xref: /freebsd/sys/net80211/ieee80211_phy.c (revision a9148abd9da5db2f1c682fb17bed791845fc41c9)
1 /*-
2  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #include <sys/cdefs.h>
27 __FBSDID("$FreeBSD$");
28 
29 /*
30  * IEEE 802.11 PHY-related support.
31  */
32 
33 #include "opt_inet.h"
34 
35 #include <sys/param.h>
36 #include <sys/kernel.h>
37 #include <sys/systm.h>
38 
39 #include <sys/socket.h>
40 
41 #include <net/if.h>
42 #include <net/if_media.h>
43 
44 #include <net80211/ieee80211_var.h>
45 #include <net80211/ieee80211_phy.h>
46 
47 #ifdef notyet
48 struct ieee80211_ds_plcp_hdr {
49 	uint8_t		i_signal;
50 	uint8_t		i_service;
51 	uint16_t	i_length;
52 	uint16_t	i_crc;
53 } __packed;
54 
55 #endif	/* notyet */
56 
57 /* shorthands to compact tables for readability */
58 #define	OFDM	IEEE80211_T_OFDM
59 #define	CCK	IEEE80211_T_CCK
60 #define	TURBO	IEEE80211_T_TURBO
61 #define	PBCC	(IEEE80211_T_HT+1)		/* XXX */
62 #define	B(r)	(0x80 | r)
63 #define	Mb(x)	(x*1000)
64 
65 static struct ieee80211_rate_table ieee80211_11b_table = {
66     .rateCount = 4,		/* XXX no PBCC */
67     .info = {
68 /*                                   short            ctrl  */
69 /*                                Preamble  dot11Rate Rate */
70      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },/*   1 Mb */
71      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },/*   2 Mb */
72      [2] = { .phy = CCK,     5500,    0x04,     B(11),   1 },/* 5.5 Mb */
73      [3] = { .phy = CCK,    11000,    0x04,     B(22),   1 },/*  11 Mb */
74      [4] = { .phy = PBCC,   22000,    0x04,        44,   3 } /*  22 Mb */
75     },
76 };
77 
78 static struct ieee80211_rate_table ieee80211_11g_table = {
79     .rateCount = 12,
80     .info = {
81 /*                                   short            ctrl  */
82 /*                                Preamble  dot11Rate Rate */
83      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
84      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
85      [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
86      [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
87      [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
88      [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
89      [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
90      [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
91      [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
92      [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
93     [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
94     [11] = { .phy = OFDM,   54000,    0x00,       108,   8 }
95     },
96 };
97 
98 static struct ieee80211_rate_table ieee80211_11a_table = {
99     .rateCount = 8,
100     .info = {
101 /*                                   short            ctrl  */
102 /*                                Preamble  dot11Rate Rate */
103      [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
104      [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
105      [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
106      [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
107      [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
108      [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
109      [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
110      [7] = { .phy = OFDM,   54000,    0x00,       108,   4 }
111     },
112 };
113 
114 static struct ieee80211_rate_table ieee80211_half_table = {
115     .rateCount = 8,
116     .info = {
117 /*                                   short            ctrl  */
118 /*                                Preamble  dot11Rate Rate */
119      [0] = { .phy = OFDM,    3000,    0x00,      B(6),   0 },
120      [1] = { .phy = OFDM,    4500,    0x00,         9,   0 },
121      [2] = { .phy = OFDM,    6000,    0x00,     B(12),   2 },
122      [3] = { .phy = OFDM,    9000,    0x00,        18,   2 },
123      [4] = { .phy = OFDM,   12000,    0x00,     B(24),   4 },
124      [5] = { .phy = OFDM,   18000,    0x00,        36,   4 },
