1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2001 Atsushi Onoe 5 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting 6 * Copyright (c) 2012 IEEE 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice, this list of conditions and the following disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 */ 29 30 #include <sys/cdefs.h> 31 __FBSDID("$FreeBSD$"); 32 33 /* 34 * IEEE 802.11 protocol support. 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_wlan.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/kernel.h> 43 #include <sys/malloc.h> 44 45 #include <sys/socket.h> 46 #include <sys/sockio.h> 47 48 #include <net/if.h> 49 #include <net/if_var.h> 50 #include <net/if_media.h> 51 #include <net/ethernet.h> /* XXX for ether_sprintf */ 52 53 #include <net80211/ieee80211_var.h> 54 #include <net80211/ieee80211_adhoc.h> 55 #include <net80211/ieee80211_sta.h> 56 #include <net80211/ieee80211_hostap.h> 57 #include <net80211/ieee80211_wds.h> 58 #ifdef IEEE80211_SUPPORT_MESH 59 #include <net80211/ieee80211_mesh.h> 60 #endif 61 #include <net80211/ieee80211_monitor.h> 62 #include <net80211/ieee80211_input.h> 63 64 /* XXX tunables */ 65 #define AGGRESSIVE_MODE_SWITCH_HYSTERESIS 3 /* pkts / 100ms */ 66 #define HIGH_PRI_SWITCH_THRESH 10 /* pkts / 100ms */ 67 68 const char *mgt_subtype_name[] = { 69 "assoc_req", "assoc_resp", "reassoc_req", "reassoc_resp", 70 "probe_req", "probe_resp", "timing_adv", "reserved#7", 71 "beacon", "atim", "disassoc", "auth", 72 "deauth", "action", "action_noack", "reserved#15" 73 }; 74 const char *ctl_subtype_name[] = { 75 "reserved#0", "reserved#1", "reserved#2", "reserved#3", 76 "reserved#4", "reserved#5", "reserved#6", "control_wrap", 77 "bar", "ba", "ps_poll", "rts", 78 "cts", "ack", "cf_end", "cf_end_ack" 79 }; 80 const char *ieee80211_opmode_name[IEEE80211_OPMODE_MAX] = { 81 "IBSS", /* IEEE80211_M_IBSS */ 82 "STA", /* IEEE80211_M_STA */ 83 "WDS", /* IEEE80211_M_WDS */ 84 "AHDEMO", /* IEEE80211_M_AHDEMO */ 85 "HOSTAP", /* IEEE80211_M_HOSTAP */ 86 "MONITOR", /* IEEE80211_M_MONITOR */ 87 "MBSS" /* IEEE80211_M_MBSS */ 88 }; 89 const char *ieee80211_state_name[IEEE80211_S_MAX] = { 90 "INIT", /* IEEE80211_S_INIT */ 91 "SCAN", /* IEEE80211_S_SCAN */ 92 "AUTH", /* IEEE80211_S_AUTH */ 93 "ASSOC", /* IEEE80211_S_ASSOC */ 94 "CAC", /* IEEE80211_S_CAC */ 95 "RUN", /* IEEE80211_S_RUN */ 96 "CSA", /* IEEE80211_S_CSA */ 97 "SLEEP", /* IEEE80211_S_SLEEP */ 98 }; 99 const char *ieee80211_wme_acnames[] = { 100 "WME_AC_BE", 101 "WME_AC_BK", 102 "WME_AC_VI", 103 "WME_AC_VO", 104 "WME_UPSD", 105 }; 106 107 108 /* 109 * Reason code descriptions were (mostly) obtained from 110 * IEEE Std 802.11-2012, pp. 442-445 Table 8-36. 111 */ 112 const char * 113 ieee80211_reason_to_string(uint16_t reason) 114 { 115 switch (reason) { 116 case IEEE80211_REASON_UNSPECIFIED: 117 return ("unspecified"); 118 case IEEE80211_REASON_AUTH_EXPIRE: 119 return ("previous authentication is expired"); 120 case IEEE80211_REASON_AUTH_LEAVE: 121 return ("sending STA is leaving/has left IBSS or ESS"); 122 case IEEE80211_REASON_ASSOC_EXPIRE: 123 return ("disassociated due to inactivity"); 124 case IEEE80211_REASON_ASSOC_TOOMANY: 125 return ("too many associated STAs"); 126 case IEEE80211_REASON_NOT_AUTHED: 127 return ("class 2 frame received from nonauthenticated STA"); 128 case IEEE80211_REASON_NOT_ASSOCED: 129 return ("class 3 frame received from nonassociated STA"); 130 case IEEE80211_REASON_ASSOC_LEAVE: 131 return ("sending STA is leaving/has left BSS"); 132 case IEEE80211_REASON_ASSOC_NOT_AUTHED: 133 return ("STA requesting (re)association is not authenticated"); 134 case IEEE80211_REASON_DISASSOC_PWRCAP_BAD: 135 return ("information in the Power Capability element is " 136 "unacceptable"); 137 case IEEE80211_REASON_DISASSOC_SUPCHAN_BAD: 138 return ("information in the Supported Channels element is " 139 "unacceptable"); 140 case IEEE80211_REASON_IE_INVALID: 141 return ("invalid element"); 142 case IEEE80211_REASON_MIC_FAILURE: 143 return ("MIC failure"); 144 case IEEE80211_REASON_4WAY_HANDSHAKE_TIMEOUT: 145 return ("4-Way handshake timeout"); 146 case IEEE80211_REASON_GROUP_KEY_UPDATE_TIMEOUT: 147 return ("group key update timeout"); 148 case IEEE80211_REASON_IE_IN_4WAY_DIFFERS: 149 return ("element in 4-Way handshake different from " 150 "(re)association request/probe response/beacon frame"); 151 case IEEE80211_REASON_GROUP_CIPHER_INVALID: 152 return ("invalid group cipher"); 153 case IEEE80211_REASON_PAIRWISE_CIPHER_INVALID: 154 return ("invalid pairwise cipher"); 155 case IEEE80211_REASON_AKMP_INVALID: 156 return ("invalid AKMP"); 157 case IEEE80211_REASON_UNSUPP_RSN_IE_VERSION: 158 return ("unsupported version in RSN IE"); 159 case IEEE80211_REASON_INVALID_RSN_IE_CAP: 160 return ("invalid capabilities in RSN IE"); 161 case IEEE80211_REASON_802_1X_AUTH_FAILED: 162 return ("IEEE 802.1X authentication failed"); 163 case IEEE80211_REASON_CIPHER_SUITE_REJECTED: 164 return ("cipher suite rejected because of the security " 165 "policy"); 166 case IEEE80211_REASON_UNSPECIFIED_QOS: 167 return ("unspecified (QoS-related)"); 168 case IEEE80211_REASON_INSUFFICIENT_BW: 169 return ("QoS AP lacks sufficient bandwidth for this QoS STA"); 170 case IEEE80211_REASON_TOOMANY_FRAMES: 171 return ("too many frames need to be acknowledged"); 172 case IEEE80211_REASON_OUTSIDE_TXOP: 173 return ("STA is transmitting outside the limits of its TXOPs"); 174 case IEEE80211_REASON_LEAVING_QBSS: 175 return ("requested from peer STA (the STA is " 176 "resetting/leaving the BSS)"); 177 case IEEE80211_REASON_BAD_MECHANISM: 178 return ("requested from peer STA (it does not want to use " 179 "the mechanism)"); 180 case IEEE80211_REASON_SETUP_NEEDED: 181 return ("requested from peer STA (setup is required for the " 182 "used mechanism)"); 183 case IEEE80211_REASON_TIMEOUT: 184 return ("requested from peer STA (timeout)"); 185 case IEEE80211_REASON_PEER_LINK_CANCELED: 186 return ("SME cancels the mesh peering instance (not related " 187 "to the maximum number of peer mesh STAs)"); 188 case IEEE80211_REASON_MESH_MAX_PEERS: 189 return ("maximum number of peer mesh STAs was reached"); 190 case IEEE80211_REASON_MESH_CPVIOLATION: 191 return ("the received information violates the Mesh " 192 "Configuration policy configured in the mesh STA " 193 "profile"); 194 case IEEE80211_REASON_MESH_CLOSE_RCVD: 195 return ("the mesh STA has received a Mesh Peering Close " 196 "message requesting to close the mesh peering"); 197 case IEEE80211_REASON_MESH_MAX_RETRIES: 198 return ("the mesh STA has resent dot11MeshMaxRetries Mesh " 199 "Peering Open messages, without receiving a Mesh " 200 "Peering Confirm message"); 201 case IEEE80211_REASON_MESH_CONFIRM_TIMEOUT: 202 return ("the confirmTimer for the mesh peering instance times " 203 "out"); 204 case IEEE80211_REASON_MESH_INVALID_GTK: 205 return ("the mesh STA fails to unwrap the GTK or the values " 206 "in the wrapped contents do not match"); 207 case IEEE80211_REASON_MESH_INCONS_PARAMS: 208 return ("the mesh STA receives inconsistent information about " 209 "the mesh parameters between Mesh Peering Management " 210 "frames"); 211 case IEEE80211_REASON_MESH_INVALID_SECURITY: 212 return ("the mesh STA fails the authenticated mesh peering " 213 "exchange because due to failure in selecting " 214 "pairwise/group ciphersuite"); 215 case IEEE80211_REASON_MESH_PERR_NO_PROXY: 216 return ("the mesh STA does not have proxy information for " 217 "this external destination"); 218 case IEEE80211_REASON_MESH_PERR_NO_FI: 219 return ("the mesh STA does not have forwarding information " 220 "for this destination"); 221 case IEEE80211_REASON_MESH_PERR_DEST_UNREACH: 222 return ("the mesh STA determines that the link to the next " 223 "hop of an active path in its forwarding information " 224 "is no longer usable"); 225 case IEEE80211_REASON_MESH_MAC_ALRDY_EXISTS_MBSS: 226 return ("the MAC address of the STA already exists in the " 227 "mesh BSS"); 228 case IEEE80211_REASON_MESH_CHAN_SWITCH_REG: 229 return ("the mesh STA performs channel switch to meet " 230 "regulatory requirements"); 231 case IEEE80211_REASON_MESH_CHAN_SWITCH_UNSPEC: 232 return ("the mesh STA performs channel switch with " 233 "unspecified reason"); 234 default: 235 return ("reserved/unknown"); 236 } 237 } 238 239 static void beacon_miss(void *, int); 240 static void beacon_swmiss(void *, int); 241 static void parent_updown(void *, int); 242 static void update_mcast(void *, int); 243 static void update_promisc(void *, int); 244 static void update_channel(void *, int); 245 static void update_chw(void *, int); 246 static void vap_update_wme(void *, int); 247 static void restart_vaps(void *, int); 248 static void ieee80211_newstate_cb(void *, int); 249 250 static int 251 null_raw_xmit(struct ieee80211_node *ni, struct mbuf *m, 252 const struct ieee80211_bpf_params *params) 253 { 254 255 ic_printf(ni->ni_ic, "missing ic_raw_xmit callback, drop frame\n"); 256 m_freem(m); 257 return ENETDOWN; 258 } 259 260 void 261 ieee80211_proto_attach(struct ieee80211com *ic) 262 { 263 uint8_t hdrlen; 264 265 /* override the 802.3 setting */ 266 hdrlen = ic->ic_headroom 267 + sizeof(struct ieee80211_qosframe_addr4) 268 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 269 + IEEE80211_WEP_EXTIVLEN; 270 /* XXX no way to recalculate