->iv_mgtsend, CALLOUT_MPSAFE); 200 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 201 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 202 /* 203 * Install default tx rate handling: no fixed rate, lowest 204 * supported rate for mgmt and multicast frames. Default 205 * max retry count. These settings can be changed by the 206 * driver and/or user applications. 207 */ 208 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 209 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 210 211 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 212 213 /* 214 * Setting the management rate to MCS 0 assumes that the 215 * BSS Basic rate set is empty and the BSS Basic MCS set 216 * is not. 217 * 218 * Since we're not checking this, default to the lowest 219 * defined rate for this mode. 220 * 221 * At least one 11n AP (DLINK DIR-825) is reported to drop 222 * some MCS management traffic (eg BA response frames.) 223 * 224 * See also: 9.6.0 of the 802.11n-2009 specification. 225 */ 226 #ifdef NOTYET 227 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 228 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 229 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 230 } else { 231 vap->iv_txparms[i].mgmtrate = 232 rs->rs_rates[0] & IEEE80211_RATE_VAL; 233 vap->iv_txparms[i].mcastrate = 234 rs->rs_rates[0] & IEEE80211_RATE_VAL; 235 } 236 #endif 237 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 238 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 239 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 240 } 241 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 242 243 vap->iv_update_beacon = null_update_beacon; 244 vap->iv_deliver_data = ieee80211_deliver_data; 245 246 /* attach support for operating mode */ 247 ic->ic_vattach[vap->iv_opmode](vap); 248 } 249 250 void 251 ieee80211_proto_vdetach(struct ieee80211vap *vap) 252 { 253 #define FREEAPPIE(ie) do { \ 254 if (ie != NULL) \ 255 free(ie, M_80211_NODE_IE); \ 256 } while (0) 257 /* 258 * Detach operating mode module. 259 */ 260 if (vap->iv_opdetach != NULL) 261 vap->iv_opdetach(vap); 262 /* 263 * This should not be needed as we detach when reseting 264 * the state but be conservative here since the 265 * authenticator may do things like spawn kernel threads. 266 */ 267 if (vap->iv_auth->ia_detach != NULL) 268 vap->iv_auth->ia_detach(vap); 269 /* 270 * Detach any ACL'ator. 271 */ 272 if (vap->iv_acl != NULL) 273 vap->iv_acl->iac_detach(vap); 274 275 FREEAPPIE(vap->iv_appie_beacon); 276 FREEAPPIE(vap->iv_appie_probereq); 277 FREEAPPIE(vap->iv_appie_proberesp); 278 FREEAPPIE(vap->iv_appie_assocreq); 279 FREEAPPIE(vap->iv_appie_assocresp); 280 FREEAPPIE(vap->iv_appie_wpa); 281 #undef FREEAPPIE 282 } 283 284 /* 285 * Simple-minded authenticator module support. 286 */ 287 288 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 289 /* XXX well-known names */ 290 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 291 "wlan_internal", /* IEEE80211_AUTH_NONE */ 292 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 293 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 294 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 295 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 296 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 297 }; 298 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 299 300 static const struct ieee80211_authenticator auth_internal = { 301 .ia_name = "wlan_internal", 302 .ia_attach = NULL, 303 .ia_detach = NULL, 304 .ia_node_join = NULL, 305 .ia_node_leave = NULL, 306 }; 307 308 /* 309 * Setup internal authenticators once; they are never unregistered. 310 */ 311 static void 312 ieee80211_auth_setup(void) 313 { 314 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 315 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 316 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 317 } 318 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 319 320 const struct ieee80211_authenticator * 321 ieee80211_authenticator_get(int auth) 322 { 323 if (auth >= IEEE80211_AUTH_MAX) 324 return NULL; 325 if (authenticators[auth] == NULL) 326 ieee80211_load_module(auth_modnames[auth]); 327 return authenticators[auth]; 328 } 329 330 void 331 ieee80211_authenticator_register(int type, 332 const struct ieee80211_authenticator *auth) 333 { 334 if (type >= IEEE80211_AUTH_MAX) 335 return; 336 authenticators[type] = auth; 337 } 338 339 void 340 ieee80211_authenticator_unregister(int type) 341 { 342 343 if (type >= IEEE80211_AUTH_MAX) 344 return; 345 authenticators[type] = NULL; 346 } 347 348 /* 349 * Very simple-minded ACL module support. 350 */ 351 /* XXX just one for now */ 352 static const struct ieee80211_aclator *acl = NULL; 353 354 void 355 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 356 { 357 printf("wlan: %s acl policy registered\n", iac->iac_name); 358 acl = iac; 359 } 360 361 void 362 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 363 { 364 if (acl == iac) 365 acl = NULL; 366 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 367 } 368 369 const struct ieee80211_aclator * 370 ieee80211_aclator_get(const char *name) 371 { 372 if (acl == NULL) 373 ieee80211_load_module("wlan_acl"); 374 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 375 } 376 377 void 378 ieee80211_print_essid(const uint8_t *essid, int len) 379 { 380 const uint8_t *p; 381 int i; 382 383 if (len > IEEE80211_NWID_LEN) 384 len = IEEE80211_NWID_LEN; 385 /* determine printable or not */ 386 for (i = 0, p = essid; i < len; i++, p++) { 387 if (*p < ' ' || *p > 0x7e) 388 break; 389 } 390 if (i == len) { 391 printf("\""); 392 for (i = 0, p = essid; i < len; i++, p++) 393 printf("%c", *p); 394 printf("\""); 395 } else { 396 printf("0x"); 397 for (i = 0, p = essid; i < len; i++, p++) 398 printf("%02x", *p); 399 } 400 } 401 402 void 403 ieee80211_dump_pkt(struct ieee80211com *ic, 404 const uint8_t *buf, int len, int rate, int rssi) 405 { 406 const struct ieee80211_frame *wh; 407 int i; 408 409 wh = (const struct ieee80211_frame *)buf; 410 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 411 case IEEE80211_FC1_DIR_NODS: 412 printf("NODS %s", ether_sprintf(wh->i_addr2)); 413 printf("->%s", ether_sprintf(wh->i_addr1)); 414 printf("(%s)", ether_sprintf(wh->i_addr3)); 415 break; 416 case IEEE80211_FC1_DIR_TODS: 417 printf("TODS %s", ether_sprintf(wh->i_addr2)); 418 printf("->%s", ether_sprintf(wh->i_addr3)); 419 printf("(%s)", ether_sprintf(wh->i_addr1)); 420 break; 421 case IEEE80211_FC1_DIR_FROMDS: 422 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 423 printf("->%s", ether_sprintf(wh->i_addr1)); 424 printf("(%s)", ether_sprintf(wh->i_addr2)); 425 break; 426 case IEEE80211_FC1_DIR_DSTODS: 427 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 428 printf("->%s", ether_sprintf(wh->i_addr3)); 429 printf("(%s", ether_sprintf(wh->i_addr2)); 430 printf("->%s)", ether_sprintf(wh->i_addr1)); 431 break; 432 } 433 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 434 case IEEE80211_FC0_TYPE_DATA: 435 printf(" data"); 436 break; 437 case IEEE80211_FC0_TYPE_MGT: 438 printf(" %s", ieee80211_mgt_subtype_name[ 439 (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) 440 >> IEEE80211_FC0_SUBTYPE_SHIFT]); 441 break; 442 default: 443 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 444 break; 445 } 446 if (IEEE80211_QOS_HAS_SEQ(wh)) { 