125      [6] = { .phy = OFDM,   24000,    0x00,        48,   4 },
126      [7] = { .phy = OFDM,   27000,    0x00,        54,   4 }
127     },
128 };
129 
130 static struct ieee80211_rate_table ieee80211_quarter_table = {
131     .rateCount = 8,
132     .info = {
133 /*                                   short            ctrl  */
134 /*                                Preamble  dot11Rate Rate */
135      [0] = { .phy = OFDM,    1500,    0x00,      B(3),   0 },
136      [1] = { .phy = OFDM,    2250,    0x00,         4,   0 },
137      [2] = { .phy = OFDM,    3000,    0x00,      B(9),   2 },
138      [3] = { .phy = OFDM,    4500,    0x00,         9,   2 },
139      [4] = { .phy = OFDM,    6000,    0x00,     B(12),   4 },
140      [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
141      [6] = { .phy = OFDM,   12000,    0x00,        24,   4 },
142      [7] = { .phy = OFDM,   13500,    0x00,        27,   4 }
143     },
144 };
145 
146 static struct ieee80211_rate_table ieee80211_turbog_table = {
147     .rateCount = 7,
148     .info = {
149 /*                                   short            ctrl  */
150 /*                                Preamble  dot11Rate Rate */
151      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
152      [1] = { .phy = TURBO,   24000,   0x00,     B(24),   1 },
153      [2] = { .phy = TURBO,   36000,   0x00,        36,   1 },
154      [3] = { .phy = TURBO,   48000,   0x00,     B(48),   3 },
155      [4] = { .phy = TURBO,   72000,   0x00,        72,   3 },
156      [5] = { .phy = TURBO,   96000,   0x00,        96,   3 },
157      [6] = { .phy = TURBO,  108000,   0x00,       108,   3 }
158     },
159 };
160 
161 static struct ieee80211_rate_table ieee80211_turboa_table = {
162     .rateCount = 8,
163     .info = {
164 /*                                   short            ctrl  */
165 /*                                Preamble  dot11Rate Rate */
166      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
167      [1] = { .phy = TURBO,   18000,   0x00,        18,   0 },
168      [2] = { .phy = TURBO,   24000,   0x00,     B(24),   2 },
169      [3] = { .phy = TURBO,   36000,   0x00,        36,   2 },
170      [4] = { .phy = TURBO,   48000,   0x00,     B(48),   4 },
171      [5] = { .phy = TURBO,   72000,   0x00,        72,   4 },
172      [6] = { .phy = TURBO,   96000,   0x00,        96,   4 },
173      [7] = { .phy = TURBO,  108000,   0x00,       108,   4 }
174     },
175 };
176 
177 #undef	Mb
178 #undef	B
179 #undef	OFDM
180 #undef	CCK
181 #undef	TURBO
182 #undef	XR
183 
184 /*
185  * Setup a rate table's reverse lookup table and fill in
186  * ack durations.  The reverse lookup tables are assumed
187  * to be initialized to zero (or at least the first entry).
188  * We use this as a key that indicates whether or not
189  * we've previously setup the reverse lookup table.
190  *
191  * XXX not reentrant, but shouldn't matter
192  */
193 static void
194 ieee80211_setup_ratetable(struct ieee80211_rate_table *rt)
195 {
196 #define	N(a)	(sizeof(a)/sizeof(a[0]))
197 #define	WLAN_CTRL_FRAME_SIZE \
198 	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
199 
200 	int i;
201 
202 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
203 		rt->rateCodeToIndex[i] = (uint8_t) -1;
204 	for (i = 0; i < rt->rateCount; i++) {
205 		uint8_t code = rt->info[i].dot11Rate;
206 		uint8_t cix = rt->info[i].ctlRateIndex;
207 		uint8_t ctl_rate = rt->info[cix].dot11Rate;
208 
209 		rt->rateCodeToIndex[code] = i;
210 		if (code & IEEE80211_RATE_BASIC) {
211 			/*
212 			 * Map w/o basic rate bit too.
213 			 */
214 			code &= IEEE80211_RATE_VAL;
215 			rt->rateCodeToIndex[code] = i;
216 		}
217 
218 		/*
219 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
220 		 *     depends on whether they are marked as basic rates;
221 		 *     the static tables are setup with an 11b-compatible
222 		 *     2Mb/s rate which will work but is suboptimal
223 		 *
224 		 * NB: Control rate is always less than or equal to the
225 		 *     current rate, so control rate's reverse lookup entry
226 		 *     has been installed and following call is safe.
