xref: /freebsd/sys/net80211/ieee80211_proto.c (revision 193d9e768ba63fcfb187cfd17f461f7d41345048)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
4  * Copyright (c) 2012 IEEE
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 /*
32  * IEEE 802.11 protocol support.
33  */
34 
35 #include "opt_inet.h"
36 #include "opt_wlan.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_media.h>
49 #include <net/ethernet.h>		/* XXX for ether_sprintf */
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_adhoc.h>
53 #include <net80211/ieee80211_sta.h>
54 #include <net80211/ieee80211_hostap.h>
55 #include <net80211/ieee80211_wds.h>
56 #ifdef IEEE80211_SUPPORT_MESH
57 #include <net80211/ieee80211_mesh.h>
58 #endif
59 #include <net80211/ieee80211_monitor.h>
60 #include <net80211/ieee80211_input.h>
61 
62 /* XXX tunables */
63 #define	AGGRESSIVE_MODE_SWITCH_HYSTERESIS	3	/* pkts / 100ms */
64 #define	HIGH_PRI_SWITCH_THRESH			10	/* pkts / 100ms */
65 
66 const char *mgt_subtype_name[] = {
67 	"assoc_req",	"assoc_resp",	"reassoc_req",	"reassoc_resp",
68 	"probe_req",	"probe_resp",	"timing_adv",	"reserved#7",
69 	"beacon",	"atim",		"disassoc",	"auth",
70 	"deauth",	"action",	"action_noack",	"reserved#15"
71 };
72 const char *ctl_subtype_name[] = {
73 	"reserved#0",	"reserved#1",	"reserved#2",	"reserved#3",
74 	"reserved#4",	"reserved#5",	"reserved#6",	"control_wrap",
75 	"bar",		"ba",		"ps_poll",	"rts",
76 	"cts",		"ack",		"cf_end",	"cf_end_ack"
77 };
78 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = {
79 	"IBSS",		/* IEEE80211_M_IBSS */
80 	"STA",		/* IEEE80211_M_STA */
81 	"WDS",		/* IEEE80211_M_WDS */
82 	"AHDEMO",	/* IEEE80211_M_AHDEMO */
83 	"HOSTAP",	/* IEEE80211_M_HOSTAP */
84 	"MONITOR",	/* IEEE80211_M_MONITOR */
85 	"MBSS"		/* IEEE80211_M_MBSS */
86 };
87 const char *ieee80211_state_name[IEEE80211_S_MAX] = {
88 	"INIT",		/* IEEE80211_S_INIT */
89 	"SCAN",		/* IEEE80211_S_SCAN */
90 	"AUTH",		/* IEEE80211_S_AUTH */
91 	"ASSOC",	/* IEEE80211_S_ASSOC */
92 	"CAC",		/* IEEE80211_S_CAC */
93 	"RUN",		/* IEEE80211_S_RUN */
94 	"CSA",		/* IEEE80211_S_CSA */
95 	"SLEEP",	/* IEEE80211_S_SLEEP */
96 };
97 const char *ieee80211_wme_acnames[] = {
98 	"WME_AC_BE",
99 	"WME_AC_BK",
100 	"WME_AC_VI",
101 	"WME_AC_VO",
102 	"WME_UPSD",
103 };
104 
105 
106 /*
107  * Reason code descriptions were (mostly) obtained from
108  * IEEE Std 802.11-2012, pp. 442-445 Table 8-36.
109  */
110 const char *
111 ieee80211_reason_to_string(uint16_t reason)
112 {
113 	switch (reason) {
114 	case IEEE80211_REASON_UNSPECIFIED:
115 		return ("unspecified");
116 	case IEEE80211_REASON_AUTH_EXPIRE:
117 		return ("previous authentication is expired");
118 	case IEEE80211_REASON_AUTH_LEAVE:
119 		return ("sending STA is leaving/has left IBSS or ESS");
120 	case IEEE80211_REASON_ASSOC_EXPIRE:
121 		return ("disassociated due to inactivity");
122 	case IEEE80211_REASON_ASSOC_TOOMANY:
123 		return ("too many associated STAs");
124 	case IEEE80211_REASON_NOT_AUTHED:
125 		return ("class 2 frame received from nonauthenticated STA");
126 	case IEEE80211_REASON_NOT_ASSOCED:
127 		return ("class 3 frame received from nonassociated STA");
128 	case IEEE80211_REASON_ASSOC_LEAVE:
129 		return ("sending STA is leaving/has left BSS");
130 	case IEEE80211_REASON_ASSOC_NOT_AUTHED:
131 		return ("STA requesting (re)association is not authenticated");
132 	case IEEE80211_REASON_DISASSOC_PWRCAP_BAD:
133 		return ("information in the Power Capability element is "
134 			"unacceptable");
135 	case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD:
136 		return ("information in the Supported Channels element is "
137 			"unacceptable");
138 	case IEEE80211_REASON_IE_INVALID:
139 		return ("invalid element");
140 	case IEEE80211_REASON_MIC_FAILURE:
141 		return ("MIC failure");
142 	case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT:
143 		return ("4-Way handshake timeout");
144 	case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT:
145 		return ("group key update timeout");
146 	case IEEE80211_REASON_IE_IN_4WAY_DIFFERS:
147 		return ("element in 4-Way handshake different from "
148 			"(re)association request/probe response/beacon frame");
149 	case IEEE80211_REASON_GROUP_CIPHER_INVALID:
150 		return ("invalid group cipher");
151 	case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID:
152 		return ("invalid pairwise cipher");
153 	case IEEE80211_REASON_AKMP_INVALID:
154 		return ("invalid AKMP");
155 	case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION:
156 		return ("unsupported version in RSN IE");
157 	case IEEE80211_REASON_INVALID_RSN_IE_CAP:
158 		return ("invalid capabilities in RSN IE");
159 	case IEEE80211_REASON_802_1X_AUTH_FAILED:
160 		return ("IEEE 802.1X authentication failed");
161 	case IEEE80211_REASON_CIPHER_SUITE_REJECTED:
162 		return ("cipher suite rejected because of the security "
163 			"policy");
164 	case IEEE80211_REASON_UNSPECIFIED_QOS:
165 		return ("unspecified (QoS-related)");
166 	case IEEE80211_REASON_INSUFFICIENT_BW:
167 		return ("QoS AP lacks sufficient bandwidth for this QoS STA");
168 	case IEEE80211_REASON_TOOMANY_FRAMES:
169 		return ("too many frames need to be acknowledged");
170 	case IEEE80211_REASON_OUTSIDE_TXOP:
171 		return ("STA is transmitting outside the limits of its TXOPs");
172 	case IEEE80211_REASON_LEAVING_QBSS:
173 		return ("requested from peer STA (the STA is "
174 			"resetting/leaving the BSS)");
175 	case IEEE80211_REASON_BAD_MECHANISM:
176 		return ("requested from peer STA (it does not want to use "
177 			"the mechanism)");
178 	case IEEE80211_REASON_SETUP_NEEDED:
179 		return ("requested from peer STA (setup is required for the "
180 			"used mechanism)");
181 	case IEEE80211_REASON_TIMEOUT:
182 		return ("requested from peer STA (timeout)");
183 	case IEEE80211_REASON_PEER_LINK_CANCELED:
184 		return ("SME cancels the mesh peering instance (not related "
185 			"to the maximum number of peer mesh STAs)");
186 	case IEEE80211_REASON_MESH_MAX_PEERS:
187 		return ("maximum number of peer mesh STAs was reached");
188 	case IEEE80211_REASON_MESH_CPVIOLATION:
189 		return ("the received information violates the Mesh "
190 			"Configuration policy configured in the mesh STA "
191 			"profile");
192 	case IEEE80211_REASON_MESH_CLOSE_RCVD:
193 		return ("the mesh STA has received a Mesh Peering Close "
194 			"message requesting to close the mesh peering");
195 	case IEEE80211_REASON_MESH_MAX_RETRIES:
196 		return ("the mesh STA has resent dot11MeshMaxRetries Mesh "
197 			"Peering Open messages, without receiving a Mesh "
198 			"Peering Confirm message");
199 	case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT:
200 		return ("the confirmTimer for the mesh peering instance times "
201 			"out");
202 	case IEEE80211_REASON_MESH_INVALID_GTK:
203 		return ("the mesh STA fails to unwrap the GTK or the values "
204 			"in the wrapped contents do not match");
205 	case IEEE80211_REASON_MESH_INCONS_PARAMS:
206 		return ("the mesh STA receives inconsistent information about "
207 			"the mesh parameters between Mesh Peering Management "
208 			"frames");
209 	case IEEE80211_REASON_MESH_INVALID_SECURITY:
210 		return ("the mesh STA fails the authenticated mesh peering "
211 			"exchange because due to failure in selecting "
212 			"pairwise/group ciphersuite");
213 	case IEEE80211_REASON_MESH_PERR_NO_PROXY:
214 		return ("the mesh STA does not have proxy information for "
215 			"this external destination");
216 	case IEEE80211_REASON_MESH_PERR_NO_FI:
217 		return ("the mesh STA does not have forwarding information "
218 			"for this destination");
219 	case IEEE80211_REASON_MESH_PERR_DEST_UNREACH:
220 		return ("the mesh STA determines that the link to the next "
221 			"hop of an active path in its forwarding information "
222 			"is no longer usable");
223 	case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS:
224 		return ("the MAC address of the STA already exists in the "
225 			"mesh BSS");
226 	case IEEE80211_REASON_MESH_CHAN_SWITCH_REG:
227 		return ("the mesh STA performs channel switch to meet "
228 			"regulatory requirements");
229 	case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC:
230 		return ("the mesh STA performs channel switch with "
231 			"unspecified reason");
232 	default:
233 		return ("reserved/unknown");
234 	}
235 }
236 
237 static void beacon_miss(void *, int);
238 static void beacon_swmiss(void *, int);
239 static void parent_updown(void *, int);
240 static void update_mcast(void *, int);
241 static void update_promisc(void *, int);
242 static void update_channel(void *, int);
243 static void update_chw(void *, int);
244 static void update_wme(void *, int);
245 static void restart_vaps(void *, int);
246 static void ieee80211_newstate_cb(void *, int);
247 
248 static int
249 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
250 	const struct ieee80211_bpf_params *params)
251 {
252 
253 	ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n");
254 	m_freem(m);
255 	return ENETDOWN;
256 }
257 
258 void
259 ieee80211_proto_attach(struct ieee80211com *ic)
260 {
261 	uint8_t hdrlen;
262 
263 	/* override the 802.3 setting */
264 	hdrlen = ic->ic_headroom
265 		+ sizeof(struct ieee80211_qosframe_addr4)
266 		+ IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
267 		+ IEEE80211_WEP_EXTIVLEN;
268 	/* XXX no way to recalculate on ifdetach */
269 	if (ALIGN(hdrlen) > max_linkhdr) {
270 		/* XXX sanity check... */
271 		max_linkhdr = ALIGN(hdrlen);
272 		max_hdr = max_linkhdr + max_protohdr;
273 		max_datalen = MHLEN - max_hdr;
274 	}
275 	ic->ic_protmode = IEEE80211_PROT_CTSONLY;
276 
277 	TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic);
278 	TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic);
279 	TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic);
280 	TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic);
281 	TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic);
282 	TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic);
283 	TASK_INIT(&ic->ic_wme_task, 0, update_wme, ic);
284 	TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic);
285 
286 	ic->ic_wme.wme_hipri_switch_hysteresis =
287 		AGGRESSIVE_MODE_SWITCH_HYSTERESIS;
288 
289 	/* initialize management frame handlers */
290 	ic->ic_send_mgmt = ieee80211_send_mgmt;
291 	ic->ic_raw_xmit = null_raw_xmit;
292 
293 	ieee80211_adhoc_attach(ic);
294 	ieee80211_sta_attach(ic);
295 	ieee80211_wds_attach(ic);
296 	ieee80211_hostap_attach(ic);
297 #ifdef IEEE80211_SUPPORT_MESH
298 	ieee80211_mesh_attach(ic);
299 #endif
300 	ieee80211_monitor_attach(ic);
301 }
302 
303 void
304 ieee80211_proto_detach(struct ieee80211com *ic)
305 {
306 	ieee80211_monitor_detach(ic);
307 #ifdef IEEE80211_SUPPORT_MESH
308 	ieee80211_mesh_detach(ic);
309 #endif
310 	ieee80211_hostap_detach(ic);
311 	ieee80211_wds_detach(ic);
312 	ieee80211_adhoc_detach(ic);
313 	ieee80211_sta_detach(ic);
314 }
315 
316 static void
317 null_update_beacon(struct ieee80211vap *vap, int item)
318 {
319 }
320 
321 void
322 ieee80211_proto_vattach(struct ieee80211vap *vap)
323 {
324 	struct ieee80211com *ic = vap->iv_ic;
325 	struct ifnet *ifp = vap->iv_ifp;
326 	int i;
327 
328 	/* override the 802.3 setting */
329 	ifp->if_hdrlen = ic->ic_headroom
330                 + sizeof(struct ieee80211_qosframe_addr4)
331                 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN
332                 + IEEE80211_WEP_EXTIVLEN;
333 
334 	vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT;
335 	vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT;
336 	vap->iv_bmiss_max = IEEE80211_BMISS_MAX;
337 	callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0);
338 	callout_init(&vap->iv_mgtsend, 1);
339 	TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap);
340 	TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap);
341 	/*
342 	 * Install default tx rate handling: no fixed rate, lowest
343 	 * supported rate for mgmt and multicast frames.  Default
344 	 * max retry count.  These settings can be changed by the
345 	 * driver and/or user applications.
