1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 /* 108 * Reason code descriptions were (mostly) obtained from 109 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 110 */ 111 const char * 112 ieee80211_reason_to_string(uint16_t reason) 113 { 114 switch (reason) { 115 case IEEE80211_REASON_UNSPECIFIED: 116 return ("unspecified"); 117 case IEEE80211_REASON_AUTH_EXPIRE: 118 return ("previous authentication is expired"); 119 case IEEE80211_REASON_AUTH_LEAVE: 120 return ("sending STA is leaving/has left IBSS or ESS"); 121 case IEEE80211_REASON_ASSOC_EXPIRE: 122 return ("disassociated due to inactivity"); 123 case IEEE80211_REASON_ASSOC_TOOMANY: 124 return ("too many associated STAs"); 125 case IEEE80211_REASON_NOT_AUTHED: 126 return ("class 2 frame received from nonauthenticated STA"); 127 case IEEE80211_REASON_NOT_ASSOCED: 128 return ("class 3 frame received from nonassociated STA"); 129 case IEEE80211_REASON_ASSOC_LEAVE: 130 return ("sending STA is leaving/has left BSS"); 131 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 132 return ("STA requesting (re)association is not authenticated"); 133 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 134 return ("information in the Power Capability element is " 135 "unacceptable"); 136 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 137 return ("information in the Supported Channels element is " 138 "unacceptable"); 139 case IEEE80211_REASON_IE_INVALID: 140 return ("invalid element"); 141 case IEEE80211_REASON_MIC_FAILURE: 142 return ("MIC failure"); 143 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 144 return ("4-Way handshake timeout"); 145 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 146 return ("group key update timeout"); 147 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 148 return ("element in 4-Way handshake different from " 149 "(re)association request/probe response/beacon frame"); 150 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 151 return ("invalid group cipher"); 152 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 153 return ("invalid pairwise cipher"); 154 case IEEE80211_REASON_AKMP_INVALID: 155 return ("invalid AKMP"); 156 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 157 return ("unsupported version in RSN IE"); 158 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 159 return ("invalid capabilities in RSN IE"); 160 case IEEE80211_REASON_802_1X_AUTH_FAILED: 161 return ("IEEE 802.1X authentication failed"); 162 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 163 return ("cipher suite rejected because of the security " 164 "policy"); 165 case IEEE80211_REASON_UNSPECIFIED_QOS: 166 return ("unspecified (QoS-related)"); 167 case IEEE80211_REASON_INSUFFICIENT_BW: 168 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 169 case IEEE80211_REASON_TOOMANY_FRAMES: 170 return ("too many frames need to be acknowledged"); 171 case IEEE80211_REASON_OUTSIDE_TXOP: 172 return ("STA is transmitting outside the limits of its TXOPs"); 173 case IEEE80211_REASON_LEAVING_QBSS: 174 return ("requested from peer STA (the STA is " 175 "resetting/leaving the BSS)"); 176 case IEEE80211_REASON_BAD_MECHANISM: 177 return ("requested from peer STA (it does not want to use " 178 "the mechanism)"); 179 case IEEE80211_REASON_SETUP_NEEDED: 180 return ("requested from peer STA (setup is required for the " 181 "used mechanism)"); 182 case IEEE80211_REASON_TIMEOUT: 183 return ("requested from peer STA (timeout)"); 184 case IEEE80211_REASON_PEER_LINK_CANCELED: 185 return ("SME cancels the mesh peering instance (not related " 186 "to the maximum number of peer mesh STAs)"); 187 case IEEE80211_REASON_MESH_MAX_PEERS: 188 return ("maximum number of peer mesh STAs was reached"); 189 case IEEE80211_REASON_MESH_CPVIOLATION: 190 return ("the received information violates the Mesh " 191 "Configuration policy configured in the mesh STA " 192 "profile"); 193 case IEEE80211_REASON_MESH_CLOSE_RCVD: 194 return ("the mesh STA has received a Mesh Peering Close " 195 "message requesting to close the mesh peering"); 196 case IEEE80211_REASON_MESH_MAX_RETRIES: 197 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 198 "Peering Open messages, without receiving a Mesh " 199 "Peering Confirm message"); 200 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 201 return ("the confirmTimer for the mesh peering instance times " 202 "out"); 203 case IEEE80211_REASON_MESH_INVALID_GTK: 204 return ("the mesh STA fails to unwrap the GTK or the values " 205 "in the wrapped contents do not match"); 206 case IEEE80211_REASON_MESH_INCONS_PARAMS: 207 return ("the mesh STA receives inconsistent information about " 208 "the mesh parameters between Mesh Peering Management " 209 "frames"); 210 case IEEE80211_REASON_MESH_INVALID_SECURITY: 211 return ("the mesh STA fails the authenticated mesh peering " 212 "exchange because due to failure in selecting " 213 "pairwise/group ciphersuite"); 214 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 215 return ("the mesh STA does not have proxy information for " 216 "this external destination"); 217 case IEEE80211_REASON_MESH_PERR_NO_FI: 218 return ("the mesh STA does not have forwarding information " 219 "for this destination"); 220 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 221 return ("the mesh STA determines that the link to the next " 222 "hop of an active path in its forwarding information " 223 "is no longer usable"); 224 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 225 return ("the MAC address of the STA already exists in the " 226 "mesh BSS"); 227 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 228 return ("the mesh STA performs channel switch to meet " 229 "regulatory requirements"); 230 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 231 return ("the mesh STA performs channel switch with " 232 "unspecified reason"); 233 default: 234 return ("reserved/unknown"); 235 } 236 } 237 238 static void beacon_miss(void *, int); 239 static void beacon_swmiss(void *, int); 240 static void parent_updown(void *, int); 241 static void update_mcast(void *, int); 242 static void update_promisc(void *, int); 243 static void update_channel(void *, int); 244 static void update_chw(void *, int); 245 static void vap_update_wme(void *, int); 246 static void vap_update_slot(void *, int); 247 static void restart_vaps(void *, int); 248 static void vap_update_erp_protmode(void *, int); 249 static void vap_update_preamble(void *, int); 250 static void vap_update_ht_protmode(void *, int); 251 static void ieee80211_newstate_cb(void *, int); 252 253 static int 254 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 255 const struct ieee80211_bpf_params *params) 256 { 257 258 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 259 m_freem(m); 260 return ENETDOWN; 261 } 262 263 void 264 ieee80211_proto_attach(struct ieee80211com *ic) 265 { 266 uint8_t hdrlen; 267 268 /* override the 802.3 setting */ 269 hdrlen = ic->ic_headroom 270 + sizeof(struct ieee80211_qosframe_addr4) 271 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 272 + IEEE80211_WEP_EXTIVLEN; 273 /* XXX no way to recalculate on ifdetach */ 274 if (ALIGN(hdrlen) > max_linkhdr) { 275 /* XXX sanity check... */ 276 max_linkhdr = ALIGN(hdrlen); 277 max_hdr = max_linkhdr + max_protohdr; 278 max_datalen = MHLEN - max_hdr; 279 } 280 //ic->ic_protmode = IEEE80211_PROT_CTSONLY; 281 282 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 283 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 284 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 285 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 286 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 287 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 288 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 289 290 ic->ic_wme.wme_hipri_switch_hysteresis = 291 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 292 293 /* initialize management frame handlers */ 294 ic->ic_send_mgmt = ieee80211_send_mgmt; 295 ic->ic_raw_xmit = null_raw_xmit; 296 297 ieee80211_adhoc_attach(ic); 298 ieee80211_sta_attach(ic); 299 ieee80211_wds_attach(ic); 300 ieee80211_hostap_attach(ic); 301 #ifdef IEEE80211_SUPPORT_MESH 302 ieee80211_mesh_attach(ic); 303 #endif 304 ieee80211_monitor_attach(ic); 305 } 306 307 void 308 ieee80211_proto_detach(struct ieee80211com *ic) 309 { 310 ieee80211_monitor_detach(ic); 311 #ifdef IEEE80211_SUPPORT_MESH 312 ieee80211_mesh_detach(ic); 313 #endif 314 ieee80211_hostap_detach(ic); 315 ieee80211_wds_detach(ic); 316 ieee80211_adhoc_detach(ic); 317 ieee80211_sta_detach(ic); 318 } 319 320 static void 321 null_update_beacon(struct ieee80211vap *vap, int item) 322 { 323 } 324 325 void 326 ieee80211_proto_vattach(struct ieee80211vap *vap) 327 { 328 struct ieee80211com *ic = vap->iv_ic; 329 struct ifnet *ifp = vap->iv_ifp; 330 int i; 331 332 /* override the 802.3 setting */ 333 ifp->if_hdrlen = ic->ic_headroom 334 + sizeof(struct ieee80211_qosframe_addr4) 335 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 336 + IEEE80211_WEP_EXTIVLEN; 337 338 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 339 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 340 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 341 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 342 callout_init(&vap->iv_mgtsend, 1); 343 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 344 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 345 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 346 TASK_INIT(&vap->iv_slot_task, 0, vap_update_slot, vap); 347 TASK_INIT(&vap->iv_erp_protmode_task, 0, vap_update_erp_protmode, vap); 348 TASK_INIT(&vap->iv_ht_protmode_task, 0, vap_update_ht_protmode, vap); 349 TASK_INIT(&vap->iv_preamble_task, 0, vap_update_preamble, vap); 350 /* 351 * Install default tx rate handling: no fixed rate, lowest 352 * supported rate for mgmt and multicast frames. Default 353 * max retry count. These settings can be changed by the 354 * driver and/or user applications. 355 */ 356 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 357 if (isclr(ic->ic_modecaps, i)) 358 continue; 359 360 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 361 362 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 363 364 /* 365 * Setting the management rate to MCS 0 assumes that the 366 * BSS Basic rate set is empty and the BSS Basic MCS set 367 * is not. 368 * 369 * Since we're not checking this, default to the lowest 370 * defined rate for this mode. 371 * 372 * At least one 11n AP (DLINK DIR-825) is reported to drop 373 * some MCS management traffic (eg BA response frames.) 374 * 375 * See also: 9.6.0 of the 802.11n-2009 specification. 