447 const struct ieee80211_qosframe *qwh = 448 (const struct ieee80211_qosframe *)buf; 449 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 450 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 451 } 452 if (wh->i_fc[1] & IEEE80211_FC1_WEP) { 453 int off; 454 455 off = ieee80211_anyhdrspace(ic, wh); 456 printf(" WEP [IV %.02x %.02x %.02x", 457 buf[off+0], buf[off+1], buf[off+2]); 458 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 459 printf(" %.02x %.02x %.02x", 460 buf[off+4], buf[off+5], buf[off+6]); 461 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 462 } 463 if (rate >= 0) 464 printf(" %dM", rate / 2); 465 if (rssi >= 0) 466 printf(" +%d", rssi); 467 printf("\n"); 468 if (len > 0) { 469 for (i = 0; i < len; i++) { 470 if ((i & 1) == 0) 471 printf(" "); 472 printf("%02x", buf[i]); 473 } 474 printf("\n"); 475 } 476 } 477 478 static __inline int 479 findrix(const struct ieee80211_rateset *rs, int r) 480 { 481 int i; 482 483 for (i = 0; i < rs->rs_nrates; i++) 484 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 485 return i; 486 return -1; 487 } 488 489 int 490 ieee80211_fix_rate(struct ieee80211_node *ni, 491 struct ieee80211_rateset *nrs, int flags) 492 { 493 #define RV(v) ((v) & IEEE80211_RATE_VAL) 494 struct ieee80211vap *vap = ni->ni_vap; 495 struct ieee80211com *ic = ni->ni_ic; 496 int i, j, rix, error; 497 int okrate, badrate, fixedrate, ucastrate; 498 const struct ieee80211_rateset *srs; 499 uint8_t r; 500 501 error = 0; 502 okrate = badrate = 0; 503 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 504 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 505 /* 506 * Workaround awkwardness with fixed rate. We are called 507 * to check both the legacy rate set and the HT rate set 508 * but we must apply any legacy fixed rate check only to the 509 * legacy rate set and vice versa. We cannot tell what type 510 * of rate set we've been given (legacy or HT) but we can 511 * distinguish the fixed rate type (MCS have 0x80 set). 512 * So to deal with this the caller communicates whether to 513 * check MCS or legacy rate using the flags and we use the 514 * type of any fixed rate to avoid applying an MCS to a 515 * legacy rate and vice versa. 516 */ 517 if (ucastrate & 0x80) { 518 if (flags & IEEE80211_F_DOFRATE) 519 flags &= ~IEEE80211_F_DOFRATE; 520 } else if ((ucastrate & 0x80) == 0) { 521 if (flags & IEEE80211_F_DOFMCS) 522 flags &= ~IEEE80211_F_DOFMCS; 523 } 524 /* NB: required to make MCS match below work */ 525 ucastrate &= IEEE80211_RATE_VAL; 526 } 527 fixedrate = IEEE80211_FIXED_RATE_NONE; 528 /* 529 * XXX we are called to process both MCS and legacy rates; 530 * we must use the appropriate basic rate set or chaos will 531 * ensue; for now callers that want MCS must supply 532 * IEEE80211_F_DOBRS; at some point we'll need to split this 533 * function so there are two variants, one for MCS and one 534 * for legacy rates. 535 */ 536 if (flags & IEEE80211_F_DOBRS) 537 srs = (const struct ieee80211_rateset *) 538 ieee80211_get_suphtrates(ic, ni->ni_chan); 539 else 540 srs = ieee80211_get_suprates(ic, ni->ni_chan); 541 for (i = 0; i < nrs->rs_nrates; ) { 542 if (flags & IEEE80211_F_DOSORT) { 543 /* 544 * Sort rates. 545 */ 546 for (j = i + 1; j < nrs->rs_nrates; j++) { 547 if (RV(nrs->rs_rates[i]) > RV(nrs->rs_rates[j])) { 548 r = nrs->rs_rates[i]; 549 nrs->rs_rates[i] = nrs->rs_rates[j]; 550 nrs->rs_rates[j] = r; 551 } 552 } 553 } 554 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 555 badrate = r; 556 /* 557 * Check for fixed rate. 558 */ 559 if (r == ucastrate) 560 fixedrate = r; 561 /* 562 * Check against supported rates. 563 */ 564 rix = findrix(srs, r); 565 if (flags & IEEE80211_F_DONEGO) { 566 if (rix < 0) { 567 /* 568 * A rate in the node's rate set is not 569 * supported. If this is a basic rate and we 570 * are operating as a STA then this is an error. 571 * Otherwise we just discard/ignore the rate. 572 */ 573 if ((flags & IEEE80211_F_JOIN) && 574 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 575 error++; 576 } else if ((flags & IEEE80211_F_JOIN) == 0) { 577 /* 578 * Overwrite with the supported rate 579 * value so any basic rate bit is set. 580 */ 581 nrs->rs_rates[i] = srs->rs_rates[rix]; 582 } 583 } 584 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 585 /* 586 * Delete unacceptable rates. 587 */ 588 nrs->rs_nrates--; 589 for (j = i; j < nrs->rs_nrates; j++) 590 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 591 nrs->rs_rates[j] = 0; 592 continue; 593 } 594 if (rix >= 0) 595 okrate = nrs->rs_rates[i]; 596 i++; 597 } 598 if (okrate == 0 || error != 0 || 599 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 600 fixedrate != ucastrate)) { 601 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 602 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 603 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 604 return badrate | IEEE80211_RATE_BASIC; 605 } else 606 return RV(okrate); 607 #undef RV 608 } 609 610 /* 611 * Reset 11g-related state. 612 */ 613 void 614 ieee80211_reset_erp(struct ieee80211com *ic) 615 { 616 ic->ic_flags &= ~IEEE80211_F_USEPROT; 617 ic->ic_nonerpsta = 0; 618 ic->ic_longslotsta = 0; 619 /* 620 * Short slot time is enabled only when operating in 11g 621 * and not in an IBSS. We must also honor whether or not 622 * the driver is capable of doing it. 623 */ 624 ieee80211_set_shortslottime(ic, 625 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 626 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 627 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 628 ic->ic_opmode == IEEE80211_M_HOSTAP && 629 (ic->ic_caps & IEEE80211_C_SHSLOT))); 630 /* 631 * Set short preamble and ERP barker-preamble flags. 632 */ 633 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 634 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 635 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 636 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 637 } else { 638 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 639 ic->ic_flags |= IEEE80211_F_USEBARKER; 640 } 641 } 642 643 /* 644 * Set the short slot time state and notify the driver. 645 */ 646 void 647 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 648 { 649 if (onoff) 650 ic->ic_flags |= IEEE80211_F_SHSLOT; 651 else 652 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 653 /* notify driver */ 654 if (ic->ic_updateslot != NULL) 655 ic->ic_updateslot(ic->ic_ifp); 656 } 657 658 /* 659 * Check if the specified rate set supports ERP. 660 * NB: the rate set is assumed to be sorted. 661 */ 662 int 663 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 664 { 665 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 666 int i, j; 667 668 if (rs->rs_nrates < nitems(rates)) 669 return 0; 670 for (i = 0; i < nitems(rates); i++) { 671 for (j = 0; j < rs->rs_nrates; j++) { 672 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 673 if (rates[i] == r) 674 goto next; 675 if (r > rates[i]) 676 return 0; 677 } 678 return 0; 679 next: 680 ; 681 } 682 return 1; 683 } 684 685 /* 686 * Mark the basic rates for the rate table based on the 687 * operating mode. For real 11g we mark all the 11b rates 688 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 689 * 11b rates. There's also a pseudo 11a-mode used to mark only 690 * the basic OFDM rates. 