346 	 */
347 	for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) {
348 		const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i];
349 
350 		vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE;
351 
352 		/*
353 		 * Setting the management rate to MCS 0 assumes that the
354 		 * BSS Basic rate set is empty and the BSS Basic MCS set
355 		 * is not.
356 		 *
357 		 * Since we're not checking this, default to the lowest
358 		 * defined rate for this mode.
359 		 *
360 		 * At least one 11n AP (DLINK DIR-825) is reported to drop
361 		 * some MCS management traffic (eg BA response frames.)
362 		 *
363 		 * See also: 9.6.0 of the 802.11n-2009 specification.
364 		 */
365 #ifdef	NOTYET
366 		if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) {
367 			vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS;
368 			vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS;
369 		} else {
370 			vap->iv_txparms[i].mgmtrate =
371 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
372 			vap->iv_txparms[i].mcastrate =
373 			    rs->rs_rates[0] & IEEE80211_RATE_VAL;
374 		}
375 #endif
376 		vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
377 		vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL;
378 		vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT;
379 	}
380 	vap->iv_roaming = IEEE80211_ROAMING_AUTO;
381 
382 	vap->iv_update_beacon = null_update_beacon;
383 	vap->iv_deliver_data = ieee80211_deliver_data;
384 
385 	/* attach support for operating mode */
386 	ic->ic_vattach[vap->iv_opmode](vap);
387 }
388 
389 void
390 ieee80211_proto_vdetach(struct ieee80211vap *vap)
391 {
392 #define	FREEAPPIE(ie) do { \
393 	if (ie != NULL) \
394 		IEEE80211_FREE(ie, M_80211_NODE_IE); \
395 } while (0)
396 	/*
397 	 * Detach operating mode module.
398 	 */
399 	if (vap->iv_opdetach != NULL)
400 		vap->iv_opdetach(vap);
401 	/*
402 	 * This should not be needed as we detach when reseting
403 	 * the state but be conservative here since the
404 	 * authenticator may do things like spawn kernel threads.
405 	 */
406 	if (vap->iv_auth->ia_detach != NULL)
407 		vap->iv_auth->ia_detach(vap);
408 	/*
409 	 * Detach any ACL'ator.
410 	 */
411 	if (vap->iv_acl != NULL)
412 		vap->iv_acl->iac_detach(vap);
413 
414 	FREEAPPIE(vap->iv_appie_beacon);
415 	FREEAPPIE(vap->iv_appie_probereq);
416 	FREEAPPIE(vap->iv_appie_proberesp);
417 	FREEAPPIE(vap->iv_appie_assocreq);
418 	FREEAPPIE(vap->iv_appie_assocresp);
419 	FREEAPPIE(vap->iv_appie_wpa);
420 #undef FREEAPPIE
421 }
422 
423 /*
424  * Simple-minded authenticator module support.
425  */
426 
427 #define	IEEE80211_AUTH_MAX	(IEEE80211_AUTH_WPA+1)
428 /* XXX well-known names */
429 static const char *auth_modnames[IEEE80211_AUTH_MAX] = {
430 	"wlan_internal",	/* IEEE80211_AUTH_NONE */
431 	"wlan_internal",	/* IEEE80211_AUTH_OPEN */
432 	"wlan_internal",	/* IEEE80211_AUTH_SHARED */
433 	"wlan_xauth",		/* IEEE80211_AUTH_8021X	 */
434 	"wlan_internal",	/* IEEE80211_AUTH_AUTO */
435 	"wlan_xauth",		/* IEEE80211_AUTH_WPA */
436 };
437 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX];
438 
439 static const struct ieee80211_authenticator auth_internal = {
440 	.ia_name		= "wlan_internal",
441 	.ia_attach		= NULL,
442 	.ia_detach		= NULL,
443 	.ia_node_join		= NULL,
444 	.ia_node_leave		= NULL,
445 };
446 
447 /*
448  * Setup internal authenticators once; they are never unregistered.
449  */
450 static void
451 ieee80211_auth_setup(void)
452 {
453 	ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal);
454 	ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal);
455 	ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal);
456 }
457 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL);
458 
459 const struct ieee80211_authenticator *
460 ieee80211_authenticator_get(int auth)
461 {
462 	if (auth >= IEEE80211_AUTH_MAX)
463 		return NULL;
464 	if (authenticators[auth] == NULL)
465 		ieee80211_load_module(auth_modnames[auth]);
466 	return authenticators[auth];
467 }
468 
469 void
470 ieee80211_authenticator_register(int type,
471 	const struct ieee80211_authenticator *auth)
472 {
473 	if (type >= IEEE80211_AUTH_MAX)
474 		return;
475 	authenticators[type] = auth;
476 }
477 
478 void
479 ieee80211_authenticator_unregister(int type)
480 {
481 
482 	if (type >= IEEE80211_AUTH_MAX)
483 		return;
484 	authenticators[type] = NULL;
485 }
486 
487 /*
488  * Very simple-minded ACL module support.
489  */
490 /* XXX just one for now */
491 static	const struct ieee80211_aclator *acl = NULL;
492 
493 void
494 ieee80211_aclator_register(const struct ieee80211_aclator *iac)
495 {
496 	printf("wlan: %s acl policy registered\n", iac->iac_name);
497 	acl = iac;
498 }
499 
500 void
501 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac)
502 {
503 	if (acl == iac)
504 		acl = NULL;
505 	printf("wlan: %s acl policy unregistered\n", iac->iac_name);
506 }
507 
508 const struct ieee80211_aclator *
509 ieee80211_aclator_get(const char *name)
510 {
511 	if (acl == NULL)
512 		ieee80211_load_module("wlan_acl");
513 	return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL;
514 }
515 
516 void
517 ieee80211_print_essid(const uint8_t *essid, int len)
518 {
519 	const uint8_t *p;
520 	int i;
521 
522 	if (len > IEEE80211_NWID_LEN)
523 		len = IEEE80211_NWID_LEN;
524 	/* determine printable or not */
525 	for (i = 0, p = essid; i < len; i++, p++) {
526 		if (*p < ' ' || *p > 0x7e)
527 			break;
528 	}
529 	if (i == len) {
530 		printf("\"");
531 		for (i = 0, p = essid; i < len; i++, p++)
532 			printf("%c", *p);
533 		printf("\"");
534 	} else {
535 		printf("0x");
536 		for (i = 0, p = essid; i < len; i++, p++)
537 			printf("%02x", *p);
538 	}
539 }
540 
541 void
542 ieee80211_dump_pkt(struct ieee80211com *ic,
543 	const uint8_t *buf, int len, int rate, int rssi)
544 {
545 	const struct ieee80211_frame *wh;
546 	int i;
547 
548 	wh = (const struct ieee80211_frame *)buf;
549 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
550 	case IEEE80211_FC1_DIR_NODS:
551 		printf("NODS %s", ether_sprintf(wh->i_addr2));
552 		printf("->%s", ether_sprintf(wh->i_addr1));
553 		printf("(%s)", ether_sprintf(wh->i_addr3));
554 		break;
555 	case IEEE80211_FC1_DIR_TODS:
556 		printf("TODS %s", ether_sprintf(wh->i_addr2));
557 		printf("->%s", ether_sprintf(wh->i_addr3));
558 		printf("(%s)", ether_sprintf(wh->i_addr1));
559 		break;
560 	case IEEE80211_FC1_DIR_FROMDS:
561 		printf("FRDS %s", ether_sprintf(wh->i_addr3));
562 		printf("->%s", ether_sprintf(wh->i_addr1));
563 		printf("(%s)", ether_sprintf(wh->i_addr2));
564 		break;
565 	case IEEE80211_FC1_DIR_DSTODS:
566 		printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1]));
567 		printf("->%s", ether_sprintf(wh->i_addr3));
568 		printf("(%s", ether_sprintf(wh->i_addr2));
569 		printf("->%s)", ether_sprintf(wh->i_addr1));
570 		break;
571 	}
572 	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
573 	case IEEE80211_FC0_TYPE_DATA:
574 		printf(" data");
575 		break;
576 	case IEEE80211_FC0_TYPE_MGT:
577 		printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0]));
578 		break;
579 	default:
580 		printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK);
581 		break;
582 	}
583 	if (IEEE80211_QOS_HAS_SEQ(wh)) {
584 		const struct ieee80211_qosframe *qwh =
585 			(const struct ieee80211_qosframe *)buf;
586 		printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID,
587 			qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : "");
588 	}
589 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
590 		int off;
591 
592 		off = ieee80211_anyhdrspace(ic, wh);
593 		printf(" WEP [IV %.02x %.02x %.02x",
594 			buf[off+0], buf[off+1], buf[off+2]);
595 		if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV)
596 			printf(" %.02x %.02x %.02x",
597 				buf[off+4], buf[off+5], buf[off+6]);
598 		printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6);
599 	}
600 	if (rate >= 0)
601 		printf(" %dM", rate / 2);
602 	if (rssi >= 0)
603 		printf(" +%d", rssi);
604 	printf("\n");
605 	if (len > 0) {
606 		for (i = 0; i < len; i++) {
607 			if ((i & 1) == 0)
608 				printf(" ");
609 			printf("%02x", buf[i]);
610 		}
611 		printf("\n");
612 	}
613 }
614 
615 static __inline int
616 findrix(const struct ieee80211_rateset *rs, int r)
617 {
618 	int i;
619 
620 	for (i = 0; i < rs->rs_nrates; i++)
621 		if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r)
622 			return i;
623 	return -1;
624 }
625 
626 int
627 ieee80211_fix_rate(struct ieee80211_node *ni,
628 	struct ieee80211_rateset *nrs, int flags)
629 {
630 	struct ieee80211vap *vap = ni->ni_vap;
631 	struct ieee80211com *ic = ni->ni_ic;
632 	int i, j, rix, error;
633 	int okrate, badrate, fixedrate, ucastrate;
634 	const struct ieee80211_rateset *srs;
635 	uint8_t r;
636 
637 	error = 0;
638 	okrate = badrate = 0;
639 	ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate;
640 	if (ucastrate != IEEE80211_FIXED_RATE_NONE) {
641 		/*
642 		 * Workaround awkwardness with fixed rate.  We are called
643 		 * to check both the legacy rate set and the HT rate set
644 		 * but we must apply any legacy fixed rate check only to the
645 		 * legacy rate set and vice versa.  We cannot tell what type
646 		 * of rate set we've been given (legacy or HT) but we can
647 		 * distinguish the fixed rate type (MCS have 0x80 set).