on ifdetach */ 271 if (ALIGN(hdrlen) > max_linkhdr) { 272 /* XXX sanity check... */ 273 max_linkhdr = ALIGN(hdrlen); 274 max_hdr = max_linkhdr + max_protohdr; 275 max_datalen = MHLEN - max_hdr; 276 } 277 ic->ic_protmode = IEEE80211_PROT_CTSONLY; 278 279 TASK_INIT(&ic->ic_parent_task, 0, parent_updown, ic); 280 TASK_INIT(&ic->ic_mcast_task, 0, update_mcast, ic); 281 TASK_INIT(&ic->ic_promisc_task, 0, update_promisc, ic); 282 TASK_INIT(&ic->ic_chan_task, 0, update_channel, ic); 283 TASK_INIT(&ic->ic_bmiss_task, 0, beacon_miss, ic); 284 TASK_INIT(&ic->ic_chw_task, 0, update_chw, ic); 285 TASK_INIT(&ic->ic_restart_task, 0, restart_vaps, ic); 286 287 ic->ic_wme.wme_hipri_switch_hysteresis = 288 AGGRESSIVE_MODE_SWITCH_HYSTERESIS; 289 290 /* initialize management frame handlers */ 291 ic->ic_send_mgmt = ieee80211_send_mgmt; 292 ic->ic_raw_xmit = null_raw_xmit; 293 294 ieee80211_adhoc_attach(ic); 295 ieee80211_sta_attach(ic); 296 ieee80211_wds_attach(ic); 297 ieee80211_hostap_attach(ic); 298 #ifdef IEEE80211_SUPPORT_MESH 299 ieee80211_mesh_attach(ic); 300 #endif 301 ieee80211_monitor_attach(ic); 302 } 303 304 void 305 ieee80211_proto_detach(struct ieee80211com *ic) 306 { 307 ieee80211_monitor_detach(ic); 308 #ifdef IEEE80211_SUPPORT_MESH 309 ieee80211_mesh_detach(ic); 310 #endif 311 ieee80211_hostap_detach(ic); 312 ieee80211_wds_detach(ic); 313 ieee80211_adhoc_detach(ic); 314 ieee80211_sta_detach(ic); 315 } 316 317 static void 318 null_update_beacon(struct ieee80211vap *vap, int item) 319 { 320 } 321 322 void 323 ieee80211_proto_vattach(struct ieee80211vap *vap) 324 { 325 struct ieee80211com *ic = vap->iv_ic; 326 struct ifnet *ifp = vap->iv_ifp; 327 int i; 328 329 /* override the 802.3 setting */ 330 ifp->if_hdrlen = ic->ic_headroom 331 + sizeof(struct ieee80211_qosframe_addr4) 332 + IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN 333 + IEEE80211_WEP_EXTIVLEN; 334 335 vap->iv_rtsthreshold = IEEE80211_RTS_DEFAULT; 336 vap->iv_fragthreshold = IEEE80211_FRAG_DEFAULT; 337 vap->iv_bmiss_max = IEEE80211_BMISS_MAX; 338 callout_init_mtx(&vap->iv_swbmiss, IEEE80211_LOCK_OBJ(ic), 0); 339 callout_init(&vap->iv_mgtsend, 1); 340 TASK_INIT(&vap->iv_nstate_task, 0, ieee80211_newstate_cb, vap); 341 TASK_INIT(&vap->iv_swbmiss_task, 0, beacon_swmiss, vap); 342 TASK_INIT(&vap->iv_wme_task, 0, vap_update_wme, vap); 343 /* 344 * Install default tx rate handling: no fixed rate, lowest 345 * supported rate for mgmt and multicast frames. Default 346 * max retry count. These settings can be changed by the 347 * driver and/or user applications. 348 */ 349 for (i = IEEE80211_MODE_11A; i < IEEE80211_MODE_MAX; i++) { 350 if (isclr(ic->ic_modecaps, i)) 351 continue; 352 353 const struct ieee80211_rateset *rs = &ic->ic_sup_rates[i]; 354 355 vap->iv_txparms[i].ucastrate = IEEE80211_FIXED_RATE_NONE; 356 357 /* 358 * Setting the management rate to MCS 0 assumes that the 359 * BSS Basic rate set is empty and the BSS Basic MCS set 360 * is not. 361 * 362 * Since we're not checking this, default to the lowest 363 * defined rate for this mode. 364 * 365 * At least one 11n AP (DLINK DIR-825) is reported to drop 366 * some MCS management traffic (eg BA response frames.) 367 * 368 * See also: 9.6.0 of the 802.11n-2009 specification. 369 */ 370 #ifdef NOTYET 371 if (i == IEEE80211_MODE_11NA || i == IEEE80211_MODE_11NG) { 372 vap->iv_txparms[i].mgmtrate = 0 | IEEE80211_RATE_MCS; 373 vap->iv_txparms[i].mcastrate = 0 | IEEE80211_RATE_MCS; 374 } else { 375 vap->iv_txparms[i].mgmtrate = 376 rs->rs_rates[0] & IEEE80211_RATE_VAL; 377 vap->iv_txparms[i].mcastrate = 378 rs->rs_rates[0] & IEEE80211_RATE_VAL; 379 } 380 #endif 381 vap->iv_txparms[i].mgmtrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 382 vap->iv_txparms[i].mcastrate = rs->rs_rates[0] & IEEE80211_RATE_VAL; 383 vap->iv_txparms[i].maxretry = IEEE80211_TXMAX_DEFAULT; 384 } 385 vap->iv_roaming = IEEE80211_ROAMING_AUTO; 386 387 vap->iv_update_beacon = null_update_beacon; 388 vap->iv_deliver_data = ieee80211_deliver_data; 389 390 /* attach support for operating mode */ 391 ic->ic_vattach[vap->iv_opmode](vap); 392 } 393 394 void 395 ieee80211_proto_vdetach(struct ieee80211vap *vap) 396 { 397 #define FREEAPPIE(ie) do { \ 398 if (ie != NULL) \ 399 IEEE80211_FREE(ie, M_80211_NODE_IE); \ 400 } while (0) 401 /* 402 * Detach operating mode module. 403 */ 404 if (vap->iv_opdetach != NULL) 405 vap->iv_opdetach(vap); 406 /* 407 * This should not be needed as we detach when reseting 408 * the state but be conservative here since the 409 * authenticator may do things like spawn kernel threads. 410 */ 411 if (vap->iv_auth->ia_detach != NULL) 412 vap->iv_auth->ia_detach(vap); 413 /* 414 * Detach any ACL'ator. 415 */ 416 if (vap->iv_acl != NULL) 417 vap->iv_acl->iac_detach(vap); 418 419 FREEAPPIE(vap->iv_appie_beacon); 420 FREEAPPIE(vap->iv_appie_probereq); 421 FREEAPPIE(vap->iv_appie_proberesp); 422 FREEAPPIE(vap->iv_appie_assocreq); 423 FREEAPPIE(vap->iv_appie_assocresp); 424 FREEAPPIE(vap->iv_appie_wpa); 425 #undef FREEAPPIE 426 } 427 428 /* 429 * Simple-minded authenticator module support. 430 */ 431 432 #define IEEE80211_AUTH_MAX (IEEE80211_AUTH_WPA+1) 433 /* XXX well-known names */ 434 static const char *auth_modnames[IEEE80211_AUTH_MAX] = { 435 "wlan_internal", /* IEEE80211_AUTH_NONE */ 436 "wlan_internal", /* IEEE80211_AUTH_OPEN */ 437 "wlan_internal", /* IEEE80211_AUTH_SHARED */ 438 "wlan_xauth", /* IEEE80211_AUTH_8021X */ 439 "wlan_internal", /* IEEE80211_AUTH_AUTO */ 440 "wlan_xauth", /* IEEE80211_AUTH_WPA */ 441 }; 442 static const struct ieee80211_authenticator *authenticators[IEEE80211_AUTH_MAX]; 443 444 static const struct ieee80211_authenticator auth_internal = { 445 .ia_name = "wlan_internal", 446 .ia_attach = NULL, 447 .ia_detach = NULL, 448 .ia_node_join = NULL, 449 .ia_node_leave = NULL, 450 }; 451 452 /* 453 * Setup internal authenticators once; they are never unregistered. 454 */ 455 static void 456 ieee80211_auth_setup(void) 457 { 458 ieee80211_authenticator_register(IEEE80211_AUTH_OPEN, &auth_internal); 459 ieee80211_authenticator_register(IEEE80211_AUTH_SHARED, &auth_internal); 460 ieee80211_authenticator_register(IEEE80211_AUTH_AUTO, &auth_internal); 461 } 462 SYSINIT(wlan_auth, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_auth_setup, NULL); 463 464 const struct ieee80211_authenticator * 465 ieee80211_authenticator_get(int auth) 466 { 467 if (auth >= IEEE80211_AUTH_MAX) 468 return NULL; 469 if (authenticators[auth] == NULL) 470 ieee80211_load_module(auth_modnames[auth]); 471 return authenticators[auth]; 472 } 473 474 void 475 ieee80211_authenticator_register(int type, 476 const struct ieee80211_authenticator *auth) 477 { 478 if (type >= IEEE80211_AUTH_MAX) 479 return; 480 authenticators[type] = auth; 481 } 482 483 void 484 ieee80211_authenticator_unregister(int type) 485 { 486 487 if (type >= IEEE80211_AUTH_MAX) 488 return; 489 authenticators[type] = NULL; 490 } 491 492 /* 493 * Very simple-minded ACL module support. 494 */ 495 /* XXX just one for now */ 496 static const struct ieee80211_aclator *acl = NULL; 497 498 void 499 ieee80211_aclator_register(const struct ieee80211_aclator *iac) 500 { 501 printf("wlan: %s acl policy registered\n", iac->iac_name); 502 acl = iac; 503 } 504 505 void 506 ieee80211_aclator_unregister(const struct ieee80211_aclator *iac) 507 { 508 if (acl == iac) 509 acl = NULL; 510 printf("wlan: %s acl policy unregistered\n", iac->iac_name); 511 } 512 513 const struct ieee80211_aclator * 514 ieee80211_aclator_get(const char *name) 515 { 516 if (acl == NULL) 517 ieee80211_load_module("wlan_acl"); 518 return acl != NULL && strcmp(acl->iac_name, name) == 0 ? acl : NULL; 519 } 520 521 void 522 ieee80211_print_essid(const uint8_t *essid, int len) 523 { 524 const uint8_t *p; 525 int i; 526 527 if (len > IEEE80211_NWID_LEN) 528 len = IEEE80211_NWID_LEN; 529 /* determine printable or not */ 530 for (i = 0, p = essid; i < len; i++, p++) { 531 if (*p < ' ' || *p > 0x7e) 532 break; 533 } 534 if (i == len) { 535 printf("\""); 536 for (i = 0, p = essid; i < len; i++, p++) 537 printf("%c", *p); 538 printf("\""); 539 } else { 540 printf("0x"); 541 for (i = 0, p = essid; i < len; i++, p++) 542 printf("%02x", *p); 543 } 544 } 545 546 void 547 ieee80211_dump_pkt(struct ieee80211com *ic, 548 const uint8_t *buf, int len, int rate, int rssi) 549 { 550 const struct ieee80211_frame *wh; 551 int i; 552 553 wh = (const struct ieee80211_frame *)buf; 554 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 555 case IEEE80211_FC1_DIR_NODS: 556 printf("NODS %s", ether_sprintf(wh->i_addr2)); 557 printf("->%s", ether_sprintf(wh->i_addr1)); 558 printf("(%s)", ether_sprintf(wh->i_addr3)); 559 break; 560 case IEEE80211_FC1_DIR_TODS: 561 printf("TODS %s", ether_sprintf(wh->i_addr2)); 562 printf("->%s", ether_sprintf(wh->i_addr3)); 563 printf("(%s)", ether_sprintf(wh->i_addr1)); 564 break; 565 case IEEE80211_FC1_DIR_FROMDS: 566 printf("FRDS %s", ether_sprintf(wh->i_addr3)); 567 printf("->%s", ether_sprintf(wh->i_addr1)); 568 printf("(%s)", ether_sprintf(wh->i_addr2)); 569 break; 570 case IEEE80211_FC1_DIR_DSTODS: 571 printf("DSDS %s", ether_sprintf((const uint8_t *)&wh[1])); 572 printf("->%s", ether_sprintf(wh->i_addr3)); 573 printf("(%s", ether_sprintf(wh->i_addr2)); 574 printf("->%s)", ether_sprintf(wh->i_addr1)); 575 break; 