227 		 */
228 		rt->info[i].lpAckDuration = ieee80211_compute_duration(rt,
229 			WLAN_CTRL_FRAME_SIZE, ctl_rate, 0);
230 		rt->info[i].spAckDuration = ieee80211_compute_duration(rt,
231 			WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE);
232 	}
233 
234 #undef WLAN_CTRL_FRAME_SIZE
235 #undef N
236 }
237 
238 /* Setup all rate tables */
239 static void
240 ieee80211_phy_init(void)
241 {
242 #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
243 	static struct ieee80211_rate_table * const ratetables[] = {
244 		&ieee80211_half_table,
245 		&ieee80211_quarter_table,
246 		&ieee80211_11a_table,
247 		&ieee80211_11g_table,
248 		&ieee80211_turbog_table,
249 		&ieee80211_turboa_table,
250 		&ieee80211_turboa_table,
251 		&ieee80211_11a_table,
252 		&ieee80211_11g_table,
253 		&ieee80211_11b_table
254 	};
255 	int i;
256 
257 	for (i = 0; i < N(ratetables); ++i)
258 		ieee80211_setup_ratetable(ratetables[i]);
259 
260 #undef N
261 }
262 SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL);
263 
264 const struct ieee80211_rate_table *
265 ieee80211_get_ratetable(struct ieee80211_channel *c)
266 {
267 	const struct ieee80211_rate_table *rt;
268 
269 	/* XXX HT */
270 	if (IEEE80211_IS_CHAN_HALF(c))
271 		rt = &ieee80211_half_table;
272 	else if (IEEE80211_IS_CHAN_QUARTER(c))
273 		rt = &ieee80211_quarter_table;
274 	else if (IEEE80211_IS_CHAN_HTA(c))
275 		rt = &ieee80211_11a_table;	/* XXX */
276 	else if (IEEE80211_IS_CHAN_HTG(c))
277 		rt = &ieee80211_11g_table;	/* XXX */
278 	else if (IEEE80211_IS_CHAN_108G(c))
279 		rt = &ieee80211_turbog_table;
280 	else if (IEEE80211_IS_CHAN_ST(c))
281 		rt = &ieee80211_turboa_table;
282 	else if (IEEE80211_IS_CHAN_TURBO(c))
283 		rt = &ieee80211_turboa_table;
284 	else if (IEEE80211_IS_CHAN_A(c))
285 		rt = &ieee80211_11a_table;
286 	else if (IEEE80211_IS_CHAN_ANYG(c))
287 		rt = &ieee80211_11g_table;
288 	else if (IEEE80211_IS_CHAN_B(c))
289 		rt = &ieee80211_11b_table;
290 	else {
291 		/* NB: should not get here */
292 		panic("%s: no rate table for channel; freq %u flags 0x%x\n",
293 		      __func__, c->ic_freq, c->ic_flags);
294 	}
295 	return rt;
296 }
297 
298 /*
299  * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s)
300  *
301  * Note we do no parameter checking; this routine is mainly
302  * used to derive an 802.11 rate for constructing radiotap
303  * header data for rx frames.
304  *
305  * XXX might be a candidate for inline
306  */
307 uint8_t
308 ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type)
309 {
310 	if (type == IEEE80211_T_OFDM) {
311 		static const uint8_t ofdm_plcp2rate[16] = {
312 			[0xb]	= 12,
313 			[0xf]	= 18,
314 			[0xa]	= 24,
315 			[0xe]	= 36,
316 			[0x9]	= 48,
317 			[0xd]	= 72,
318 			[0x8]	= 96,
319 			[0xc]	= 108
320 		};
321 		return ofdm_plcp2rate[plcp & 0xf];
322 	}
323 	if (type == IEEE80211_T_CCK) {
324 		static const uint8_t cck_plcp2rate[16] = {
325 			[0xa]	= 2,	/* 0x0a */
326 			[0x4]	= 4,	/* 0x14 */
327 			[0x7]	= 11,	/* 0x37 */
328 			[0xe]	= 22,	/* 0x6e */
329 			[0xc]	= 44,	/* 0xdc , actually PBCC */
330 		};
331 		return cck_plcp2rate[plcp & 0xf];
332 	}
333 	return 0;
334 }
335 
336 /*
337  * Covert 802.11 rate to PLCP signal.
338  */
339 uint8_t
340 ieee80211_rate2plcp(int rate, enum ieee80211_phytype type)
341 {
342 	/* XXX ignore type for now since rates are unique */
343 	switch (rate) {
344 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
345 	case 12:	return 0xb;
346 	case 18:	return 0xf;
347 	case 24:	return 0xa;
348 	case 36:	return 0xe;
349 	case 48:	return 0x9;
350 	case 72:	return 0xd;
351 	case 96:	return 0x8;
352 	case 108:	return 0xc;
353 	/* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */
354 	case 2:		return 10;
355 	case 4:		return 20;
356 	case 11:	return 55;
357 	case 22:	return 110;
358 	/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
359 	case 44:	return 220;
360 	}
361 	return 0;		/* XXX unsupported/unknown rate */
362 }
363 
364 /*
365  * Compute the time to transmit a frame of length frameLen bytes
366  * using the specified rate, phy, and short preamble setting.
367  * SIFS is included.