648 		 * So to deal with this the caller communicates whether to
649 		 * check MCS or legacy rate using the flags and we use the
650 		 * type of any fixed rate to avoid applying an MCS to a
651 		 * legacy rate and vice versa.
652 		 */
653 		if (ucastrate & 0x80) {
654 			if (flags & IEEE80211_F_DOFRATE)
655 				flags &= ~IEEE80211_F_DOFRATE;
656 		} else if ((ucastrate & 0x80) == 0) {
657 			if (flags & IEEE80211_F_DOFMCS)
658 				flags &= ~IEEE80211_F_DOFMCS;
659 		}
660 		/* NB: required to make MCS match below work */
661 		ucastrate &= IEEE80211_RATE_VAL;
662 	}
663 	fixedrate = IEEE80211_FIXED_RATE_NONE;
664 	/*
665 	 * XXX we are called to process both MCS and legacy rates;
666 	 * we must use the appropriate basic rate set or chaos will
667 	 * ensue; for now callers that want MCS must supply
668 	 * IEEE80211_F_DOBRS; at some point we'll need to split this
669 	 * function so there are two variants, one for MCS and one
670 	 * for legacy rates.
671 	 */
672 	if (flags & IEEE80211_F_DOBRS)
673 		srs = (const struct ieee80211_rateset *)
674 		    ieee80211_get_suphtrates(ic, ni->ni_chan);
675 	else
676 		srs = ieee80211_get_suprates(ic, ni->ni_chan);
677 	for (i = 0; i < nrs->rs_nrates; ) {
678 		if (flags & IEEE80211_F_DOSORT) {
679 			/*
680 			 * Sort rates.
681 			 */
682 			for (j = i + 1; j < nrs->rs_nrates; j++) {
683 				if (IEEE80211_RV(nrs->rs_rates[i]) >
684 				    IEEE80211_RV(nrs->rs_rates[j])) {
685 					r = nrs->rs_rates[i];
686 					nrs->rs_rates[i] = nrs->rs_rates[j];
687 					nrs->rs_rates[j] = r;
688 				}
689 			}
690 		}
691 		r = nrs->rs_rates[i] & IEEE80211_RATE_VAL;
692 		badrate = r;
693 		/*
694 		 * Check for fixed rate.
695 		 */
696 		if (r == ucastrate)
697 			fixedrate = r;
698 		/*
699 		 * Check against supported rates.
700 		 */
701 		rix = findrix(srs, r);
702 		if (flags & IEEE80211_F_DONEGO) {
703 			if (rix < 0) {
704 				/*
705 				 * A rate in the node's rate set is not
706 				 * supported.  If this is a basic rate and we
707 				 * are operating as a STA then this is an error.
708 				 * Otherwise we just discard/ignore the rate.
709 				 */
710 				if ((flags & IEEE80211_F_JOIN) &&
711 				    (nrs->rs_rates[i] & IEEE80211_RATE_BASIC))
712 					error++;
713 			} else if ((flags & IEEE80211_F_JOIN) == 0) {
714 				/*
715 				 * Overwrite with the supported rate
716 				 * value so any basic rate bit is set.
717 				 */
718 				nrs->rs_rates[i] = srs->rs_rates[rix];
719 			}
720 		}
721 		if ((flags & IEEE80211_F_DODEL) && rix < 0) {
722 			/*
723 			 * Delete unacceptable rates.
724 			 */
725 			nrs->rs_nrates--;
726 			for (j = i; j < nrs->rs_nrates; j++)
727 				nrs->rs_rates[j] = nrs->rs_rates[j + 1];
728 			nrs->rs_rates[j] = 0;
729 			continue;
730 		}
731 		if (rix >= 0)
732 			okrate = nrs->rs_rates[i];
733 		i++;
734 	}
735 	if (okrate == 0 || error != 0 ||
736 	    ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) &&
737 	     fixedrate != ucastrate)) {
738 		IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni,
739 		    "%s: flags 0x%x okrate %d error %d fixedrate 0x%x "
740 		    "ucastrate %x\n", __func__, fixedrate, ucastrate, flags);
741 		return badrate | IEEE80211_RATE_BASIC;
742 	} else
743 		return IEEE80211_RV(okrate);
744 }
745 
746 /*
747  * Reset 11g-related state.
748  */
749 void
750 ieee80211_reset_erp(struct ieee80211com *ic)
751 {
752 	ic->ic_flags &= ~IEEE80211_F_USEPROT;
753 	ic->ic_nonerpsta = 0;
754 	ic->ic_longslotsta = 0;
755 	/*
756 	 * Short slot time is enabled only when operating in 11g
757 	 * and not in an IBSS.  We must also honor whether or not
758 	 * the driver is capable of doing it.
759 	 */
760 	ieee80211_set_shortslottime(ic,
761 		IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
762 		IEEE80211_IS_CHAN_HT(ic->ic_curchan) ||
763 		(IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
764 		ic->ic_opmode == IEEE80211_M_HOSTAP &&
765 		(ic->ic_caps & IEEE80211_C_SHSLOT)));
766 	/*
767 	 * Set short preamble and ERP barker-preamble flags.
768 	 */
769 	if (IEEE80211_IS_CHAN_A(ic->ic_curchan) ||
770 	    (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) {
771 		ic->ic_flags |= IEEE80211_F_SHPREAMBLE;
772 		ic->ic_flags &= ~IEEE80211_F_USEBARKER;
773 	} else {
774 		ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE;
775 		ic->ic_flags |= IEEE80211_F_USEBARKER;
776 	}
777 }
778 
779 /*
780  * Set the short slot time state and notify the driver.
781  */
782 void
783 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff)
784 {
785 	if (onoff)
786 		ic->ic_flags |= IEEE80211_F_SHSLOT;
787 	else
788 		ic->ic_flags &= ~IEEE80211_F_SHSLOT;
789 	/* notify driver */
790 	if (ic->ic_updateslot != NULL)
791 		ic->ic_updateslot(ic);
792 }
793 
794 /*
795  * Check if the specified rate set supports ERP.
796  * NB: the rate set is assumed to be sorted.
797  */
798 int
799 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs)
800 {
801 	static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 };
802 	int i, j;
803 
804 	if (rs->rs_nrates < nitems(rates))
805 		return 0;
806 	for (i = 0; i < nitems(rates); i++) {
807 		for (j = 0; j < rs->rs_nrates; j++) {
808 			int r = rs->rs_rates[j] & IEEE80211_RATE_VAL;
809 			if (rates[i] == r)
810 				goto next;
811 			if (r > rates[i])
812 				return 0;
813 		}
814 		return 0;
815 	next:
816 		;
817 	}
818 	return 1;
819 }
820 
821 /*
822  * Mark the basic rates for the rate table based on the
823  * operating mode.  For real 11g we mark all the 11b rates
824  * and 6, 12, and 24 OFDM.  For 11b compatibility we mark only
825  * 11b rates.  There's also a pseudo 11a-mode used to mark only
826  * the basic OFDM rates.
827  */
828 static void
829 setbasicrates(struct ieee80211_rateset *rs,
830     enum ieee80211_phymode mode, int add)
831 {
832 	static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = {
833 	    [IEEE80211_MODE_11A]	= { 3, { 12, 24, 48 } },
834 	    [IEEE80211_MODE_11B]	= { 2, { 2, 4 } },
835 					    /* NB: mixed b/g */
836 	    [IEEE80211_MODE_11G]	= { 4, { 2, 4, 11, 22 } },
837 	    [IEEE80211_MODE_TURBO_A]	= { 3, { 12, 24, 48 } },
838 	    [IEEE80211_MODE_TURBO_G]	= { 4, { 2, 4, 11, 22 } },
839 	    [IEEE80211_MODE_STURBO_A]	= { 3, { 12, 24, 48 } },
840 	    [IEEE80211_MODE_HALF]	= { 3, { 6, 12, 24 } },
841 	    [IEEE80211_MODE_QUARTER]	= { 3, { 3, 6, 12 } },
842 	    [IEEE80211_MODE_11NA]	= { 3, { 12, 24, 48 } },
843 					    /* NB: mixed b/g */
844 	    [IEEE80211_MODE_11NG]	= { 4, { 2, 4, 11, 22 } },
845 					    /* NB: mixed b/g */
846 	    [IEEE80211_MODE_VHT_2GHZ]	= { 4, { 2, 4, 11, 22 } },
847 	    [IEEE80211_MODE_VHT_5GHZ]	= { 3, { 12, 24, 48 } },
848 	};
849 	int i, j;
850 
851 	for (i = 0; i < rs->rs_nrates; i++) {
852 		if (!add)
853 			rs->rs_rates[i] &= IEEE80211_RATE_VAL;
854 		for (j = 0; j < basic[mode].rs_nrates; j++)
855 			if (basic[mode].rs_rates[j] == rs->rs_rates[i]) {
856 				rs->rs_rates[i] |= IEEE80211_RATE_BASIC;
857 				break;
858 			}
859 	}
860 }
861 
862 /*
863  * Set the basic rates in a rate set.
864  */
865 void
866 ieee80211_setbasicrates(struct ieee80211_rateset *rs,
867     enum ieee80211_phymode mode)
868 {
869 	setbasicrates(rs, mode, 0);
870 }
871 
872 /*
873  * Add basic rates to a rate set.
874  */
875 void
876 ieee80211_addbasicrates(struct ieee80211_rateset *rs,
877     enum ieee80211_phymode mode)
878 {
879 	setbasicrates(rs, mode, 1);
880 }
881 
882 /*
883  * WME protocol support.