576 } 577 switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) { 578 case IEEE80211_FC0_TYPE_DATA: 579 printf(" data"); 580 break; 581 case IEEE80211_FC0_TYPE_MGT: 582 printf(" %s", ieee80211_mgt_subtype_name(wh->i_fc[0])); 583 break; 584 default: 585 printf(" type#%d", wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK); 586 break; 587 } 588 if (IEEE80211_QOS_HAS_SEQ(wh)) { 589 const struct ieee80211_qosframe *qwh = 590 (const struct ieee80211_qosframe *)buf; 591 printf(" QoS [TID %u%s]", qwh->i_qos[0] & IEEE80211_QOS_TID, 592 qwh->i_qos[0] & IEEE80211_QOS_ACKPOLICY ? " ACM" : ""); 593 } 594 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 595 int off; 596 597 off = ieee80211_anyhdrspace(ic, wh); 598 printf(" WEP [IV %.02x %.02x %.02x", 599 buf[off+0], buf[off+1], buf[off+2]); 600 if (buf[off+IEEE80211_WEP_IVLEN] & IEEE80211_WEP_EXTIV) 601 printf(" %.02x %.02x %.02x", 602 buf[off+4], buf[off+5], buf[off+6]); 603 printf(" KID %u]", buf[off+IEEE80211_WEP_IVLEN] >> 6); 604 } 605 if (rate >= 0) 606 printf(" %dM", rate / 2); 607 if (rssi >= 0) 608 printf(" +%d", rssi); 609 printf("\n"); 610 if (len > 0) { 611 for (i = 0; i < len; i++) { 612 if ((i & 1) == 0) 613 printf(" "); 614 printf("%02x", buf[i]); 615 } 616 printf("\n"); 617 } 618 } 619 620 static __inline int 621 findrix(const struct ieee80211_rateset *rs, int r) 622 { 623 int i; 624 625 for (i = 0; i < rs->rs_nrates; i++) 626 if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) == r) 627 return i; 628 return -1; 629 } 630 631 int 632 ieee80211_fix_rate(struct ieee80211_node *ni, 633 struct ieee80211_rateset *nrs, int flags) 634 { 635 struct ieee80211vap *vap = ni->ni_vap; 636 struct ieee80211com *ic = ni->ni_ic; 637 int i, j, rix, error; 638 int okrate, badrate, fixedrate, ucastrate; 639 const struct ieee80211_rateset *srs; 640 uint8_t r; 641 642 error = 0; 643 okrate = badrate = 0; 644 ucastrate = vap->iv_txparms[ieee80211_chan2mode(ni->ni_chan)].ucastrate; 645 if (ucastrate != IEEE80211_FIXED_RATE_NONE) { 646 /* 647 * Workaround awkwardness with fixed rate. We are called 648 * to check both the legacy rate set and the HT rate set 649 * but we must apply any legacy fixed rate check only to the 650 * legacy rate set and vice versa. We cannot tell what type 651 * of rate set we've been given (legacy or HT) but we can 652 * distinguish the fixed rate type (MCS have 0x80 set). 653 * So to deal with this the caller communicates whether to 654 * check MCS or legacy rate using the flags and we use the 655 * type of any fixed rate to avoid applying an MCS to a 656 * legacy rate and vice versa. 657 */ 658 if (ucastrate & 0x80) { 659 if (flags & IEEE80211_F_DOFRATE) 660 flags &= ~IEEE80211_F_DOFRATE; 661 } else if ((ucastrate & 0x80) == 0) { 662 if (flags & IEEE80211_F_DOFMCS) 663 flags &= ~IEEE80211_F_DOFMCS; 664 } 665 /* NB: required to make MCS match below work */ 666 ucastrate &= IEEE80211_RATE_VAL; 667 } 668 fixedrate = IEEE80211_FIXED_RATE_NONE; 669 /* 670 * XXX we are called to process both MCS and legacy rates; 671 * we must use the appropriate basic rate set or chaos will 672 * ensue; for now callers that want MCS must supply 673 * IEEE80211_F_DOBRS; at some point we'll need to split this 674 * function so there are two variants, one for MCS and one 675 * for legacy rates. 676 */ 677 if (flags & IEEE80211_F_DOBRS) 678 srs = (const struct ieee80211_rateset *) 679 ieee80211_get_suphtrates(ic, ni->ni_chan); 680 else 681 srs = ieee80211_get_suprates(ic, ni->ni_chan); 682 for (i = 0; i < nrs->rs_nrates; ) { 683 if (flags & IEEE80211_F_DOSORT) { 684 /* 685 * Sort rates. 686 */ 687 for (j = i + 1; j < nrs->rs_nrates; j++) { 688 if (IEEE80211_RV(nrs->rs_rates[i]) > 689 IEEE80211_RV(nrs->rs_rates[j])) { 690 r = nrs->rs_rates[i]; 691 nrs->rs_rates[i] = nrs->rs_rates[j]; 692 nrs->rs_rates[j] = r; 693 } 694 } 695 } 696 r = nrs->rs_rates[i] & IEEE80211_RATE_VAL; 697 badrate = r; 698 /* 699 * Check for fixed rate. 700 */ 701 if (r == ucastrate) 702 fixedrate = r; 703 /* 704 * Check against supported rates. 705 */ 706 rix = findrix(srs, r); 707 if (flags & IEEE80211_F_DONEGO) { 708 if (rix < 0) { 709 /* 710 * A rate in the node's rate set is not 711 * supported. If this is a basic rate and we 712 * are operating as a STA then this is an error. 713 * Otherwise we just discard/ignore the rate. 714 */ 715 if ((flags & IEEE80211_F_JOIN) && 716 (nrs->rs_rates[i] & IEEE80211_RATE_BASIC)) 717 error++; 718 } else if ((flags & IEEE80211_F_JOIN) == 0) { 719 /* 720 * Overwrite with the supported rate 721 * value so any basic rate bit is set. 722 */ 723 nrs->rs_rates[i] = srs->rs_rates[rix]; 724 } 725 } 726 if ((flags & IEEE80211_F_DODEL) && rix < 0) { 727 /* 728 * Delete unacceptable rates. 729 */ 730 nrs->rs_nrates--; 731 for (j = i; j < nrs->rs_nrates; j++) 732 nrs->rs_rates[j] = nrs->rs_rates[j + 1]; 733 nrs->rs_rates[j] = 0; 734 continue; 735 } 736 if (rix >= 0) 737 okrate = nrs->rs_rates[i]; 738 i++; 739 } 740 if (okrate == 0 || error != 0 || 741 ((flags & (IEEE80211_F_DOFRATE|IEEE80211_F_DOFMCS)) && 742 fixedrate != ucastrate)) { 743 IEEE80211_NOTE(vap, IEEE80211_MSG_XRATE | IEEE80211_MSG_11N, ni, 744 "%s: flags 0x%x okrate %d error %d fixedrate 0x%x " 745 "ucastrate %x\n", __func__, fixedrate, ucastrate, flags); 746 return badrate | IEEE80211_RATE_BASIC; 747 } else 748 return IEEE80211_RV(okrate); 749 } 750 751 /* 752 * Reset 11g-related state. 753 */ 754 void 755 ieee80211_reset_erp(struct ieee80211com *ic) 756 { 757 ic->ic_flags &= ~IEEE80211_F_USEPROT; 758 ic->ic_nonerpsta = 0; 759 ic->ic_longslotsta = 0; 760 /* 761 * Short slot time is enabled only when operating in 11g 762 * and not in an IBSS. We must also honor whether or not 763 * the driver is capable of doing it. 764 */ 765 ieee80211_set_shortslottime(ic, 766 IEEE80211_IS_CHAN_A(ic->ic_curchan) || 767 IEEE80211_IS_CHAN_HT(ic->ic_curchan) || 768 (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 769 ic->ic_opmode == IEEE80211_M_HOSTAP && 770 (ic->ic_caps & IEEE80211_C_SHSLOT))); 771 /* 772 * Set short preamble and ERP barker-preamble flags. 773 */ 774 if (IEEE80211_IS_CHAN_A(ic->ic_curchan) || 775 (ic->ic_caps & IEEE80211_C_SHPREAMBLE)) { 776 ic->ic_flags |= IEEE80211_F_SHPREAMBLE; 777 ic->ic_flags &= ~IEEE80211_F_USEBARKER; 778 } else { 779 ic->ic_flags &= ~IEEE80211_F_SHPREAMBLE; 780 ic->ic_flags |= IEEE80211_F_USEBARKER; 781 } 782 } 783 784 /* 785 * Set the short slot time state and notify the driver. 786 */ 787 void 788 ieee80211_set_shortslottime(struct ieee80211com *ic, int onoff) 789 { 790 if (onoff) 791 ic->ic_flags |= IEEE80211_F_SHSLOT; 792 else 793 ic->ic_flags &= ~IEEE80211_F_SHSLOT; 794 /* notify driver */ 795 if (ic->ic_updateslot != NULL) 796 ic->ic_updateslot(ic); 797 } 798 799 /* 800 * Check if the specified rate set supports ERP. 801 * NB: the rate set is assumed to be sorted. 802 */ 803 int 804 ieee80211_iserp_rateset(const struct ieee80211_rateset *rs) 805 { 806 static const int rates[] = { 2, 4, 11, 22, 12, 24, 48 }; 807 int i, j; 808 809 if (rs->rs_nrates < nitems(rates)) 810 return 0; 811 for (i = 0; i < nitems(rates); i++) { 812 for (j = 0; j < rs->rs_nrates; j++) { 813 int r = rs->rs_rates[j] & IEEE80211_RATE_VAL; 814 if (rates[i] == r) 815 goto next; 816 if (r > rates[i]) 817 return 0; 818 } 819 return 0; 820 next: 821 ; 822 } 823 return 1; 824 } 825 826 /* 827 * Mark the basic rates for the rate table based on the 828 * operating mode. For real 11g we mark all the 11b rates 829 * and 6, 12, and 24 OFDM. For 11b compatibility we mark only 830 * 11b rates. There's also a pseudo 11a-mode used to mark only 831 * the basic OFDM rates. 832 */ 833 static void 834 setbasicrates(struct ieee80211_rateset *rs, 835 enum ieee80211_phymode mode, int add) 836 { 837 static const struct ieee80211_rateset basic[IEEE80211_MODE_MAX] = { 838 [IEEE80211_MODE_11A] = { 3, { 12, 24, 48 } }, 839 [IEEE80211_MODE_11B] = { 2, { 2, 4 } }, 840 /* NB: mixed b/g */ 841 [IEEE80211_MODE_11G] = { 4, { 2, 4, 11, 22 } }, 842 [IEEE80211_MODE_TURBO_A] = { 3, { 12, 24, 48 } }, 843 [IEEE80211_MODE_TURBO_G] = { 4, { 2, 4, 11, 22 } }, 844 [IEEE80211_MODE_STURBO_A] = { 3, { 12, 24, 48 } }, 845 [IEEE80211_MODE_HALF] = { 3, { 6, 12, 24 } }, 846 [IEEE80211_MODE_QUARTER] = { 3, { 3, 6, 12 } }, 847 [IEEE80211_MODE_11NA] = { 3, { 12, 24, 48 } }, 848 /* NB: mixed b/g */ 849 [IEEE80211_MODE_11NG] = { 4, { 2, 4, 11, 22 } }, 850 /* NB: mixed b/g */ 851 [IEEE80211_MODE_VHT_2GHZ] = { 4, { 2, 4, 11, 22 } }, 852 [IEEE80211_MODE_VHT_5GHZ] = { 3, { 12, 24, 48 } }, 853 }; 854 int i, j; 855 856 for (i = 0; i < rs->rs_nrates; i++) { 857 if (!add) 858 rs->rs_rates[i] &= IEEE80211_RATE_VAL; 859 for (j = 0; j < basic[mode].rs_nrates; j++) 860 if (basic[mode].rs_rates[j] == rs->rs_rates[i]) { 861 rs->rs_rates[i] |= IEEE80211_RATE_BASIC; 862 break; 863 } 864 } 865 } 866 867 /* 868 * Set the basic rates in a rate set. 869 */ 870 void 871 ieee80211_setbasicrates(struct ieee80211_rateset *rs, 872 enum ieee80211_phymode mode) 873 { 874 setbasicrates(rs, mode, 0); 875 } 876 877 /* 878 * Add basic rates to a rate set. 879 */ 880 void 881 ieee80211_addbasicrates(struct ieee80211_rateset *rs, 882 enum ieee80211_phymode mode) 883 { 884 setbasicrates(rs, mode, 1); 885 } 886 887 /* 888 * WME protocol support. 