368  */
369 uint16_t
370 ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
371 	uint32_t frameLen, uint16_t rate, int isShortPreamble)
372 {
373 	uint8_t rix = rt->rateCodeToIndex[rate];
374 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
375 	uint32_t kbps;
376 
377 	KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate));
378 	kbps = rt->info[rix].rateKbps;
379 	if (kbps == 0)			/* XXX bandaid for channel changes */
380 		return 0;
381 
382 	switch (rt->info[rix].phy) {
383 	case IEEE80211_T_CCK:
384 #define CCK_SIFS_TIME		10
385 #define CCK_PREAMBLE_BITS	144
386 #define CCK_PLCP_BITS		48
387 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
388 		if (isShortPreamble && rt->info[rix].shortPreamble)
389 			phyTime >>= 1;
390 		numBits		= frameLen << 3;
391 		txTime		= CCK_SIFS_TIME + phyTime
392 				+ ((numBits * 1000)/kbps);
393 		break;
394 #undef CCK_SIFS_TIME
395 #undef CCK_PREAMBLE_BITS
396 #undef CCK_PLCP_BITS
397 
398 	case IEEE80211_T_OFDM:
399 #define OFDM_SIFS_TIME		16
400 #define OFDM_PREAMBLE_TIME	20
401 #define OFDM_PLCP_BITS		22
402 #define OFDM_SYMBOL_TIME	4
403 
404 #define OFDM_SIFS_TIME_HALF	32
405 #define OFDM_PREAMBLE_TIME_HALF	40
406 #define OFDM_PLCP_BITS_HALF	22
407 #define OFDM_SYMBOL_TIME_HALF	8
408 
409 #define OFDM_SIFS_TIME_QUARTER 		64
410 #define OFDM_PREAMBLE_TIME_QUARTER	80
411 #define OFDM_PLCP_BITS_QUARTER		22
412 #define OFDM_SYMBOL_TIME_QUARTER	16
413 		if (rt == &ieee80211_half_table) {
414 			bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
415 			KASSERT(bitsPerSymbol != 0, ("1/2 rate bps"));
416 
417 			numBits		= OFDM_PLCP_BITS + (frameLen << 3);
418 			numSymbols	= howmany(numBits, bitsPerSymbol);
419 			txTime		= OFDM_SIFS_TIME_QUARTER
420 					+ OFDM_PREAMBLE_TIME_QUARTER
421 					+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
422 		} else if (rt == &ieee80211_quarter_table) {
423 			bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
424 			KASSERT(bitsPerSymbol != 0, ("1/4 rate bps"));
425 
426 			numBits		= OFDM_PLCP_BITS + (frameLen << 3);
427 			numSymbols	= howmany(numBits, bitsPerSymbol);
428 			txTime		= OFDM_SIFS_TIME_HALF
429 					+ OFDM_PREAMBLE_TIME_HALF
430 					+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
431 		} else { /* full rate channel */
432 			bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
433 			KASSERT(bitsPerSymbol != 0, ("full rate bps"));
434 
435 			numBits		= OFDM_PLCP_BITS + (frameLen << 3);
436 			numSymbols	= howmany(numBits, bitsPerSymbol);
437 			txTime		= OFDM_SIFS_TIME
438 					+ OFDM_PREAMBLE_TIME
439 					+ (numSymbols * OFDM_SYMBOL_TIME);
440 		}
441 		break;
442 
443 #undef OFDM_SIFS_TIME
444 #undef OFDM_PREAMBLE_TIME
445 #undef OFDM_PLCP_BITS
446 #undef OFDM_SYMBOL_TIME
447 
448 	case IEEE80211_T_TURBO:
449 #define TURBO_SIFS_TIME		8
450 #define TURBO_PREAMBLE_TIME	14
451 #define TURBO_PLCP_BITS		22
452 #define TURBO_SYMBOL_TIME	4
453 		/* we still save OFDM rates in kbps - so double them */
454 		bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
455 		KASSERT(bitsPerSymbol != 0, ("turbo bps"));
456 
457 		numBits       = TURBO_PLCP_BITS + (frameLen << 3);
458 		numSymbols    = howmany(numBits, bitsPerSymbol);
459 		txTime        = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
460 			      + (numSymbols * TURBO_SYMBOL_TIME);
461 		break;
462 #undef TURBO_SIFS_TIME
463 #undef TURBO_PREAMBLE_TIME
464 #undef TURBO_PLCP_BITS
465 #undef TURBO_SYMBOL_TIME
466 
467 	default:
468 		panic("%s: unknown phy %u (rate %u)\n", __func__,
469 		      rt->info[rix].phy, rate);
470 		break;
471 	}
472 	return txTime;
473 }
474