884  *
885  * The default 11a/b/g/n parameters come from the WiFi Alliance WMM
886  * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n
887  * Draft 2.0 Test Plan (Appendix D).
888  *
889  * Static/Dynamic Turbo mode settings come from Atheros.
890  */
891 typedef struct phyParamType {
892 	uint8_t		aifsn;
893 	uint8_t		logcwmin;
894 	uint8_t		logcwmax;
895 	uint16_t	txopLimit;
896 	uint8_t 	acm;
897 } paramType;
898 
899 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = {
900 	[IEEE80211_MODE_AUTO]	= { 3, 4,  6,  0, 0 },
901 	[IEEE80211_MODE_11A]	= { 3, 4,  6,  0, 0 },
902 	[IEEE80211_MODE_11B]	= { 3, 4,  6,  0, 0 },
903 	[IEEE80211_MODE_11G]	= { 3, 4,  6,  0, 0 },
904 	[IEEE80211_MODE_FH]	= { 3, 4,  6,  0, 0 },
905 	[IEEE80211_MODE_TURBO_A]= { 2, 3,  5,  0, 0 },
906 	[IEEE80211_MODE_TURBO_G]= { 2, 3,  5,  0, 0 },
907 	[IEEE80211_MODE_STURBO_A]={ 2, 3,  5,  0, 0 },
908 	[IEEE80211_MODE_HALF]	= { 3, 4,  6,  0, 0 },
909 	[IEEE80211_MODE_QUARTER]= { 3, 4,  6,  0, 0 },
910 	[IEEE80211_MODE_11NA]	= { 3, 4,  6,  0, 0 },
911 	[IEEE80211_MODE_11NG]	= { 3, 4,  6,  0, 0 },
912 	[IEEE80211_MODE_VHT_2GHZ]	= { 3, 4,  6,  0, 0 },
913 	[IEEE80211_MODE_VHT_5GHZ]	= { 3, 4,  6,  0, 0 },
914 };
915 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = {
916 	[IEEE80211_MODE_AUTO]	= { 7, 4, 10,  0, 0 },
917 	[IEEE80211_MODE_11A]	= { 7, 4, 10,  0, 0 },
918 	[IEEE80211_MODE_11B]	= { 7, 4, 10,  0, 0 },
919 	[IEEE80211_MODE_11G]	= { 7, 4, 10,  0, 0 },
920 	[IEEE80211_MODE_FH]	= { 7, 4, 10,  0, 0 },
921 	[IEEE80211_MODE_TURBO_A]= { 7, 3, 10,  0, 0 },
922 	[IEEE80211_MODE_TURBO_G]= { 7, 3, 10,  0, 0 },
923 	[IEEE80211_MODE_STURBO_A]={ 7, 3, 10,  0, 0 },
924 	[IEEE80211_MODE_HALF]	= { 7, 4, 10,  0, 0 },
925 	[IEEE80211_MODE_QUARTER]= { 7, 4, 10,  0, 0 },
926 	[IEEE80211_MODE_11NA]	= { 7, 4, 10,  0, 0 },
927 	[IEEE80211_MODE_11NG]	= { 7, 4, 10,  0, 0 },
928 	[IEEE80211_MODE_VHT_2GHZ]	= { 7, 4, 10,  0, 0 },
929 	[IEEE80211_MODE_VHT_5GHZ]	= { 7, 4, 10,  0, 0 },
930 };
931 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = {
932 	[IEEE80211_MODE_AUTO]	= { 1, 3, 4,  94, 0 },
933 	[IEEE80211_MODE_11A]	= { 1, 3, 4,  94, 0 },
934 	[IEEE80211_MODE_11B]	= { 1, 3, 4, 188, 0 },
935 	[IEEE80211_MODE_11G]	= { 1, 3, 4,  94, 0 },
936 	[IEEE80211_MODE_FH]	= { 1, 3, 4, 188, 0 },
937 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 3,  94, 0 },
938 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 3,  94, 0 },
939 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 3,  94, 0 },
940 	[IEEE80211_MODE_HALF]	= { 1, 3, 4,  94, 0 },
941 	[IEEE80211_MODE_QUARTER]= { 1, 3, 4,  94, 0 },
942 	[IEEE80211_MODE_11NA]	= { 1, 3, 4,  94, 0 },
943 	[IEEE80211_MODE_11NG]	= { 1, 3, 4,  94, 0 },
944 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 3, 4,  94, 0 },
945 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 3, 4,  94, 0 },
946 };
947 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = {
948 	[IEEE80211_MODE_AUTO]	= { 1, 2, 3,  47, 0 },
949 	[IEEE80211_MODE_11A]	= { 1, 2, 3,  47, 0 },
950 	[IEEE80211_MODE_11B]	= { 1, 2, 3, 102, 0 },
951 	[IEEE80211_MODE_11G]	= { 1, 2, 3,  47, 0 },
952 	[IEEE80211_MODE_FH]	= { 1, 2, 3, 102, 0 },
953 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
954 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
955 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
956 	[IEEE80211_MODE_HALF]	= { 1, 2, 3,  47, 0 },
957 	[IEEE80211_MODE_QUARTER]= { 1, 2, 3,  47, 0 },
958 	[IEEE80211_MODE_11NA]	= { 1, 2, 3,  47, 0 },
959 	[IEEE80211_MODE_11NG]	= { 1, 2, 3,  47, 0 },
960 	[IEEE80211_MODE_VHT_2GHZ]	= { 1, 2, 3,  47, 0 },
961 	[IEEE80211_MODE_VHT_5GHZ]	= { 1, 2, 3,  47, 0 },
962 };
963 
964 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = {
965 	[IEEE80211_MODE_AUTO]	= { 3, 4, 10,  0, 0 },
966 	[IEEE80211_MODE_11A]	= { 3, 4, 10,  0, 0 },
967 	[IEEE80211_MODE_11B]	= { 3, 4, 10,  0, 0 },
968 	[IEEE80211_MODE_11G]	= { 3, 4, 10,  0, 0 },
969 	[IEEE80211_MODE_FH]	= { 3, 4, 10,  0, 0 },
970 	[IEEE80211_MODE_TURBO_A]= { 2, 3, 10,  0, 0 },
971 	[IEEE80211_MODE_TURBO_G]= { 2, 3, 10,  0, 0 },
972 	[IEEE80211_MODE_STURBO_A]={ 2, 3, 10,  0, 0 },
973 	[IEEE80211_MODE_HALF]	= { 3, 4, 10,  0, 0 },
974 	[IEEE80211_MODE_QUARTER]= { 3, 4, 10,  0, 0 },
975 	[IEEE80211_MODE_11NA]	= { 3, 4, 10,  0, 0 },
976 	[IEEE80211_MODE_11NG]	= { 3, 4, 10,  0, 0 },
977 };
978 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = {
979 	[IEEE80211_MODE_AUTO]	= { 2, 3, 4,  94, 0 },
980 	[IEEE80211_MODE_11A]	= { 2, 3, 4,  94, 0 },
981 	[IEEE80211_MODE_11B]	= { 2, 3, 4, 188, 0 },
982 	[IEEE80211_MODE_11G]	= { 2, 3, 4,  94, 0 },
983 	[IEEE80211_MODE_FH]	= { 2, 3, 4, 188, 0 },
984 	[IEEE80211_MODE_TURBO_A]= { 2, 2, 3,  94, 0 },
985 	[IEEE80211_MODE_TURBO_G]= { 2, 2, 3,  94, 0 },
986 	[IEEE80211_MODE_STURBO_A]={ 2, 2, 3,  94, 0 },
987 	[IEEE80211_MODE_HALF]	= { 2, 3, 4,  94, 0 },
988 	[IEEE80211_MODE_QUARTER]= { 2, 3, 4,  94, 0 },
989 	[IEEE80211_MODE_11NA]	= { 2, 3, 4,  94, 0 },
990 	[IEEE80211_MODE_11NG]	= { 2, 3, 4,  94, 0 },
991 };
992 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = {
993 	[IEEE80211_MODE_AUTO]	= { 2, 2, 3,  47, 0 },
994 	[IEEE80211_MODE_11A]	= { 2, 2, 3,  47, 0 },
995 	[IEEE80211_MODE_11B]	= { 2, 2, 3, 102, 0 },
996 	[IEEE80211_MODE_11G]	= { 2, 2, 3,  47, 0 },
997 	[IEEE80211_MODE_FH]	= { 2, 2, 3, 102, 0 },
998 	[IEEE80211_MODE_TURBO_A]= { 1, 2, 2,  47, 0 },
999 	[IEEE80211_MODE_TURBO_G]= { 1, 2, 2,  47, 0 },
1000 	[IEEE80211_MODE_STURBO_A]={ 1, 2, 2,  47, 0 },
1001 	[IEEE80211_MODE_HALF]	= { 2, 2, 3,  47, 0 },
1002 	[IEEE80211_MODE_QUARTER]= { 2, 2, 3,  47, 0 },
1003 	[IEEE80211_MODE_11NA]	= { 2, 2, 3,  47, 0 },
1004 	[IEEE80211_MODE_11NG]	= { 2, 2, 3,  47, 0 },
1005 };
1006 
1007 static void
1008 _setifsparams(struct wmeParams *wmep, const paramType *phy)
1009 {
1010 	wmep->wmep_aifsn = phy->aifsn;
1011 	wmep->wmep_logcwmin = phy->logcwmin;
1012 	wmep->wmep_logcwmax = phy->logcwmax;
1013 	wmep->wmep_txopLimit = phy->txopLimit;
1014 }
1015 
1016 static void
1017 setwmeparams(struct ieee80211vap *vap, const char *type, int ac,
1018 	struct wmeParams *wmep, const paramType *phy)
1019 {
1020 	wmep->wmep_acm = phy->acm;
1021 	_setifsparams(wmep, phy);
1022 
1023 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1024 	    "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n",
1025 	    ieee80211_wme_acnames[ac], type,
1026 	    wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin,
1027 	    wmep->wmep_logcwmax, wmep->wmep_txopLimit);
1028 }
1029 
1030 static void
1031 ieee80211_wme_initparams_locked(struct ieee80211vap *vap)
1032 {
1033 	struct ieee80211com *ic = vap->iv_ic;
1034 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1035 	const paramType *pPhyParam, *pBssPhyParam;
1036 	struct wmeParams *wmep;
1037 	enum ieee80211_phymode mode;
1038 	int i;
1039 
1040 	IEEE80211_LOCK_ASSERT(ic);
1041 
1042 	if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1)
1043 		return;
1044 
1045 	/*
1046 	 * Clear the wme cap_info field so a qoscount from a previous
1047 	 * vap doesn't confuse later code which only parses the beacon
1048 	 * field and updates hardware when said field changes.
1049 	 * Otherwise the hardware is programmed with defaults, not what
1050 	 * the beacon actually announces.