889 * 890 * The default 11a/b/g/n parameters come from the WiFi Alliance WMM 891 * System Interopability Test Plan (v1.4, Appendix F) and the 802.11n 892 * Draft 2.0 Test Plan (Appendix D). 893 * 894 * Static/Dynamic Turbo mode settings come from Atheros. 895 */ 896 typedef struct phyParamType { 897 uint8_t aifsn; 898 uint8_t logcwmin; 899 uint8_t logcwmax; 900 uint16_t txopLimit; 901 uint8_t acm; 902 } paramType; 903 904 static const struct phyParamType phyParamForAC_BE[IEEE80211_MODE_MAX] = { 905 [IEEE80211_MODE_AUTO] = { 3, 4, 6, 0, 0 }, 906 [IEEE80211_MODE_11A] = { 3, 4, 6, 0, 0 }, 907 [IEEE80211_MODE_11B] = { 3, 4, 6, 0, 0 }, 908 [IEEE80211_MODE_11G] = { 3, 4, 6, 0, 0 }, 909 [IEEE80211_MODE_FH] = { 3, 4, 6, 0, 0 }, 910 [IEEE80211_MODE_TURBO_A]= { 2, 3, 5, 0, 0 }, 911 [IEEE80211_MODE_TURBO_G]= { 2, 3, 5, 0, 0 }, 912 [IEEE80211_MODE_STURBO_A]={ 2, 3, 5, 0, 0 }, 913 [IEEE80211_MODE_HALF] = { 3, 4, 6, 0, 0 }, 914 [IEEE80211_MODE_QUARTER]= { 3, 4, 6, 0, 0 }, 915 [IEEE80211_MODE_11NA] = { 3, 4, 6, 0, 0 }, 916 [IEEE80211_MODE_11NG] = { 3, 4, 6, 0, 0 }, 917 [IEEE80211_MODE_VHT_2GHZ] = { 3, 4, 6, 0, 0 }, 918 [IEEE80211_MODE_VHT_5GHZ] = { 3, 4, 6, 0, 0 }, 919 }; 920 static const struct phyParamType phyParamForAC_BK[IEEE80211_MODE_MAX] = { 921 [IEEE80211_MODE_AUTO] = { 7, 4, 10, 0, 0 }, 922 [IEEE80211_MODE_11A] = { 7, 4, 10, 0, 0 }, 923 [IEEE80211_MODE_11B] = { 7, 4, 10, 0, 0 }, 924 [IEEE80211_MODE_11G] = { 7, 4, 10, 0, 0 }, 925 [IEEE80211_MODE_FH] = { 7, 4, 10, 0, 0 }, 926 [IEEE80211_MODE_TURBO_A]= { 7, 3, 10, 0, 0 }, 927 [IEEE80211_MODE_TURBO_G]= { 7, 3, 10, 0, 0 }, 928 [IEEE80211_MODE_STURBO_A]={ 7, 3, 10, 0, 0 }, 929 [IEEE80211_MODE_HALF] = { 7, 4, 10, 0, 0 }, 930 [IEEE80211_MODE_QUARTER]= { 7, 4, 10, 0, 0 }, 931 [IEEE80211_MODE_11NA] = { 7, 4, 10, 0, 0 }, 932 [IEEE80211_MODE_11NG] = { 7, 4, 10, 0, 0 }, 933 [IEEE80211_MODE_VHT_2GHZ] = { 7, 4, 10, 0, 0 }, 934 [IEEE80211_MODE_VHT_5GHZ] = { 7, 4, 10, 0, 0 }, 935 }; 936 static const struct phyParamType phyParamForAC_VI[IEEE80211_MODE_MAX] = { 937 [IEEE80211_MODE_AUTO] = { 1, 3, 4, 94, 0 }, 938 [IEEE80211_MODE_11A] = { 1, 3, 4, 94, 0 }, 939 [IEEE80211_MODE_11B] = { 1, 3, 4, 188, 0 }, 940 [IEEE80211_MODE_11G] = { 1, 3, 4, 94, 0 }, 941 [IEEE80211_MODE_FH] = { 1, 3, 4, 188, 0 }, 942 [IEEE80211_MODE_TURBO_A]= { 1, 2, 3, 94, 0 }, 943 [IEEE80211_MODE_TURBO_G]= { 1, 2, 3, 94, 0 }, 944 [IEEE80211_MODE_STURBO_A]={ 1, 2, 3, 94, 0 }, 945 [IEEE80211_MODE_HALF] = { 1, 3, 4, 94, 0 }, 946 [IEEE80211_MODE_QUARTER]= { 1, 3, 4, 94, 0 }, 947 [IEEE80211_MODE_11NA] = { 1, 3, 4, 94, 0 }, 948 [IEEE80211_MODE_11NG] = { 1, 3, 4, 94, 0 }, 949 [IEEE80211_MODE_VHT_2GHZ] = { 1, 3, 4, 94, 0 }, 950 [IEEE80211_MODE_VHT_5GHZ] = { 1, 3, 4, 94, 0 }, 951 }; 952 static const struct phyParamType phyParamForAC_VO[IEEE80211_MODE_MAX] = { 953 [IEEE80211_MODE_AUTO] = { 1, 2, 3, 47, 0 }, 954 [IEEE80211_MODE_11A] = { 1, 2, 3, 47, 0 }, 955 [IEEE80211_MODE_11B] = { 1, 2, 3, 102, 0 }, 956 [IEEE80211_MODE_11G] = { 1, 2, 3, 47, 0 }, 957 [IEEE80211_MODE_FH] = { 1, 2, 3, 102, 0 }, 958 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 959 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 960 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 961 [IEEE80211_MODE_HALF] = { 1, 2, 3, 47, 0 }, 962 [IEEE80211_MODE_QUARTER]= { 1, 2, 3, 47, 0 }, 963 [IEEE80211_MODE_11NA] = { 1, 2, 3, 47, 0 }, 964 [IEEE80211_MODE_11NG] = { 1, 2, 3, 47, 0 }, 965 [IEEE80211_MODE_VHT_2GHZ] = { 1, 2, 3, 47, 0 }, 966 [IEEE80211_MODE_VHT_5GHZ] = { 1, 2, 3, 47, 0 }, 967 }; 968 969 static const struct phyParamType bssPhyParamForAC_BE[IEEE80211_MODE_MAX] = { 970 [IEEE80211_MODE_AUTO] = { 3, 4, 10, 0, 0 }, 971 [IEEE80211_MODE_11A] = { 3, 4, 10, 0, 0 }, 972 [IEEE80211_MODE_11B] = { 3, 4, 10, 0, 0 }, 973 [IEEE80211_MODE_11G] = { 3, 4, 10, 0, 0 }, 974 [IEEE80211_MODE_FH] = { 3, 4, 10, 0, 0 }, 975 [IEEE80211_MODE_TURBO_A]= { 2, 3, 10, 0, 0 }, 976 [IEEE80211_MODE_TURBO_G]= { 2, 3, 10, 0, 0 }, 977 [IEEE80211_MODE_STURBO_A]={ 2, 3, 10, 0, 0 }, 978 [IEEE80211_MODE_HALF] = { 3, 4, 10, 0, 0 }, 979 [IEEE80211_MODE_QUARTER]= { 3, 4, 10, 0, 0 }, 980 [IEEE80211_MODE_11NA] = { 3, 4, 10, 0, 0 }, 981 [IEEE80211_MODE_11NG] = { 3, 4, 10, 0, 0 }, 982 }; 983 static const struct phyParamType bssPhyParamForAC_VI[IEEE80211_MODE_MAX] = { 984 [IEEE80211_MODE_AUTO] = { 2, 3, 4, 94, 0 }, 985 [IEEE80211_MODE_11A] = { 2, 3, 4, 94, 0 }, 986 [IEEE80211_MODE_11B] = { 2, 3, 4, 188, 0 }, 987 [IEEE80211_MODE_11G] = { 2, 3, 4, 94, 0 }, 988 [IEEE80211_MODE_FH] = { 2, 3, 4, 188, 0 }, 989 [IEEE80211_MODE_TURBO_A]= { 2, 2, 3, 94, 0 }, 990 [IEEE80211_MODE_TURBO_G]= { 2, 2, 3, 94, 0 }, 991 [IEEE80211_MODE_STURBO_A]={ 2, 2, 3, 94, 0 }, 992 [IEEE80211_MODE_HALF] = { 2, 3, 4, 94, 0 }, 993 [IEEE80211_MODE_QUARTER]= { 2, 3, 4, 94, 0 }, 994 [IEEE80211_MODE_11NA] = { 2, 3, 4, 94, 0 }, 995 [IEEE80211_MODE_11NG] = { 2, 3, 4, 94, 0 }, 996 }; 997 static const struct phyParamType bssPhyParamForAC_VO[IEEE80211_MODE_MAX] = { 998 [IEEE80211_MODE_AUTO] = { 2, 2, 3, 47, 0 }, 999 [IEEE80211_MODE_11A] = { 2, 2, 3, 47, 0 }, 1000 [IEEE80211_MODE_11B] = { 2, 2, 3, 102, 0 }, 1001 [IEEE80211_MODE_11G] = { 2, 2, 3, 47, 0 }, 1002 [IEEE80211_MODE_FH] = { 2, 2, 3, 102, 0 }, 1003 [IEEE80211_MODE_TURBO_A]= { 1, 2, 2, 47, 0 }, 1004 [IEEE80211_MODE_TURBO_G]= { 1, 2, 2, 47, 0 }, 1005 [IEEE80211_MODE_STURBO_A]={ 1, 2, 2, 47, 0 }, 1006 [IEEE80211_MODE_HALF] = { 2, 2, 3, 47, 0 }, 1007 [IEEE80211_MODE_QUARTER]= { 2, 2, 3, 47, 0 }, 1008 [IEEE80211_MODE_11NA] = { 2, 2, 3, 47, 0 }, 1009 [IEEE80211_MODE_11NG] = { 2, 2, 3, 47, 0 }, 1010 }; 1011 1012 static void 1013 _setifsparams(struct wmeParams *wmep, const paramType *phy) 1014 { 1015 wmep->wmep_aifsn = phy->aifsn; 1016 wmep->wmep_logcwmin = phy->logcwmin; 1017 wmep->wmep_logcwmax = phy->logcwmax; 1018 wmep->wmep_txopLimit = phy->txopLimit; 1019 } 1020 1021 static void 1022 setwmeparams(struct ieee80211vap *vap, const char *type, int ac, 1023 struct wmeParams *wmep, const paramType *phy) 1024 { 1025 wmep->wmep_acm = phy->acm; 1026 _setifsparams(wmep, phy); 1027 1028 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1029 "set %s (%s) [acm %u aifsn %u logcwmin %u logcwmax %u txop %u]\n", 1030 ieee80211_wme_acnames[ac], type, 1031 wmep->wmep_acm, wmep->wmep_aifsn, wmep->wmep_logcwmin, 1032 wmep->wmep_logcwmax, wmep->wmep_txopLimit); 1033 } 1034 1035 static void 1036 ieee80211_wme_initparams_locked(struct ieee80211vap *vap) 1037 { 1038 struct ieee80211com *ic = vap->iv_ic; 1039 struct ieee80211_wme_state *wme = &ic->ic_wme; 1040 const paramType *pPhyParam, *pBssPhyParam; 1041 struct wmeParams *wmep; 1042 enum ieee80211_phymode mode; 1043 int i; 1044 1045 IEEE80211_LOCK_ASSERT(ic); 1046 1047 if ((ic->ic_caps & IEEE80211_C_WME) == 0 || ic->ic_nrunning > 1) 1048 return; 1049 1050 /* 1051 * Clear the wme cap_info field so a qoscount from a previous 1052 * vap doesn't confuse later code which only parses the beacon 1053 * field and updates hardware when said field changes. 1054 * Otherwise the hardware is programmed with defaults, not what 1055 * the beacon actually announces. 1056 */ 1057 wme->wme_wmeChanParams.cap_info = 0; 1058 1059 /* 1060 * Select mode; we can be called early in which case we 1061 * always use auto mode. We know we'll be called when 1062 * entering the RUN state with bsschan setup properly 1063 * so state will eventually get set correctly 1064 */ 1065 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1066 mode = ieee80211_chan2mode(ic->ic_bsschan); 1067 else 1068 mode = IEEE80211_MODE_AUTO; 1069 for (i = 0; i < WME_NUM_AC; i++) { 1070 switch (i) { 1071 case WME_AC_BK: 1072 pPhyParam = &phyParamForAC_BK[mode]; 1073 pBssPhyParam = &phyParamForAC_BK[mode]; 1074 break; 1075 case WME_AC_VI: 1076 pPhyParam = &phyParamForAC_VI[mode]; 1077 pBssPhyParam = &bssPhyParamForAC_VI[mode]; 1078 break; 1079 case WME_AC_VO: 1080 pPhyParam = &phyParamForAC_VO[mode]; 1081 pBssPhyParam = &bssPhyParamForAC_VO[mode]; 1082 break; 1083 case WME_AC_BE: 1084 default: 1085 pPhyParam = &phyParamForAC_BE[mode]; 1086 pBssPhyParam = &bssPhyParamForAC_BE[mode]; 1087 break; 1088 } 1089 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1090 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1091 setwmeparams(vap, "chan", i, wmep, pPhyParam); 1092 } else { 1093 setwmeparams(vap, "chan", i, wmep, pBssPhyParam); 1094 } 1095 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1096 setwmeparams(vap, "bss ", i, wmep, pBssPhyParam); 1097 } 1098 /* NB: check ic_bss to avoid NULL deref on initial attach */ 1099 if (vap->iv_bss != NULL) { 1100 /* 1101 * Calculate aggressive mode switching threshold based 1102 * on beacon interval. This doesn't need locking since 1103 * we're only called before entering the RUN state at 1104 * which point we start sending beacon frames. 