691 */ 692 static void 693 setbasicrates(struct ieee80211_rateset *rs, 694 enum ieee80211_phymode mode, int add) 695 { 696 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 697 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 698 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 699 /* NB: mixed b/g */ 700 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 701 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 702 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 703 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 704 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 705 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 706 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 707 /* NB: mixed b/g */ 708 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 709 }; 710 int i, j; 711 712 for (i = 0; i < rs->rs_nrates; i++) { 713 if (!add) 714 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 715 for (j = 0; j < basic[mode].rs_nrates; j++) 716 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 717 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 718 break; 719 } 720 } 721 } 722 723 /* 724 * Set the basic rates in a rate set. 725 */ 726 void 727 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 728 enum ieee80211_phymode mode) 729 { 730 setbasicrates(rs, mode, 0); 731 } 732 733 /* 734 * Add basic rates to a rate set. 735 */ 736 void 737 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 738 enum ieee80211_phymode mode) 739 { 740 setbasicrates(rs, mode, 1); 741 } 742 743 /* 744 * WME protocol support. 745 * 746 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 747 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 748 * Draft 2.0 Test Plan (Appendix D). 749 * 750 * Static/Dynamic Turbo mode settings come from Atheros. 751 */ 752 typedef struct phyParamType { 753 uint8_t aifsn; 754 uint8_t logcwmin; 755 uint8_t logcwmax; 756 uint16_t txopLimit; 757 uint8_t acm; 758 } paramType; 759 760 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 761 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 762 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 763 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 764 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 765 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 766 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 767 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 768 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 769 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 770 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 771 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 772 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 773 }; 774 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 775 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 776 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 777 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 778 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 779 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 780 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 781 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 782 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 783 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 784 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 785 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 786 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 787 }; 788 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 789 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 790 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 791 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 792 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 793 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 794 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 795 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 796 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 797 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 798 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 799 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 800 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 801 }; 802 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 803 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 804 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 805 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 806 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 807 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 808 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 809 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 810 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 811 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 812 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 813 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 814 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 815 }; 816 817 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 818 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 819 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 820 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 821 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 822 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 823 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 824 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 825 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 826 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 827 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 828 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 829 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 830 }; 831 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 832 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 833 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 834 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 835 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 836 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 837 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 838 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 839 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 840 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 841 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 842 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 843 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 844 }; 845 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 846 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 847 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 848 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 849 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 850 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 851 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 852 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 853 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 854 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 855 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 856 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 857 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 858 }; 859 860 static void 861 _setifsparams(struct wmeParams *wmep, const paramType *phy) 862 { 863 wmep->wmep_aifsn = phy->aifsn; 864 wmep->wmep_logcwmin = phy->logcwmin; 865 wmep->wmep_logcwmax = phy->logcwmax; 866 wmep->wmep_txopLimit = phy->txopLimit; 867 } 868 869 static void 870 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 871 struct wmeParams *wmep, const paramType *phy) 872 { 873 wmep->wmep_acm = phy->acm; 874 _setifsparams(wmep, phy); 875 876 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 877 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 878 ieee80211_wme_acnames[ac], type, 879 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 880 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 881 } 882 883 static void 884 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 885 { 886 struct ieee80211com *ic = vap->iv_ic; 887 struct ieee80211_wme_state *wme = &ic->ic_wme; 888 const paramType *pPhyParam, *pBssPhyParam; 889 struct wmeParams *wmep; 890 enum ieee80211_phymode mode; 891 int i; 892 893 IEEE80211_LOCK_ASSERT(ic); 894 895 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 896 return; 897 898 /* 899 * Clear the wme cap_info field so a qoscount from a previous 900 * vap doesn't confuse later code which only parses the beacon 901 * field and updates hardware when said field changes. 902 * Otherwise the hardware is programmed with defaults, not what 903 * the beacon actually announces. 904 */ 905 wme->wme_wmeChanParams.cap_info = 0; 906 907 /* 908 * Select mode; we can be called early in which case we 909 * always use auto mode. We know we'll be called when 910 * entering the RUN state with bsschan setup properly 911 * so state will eventually get set correctly 912 */ 913 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 914 mode = ieee80211_chan2mode(ic->ic_bsschan); 915 else 916 mode = IEEE80211_MODE_AUTO; 917 for (i = 0; i < WME_NUM_AC; i++) { 918 switch (i) { 919 case WME_AC_BK: 920 pPhyParam = &phyParamForAC_BK[mode]; 921 pBssPhyParam = &phyParamForAC_BK[mode]; 922 break; 923 case WME_AC_VI: 924 pPhyParam = &phyParamForAC_VI[mode]; 925 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 926 break; 927 case WME_AC_VO: 928 pPhyParam = &phyParamForAC_VO[mode]; 929 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 930 break; 931 case WME_AC_BE: 932 default: 933 pPhyParam = &phyParamForAC_BE[mode]; 934 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 935 break; 936 } 937 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 938 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 939 setwmeparams(vap, "chan", i, wmep, pPhyParam); 940 } else { 941 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 942 } 943 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 944 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 945 } 946 /* NB: check ic_bss to avoid NULL deref on initial attach */ 947 if (vap->iv_bss != NULL) { 948 /* 949 * Calculate agressive mode switching threshold based 950 * on beacon interval. This doesn't need locking since 951 * we're only called before entering the RUN state at 952 * which point we start sending beacon frames. 953 */ 954 wme->wme_hipri_switch_thresh = 955 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 956 wme->wme_flags &= ~WME_F_AGGRMODE; 957 ieee80211_wme_updateparams(vap); 958 } 959 } 960 961 void 962 ieee80211_wme_initparams(struct ieee80211vap *vap) 963 { 964 struct ieee80211com *ic = vap->iv_ic; 965 966 IEEE80211_LOCK(ic); 967 ieee80211_wme_initparams_locked(vap); 968 IEEE80211_UNLOCK(ic); 969 } 970 971 /* 972 * Update WME parameters for ourself and the BSS. 973 */ 974 void 975 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 976 { 977 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 978 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 979 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 980 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 981 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 982 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 983 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 984 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 985 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 986 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 987 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 988 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 989 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 990 }; 991 struct ieee80211com *ic = vap->iv_ic; 992 struct ieee80211_wme_state *wme = &ic->ic_wme; 993 const struct wmeParams *wmep; 994 struct wmeParams *chanp, *bssp; 995 enum ieee80211_phymode mode; 996 int i; 997 int do_aggrmode = 0; 998 999 /* 1000 * Set up the channel access parameters for the physical 1001 * device. First populate the configured settings. 1002 */ 1003 for (i = 0; i < WME_NUM_AC; i++) { 1004 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1005 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1006 chanp->wmep_aifsn = wmep->wmep_aifsn; 1007 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1008 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1009 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1010 1011 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1012 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1013 chanp->wmep_aifsn = wmep->wmep_aifsn; 1014 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1015 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1016 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1017 } 1018 1019 /* 1020 * Select mode; we can be called early in which case we 1021 * always use auto mode. We know we'll be called when 1022 * entering the RUN state with bsschan setup properly 1023 * so state will eventually get set correctly 1024 */ 1025 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1026 mode = ieee80211_chan2mode(ic->ic_bsschan); 1027 else 1028 mode = IEEE80211_MODE_AUTO; 1029 1030 /* 1031 * This implements agressive mode as found in certain 1032 * vendors' AP's. When there is significant high 1033 * priority (VI/VO) traffic in the BSS throttle back BE 1034 * traffic by using conservative parameters. Otherwise 1035 * BE uses agressive params to optimize performance of 1036 * legacy/non-QoS traffic. 1037 */ 1038 1039 /* Hostap? Only if aggressive mode is enabled */ 1040 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1041 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1042 do_aggrmode = 1; 1043 1044 /* 1045 * Station? Only if we're in a non-QoS BSS. 1046 */ 1047 else if ((vap->iv_opmode == IEEE80211_M_STA && 1048 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1049 do_aggrmode = 1; 1050 1051 /* 1052 * IBSS? Only if we we have WME enabled. 1053 */ 1054 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1055 (vap->iv_flags & IEEE80211_F_WME)) 1056 do_aggrmode = 1; 1057 1058 /* 1059 * If WME is disabled on this VAP, default to aggressive mode 1060 * regardless of the configuration. 1061 */ 1062 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1063 do_aggrmode = 1; 1064 1065 /* XXX WDS? */ 1066 1067 /* XXX MBSS? */ 1068 1069 if (do_aggrmode) { 1070 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1071 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1072 1073 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1074 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1075 aggrParam[mode].logcwmin; 1076 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1077 aggrParam[mode].logcwmax; 1078 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1079 (vap->iv_flags & IEEE80211_F_BURST) ? 