1b032f27cSSam Leffler /*- 2*fe267a55SPedro F. Giffuni * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3*fe267a55SPedro F. Giffuni * 4b032f27cSSam Leffler * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 5b032f27cSSam Leffler * All rights reserved. 6b032f27cSSam Leffler * 7b032f27cSSam Leffler * Redistribution and use in source and binary forms, with or without 8b032f27cSSam Leffler * modification, are permitted provided that the following conditions 9b032f27cSSam Leffler * are met: 10b032f27cSSam Leffler * 1. Redistributions of source code must retain the above copyright 11b032f27cSSam Leffler * notice, this list of conditions and the following disclaimer. 12b032f27cSSam Leffler * 2. Redistributions in binary form must reproduce the above copyright 13b032f27cSSam Leffler * notice, this list of conditions and the following disclaimer in the 14b032f27cSSam Leffler * documentation and/or other materials provided with the distribution. 15b032f27cSSam Leffler * 16b032f27cSSam Leffler * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17b032f27cSSam Leffler * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18b032f27cSSam Leffler * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19b032f27cSSam Leffler * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20b032f27cSSam Leffler * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 21b032f27cSSam Leffler * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22b032f27cSSam Leffler * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23b032f27cSSam Leffler * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24b032f27cSSam Leffler * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 25b032f27cSSam Leffler * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26b032f27cSSam Leffler */ 27b032f27cSSam Leffler 28b032f27cSSam Leffler #include <sys/cdefs.h> 29b032f27cSSam Leffler __FBSDID("$FreeBSD$"); 30b032f27cSSam Leffler 31b032f27cSSam Leffler /* 32b032f27cSSam Leffler * IEEE 802.11 PHY-related support. 33b032f27cSSam Leffler */ 34b032f27cSSam Leffler 35b032f27cSSam Leffler #include "opt_inet.h" 36b032f27cSSam Leffler 37b032f27cSSam Leffler #include <sys/param.h> 38b032f27cSSam Leffler #include <sys/kernel.h> 39b032f27cSSam Leffler #include <sys/systm.h> 40eedc7fd9SGleb Smirnoff #include <sys/malloc.h> 41b032f27cSSam Leffler 42b032f27cSSam Leffler #include <sys/socket.h> 43b032f27cSSam Leffler 44b032f27cSSam Leffler #include <net/if.h> 45b032f27cSSam Leffler #include <net/if_media.h> 46b032f27cSSam Leffler 47eedc7fd9SGleb Smirnoff #include <net/ethernet.h> 48eedc7fd9SGleb Smirnoff #include <net/route.h> 49eedc7fd9SGleb Smirnoff 50b032f27cSSam Leffler #include <net80211/ieee80211_var.h> 51b032f27cSSam Leffler #include <net80211/ieee80211_phy.h> 52b032f27cSSam Leffler 53b032f27cSSam Leffler #ifdef notyet 54b032f27cSSam Leffler struct ieee80211_ds_plcp_hdr { 55b032f27cSSam Leffler uint8_t i_signal; 56b032f27cSSam Leffler uint8_t i_service; 57b032f27cSSam Leffler uint16_t i_length; 58b032f27cSSam Leffler uint16_t i_crc; 59b032f27cSSam Leffler } __packed; 60b032f27cSSam Leffler 61b032f27cSSam Leffler #endif /* notyet */ 62b032f27cSSam Leffler 63b032f27cSSam Leffler /* shorthands to compact tables for readability */ 64b032f27cSSam Leffler #define OFDM IEEE80211_T_OFDM 65b032f27cSSam Leffler #define CCK IEEE80211_T_CCK 66b032f27cSSam Leffler #define TURBO IEEE80211_T_TURBO 6724a07b5bSSam Leffler #define HALF IEEE80211_T_OFDM_HALF 6824a07b5bSSam Leffler #define QUART IEEE80211_T_OFDM_QUARTER 69f8bf74f2SAdrian Chadd #define HT IEEE80211_T_HT 70f8bf74f2SAdrian Chadd /* XXX the 11n and the basic rate flag are unfortunately overlapping. Grr. */ 71f8bf74f2SAdrian Chadd #define N(r) (IEEE80211_RATE_MCS | r) 7224a07b5bSSam Leffler #define PBCC (IEEE80211_T_OFDM_QUARTER+1) /* XXX */ 73f8bf74f2SAdrian Chadd #define B(r) (IEEE80211_RATE_BASIC | r) 74c9f78f45SSam Leffler #define Mb(x) (x*1000) 75b032f27cSSam Leffler 76b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11b_table = { 77c9f78f45SSam Leffler .rateCount = 4, /* XXX no PBCC */ 78c9f78f45SSam Leffler .info = { 79b032f27cSSam Leffler /* short