376 */ 377 #ifdef NOTYET 378 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 379 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 380 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 381 } else { 382 vap->iv_txparms[i].mgmtrate = 383 rs->rs_rates[0] & IEEE80211_RATE_VAL; 384 vap->iv_txparms[i].mcastrate = 385 rs->rs_rates[0] & IEEE80211_RATE_VAL; 386 } 387 #endif 388 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 389 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 390 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 391 } 392 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 393 394 vap->iv_update_beacon = null_update_beacon; 395 vap->iv_deliver_data = ieee80211_deliver_data; 396 vap->iv_protmode = IEEE80211_PROT_CTSONLY; 397 398 /* attach support for operating mode */ 399 ic->ic_vattach[vap->iv_opmode](vap); 400 } 401 402 void 403 ieee80211_proto_vdetach(struct ieee80211vap *vap) 404 { 405 #define FREEAPPIE(ie) do { \ 406 if (ie != NULL) \ 407 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 408 } while (0) 409 /* 410 * Detach operating mode module. 411 */ 412 if (vap->iv_opdetach != NULL) 413 vap->iv_opdetach(vap); 414 /* 415 * This should not be needed as we detach when reseting 416 * the state but be conservative here since the 417 * authenticator may do things like spawn kernel threads. 418 */ 419 if (vap->iv_auth->ia_detach != NULL) 420 vap->iv_auth->ia_detach(vap); 421 /* 422 * Detach any ACL'ator. 423 */ 424 if (vap->iv_acl != NULL) 425 vap->iv_acl->iac_detach(vap); 426 427 FREEAPPIE(vap->iv_appie_beacon); 428 FREEAPPIE(vap->iv_appie_probereq); 429 FREEAPPIE(vap->iv_appie_proberesp); 430 FREEAPPIE(vap->iv_appie_assocreq); 431 FREEAPPIE(vap->iv_appie_assocresp); 432 FREEAPPIE(vap->iv_appie_wpa); 433 #undef FREEAPPIE 434 } 435 436 /* 437 * Simple-minded authenticator module support. 438 */ 439 440 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 441 /* XXX well-known names */ 442 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 443 "wlan_internal", /* IEEE80211_AUTH_NONE */ 444 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 445 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 446 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 447 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 448 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 449 }; 450 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 451 452 static const struct ieee80211_authenticator auth_internal = { 453 .ia_name = "wlan_internal", 454 .ia_attach = NULL, 455 .ia_detach = NULL, 456 .ia_node_join = NULL, 457 .ia_node_leave = NULL, 458 }; 459 460 /* 461 * Setup internal authenticators once; they are never unregistered. 462 */ 463 static void 464 ieee80211_auth_setup(void) 465 { 466 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 467 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 468 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 469 } 470 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 471 472 const struct ieee80211_authenticator * 473 ieee80211_authenticator_get(int auth) 474 { 475 if (auth >= IEEE80211_AUTH_MAX) 476 return NULL; 477 if (authenticators[auth] == NULL) 478 ieee80211_load_module(auth_modnames[auth]); 479 return authenticators[auth]; 480 } 481 482 void 483 ieee80211_authenticator_register(int type, 484 const struct ieee80211_authenticator *auth) 485 { 486 if (type >= IEEE80211_AUTH_MAX) 487 return; 488 authenticators[type] = auth; 489 } 490 491 void 492 ieee80211_authenticator_unregister(int type) 493 { 494 495 if (type >= IEEE80211_AUTH_MAX) 496 return; 497 authenticators[type] = NULL; 498 } 499 500 /* 501 * Very simple-minded ACL module support. 502 */ 503 /* XXX just one for now */ 504 static const struct ieee80211_aclator *acl = NULL; 505 506 void 507 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 508 { 509 printf("wlan: %s acl policy registered\n", iac->iac_name); 510 acl = iac; 511 } 512 513 void 514 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 515 { 516 if (acl == iac) 517 acl = NULL; 518 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 519 } 520 521 const struct ieee80211_aclator * 522 ieee80211_aclator_get(const char *name) 523 { 524 if (acl == NULL) 525 ieee80211_load_module("wlan_acl"); 526 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 527 } 528 529 void 530 ieee80211_print_essid(const uint8_t *essid, int len) 531 { 532 const uint8_t *p; 533 int i; 534 535 if (len > IEEE80211_NWID_LEN) 536 len = IEEE80211_NWID_LEN; 537 /* determine printable or not */ 538 for (i = 0, p = essid; i < len; i++, p++) { 539 if (*p < ' ' || *p > 0x7e) 540 break; 541 } 542 if (i == len) { 543 printf("\""); 544 for (i = 0, p = essid; i < len; i++, p++) 545 printf("%c", *p); 546 printf("\""); 547 } else { 548 printf("0x"); 549 for (i = 0, p = essid; i < len; i++, p++) 550 printf("%02x", *p); 551 } 552 } 553 554 void 555 ieee80211_dump_pkt(struct ieee80211com *ic, 556 const uint8_t *buf, int len, int rate, int rssi) 557 { 558 const struct ieee80211_frame *wh; 559 int i; 560 561 wh = (const struct ieee80211_frame *)buf; 562 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 563 case IEEE80211_FC1_DIR_NODS: 564 printf("NODS %s", ether_sprintf(wh->i_addr2)); 565 printf("->%s", ether_sprintf(wh->i_addr1)); 566 printf("(%s)", ether_sprintf(wh->i_addr3)); 567 break; 568 case IEEE80211_FC1_DIR_TODS: 569 printf("TODS %s", ether_sprintf(wh->i_addr2)); 570 printf("->%s", ether_sprintf(wh->i_addr3)); 571 printf("(%s)", ether_sprintf(wh->i_addr1)); 572 break; 573 case IEEE80211_FC1_DIR_FROMDS: 574 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 575 printf("->%s", ether_sprintf(wh->i_addr1)); 576 printf("(%s)", ether_sprintf(wh->i_addr2)); 577 break; 578 case IEEE80211_FC1_DIR_DSTODS: 579 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 580 printf("->%s", ether_sprintf(wh->i_addr3)); 581 printf("(%s", ether_sprintf(wh->i_addr2)); 582 printf("->%s)", ether_sprintf(wh->i_addr1)); 583 break; 584 } 585 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 586 case IEEE80211_FC0_TYPE_DATA: 587 printf(" data"); 588 break; 589 case IEEE80211_FC0_TYPE_MGT: 590 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 591 break; 592 default: 593 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 594 break; 595 } 596 if (IEEE80211_QOS_HAS_SEQ(wh)) { 597 const struct ieee80211_qosframe *qwh = 598 (const struct ieee80211_qosframe *)buf; 599 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 600 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 601 } 602 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 603 int off; 604 605 off = ieee80211_anyhdrspace(ic, wh); 606 printf(" WEP [IV %.02x %.02x %.02x", 607 buf[off+0], buf[off+1], buf[off+2]); 608 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 609 printf(" %.02x %.02x %.02x", 610 buf[off+4], buf[off+5], buf[off+6]); 611 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 612 } 613 if (rate >= 0) 614 printf(" %dM", rate / 2); 615 if (rssi >= 0) 616 printf(" +%d", rssi); 617 printf("\n"); 618 if (len > 0) { 619 for (i = 0; i < len; i++) { 620 if ((i & 1) == 0) 621 printf(" "); 622 printf("%02x", buf[i]); 623 } 624 printf("\n"); 625 } 626 } 627 628 static __inline int 629 findrix(const struct ieee80211_rateset *rs, int r) 630 { 631 int i; 632 633 for (i = 0; i < rs->rs_nrates; i++) 634 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 635 return i; 636 return -1; 637 } 638 639 int 640 ieee80211_fix_rate(struct ieee80211_node *ni, 641 struct ieee80211_rateset *nrs, int flags) 642 { 643 struct ieee80211vap *vap = ni->ni_vap; 644 struct ieee80211com *ic = ni->ni_ic; 645 int i, j, rix, error; 646 int okrate, badrate, fixedrate, ucastrate; 647 const struct ieee80211_rateset *srs; 648 uint8_t r; 649 650 error = 0; 651 okrate = badrate = 0; 652 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 653 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 654 /* 655 * Workaround awkwardness with fixed rate. We are called 656 * to check both the legacy rate set and the HT rate set 657 * but we must apply any legacy fixed rate check only to the 658 * legacy rate set and vice versa. We cannot tell what type 659 * of rate set we've been given (legacy or HT) but we can 660 * distinguish the fixed rate type (MCS have 0x80 set). 661 * So to deal with this the caller communicates whether to 662 * check MCS or legacy rate using the flags and we use the 663 * type of any fixed rate to avoid applying an MCS to a 664 * legacy rate and vice versa. 665 */ 666 if (ucastrate & 0x80) { 667 if (flags & IEEE80211_F_DOFRATE) 668 flags &= ~IEEE80211_F_DOFRATE; 669 } else if ((ucastrate & 0x80) == 0) { 670 if (flags & IEEE80211_F_DOFMCS) 671 flags &= ~IEEE80211_F_DOFMCS; 672 } 673 /* NB: required to make MCS match below work */ 674 ucastrate &= IEEE80211_RATE_VAL; 675 } 676 fixedrate = IEEE80211_FIXED_RATE_NONE; 677 /* 678 * XXX we are called to process both MCS and legacy rates; 679 * we must use the appropriate basic rate set or chaos will 680 * ensue; for now callers that want MCS must supply 681 * IEEE80211_F_DOBRS; at some point we'll need to split this 682 * function so there are two variants, one for MCS and one 683 * for legacy rates. 684 */ 685 if (flags & IEEE80211_F_DOBRS) 686 srs = (const struct ieee80211_rateset *) 687 ieee80211_get_suphtrates(ic, ni->ni_chan); 688 else 689 srs = ieee80211_get_suprates(ic, ni->ni_chan); 690 for (i = 0; i < nrs->rs_nrates; ) { 691 if (flags & IEEE80211_F_DOSORT) { 692 /* 693 * Sort rates. 694 */ 695 for (j = i + 1; j < nrs->rs_nrates; j++) { 696 if (IEEE80211_RV(nrs->rs_rates[i]) > 697 IEEE80211_RV(nrs->rs_rates[j])) { 698 r = nrs->rs_rates[i]; 699 nrs->rs_rates[i] = nrs->rs_rates[j]; 700 nrs->rs_rates[j] = r; 701 } 702 } 703 } 704 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 705 badrate = r; 706 /* 707 * Check for fixed rate. 708 */ 709 if (r == ucastrate) 710 fixedrate = r; 711 /* 712 * Check against supported rates. 713 */ 714 rix = findrix(srs, r); 715 if (flags & IEEE80211_F_DONEGO) { 716 if (rix < 0) { 717 /* 718 * A rate in the node's rate set is not 719 * supported. If this is a basic rate and we 720 * are operating as a STA then this is an error. 721 * Otherwise we just discard/ignore the rate. 722 */ 723 if ((flags & IEEE80211_F_JOIN) && 724 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 725 error++; 726 } else if ((flags & IEEE80211_F_JOIN) == 0) { 727 /* 728 * Overwrite with the supported rate 729 * value so any basic rate bit is set. 730 */ 731 nrs->rs_rates[i] = srs->rs_rates[rix]; 732 } 733 } 734 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 735 /* 736 * Delete unacceptable rates. 737 */ 738 nrs->rs_nrates--; 739 for (j = i; j < nrs->rs_nrates; j++) 740 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 741 nrs->rs_rates[j] = 0; 742 continue; 743 } 744 if (rix >= 0) 745 okrate = nrs->rs_rates[i]; 746 i++; 747 } 748 if (okrate == 0 || error != 0 || 749 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 750 fixedrate != ucastrate)) { 751 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 752 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 753 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 754 return badrate | IEEE80211_RATE_BASIC; 755 } else 756 return IEEE80211_RV(okrate); 757 } 758 759 /* 760 * Reset 11g-related state. 761 * 762 * This is for per-VAP ERP/11g state. 