1105 */ 1106 wme->wme_hipri_switch_thresh = 1107 (HIGH_PRI_SWITCH_THRESH * vap->iv_bss->ni_intval) / 100; 1108 wme->wme_flags &= ~WME_F_AGGRMODE; 1109 ieee80211_wme_updateparams(vap); 1110 } 1111 } 1112 1113 void 1114 ieee80211_wme_initparams(struct ieee80211vap *vap) 1115 { 1116 struct ieee80211com *ic = vap->iv_ic; 1117 1118 IEEE80211_LOCK(ic); 1119 ieee80211_wme_initparams_locked(vap); 1120 IEEE80211_UNLOCK(ic); 1121 } 1122 1123 /* 1124 * Update WME parameters for ourself and the BSS. 1125 */ 1126 void 1127 ieee80211_wme_updateparams_locked(struct ieee80211vap *vap) 1128 { 1129 static const paramType aggrParam[IEEE80211_MODE_MAX] = { 1130 [IEEE80211_MODE_AUTO] = { 2, 4, 10, 64, 0 }, 1131 [IEEE80211_MODE_11A] = { 2, 4, 10, 64, 0 }, 1132 [IEEE80211_MODE_11B] = { 2, 5, 10, 64, 0 }, 1133 [IEEE80211_MODE_11G] = { 2, 4, 10, 64, 0 }, 1134 [IEEE80211_MODE_FH] = { 2, 5, 10, 64, 0 }, 1135 [IEEE80211_MODE_TURBO_A] = { 1, 3, 10, 64, 0 }, 1136 [IEEE80211_MODE_TURBO_G] = { 1, 3, 10, 64, 0 }, 1137 [IEEE80211_MODE_STURBO_A] = { 1, 3, 10, 64, 0 }, 1138 [IEEE80211_MODE_HALF] = { 2, 4, 10, 64, 0 }, 1139 [IEEE80211_MODE_QUARTER] = { 2, 4, 10, 64, 0 }, 1140 [IEEE80211_MODE_11NA] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1141 [IEEE80211_MODE_11NG] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1142 [IEEE80211_MODE_VHT_2GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1143 [IEEE80211_MODE_VHT_5GHZ] = { 2, 4, 10, 64, 0 }, /* XXXcheck*/ 1144 }; 1145 struct ieee80211com *ic = vap->iv_ic; 1146 struct ieee80211_wme_state *wme = &ic->ic_wme; 1147 const struct wmeParams *wmep; 1148 struct wmeParams *chanp, *bssp; 1149 enum ieee80211_phymode mode; 1150 int i; 1151 int do_aggrmode = 0; 1152 1153 /* 1154 * Set up the channel access parameters for the physical 1155 * device. First populate the configured settings. 1156 */ 1157 for (i = 0; i < WME_NUM_AC; i++) { 1158 chanp = &wme->wme_chanParams.cap_wmeParams[i]; 1159 wmep = &wme->wme_wmeChanParams.cap_wmeParams[i]; 1160 chanp->wmep_aifsn = wmep->wmep_aifsn; 1161 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1162 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1163 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1164 1165 chanp = &wme->wme_bssChanParams.cap_wmeParams[i]; 1166 wmep = &wme->wme_wmeBssChanParams.cap_wmeParams[i]; 1167 chanp->wmep_aifsn = wmep->wmep_aifsn; 1168 chanp->wmep_logcwmin = wmep->wmep_logcwmin; 1169 chanp->wmep_logcwmax = wmep->wmep_logcwmax; 1170 chanp->wmep_txopLimit = wmep->wmep_txopLimit; 1171 } 1172 1173 /* 1174 * Select mode; we can be called early in which case we 1175 * always use auto mode. We know we'll be called when 1176 * entering the RUN state with bsschan setup properly 1177 * so state will eventually get set correctly 1178 */ 1179 if (ic->ic_bsschan != IEEE80211_CHAN_ANYC) 1180 mode = ieee80211_chan2mode(ic->ic_bsschan); 1181 else 1182 mode = IEEE80211_MODE_AUTO; 1183 1184 /* 1185 * This implements aggressive mode as found in certain 1186 * vendors' AP's. When there is significant high 1187 * priority (VI/VO) traffic in the BSS throttle back BE 1188 * traffic by using conservative parameters. Otherwise 1189 * BE uses aggressive params to optimize performance of 1190 * legacy/non-QoS traffic. 1191 */ 1192 1193 /* Hostap? Only if aggressive mode is enabled */ 1194 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1195 (wme->wme_flags & WME_F_AGGRMODE) != 0) 1196 do_aggrmode = 1; 1197 1198 /* 1199 * Station? Only if we're in a non-QoS BSS. 1200 */ 1201 else if ((vap->iv_opmode == IEEE80211_M_STA && 1202 (vap->iv_bss->ni_flags & IEEE80211_NODE_QOS) == 0)) 1203 do_aggrmode = 1; 1204 1205 /* 1206 * IBSS? Only if we we have WME enabled. 1207 */ 1208 else if ((vap->iv_opmode == IEEE80211_M_IBSS) && 1209 (vap->iv_flags & IEEE80211_F_WME)) 1210 do_aggrmode = 1; 1211 1212 /* 1213 * If WME is disabled on this VAP, default to aggressive mode 1214 * regardless of the configuration. 1215 */ 1216 if ((vap->iv_flags & IEEE80211_F_WME) == 0) 1217 do_aggrmode = 1; 1218 1219 /* XXX WDS? */ 1220 1221 /* XXX MBSS? */ 1222 1223 if (do_aggrmode) { 1224 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1225 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1226 1227 chanp->wmep_aifsn = bssp->wmep_aifsn = aggrParam[mode].aifsn; 1228 chanp->wmep_logcwmin = bssp->wmep_logcwmin = 1229 aggrParam[mode].logcwmin; 1230 chanp->wmep_logcwmax = bssp->wmep_logcwmax = 1231 aggrParam[mode].logcwmax; 1232 chanp->wmep_txopLimit = bssp->wmep_txopLimit = 1233 (vap->iv_flags & IEEE80211_F_BURST) ? 1234 aggrParam[mode].txopLimit : 0; 1235 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1236 "update %s (chan+bss) [acm %u aifsn %u logcwmin %u " 1237 "logcwmax %u txop %u]\n", ieee80211_wme_acnames[WME_AC_BE], 1238 chanp->wmep_acm, chanp->wmep_aifsn, chanp->wmep_logcwmin, 1239 chanp->wmep_logcwmax, chanp->wmep_txopLimit); 1240 } 1241 1242 1243 /* 1244 * Change the contention window based on the number of associated 1245 * stations. If the number of associated stations is 1 and 1246 * aggressive mode is enabled, lower the contention window even 1247 * further. 1248 */ 1249 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 1250 ic->ic_sta_assoc < 2 && (wme->wme_flags & WME_F_AGGRMODE) != 0) { 1251 static const uint8_t logCwMin[IEEE80211_MODE_MAX] = { 1252 [IEEE80211_MODE_AUTO] = 3, 1253 [IEEE80211_MODE_11A] = 3, 1254 [IEEE80211_MODE_11B] = 4, 1255 [IEEE80211_MODE_11G] = 3, 1256 [IEEE80211_MODE_FH] = 4, 1257 [IEEE80211_MODE_TURBO_A] = 3, 1258 [IEEE80211_MODE_TURBO_G] = 3, 1259 [IEEE80211_MODE_STURBO_A] = 3, 1260 [IEEE80211_MODE_HALF] = 3, 1261 [IEEE80211_MODE_QUARTER] = 3, 1262 [IEEE80211_MODE_11NA] = 3, 1263 [IEEE80211_MODE_11NG] = 3, 1264 [IEEE80211_MODE_VHT_2GHZ] = 3, 1265 [IEEE80211_MODE_VHT_5GHZ] = 3, 1266 }; 1267 chanp = &wme->wme_chanParams.cap_wmeParams[WME_AC_BE]; 1268 bssp = &wme->wme_bssChanParams.cap_wmeParams[WME_AC_BE]; 1269 1270 chanp->wmep_logcwmin = bssp->wmep_logcwmin = logCwMin[mode]; 1271 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1272 "update %s (chan+bss) logcwmin %u\n", 1273 ieee80211_wme_acnames[WME_AC_BE], chanp->wmep_logcwmin); 1274 } 1275 1276 /* 1277 * Arrange for the beacon update. 1278 * 1279 * XXX what about MBSS, WDS? 1280 */ 1281 if (vap->iv_opmode == IEEE80211_M_HOSTAP 1282 || vap->iv_opmode == IEEE80211_M_IBSS) { 1283 /* 1284 * Arrange for a beacon update and bump the parameter 1285 * set number so associated stations load the new values. 1286 */ 1287 wme->wme_bssChanParams.cap_info = 1288 (wme->wme_bssChanParams.cap_info+1) & WME_QOSINFO_COUNT; 1289 ieee80211_beacon_notify(vap, IEEE80211_BEACON_WME); 1290 } 1291 1292 /* schedule the deferred WME update */ 1293 ieee80211_runtask(ic, &vap->iv_wme_task); 1294 1295 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 1296 "%s: WME params updated, cap_info 0x%x\n", __func__, 1297 vap->iv_opmode == IEEE80211_M_STA ? 1298 wme->wme_wmeChanParams.cap_info : 1299 wme->wme_bssChanParams.cap_info); 1300 } 1301 1302 void 1303 ieee80211_wme_updateparams(struct ieee80211vap *vap) 1304 { 1305 struct ieee80211com *ic = vap->iv_ic; 1306 1307 if (ic->ic_caps & IEEE80211_C_WME) { 1308 IEEE80211_LOCK(ic); 1309 ieee80211_wme_updateparams_locked(vap); 1310 IEEE80211_UNLOCK(ic); 1311 } 1312 } 1313 1314 /* 1315 * Fetch the WME parameters for the given VAP. 1316 * 1317 * When net80211 grows p2p, etc support, this may return different 1318 * parameters for each VAP. 1319 */ 1320 void 1321 ieee80211_wme_vap_getparams(struct ieee80211vap *vap, struct chanAccParams *wp) 1322 { 1323 1324 memcpy(wp, &vap->iv_ic->ic_wme.wme_chanParams, sizeof(*wp)); 1325 } 1326 1327 /* 1328 * For NICs which only support one set of WME paramaters (ie, softmac NICs) 1329 * there may be different VAP WME parameters but only one is "active". 1330 * This returns the "NIC" WME parameters for the currently active 1331 * context. 1332 */ 1333 void 1334 ieee80211_wme_ic_getparams(struct ieee80211com *ic, struct chanAccParams *wp) 1335 { 1336 1337 memcpy(wp, &ic->ic_wme.wme_chanParams, sizeof(*wp)); 1338 } 1339 1340 /* 1341 * Return whether to use QoS on a given WME queue. 1342 * 1343 * This is intended to be called from the transmit path of softmac drivers 1344 * which are setting NoAck bits in transmit descriptors. 1345 * 1346 * Ideally this would be set in some transmit field before the packet is 1347 * queued to the driver but net80211 isn't quite there yet. 1348 */ 1349 int 1350 ieee80211_wme_vap_ac_is_noack(struct ieee80211vap *vap, int ac) 1351 { 1352 /* Bounds/sanity check */ 1353 if (ac < 0 || ac >= WME_NUM_AC) 1354 return (0); 1355 1356 /* Again, there's only one global context for now */ 1357 return (!! vap->iv_ic->ic_wme.wme_chanParams.cap_wmeParams[ac].wmep_noackPolicy); 1358 } 1359 1360 static void 1361 parent_updown(void *arg, int npending) 1362 { 1363 struct ieee80211com *ic = arg; 1364 1365 ic->ic_parent(ic); 1366 } 1367 1368 static void 1369 update_mcast(void *arg, int npending) 1370 { 1371 struct ieee80211com *ic = arg; 1372 1373 ic->ic_update_mcast(ic); 1374 } 1375 1376 static void 1377 update_promisc(void *arg, int npending) 1378 { 1379 struct ieee80211com *ic = arg; 1380 1381 ic->ic_update_promisc(ic); 1382 } 1383 1384 static void 1385 update_channel(void *arg, int npending) 1386 { 1387 struct ieee80211com *ic = arg; 1388 1389 ic->ic_set_channel(ic); 1390 ieee80211_radiotap_chan_change(ic); 1391 } 1392 1393 static void 1394 update_chw(void *arg, int npending) 1395 { 1396 struct ieee80211com *ic = arg; 1397 1398 /* 1399 * XXX should we defer the channel width _config_ update until now? 1400 */ 1401 ic->ic_update_chw(ic); 1402 } 1403 1404 /* 1405 * Deferred WME update. 1406 * 1407 * In preparation for per-VAP WME configuration, call the VAP 1408 * method if the VAP requires it. Otherwise, just call the 1409 * older global method. There isn't a per-VAP WME configuration 1410 * just yet so for now just use the global configuration. 