1051 	 */
1052 	wme->wme_wmeChanParams.cap_info = 0;
1053 
1054 	/*
1055 	 * Select mode; we can be called early in which case we
1056 	 * always use auto mode.  We know we'll be called when
1057 	 * entering the RUN state with bsschan setup properly
1058 	 * so state will eventually get set correctly
1059 	 */
1060 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1061 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1062 	else
1063 		mode = IEEE80211_MODE_AUTO;
1064 	for (i = 0; i < WME_NUM_AC; i++) {
1065 		switch (i) {
1066 		case WME_AC_BK:
1067 			pPhyParam = &phyParamForAC_BK[mode];
1068 			pBssPhyParam = &phyParamForAC_BK[mode];
1069 			break;
1070 		case WME_AC_VI:
1071 			pPhyParam = &phyParamForAC_VI[mode];
1072 			pBssPhyParam = &bssPhyParamForAC_VI[mode];
1073 			break;
1074 		case WME_AC_VO:
1075 			pPhyParam = &phyParamForAC_VO[mode];
1076 			pBssPhyParam = &bssPhyParamForAC_VO[mode];
1077 			break;
1078 		case WME_AC_BE:
1079 		default:
1080 			pPhyParam = &phyParamForAC_BE[mode];
1081 			pBssPhyParam = &bssPhyParamForAC_BE[mode];
1082 			break;
1083 		}
1084 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1085 		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1086 			setwmeparams(vap, "chan", i, wmep, pPhyParam);
1087 		} else {
1088 			setwmeparams(vap, "chan", i, wmep, pBssPhyParam);
1089 		}
1090 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1091 		setwmeparams(vap, "bss ", i, wmep, pBssPhyParam);
1092 	}
1093 	/* NB: check ic_bss to avoid NULL deref on initial attach */
1094 	if (vap->iv_bss != NULL) {
1095 		/*
1096 		 * Calculate aggressive mode switching threshold based
1097 		 * on beacon interval.  This doesn't need locking since
1098 		 * we're only called before entering the RUN state at
1099 		 * which point we start sending beacon frames.
1100 		 */
1101 		wme->wme_hipri_switch_thresh =
1102 			(HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100;
1103 		wme->wme_flags &= ~WME_F_AGGRMODE;
1104 		ieee80211_wme_updateparams(vap);
1105 	}
1106 }
1107 
1108 void
1109 ieee80211_wme_initparams(struct ieee80211vap *vap)
1110 {
1111 	struct ieee80211com *ic = vap->iv_ic;
1112 
1113 	IEEE80211_LOCK(ic);
1114 	ieee80211_wme_initparams_locked(vap);
1115 	IEEE80211_UNLOCK(ic);
1116 }
1117 
1118 /*
1119  * Update WME parameters for ourself and the BSS.
1120  */
1121 void
1122 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap)
1123 {
1124 	static const paramType aggrParam[IEEE80211_MODE_MAX] = {
1125 	    [IEEE80211_MODE_AUTO]	= { 2, 4, 10, 64, 0 },
1126 	    [IEEE80211_MODE_11A]	= { 2, 4, 10, 64, 0 },
1127 	    [IEEE80211_MODE_11B]	= { 2, 5, 10, 64, 0 },
1128 	    [IEEE80211_MODE_11G]	= { 2, 4, 10, 64, 0 },
1129 	    [IEEE80211_MODE_FH]		= { 2, 5, 10, 64, 0 },
1130 	    [IEEE80211_MODE_TURBO_A]	= { 1, 3, 10, 64, 0 },
1131 	    [IEEE80211_MODE_TURBO_G]	= { 1, 3, 10, 64, 0 },
1132 	    [IEEE80211_MODE_STURBO_A]	= { 1, 3, 10, 64, 0 },
1133 	    [IEEE80211_MODE_HALF]	= { 2, 4, 10, 64, 0 },
1134 	    [IEEE80211_MODE_QUARTER]	= { 2, 4, 10, 64, 0 },
1135 	    [IEEE80211_MODE_11NA]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1136 	    [IEEE80211_MODE_11NG]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1137 	    [IEEE80211_MODE_VHT_2GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1138 	    [IEEE80211_MODE_VHT_5GHZ]	= { 2, 4, 10, 64, 0 },	/* XXXcheck*/
1139 	};
1140 	struct ieee80211com *ic = vap->iv_ic;
1141 	struct ieee80211_wme_state *wme = &ic->ic_wme;
1142 	const struct wmeParams *wmep;
1143 	struct wmeParams *chanp, *bssp;
1144 	enum ieee80211_phymode mode;
1145 	int i;
1146 	int do_aggrmode = 0;
1147 
1148        	/*
1149 	 * Set up the channel access parameters for the physical
1150 	 * device.  First populate the configured settings.
1151 	 */
1152 	for (i = 0; i < WME_NUM_AC; i++) {
1153 		chanp = &wme->wme_chanParams.cap_wmeParams[i];
1154 		wmep = &wme->wme_wmeChanParams.cap_wmeParams[i];
1155 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1156 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1157 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1158 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1159 
1160 		chanp = &wme->wme_bssChanParams.cap_wmeParams[i];
1161 		wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i];
1162 		chanp->wmep_aifsn = wmep->wmep_aifsn;
1163 		chanp->wmep_logcwmin = wmep->wmep_logcwmin;
1164 		chanp->wmep_logcwmax = wmep->wmep_logcwmax;
1165 		chanp->wmep_txopLimit = wmep->wmep_txopLimit;
1166 	}
1167 
1168 	/*
1169 	 * Select mode; we can be called early in which case we
1170 	 * always use auto mode.  We know we'll be called when
1171 	 * entering the RUN state with bsschan setup properly
1172 	 * so state will eventually get set correctly
1173 	 */
1174 	if (ic->ic_bsschan != IEEE80211_CHAN_ANYC)
1175 		mode = ieee80211_chan2mode(ic->ic_bsschan);
1176 	else
1177 		mode = IEEE80211_MODE_AUTO;
1178 
1179 	/*
1180 	 * This implements aggressive mode as found in certain
1181 	 * vendors' AP's.  When there is significant high
1182 	 * priority (VI/VO) traffic in the BSS throttle back BE
1183 	 * traffic by using conservative parameters.  Otherwise
1184 	 * BE uses aggressive params to optimize performance of
1185 	 * legacy/non-QoS traffic.
1186 	 */
1187 
1188 	/* Hostap? Only if aggressive mode is enabled */
1189         if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1190 	     (wme->wme_flags & WME_F_AGGRMODE) != 0)
1191 		do_aggrmode = 1;
1192 
1193 	/*
1194 	 * Station? Only if we're in a non-QoS BSS.
1195 	 */
1196 	else if ((vap->iv_opmode == IEEE80211_M_STA &&
1197 	     (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0))
1198 		do_aggrmode = 1;
1199 
1200 	/*
1201 	 * IBSS? Only if we we have WME enabled.
1202 	 */
1203 	else if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
1204 	    (vap->iv_flags & IEEE80211_F_WME))
1205 		do_aggrmode = 1;
1206 
1207 	/*
1208 	 * If WME is disabled on this VAP, default to aggressive mode
1209 	 * regardless of the configuration.
1210 	 */
1211 	if ((vap->iv_flags & IEEE80211_F_WME) == 0)
1212 		do_aggrmode = 1;
1213 
1214 	/* XXX WDS? */
1215 
1216 	/* XXX MBSS? */
1217 
1218 	if (do_aggrmode) {
1219 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1220 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1221 
1222 		chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn;
1223 		chanp->wmep_logcwmin = bssp->wmep_logcwmin =
1224 		    aggrParam[mode].logcwmin;
1225 		chanp->wmep_logcwmax = bssp->wmep_logcwmax =
1226 		    aggrParam[mode].logcwmax;
1227 		chanp->wmep_txopLimit = bssp->wmep_txopLimit =
1228 		    (vap->iv_flags & IEEE80211_F_BURST) ?
1229 			aggrParam[mode].txopLimit : 0;
1230 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1231 		    "update %s (chan+bss) [acm %u aifsn %u logcwmin %u "
1232 		    "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE],
1233 		    chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin,
1234 		    chanp->wmep_logcwmax, chanp->wmep_txopLimit);
1235 	}
1236 
1237 
1238 	/*
1239 	 * Change the contention window based on the number of associated
1240 	 * stations.  If the number of associated stations is 1 and
1241 	 * aggressive mode is enabled, lower the contention window even
1242 	 * further.
1243 	 */
1244 	if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1245 	    ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) {
1246 		static const uint8_t logCwMin[IEEE80211_MODE_MAX] = {
1247 		    [IEEE80211_MODE_AUTO]	= 3,
1248 		    [IEEE80211_MODE_11A]	= 3,
1249 		    [IEEE80211_MODE_11B]	= 4,
1250 		    [IEEE80211_MODE_11G]	= 3,
1251 		    [IEEE80211_MODE_FH]		= 4,
1252 		    [IEEE80211_MODE_TURBO_A]	= 3,
1253 		    [IEEE80211_MODE_TURBO_G]	= 3,
1254 		    [IEEE80211_MODE_STURBO_A]	= 3,
1255 		    [IEEE80211_MODE_HALF]	= 3,
1256 		    [IEEE80211_MODE_QUARTER]	= 3,
1257 		    [IEEE80211_MODE_11NA]	= 3,
1258 		    [IEEE80211_MODE_11NG]	= 3,
1259 		    [IEEE80211_MODE_VHT_2GHZ]	= 3,
1260 		    [IEEE80211_MODE_VHT_5GHZ]	= 3,
1261 		};
1262 		chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE];
1263 		bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE];
1264 
1265 		chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode];
1266 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1267 		    "update %s (chan+bss) logcwmin %u\n",
1268 		    ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin);
1269 	}
1270 
1271 	/*
1272 	 * Arrange for the beacon update.
1273 	 *
1274 	 * XXX what about MBSS, WDS?
1275 	 */
1276 	if (vap->iv_opmode == IEEE80211_M_HOSTAP
1277 	    || vap->iv_opmode == IEEE80211_M_IBSS) {
1278 		/*
1279 		 * Arrange for a beacon update and bump the parameter
1280 		 * set number so associated stations load the new values.
1281 		 */
1282 		wme->wme_bssChanParams.cap_info =
1283 			(wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT;
1284 		ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME);
1285 	}
1286 
1287 	/* schedule the deferred WME update */
1288 	ieee80211_runtask(ic, &ic->ic_wme_task);
1289 
1290 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
1291 	    "%s: WME params updated, cap_info 0x%x\n", __func__,
1292 	    vap->iv_opmode == IEEE80211_M_STA ?
1293 		wme->wme_wmeChanParams.cap_info :
1294 		wme->wme_bssChanParams.cap_info);
1295 }
1296 
1297 void
1298 ieee80211_wme_updateparams(struct ieee80211vap *vap)
1299 {
1300 	struct ieee80211com *ic = vap->iv_ic;
1301 
1302 	if (ic->ic_caps & IEEE80211_C_WME) {
1303 		IEEE80211_LOCK(ic);
1304 		ieee80211_wme_updateparams_locked(vap);
1305 		IEEE80211_UNLOCK(ic);
1306 	}
1307 }
1308 
1309 static void
1310 parent_updown(void *arg, int npending)
1311 {
1312 	struct ieee80211com *ic = arg;
1313 
1314 	ic->ic_parent(ic);
1315 }
1316 
1317 static void
1318 update_mcast(void *arg, int npending)
1319 {
1320 	struct ieee80211com *ic = arg;
1321 
1322 	ic->ic_update_mcast(ic);
1323 }
1324 
1325 static void
1326 update_promisc(void *arg, int npending)
1327 {
1328 	struct ieee80211com *ic = arg;
1329 
1330 	ic->ic_update_promisc(ic);
1331 }
1332 
1333 static void
1334 update_channel(void *arg, int npending)
1335 {
1336 	struct ieee80211com *ic = arg;
1337 
1338 	ic->ic_set_channel(ic);
1339 	ieee80211_radiotap_chan_change(ic);
1340 }
1341 
1342 static void
1343 update_chw(void *arg, int npending)
1344 {
1345 	struct ieee80211com *ic = arg;
1346 
1347 	/*
1348 	 * XXX should we defer the channel width _config_ update until now?