763 * 764 * Eventually everything in ieee80211_reset_erp() will be 765 * per-VAP and in here. 766 */ 767 void 768 ieee80211_vap_reset_erp(struct ieee80211vap *vap) 769 { 770 struct ieee80211com *ic = vap->iv_ic; 771 772 vap->iv_nonerpsta = 0; 773 vap->iv_longslotsta = 0; 774 775 vap->iv_flags &= ~IEEE80211_F_USEPROT; 776 /* 777 * Set short preamble and ERP barker-preamble flags. 778 */ 779 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 780 (vap->iv_caps & IEEE80211_C_SHPREAMBLE)) { 781 vap->iv_flags |= IEEE80211_F_SHPREAMBLE; 782 vap->iv_flags &= ~IEEE80211_F_USEBARKER; 783 } else { 784 vap->iv_flags &= ~IEEE80211_F_SHPREAMBLE; 785 vap->iv_flags |= IEEE80211_F_USEBARKER; 786 } 787 788 /* 789 * Short slot time is enabled only when operating in 11g 790 * and not in an IBSS. We must also honor whether or not 791 * the driver is capable of doing it. 792 */ 793 ieee80211_vap_set_shortslottime(vap, 794 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 795 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 796 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 797 vap->iv_opmode == IEEE80211_M_HOSTAP && 798 (ic->ic_caps & IEEE80211_C_SHSLOT))); 799 } 800 801 /* 802 * Reset 11g-related state. 803 * 804 * Note this resets the global state and a caller should schedule 805 * a re-check of all the VAPs after setup to update said state. 806 */ 807 void 808 ieee80211_reset_erp(struct ieee80211com *ic) 809 { 810 #if 0 811 ic->ic_flags &= ~IEEE80211_F_USEPROT; 812 /* 813 * Set short preamble and ERP barker-preamble flags. 814 */ 815 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 816 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 817 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 818 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 819 } else { 820 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 821 ic->ic_flags |= IEEE80211_F_USEBARKER; 822 } 823 #endif 824 /* XXX TODO: schedule a new per-VAP ERP calculation */ 825 } 826 827 /* 828 * Deferred slot time update. 829 * 830 * For per-VAP slot time configuration, call the VAP 831 * method if the VAP requires it. Otherwise, just call the 832 * older global method. 833 * 834 * If the per-VAP method is called then it's expected that 835 * the driver/firmware will take care of turning the per-VAP 836 * flags into slot time configuration. 837 * 838 * If the per-VAP method is not called then the global flags will be 839 * flipped into sync with the VAPs; ic_flags IEEE80211_F_SHSLOT will 840 * be set only if all of the vaps will have it set. 841 * 842 * Look at the comments for vap_update_erp_protmode() for more 843 * background; this assumes all VAPs are on the same channel. 844 */ 845 static void 846 vap_update_slot(void *arg, int npending) 847 { 848 struct ieee80211vap *vap = arg; 849 struct ieee80211com *ic = vap->iv_ic; 850 struct ieee80211vap *iv; 851 int num_shslot = 0, num_lgslot = 0; 852 853 /* 854 * Per-VAP path - we've already had the flags updated; 855 * so just notify the driver and move on. 856 */ 857 if (vap->iv_updateslot != NULL) { 858 vap->iv_updateslot(vap); 859 return; 860 } 861 862 /* 863 * Iterate over all of the VAP flags to update the 864 * global flag. 865 * 866 * If all vaps have short slot enabled then flip on 867 * short slot. If any vap has it disabled then 868 * we leave it globally disabled. This should provide 869 * correct behaviour in a multi-BSS scenario where 870 * at least one VAP has short slot disabled for some 871 * reason. 872 */ 873 IEEE80211_LOCK(ic); 874 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 875 if (iv->iv_flags & IEEE80211_F_SHSLOT) 876 num_shslot++; 877 else 878 num_lgslot++; 879 } 880 881 /* 882 * It looks backwards but - if the number of short slot VAPs 883 * is zero then we're not short slot. Else, we have one 884 * or more short slot VAPs and we're checking to see if ANY 885 * of them have short slot disabled. 886 */ 887 if (num_shslot == 0) 888 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 889 else if (num_lgslot == 0) 890 ic->ic_flags |= IEEE80211_F_SHSLOT; 891 IEEE80211_UNLOCK(ic); 892 893 /* 894 * Call the driver with our new global slot time flags. 895 */ 896 if (ic->ic_updateslot != NULL) 897 ic->ic_updateslot(ic); 898 } 899 900 /* 901 * Deferred ERP protmode update. 902 * 903 * This currently calculates the global ERP protection mode flag 904 * based on each of the VAPs. Any VAP with it enabled is enough 905 * for the global flag to be enabled. All VAPs with it disabled 906 * is enough for it to be disabled. 907 * 908 * This may make sense right now for the supported hardware where 909 * net80211 is controlling the single channel configuration, but 910 * offload firmware that's doing channel changes (eg off-channel 911 * TDLS, off-channel STA, off-channel P2P STA/AP) may get some 912 * silly looking flag updates. 913 * 914 * Ideally the protection mode calculation is done based on the 915 * channel, and all VAPs using that channel will inherit it. 916 * But until that's what net80211 does, this wil have to do. 917 */ 918 static void 919 vap_update_erp_protmode(void *arg, int npending) 920 { 921 struct ieee80211vap *vap = arg; 922 struct ieee80211com *ic = vap->iv_ic; 923 struct ieee80211vap *iv; 924 int enable_protmode = 0; 925 int non_erp_present = 0; 926 927 /* 928 * Iterate over all of the VAPs to calculate the overlapping 929 * ERP protection mode configuration and ERP present math. 930 * 931 * For now we assume that if a driver can handle this per-VAP 932 * then it'll ignore the ic->ic_protmode variant and instead 933 * will look at the vap related flags. 934 */ 935 IEEE80211_LOCK(ic); 936 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 937 if (iv->iv_flags & IEEE80211_F_USEPROT) 938 enable_protmode = 1; 939 if (iv->iv_flags_ext & IEEE80211_FEXT_NONERP_PR) 940 non_erp_present = 1; 941 } 942 943 if (enable_protmode) 944 ic->ic_flags |= IEEE80211_F_USEPROT; 945 else 946 ic->ic_flags &= ~IEEE80211_F_USEPROT; 947 948 if (non_erp_present) 949 ic->ic_flags_ext |= IEEE80211_FEXT_NONERP_PR; 950 else 951 ic->ic_flags_ext &= ~IEEE80211_FEXT_NONERP_PR; 952 953 /* Beacon update on all VAPs */ 954 ieee80211_notify_erp_locked(ic); 955 956 IEEE80211_UNLOCK(ic); 957 958 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 959 "%s: called; enable_protmode=%d, non_erp_present=%d\n", 960 __func__, enable_protmode, non_erp_present); 961 962 /* 963 * Now that the global configuration flags are calculated, 964 * notify the VAP about its configuration. 965 * 966 * The global flags will be used when assembling ERP IEs 967 * for multi-VAP operation, even if it's on a different 968 * channel. Yes, that's going to need fixing in the 969 * future. 970 */ 971 if (vap->iv_erp_protmode_update != NULL) 972 vap->iv_erp_protmode_update(vap); 973 } 974 975 /* 976 * Deferred ERP short preamble/barker update. 977 * 978 * All VAPs need to use short preamble for it to be globally 979 * enabled or not. 980 * 981 * Look at the comments for vap_update_erp_protmode() for more 982 * background; this assumes all VAPs are on the same channel. 983 */ 984 static void 985 vap_update_preamble(void *arg, int npending) 986 { 987 struct ieee80211vap *vap = arg; 988 struct ieee80211com *ic = vap->iv_ic; 989 struct ieee80211vap *iv; 990 int barker_count = 0, short_preamble_count = 0, count = 0; 991 992 /* 993 * Iterate over all of the VAPs to calculate the overlapping 994 * short or long preamble configuration. 995 * 996 * For now we assume that if a driver can handle this per-VAP 997 * then it'll ignore the ic->ic_flags variant and instead 998 * will look at the vap related flags. 999 */ 1000 IEEE80211_LOCK(ic); 1001 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1002 if (iv->iv_flags & IEEE80211_F_USEBARKER) 1003 barker_count++; 1004 if (iv->iv_flags & IEEE80211_F_SHPREAMBLE) 1005 short_preamble_count++; 1006 count++; 1007 } 1008 1009 /* 1010 * As with vap_update_erp_protmode(), the global flags are 1011 * currently used for beacon IEs. 1012 */ 1013 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1014 "%s: called; barker_count=%d, short_preamble_count=%d\n", 1015 __func__, barker_count, short_preamble_count); 1016 1017 /* 1018 * Only flip on short preamble if all of the VAPs support 1019 * it. 1020 */ 1021 if (barker_count == 0 && short_preamble_count == count) { 1022 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 1023 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 1024 } else { 1025 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 1026 ic->ic_flags |= IEEE80211_F_USEBARKER; 1027 } 1028 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1029 "%s: global barker=%d preamble=%d\n", 1030 __func__, 1031 !! (ic->ic_flags & IEEE80211_F_USEBARKER), 1032 !! (ic->ic_flags & IEEE80211_F_SHPREAMBLE)); 1033 1034 /* Beacon update on all VAPs */ 1035 ieee80211_notify_erp_locked(ic); 1036 1037 IEEE80211_UNLOCK(ic); 1038 1039 /* Driver notification */ 1040 if (vap->iv_erp_protmode_update != NULL) 1041 vap->iv_preamble_update(vap); 1042 } 1043 1044 /* 1045 * Deferred HT protmode update and beacon update. 1046 * 1047 * Look at the comments for vap_update_erp_protmode() for more 1048 * background; this assumes all VAPs are on the same channel. 1049 */ 1050 static void 1051 vap_update_ht_protmode(void *arg, int npending) 1052 { 1053 struct ieee80211vap *vap = arg; 1054 struct ieee80211vap *iv; 1055 struct ieee80211com *ic = vap->iv_ic; 1056 int num_vaps = 0, num_pure = 0, num_mixed = 0; 1057 int num_optional = 0, num_ht2040 = 0, num_nonht = 0; 1058 int num_ht_sta = 0, num_ht40_sta = 0, num_sta = 0; 1059 int num_nonhtpr = 0; 1060 1061 /* 1062 * Iterate over all of the VAPs to calculate everything. 1063 * 1064 * There are a few different flags to calculate: 1065 * 1066 * + whether there's HT only or HT+legacy stations; 1067 * + whether there's HT20, HT40, or HT20+HT40 stations; 1068 * + whether the desired protection mode is mixed, pure or 1069 * one of the two above. 1070 * 1071 * For now we assume that if a driver can handle this per-VAP 1072 * then it'll ignore the ic->ic_htprotmode / ic->ic_curhtprotmode 1073 * variant and instead will look at the vap related variables. 1074 * 1075 * XXX TODO: non-greenfield STAs present (IEEE80211_HTINFO_NONGF_PRESENT) ! 1076 */ 1077 1078 IEEE80211_LOCK(ic); 1079 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) { 1080 num_vaps++; 1081 /* overlapping BSSes advertising non-HT status present */ 1082 if (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR) 1083 num_nonht++; 1084 /* Operating mode flags */ 1085 if (iv->iv_curhtprotmode & IEEE80211_HTINFO_NONHT_PRESENT) 1086 num_nonhtpr++; 1087 switch (iv->iv_curhtprotmode & IEEE80211_HTINFO_OPMODE) { 1088 case IEEE80211_HTINFO_OPMODE_PURE: 1089 num_pure++; 1090 break; 1091 case IEEE80211_HTINFO_OPMODE_PROTOPT: 1092 num_optional++; 1093 break; 1094 case IEEE80211_HTINFO_OPMODE_HT20PR: 1095 num_ht2040++; 1096 break; 1097 case IEEE80211_HTINFO_OPMODE_MIXED: 1098 num_mixed++; 1099 break; 1100 } 1101 1102 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1103 "%s: vap %s: nonht_pr=%d, curhtprotmode=0x%02x\n", 1104 __func__, 1105 ieee80211_get_vap_ifname(iv), 1106 !! (iv->iv_flags_ht & IEEE80211_FHT_NONHT_PR), 1107 iv->iv_curhtprotmode); 1108 1109 num_ht_sta += iv->iv_ht_sta_assoc; 1110 num_ht40_sta += iv->iv_ht40_sta_assoc; 1111 num_sta += iv->iv_sta_assoc; 1112 } 1113 1114 /* 1115 * Step 1 - if any VAPs indicate NONHT_PR set (overlapping BSS 1116 * non-HT present), set it here. This shouldn't be used by 1117 * anything but the old overlapping BSS logic so if any drivers 1118 * consume it, it's up to date. 1119 */ 1120 if (num_nonht > 0) 1121 ic->ic_flags_ht |= IEEE80211_FHT_NONHT_PR; 1122 else 1123 ic->ic_flags_ht &= ~IEEE80211_FHT_NONHT_PR; 1124 1125 /* 1126 * Step 2 - default HT protection mode to MIXED (802.11-2016 10.26.3.1.) 