ctrl */ 80b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 81c9f78f45SSam Leffler [0] = { .phy = CCK, 1000, 0x00, B(2), 0 },/* 1 Mb */ 82c9f78f45SSam Leffler [1] = { .phy = CCK, 2000, 0x04, B(4), 1 },/* 2 Mb */ 83c9f78f45SSam Leffler [2] = { .phy = CCK, 5500, 0x04, B(11), 1 },/* 5.5 Mb */ 84c9f78f45SSam Leffler [3] = { .phy = CCK, 11000, 0x04, B(22), 1 },/* 11 Mb */ 85c9f78f45SSam Leffler [4] = { .phy = PBCC, 22000, 0x04, 44, 3 } /* 22 Mb */ 86b032f27cSSam Leffler }, 87b032f27cSSam Leffler }; 88b032f27cSSam Leffler 89b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11g_table = { 90c9f78f45SSam Leffler .rateCount = 12, 91c9f78f45SSam Leffler .info = { 92b032f27cSSam Leffler /* short ctrl */ 93b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 94c9f78f45SSam Leffler [0] = { .phy = CCK, 1000, 0x00, B(2), 0 }, 95c9f78f45SSam Leffler [1] = { .phy = CCK, 2000, 0x04, B(4), 1 }, 96c9f78f45SSam Leffler [2] = { .phy = CCK, 5500, 0x04, B(11), 2 }, 97c9f78f45SSam Leffler [3] = { .phy = CCK, 11000, 0x04, B(22), 3 }, 98c9f78f45SSam Leffler [4] = { .phy = OFDM, 6000, 0x00, 12, 4 }, 99c9f78f45SSam Leffler [5] = { .phy = OFDM, 9000, 0x00, 18, 4 }, 100c9f78f45SSam Leffler [6] = { .phy = OFDM, 12000, 0x00, 24, 6 }, 101c9f78f45SSam Leffler [7] = { .phy = OFDM, 18000, 0x00, 36, 6 }, 102c9f78f45SSam Leffler [8] = { .phy = OFDM, 24000, 0x00, 48, 8 }, 103c9f78f45SSam Leffler [9] = { .phy = OFDM, 36000, 0x00, 72, 8 }, 104c9f78f45SSam Leffler [10] = { .phy = OFDM, 48000, 0x00, 96, 8 }, 105c9f78f45SSam Leffler [11] = { .phy = OFDM, 54000, 0x00, 108, 8 } 106b032f27cSSam Leffler }, 107b032f27cSSam Leffler }; 108b032f27cSSam Leffler 109b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11a_table = { 110c9f78f45SSam Leffler .rateCount = 8, 111c9f78f45SSam Leffler .info = { 112b032f27cSSam Leffler /* short ctrl */ 113b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 114c9f78f45SSam Leffler [0] = { .phy = OFDM, 6000, 0x00, B(12), 0 }, 115c9f78f45SSam Leffler [1] = { .phy = OFDM, 9000, 0x00, 18, 0 }, 116c9f78f45SSam Leffler [2] = { .phy = OFDM, 12000, 0x00, B(24), 2 }, 117c9f78f45SSam Leffler [3] = { .phy = OFDM, 18000, 0x00, 36, 2 }, 118c9f78f45SSam Leffler [4] = { .phy = OFDM, 24000, 0x00, B(48), 4 }, 119c9f78f45SSam Leffler [5] = { .phy = OFDM, 36000, 0x00, 72, 4 }, 120c9f78f45SSam Leffler [6] = { .phy = OFDM, 48000, 0x00, 96, 4 }, 121c9f78f45SSam Leffler [7] = { .phy = OFDM, 54000, 0x00, 108, 4 } 122b032f27cSSam Leffler }, 123b032f27cSSam Leffler }; 124b032f27cSSam Leffler 125b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_half_table = { 126c9f78f45SSam Leffler .rateCount = 8, 127c9f78f45SSam Leffler .info = { 128b032f27cSSam Leffler /* short ctrl */ 129b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 13024a07b5bSSam Leffler [0] = { .phy = HALF, 3000, 0x00, B(6), 0 }, 13124a07b5bSSam Leffler [1] = { .phy = HALF, 4500, 0x00, 9, 0 }, 13224a07b5bSSam Leffler [2] = { .phy = HALF, 6000, 0x00, B(12), 2 }, 13324a07b5bSSam Leffler [3] = { .phy = HALF, 9000, 0x00, 18, 2 }, 13424a07b5bSSam Leffler [4] = { .phy = HALF, 12000, 0x00, B(24), 4 }, 13524a07b5bSSam Leffler [5] = { .phy = HALF, 18000, 0x00, 36, 4 }, 13624a07b5bSSam Leffler [6] = { .phy = HALF, 24000, 0x00, 48, 4 }, 13724a07b5bSSam Leffler [7] = { .phy = HALF, 27000, 0x00, 54, 4 } 138b032f27cSSam Leffler }, 139b032f27cSSam Leffler }; 140b032f27cSSam Leffler 141b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_quarter_table = { 142c9f78f45SSam Leffler .rateCount = 8, 143c9f78f45SSam Leffler .info = { 144b032f27cSSam Leffler /* short ctrl */ 145b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 14624a07b5bSSam Leffler [0] = { .phy = QUART, 1500, 0x00, B(3), 0 }, 14724a07b5bSSam Leffler [1] = { .phy = QUART, 2250, 0x00, 4, 0 }, 14824a07b5bSSam Leffler [2] = { .phy = QUART, 3000, 0x00, B(9), 2 }, 14924a07b5bSSam Leffler [3] = { .phy = QUART, 4500, 0x00, 9, 2 }, 15024a07b5bSSam Leffler [4] = { .phy = QUART, 6000, 0x00, B(12), 4 }, 15124a07b5bSSam Leffler [5] = { .phy = QUART, 9000, 0x00, 18, 4 }, 15224a07b5bSSam Leffler [6] = { .phy = QUART, 12000, 0x00, 24, 4 }, 15324a07b5bSSam Leffler [7] = { .phy = QUART, 13500, 0x00, 27, 4 } 154b032f27cSSam Leffler }, 155b032f27cSSam Leffler }; 156b032f27cSSam Leffler 157b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turbog_table = { 158c9f78f45SSam Leffler .rateCount = 7, 159c9f78f45SSam Leffler .info = { 160b032f27cSSam Leffler /* short ctrl */ 161b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 162c9f78f45SSam Leffler [0] = { .phy = TURBO, 12000, 0x00, B(12), 0 }, 163c9f78f45SSam Leffler [1] = { .phy = TURBO, 24000, 0x00, B(24), 1 }, 164c9f78f45SSam Leffler [2] = { .phy = TURBO, 36000, 0x00, 36, 1 }, 165c9f78f45SSam Leffler [3] = { .phy = TURBO, 48000, 0x00, B(48), 3 }, 166c9f78f45SSam Leffler [4] = { .phy = TURBO, 72000, 0x00, 72, 3 }, 167c9f78f45SSam Leffler [5] = { .phy = TURBO, 96000, 0x00, 96, 3 }, 168c9f78f45SSam Leffler [6] = { .phy = TURBO, 108000, 0x00, 108, 3 } 169b032f27cSSam Leffler }, 170b032f27cSSam Leffler }; 171b032f27cSSam Leffler 172b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turboa_table = { 173c9f78f45SSam Leffler .rateCount = 8, 174c9f78f45SSam Leffler .info = { 175b032f27cSSam Leffler /* short ctrl */ 176b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 177c9f78f45SSam Leffler [0] = { .phy = TURBO, 12000, 0x00, B(12), 0 }, 178c9f78f45SSam Leffler [1] = { .phy = TURBO, 18000, 0x00, 18, 0 }, 179c9f78f45SSam Leffler [2] = { .phy = TURBO, 24000, 0x00, B(24), 2 }, 180c9f78f45SSam Leffler [3] = { .phy = TURBO, 36000, 0x00, 36, 2 }, 181c9f78f45SSam Leffler [4] = { .phy = TURBO, 48000, 0x00, B(48), 4 }, 182c9f78f45SSam Leffler [5] = { .phy = TURBO, 72000, 0x00, 72, 4 }, 183c9f78f45SSam Leffler [6] = { .phy = TURBO, 96000, 0x00, 96, 4 }, 184c9f78f45SSam Leffler [7] = { .phy = TURBO, 108000, 0x00, 108, 4 } 185b032f27cSSam Leffler }, 186b032f27cSSam Leffler }; 187b032f27cSSam Leffler 188f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11ng_table = { 189f8bf74f2SAdrian Chadd .rateCount = 36, 190f8bf74f2SAdrian Chadd .info = { 191f8bf74f2SAdrian Chadd /* short ctrl */ 192f8bf74f2SAdrian Chadd /* Preamble dot11Rate Rate */ 193f8bf74f2SAdrian Chadd [0] = { .phy = CCK, 1000, 0x00, B(2), 0 }, 194f8bf74f2SAdrian Chadd [1] = { .phy = CCK, 2000, 0x04, B(4), 1 }, 195f8bf74f2SAdrian Chadd [2] = { .phy = CCK, 5500, 0x04, B(11), 2 }, 196f8bf74f2SAdrian Chadd [3] = { .phy = CCK, 11000, 0x04, B(22), 3 }, 197f8bf74f2SAdrian Chadd [4] = { .phy = OFDM, 6000, 0x00, 12, 4 }, 198f8bf74f2SAdrian Chadd [5] = { .phy = OFDM, 9000, 0x00, 18, 4 }, 199f8bf74f2SAdrian Chadd [6] = { .phy = OFDM, 12000, 0x00, 24, 6 }, 200f8bf74f2SAdrian Chadd [7] = { .phy = OFDM, 18000, 0x00, 36, 6 }, 201f8bf74f2SAdrian Chadd [8] = { .phy = OFDM, 24000, 0x00, 48, 8 }, 202f8bf74f2SAdrian Chadd [9] = { .phy = OFDM, 36000, 0x00, 72, 8 }, 203f8bf74f2SAdrian Chadd [10] = { .phy = OFDM, 48000, 0x00, 96, 8 }, 204f8bf74f2SAdrian Chadd [11] = { .phy = OFDM, 54000, 0x00, 108, 8 }, 205f8bf74f2SAdrian Chadd 206f8bf74f2SAdrian Chadd [12] = { .phy = HT, 6500, 0x00, N(0), 4 }, 207f8bf74f2SAdrian Chadd [13] = { .phy = HT, 13000, 0x00, N(1), 6 }, 208f8bf74f2SAdrian Chadd [14] = { .phy = HT, 19500, 0x00, N(2), 6 }, 209f8bf74f2SAdrian Chadd [15] = { .phy = HT, 26000, 0x00, N(3), 8 }, 210f8bf74f2SAdrian Chadd [16] = { .phy = HT, 39000, 0x00, N(4), 8 }, 211f8bf74f2SAdrian Chadd [17] = { .phy = HT, 52000, 0x00, N(5), 8 }, 212f8bf74f2SAdrian Chadd [18] = { .phy = HT, 58500, 0x00, N(6), 8 }, 213f8bf74f2SAdrian Chadd [19] = { .phy = HT, 65000, 0x00, N(7), 8 }, 214f8bf74f2SAdrian Chadd 215f8bf74f2SAdrian Chadd [20] = { .phy = HT, 13000, 0x00, N(8), 4 }, 216f8bf74f2SAdrian Chadd [21] = { .phy = HT, 26000, 0x00, N(9), 6 }, 217f8bf74f2SAdrian Chadd [22] = { .phy = HT, 39000, 0x00, N(10), 6 }, 218f8bf74f2SAdrian Chadd [23] = { .phy = HT, 52000, 0x00, N(11), 8 }, 219f8bf74f2SAdrian Chadd [24] = { .phy = HT, 78000, 0x00, N(12), 8 }, 220f8bf74f2SAdrian Chadd [25] = { .phy = HT, 104000, 0x00, N(13), 8 }, 221f8bf74f2SAdrian Chadd [26] = { .phy = HT, 117000, 0x00, N(14), 8 }, 222f8bf74f2SAdrian Chadd [27] = { .phy = HT, 130000, 0x00, N(15), 8 }, 223f8bf74f2SAdrian Chadd 224f8bf74f2SAdrian Chadd [28] = { .phy = HT, 19500, 0x00, N(16), 4 }, 