1080 aggrParam[mode].txopLimit : 0; 1081 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1082 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1083 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1084 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1085 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1086 } 1087 1088 1089 /* 1090 * Change the contention window based on the number of associated 1091 * stations. If the number of associated stations is 1 and 1092 * aggressive mode is enabled, lower the contention window even 1093 * further. 1094 */ 1095 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1096 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1097 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1098 [IEEE80211_MODE_AUTO] = 3, 1099 [IEEE80211_MODE_11A] = 3, 1100 [IEEE80211_MODE_11B] = 4, 1101 [IEEE80211_MODE_11G] = 3, 1102 [IEEE80211_MODE_FH] = 4, 1103 [IEEE80211_MODE_TURBO_A] = 3, 1104 [IEEE80211_MODE_TURBO_G] = 3, 1105 [IEEE80211_MODE_STURBO_A] = 3, 1106 [IEEE80211_MODE_HALF] = 3, 1107 [IEEE80211_MODE_QUARTER] = 3, 1108 [IEEE80211_MODE_11NA] = 3, 1109 [IEEE80211_MODE_11NG] = 3, 1110 }; 1111 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1112 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1113 1114 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1116 "update %s (chan+bss) logcwmin %u\n", 1117 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1118 } 1119 1120 /* 1121 * Arrange for the beacon update. 1122 * 1123 * XXX what about MBSS, WDS? 1124 */ 1125 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1126 || vap->iv_opmode == IEEE80211_M_IBSS) { 1127 /* 1128 * Arrange for a beacon update and bump the parameter 1129 * set number so associated stations load the new values. 1130 */ 1131 wme->wme_bssChanParams.cap_info = 1132 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1133 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1134 } 1135 1136 wme->wme_update(ic); 1137 1138 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1139 "%s: WME params updated, cap_info 0x%x\n", __func__, 1140 vap->iv_opmode == IEEE80211_M_STA ? 1141 wme->wme_wmeChanParams.cap_info : 1142 wme->wme_bssChanParams.cap_info); 1143 } 1144 1145 void 1146 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1147 { 1148 struct ieee80211com *ic = vap->iv_ic; 1149 1150 if (ic->ic_caps & IEEE80211_C_WME) { 1151 IEEE80211_LOCK(ic); 1152 ieee80211_wme_updateparams_locked(vap); 1153 IEEE80211_UNLOCK(ic); 1154 } 1155 } 1156 1157 static void 1158 parent_updown(void *arg, int npending) 1159 { 1160 struct ifnet *parent = arg; 1161 1162 parent->if_ioctl(parent, SIOCSIFFLAGS, NULL); 1163 } 1164 1165 static void 1166 update_mcast(void *arg, int npending) 1167 { 1168 struct ieee80211com *ic = arg; 1169 struct ifnet *parent = ic->ic_ifp; 1170 1171 ic->ic_update_mcast(parent); 1172 } 1173 1174 static void 1175 update_promisc(void *arg, int npending) 1176 { 1177 struct ieee80211com *ic = arg; 1178 struct ifnet *parent = ic->ic_ifp; 1179 1180 ic->ic_update_promisc(parent); 1181 } 1182 1183 static void 1184 update_channel(void *arg, int npending) 1185 { 1186 struct ieee80211com *ic = arg; 1187 1188 ic->ic_set_channel(ic); 1189 ieee80211_radiotap_chan_change(ic); 1190 } 1191 1192 static void 1193 update_chw(void *arg, int npending) 1194 { 1195 struct ieee80211com *ic = arg; 1196 1197 /* 1198 * XXX should we defer the channel width _config_ update until now? 1199 */ 1200 ic->ic_update_chw(ic); 1201 } 1202 1203 /* 1204 * Block until the parent is in a known state. This is 1205 * used after any operations that dispatch a task (e.g. 1206 * to auto-configure the parent device up/down). 1207 */ 1208 void 1209 ieee80211_waitfor_parent(struct ieee80211com *ic) 1210 { 1211 taskqueue_block(ic->ic_tq); 1212 ieee80211_draintask(ic, &ic->ic_parent_task); 1213 ieee80211_draintask(ic, &ic->ic_mcast_task); 1214 ieee80211_draintask(ic, &ic->ic_promisc_task); 1215 ieee80211_draintask(ic, &ic->ic_chan_task); 1216 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1217 ieee80211_draintask(ic, &ic->ic_chw_task); 1218 taskqueue_unblock(ic->ic_tq); 1219 } 1220 1221 /* 1222 * Start a vap running. If this is the first vap to be 1223 * set running on the underlying device then we 1224 * automatically bring the device up. 1225 */ 1226 void 1227 ieee80211_start_locked(struct ieee80211vap *vap) 1228 { 1229 struct ifnet *ifp = vap->iv_ifp; 1230 struct ieee80211com *ic = vap->iv_ic; 1231 struct ifnet *parent = ic->ic_ifp; 1232 1233 IEEE80211_LOCK_ASSERT(ic); 1234 1235 IEEE80211_DPRINTF(vap, 1236 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1237 "start running, %d vaps running\n", ic->ic_nrunning); 1238 1239 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1240 /* 1241 * Mark us running. Note that it's ok to do this first; 1242 * if we need to bring the parent device up we defer that 1243 * to avoid dropping the com lock. We expect the device 1244 * to respond to being marked up by calling back into us 1245 * through ieee80211_start_all at which point we'll come 1246 * back in here and complete the work. 1247 */ 1248 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1249 /* 1250 * We are not running; if this we are the first vap 1251 * to be brought up auto-up the parent if necessary. 1252 */ 1253 if (ic->ic_nrunning++ == 0 && 1254 (parent->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1255 IEEE80211_DPRINTF(vap, 1256 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1257 "%s: up parent %s\n", __func__, parent->if_xname); 1258 parent->if_flags |= IFF_UP; 1259 ieee80211_runtask(ic, &ic->ic_parent_task); 1260 return; 1261 } 1262 } 1263 /* 1264 * If the parent is up and running, then kick the 1265 * 802.11 state machine as appropriate. 1266 */ 1267 if ((parent->if_drv_flags & IFF_DRV_RUNNING) && 1268 vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1269 if (vap->iv_opmode == IEEE80211_M_STA) { 1270 #if 0 1271 /* XXX bypasses scan too easily; disable for now */ 1272 /* 1273 * Try to be intelligent about clocking the state 1274 * machine. If we're currently in RUN state then 1275 * we should be able to apply any new state/parameters 1276 * simply by re-associating. Otherwise we need to 1277 * re-scan to select an appropriate ap. 1278 */ 1279 if (vap->iv_state >= IEEE80211_S_RUN) 1280 ieee80211_new_state_locked(vap, 1281 IEEE80211_S_ASSOC, 1); 1282 else 1283 #endif 1284 ieee80211_new_state_locked(vap, 1285 IEEE80211_S_SCAN, 0); 1286 } else { 1287 /* 1288 * For monitor+wds mode there's nothing to do but 1289 * start running. Otherwise if this is the first 1290 * vap to be brought up, start a scan which may be 1291 * preempted if the station is locked to a particular 1292 * channel. 1293 */ 1294 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1295 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1296 vap->iv_opmode == IEEE80211_M_WDS) 1297 ieee80211_new_state_locked(vap, 1298 IEEE80211_S_RUN, -1); 1299 else 1300 ieee80211_new_state_locked(vap, 1301 IEEE80211_S_SCAN, 0); 1302 } 1303 } 1304 } 1305 1306 /* 1307 * Start a single vap. 1308 */ 1309 void 1310 ieee80211_init(void *arg) 1311 { 1312 struct ieee80211vap *vap = arg; 1313 1314 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1315 "%s\n", __func__); 1316 1317 IEEE80211_LOCK(vap->iv_ic); 1318 ieee80211_start_locked(vap); 1319 IEEE80211_UNLOCK(vap->iv_ic); 1320 } 1321 1322 /* 1323 * Start all runnable vap's on a device. 