1127 * 1128 * + If all VAPs are PURE, we can stay PURE. 1129 * + If all VAPs are PROTOPT, we can go to PROTOPT. 1130 * + If any VAP has HT20PR then it sees at least a HT40+HT20 station. 1131 * Note that we may have a VAP with one HT20 and a VAP with one HT40; 1132 * So we look at the sum ht and sum ht40 sta counts; if we have a 1133 * HT station and the HT20 != HT40 count, we have to do HT20PR here. 1134 * Note all stations need to be HT for this to be an option. 1135 * + The fall-through is MIXED, because it means we have some odd 1136 * non HT40-involved combination of opmode and this is the most 1137 * sensible default. 1138 */ 1139 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1140 1141 if (num_pure == num_vaps) 1142 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PURE; 1143 1144 if (num_optional == num_vaps) 1145 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_PROTOPT; 1146 1147 /* 1148 * Note: we need /a/ HT40 station somewhere for this to 1149 * be a possibility. 1150 */ 1151 if ((num_ht2040 > 0) || 1152 ((num_ht_sta > 0) && (num_ht40_sta > 0) && 1153 (num_ht_sta != num_ht40_sta))) 1154 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_HT20PR; 1155 1156 /* 1157 * Step 3 - if any of the stations across the VAPs are 1158 * non-HT then this needs to be flipped back to MIXED. 1159 */ 1160 if (num_ht_sta != num_sta) 1161 ic->ic_curhtprotmode = IEEE80211_HTINFO_OPMODE_MIXED; 1162 1163 /* 1164 * Step 4 - If we see any overlapping BSS non-HT stations 1165 * via beacons then flip on NONHT_PRESENT. 1166 */ 1167 if (num_nonhtpr > 0) 1168 ic->ic_curhtprotmode |= IEEE80211_HTINFO_NONHT_PRESENT; 1169 1170 /* Notify all VAPs to potentially update their beacons */ 1171 TAILQ_FOREACH(iv, &ic->ic_vaps, iv_next) 1172 ieee80211_htinfo_notify(iv); 1173 1174 IEEE80211_UNLOCK(ic); 1175 1176 IEEE80211_DPRINTF(vap, IEEE80211_MSG_11N, 1177 "%s: global: nonht_pr=%d ht_opmode=0x%02x\n", 1178 __func__, 1179 !! (ic->ic_flags_ht & IEEE80211_FHT_NONHT_PR), 1180 ic->ic_curhtprotmode); 1181 1182 /* Driver update */ 1183 if (vap->iv_erp_protmode_update != NULL) 1184 vap->iv_ht_protmode_update(vap); 1185 } 1186 1187 /* 1188 * Set the short slot time state and notify the driver. 1189 * 1190 * This is the per-VAP slot time state. 1191 */ 1192 void 1193 ieee80211_vap_set_shortslottime(struct ieee80211vap *vap, int onoff) 1194 { 1195 struct ieee80211com *ic = vap->iv_ic; 1196 1197 /* XXX lock? */ 1198 1199 /* 1200 * Only modify the per-VAP slot time. 1201 */ 1202 if (onoff) 1203 vap->iv_flags |= IEEE80211_F_SHSLOT; 1204 else 1205 vap->iv_flags &= ~IEEE80211_F_SHSLOT; 1206 1207 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1208 "%s: called; onoff=%d\n", __func__, onoff); 1209 /* schedule the deferred slot flag update and update */ 1210 ieee80211_runtask(ic, &vap->iv_slot_task); 1211 } 1212 1213 /* 1214 * Update the VAP short /long / barker preamble state and 1215 * update beacon state if needed. 1216 * 1217 * For now it simply copies the global flags into the per-vap 1218 * flags and schedules the callback. Later this will support 1219 * both global and per-VAP flags, especially useful for 1220 * and STA+STA multi-channel operation (eg p2p). 1221 */ 1222 void 1223 ieee80211_vap_update_preamble(struct ieee80211vap *vap) 1224 { 1225 struct ieee80211com *ic = vap->iv_ic; 1226 1227 /* XXX lock? */ 1228 1229 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1230 "%s: called\n", __func__); 1231 /* schedule the deferred slot flag update and update */ 1232 ieee80211_runtask(ic, &vap->iv_preamble_task); 1233 } 1234 1235 /* 1236 * Update the VAP 11g protection mode and update beacon state 1237 * if needed. 1238 */ 1239 void 1240 ieee80211_vap_update_erp_protmode(struct ieee80211vap *vap) 1241 { 1242 struct ieee80211com *ic = vap->iv_ic; 1243 1244 /* XXX lock? */ 1245 1246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1247 "%s: called\n", __func__); 1248 /* schedule the deferred slot flag update and update */ 1249 ieee80211_runtask(ic, &vap->iv_erp_protmode_task); 1250 } 1251 1252 /* 1253 * Update the VAP 11n protection mode and update beacon state 1254 * if needed. 1255 */ 1256 void 1257 ieee80211_vap_update_ht_protmode(struct ieee80211vap *vap) 1258 { 1259 struct ieee80211com *ic = vap->iv_ic; 1260 1261 /* XXX lock? */ 1262 1263 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG, 1264 "%s: called\n", __func__); 1265 /* schedule the deferred protmode update */ 1266 ieee80211_runtask(ic, &vap->iv_ht_protmode_task); 1267 } 1268 1269 /* 1270 * Check if the specified rate set supports ERP. 1271 * NB: the rate set is assumed to be sorted. 1272 */ 1273 int 1274 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 1275 { 1276 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 1277 int i, j; 1278 1279 if (rs->rs_nrates < nitems(rates)) 1280 return 0; 1281 for (i = 0; i < nitems(rates); i++) { 1282 for (j = 0; j < rs->rs_nrates; j++) { 1283 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 1284 if (rates[i] == r) 1285 goto next; 1286 if (r > rates[i]) 1287 return 0; 1288 } 1289 return 0; 1290 next: 1291 ; 1292 } 1293 return 1; 1294 } 1295 1296 /* 1297 * Mark the basic rates for the rate table based on the 1298 * operating mode. For real 11g we mark all the 11b rates 1299 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 1300 * 11b rates. There's also a pseudo 11a-mode used to mark only 1301 * the basic OFDM rates. 1302 */ 1303 static void 1304 setbasicrates(struct ieee80211_rateset *rs, 1305 enum ieee80211_phymode mode, int add) 1306 { 1307 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 1308 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 1309 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 1310 /* NB: mixed b/g */ 1311 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 1312 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 1313 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 1314 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 1315 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 1316 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 1317 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 1318 /* NB: mixed b/g */ 1319 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 1320 /* NB: mixed b/g */ 1321 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 1322 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 1323 }; 1324 int i, j; 1325 1326 for (i = 0; i < rs->rs_nrates; i++) { 1327 if (!add) 1328 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 1329 for (j = 0; j < basic[mode].rs_nrates; j++) 1330 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 1331 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 1332 break; 1333 } 1334 } 1335 } 1336 1337 /* 1338 * Set the basic rates in a rate set. 1339 */ 1340 void 1341 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 1342 enum ieee80211_phymode mode) 1343 { 1344 setbasicrates(rs, mode, 0); 1345 } 1346 1347 /* 1348 * Add basic rates to a rate set. 1349 */ 1350 void 1351 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 1352 enum ieee80211_phymode mode) 1353 { 1354 setbasicrates(rs, mode, 1); 1355 } 1356 1357 /* 1358 * WME protocol support. 1359 * 1360 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 1361 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 1362 * Draft 2.0 Test Plan (Appendix D). 1363 * 1364 * Static/Dynamic Turbo mode settings come from Atheros. 1365 */ 1366 typedef struct phyParamType { 1367 uint8_t aifsn; 1368 uint8_t logcwmin; 1369 uint8_t logcwmax; 1370 uint16_t txopLimit; 1371 uint8_t acm; 1372 } paramType; 1373 1374 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 1375 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 1376 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 1377 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 1378 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 1379 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 1380 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 1381 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 1382 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 1383 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 1384 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 1385 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 1386 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 1387 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 1388 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 1389 }; 1390 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 1391 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 1392 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 1393 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 1394 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 1395 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 1396 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 1397 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 1398 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 1399 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 1400 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 1401 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 1402 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 1403 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 1404 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 1405 }; 1406 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 1407 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 1408 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 1409 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 1410 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 1411 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 1412 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 1413 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 1414 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 1415 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 1416 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 1417 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 1418 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 1419 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 1420 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 1421 }; 1422 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 1423 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 1424 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 1425 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 1426 