1411 */ 1412 static void 1413 vap_update_wme(void *arg, int npending) 1414 { 1415 struct ieee80211vap *vap = arg; 1416 struct ieee80211com *ic = vap->iv_ic; 1417 1418 if (vap->iv_wme_update != NULL) 1419 vap->iv_wme_update(vap, 1420 ic->ic_wme.wme_chanParams.cap_wmeParams); 1421 else 1422 ic->ic_wme.wme_update(ic); 1423 } 1424 1425 static void 1426 restart_vaps(void *arg, int npending) 1427 { 1428 struct ieee80211com *ic = arg; 1429 1430 ieee80211_suspend_all(ic); 1431 ieee80211_resume_all(ic); 1432 } 1433 1434 /* 1435 * Block until the parent is in a known state. This is 1436 * used after any operations that dispatch a task (e.g. 1437 * to auto-configure the parent device up/down). 1438 */ 1439 void 1440 ieee80211_waitfor_parent(struct ieee80211com *ic) 1441 { 1442 taskqueue_block(ic->ic_tq); 1443 ieee80211_draintask(ic, &ic->ic_parent_task); 1444 ieee80211_draintask(ic, &ic->ic_mcast_task); 1445 ieee80211_draintask(ic, &ic->ic_promisc_task); 1446 ieee80211_draintask(ic, &ic->ic_chan_task); 1447 ieee80211_draintask(ic, &ic->ic_bmiss_task); 1448 ieee80211_draintask(ic, &ic->ic_chw_task); 1449 taskqueue_unblock(ic->ic_tq); 1450 } 1451 1452 /* 1453 * Check to see whether the current channel needs reset. 1454 * 1455 * Some devices don't handle being given an invalid channel 1456 * in their operating mode very well (eg wpi(4) will throw a 1457 * firmware exception.) 1458 * 1459 * Return 0 if we're ok, 1 if the channel needs to be reset. 1460 * 1461 * See PR kern/202502. 1462 */ 1463 static int 1464 ieee80211_start_check_reset_chan(struct ieee80211vap *vap) 1465 { 1466 struct ieee80211com *ic = vap->iv_ic; 1467 1468 if ((vap->iv_opmode == IEEE80211_M_IBSS && 1469 IEEE80211_IS_CHAN_NOADHOC(ic->ic_curchan)) || 1470 (vap->iv_opmode == IEEE80211_M_HOSTAP && 1471 IEEE80211_IS_CHAN_NOHOSTAP(ic->ic_curchan))) 1472 return (1); 1473 return (0); 1474 } 1475 1476 /* 1477 * Reset the curchan to a known good state. 1478 */ 1479 static void 1480 ieee80211_start_reset_chan(struct ieee80211vap *vap) 1481 { 1482 struct ieee80211com *ic = vap->iv_ic; 1483 1484 ic->ic_curchan = &ic->ic_channels[0]; 1485 } 1486 1487 /* 1488 * Start a vap running. If this is the first vap to be 1489 * set running on the underlying device then we 1490 * automatically bring the device up. 1491 */ 1492 void 1493 ieee80211_start_locked(struct ieee80211vap *vap) 1494 { 1495 struct ifnet *ifp = vap->iv_ifp; 1496 struct ieee80211com *ic = vap->iv_ic; 1497 1498 IEEE80211_LOCK_ASSERT(ic); 1499 1500 IEEE80211_DPRINTF(vap, 1501 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1502 "start running, %d vaps running\n", ic->ic_nrunning); 1503 1504 if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { 1505 /* 1506 * Mark us running. Note that it's ok to do this first; 1507 * if we need to bring the parent device up we defer that 1508 * to avoid dropping the com lock. We expect the device 1509 * to respond to being marked up by calling back into us 1510 * through ieee80211_start_all at which point we'll come 1511 * back in here and complete the work. 1512 */ 1513 ifp->if_drv_flags |= IFF_DRV_RUNNING; 1514 /* 1515 * We are not running; if this we are the first vap 1516 * to be brought up auto-up the parent if necessary. 1517 */ 1518 if (ic->ic_nrunning++ == 0) { 1519 1520 /* reset the channel to a known good channel */ 1521 if (ieee80211_start_check_reset_chan(vap)) 1522 ieee80211_start_reset_chan(vap); 1523 1524 IEEE80211_DPRINTF(vap, 1525 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1526 "%s: up parent %s\n", __func__, ic->ic_name); 1527 ieee80211_runtask(ic, &ic->ic_parent_task); 1528 return; 1529 } 1530 } 1531 /* 1532 * If the parent is up and running, then kick the 1533 * 802.11 state machine as appropriate. 1534 */ 1535 if (vap->iv_roaming != IEEE80211_ROAMING_MANUAL) { 1536 if (vap->iv_opmode == IEEE80211_M_STA) { 1537 #if 0 1538 /* XXX bypasses scan too easily; disable for now */ 1539 /* 1540 * Try to be intelligent about clocking the state 1541 * machine. If we're currently in RUN state then 1542 * we should be able to apply any new state/parameters 1543 * simply by re-associating. Otherwise we need to 1544 * re-scan to select an appropriate ap. 1545 */ 1546 if (vap->iv_state >= IEEE80211_S_RUN) 1547 ieee80211_new_state_locked(vap, 1548 IEEE80211_S_ASSOC, 1); 1549 else 1550 #endif 1551 ieee80211_new_state_locked(vap, 1552 IEEE80211_S_SCAN, 0); 1553 } else { 1554 /* 1555 * For monitor+wds mode there's nothing to do but 1556 * start running. Otherwise if this is the first 1557 * vap to be brought up, start a scan which may be 1558 * preempted if the station is locked to a particular 1559 * channel. 1560 */ 1561 vap->iv_flags_ext |= IEEE80211_FEXT_REINIT; 1562 if (vap->iv_opmode == IEEE80211_M_MONITOR || 1563 vap->iv_opmode == IEEE80211_M_WDS) 1564 ieee80211_new_state_locked(vap, 1565 IEEE80211_S_RUN, -1); 1566 else 1567 ieee80211_new_state_locked(vap, 1568 IEEE80211_S_SCAN, 0); 1569 } 1570 } 1571 } 1572 1573 /* 1574 * Start a single vap. 1575 */ 1576 void 1577 ieee80211_init(void *arg) 1578 { 1579 struct ieee80211vap *vap = arg; 1580 1581 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1582 "%s\n", __func__); 1583 1584 IEEE80211_LOCK(vap->iv_ic); 1585 ieee80211_start_locked(vap); 1586 IEEE80211_UNLOCK(vap->iv_ic); 1587 } 1588 1589 /* 1590 * Start all runnable vap's on a device. 1591 */ 1592 void 1593 ieee80211_start_all(struct ieee80211com *ic) 1594 { 1595 struct ieee80211vap *vap; 1596 1597 IEEE80211_LOCK(ic); 1598 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1599 struct ifnet *ifp = vap->iv_ifp; 1600 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1601 ieee80211_start_locked(vap); 1602 } 1603 IEEE80211_UNLOCK(ic); 1604 } 1605 1606 /* 1607 * Stop a vap. We force it down using the state machine 1608 * then mark it's ifnet not running. If this is the last 1609 * vap running on the underlying device then we close it 1610 * too to insure it will be properly initialized when the 1611 * next vap is brought up. 1612 */ 1613 void 1614 ieee80211_stop_locked(struct ieee80211vap *vap) 1615 { 1616 struct ieee80211com *ic = vap->iv_ic; 1617 struct ifnet *ifp = vap->iv_ifp; 1618 1619 IEEE80211_LOCK_ASSERT(ic); 1620 1621 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1622 "stop running, %d vaps running\n", ic->ic_nrunning); 1623 1624 ieee80211_new_state_locked(vap, IEEE80211_S_INIT, -1); 1625 if (ifp->if_drv_flags & IFF_DRV_RUNNING) { 1626 ifp->if_drv_flags &= ~IFF_DRV_RUNNING; /* mark us stopped */ 1627 if (--ic->ic_nrunning == 0) { 1628 IEEE80211_DPRINTF(vap, 1629 IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG, 1630 "down parent %s\n", ic->ic_name); 1631 ieee80211_runtask(ic, &ic->ic_parent_task); 1632 } 1633 } 1634 } 1635 1636 void 1637 ieee80211_stop(struct ieee80211vap *vap) 1638 { 1639 struct ieee80211com *ic = vap->iv_ic; 1640 1641 IEEE80211_LOCK(ic); 1642 ieee80211_stop_locked(vap); 1643 IEEE80211_UNLOCK(ic); 1644 } 1645 1646 /* 1647 * Stop all vap's running on a device. 1648 */ 1649 void 1650 ieee80211_stop_all(struct ieee80211com *ic) 1651 { 1652 struct ieee80211vap *vap; 1653 1654 IEEE80211_LOCK(ic); 1655 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1656 struct ifnet *ifp = vap->iv_ifp; 1657 if (IFNET_IS_UP_RUNNING(ifp)) /* NB: avoid recursion */ 1658 ieee80211_stop_locked(vap); 1659 } 1660 IEEE80211_UNLOCK(ic); 1661 1662 ieee80211_waitfor_parent(ic); 1663 } 1664 1665 /* 1666 * Stop all vap's running on a device and arrange 1667 * for those that were running to be resumed. 1668 */ 1669 void 1670 ieee80211_suspend_all(struct ieee80211com *ic) 1671 { 1672 struct ieee80211vap *vap; 1673 1674 IEEE80211_LOCK(ic); 1675 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1676 struct ifnet *ifp = vap->iv_ifp; 1677 if (IFNET_IS_UP_RUNNING(ifp)) { /* NB: avoid recursion */ 1678 vap->iv_flags_ext |= IEEE80211_FEXT_RESUME; 1679 ieee80211_stop_locked(vap); 1680 } 1681 } 1682 IEEE80211_UNLOCK(ic); 1683 1684 ieee80211_waitfor_parent(ic); 1685 } 1686 1687 /* 1688 * Start all vap's marked for resume. 1689 */ 1690 void 1691 ieee80211_resume_all(struct ieee80211com *ic) 1692 { 1693 struct ieee80211vap *vap; 1694 1695 IEEE80211_LOCK(ic); 1696 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1697 struct ifnet *ifp = vap->iv_ifp; 1698 if (!IFNET_IS_UP_RUNNING(ifp) && 1699 (vap->iv_flags_ext & IEEE80211_FEXT_RESUME)) { 1700 vap->iv_flags_ext &= ~IEEE80211_FEXT_RESUME; 1701 ieee80211_start_locked(vap); 1702 } 1703 } 1704 IEEE80211_UNLOCK(ic); 1705 } 1706 1707 /* 1708 * Restart all vap's running on a device. 1709 */ 1710 void 1711 ieee80211_restart_all(struct ieee80211com *ic) 1712 { 1713 /* 1714 * NB: do not use ieee80211_runtask here, we will 1715 * block & drain net80211 taskqueue. 1716 */ 1717 taskqueue_enqueue(taskqueue_thread, &ic->ic_restart_task); 1718 } 1719 1720 void 1721 ieee80211_beacon_miss(struct ieee80211com *ic) 1722 { 1723 IEEE80211_LOCK(ic); 1724 if ((ic->ic_flags & IEEE80211_F_SCAN) == 0) { 1725 /* Process in a taskq, the handler may reenter the driver */ 1726 ieee80211_runtask(ic, &ic->ic_bmiss_task); 1727 } 1728 IEEE80211_UNLOCK(ic); 1729 } 1730 1731 static void 1732 beacon_miss(void *arg, int npending) 1733 { 1734 struct ieee80211com *ic = arg; 1735 struct ieee80211vap *vap; 1736 1737 IEEE80211_LOCK(ic); 1738 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1739 /* 1740 * We only pass events through for sta vap's in RUN+ state; 1741 * may be too restrictive but for now this saves all the 1742 * handlers duplicating these checks. 