1349 	 */
1350 	ic->ic_update_chw(ic);
1351 }
1352 
1353 static void
1354 update_wme(void *arg, int npending)
1355 {
1356 	struct ieee80211com *ic = arg;
1357 
1358 	/*
1359 	 * XXX should we defer the WME configuration update until now?
1360 	 */
1361 	ic->ic_wme.wme_update(ic);
1362 }
1363 
1364 static void
1365 restart_vaps(void *arg, int npending)
1366 {
1367 	struct ieee80211com *ic = arg;
1368 
1369 	ieee80211_suspend_all(ic);
1370 	ieee80211_resume_all(ic);
1371 }
1372 
1373 /*
1374  * Block until the parent is in a known state.  This is
1375  * used after any operations that dispatch a task (e.g.
1376  * to auto-configure the parent device up/down).
1377  */
1378 void
1379 ieee80211_waitfor_parent(struct ieee80211com *ic)
1380 {
1381 	taskqueue_block(ic->ic_tq);
1382 	ieee80211_draintask(ic, &ic->ic_parent_task);
1383 	ieee80211_draintask(ic, &ic->ic_mcast_task);
1384 	ieee80211_draintask(ic, &ic->ic_promisc_task);
1385 	ieee80211_draintask(ic, &ic->ic_chan_task);
1386 	ieee80211_draintask(ic, &ic->ic_bmiss_task);
1387 	ieee80211_draintask(ic, &ic->ic_chw_task);
1388 	ieee80211_draintask(ic, &ic->ic_wme_task);
1389 	taskqueue_unblock(ic->ic_tq);
1390 }
1391 
1392 /*
1393  * Check to see whether the current channel needs reset.
1394  *
1395  * Some devices don't handle being given an invalid channel
1396  * in their operating mode very well (eg wpi(4) will throw a
1397  * firmware exception.)
1398  *
1399  * Return 0 if we're ok, 1 if the channel needs to be reset.
1400  *
1401  * See PR kern/202502.
1402  */
1403 static int
1404 ieee80211_start_check_reset_chan(struct ieee80211vap *vap)
1405 {
1406 	struct ieee80211com *ic = vap->iv_ic;
1407 
1408 	if ((vap->iv_opmode == IEEE80211_M_IBSS &&
1409 	     IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) ||
1410 	    (vap->iv_opmode == IEEE80211_M_HOSTAP &&
1411 	     IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan)))
1412 		return (1);
1413 	return (0);
1414 }
1415 
1416 /*
1417  * Reset the curchan to a known good state.
1418  */
1419 static void
1420 ieee80211_start_reset_chan(struct ieee80211vap *vap)
1421 {
1422 	struct ieee80211com *ic = vap->iv_ic;
1423 
1424 	ic->ic_curchan = &ic->ic_channels[0];
1425 }
1426 
1427 /*
1428  * Start a vap running.  If this is the first vap to be
1429  * set running on the underlying device then we
1430  * automatically bring the device up.
1431  */
1432 void
1433 ieee80211_start_locked(struct ieee80211vap *vap)
1434 {
1435 	struct ifnet *ifp = vap->iv_ifp;
1436 	struct ieee80211com *ic = vap->iv_ic;
1437 
1438 	IEEE80211_LOCK_ASSERT(ic);
1439 
1440 	IEEE80211_DPRINTF(vap,
1441 		IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1442 		"start running, %d vaps running\n", ic->ic_nrunning);
1443 
1444 	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1445 		/*
1446 		 * Mark us running.  Note that it's ok to do this first;
1447 		 * if we need to bring the parent device up we defer that
1448 		 * to avoid dropping the com lock.  We expect the device
1449 		 * to respond to being marked up by calling back into us
1450 		 * through ieee80211_start_all at which point we'll come
1451 		 * back in here and complete the work.
1452 		 */
1453 		ifp->if_drv_flags |= IFF_DRV_RUNNING;
1454 		/*
1455 		 * We are not running; if this we are the first vap
1456 		 * to be brought up auto-up the parent if necessary.
1457 		 */
1458 		if (ic->ic_nrunning++ == 0) {
1459 
1460 			/* reset the channel to a known good channel */
1461 			if (ieee80211_start_check_reset_chan(vap))
1462 				ieee80211_start_reset_chan(vap);
1463 
1464 			IEEE80211_DPRINTF(vap,
1465 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1466 			    "%s: up parent %s\n", __func__, ic->ic_name);
1467 			ieee80211_runtask(ic, &ic->ic_parent_task);
1468 			return;
1469 		}
1470 	}
1471 	/*
1472 	 * If the parent is up and running, then kick the
1473 	 * 802.11 state machine as appropriate.
1474 	 */
1475 	if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) {
1476 		if (vap->iv_opmode == IEEE80211_M_STA) {
1477 #if 0
1478 			/* XXX bypasses scan too easily; disable for now */
1479 			/*
1480 			 * Try to be intelligent about clocking the state
1481 			 * machine.  If we're currently in RUN state then
1482 			 * we should be able to apply any new state/parameters
1483 			 * simply by re-associating.  Otherwise we need to
1484 			 * re-scan to select an appropriate ap.
1485 			 */
1486 			if (vap->iv_state >= IEEE80211_S_RUN)
1487 				ieee80211_new_state_locked(vap,
1488 				    IEEE80211_S_ASSOC, 1);
1489 			else
1490 #endif
1491 				ieee80211_new_state_locked(vap,
1492 				    IEEE80211_S_SCAN, 0);
1493 		} else {
1494 			/*
1495 			 * For monitor+wds mode there's nothing to do but
1496 			 * start running.  Otherwise if this is the first
1497 			 * vap to be brought up, start a scan which may be
1498 			 * preempted if the station is locked to a particular
1499 			 * channel.
1500 			 */
1501 			vap->iv_flags_ext |= IEEE80211_FEXT_REINIT;
1502 			if (vap->iv_opmode == IEEE80211_M_MONITOR ||
1503 			    vap->iv_opmode == IEEE80211_M_WDS)
1504 				ieee80211_new_state_locked(vap,
1505 				    IEEE80211_S_RUN, -1);
1506 			else
1507 				ieee80211_new_state_locked(vap,
1508 				    IEEE80211_S_SCAN, 0);
1509 		}
1510 	}
1511 }
1512 
1513 /*
1514  * Start a single vap.
1515  */
1516 void
1517 ieee80211_init(void *arg)
1518 {
1519 	struct ieee80211vap *vap = arg;
1520 
1521 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1522 	    "%s\n", __func__);
1523 
1524 	IEEE80211_LOCK(vap->iv_ic);
1525 	ieee80211_start_locked(vap);
1526 	IEEE80211_UNLOCK(vap->iv_ic);
1527 }
1528 
1529 /*
1530  * Start all runnable vap's on a device.
1531  */
1532 void
1533 ieee80211_start_all(struct ieee80211com *ic)
1534 {
1535 	struct ieee80211vap *vap;
1536 
1537 	IEEE80211_LOCK(ic);
1538 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1539 		struct ifnet *ifp = vap->iv_ifp;
1540 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1541 			ieee80211_start_locked(vap);
1542 	}
1543 	IEEE80211_UNLOCK(ic);
1544 }
1545 
1546 /*
1547  * Stop a vap.  We force it down using the state machine
1548  * then mark it's ifnet not running.  If this is the last
1549  * vap running on the underlying device then we close it
1550  * too to insure it will be properly initialized when the
1551  * next vap is brought up.
1552  */
1553 void
1554 ieee80211_stop_locked(struct ieee80211vap *vap)
1555 {
1556 	struct ieee80211com *ic = vap->iv_ic;
1557 	struct ifnet *ifp = vap->iv_ifp;
1558 
1559 	IEEE80211_LOCK_ASSERT(ic);
1560 
1561 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1562 	    "stop running, %d vaps running\n", ic->ic_nrunning);
1563 
1564 	ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1);
1565 	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1566 		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;	/* mark us stopped */
1567 		if (--ic->ic_nrunning == 0) {
1568 			IEEE80211_DPRINTF(vap,
1569 			    IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
1570 			    "down parent %s\n", ic->ic_name);
1571 			ieee80211_runtask(ic, &ic->ic_parent_task);
1572 		}
1573 	}
1574 }
1575 
1576 void
1577 ieee80211_stop(struct ieee80211vap *vap)
1578 {
1579 	struct ieee80211com *ic = vap->iv_ic;
1580 
1581 	IEEE80211_LOCK(ic);
1582 	ieee80211_stop_locked(vap);
1583 	IEEE80211_UNLOCK(ic);
1584 }
1585 
1586 /*
1587  * Stop all vap's running on a device.
1588  */
1589 void
1590 ieee80211_stop_all(struct ieee80211com *ic)
1591 {
1592 	struct ieee80211vap *vap;
1593 
1594 	IEEE80211_LOCK(ic);
1595 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1596 		struct ifnet *ifp = vap->iv_ifp;
1597 		if (IFNET_IS_UP_RUNNING(ifp))	/* NB: avoid recursion */
1598 			ieee80211_stop_locked(vap);
1599 	}
1600 	IEEE80211_UNLOCK(ic);
1601 
1602 	ieee80211_waitfor_parent(ic);
1603 }
1604 
1605 /*
1606  * Stop all vap's running on a device and arrange
1607  * for those that were running to be resumed.
1608  */
1609 void
1610 ieee80211_suspend_all(struct ieee80211com *ic)
1611 {
1612 	struct ieee80211vap *vap;
1613 
1614 	IEEE80211_LOCK(ic);
1615 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1616 		struct ifnet *ifp = vap->iv_ifp;
1617 		if (IFNET_IS_UP_RUNNING(ifp)) {	/* NB: avoid recursion */
1618 			vap->iv_flags_ext |= IEEE80211_FEXT_RESUME;
1619 			ieee80211_stop_locked(vap);
1620 		}
1621 	}
1622 	IEEE80211_UNLOCK(ic);
1623 
1624 	ieee80211_waitfor_parent(ic);
1625 }
1626 
1627 /*
1628  * Start all vap's marked for resume.
1629  */
1630 void
1631 ieee80211_resume_all(struct ieee80211com *ic)
1632 {
1633 	struct ieee80211vap *vap;
1634 
1635 	IEEE80211_LOCK(ic);
1636 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1637 		struct ifnet *ifp = vap->iv_ifp;
1638 		if (!IFNET_IS_UP_RUNNING(ifp) &&
1639 		    (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) {
1640 			vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME;
1641 			ieee80211_start_locked(vap);
1642 		}
1643 	}
1644 	IEEE80211_UNLOCK(ic);
1645 }
1646 
1647 /*
1648  * Restart all vap's running on a device.