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 1427 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 1428 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1429 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1430 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1431 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 1432 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 1433 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 1434 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 1435 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 1436 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 1437 }; 1438 1439 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 1440 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 1441 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 1442 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 1443 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 1444 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 1445 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 1446 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 1447 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 1448 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 1449 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 1450 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 1451 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 1452 }; 1453 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 1454 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 1455 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 1456 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 1457 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 1458 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 1459 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 1460 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 1461 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 1462 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 1463 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 1464 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 1465 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 1466 }; 1467 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 1468 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 1469 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1470 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1471 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1472 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1473 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1474 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1475 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1476 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1477 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1478 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1479 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1480 }; 1481 1482 static void 1483 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1484 { 1485 wmep->wmep_aifsn = phy->aifsn; 1486 wmep->wmep_logcwmin = phy->logcwmin; 1487 wmep->wmep_logcwmax = phy->logcwmax; 1488 wmep->wmep_txopLimit = phy->txopLimit; 1489 } 1490 1491 static void 1492 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1493 struct wmeParams *wmep, const paramType *phy) 1494 { 1495 wmep->wmep_acm = phy->acm; 1496 _setifsparams(wmep, phy); 1497 1498 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1499 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1500 ieee80211_wme_acnames[ac], type, 1501 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1502 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1503 } 1504 1505 static void 1506 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1507 { 1508 struct ieee80211com *ic = vap->iv_ic; 1509 struct ieee80211_wme_state *wme = &ic->ic_wme; 1510 const paramType *pPhyParam, *pBssPhyParam; 1511 struct wmeParams *wmep; 1512 enum ieee80211_phymode mode; 1513 int i; 1514 1515 IEEE80211_LOCK_ASSERT(ic); 1516 1517 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1518 return; 1519 1520 /* 1521 * Clear the wme cap_info field so a qoscount from a previous 1522 * vap doesn't confuse later code which only parses the beacon 1523 * field and updates hardware when said field changes. 1524 * Otherwise the hardware is programmed with defaults, not what 1525 * the beacon actually announces. 1526 * 1527 * Note that we can't ever have 0xff as an actual value; 1528 * the only valid values are 0..15. 1529 */ 1530 wme->wme_wmeChanParams.cap_info = 0xfe; 1531 1532 /* 1533 * Select mode; we can be called early in which case we 1534 * always use auto mode. We know we'll be called when 1535 * entering the RUN state with bsschan setup properly 1536 * so state will eventually get set correctly 1537 */ 1538 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1539 mode = ieee80211_chan2mode(ic->ic_bsschan); 1540 else 1541 mode = IEEE80211_MODE_AUTO; 1542 for (i = 0; i < WME_NUM_AC; i++) { 1543 switch (i) { 1544 case WME_AC_BK: 1545 pPhyParam = &phyParamForAC_BK[mode]; 1546 pBssPhyParam = &phyParamForAC_BK[mode]; 1547 break; 1548 case WME_AC_VI: 1549 pPhyParam = &phyParamForAC_VI[mode]; 1550 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1551 break; 1552 case WME_AC_VO: 1553 pPhyParam = &phyParamForAC_VO[mode]; 1554 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1555 break; 1556 case WME_AC_BE: 1557 default: 1558 pPhyParam = &phyParamForAC_BE[mode]; 1559 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1560 break; 1561 } 1562 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1563 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1564 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1565 } else { 1566 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1567 } 1568 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1569 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1570 } 1571 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1572 if (vap->iv_bss != NULL) { 1573 /* 1574 * Calculate aggressive mode switching threshold based 1575 * on beacon interval. This doesn't need locking since 1576 * we're only called before entering the RUN state at 1577 * which point we start sending beacon frames. 1578 */ 1579 wme->wme_hipri_switch_thresh = 1580 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1581 wme->wme_flags &= ~WME_F_AGGRMODE; 1582 ieee80211_wme_updateparams(vap); 1583 } 1584 } 1585 1586 void 1587 ieee80211_wme_initparams(struct ieee80211vap *vap) 1588 { 1589 struct ieee80211com *ic = vap->iv_ic; 1590 1591 IEEE80211_LOCK(ic); 1592 ieee80211_wme_initparams_locked(vap); 1593 IEEE80211_UNLOCK(ic); 1594 } 1595 1596 /* 1597 * Update WME parameters for ourself and the BSS. 1598 */ 1599 void 1600 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1601 { 1602 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1603 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1604 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1605 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1606 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1607 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1608 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1609 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1610 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1611 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1612 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1613 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1614 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1615 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1616 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1617 }; 1618 struct ieee80211com *ic = vap->iv_ic; 1619 struct ieee80211_wme_state *wme = &ic->ic_wme; 1620 const struct wmeParams *wmep; 1621 struct wmeParams *chanp, *bssp; 1622 enum ieee80211_phymode mode; 1623 int i; 1624 int do_aggrmode = 0; 1625 1626 /* 1627 * Set up the channel access parameters for the physical 1628 * device. First populate the configured settings. 1629 */ 1630 for (i = 0; i < WME_NUM_AC; i++) { 1631 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1632 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1633 chanp->wmep_aifsn = wmep->wmep_aifsn; 1634 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1635 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1636 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1637 1638 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1639 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1640 chanp->wmep_aifsn = wmep->wmep_aifsn; 1641 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1642 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1643 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1644 } 1645 1646 /* 1647 * Select mode; we can be called early in which case we 1648 * always use auto mode. We know we'll be called when 1649 * entering the RUN state with bsschan setup properly 1650 * so state will eventually get set correctly 1651 */ 1652 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1653 mode = ieee80211_chan2mode(ic->ic_bsschan); 1654 else 1655 mode = IEEE80211_MODE_AUTO; 1656 1657 /* 1658 * This implements aggressive mode as found in certain 1659 * vendors' AP's. When there is significant high 1660 * priority (VI/VO) traffic in the BSS throttle back BE 1661 * traffic by using conservative parameters. Otherwise 1662 * BE uses aggressive params to optimize performance of 1663 * legacy/non-QoS traffic. 1664 */ 1665 1666 /* Hostap? Only if aggressive mode is enabled */ 1667 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1668 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1669 do_aggrmode = 1; 1670 1671 /* 1672 * Station? Only if we're in a non-QoS BSS. 1673 */ 1674 else if ((vap->iv_opmode == IEEE80211_M_STA && 1675 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1676 do_aggrmode = 1; 1677 1678 /* 1679 * IBSS? Only if we we have WME enabled. 1680 */ 1681 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1682 (vap->iv_flags & IEEE80211_F_WME)) 1683 do_aggrmode = 1; 1684 1685 /* 1686 * If WME is disabled on this VAP, default to aggressive mode 1687 * regardless of the configuration. 1688 */ 1689 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1690 do_aggrmode = 1; 1691 1692 /* XXX WDS? */ 1693 1694 /* XXX MBSS? */ 1695 1696 if (do_aggrmode) { 1697 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1698 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1699 1700 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1701 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1702 aggrParam[mode].logcwmin; 1703 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1704 aggrParam[mode].logcwmax; 1705 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1706 (vap->iv_flags & IEEE80211_F_BURST) ? 