1743 */ 1744 if (vap->iv_opmode == IEEE80211_M_STA && 1745 vap->iv_state >= IEEE80211_S_RUN && 1746 vap->iv_bmiss != NULL) 1747 vap->iv_bmiss(vap); 1748 } 1749 IEEE80211_UNLOCK(ic); 1750 } 1751 1752 static void 1753 beacon_swmiss(void *arg, int npending) 1754 { 1755 struct ieee80211vap *vap = arg; 1756 struct ieee80211com *ic = vap->iv_ic; 1757 1758 IEEE80211_LOCK(ic); 1759 if (vap->iv_state >= IEEE80211_S_RUN) { 1760 /* XXX Call multiple times if npending > zero? */ 1761 vap->iv_bmiss(vap); 1762 } 1763 IEEE80211_UNLOCK(ic); 1764 } 1765 1766 /* 1767 * Software beacon miss handling. Check if any beacons 1768 * were received in the last period. If not post a 1769 * beacon miss; otherwise reset the counter. 1770 */ 1771 void 1772 ieee80211_swbmiss(void *arg) 1773 { 1774 struct ieee80211vap *vap = arg; 1775 struct ieee80211com *ic = vap->iv_ic; 1776 1777 IEEE80211_LOCK_ASSERT(ic); 1778 1779 KASSERT(vap->iv_state >= IEEE80211_S_RUN, 1780 ("wrong state %d", vap->iv_state)); 1781 1782 if (ic->ic_flags & IEEE80211_F_SCAN) { 1783 /* 1784 * If scanning just ignore and reset state. If we get a 1785 * bmiss after coming out of scan because we haven't had 1786 * time to receive a beacon then we should probe the AP 1787 * before posting a real bmiss (unless iv_bmiss_max has 1788 * been artifiically lowered). A cleaner solution might 1789 * be to disable the timer on scan start/end but to handle 1790 * case of multiple sta vap's we'd need to disable the 1791 * timers of all affected vap's. 1792 */ 1793 vap->iv_swbmiss_count = 0; 1794 } else if (vap->iv_swbmiss_count == 0) { 1795 if (vap->iv_bmiss != NULL) 1796 ieee80211_runtask(ic, &vap->iv_swbmiss_task); 1797 } else 1798 vap->iv_swbmiss_count = 0; 1799 callout_reset(&vap->iv_swbmiss, vap->iv_swbmiss_period, 1800 ieee80211_swbmiss, vap); 1801 } 1802 1803 /* 1804 * Start an 802.11h channel switch. We record the parameters, 1805 * mark the operation pending, notify each vap through the 1806 * beacon update mechanism so it can update the beacon frame 1807 * contents, and then switch vap's to CSA state to block outbound 1808 * traffic. Devices that handle CSA directly can use the state 1809 * switch to do the right thing so long as they call 1810 * ieee80211_csa_completeswitch when it's time to complete the 1811 * channel change. Devices that depend on the net80211 layer can 1812 * use ieee80211_beacon_update to handle the countdown and the 1813 * channel switch. 1814 */ 1815 void 1816 ieee80211_csa_startswitch(struct ieee80211com *ic, 1817 struct ieee80211_channel *c, int mode, int count) 1818 { 1819 struct ieee80211vap *vap; 1820 1821 IEEE80211_LOCK_ASSERT(ic); 1822 1823 ic->ic_csa_newchan = c; 1824 ic->ic_csa_mode = mode; 1825 ic->ic_csa_count = count; 1826 ic->ic_flags |= IEEE80211_F_CSAPENDING; 1827 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1828 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 1829 vap->iv_opmode == IEEE80211_M_IBSS || 1830 vap->iv_opmode == IEEE80211_M_MBSS) 1831 ieee80211_beacon_notify(vap, IEEE80211_BEACON_CSA); 1832 /* switch to CSA state to block outbound traffic */ 1833 if (vap->iv_state == IEEE80211_S_RUN) 1834 ieee80211_new_state_locked(vap, IEEE80211_S_CSA, 0); 1835 } 1836 ieee80211_notify_csa(ic, c, mode, count); 1837 } 1838 1839 /* 1840 * Complete the channel switch by transitioning all CSA VAPs to RUN. 1841 * This is called by both the completion and cancellation functions 1842 * so each VAP is placed back in the RUN state and can thus transmit. 1843 */ 1844 static void 1845 csa_completeswitch(struct ieee80211com *ic) 1846 { 1847 struct ieee80211vap *vap; 1848 1849 ic->ic_csa_newchan = NULL; 1850 ic->ic_flags &= ~IEEE80211_F_CSAPENDING; 1851 1852 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1853 if (vap->iv_state == IEEE80211_S_CSA) 1854 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1855 } 1856 1857 /* 1858 * Complete an 802.11h channel switch started by ieee80211_csa_startswitch. 1859 * We clear state and move all vap's in CSA state to RUN state 1860 * so they can again transmit. 1861 * 1862 * Although this may not be completely correct, update the BSS channel 1863 * for each VAP to the newly configured channel. The setcurchan sets 1864 * the current operating channel for the interface (so the radio does 1865 * switch over) but the VAP BSS isn't updated, leading to incorrectly 1866 * reported information via ioctl. 1867 */ 1868 void 1869 ieee80211_csa_completeswitch(struct ieee80211com *ic) 1870 { 1871 struct ieee80211vap *vap; 1872 1873 IEEE80211_LOCK_ASSERT(ic); 1874 1875 KASSERT(ic->ic_flags & IEEE80211_F_CSAPENDING, ("csa not pending")); 1876 1877 ieee80211_setcurchan(ic, ic->ic_csa_newchan); 1878 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1879 if (vap->iv_state == IEEE80211_S_CSA) 1880 vap->iv_bss->ni_chan = ic->ic_curchan; 1881 1882 csa_completeswitch(ic); 1883 } 1884 1885 /* 1886 * Cancel an 802.11h channel switch started by ieee80211_csa_startswitch. 1887 * We clear state and move all vap's in CSA state to RUN state 1888 * so they can again transmit. 1889 */ 1890 void 1891 ieee80211_csa_cancelswitch(struct ieee80211com *ic) 1892 { 1893 IEEE80211_LOCK_ASSERT(ic); 1894 1895 csa_completeswitch(ic); 1896 } 1897 1898 /* 1899 * Complete a DFS CAC started by ieee80211_dfs_cac_start. 1900 * We clear state and move all vap's in CAC state to RUN state. 1901 */ 1902 void 1903 ieee80211_cac_completeswitch(struct ieee80211vap *vap0) 1904 { 1905 struct ieee80211com *ic = vap0->iv_ic; 1906 struct ieee80211vap *vap; 1907 1908 IEEE80211_LOCK(ic); 1909 /* 1910 * Complete CAC state change for lead vap first; then 1911 * clock all the other vap's waiting. 1912 */ 1913 KASSERT(vap0->iv_state == IEEE80211_S_CAC, 1914 ("wrong state %d", vap0->iv_state)); 1915 ieee80211_new_state_locked(vap0, IEEE80211_S_RUN, 0); 1916 1917 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) 1918 if (vap->iv_state == IEEE80211_S_CAC && vap != vap0) 1919 ieee80211_new_state_locked(vap, IEEE80211_S_RUN, 0); 1920 IEEE80211_UNLOCK(ic); 1921 } 1922 1923 /* 1924 * Force all vap's other than the specified vap to the INIT state 1925 * and mark them as waiting for a scan to complete. These vaps 1926 * will be brought up when the scan completes and the scanning vap 1927 * reaches RUN state by wakeupwaiting. 1928 */ 1929 static void 1930 markwaiting(struct ieee80211vap *vap0) 1931 { 1932 struct ieee80211com *ic = vap0->iv_ic; 1933 struct ieee80211vap *vap; 1934 1935 IEEE80211_LOCK_ASSERT(ic); 1936 1937 /* 1938 * A vap list entry can not disappear since we are running on the 1939 * taskqueue and a vap destroy will queue and drain another state 1940 * change task. 1941 */ 1942 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1943 if (vap == vap0) 1944 continue; 1945 if (vap->iv_state != IEEE80211_S_INIT) { 1946 /* NB: iv_newstate may drop the lock */ 1947 vap->iv_newstate(vap, IEEE80211_S_INIT, 0); 1948 IEEE80211_LOCK_ASSERT(ic); 1949 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 1950 } 1951 } 1952 } 1953 1954 /* 1955 * Wakeup all vap's waiting for a scan to complete. This is the 1956 * companion to markwaiting (above) and is used to coordinate 1957 * multiple vaps scanning. 1958 * This is called from the state taskqueue. 1959 */ 1960 static void 1961 wakeupwaiting(struct ieee80211vap *vap0) 1962 { 1963 struct ieee80211com *ic = vap0->iv_ic; 1964 struct ieee80211vap *vap; 1965 1966 IEEE80211_LOCK_ASSERT(ic); 1967 1968 /* 1969 * A vap list entry can not disappear since we are running on the 1970 * taskqueue and a vap destroy will queue and drain another state 1971 * change task. 1972 */ 1973 TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) { 1974 if (vap == vap0) 1975 continue; 1976 if (vap->iv_flags_ext & IEEE80211_FEXT_SCANWAIT) { 1977 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 1978 /* NB: sta's cannot go INIT->RUN */ 1979 /* NB: iv_newstate may drop the lock */ 1980 vap->iv_newstate(vap, 1981 vap->iv_opmode == IEEE80211_M_STA ? 1982 IEEE80211_S_SCAN : IEEE80211_S_RUN, 0); 1983 IEEE80211_LOCK_ASSERT(ic); 1984 } 1985 } 1986 } 1987 1988 /* 1989 * Handle post state change work common to all operating modes. 1990 */ 1991 static void 1992 ieee80211_newstate_cb(void *xvap, int npending) 1993 { 1994 struct ieee80211vap *vap = xvap; 1995 struct ieee80211com *ic = vap->iv_ic; 1996 enum ieee80211_state nstate, ostate; 1997 int arg, rc; 1998 1999 IEEE80211_LOCK(ic); 2000 nstate = vap->iv_nstate; 2001 arg = vap->iv_nstate_arg; 2002 2003 if (vap->iv_flags_ext & IEEE80211_FEXT_REINIT) { 2004 /* 2005 * We have been requested to drop back to the INIT before 2006 * proceeding to the new state. 2007 */ 2008 /* Deny any state changes while we are here. */ 2009 vap->iv_nstate = IEEE80211_S_INIT; 2010 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2011 "%s: %s -> %s arg %d\n", __func__, 2012 ieee80211_state_name[vap->iv_state], 2013 ieee80211_state_name[vap->iv_nstate], arg); 2014 vap->iv_newstate(vap, vap->iv_nstate, 0); 2015 IEEE80211_LOCK_ASSERT(ic); 2016 vap->iv_flags_ext &= ~(IEEE80211_FEXT_REINIT | 2017 IEEE80211_FEXT_STATEWAIT); 2018 /* enqueue new state transition after cancel_scan() task */ 2019 ieee80211_new_state_locked(vap, nstate, arg); 2020 goto done; 2021 } 2022 2023 ostate = vap->iv_state; 2024 if (nstate == IEEE80211_S_SCAN && ostate != IEEE80211_S_INIT) { 2025 /* 2026 * SCAN was forced; e.g. on beacon miss. Force other running 2027 * vap's to INIT state and mark them as waiting for the scan to 2028 * complete. This insures they don't interfere with our 2029 * scanning. Since we are single threaded the vaps can not 2030 * transition again while we are executing. 