1649  */
1650 void
1651 ieee80211_restart_all(struct ieee80211com *ic)
1652 {
1653 	/*
1654 	 * NB: do not use ieee80211_runtask here, we will
1655 	 * block & drain net80211 taskqueue.
1656 	 */
1657 	taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task);
1658 }
1659 
1660 void
1661 ieee80211_beacon_miss(struct ieee80211com *ic)
1662 {
1663 	IEEE80211_LOCK(ic);
1664 	if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) {
1665 		/* Process in a taskq, the handler may reenter the driver */
1666 		ieee80211_runtask(ic, &ic->ic_bmiss_task);
1667 	}
1668 	IEEE80211_UNLOCK(ic);
1669 }
1670 
1671 static void
1672 beacon_miss(void *arg, int npending)
1673 {
1674 	struct ieee80211com *ic = arg;
1675 	struct ieee80211vap *vap;
1676 
1677 	IEEE80211_LOCK(ic);
1678 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1679 		/*
1680 		 * We only pass events through for sta vap's in RUN+ state;
1681 		 * may be too restrictive but for now this saves all the
1682 		 * handlers duplicating these checks.
1683 		 */
1684 		if (vap->iv_opmode == IEEE80211_M_STA &&
1685 		    vap->iv_state >= IEEE80211_S_RUN &&
1686 		    vap->iv_bmiss != NULL)
1687 			vap->iv_bmiss(vap);
1688 	}
1689 	IEEE80211_UNLOCK(ic);
1690 }
1691 
1692 static void
1693 beacon_swmiss(void *arg, int npending)
1694 {
1695 	struct ieee80211vap *vap = arg;
1696 	struct ieee80211com *ic = vap->iv_ic;
1697 
1698 	IEEE80211_LOCK(ic);
1699 	if (vap->iv_state >= IEEE80211_S_RUN) {
1700 		/* XXX Call multiple times if npending > zero? */
1701 		vap->iv_bmiss(vap);
1702 	}
1703 	IEEE80211_UNLOCK(ic);
1704 }
1705 
1706 /*
1707  * Software beacon miss handling.  Check if any beacons
1708  * were received in the last period.  If not post a
1709  * beacon miss; otherwise reset the counter.
1710  */
1711 void
1712 ieee80211_swbmiss(void *arg)
1713 {
1714 	struct ieee80211vap *vap = arg;
1715 	struct ieee80211com *ic = vap->iv_ic;
1716 
1717 	IEEE80211_LOCK_ASSERT(ic);
1718 
1719 	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
1720 	    ("wrong state %d", vap->iv_state));
1721 
1722 	if (ic->ic_flags & IEEE80211_F_SCAN) {
1723 		/*
1724 		 * If scanning just ignore and reset state.  If we get a
1725 		 * bmiss after coming out of scan because we haven't had
1726 		 * time to receive a beacon then we should probe the AP
1727 		 * before posting a real bmiss (unless iv_bmiss_max has
1728 		 * been artifiically lowered).  A cleaner solution might
1729 		 * be to disable the timer on scan start/end but to handle
1730 		 * case of multiple sta vap's we'd need to disable the
1731 		 * timers of all affected vap's.
1732 		 */
1733 		vap->iv_swbmiss_count = 0;
1734 	} else if (vap->iv_swbmiss_count == 0) {
1735 		if (vap->iv_bmiss != NULL)
1736 			ieee80211_runtask(ic, &vap->iv_swbmiss_task);
1737 	} else
1738 		vap->iv_swbmiss_count = 0;
1739 	callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period,
1740 		ieee80211_swbmiss, vap);
1741 }
1742 
1743 /*
1744  * Start an 802.11h channel switch.  We record the parameters,
1745  * mark the operation pending, notify each vap through the
1746  * beacon update mechanism so it can update the beacon frame
1747  * contents, and then switch vap's to CSA state to block outbound
1748  * traffic.  Devices that handle CSA directly can use the state
1749  * switch to do the right thing so long as they call
1750  * ieee80211_csa_completeswitch when it's time to complete the
1751  * channel change.  Devices that depend on the net80211 layer can
1752  * use ieee80211_beacon_update to handle the countdown and the
1753  * channel switch.
1754  */
1755 void
1756 ieee80211_csa_startswitch(struct ieee80211com *ic,
1757 	struct ieee80211_channel *c, int mode, int count)
1758 {
1759 	struct ieee80211vap *vap;
1760 
1761 	IEEE80211_LOCK_ASSERT(ic);
1762 
1763 	ic->ic_csa_newchan = c;
1764 	ic->ic_csa_mode = mode;
1765 	ic->ic_csa_count = count;
1766 	ic->ic_flags |= IEEE80211_F_CSAPENDING;
1767 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1768 		if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1769 		    vap->iv_opmode == IEEE80211_M_IBSS ||
1770 		    vap->iv_opmode == IEEE80211_M_MBSS)
1771 			ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA);
1772 		/* switch to CSA state to block outbound traffic */
1773 		if (vap->iv_state == IEEE80211_S_RUN)
1774 			ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0);
1775 	}
1776 	ieee80211_notify_csa(ic, c, mode, count);
1777 }
1778 
1779 /*
1780  * Complete the channel switch by transitioning all CSA VAPs to RUN.
1781  * This is called by both the completion and cancellation functions
1782  * so each VAP is placed back in the RUN state and can thus transmit.
1783  */
1784 static void
1785 csa_completeswitch(struct ieee80211com *ic)
1786 {
1787 	struct ieee80211vap *vap;
1788 
1789 	ic->ic_csa_newchan = NULL;
1790 	ic->ic_flags &= ~IEEE80211_F_CSAPENDING;
1791 
1792 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1793 		if (vap->iv_state == IEEE80211_S_CSA)
1794 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1795 }
1796 
1797 /*
1798  * Complete an 802.11h channel switch started by ieee80211_csa_startswitch.
1799  * We clear state and move all vap's in CSA state to RUN state
1800  * so they can again transmit.
1801  *
1802  * Although this may not be completely correct, update the BSS channel
1803  * for each VAP to the newly configured channel. The setcurchan sets
1804  * the current operating channel for the interface (so the radio does
1805  * switch over) but the VAP BSS isn't updated, leading to incorrectly
1806  * reported information via ioctl.
1807  */
1808 void
1809 ieee80211_csa_completeswitch(struct ieee80211com *ic)
1810 {
1811 	struct ieee80211vap *vap;
1812 
1813 	IEEE80211_LOCK_ASSERT(ic);
1814 
1815 	KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending"));
1816 
1817 	ieee80211_setcurchan(ic, ic->ic_csa_newchan);
1818 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1819 		if (vap->iv_state == IEEE80211_S_CSA)
1820 			vap->iv_bss->ni_chan = ic->ic_curchan;
1821 
1822 	csa_completeswitch(ic);
1823 }
1824 
1825 /*
1826  * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch.
1827  * We clear state and move all vap's in CSA state to RUN state
1828  * so they can again transmit.
1829  */
1830 void
1831 ieee80211_csa_cancelswitch(struct ieee80211com *ic)
1832 {
1833 	IEEE80211_LOCK_ASSERT(ic);
1834 
1835 	csa_completeswitch(ic);
1836 }
1837 
1838 /*
1839  * Complete a DFS CAC started by ieee80211_dfs_cac_start.
1840  * We clear state and move all vap's in CAC state to RUN state.
1841  */
1842 void
1843 ieee80211_cac_completeswitch(struct ieee80211vap *vap0)
1844 {
1845 	struct ieee80211com *ic = vap0->iv_ic;
1846 	struct ieee80211vap *vap;
1847 
1848 	IEEE80211_LOCK(ic);
1849 	/*
1850 	 * Complete CAC state change for lead vap first; then
1851 	 * clock all the other vap's waiting.
1852 	 */
1853 	KASSERT(vap0->iv_state == IEEE80211_S_CAC,
1854 	    ("wrong state %d", vap0->iv_state));
1855 	ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0);
1856 
1857 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next)
1858 		if (vap->iv_state == IEEE80211_S_CAC && vap != vap0)
1859 			ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0);
1860 	IEEE80211_UNLOCK(ic);
1861 }
1862 
1863 /*
1864  * Force all vap's other than the specified vap to the INIT state
1865  * and mark them as waiting for a scan to complete.  These vaps
1866  * will be brought up when the scan completes and the scanning vap
1867  * reaches RUN state by wakeupwaiting.
1868  */
1869 static void
1870 markwaiting(struct ieee80211vap *vap0)
1871 {
1872 	struct ieee80211com *ic = vap0->iv_ic;
1873 	struct ieee80211vap *vap;
1874 
1875 	IEEE80211_LOCK_ASSERT(ic);
1876 
1877 	/*
1878 	 * A vap list entry can not disappear since we are running on the
1879 	 * taskqueue and a vap destroy will queue and drain another state
1880 	 * change task.
1881 	 */
1882 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1883 		if (vap == vap0)
1884 			continue;
1885 		if (vap->iv_state != IEEE80211_S_INIT) {
1886 			/* NB: iv_newstate may drop the lock */
1887 			vap->iv_newstate(vap, IEEE80211_S_INIT, 0);
1888 			IEEE80211_LOCK_ASSERT(ic);
1889 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
1890 		}
1891 	}
1892 }
1893 
1894 /*
1895  * Wakeup all vap's waiting for a scan to complete.  This is the
1896  * companion to markwaiting (above) and is used to coordinate
1897  * multiple vaps scanning.
1898  * This is called from the state taskqueue.
1899  */
1900 static void
1901 wakeupwaiting(struct ieee80211vap *vap0)
1902 {
1903 	struct ieee80211com *ic = vap0->iv_ic;
1904 	struct ieee80211vap *vap;
1905 
1906 	IEEE80211_LOCK_ASSERT(ic);
1907 
1908 	/*
1909 	 * A vap list entry can not disappear since we are running on the
1910 	 * taskqueue and a vap destroy will queue and drain another state
1911 	 * change task.
1912 	 */
1913 	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
1914 		if (vap == vap0)
1915 			continue;
1916 		if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) {
1917 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
1918 			/* NB: sta's cannot go INIT->RUN */
1919 			/* NB: iv_newstate may drop the lock */
1920 			vap->iv_newstate(vap,
1921 			    vap->iv_opmode == IEEE80211_M_STA ?
1922 			        IEEE80211_S_SCAN : IEEE80211_S_RUN, 0);
1923 			IEEE80211_LOCK_ASSERT(ic);
1924 		}
1925 	}
1926 }
1927 
1928 /*
1929  * Handle post state change work common to all operating modes.
1930  */
1931 static void
1932 ieee80211_newstate_cb(void *xvap, int npending)
1933 {
1934 	struct ieee80211vap *vap = xvap;
1935 	struct ieee80211com *ic = vap->iv_ic;
1936 	enum ieee80211_state nstate, ostate;
1937 	int arg, rc;
1938 
1939 	IEEE80211_LOCK(ic);
1940 	nstate = vap->iv_nstate;
1941 	arg = vap->iv_nstate_arg;
1942 
1943 	if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) {
1944 		/*
1945 		 * We have been requested to drop back to the INIT before
1946 		 * proceeding to the new state.