1324 */ 1325 void 1326 ieee80211_start_all(struct ieee80211com *ic) 1327 { 1328 struct ieee80211vap *vap; 1329 1330 IEEE80211_LOCK(ic); 1331 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1332 struct ifnet *ifp = vap->iv_ifp; 1333 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1334 ieee80211_start_locked(vap); 1335 } 1336 IEEE80211_UNLOCK(ic); 1337 } 1338 1339 /* 1340 * Stop a vap. We force it down using the state machine 1341 * then mark it's ifnet not running. If this is the last 1342 * vap running on the underlying device then we close it 1343 * too to insure it will be properly initialized when the 1344 * next vap is brought up. 1345 */ 1346 void 1347 ieee80211_stop_locked(struct ieee80211vap *vap) 1348 { 1349 struct ieee80211com *ic = vap->iv_ic; 1350 struct ifnet *ifp = vap->iv_ifp; 1351 struct ifnet *parent = ic->ic_ifp; 1352 1353 IEEE80211_LOCK_ASSERT(ic); 1354 1355 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1356 "stop running, %d vaps running\n", ic->ic_nrunning); 1357 1358 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1359 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1360 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1361 if (--ic->ic_nrunning == 0 && 1362 (parent->if_drv_flags & IFF_DRV_RUNNING)) { 1363 IEEE80211_DPRINTF(vap, 1364 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1365 "down parent %s\n", parent->if_xname); 1366 parent->if_flags &= ~IFF_UP; 1367 ieee80211_runtask(ic, &ic->ic_parent_task); 1368 } 1369 } 1370 } 1371 1372 void 1373 ieee80211_stop(struct ieee80211vap *vap) 1374 { 1375 struct ieee80211com *ic = vap->iv_ic; 1376 1377 IEEE80211_LOCK(ic); 1378 ieee80211_stop_locked(vap); 1379 IEEE80211_UNLOCK(ic); 1380 } 1381 1382 /* 1383 * Stop all vap's running on a device. 1384 */ 1385 void 1386 ieee80211_stop_all(struct ieee80211com *ic) 1387 { 1388 struct ieee80211vap *vap; 1389 1390 IEEE80211_LOCK(ic); 1391 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1392 struct ifnet *ifp = vap->iv_ifp; 1393 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1394 ieee80211_stop_locked(vap); 1395 } 1396 IEEE80211_UNLOCK(ic); 1397 1398 ieee80211_waitfor_parent(ic); 1399 } 1400 1401 /* 1402 * Stop all vap's running on a device and arrange 1403 * for those that were running to be resumed. 1404 */ 1405 void 1406 ieee80211_suspend_all(struct ieee80211com *ic) 1407 { 1408 struct ieee80211vap *vap; 1409 1410 IEEE80211_LOCK(ic); 1411 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1412 struct ifnet *ifp = vap->iv_ifp; 1413 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1414 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1415 ieee80211_stop_locked(vap); 1416 } 1417 } 1418 IEEE80211_UNLOCK(ic); 1419 1420 ieee80211_waitfor_parent(ic); 1421 } 1422 1423 /* 1424 * Start all vap's marked for resume. 1425 */ 1426 void 1427 ieee80211_resume_all(struct ieee80211com *ic) 1428 { 1429 struct ieee80211vap *vap; 1430 1431 IEEE80211_LOCK(ic); 1432 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1433 struct ifnet *ifp = vap->iv_ifp; 1434 if (!IFNET_IS_UP_RUNNING(ifp) && 1435 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1436 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1437 ieee80211_start_locked(vap); 1438 } 1439 } 1440 IEEE80211_UNLOCK(ic); 1441 } 1442 1443 void 1444 ieee80211_beacon_miss(struct ieee80211com *ic) 1445 { 1446 IEEE80211_LOCK(ic); 1447 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1448 /* Process in a taskq, the handler may reenter the driver */ 1449 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1450 } 1451 IEEE80211_UNLOCK(ic); 1452 } 1453 1454 static void 1455 beacon_miss(void *arg, int npending) 1456 { 1457 struct ieee80211com *ic = arg; 1458 struct ieee80211vap *vap; 1459 1460 IEEE80211_LOCK(ic); 1461 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1462 /* 1463 * We only pass events through for sta vap's in RUN state; 1464 * may be too restrictive but for now this saves all the 1465 * handlers duplicating these checks. 1466 */ 1467 if (vap->iv_opmode == IEEE80211_M_STA && 1468 vap->iv_state >= IEEE80211_S_RUN && 1469 vap->iv_bmiss != NULL) 1470 vap->iv_bmiss(vap); 1471 } 1472 IEEE80211_UNLOCK(ic); 1473 } 1474 1475 static void 1476 beacon_swmiss(void *arg, int npending) 1477 { 1478 struct ieee80211vap *vap = arg; 1479 struct ieee80211com *ic = vap->iv_ic; 1480 1481 IEEE80211_LOCK(ic); 1482 if (vap->iv_state == IEEE80211_S_RUN) { 1483 /* XXX Call multiple times if npending > zero? */ 1484 vap->iv_bmiss(vap); 1485 } 1486 IEEE80211_UNLOCK(ic); 1487 } 1488 1489 /* 1490 * Software beacon miss handling. Check if any beacons 1491 * were received in the last period. If not post a 1492 * beacon miss; otherwise reset the counter. 1493 */ 1494 void 1495 ieee80211_swbmiss(void *arg) 1496 { 1497 struct ieee80211vap *vap = arg; 1498 struct ieee80211com *ic = vap->iv_ic; 1499 1500 IEEE80211_LOCK_ASSERT(ic); 1501 1502 /* XXX sleep state? */ 1503 KASSERT(vap->iv_state == IEEE80211_S_RUN, 1504 ("wrong state %d", vap->iv_state)); 1505 1506 if (ic->ic_flags & IEEE80211_F_SCAN) { 1507 /* 1508 * If scanning just ignore and reset state. If we get a 1509 * bmiss after coming out of scan because we haven't had 1510 * time to receive a beacon then we should probe the AP 1511 * before posting a real bmiss (unless iv_bmiss_max has 1512 * been artifiically lowered). A cleaner solution might 1513 * be to disable the timer on scan start/end but to handle 1514 * case of multiple sta vap's we'd need to disable the 1515 * timers of all affected vap's. 1516 */ 1517 vap->iv_swbmiss_count = 0; 1518 } else if (vap->iv_swbmiss_count == 0) { 1519 if (vap->iv_bmiss != NULL) 1520 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1521 } else 1522 vap->iv_swbmiss_count = 0; 1523 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1524 ieee80211_swbmiss, vap); 1525 } 1526 1527 /* 1528 * Start an 802.11h channel switch. We record the parameters, 1529 * mark the operation pending, notify each vap through the 1530 * beacon update mechanism so it can update the beacon frame 1531 * contents, and then switch vap's to CSA state to block outbound 1532 * traffic. Devices that handle CSA directly can use the state 1533 * switch to do the right thing so long as they call 1534 * ieee80211_csa_completeswitch when it's time to complete the 1535 * channel change. Devices that depend on the net80211 layer can 1536 * use ieee80211_beacon_update to handle the countdown and the 1537 * channel switch. 1538 */ 1539 void 1540 ieee80211_csa_startswitch(struct ieee80211com *ic, 1541 struct ieee80211_channel *c, int mode, int count) 1542 { 1543 struct ieee80211vap *vap; 1544 1545 IEEE80211_LOCK_ASSERT(ic); 1546 1547 ic->ic_csa_newchan = c; 1548 ic->ic_csa_mode = mode; 1549 ic->ic_csa_count = count; 1550 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1551 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1552 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1553 vap->iv_opmode == IEEE80211_M_IBSS || 1554 vap->iv_opmode == IEEE80211_M_MBSS) 1555 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1556 /* switch to CSA state to block outbound traffic */ 1557 if (vap->iv_state == IEEE80211_S_RUN) 1558 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1559 } 1560 ieee80211_notify_csa(ic, c, mode, count); 1561 } 1562 1563 /* 1564 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1565 * This is called by both the completion and cancellation functions 1566 * so each VAP is placed back in the RUN state and can thus transmit. 