1707 aggrParam[mode].txopLimit : 0; 1708 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1709 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1710 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1711 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1712 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1713 } 1714 1715 /* 1716 * Change the contention window based on the number of associated 1717 * stations. If the number of associated stations is 1 and 1718 * aggressive mode is enabled, lower the contention window even 1719 * further. 1720 */ 1721 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1722 vap->iv_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1723 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1724 [IEEE80211_MODE_AUTO] = 3, 1725 [IEEE80211_MODE_11A] = 3, 1726 [IEEE80211_MODE_11B] = 4, 1727 [IEEE80211_MODE_11G] = 3, 1728 [IEEE80211_MODE_FH] = 4, 1729 [IEEE80211_MODE_TURBO_A] = 3, 1730 [IEEE80211_MODE_TURBO_G] = 3, 1731 [IEEE80211_MODE_STURBO_A] = 3, 1732 [IEEE80211_MODE_HALF] = 3, 1733 [IEEE80211_MODE_QUARTER] = 3, 1734 [IEEE80211_MODE_11NA] = 3, 1735 [IEEE80211_MODE_11NG] = 3, 1736 [IEEE80211_MODE_VHT_2GHZ] = 3, 1737 [IEEE80211_MODE_VHT_5GHZ] = 3, 1738 }; 1739 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1740 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1741 1742 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1743 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1744 "update %s (chan+bss) logcwmin %u\n", 1745 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1746 } 1747 1748 /* schedule the deferred WME update */ 1749 ieee80211_runtask(ic, &vap->iv_wme_task); 1750 1751 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1752 "%s: WME params updated, cap_info 0x%x\n", __func__, 1753 vap->iv_opmode == IEEE80211_M_STA ? 1754 wme->wme_wmeChanParams.cap_info : 1755 wme->wme_bssChanParams.cap_info); 1756 } 1757 1758 void 1759 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1760 { 1761 struct ieee80211com *ic = vap->iv_ic; 1762 1763 if (ic->ic_caps & IEEE80211_C_WME) { 1764 IEEE80211_LOCK(ic); 1765 ieee80211_wme_updateparams_locked(vap); 1766 IEEE80211_UNLOCK(ic); 1767 } 1768 } 1769 1770 /* 1771 * Fetch the WME parameters for the given VAP. 1772 * 1773 * When net80211 grows p2p, etc support, this may return different 1774 * parameters for each VAP. 1775 */ 1776 void 1777 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1778 { 1779 1780 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1781 } 1782 1783 /* 1784 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1785 * there may be different VAP WME parameters but only one is "active". 1786 * This returns the "NIC" WME parameters for the currently active 1787 * context. 1788 */ 1789 void 1790 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1791 { 1792 1793 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1794 } 1795 1796 /* 1797 * Return whether to use QoS on a given WME queue. 1798 * 1799 * This is intended to be called from the transmit path of softmac drivers 1800 * which are setting NoAck bits in transmit descriptors. 1801 * 1802 * Ideally this would be set in some transmit field before the packet is 1803 * queued to the driver but net80211 isn't quite there yet. 1804 */ 1805 int 1806 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1807 { 1808 /* Bounds/sanity check */ 1809 if (ac < 0 || ac >= WME_NUM_AC) 1810 return (0); 1811 1812 /* Again, there's only one global context for now */ 1813 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1814 } 1815 1816 static void 1817 parent_updown(void *arg, int npending) 1818 { 1819 struct ieee80211com *ic = arg; 1820 1821 ic->ic_parent(ic); 1822 } 1823 1824 static void 1825 update_mcast(void *arg, int npending) 1826 { 1827 struct ieee80211com *ic = arg; 1828 1829 ic->ic_update_mcast(ic); 1830 } 1831 1832 static void 1833 update_promisc(void *arg, int npending) 1834 { 1835 struct ieee80211com *ic = arg; 1836 1837 ic->ic_update_promisc(ic); 1838 } 1839 1840 static void 1841 update_channel(void *arg, int npending) 1842 { 1843 struct ieee80211com *ic = arg; 1844 1845 ic->ic_set_channel(ic); 1846 ieee80211_radiotap_chan_change(ic); 1847 } 1848 1849 static void 1850 update_chw(void *arg, int npending) 1851 { 1852 struct ieee80211com *ic = arg; 1853 1854 /* 1855 * XXX should we defer the channel width _config_ update until now? 1856 */ 1857 ic->ic_update_chw(ic); 1858 } 1859 1860 /* 1861 * Deferred WME parameter and beacon update. 1862 * 1863 * In preparation for per-VAP WME configuration, call the VAP 1864 * method if the VAP requires it. Otherwise, just call the 1865 * older global method. There isn't a per-VAP WME configuration 1866 * just yet so for now just use the global configuration. 1867 */ 1868 static void 1869 vap_update_wme(void *arg, int npending) 1870 { 1871 struct ieee80211vap *vap = arg; 1872 struct ieee80211com *ic = vap->iv_ic; 1873 struct ieee80211_wme_state *wme = &ic->ic_wme; 1874 1875 /* Driver update */ 1876 if (vap->iv_wme_update != NULL) 1877 vap->iv_wme_update(vap, 1878 ic->ic_wme.wme_chanParams.cap_wmeParams); 1879 else 1880 ic->ic_wme.wme_update(ic); 1881 1882 IEEE80211_LOCK(ic); 1883 /* 1884 * Arrange for the beacon update. 1885 * 1886 * XXX what about MBSS, WDS? 1887 */ 1888 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1889 || vap->iv_opmode == IEEE80211_M_IBSS) { 1890 /* 1891 * Arrange for a beacon update and bump the parameter 1892 * set number so associated stations load the new values. 1893 */ 1894 wme->wme_bssChanParams.cap_info = 1895 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1896 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1897 } 1898 IEEE80211_UNLOCK(ic); 1899 } 1900 1901 static void 1902 restart_vaps(void *arg, int npending) 1903 { 1904 struct ieee80211com *ic = arg; 1905 1906 ieee80211_suspend_all(ic); 1907 ieee80211_resume_all(ic); 1908 } 1909 1910 /* 1911 * Block until the parent is in a known state. This is 1912 * used after any operations that dispatch a task (e.g. 1913 * to auto-configure the parent device up/down). 1914 */ 1915 void 1916 ieee80211_waitfor_parent(struct ieee80211com *ic) 1917 { 1918 taskqueue_block(ic->ic_tq); 1919 ieee80211_draintask(ic, &ic->ic_parent_task); 1920 ieee80211_draintask(ic, &ic->ic_mcast_task); 1921 ieee80211_draintask(ic, &ic->ic_promisc_task); 1922 ieee80211_draintask(ic, &ic->ic_chan_task); 1923 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1924 ieee80211_draintask(ic, &ic->ic_chw_task); 1925 taskqueue_unblock(ic->ic_tq); 1926 } 1927 1928 /* 1929 * Check to see whether the current channel needs reset. 1930 * 1931 * Some devices don't handle being given an invalid channel 1932 * in their operating mode very well (eg wpi(4) will throw a 1933 * firmware exception.) 1934 * 1935 * Return 0 if we're ok, 1 if the channel needs to be reset. 1936 * 1937 * See PR kern/202502. 1938 */ 1939 static int 1940 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1941 { 1942 struct ieee80211com *ic = vap->iv_ic; 1943 1944 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1945 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1946 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1947 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1948 return (1); 1949 return (0); 1950 } 1951 1952 /* 1953 * Reset the curchan to a known good state. 1954 */ 1955 static void 1956 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1957 { 1958 struct ieee80211com *ic = vap->iv_ic; 1959 1960 ic->ic_curchan = &ic->ic_channels[0]; 1961 } 1962 1963 /* 1964 * Start a vap running. If this is the first vap to be 1965 * set running on the underlying device then we 1966 * automatically bring the device up. 1967 */ 1968 void 1969 ieee80211_start_locked(struct ieee80211vap *vap) 1970 { 1971 struct ifnet *ifp = vap->iv_ifp; 1972 struct ieee80211com *ic = vap->iv_ic; 1973 1974 IEEE80211_LOCK_ASSERT(ic); 1975 1976 IEEE80211_DPRINTF(vap, 1977 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1978 "start running, %d vaps running\n", ic->ic_nrunning); 1979 1980 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1981 /* 1982 * Mark us running. Note that it's ok to do this first; 1983 * if we need to bring the parent device up we defer that 1984 * to avoid dropping the com lock. We expect the device 1985 * to respond to being marked up by calling back into us 1986 * through ieee80211_start_all at which point we'll come 1987 * back in here and complete the work. 1988 */ 1989 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1990 ieee80211_notify_ifnet_change(vap); 1991 1992 /* 1993 * We are not running; if this we are the first vap 1994 * to be brought up auto-up the parent if necessary. 1995 */ 1996 if (ic->ic_nrunning++ == 0) { 1997 /* reset the channel to a known good channel */ 1998 if (ieee80211_start_check_reset_chan(vap)) 1999 ieee80211_start_reset_chan(vap); 2000 2001 IEEE80211_DPRINTF(vap, 2002 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2003 "%s: up parent %s\n", __func__, ic->ic_name); 2004 ieee80211_runtask(ic, &ic->ic_parent_task); 2005 return; 2006 } 2007 } 2008 /* 2009 * If the parent is up and running, then kick the 2010 * 802.11 state machine as appropriate. 2011 */ 2012 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 2013 if (vap->iv_opmode == IEEE80211_M_STA) { 2014 #if 0 2015 /* XXX bypasses scan too easily; disable for now */ 2016 /* 2017 * Try to be intelligent about clocking the state 2018 * machine. If we're currently in RUN state then 2019 * we should be able to apply any new state/parameters 2020 * simply by re-associating. Otherwise we need to 2021 * re-scan to select an appropriate ap. 2022 */ 2023 if (vap->iv_state >= IEEE80211_S_RUN) 2024 ieee80211_new_state_locked(vap, 2025 IEEE80211_S_ASSOC, 1); 2026 else 2027 #endif 2028 ieee80211_new_state_locked(vap, 2029 IEEE80211_S_SCAN, 0); 2030 } else { 2031 /* 2032 * For monitor+wds mode there's nothing to do but 2033 * start running. Otherwise if this is the first 2034 * vap to be brought up, start a scan which may be 2035 * preempted if the station is locked to a particular 2036 * channel. 2037 */ 2038 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 2039 if (vap->iv_opmode == IEEE80211_M_MONITOR || 2040 vap->iv_opmode == IEEE80211_M_WDS) 2041 ieee80211_new_state_locked(vap, 2042 IEEE80211_S_RUN, -1); 2043 else 2044 ieee80211_new_state_locked(vap, 2045 IEEE80211_S_SCAN, 0); 2046 } 2047 } 2048 } 2049 2050 /* 2051 * Start a single vap. 2052 */ 2053 void 2054 ieee80211_init(void *arg) 2055 { 2056 struct ieee80211vap *vap = arg; 2057 2058 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2059 "%s\n", __func__); 2060 2061 IEEE80211_LOCK(vap->iv_ic); 2062 ieee80211_start_locked(vap); 2063 IEEE80211_UNLOCK(vap->iv_ic); 2064 } 2065 2066 /* 2067 * Start all runnable vap's on a device. 