1947 		 */
1948 		/* Deny any state changes while we are here. */
1949 		vap->iv_nstate = IEEE80211_S_INIT;
1950 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1951 		    "%s: %s -> %s arg %d\n", __func__,
1952 		    ieee80211_state_name[vap->iv_state],
1953 		    ieee80211_state_name[vap->iv_nstate], arg);
1954 		vap->iv_newstate(vap, vap->iv_nstate, 0);
1955 		IEEE80211_LOCK_ASSERT(ic);
1956 		vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT |
1957 		    IEEE80211_FEXT_STATEWAIT);
1958 		/* enqueue new state transition after cancel_scan() task */
1959 		ieee80211_new_state_locked(vap, nstate, arg);
1960 		goto done;
1961 	}
1962 
1963 	ostate = vap->iv_state;
1964 	if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) {
1965 		/*
1966 		 * SCAN was forced; e.g. on beacon miss.  Force other running
1967 		 * vap's to INIT state and mark them as waiting for the scan to
1968 		 * complete.  This insures they don't interfere with our
1969 		 * scanning.  Since we are single threaded the vaps can not
1970 		 * transition again while we are executing.
1971 		 *
1972 		 * XXX not always right, assumes ap follows sta
1973 		 */
1974 		markwaiting(vap);
1975 	}
1976 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1977 	    "%s: %s -> %s arg %d\n", __func__,
1978 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg);
1979 
1980 	rc = vap->iv_newstate(vap, nstate, arg);
1981 	IEEE80211_LOCK_ASSERT(ic);
1982 	vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT;
1983 	if (rc != 0) {
1984 		/* State transition failed */
1985 		KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred"));
1986 		KASSERT(nstate != IEEE80211_S_INIT,
1987 		    ("INIT state change failed"));
1988 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
1989 		    "%s: %s returned error %d\n", __func__,
1990 		    ieee80211_state_name[nstate], rc);
1991 		goto done;
1992 	}
1993 
1994 	/* No actual transition, skip post processing */
1995 	if (ostate == nstate)
1996 		goto done;
1997 
1998 	if (nstate == IEEE80211_S_RUN) {
1999 		/*
2000 		 * OACTIVE may be set on the vap if the upper layer
2001 		 * tried to transmit (e.g. IPv6 NDP) before we reach
2002 		 * RUN state.  Clear it and restart xmit.
2003 		 *
2004 		 * Note this can also happen as a result of SLEEP->RUN
2005 		 * (i.e. coming out of power save mode).
2006 		 */
2007 		vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2008 
2009 		/*
2010 		 * XXX TODO Kick-start a VAP queue - this should be a method!
2011 		 */
2012 
2013 		/* bring up any vaps waiting on us */
2014 		wakeupwaiting(vap);
2015 	} else if (nstate == IEEE80211_S_INIT) {
2016 		/*
2017 		 * Flush the scan cache if we did the last scan (XXX?)
2018 		 * and flush any frames on send queues from this vap.
2019 		 * Note the mgt q is used only for legacy drivers and
2020 		 * will go away shortly.
2021 		 */
2022 		ieee80211_scan_flush(vap);
2023 
2024 		/*
2025 		 * XXX TODO: ic/vap queue flush
2026 		 */
2027 	}
2028 done:
2029 	IEEE80211_UNLOCK(ic);
2030 }
2031 
2032 /*
2033  * Public interface for initiating a state machine change.
2034  * This routine single-threads the request and coordinates
2035  * the scheduling of multiple vaps for the purpose of selecting
2036  * an operating channel.  Specifically the following scenarios
2037  * are handled:
2038  * o only one vap can be selecting a channel so on transition to
2039  *   SCAN state if another vap is already scanning then
2040  *   mark the caller for later processing and return without
2041  *   doing anything (XXX? expectations by caller of synchronous operation)
2042  * o only one vap can be doing CAC of a channel so on transition to
2043  *   CAC state if another vap is already scanning for radar then
2044  *   mark the caller for later processing and return without
2045  *   doing anything (XXX? expectations by caller of synchronous operation)
2046  * o if another vap is already running when a request is made
2047  *   to SCAN then an operating channel has been chosen; bypass
2048  *   the scan and just join the channel
2049  *
2050  * Note that the state change call is done through the iv_newstate
2051  * method pointer so any driver routine gets invoked.  The driver
2052  * will normally call back into operating mode-specific
2053  * ieee80211_newstate routines (below) unless it needs to completely
2054  * bypass the state machine (e.g. because the firmware has it's
2055  * own idea how things should work).  Bypassing the net80211 layer
2056  * is usually a mistake and indicates lack of proper integration
2057  * with the net80211 layer.
2058  */
2059 int
2060 ieee80211_new_state_locked(struct ieee80211vap *vap,
2061 	enum ieee80211_state nstate, int arg)
2062 {
2063 	struct ieee80211com *ic = vap->iv_ic;
2064 	struct ieee80211vap *vp;
2065 	enum ieee80211_state ostate;
2066 	int nrunning, nscanning;
2067 
2068 	IEEE80211_LOCK_ASSERT(ic);
2069 
2070 	if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) {
2071 		if (vap->iv_nstate == IEEE80211_S_INIT ||
2072 		    ((vap->iv_state == IEEE80211_S_INIT ||
2073 		    (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) &&
2074 		    vap->iv_nstate == IEEE80211_S_SCAN &&
2075 		    nstate > IEEE80211_S_SCAN)) {
2076 			/*
2077 			 * XXX The vap is being stopped/started,
2078 			 * do not allow any other state changes
2079 			 * until this is completed.
2080 			 */
2081 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2082 			    "%s: %s -> %s (%s) transition discarded\n",
2083 			    __func__,
2084 			    ieee80211_state_name[vap->iv_state],
2085 			    ieee80211_state_name[nstate],
2086 			    ieee80211_state_name[vap->iv_nstate]);
2087 			return -1;
2088 		} else if (vap->iv_state != vap->iv_nstate) {
2089 #if 0
2090 			/* Warn if the previous state hasn't completed. */
2091 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2092 			    "%s: pending %s -> %s transition lost\n", __func__,
2093 			    ieee80211_state_name[vap->iv_state],
2094 			    ieee80211_state_name[vap->iv_nstate]);
2095 #else
2096 			/* XXX temporarily enable to identify issues */
2097 			if_printf(vap->iv_ifp,
2098 			    "%s: pending %s -> %s transition lost\n",
2099 			    __func__, ieee80211_state_name[vap->iv_state],
2100 			    ieee80211_state_name[vap->iv_nstate]);
2101 #endif
2102 		}
2103 	}
2104 
2105 	nrunning = nscanning = 0;
2106 	/* XXX can track this state instead of calculating */
2107 	TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) {
2108 		if (vp != vap) {
2109 			if (vp->iv_state >= IEEE80211_S_RUN)
2110 				nrunning++;
2111 			/* XXX doesn't handle bg scan */
2112 			/* NB: CAC+AUTH+ASSOC treated like SCAN */
2113 			else if (vp->iv_state > IEEE80211_S_INIT)
2114 				nscanning++;
2115 		}
2116 	}
2117 	ostate = vap->iv_state;
2118 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2119 	    "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__,
2120 	    ieee80211_state_name[ostate], ieee80211_state_name[nstate],
2121 	    nrunning, nscanning);
2122 	switch (nstate) {
2123 	case IEEE80211_S_SCAN:
2124 		if (ostate == IEEE80211_S_INIT) {
2125 			/*
2126 			 * INIT -> SCAN happens on initial bringup.
2127 			 */
2128 			KASSERT(!(nscanning && nrunning),
2129 			    ("%d scanning and %d running", nscanning, nrunning));
2130 			if (nscanning) {
2131 				/*
2132 				 * Someone is scanning, defer our state
2133 				 * change until the work has completed.
2134 				 */
2135 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2136 				    "%s: defer %s -> %s\n",
2137 				    __func__, ieee80211_state_name[ostate],
2138 				    ieee80211_state_name[nstate]);
2139 				vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2140 				return 0;
2141 			}
2142 			if (nrunning) {
2143 				/*
2144 				 * Someone is operating; just join the channel
2145 				 * they have chosen.
2146 				 */
2147 				/* XXX kill arg? */
2148 				/* XXX check each opmode, adhoc? */
2149 				if (vap->iv_opmode == IEEE80211_M_STA)
2150 					nstate = IEEE80211_S_SCAN;
2151 				else
2152 					nstate = IEEE80211_S_RUN;
2153 #ifdef IEEE80211_DEBUG
2154 				if (nstate != IEEE80211_S_SCAN) {
2155 					IEEE80211_DPRINTF(vap,
2156 					    IEEE80211_MSG_STATE,
2157 					    "%s: override, now %s -> %s\n",
2158 					    __func__,
2159 					    ieee80211_state_name[ostate],
2160 					    ieee80211_state_name[nstate]);
2161 				}
2162 #endif
2163 			}
2164 		}
2165 		break;
2166 	case IEEE80211_S_RUN:
2167 		if (vap->iv_opmode == IEEE80211_M_WDS &&
2168 		    (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) &&
2169 		    nscanning) {
2170 			/*
2171 			 * Legacy WDS with someone else scanning; don't
2172 			 * go online until that completes as we should
2173 			 * follow the other vap to the channel they choose.
2174 			 */
2175 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2176 			     "%s: defer %s -> %s (legacy WDS)\n", __func__,
2177 			     ieee80211_state_name[ostate],
2178 			     ieee80211_state_name[nstate]);
2179 			vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT;
2180 			return 0;
2181 		}
2182 		if (vap->iv_opmode == IEEE80211_M_HOSTAP &&
2183 		    IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2184 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
2185 		    !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) {
2186 			/*
2187 			 * This is a DFS channel, transition to CAC state
2188 			 * instead of RUN.  This allows us to initiate
2189 			 * Channel Availability Check (CAC) as specified
2190 			 * by 11h/DFS.
2191 			 */
2192 			nstate = IEEE80211_S_CAC;
2193 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE,
2194 			     "%s: override %s -> %s (DFS)\n", __func__,
2195 			     ieee80211_state_name[ostate],
2196 			     ieee80211_state_name[nstate]);
2197 		}
2198 		break;
2199 	case IEEE80211_S_INIT:
2200 		/* cancel any scan in progress */
2201 		ieee80211_cancel_scan(vap);
2202 		if (ostate == IEEE80211_S_INIT ) {
2203 			/* XXX don't believe this */
2204 			/* INIT -> INIT. nothing to do */
2205 			vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT;
2206 		}
2207 		/* fall thru... */
2208 	default:
2209 		break;
2210 	}
2211 	/* defer the state change to a thread */
2212 	vap->iv_nstate = nstate;
2213 	vap->iv_nstate_arg = arg;
2214 	vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT;
2215 	ieee80211_runtask(ic, &vap->iv_nstate_task);
2216 	return EINPROGRESS;
2217 }
2218 
2219 int
2220 ieee80211_new_state(struct ieee80211vap *vap,
2221 	enum ieee80211_state nstate, int arg)
2222 {
2223 	struct ieee80211com *ic = vap->iv_ic;
2224 	int rc;
2225 
2226 	IEEE80211_LOCK(ic);
2227 	rc = ieee80211_new_state_locked(vap, nstate, arg);
2228 	IEEE80211_UNLOCK(ic);
2229 	return rc;
2230 }
2231