225f8bf74f2SAdrian Chadd [29] = { .phy = HT, 39000, 0x00, N(17), 6 }, 226f8bf74f2SAdrian Chadd [30] = { .phy = HT, 58500, 0x00, N(18), 6 }, 227f8bf74f2SAdrian Chadd [31] = { .phy = HT, 78000, 0x00, N(19), 8 }, 228f8bf74f2SAdrian Chadd [32] = { .phy = HT, 117000, 0x00, N(20), 8 }, 229f8bf74f2SAdrian Chadd [33] = { .phy = HT, 156000, 0x00, N(21), 8 }, 230f8bf74f2SAdrian Chadd [34] = { .phy = HT, 175500, 0x00, N(22), 8 }, 231f8bf74f2SAdrian Chadd [35] = { .phy = HT, 195000, 0x00, N(23), 8 }, 232f8bf74f2SAdrian Chadd 233f8bf74f2SAdrian Chadd }, 234f8bf74f2SAdrian Chadd }; 235f8bf74f2SAdrian Chadd 236f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11na_table = { 237f8bf74f2SAdrian Chadd .rateCount = 32, 238f8bf74f2SAdrian Chadd .info = { 239f8bf74f2SAdrian Chadd /* short ctrl */ 240f8bf74f2SAdrian Chadd /* Preamble dot11Rate Rate */ 241f8bf74f2SAdrian Chadd [0] = { .phy = OFDM, 6000, 0x00, B(12), 0 }, 242f8bf74f2SAdrian Chadd [1] = { .phy = OFDM, 9000, 0x00, 18, 0 }, 243f8bf74f2SAdrian Chadd [2] = { .phy = OFDM, 12000, 0x00, B(24), 2 }, 244f8bf74f2SAdrian Chadd [3] = { .phy = OFDM, 18000, 0x00, 36, 2 }, 245f8bf74f2SAdrian Chadd [4] = { .phy = OFDM, 24000, 0x00, B(48), 4 }, 246f8bf74f2SAdrian Chadd [5] = { .phy = OFDM, 36000, 0x00, 72, 4 }, 247f8bf74f2SAdrian Chadd [6] = { .phy = OFDM, 48000, 0x00, 96, 4 }, 248f8bf74f2SAdrian Chadd [7] = { .phy = OFDM, 54000, 0x00, 108, 4 }, 249f8bf74f2SAdrian Chadd 250f8bf74f2SAdrian Chadd [8] = { .phy = HT, 6500, 0x00, N(0), 0 }, 251f8bf74f2SAdrian Chadd [9] = { .phy = HT, 13000, 0x00, N(1), 2 }, 252f8bf74f2SAdrian Chadd [10] = { .phy = HT, 19500, 0x00, N(2), 2 }, 253f8bf74f2SAdrian Chadd [11] = { .phy = HT, 26000, 0x00, N(3), 4 }, 254f8bf74f2SAdrian Chadd [12] = { .phy = HT, 39000, 0x00, N(4), 4 }, 255f8bf74f2SAdrian Chadd [13] = { .phy = HT, 52000, 0x00, N(5), 4 }, 256f8bf74f2SAdrian Chadd [14] = { .phy = HT, 58500, 0x00, N(6), 4 }, 257f8bf74f2SAdrian Chadd [15] = { .phy = HT, 65000, 0x00, N(7), 4 }, 258f8bf74f2SAdrian Chadd 259f8bf74f2SAdrian Chadd [16] = { .phy = HT, 13000, 0x00, N(8), 0 }, 260f8bf74f2SAdrian Chadd [17] = { .phy = HT, 26000, 0x00, N(9), 2 }, 261f8bf74f2SAdrian Chadd [18] = { .phy = HT, 39000, 0x00, N(10), 2 }, 262f8bf74f2SAdrian Chadd [19] = { .phy = HT, 52000, 0x00, N(11), 4 }, 263f8bf74f2SAdrian Chadd [20] = { .phy = HT, 78000, 0x00, N(12), 4 }, 264f8bf74f2SAdrian Chadd [21] = { .phy = HT, 104000, 0x00, N(13), 4 }, 265f8bf74f2SAdrian Chadd [22] = { .phy = HT, 117000, 0x00, N(14), 4 }, 266f8bf74f2SAdrian Chadd [23] = { .phy = HT, 130000, 0x00, N(15), 4 }, 267f8bf74f2SAdrian Chadd 268f8bf74f2SAdrian Chadd [24] = { .phy = HT, 19500, 0x00, N(16), 0 }, 269f8bf74f2SAdrian Chadd [25] = { .phy = HT, 39000, 0x00, N(17), 2 }, 270f8bf74f2SAdrian Chadd [26] = { .phy = HT, 58500, 0x00, N(18), 2 }, 271f8bf74f2SAdrian Chadd [27] = { .phy = HT, 78000, 0x00, N(19), 4 }, 272f8bf74f2SAdrian Chadd [28] = { .phy = HT, 117000, 0x00, N(20), 4 }, 273f8bf74f2SAdrian Chadd [29] = { .phy = HT, 156000, 0x00, N(21), 4 }, 274f8bf74f2SAdrian Chadd [30] = { .phy = HT, 175500, 0x00, N(22), 4 }, 275f8bf74f2SAdrian Chadd [31] = { .phy = HT, 195000, 0x00, N(23), 4 }, 276f8bf74f2SAdrian Chadd 277f8bf74f2SAdrian Chadd }, 278f8bf74f2SAdrian Chadd }; 279f8bf74f2SAdrian Chadd 280c9f78f45SSam Leffler #undef Mb 281c9f78f45SSam Leffler #undef B 282b032f27cSSam Leffler #undef OFDM 28324a07b5bSSam Leffler #undef HALF 28424a07b5bSSam Leffler #undef QUART 285b032f27cSSam Leffler #undef CCK 286b032f27cSSam Leffler #undef TURBO 287b032f27cSSam Leffler #undef XR 288f8bf74f2SAdrian Chadd #undef HT 289f8bf74f2SAdrian Chadd #undef N 290b032f27cSSam Leffler 291b032f27cSSam Leffler /* 292b032f27cSSam Leffler * Setup a rate table's reverse lookup table and fill in 293b032f27cSSam Leffler * ack durations. The reverse lookup tables are assumed 294b032f27cSSam Leffler * to be initialized to zero (or at least the first entry). 295b032f27cSSam Leffler * We use this as a key that indicates whether or not 296b032f27cSSam Leffler * we've previously setup the reverse lookup table. 