2068 */ 2069 void 2070 ieee80211_start_all(struct ieee80211com *ic) 2071 { 2072 struct ieee80211vap *vap; 2073 2074 IEEE80211_LOCK(ic); 2075 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2076 struct ifnet *ifp = vap->iv_ifp; 2077 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2078 ieee80211_start_locked(vap); 2079 } 2080 IEEE80211_UNLOCK(ic); 2081 } 2082 2083 /* 2084 * Stop a vap. We force it down using the state machine 2085 * then mark it's ifnet not running. If this is the last 2086 * vap running on the underlying device then we close it 2087 * too to insure it will be properly initialized when the 2088 * next vap is brought up. 2089 */ 2090 void 2091 ieee80211_stop_locked(struct ieee80211vap *vap) 2092 { 2093 struct ieee80211com *ic = vap->iv_ic; 2094 struct ifnet *ifp = vap->iv_ifp; 2095 2096 IEEE80211_LOCK_ASSERT(ic); 2097 2098 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2099 "stop running, %d vaps running\n", ic->ic_nrunning); 2100 2101 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 2102 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 2103 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 2104 ieee80211_notify_ifnet_change(vap); 2105 if (--ic->ic_nrunning == 0) { 2106 IEEE80211_DPRINTF(vap, 2107 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 2108 "down parent %s\n", ic->ic_name); 2109 ieee80211_runtask(ic, &ic->ic_parent_task); 2110 } 2111 } 2112 } 2113 2114 void 2115 ieee80211_stop(struct ieee80211vap *vap) 2116 { 2117 struct ieee80211com *ic = vap->iv_ic; 2118 2119 IEEE80211_LOCK(ic); 2120 ieee80211_stop_locked(vap); 2121 IEEE80211_UNLOCK(ic); 2122 } 2123 2124 /* 2125 * Stop all vap's running on a device. 2126 */ 2127 void 2128 ieee80211_stop_all(struct ieee80211com *ic) 2129 { 2130 struct ieee80211vap *vap; 2131 2132 IEEE80211_LOCK(ic); 2133 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2134 struct ifnet *ifp = vap->iv_ifp; 2135 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 2136 ieee80211_stop_locked(vap); 2137 } 2138 IEEE80211_UNLOCK(ic); 2139 2140 ieee80211_waitfor_parent(ic); 2141 } 2142 2143 /* 2144 * Stop all vap's running on a device and arrange 2145 * for those that were running to be resumed. 2146 */ 2147 void 2148 ieee80211_suspend_all(struct ieee80211com *ic) 2149 { 2150 struct ieee80211vap *vap; 2151 2152 IEEE80211_LOCK(ic); 2153 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2154 struct ifnet *ifp = vap->iv_ifp; 2155 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 2156 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 2157 ieee80211_stop_locked(vap); 2158 } 2159 } 2160 IEEE80211_UNLOCK(ic); 2161 2162 ieee80211_waitfor_parent(ic); 2163 } 2164 2165 /* 2166 * Start all vap's marked for resume. 2167 */ 2168 void 2169 ieee80211_resume_all(struct ieee80211com *ic) 2170 { 2171 struct ieee80211vap *vap; 2172 2173 IEEE80211_LOCK(ic); 2174 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2175 struct ifnet *ifp = vap->iv_ifp; 2176 if (!IFNET_IS_UP_RUNNING(ifp) && 2177 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 2178 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 2179 ieee80211_start_locked(vap); 2180 } 2181 } 2182 IEEE80211_UNLOCK(ic); 2183 } 2184 2185 /* 2186 * Restart all vap's running on a device. 2187 */ 2188 void 2189 ieee80211_restart_all(struct ieee80211com *ic) 2190 { 2191 /* 2192 * NB: do not use ieee80211_runtask here, we will 2193 * block & drain net80211 taskqueue. 2194 */ 2195 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 2196 } 2197 2198 void 2199 ieee80211_beacon_miss(struct ieee80211com *ic) 2200 { 2201 IEEE80211_LOCK(ic); 2202 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2203 /* Process in a taskq, the handler may reenter the driver */ 2204 ieee80211_runtask(ic, &ic->ic_bmiss_task); 2205 } 2206 IEEE80211_UNLOCK(ic); 2207 } 2208 2209 static void 2210 beacon_miss(void *arg, int npending) 2211 { 2212 struct ieee80211com *ic = arg; 2213 struct ieee80211vap *vap; 2214 2215 IEEE80211_LOCK(ic); 2216 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2217 /* 2218 * We only pass events through for sta vap's in RUN+ state; 2219 * may be too restrictive but for now this saves all the 2220 * handlers duplicating these checks. 2221 */ 2222 if (vap->iv_opmode == IEEE80211_M_STA && 2223 vap->iv_state >= IEEE80211_S_RUN && 2224 vap->iv_bmiss != NULL) 2225 vap->iv_bmiss(vap); 2226 } 2227 IEEE80211_UNLOCK(ic); 2228 } 2229 2230 static void 2231 beacon_swmiss(void *arg, int npending) 2232 { 2233 struct ieee80211vap *vap = arg; 2234 struct ieee80211com *ic = vap->iv_ic; 2235 2236 IEEE80211_LOCK(ic); 2237 if (vap->iv_state >= IEEE80211_S_RUN) { 2238 /* XXX Call multiple times if npending > zero? */ 2239 vap->iv_bmiss(vap); 2240 } 2241 IEEE80211_UNLOCK(ic); 2242 } 2243 2244 /* 2245 * Software beacon miss handling. Check if any beacons 2246 * were received in the last period. If not post a 2247 * beacon miss; otherwise reset the counter. 2248 */ 2249 void 2250 ieee80211_swbmiss(void *arg) 2251 { 2252 struct ieee80211vap *vap = arg; 2253 struct ieee80211com *ic = vap->iv_ic; 2254 2255 IEEE80211_LOCK_ASSERT(ic); 2256 2257 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 2258 ("wrong state %d", vap->iv_state)); 2259 2260 if (ic->ic_flags & IEEE80211_F_SCAN) { 2261 /* 2262 * If scanning just ignore and reset state. If we get a 2263 * bmiss after coming out of scan because we haven't had 2264 * time to receive a beacon then we should probe the AP 2265 * before posting a real bmiss (unless iv_bmiss_max has 2266 * been artifiically lowered). A cleaner solution might 2267 * be to disable the timer on scan start/end but to handle 2268 * case of multiple sta vap's we'd need to disable the 2269 * timers of all affected vap's. 2270 */ 2271 vap->iv_swbmiss_count = 0; 2272 } else if (vap->iv_swbmiss_count == 0) { 2273 if (vap->iv_bmiss != NULL) 2274 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 2275 } else 2276 vap->iv_swbmiss_count = 0; 2277 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 2278 ieee80211_swbmiss, vap); 2279 } 2280 2281 /* 2282 * Start an 802.11h channel switch. We record the parameters, 2283 * mark the operation pending, notify each vap through the 2284 * beacon update mechanism so it can update the beacon frame 2285 * contents, and then switch vap's to CSA state to block outbound 2286 * traffic. Devices that handle CSA directly can use the state 2287 * switch to do the right thing so long as they call 2288 * ieee80211_csa_completeswitch when it's time to complete the 2289 * channel change. Devices that depend on the net80211 layer can 2290 * use ieee80211_beacon_update to handle the countdown and the 2291 * channel switch. 2292 */ 2293 void 2294 ieee80211_csa_startswitch(struct ieee80211com *ic, 2295 struct ieee80211_channel *c, int mode, int count) 2296 { 2297 struct ieee80211vap *vap; 2298 2299 IEEE80211_LOCK_ASSERT(ic); 2300 2301 ic->ic_csa_newchan = c; 2302 ic->ic_csa_mode = mode; 2303 ic->ic_csa_count = count; 2304 ic->ic_flags |= IEEE80211_F_CSAPENDING; 2305 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2306 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2307 vap->iv_opmode == IEEE80211_M_IBSS || 2308 vap->iv_opmode == IEEE80211_M_MBSS) 2309 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 2310 /* switch to CSA state to block outbound traffic */ 2311 if (vap->iv_state == IEEE80211_S_RUN) 2312 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 2313 } 2314 ieee80211_notify_csa(ic, c, mode, count); 2315 } 2316 2317 /* 2318 * Complete the channel switch by transitioning all CSA VAPs to RUN. 2319 * This is called by both the completion and cancellation functions 2320 * so each VAP is placed back in the RUN state and can thus transmit. 2321 */ 2322 static void 2323 csa_completeswitch(struct ieee80211com *ic) 2324 { 2325 struct ieee80211vap *vap; 2326 2327 ic->ic_csa_newchan = NULL; 2328 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 2329 2330 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2331 if (vap->iv_state == IEEE80211_S_CSA) 2332 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2333 } 2334 2335 /* 2336 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 2337 * We clear state and move all vap's in CSA state to RUN state 2338 * so they can again transmit. 2339 * 2340 * Although this may not be completely correct, update the BSS channel 2341 * for each VAP to the newly configured channel. The setcurchan sets 2342 * the current operating channel for the interface (so the radio does 2343 * switch over) but the VAP BSS isn't updated, leading to incorrectly 2344 * reported information via ioctl. 2345 */ 2346 void 2347 ieee80211_csa_completeswitch(struct ieee80211com *ic) 2348 { 2349 struct ieee80211vap *vap; 2350 2351 IEEE80211_LOCK_ASSERT(ic); 2352 2353 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 2354 2355 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 2356 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2357 if (vap->iv_state == IEEE80211_S_CSA) 2358 vap->iv_bss->ni_chan = ic->ic_curchan; 2359 2360 csa_completeswitch(ic); 2361 } 2362 2363 /* 2364 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 2365 * We clear state and move all vap's in CSA state to RUN state 2366 * so they can again transmit. 2367 */ 2368 void 2369 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 2370 { 2371 IEEE80211_LOCK_ASSERT(ic); 2372 2373 csa_completeswitch(ic); 2374 } 2375 2376 /* 2377 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 2378 * We clear state and move all vap's in CAC state to RUN state. 2379 */ 2380 void 2381 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 2382 { 2383 struct ieee80211com *ic = vap0->iv_ic; 2384 struct ieee80211vap *vap; 2385 2386 IEEE80211_LOCK(ic); 2387 /* 2388 * Complete CAC state change for lead vap first; then 2389 * clock all the other vap's waiting. 2390 */ 2391 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 2392 ("wrong state %d", vap0->iv_state)); 2393 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 2394 2395 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 2396 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 2397 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 2398 IEEE80211_UNLOCK(ic); 2399 } 2400 2401 /* 2402 * Force all vap's other than the specified vap to the INIT state 2403 * and mark them as waiting for a scan to complete. These vaps 2404 * will be brought up when the scan completes and the scanning vap 2405 * reaches RUN state by wakeupwaiting. 2406 */ 2407 static void 2408 markwaiting(struct ieee80211vap *vap0) 2409 { 2410 struct ieee80211com *ic = vap0->iv_ic; 2411 struct ieee80211vap *vap; 2412 2413 IEEE80211_LOCK_ASSERT(ic); 2414 2415 /* 2416 * A vap list entry can not disappear since we are running on the 2417 * taskqueue and a vap destroy will queue and drain another state 2418 * change task. 2419 */ 2420 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2421 if (vap == vap0) 2422 continue; 2423 if (vap->iv_state != IEEE80211_S_INIT) { 2424 /* NB: iv_newstate may drop the lock */ 2425 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 2426 IEEE80211_LOCK_ASSERT(ic); 2427 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2428 } 2429 } 2430 } 2431 2432 /* 2433 * Wakeup all vap's waiting for a scan to complete. This is the 2434 * companion to markwaiting (above) and is used to coordinate 2435 * multiple vaps scanning. 2436 * This is called from the state taskqueue. 