1567 */ 1568 static void 1569 csa_completeswitch(struct ieee80211com *ic) 1570 { 1571 struct ieee80211vap *vap; 1572 1573 ic->ic_csa_newchan = NULL; 1574 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1575 1576 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1577 if (vap->iv_state == IEEE80211_S_CSA) 1578 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1579 } 1580 1581 /* 1582 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1583 * We clear state and move all vap's in CSA state to RUN state 1584 * so they can again transmit. 1585 * 1586 * Although this may not be completely correct, update the BSS channel 1587 * for each VAP to the newly configured channel. The setcurchan sets 1588 * the current operating channel for the interface (so the radio does 1589 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1590 * reported information via ioctl. 1591 */ 1592 void 1593 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1594 { 1595 struct ieee80211vap *vap; 1596 1597 IEEE80211_LOCK_ASSERT(ic); 1598 1599 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1600 1601 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1602 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1603 if (vap->iv_state == IEEE80211_S_CSA) 1604 vap->iv_bss->ni_chan = ic->ic_curchan; 1605 1606 csa_completeswitch(ic); 1607 } 1608 1609 /* 1610 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1611 * We clear state and move all vap's in CSA state to RUN state 1612 * so they can again transmit. 1613 */ 1614 void 1615 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1616 { 1617 IEEE80211_LOCK_ASSERT(ic); 1618 1619 csa_completeswitch(ic); 1620 } 1621 1622 /* 1623 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1624 * We clear state and move all vap's in CAC state to RUN state. 1625 */ 1626 void 1627 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1628 { 1629 struct ieee80211com *ic = vap0->iv_ic; 1630 struct ieee80211vap *vap; 1631 1632 IEEE80211_LOCK(ic); 1633 /* 1634 * Complete CAC state change for lead vap first; then 1635 * clock all the other vap's waiting. 1636 */ 1637 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1638 ("wrong state %d", vap0->iv_state)); 1639 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1640 1641 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1642 if (vap->iv_state == IEEE80211_S_CAC) 1643 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1644 IEEE80211_UNLOCK(ic); 1645 } 1646 1647 /* 1648 * Force all vap's other than the specified vap to the INIT state 1649 * and mark them as waiting for a scan to complete. These vaps 1650 * will be brought up when the scan completes and the scanning vap 1651 * reaches RUN state by wakeupwaiting. 1652 */ 1653 static void 1654 markwaiting(struct ieee80211vap *vap0) 1655 { 1656 struct ieee80211com *ic = vap0->iv_ic; 1657 struct ieee80211vap *vap; 1658 1659 IEEE80211_LOCK_ASSERT(ic); 1660 1661 /* 1662 * A vap list entry can not disappear since we are running on the 1663 * taskqueue and a vap destroy will queue and drain another state 1664 * change task. 1665 */ 1666 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1667 if (vap == vap0) 1668 continue; 1669 if (vap->iv_state != IEEE80211_S_INIT) { 1670 /* NB: iv_newstate may drop the lock */ 1671 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1672 IEEE80211_LOCK_ASSERT(ic); 1673 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1674 } 1675 } 1676 } 1677 1678 /* 1679 * Wakeup all vap's waiting for a scan to complete. This is the 1680 * companion to markwaiting (above) and is used to coordinate 1681 * multiple vaps scanning. 1682 * This is called from the state taskqueue. 1683 */ 1684 static void 1685 wakeupwaiting(struct ieee80211vap *vap0) 1686 { 1687 struct ieee80211com *ic = vap0->iv_ic; 1688 struct ieee80211vap *vap; 1689 1690 IEEE80211_LOCK_ASSERT(ic); 1691 1692 /* 1693 * A vap list entry can not disappear since we are running on the 1694 * taskqueue and a vap destroy will queue and drain another state 1695 * change task. 1696 */ 1697 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1698 if (vap == vap0) 1699 continue; 1700 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1701 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1702 /* NB: sta's cannot go INIT->RUN */ 1703 /* NB: iv_newstate may drop the lock */ 1704 vap->iv_newstate(vap, 1705 vap->iv_opmode == IEEE80211_M_STA ? 1706 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1707 IEEE80211_LOCK_ASSERT(ic); 1708 } 1709 } 1710 } 1711 1712 /* 1713 * Handle post state change work common to all operating modes. 1714 */ 1715 static void 1716 ieee80211_newstate_cb(void *xvap, int npending) 1717 { 1718 struct ieee80211vap *vap = xvap; 1719 struct ieee80211com *ic = vap->iv_ic; 1720 enum ieee80211_state nstate, ostate; 1721 int arg, rc; 1722 1723 IEEE80211_LOCK(ic); 1724 nstate = vap->iv_nstate; 1725 arg = vap->iv_nstate_arg; 1726 1727 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 1728 /* 1729 * We have been requested to drop back to the INIT before 1730 * proceeding to the new state. 1731 */ 1732 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1733 "%s: %s -> %s arg %d\n", __func__, 1734 ieee80211_state_name[vap->iv_state], 1735 ieee80211_state_name[IEEE80211_S_INIT], arg); 1736 vap->iv_newstate(vap, IEEE80211_S_INIT, arg); 1737 IEEE80211_LOCK_ASSERT(ic); 1738 vap->iv_flags_ext &= ~IEEE80211_FEXT_REINIT; 1739 } 1740 1741 ostate = vap->iv_state; 1742 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 1743 /* 1744 * SCAN was forced; e.g. on beacon miss. Force other running 1745 * vap's to INIT state and mark them as waiting for the scan to 1746 * complete. This insures they don't interfere with our 1747 * scanning. Since we are single threaded the vaps can not 1748 * transition again while we are executing. 1749 * 1750 * XXX not always right, assumes ap follows sta 1751 */ 1752 markwaiting(vap); 1753 } 1754 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1755 "%s: %s -> %s arg %d\n", __func__, 1756 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 1757 1758 rc = vap->iv_newstate(vap, nstate, arg); 1759 IEEE80211_LOCK_ASSERT(ic); 1760 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 1761 if (rc != 0) { 1762 /* State transition failed */ 1763 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 1764 KASSERT(nstate != IEEE80211_S_INIT, 1765 ("INIT state change failed")); 1766 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1767 "%s: %s returned error %d\n", __func__, 1768 ieee80211_state_name[nstate], rc); 1769 goto done; 1770 } 1771 1772 /* No actual transition, skip post processing */ 1773 if (ostate == nstate) 1774 goto done; 1775 1776 if (nstate == IEEE80211_S_RUN) { 1777 /* 1778 * OACTIVE may be set on the vap if the upper layer 1779 * tried to transmit (e.g. IPv6 NDP) before we reach 1780 * RUN state. Clear it and restart xmit. 1781 * 1782 * Note this can also happen as a result of SLEEP->RUN 1783 * (i.e. coming out of power save mode). 