297b032f27cSSam Leffler * 298b032f27cSSam Leffler * XXX not reentrant, but shouldn't matter 299b032f27cSSam Leffler */ 300b032f27cSSam Leffler static void 301b032f27cSSam Leffler ieee80211_setup_ratetable(struct ieee80211_rate_table *rt) 302b032f27cSSam Leffler { 303b032f27cSSam Leffler #define WLAN_CTRL_FRAME_SIZE \ 304b032f27cSSam Leffler (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN) 305b032f27cSSam Leffler 306b032f27cSSam Leffler int i; 307b032f27cSSam Leffler 308a3e08d6fSRui Paulo for (i = 0; i < nitems(rt->rateCodeToIndex); i++) 309b032f27cSSam Leffler rt->rateCodeToIndex[i] = (uint8_t) -1; 310b032f27cSSam Leffler for (i = 0; i < rt->rateCount; i++) { 311b032f27cSSam Leffler uint8_t code = rt->info[i].dot11Rate; 312b032f27cSSam Leffler uint8_t cix = rt->info[i].ctlRateIndex; 313b032f27cSSam Leffler uint8_t ctl_rate = rt->info[cix].dot11Rate; 314b032f27cSSam Leffler 315b032f27cSSam Leffler /* 316f8bf74f2SAdrian Chadd * Map without the basic rate bit. 317f8bf74f2SAdrian Chadd * 318f8bf74f2SAdrian Chadd * It's up to the caller to ensure that the basic 319f8bf74f2SAdrian Chadd * rate bit is stripped here. 320f8bf74f2SAdrian Chadd * 321f8bf74f2SAdrian Chadd * For HT, use the MCS rate bit. 322b032f27cSSam Leffler */ 323b032f27cSSam Leffler code &= IEEE80211_RATE_VAL; 324f8bf74f2SAdrian Chadd if (rt->info[i].phy == IEEE80211_T_HT) { 325f8bf74f2SAdrian Chadd code |= IEEE80211_RATE_MCS; 326b032f27cSSam Leffler } 327b032f27cSSam Leffler 328f8bf74f2SAdrian Chadd /* XXX assume the control rate is non-MCS? */ 329f8bf74f2SAdrian Chadd ctl_rate &= IEEE80211_RATE_VAL; 330f8bf74f2SAdrian Chadd rt->rateCodeToIndex[code] = i; 331f8bf74f2SAdrian Chadd 332b032f27cSSam Leffler /* 333b032f27cSSam Leffler * XXX for 11g the control rate to use for 5.5 and 11 Mb/s 334b032f27cSSam Leffler * depends on whether they are marked as basic rates; 335b032f27cSSam Leffler * the static tables are setup with an 11b-compatible 336b032f27cSSam Leffler * 2Mb/s rate which will work but is suboptimal 337b032f27cSSam Leffler * 338b032f27cSSam Leffler * NB: Control rate is always less than or equal to the 339b032f27cSSam Leffler * current rate, so control rate's reverse lookup entry 340b032f27cSSam Leffler * has been installed and following call is safe. 341b032f27cSSam Leffler */ 342b032f27cSSam Leffler rt->info[i].lpAckDuration = ieee80211_compute_duration(rt, 343b032f27cSSam Leffler WLAN_CTRL_FRAME_SIZE, ctl_rate, 0); 344b032f27cSSam Leffler rt->info[i].spAckDuration = ieee80211_compute_duration(rt, 345b032f27cSSam Leffler WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE); 346b032f27cSSam Leffler } 347b032f27cSSam Leffler 348b032f27cSSam Leffler #undef WLAN_CTRL_FRAME_SIZE 349b032f27cSSam Leffler } 350b032f27cSSam Leffler 351b032f27cSSam Leffler /* Setup all rate tables */ 352b032f27cSSam Leffler static void 353b032f27cSSam Leffler ieee80211_phy_init(void) 354b032f27cSSam Leffler { 355b032f27cSSam Leffler static struct ieee80211_rate_table * const ratetables[] = { 356b032f27cSSam Leffler &ieee80211_half_table, 357b032f27cSSam Leffler &ieee80211_quarter_table, 358f8bf74f2SAdrian Chadd &ieee80211_11na_table, 359f8bf74f2SAdrian Chadd &ieee80211_11ng_table, 360b032f27cSSam Leffler &ieee80211_turbog_table, 361b032f27cSSam Leffler &ieee80211_turboa_table, 362b032f27cSSam Leffler &ieee80211_11a_table, 363b032f27cSSam Leffler &ieee80211_11g_table, 364b032f27cSSam Leffler &ieee80211_11b_table 365b032f27cSSam Leffler }; 366b032f27cSSam Leffler int i; 367b032f27cSSam Leffler 368a3e08d6fSRui Paulo for (i = 0; i < nitems(ratetables); ++i) 369b032f27cSSam Leffler ieee80211_setup_ratetable(ratetables[i]); 370b032f27cSSam Leffler 371b032f27cSSam Leffler } 372b032f27cSSam Leffler SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL); 373b032f27cSSam Leffler 374b032f27cSSam Leffler const struct ieee80211_rate_table * 375b032f27cSSam Leffler ieee80211_get_ratetable(struct ieee80211_channel *c) 376b032f27cSSam Leffler { 377b032f27cSSam Leffler const struct ieee80211_rate_table *rt; 378b032f27cSSam Leffler 379b032f27cSSam Leffler /* XXX HT */ 380b032f27cSSam Leffler if (IEEE80211_IS_CHAN_HALF(c)) 381b032f27cSSam Leffler rt = &ieee80211_half_table; 