2031 * 2032 * XXX not always right, assumes ap follows sta 2033 */ 2034 markwaiting(vap); 2035 } 2036 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2037 "%s: %s -> %s arg %d\n", __func__, 2038 ieee80211_state_name[ostate], ieee80211_state_name[nstate], arg); 2039 2040 rc = vap->iv_newstate(vap, nstate, arg); 2041 IEEE80211_LOCK_ASSERT(ic); 2042 vap->iv_flags_ext &= ~IEEE80211_FEXT_STATEWAIT; 2043 if (rc != 0) { 2044 /* State transition failed */ 2045 KASSERT(rc != EINPROGRESS, ("iv_newstate was deferred")); 2046 KASSERT(nstate != IEEE80211_S_INIT, 2047 ("INIT state change failed")); 2048 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2049 "%s: %s returned error %d\n", __func__, 2050 ieee80211_state_name[nstate], rc); 2051 goto done; 2052 } 2053 2054 /* No actual transition, skip post processing */ 2055 if (ostate == nstate) 2056 goto done; 2057 2058 if (nstate == IEEE80211_S_RUN) { 2059 /* 2060 * OACTIVE may be set on the vap if the upper layer 2061 * tried to transmit (e.g. IPv6 NDP) before we reach 2062 * RUN state. Clear it and restart xmit. 2063 * 2064 * Note this can also happen as a result of SLEEP->RUN 2065 * (i.e. coming out of power save mode). 2066 */ 2067 vap->iv_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; 2068 2069 /* 2070 * XXX TODO Kick-start a VAP queue - this should be a method! 2071 */ 2072 2073 /* bring up any vaps waiting on us */ 2074 wakeupwaiting(vap); 2075 } else if (nstate == IEEE80211_S_INIT) { 2076 /* 2077 * Flush the scan cache if we did the last scan (XXX?) 2078 * and flush any frames on send queues from this vap. 2079 * Note the mgt q is used only for legacy drivers and 2080 * will go away shortly. 2081 */ 2082 ieee80211_scan_flush(vap); 2083 2084 /* 2085 * XXX TODO: ic/vap queue flush 2086 */ 2087 } 2088 done: 2089 IEEE80211_UNLOCK(ic); 2090 } 2091 2092 /* 2093 * Public interface for initiating a state machine change. 2094 * This routine single-threads the request and coordinates 2095 * the scheduling of multiple vaps for the purpose of selecting 2096 * an operating channel. Specifically the following scenarios 2097 * are handled: 2098 * o only one vap can be selecting a channel so on transition to 2099 * SCAN state if another vap is already scanning then 2100 * mark the caller for later processing and return without 2101 * doing anything (XXX? expectations by caller of synchronous operation) 2102 * o only one vap can be doing CAC of a channel so on transition to 2103 * CAC state if another vap is already scanning for radar then 2104 * mark the caller for later processing and return without 2105 * doing anything (XXX? expectations by caller of synchronous operation) 2106 * o if another vap is already running when a request is made 2107 * to SCAN then an operating channel has been chosen; bypass 2108 * the scan and just join the channel 2109 * 2110 * Note that the state change call is done through the iv_newstate 2111 * method pointer so any driver routine gets invoked. The driver 2112 * will normally call back into operating mode-specific 2113 * ieee80211_newstate routines (below) unless it needs to completely 2114 * bypass the state machine (e.g. because the firmware has it's 2115 * own idea how things should work). Bypassing the net80211 layer 2116 * is usually a mistake and indicates lack of proper integration 2117 * with the net80211 layer. 2118 */ 2119 int 2120 ieee80211_new_state_locked(struct ieee80211vap *vap, 2121 enum ieee80211_state nstate, int arg) 2122 { 2123 struct ieee80211com *ic = vap->iv_ic; 2124 struct ieee80211vap *vp; 2125 enum ieee80211_state ostate; 2126 int nrunning, nscanning; 2127 2128 IEEE80211_LOCK_ASSERT(ic); 2129 2130 if (vap->iv_flags_ext & IEEE80211_FEXT_STATEWAIT) { 2131 if (vap->iv_nstate == IEEE80211_S_INIT || 2132 ((vap->iv_state == IEEE80211_S_INIT || 2133 (vap->iv_flags_ext & IEEE80211_FEXT_REINIT)) && 2134 vap->iv_nstate == IEEE80211_S_SCAN && 2135 nstate > IEEE80211_S_SCAN)) { 2136 /* 2137 * XXX The vap is being stopped/started, 2138 * do not allow any other state changes 2139 * until this is completed. 2140 */ 2141 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2142 "%s: %s -> %s (%s) transition discarded\n", 2143 __func__, 2144 ieee80211_state_name[vap->iv_state], 2145 ieee80211_state_name[nstate], 2146 ieee80211_state_name[vap->iv_nstate]); 2147 return -1; 2148 } else if (vap->iv_state != vap->iv_nstate) { 2149 #if 0 2150 /* Warn if the previous state hasn't completed. */ 2151 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2152 "%s: pending %s -> %s transition lost\n", __func__, 2153 ieee80211_state_name[vap->iv_state], 2154 ieee80211_state_name[vap->iv_nstate]); 2155 #else 2156 /* XXX temporarily enable to identify issues */ 2157 if_printf(vap->iv_ifp, 2158 "%s: pending %s -> %s transition lost\n", 2159 __func__, ieee80211_state_name[vap->iv_state], 2160 ieee80211_state_name[vap->iv_nstate]); 2161 #endif 2162 } 2163 } 2164 2165 nrunning = nscanning = 0; 2166 /* XXX can track this state instead of calculating */ 2167 TAILQ_FOREACH(vp, &ic->ic_vaps, iv_next) { 2168 if (vp != vap) { 2169 if (vp->iv_state >= IEEE80211_S_RUN) 2170 nrunning++; 2171 /* XXX doesn't handle bg scan */ 2172 /* NB: CAC+AUTH+ASSOC treated like SCAN */ 2173 else if (vp->iv_state > IEEE80211_S_INIT) 2174 nscanning++; 2175 } 2176 } 2177 ostate = vap->iv_state; 2178 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2179 "%s: %s -> %s (nrunning %d nscanning %d)\n", __func__, 2180 ieee80211_state_name[ostate], ieee80211_state_name[nstate], 2181 nrunning, nscanning); 2182 switch (nstate) { 2183 case IEEE80211_S_SCAN: 2184 if (ostate == IEEE80211_S_INIT) { 2185 /* 2186 * INIT -> SCAN happens on initial bringup. 2187 */ 2188 KASSERT(!(nscanning && nrunning), 2189 ("%d scanning and %d running", nscanning, nrunning)); 2190 if (nscanning) { 2191 /* 2192 * Someone is scanning, defer our state 2193 * change until the work has completed. 2194 */ 2195 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2196 "%s: defer %s -> %s\n", 2197 __func__, ieee80211_state_name[ostate], 2198 ieee80211_state_name[nstate]); 2199 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2200 return 0; 2201 } 2202 if (nrunning) { 2203 /* 2204 * Someone is operating; just join the channel 2205 * they have chosen. 2206 */ 2207 /* XXX kill arg? */ 2208 /* XXX check each opmode, adhoc? */ 2209 if (vap->iv_opmode == IEEE80211_M_STA) 2210 nstate = IEEE80211_S_SCAN; 2211 else 2212 nstate = IEEE80211_S_RUN; 2213 #ifdef IEEE80211_DEBUG 2214 if (nstate != IEEE80211_S_SCAN) { 2215 IEEE80211_DPRINTF(vap, 2216 IEEE80211_MSG_STATE, 2217 "%s: override, now %s -> %s\n", 2218 __func__, 2219 ieee80211_state_name[ostate], 2220 ieee80211_state_name[nstate]); 2221 } 2222 #endif 2223 } 2224 } 2225 break; 2226 case IEEE80211_S_RUN: 2227 if (vap->iv_opmode == IEEE80211_M_WDS && 2228 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) && 2229 nscanning) { 2230 /* 2231 * Legacy WDS with someone else scanning; don't 2232 * go online until that completes as we should 2233 * follow the other vap to the channel they choose. 2234 */ 2235 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2236 "%s: defer %s -> %s (legacy WDS)\n", __func__, 2237 ieee80211_state_name[ostate], 2238 ieee80211_state_name[nstate]); 2239 vap->iv_flags_ext |= IEEE80211_FEXT_SCANWAIT; 2240 return 0; 2241 } 2242 if (vap->iv_opmode == IEEE80211_M_HOSTAP && 2243 IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2244 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) && 2245 !IEEE80211_IS_CHAN_CACDONE(ic->ic_bsschan)) { 2246 /* 2247 * This is a DFS channel, transition to CAC state 2248 * instead of RUN. This allows us to initiate 2249 * Channel Availability Check (CAC) as specified 2250 * by 11h/DFS. 2251 */ 2252 nstate = IEEE80211_S_CAC; 2253 IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE, 2254 "%s: override %s -> %s (DFS)\n", __func__, 2255 ieee80211_state_name[ostate], 2256 ieee80211_state_name[nstate]); 2257 } 2258 break; 2259 case IEEE80211_S_INIT: 2260 /* cancel any scan in progress */ 2261 ieee80211_cancel_scan(vap); 2262 if (ostate == IEEE80211_S_INIT ) { 2263 /* XXX don't believe this */ 2264 /* INIT -> INIT. nothing to do */ 2265 vap->iv_flags_ext &= ~IEEE80211_FEXT_SCANWAIT; 2266 } 2267 /* fall thru... */ 2268 default: 2269 break; 2270 } 2271 /* defer the state change to a thread */ 2272 vap->iv_nstate = nstate; 2273 vap->iv_nstate_arg = arg; 2274 vap->iv_flags_ext |= IEEE80211_FEXT_STATEWAIT; 2275 ieee80211_runtask(ic, &vap->iv_nstate_task); 2276 return EINPROGRESS; 2277 } 2278 2279 int 2280 ieee80211_new_state(struct ieee80211vap *vap, 2281 enum ieee80211_state nstate, int arg) 2282 { 2283 struct ieee80211com *ic = vap->iv_ic; 2284 int rc; 2285 2286 IEEE80211_LOCK(ic); 2287 rc = ieee80211_new_state_locked(vap, nstate, arg); 2288 IEEE80211_UNLOCK(ic); 2289 return rc; 2290 } 2291