1784 */ 1785 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 1786 1787 /* 1788 * XXX TODO Kick-start a VAP queue - this should be a method! 1789 */ 1790 1791 /* bring up any vaps waiting on us */ 1792 wakeupwaiting(vap); 1793 } else if (nstate == IEEE80211_S_INIT) { 1794 /* 1795 * Flush the scan cache if we did the last scan (XXX?) 1796 * and flush any frames on send queues from this vap. 1797 * Note the mgt q is used only for legacy drivers and 1798 * will go away shortly. 1799 */ 1800 ieee80211_scan_flush(vap); 1801 1802 /* 1803 * XXX TODO: ic/vap queue flush 1804 */ 1805 } 1806 done: 1807 IEEE80211_UNLOCK(ic); 1808 } 1809 1810 /* 1811 * Public interface for initiating a state machine change. 1812 * This routine single-threads the request and coordinates 1813 * the scheduling of multiple vaps for the purpose of selecting 1814 * an operating channel. Specifically the following scenarios 1815 * are handled: 1816 * o only one vap can be selecting a channel so on transition to 1817 * SCAN state if another vap is already scanning then 1818 * mark the caller for later processing and return without 1819 * doing anything (XXX? expectations by caller of synchronous operation) 1820 * o only one vap can be doing CAC of a channel so on transition to 1821 * CAC state if another vap is already scanning for radar then 1822 * mark the caller for later processing and return without 1823 * doing anything (XXX? expectations by caller of synchronous operation) 1824 * o if another vap is already running when a request is made 1825 * to SCAN then an operating channel has been chosen; bypass 1826 * the scan and just join the channel 1827 * 1828 * Note that the state change call is done through the iv_newstate 1829 * method pointer so any driver routine gets invoked. The driver 1830 * will normally call back into operating mode-specific 1831 * ieee80211_newstate routines (below) unless it needs to completely 1832 * bypass the state machine (e.g. because the firmware has it's 1833 * own idea how things should work). Bypassing the net80211 layer 1834 * is usually a mistake and indicates lack of proper integration 1835 * with the net80211 layer. 1836 */ 1837 static int 1838 ieee80211_new_state_locked(struct ieee80211vap *vap, 1839 enum ieee80211_state nstate, int arg) 1840 { 1841 struct ieee80211com *ic = vap->iv_ic; 1842 struct ieee80211vap *vp; 1843 enum ieee80211_state ostate; 1844 int nrunning, nscanning; 1845 1846 IEEE80211_LOCK_ASSERT(ic); 1847 1848 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 1849 if (vap->iv_nstate == IEEE80211_S_INIT) { 1850 /* 1851 * XXX The vap is being stopped, do no allow any other 1852 * state changes until this is completed. 1853 */ 1854 return -1; 1855 } else if (vap->iv_state != vap->iv_nstate) { 1856 #if 0 1857 /* Warn if the previous state hasn't completed. */ 1858 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1859 "%s: pending %s -> %s transition lost\n", __func__, 1860 ieee80211_state_name[vap->iv_state], 1861 ieee80211_state_name[vap->iv_nstate]); 1862 #else 1863 /* XXX temporarily enable to identify issues */ 1864 if_printf(vap->iv_ifp, 1865 "%s: pending %s -> %s transition lost\n", 1866 __func__, ieee80211_state_name[vap->iv_state], 1867 ieee80211_state_name[vap->iv_nstate]); 1868 #endif 1869 } 1870 } 1871 1872 nrunning = nscanning = 0; 1873 /* XXX can track this state instead of calculating */ 1874 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 1875 if (vp != vap) { 1876 if (vp->iv_state >= IEEE80211_S_RUN) 1877 nrunning++; 1878 /* XXX doesn't handle bg scan */ 1879 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 1880 else if (vp->iv_state > IEEE80211_S_INIT) 1881 nscanning++; 1882 } 1883 } 1884 ostate = vap->iv_state; 1885 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1886 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 1887 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 1888 nrunning, nscanning); 1889 switch (nstate) { 1890 case IEEE80211_S_SCAN: 1891 if (ostate == IEEE80211_S_INIT) { 1892 /* 1893 * INIT -> SCAN happens on initial bringup. 1894 */ 1895 KASSERT(!(nscanning && nrunning), 1896 ("%d scanning and %d running", nscanning, nrunning)); 1897 if (nscanning) { 1898 /* 1899 * Someone is scanning, defer our state 1900 * change until the work has completed. 1901 */ 1902 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1903 "%s: defer %s -> %s\n", 1904 __func__, ieee80211_state_name[ostate], 1905 ieee80211_state_name[nstate]); 1906 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1907 return 0; 1908 } 1909 if (nrunning) { 1910 /* 1911 * Someone is operating; just join the channel 1912 * they have chosen. 1913 */ 1914 /* XXX kill arg? */ 1915 /* XXX check each opmode, adhoc? */ 1916 if (vap->iv_opmode == IEEE80211_M_STA) 1917 nstate = IEEE80211_S_SCAN; 1918 else 1919 nstate = IEEE80211_S_RUN; 1920 #ifdef IEEE80211_DEBUG 1921 if (nstate != IEEE80211_S_SCAN) { 1922 IEEE80211_DPRINTF(vap, 1923 IEEE80211_MSG_STATE, 1924 "%s: override, now %s -> %s\n", 1925 __func__, 1926 ieee80211_state_name[ostate], 1927 ieee80211_state_name[nstate]); 1928 } 1929 #endif 1930 } 1931 } 1932 break; 1933 case IEEE80211_S_RUN: 1934 if (vap->iv_opmode == IEEE80211_M_WDS && 1935 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 1936 nscanning) { 1937 /* 1938 * Legacy WDS with someone else scanning; don't 1939 * go online until that completes as we should 1940 * follow the other vap to the channel they choose. 1941 */ 1942 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1943 "%s: defer %s -> %s (legacy WDS)\n", __func__, 1944 ieee80211_state_name[ostate], 1945 ieee80211_state_name[nstate]); 1946 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1947 return 0; 1948 } 1949 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1950 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 1951 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 1952 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 1953 /* 1954 * This is a DFS channel, transition to CAC state 1955 * instead of RUN. This allows us to initiate 1956 * Channel Availability Check (CAC) as specified 1957 * by 11h/DFS. 1958 */ 1959 nstate = IEEE80211_S_CAC; 1960 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 1961 "%s: override %s -> %s (DFS)\n", __func__, 1962 ieee80211_state_name[ostate], 1963 ieee80211_state_name[nstate]); 1964 } 1965 break; 1966 case IEEE80211_S_INIT: 1967 /* cancel any scan in progress */ 1968 ieee80211_cancel_scan(vap); 1969 if (ostate == IEEE80211_S_INIT ) { 1970 /* XXX don't believe this */ 1971 /* INIT -> INIT. nothing to do */ 1972 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1973 } 1974 /* fall thru... */ 1975 default: 1976 break; 1977 } 1978 /* defer the state change to a thread */ 1979 vap->iv_nstate = nstate; 1980 vap->iv_nstate_arg = arg; 1981 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 1982 ieee80211_runtask(ic, &vap->iv_nstate_task); 1983 return EINPROGRESS; 1984 } 1985 1986 int 1987 ieee80211_new_state(struct ieee80211vap *vap, 1988 enum ieee80211_state nstate, int arg) 1989 { 1990 struct ieee80211com *ic = vap->iv_ic; 1991 int rc; 1992 1993 IEEE80211_LOCK(ic); 1994 rc = ieee80211_new_state_locked(vap, nstate, arg); 1995 IEEE80211_UNLOCK(ic); 1996 return rc; 1997 } 1998