382b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_QUARTER(c)) 383b032f27cSSam Leffler rt = &ieee80211_quarter_table; 384b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_HTA(c)) 385f8bf74f2SAdrian Chadd rt = &ieee80211_11na_table; 386b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_HTG(c)) 387f8bf74f2SAdrian Chadd rt = &ieee80211_11ng_table; 388b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_108G(c)) 389b032f27cSSam Leffler rt = &ieee80211_turbog_table; 390b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_ST(c)) 391b032f27cSSam Leffler rt = &ieee80211_turboa_table; 392b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_TURBO(c)) 393b032f27cSSam Leffler rt = &ieee80211_turboa_table; 394b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_A(c)) 395b032f27cSSam Leffler rt = &ieee80211_11a_table; 396b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_ANYG(c)) 397b032f27cSSam Leffler rt = &ieee80211_11g_table; 398b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_B(c)) 399b032f27cSSam Leffler rt = &ieee80211_11b_table; 400b032f27cSSam Leffler else { 401b032f27cSSam Leffler /* NB: should not get here */ 402b032f27cSSam Leffler panic("%s: no rate table for channel; freq %u flags 0x%x\n", 403b032f27cSSam Leffler __func__, c->ic_freq, c->ic_flags); 404b032f27cSSam Leffler } 405b032f27cSSam Leffler return rt; 406b032f27cSSam Leffler } 407b032f27cSSam Leffler 408b032f27cSSam Leffler /* 409b032f27cSSam Leffler * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s) 410b032f27cSSam Leffler * 411b032f27cSSam Leffler * Note we do no parameter checking; this routine is mainly 412b032f27cSSam Leffler * used to derive an 802.11 rate for constructing radiotap 413b032f27cSSam Leffler * header data for rx frames. 414b032f27cSSam Leffler * 415b032f27cSSam Leffler * XXX might be a candidate for inline 416b032f27cSSam Leffler */ 417b032f27cSSam Leffler uint8_t 4188215d906SSam Leffler ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type) 419b032f27cSSam Leffler { 4208215d906SSam Leffler if (type == IEEE80211_T_OFDM) { 421b032f27cSSam Leffler static const uint8_t ofdm_plcp2rate[16] = { 422b032f27cSSam Leffler [0xb] = 12, 423b032f27cSSam Leffler [0xf] = 18, 424b032f27cSSam Leffler [0xa] = 24, 425b032f27cSSam Leffler [0xe] = 36, 426b032f27cSSam Leffler [0x9] = 48, 427b032f27cSSam Leffler [0xd] = 72, 428b032f27cSSam Leffler [0x8] = 96, 429b032f27cSSam Leffler [0xc] = 108 430b032f27cSSam Leffler }; 431b032f27cSSam Leffler return ofdm_plcp2rate[plcp & 0xf]; 4328215d906SSam Leffler } 4338215d906SSam Leffler if (type == IEEE80211_T_CCK) { 434b032f27cSSam Leffler static const uint8_t cck_plcp2rate[16] = { 435b032f27cSSam Leffler [0xa] = 2, /* 0x0a */ 436b032f27cSSam Leffler [0x4] = 4, /* 0x14 */ 437b032f27cSSam Leffler [0x7] = 11, /* 0x37 */ 438b032f27cSSam Leffler [0xe] = 22, /* 0x6e */ 439b032f27cSSam Leffler [0xc] = 44, /* 0xdc , actually PBCC */ 440b032f27cSSam Leffler }; 441b032f27cSSam Leffler return cck_plcp2rate[plcp & 0xf]; 442b032f27cSSam Leffler } 4438215d906SSam Leffler return 0; 444b032f27cSSam Leffler } 445b032f27cSSam Leffler 446b032f27cSSam Leffler /* 447b032f27cSSam Leffler * Covert 802.11 rate to PLCP signal. 448b032f27cSSam Leffler */ 449b032f27cSSam Leffler uint8_t 4508215d906SSam Leffler ieee80211_rate2plcp(int rate, enum ieee80211_phytype type) 451b032f27cSSam Leffler { 4528215d906SSam Leffler /* XXX ignore type for now since rates are unique */ 453b032f27cSSam Leffler switch (rate) { 454b032f27cSSam Leffler /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 455b032f27cSSam Leffler case 12: return 0xb; 456b032f27cSSam Leffler case 18: return 0xf; 457b032f27cSSam Leffler case 24: return 0xa; 458b032f27cSSam Leffler case 36: return 0xe; 459b032f27cSSam Leffler case 48: return 0x9; 460b032f27cSSam Leffler case 72: return 0xd; 461b032f27cSSam Leffler case 96: return 0x8; 462b032f27cSSam Leffler case 108: return 0xc; 4638215d906SSam Leffler /* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */ 4648215d906SSam Leffler case 2: return 10; 4658215d906SSam Leffler case 4: return 20; 4668215d906SSam Leffler case 11: return 55; 4678215d906SSam