2437 */ 2438 static void 2439 wakeupwaiting(struct ieee80211vap *vap0) 2440 { 2441 struct ieee80211com *ic = vap0->iv_ic; 2442 struct ieee80211vap *vap; 2443 2444 IEEE80211_LOCK_ASSERT(ic); 2445 2446 /* 2447 * A vap list entry can not disappear since we are running on the 2448 * taskqueue and a vap destroy will queue and drain another state 2449 * change task. 2450 */ 2451 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 2452 if (vap == vap0) 2453 continue; 2454 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 2455 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2456 /* NB: sta's cannot go INIT->RUN */ 2457 /* NB: iv_newstate may drop the lock */ 2458 vap->iv_newstate(vap, 2459 vap->iv_opmode == IEEE80211_M_STA ? 2460 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 2461 IEEE80211_LOCK_ASSERT(ic); 2462 } 2463 } 2464 } 2465 2466 /* 2467 * Handle post state change work common to all operating modes. 2468 */ 2469 static void 2470 ieee80211_newstate_cb(void *xvap, int npending) 2471 { 2472 struct ieee80211vap *vap = xvap; 2473 struct ieee80211com *ic = vap->iv_ic; 2474 enum ieee80211_state nstate, ostate; 2475 int arg, rc; 2476 2477 IEEE80211_LOCK(ic); 2478 nstate = vap->iv_nstate; 2479 arg = vap->iv_nstate_arg; 2480 2481 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2482 /* 2483 * We have been requested to drop back to the INIT before 2484 * proceeding to the new state. 2485 */ 2486 /* Deny any state changes while we are here. */ 2487 vap->iv_nstate = IEEE80211_S_INIT; 2488 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2489 "%s: %s -> %s arg %d\n", __func__, 2490 ieee80211_state_name[vap->iv_state], 2491 ieee80211_state_name[vap->iv_nstate], arg); 2492 vap->iv_newstate(vap, vap->iv_nstate, 0); 2493 IEEE80211_LOCK_ASSERT(ic); 2494 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2495 IEEE80211_FEXT_STATEWAIT); 2496 /* enqueue new state transition after cancel_scan() task */ 2497 ieee80211_new_state_locked(vap, nstate, arg); 2498 goto done; 2499 } 2500 2501 ostate = vap->iv_state; 2502 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2503 /* 2504 * SCAN was forced; e.g. on beacon miss. Force other running 2505 * vap's to INIT state and mark them as waiting for the scan to 2506 * complete. This insures they don't interfere with our 2507 * scanning. Since we are single threaded the vaps can not 2508 * transition again while we are executing. 2509 * 2510 * XXX not always right, assumes ap follows sta 2511 */ 2512 markwaiting(vap); 2513 } 2514 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2515 "%s: %s -> %s arg %d\n", __func__, 2516 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2517 2518 rc = vap->iv_newstate(vap, nstate, arg); 2519 IEEE80211_LOCK_ASSERT(ic); 2520 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2521 if (rc != 0) { 2522 /* State transition failed */ 2523 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2524 KASSERT(nstate != IEEE80211_S_INIT, 2525 ("INIT state change failed")); 2526 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2527 "%s: %s returned error %d\n", __func__, 2528 ieee80211_state_name[nstate], rc); 2529 goto done; 2530 } 2531 2532 /* No actual transition, skip post processing */ 2533 if (ostate == nstate) 2534 goto done; 2535 2536 if (nstate == IEEE80211_S_RUN) { 2537 /* 2538 * OACTIVE may be set on the vap if the upper layer 2539 * tried to transmit (e.g. IPv6 NDP) before we reach 2540 * RUN state. Clear it and restart xmit. 2541 * 2542 * Note this can also happen as a result of SLEEP->RUN 2543 * (i.e. coming out of power save mode). 2544 */ 2545 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2546 2547 /* 2548 * XXX TODO Kick-start a VAP queue - this should be a method! 2549 */ 2550 2551 /* bring up any vaps waiting on us */ 2552 wakeupwaiting(vap); 2553 } else if (nstate == IEEE80211_S_INIT) { 2554 /* 2555 * Flush the scan cache if we did the last scan (XXX?) 2556 * and flush any frames on send queues from this vap. 2557 * Note the mgt q is used only for legacy drivers and 2558 * will go away shortly. 2559 */ 2560 ieee80211_scan_flush(vap); 2561 2562 /* 2563 * XXX TODO: ic/vap queue flush 2564 */ 2565 } 2566 done: 2567 IEEE80211_UNLOCK(ic); 2568 } 2569 2570 /* 2571 * Public interface for initiating a state machine change. 2572 * This routine single-threads the request and coordinates 2573 * the scheduling of multiple vaps for the purpose of selecting 2574 * an operating channel. Specifically the following scenarios 2575 * are handled: 2576 * o only one vap can be selecting a channel so on transition to 2577 * SCAN state if another vap is already scanning then 2578 * mark the caller for later processing and return without 2579 * doing anything (XXX? expectations by caller of synchronous operation) 2580 * o only one vap can be doing CAC of a channel so on transition to 2581 * CAC state if another vap is already scanning for radar then 2582 * mark the caller for later processing and return without 2583 * doing anything (XXX? expectations by caller of synchronous operation) 2584 * o if another vap is already running when a request is made 2585 * to SCAN then an operating channel has been chosen; bypass 2586 * the scan and just join the channel 2587 * 2588 * Note that the state change call is done through the iv_newstate 2589 * method pointer so any driver routine gets invoked. The driver 2590 * will normally call back into operating mode-specific 2591 * ieee80211_newstate routines (below) unless it needs to completely 2592 * bypass the state machine (e.g. because the firmware has it's 2593 * own idea how things should work). Bypassing the net80211 layer 2594 * is usually a mistake and indicates lack of proper integration 2595 * with the net80211 layer. 2596 */ 2597 int 2598 ieee80211_new_state_locked(struct ieee80211vap *vap, 2599 enum ieee80211_state nstate, int arg) 2600 { 2601 struct ieee80211com *ic = vap->iv_ic; 2602 struct ieee80211vap *vp; 2603 enum ieee80211_state ostate; 2604 int nrunning, nscanning; 2605 2606 IEEE80211_LOCK_ASSERT(ic); 2607 2608 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2609 if (vap->iv_nstate == IEEE80211_S_INIT || 2610 ((vap->iv_state == IEEE80211_S_INIT || 2611 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2612 vap->iv_nstate == IEEE80211_S_SCAN && 2613 nstate > IEEE80211_S_SCAN)) { 2614 /* 2615 * XXX The vap is being stopped/started, 2616 * do not allow any other state changes 2617 * until this is completed. 2618 */ 2619 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2620 "%s: %s -> %s (%s) transition discarded\n", 2621 __func__, 2622 ieee80211_state_name[vap->iv_state], 2623 ieee80211_state_name[nstate], 2624 ieee80211_state_name[vap->iv_nstate]); 2625 return -1; 2626 } else if (vap->iv_state != vap->iv_nstate) { 2627 #if 0 2628 /* Warn if the previous state hasn't completed. */ 2629 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2630 "%s: pending %s -> %s transition lost\n", __func__, 2631 ieee80211_state_name[vap->iv_state], 2632 ieee80211_state_name[vap->iv_nstate]); 2633 #else 2634 /* XXX temporarily enable to identify issues */ 2635 if_printf(vap->iv_ifp, 2636 "%s: pending %s -> %s transition lost\n", 2637 __func__, ieee80211_state_name[vap->iv_state], 2638 ieee80211_state_name[vap->iv_nstate]); 2639 #endif 2640 } 2641 } 2642 2643 nrunning = nscanning = 0; 2644 /* XXX can track this state instead of calculating */ 2645 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2646 if (vp != vap) { 2647 if (vp->iv_state >= IEEE80211_S_RUN) 2648 nrunning++; 2649 /* XXX doesn't handle bg scan */ 2650 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2651 else if (vp->iv_state > IEEE80211_S_INIT) 2652 nscanning++; 2653 } 2654 } 2655 ostate = vap->iv_state; 2656 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2657 "%s: %s -> %s (arg %d) (nrunning %d nscanning %d)\n", __func__, 2658 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg, 2659 nrunning, nscanning); 2660 switch (nstate) { 2661 case IEEE80211_S_SCAN: 2662 if (ostate == IEEE80211_S_INIT) { 2663 /* 2664 * INIT -> SCAN happens on initial bringup. 2665 */ 2666 KASSERT(!(nscanning && nrunning), 2667 ("%d scanning and %d running", nscanning, nrunning)); 2668 if (nscanning) { 2669 /* 2670 * Someone is scanning, defer our state 2671 * change until the work has completed. 2672 */ 2673 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2674 "%s: defer %s -> %s\n", 2675 __func__, ieee80211_state_name[ostate], 2676 ieee80211_state_name[nstate]); 2677 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2678 return 0; 2679 } 2680 if (nrunning) { 2681 /* 2682 * Someone is operating; just join the channel 2683 * they have chosen. 2684 */ 2685 /* XXX kill arg? */ 2686 /* XXX check each opmode, adhoc? */ 2687 if (vap->iv_opmode == IEEE80211_M_STA) 2688 nstate = IEEE80211_S_SCAN; 2689 else 2690 nstate = IEEE80211_S_RUN; 2691 #ifdef IEEE80211_DEBUG 2692 if (nstate != IEEE80211_S_SCAN) { 2693 IEEE80211_DPRINTF(vap, 2694 IEEE80211_MSG_STATE, 2695 "%s: override, now %s -> %s\n", 2696 __func__, 2697 ieee80211_state_name[ostate], 2698 ieee80211_state_name[nstate]); 2699 } 2700 #endif 2701 } 2702 } 2703 break; 2704 case IEEE80211_S_RUN: 2705 if (vap->iv_opmode == IEEE80211_M_WDS && 2706 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2707 nscanning) { 2708 /* 2709 * Legacy WDS with someone else scanning; don't 2710 * go online until that completes as we should 2711 * follow the other vap to the channel they choose. 2712 */ 2713 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2714 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2715 ieee80211_state_name[ostate], 2716 ieee80211_state_name[nstate]); 2717 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2718 return 0; 2719 } 2720 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2721 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2722 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2723 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2724 /* 2725 * This is a DFS channel, transition to CAC state 2726 * instead of RUN. This allows us to initiate 2727 * Channel Availability Check (CAC) as specified 2728 * by 11h/DFS. 2729 */ 2730 nstate = IEEE80211_S_CAC; 2731 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2732 "%s: override %s -> %s (DFS)\n", __func__, 2733 ieee80211_state_name[ostate], 2734 ieee80211_state_name[nstate]); 2735 } 2736 break; 2737 case IEEE80211_S_INIT: 2738 /* cancel any scan in progress */ 2739 ieee80211_cancel_scan(vap); 2740 if (ostate == IEEE80211_S_INIT ) { 2741 /* XXX don't believe this */ 2742 /* INIT -> INIT. nothing to do */ 2743 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2744 } 2745 /* fall thru... */ 2746 default: 2747 break; 2748 } 2749 /* defer the state change to a thread */ 2750 vap->iv_nstate = nstate; 2751 vap->iv_nstate_arg = arg; 2752 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2753 ieee80211_runtask(ic, &vap->iv_nstate_task); 2754 return EINPROGRESS; 2755 } 2756 2757 int 2758 ieee80211_new_state(struct ieee80211vap *vap, 2759 enum ieee80211_state nstate, int arg) 2760 { 2761 struct ieee80211com *ic = vap->iv_ic; 2762 int rc; 2763 2764 IEEE80211_LOCK(ic); 2765 rc = ieee80211_new_state_locked(vap, nstate, arg); 2766 IEEE80211_UNLOCK(ic); 2767 return rc; 2768 } 2769