Leffler case 22: return 110; 4688215d906SSam Leffler /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 4698215d906SSam Leffler case 44: return 220; 470b032f27cSSam Leffler } 4718215d906SSam Leffler return 0; /* XXX unsupported/unknown rate */ 472b032f27cSSam Leffler } 4738215d906SSam Leffler 47424a07b5bSSam Leffler #define CCK_SIFS_TIME 10 47524a07b5bSSam Leffler #define CCK_PREAMBLE_BITS 144 47624a07b5bSSam Leffler #define CCK_PLCP_BITS 48 47724a07b5bSSam Leffler 47824a07b5bSSam Leffler #define OFDM_SIFS_TIME 16 47924a07b5bSSam Leffler #define OFDM_PREAMBLE_TIME 20 48024a07b5bSSam Leffler #define OFDM_PLCP_BITS 22 48124a07b5bSSam Leffler #define OFDM_SYMBOL_TIME 4 48224a07b5bSSam Leffler 48324a07b5bSSam Leffler #define OFDM_HALF_SIFS_TIME 32 48424a07b5bSSam Leffler #define OFDM_HALF_PREAMBLE_TIME 40 48524a07b5bSSam Leffler #define OFDM_HALF_PLCP_BITS 22 48624a07b5bSSam Leffler #define OFDM_HALF_SYMBOL_TIME 8 48724a07b5bSSam Leffler 48824a07b5bSSam Leffler #define OFDM_QUARTER_SIFS_TIME 64 48924a07b5bSSam Leffler #define OFDM_QUARTER_PREAMBLE_TIME 80 49024a07b5bSSam Leffler #define OFDM_QUARTER_PLCP_BITS 22 49124a07b5bSSam Leffler #define OFDM_QUARTER_SYMBOL_TIME 16 49224a07b5bSSam Leffler 49324a07b5bSSam Leffler #define TURBO_SIFS_TIME 8 49424a07b5bSSam Leffler #define TURBO_PREAMBLE_TIME 14 49524a07b5bSSam Leffler #define TURBO_PLCP_BITS 22 49624a07b5bSSam Leffler #define TURBO_SYMBOL_TIME 4 49724a07b5bSSam Leffler 498b032f27cSSam Leffler /* 499b032f27cSSam Leffler * Compute the time to transmit a frame of length frameLen bytes 500b032f27cSSam Leffler * using the specified rate, phy, and short preamble setting. 501b032f27cSSam Leffler * SIFS is included. 502b032f27cSSam Leffler */ 503b032f27cSSam Leffler uint16_t 504b032f27cSSam Leffler ieee80211_compute_duration(const struct ieee80211_rate_table *rt, 505b032f27cSSam Leffler uint32_t frameLen, uint16_t rate, int isShortPreamble) 506b032f27cSSam Leffler { 507b032f27cSSam Leffler uint8_t rix = rt->rateCodeToIndex[rate]; 508b032f27cSSam Leffler uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 509b032f27cSSam Leffler uint32_t kbps; 510b032f27cSSam Leffler 511b032f27cSSam Leffler KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate)); 512b032f27cSSam Leffler kbps = rt->info[rix].rateKbps; 513b032f27cSSam Leffler if (kbps == 0) /* XXX bandaid for channel changes */ 514b032f27cSSam Leffler return 0; 515b032f27cSSam Leffler 516b032f27cSSam Leffler switch (rt->info[rix].phy) { 517b032f27cSSam Leffler case IEEE80211_T_CCK: 518b032f27cSSam Leffler phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 519b032f27cSSam Leffler if (isShortPreamble && rt->info[rix].shortPreamble) 520b032f27cSSam Leffler phyTime >>= 1; 521b032f27cSSam Leffler numBits = frameLen << 3; 522b032f27cSSam Leffler txTime = CCK_SIFS_TIME + phyTime 523b032f27cSSam Leffler + ((numBits * 1000)/kbps); 524b032f27cSSam Leffler break; 525b032f27cSSam Leffler case IEEE80211_T_OFDM: 526b032f27cSSam Leffler bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 527b032f27cSSam Leffler KASSERT(bitsPerSymbol != 0, ("full rate bps")); 528b032f27cSSam Leffler 529b032f27cSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 530b032f27cSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 531b032f27cSSam Leffler txTime = OFDM_SIFS_TIME 532b032f27cSSam Leffler + OFDM_PREAMBLE_TIME 533b032f27cSSam Leffler + (numSymbols * OFDM_SYMBOL_TIME); 534b032f27cSSam Leffler break; 53524a07b5bSSam Leffler case IEEE80211_T_OFDM_HALF: 53624a07b5bSSam Leffler bitsPerSymbol = (kbps * OFDM_HALF_SYMBOL_TIME) / 1000; 53724a07b5bSSam Leffler KASSERT(bitsPerSymbol != 0, ("1/4 rate bps")); 538b032f27cSSam Leffler 53924a07b5bSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 54024a07b5bSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 54124a07b5bSSam Leffler txTime = OFDM_HALF_SIFS_TIME 54224a07b5bSSam Leffler + OFDM_HALF_PREAMBLE_TIME 54324a07b5bSSam Leffler + (numSymbols * OFDM_HALF_SYMBOL_TIME); 54424a07b5bSSam Leffler break; 54524a07b5bSSam Leffler case IEEE80211_T_OFDM_QUARTER: 54624a07b5bSSam Leffler bitsPerSymbol = (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000; 54724a07b5bSSam Leffler KASSERT(bitsPerSymbol != 0, ("1/2 rate bps")); 548b032f27cSSam Leffler 54924a07b5bSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 55024a07b5bSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 55124a07b5bSSam Leffler txTime = OFDM_QUARTER_SIFS_TIME 55224a07b5bSSam Leffler + OFDM_QUARTER_PREAMBLE_TIME 55324a07b5bSSam Leffler + (numSymbols * OFDM_QUARTER_SYMBOL_TIME); 55424a07b5bSSam Leffler break; 555b032f27cSSam Leffler case IEEE80211_T_TURBO: 556b032f27cSSam Leffler /* we still save OFDM rates in kbps - so double them */ 557b032f27cSSam Leffler bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000; 558b032f27cSSam Leffler KASSERT(bitsPerSymbol != 0, ("turbo bps")); 559b032f27cSSam Leffler 560b032f27cSSam Leffler numBits = TURBO_PLCP_BITS + (frameLen << 3); 561b032f27cSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 562b032f27cSSam Leffler txTime = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME 563b032f27cSSam Leffler + (numSymbols * TURBO_SYMBOL_TIME); 564b032f27cSSam Leffler break; 565b032f27cSSam Leffler default: 566b032f27cSSam Leffler panic("%s: unknown phy %u (rate %u)\n", __func__, 567b032f27cSSam Leffler rt->info[rix].phy, rate); 568b032f27cSSam Leffler } 569b032f27cSSam Leffler return txTime; 570b032f27cSSam Leffler } 571f8bf74f2SAdrian Chadd 572f8bf74f2SAdrian Chadd static const uint16_t ht20_bps[32] = { 573f8bf74f2SAdrian Chadd 26, 52, 78, 104, 156, 208, 234, 260, 574f8bf74f2SAdrian Chadd 52, 104, 156, 208, 312, 416, 468, 520, 575f8bf74f2SAdrian Chadd 78, 156, 234, 312, 468, 624, 702, 780, 576f8bf74f2SAdrian Chadd 104, 208, 312, 416, 624, 832, 936, 1040 577f8bf74f2SAdrian Chadd }; 578f8bf74f2SAdrian Chadd static const uint16_t ht40_bps[32] = { 579f8bf74f2SAdrian Chadd 54, 108, 162, 216, 324, 432, 486, 540, 580f8bf74f2SAdrian Chadd 108, 216, 324, 432, 648, 864, 972, 1080, 581f8bf74f2SAdrian Chadd 162, 324, 486, 648, 972, 1296, 1458, 1620, 582f8bf74f2SAdrian Chadd 216, 432, 648, 864, 1296, 1728, 1944, 2160 583f8bf74f2SAdrian Chadd }; 584f8bf74f2SAdrian Chadd 585f8bf74f2SAdrian Chadd 586f8bf74f2SAdrian Chadd #define OFDM_PLCP_BITS 22 587f8bf74f2SAdrian Chadd #define HT_L_STF 8 588f8bf74f2SAdrian Chadd #define HT_L_LTF 8 589f8bf74f2SAdrian Chadd #define HT_L_SIG 4 590f8bf74f2SAdrian Chadd #define HT_SIG 8 591f8bf74f2SAdrian Chadd #define HT_STF 4 592f8bf74f2SAdrian Chadd #define HT_LTF(n) ((n) * 4) 593f8bf74f2SAdrian Chadd 594f8bf74f2SAdrian Chadd /* 595f8bf74f2SAdrian Chadd * Calculate the transmit duration of an 11n frame. 596f8bf74f2SAdrian Chadd */ 597f8bf74f2SAdrian Chadd uint32_t 598f8bf74f2SAdrian Chadd ieee80211_compute_duration_ht(uint32_t frameLen, uint16_t rate, 599f8bf74f2SAdrian Chadd int streams, int isht40, int isShortGI) 600f8bf74f2SAdrian Chadd { 601f8bf74f2SAdrian Chadd uint32_t bitsPerSymbol, numBits, numSymbols, txTime; 602f8bf74f2SAdrian Chadd 603f8bf74f2SAdrian Chadd KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate)); 604f8bf74f2SAdrian Chadd KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate)); 605f8bf74f2SAdrian Chadd 606f8bf74f2SAdrian Chadd if (isht40) 607f8bf74f2SAdrian Chadd bitsPerSymbol = ht40_bps[rate & 0x1f]; 608f8bf74f2SAdrian Chadd else 609f8bf74f2SAdrian Chadd bitsPerSymbol = ht20_bps[rate & 0x1f]; 610f8bf74f2SAdrian Chadd numBits = OFDM_PLCP_BITS + (frameLen << 3); 611f8bf74f2SAdrian Chadd numSymbols = howmany(numBits, bitsPerSymbol); 612f8bf74f2SAdrian Chadd if (isShortGI) 613f8bf74f2SAdrian Chadd txTime = ((numSymbols * 18) + 4) / 5; /* 3.6us */ 614f8bf74f2SAdrian Chadd else 615f8bf74f2SAdrian Chadd txTime = numSymbols * 4; /* 4us */ 616f8bf74f2SAdrian Chadd return txTime + HT_L_STF + HT_L_LTF + 617f8bf74f2SAdrian Chadd HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 618f8bf74f2SAdrian Chadd } 619f8bf74f2SAdrian Chadd 620f8bf74f2SAdrian Chadd #undef HT_LTF 621f8bf74f2SAdrian Chadd #undef HT_STF 622f8bf74f2SAdrian Chadd #undef HT_SIG 623f8bf74f2SAdrian Chadd #undef HT_L_SIG 624f8bf74f2SAdrian Chadd #undef HT_L_LTF 625f8bf74f2SAdrian Chadd #undef HT_L_STF 626f8bf74f2SAdrian Chadd #undef OFDM_PLCP_BITS 627