xref: /freebsd/sys/net80211/ieee80211_phy.c (revision f8bf74f232252ad22e499b12b9b23fc3729abc68)
1b032f27cSSam Leffler /*-
2b032f27cSSam Leffler  * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting
3b032f27cSSam Leffler  * All rights reserved.
4b032f27cSSam Leffler  *
5b032f27cSSam Leffler  * Redistribution and use in source and binary forms, with or without
6b032f27cSSam Leffler  * modification, are permitted provided that the following conditions
7b032f27cSSam Leffler  * are met:
8b032f27cSSam Leffler  * 1. Redistributions of source code must retain the above copyright
9b032f27cSSam Leffler  *    notice, this list of conditions and the following disclaimer.
10b032f27cSSam Leffler  * 2. Redistributions in binary form must reproduce the above copyright
11b032f27cSSam Leffler  *    notice, this list of conditions and the following disclaimer in the
12b032f27cSSam Leffler  *    documentation and/or other materials provided with the distribution.
13b032f27cSSam Leffler  *
14b032f27cSSam Leffler  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
15b032f27cSSam Leffler  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
16b032f27cSSam Leffler  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
17b032f27cSSam Leffler  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
18b032f27cSSam Leffler  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
19b032f27cSSam Leffler  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
20b032f27cSSam Leffler  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
21b032f27cSSam Leffler  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22b032f27cSSam Leffler  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
23b032f27cSSam Leffler  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24b032f27cSSam Leffler  */
25b032f27cSSam Leffler 
26b032f27cSSam Leffler #include <sys/cdefs.h>
27b032f27cSSam Leffler __FBSDID("$FreeBSD$");
28b032f27cSSam Leffler 
29b032f27cSSam Leffler /*
30b032f27cSSam Leffler  * IEEE 802.11 PHY-related support.
31b032f27cSSam Leffler  */
32b032f27cSSam Leffler 
33b032f27cSSam Leffler #include "opt_inet.h"
34b032f27cSSam Leffler 
35b032f27cSSam Leffler #include <sys/param.h>
36b032f27cSSam Leffler #include <sys/kernel.h>
37b032f27cSSam Leffler #include <sys/systm.h>
38b032f27cSSam Leffler 
39b032f27cSSam Leffler #include <sys/socket.h>
40b032f27cSSam Leffler 
41b032f27cSSam Leffler #include <net/if.h>
42b032f27cSSam Leffler #include <net/if_media.h>
43b032f27cSSam Leffler 
44b032f27cSSam Leffler #include <net80211/ieee80211_var.h>
45b032f27cSSam Leffler #include <net80211/ieee80211_phy.h>
46b032f27cSSam Leffler 
47b032f27cSSam Leffler #ifdef notyet
48b032f27cSSam Leffler struct ieee80211_ds_plcp_hdr {
49b032f27cSSam Leffler 	uint8_t		i_signal;
50b032f27cSSam Leffler 	uint8_t		i_service;
51b032f27cSSam Leffler 	uint16_t	i_length;
52b032f27cSSam Leffler 	uint16_t	i_crc;
53b032f27cSSam Leffler } __packed;
54b032f27cSSam Leffler 
55b032f27cSSam Leffler #endif	/* notyet */
56b032f27cSSam Leffler 
57b032f27cSSam Leffler /* shorthands to compact tables for readability */
58b032f27cSSam Leffler #define	OFDM	IEEE80211_T_OFDM
59b032f27cSSam Leffler #define	CCK	IEEE80211_T_CCK
60b032f27cSSam Leffler #define	TURBO	IEEE80211_T_TURBO
6124a07b5bSSam Leffler #define	HALF	IEEE80211_T_OFDM_HALF
6224a07b5bSSam Leffler #define	QUART	IEEE80211_T_OFDM_QUARTER
63*f8bf74f2SAdrian Chadd #define	HT	IEEE80211_T_HT
64*f8bf74f2SAdrian Chadd /* XXX the 11n and the basic rate flag are unfortunately overlapping. Grr. */
65*f8bf74f2SAdrian Chadd #define	N(r)	(IEEE80211_RATE_MCS | r)
6624a07b5bSSam Leffler #define	PBCC	(IEEE80211_T_OFDM_QUARTER+1)		/* XXX */
67*f8bf74f2SAdrian Chadd #define	B(r)	(IEEE80211_RATE_BASIC | r)
68c9f78f45SSam Leffler #define	Mb(x)	(x*1000)
69b032f27cSSam Leffler 
70b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11b_table = {
71c9f78f45SSam Leffler     .rateCount = 4,		/* XXX no PBCC */
72c9f78f45SSam Leffler     .info = {
73b032f27cSSam Leffler /*                                   short            ctrl  */
74b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
75c9f78f45SSam Leffler      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },/*   1 Mb */
76c9f78f45SSam Leffler      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },/*   2 Mb */
77c9f78f45SSam Leffler      [2] = { .phy = CCK,     5500,    0x04,     B(11),   1 },/* 5.5 Mb */
78c9f78f45SSam Leffler      [3] = { .phy = CCK,    11000,    0x04,     B(22),   1 },/*  11 Mb */
79c9f78f45SSam Leffler      [4] = { .phy = PBCC,   22000,    0x04,        44,   3 } /*  22 Mb */
80b032f27cSSam Leffler     },
81b032f27cSSam Leffler };
82b032f27cSSam Leffler 
83b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11g_table = {
84c9f78f45SSam Leffler     .rateCount = 12,
85c9f78f45SSam Leffler     .info = {
86b032f27cSSam Leffler /*                                   short            ctrl  */
87b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
88c9f78f45SSam Leffler      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
89c9f78f45SSam Leffler      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
90c9f78f45SSam Leffler      [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
91c9f78f45SSam Leffler      [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
92c9f78f45SSam Leffler      [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
93c9f78f45SSam Leffler      [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
94c9f78f45SSam Leffler      [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
95c9f78f45SSam Leffler      [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
96c9f78f45SSam Leffler      [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
97c9f78f45SSam Leffler      [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
98c9f78f45SSam Leffler     [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
99c9f78f45SSam Leffler     [11] = { .phy = OFDM,   54000,    0x00,       108,   8 }
100b032f27cSSam Leffler     },
101b032f27cSSam Leffler };
102b032f27cSSam Leffler 
103b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11a_table = {
104c9f78f45SSam Leffler     .rateCount = 8,
105c9f78f45SSam Leffler     .info = {
106b032f27cSSam Leffler /*                                   short            ctrl  */
107b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
108c9f78f45SSam Leffler      [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
109c9f78f45SSam Leffler      [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
110c9f78f45SSam Leffler      [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
111c9f78f45SSam Leffler      [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
112c9f78f45SSam Leffler      [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
113c9f78f45SSam Leffler      [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
114c9f78f45SSam Leffler      [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
115c9f78f45SSam Leffler      [7] = { .phy = OFDM,   54000,    0x00,       108,   4 }
116b032f27cSSam Leffler     },
117b032f27cSSam Leffler };
118b032f27cSSam Leffler 
119b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_half_table = {
120c9f78f45SSam Leffler     .rateCount = 8,
121c9f78f45SSam Leffler     .info = {
122b032f27cSSam Leffler /*                                   short            ctrl  */
123b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
12424a07b5bSSam Leffler      [0] = { .phy = HALF,    3000,    0x00,      B(6),   0 },
12524a07b5bSSam Leffler      [1] = { .phy = HALF,    4500,    0x00,         9,   0 },
12624a07b5bSSam Leffler      [2] = { .phy = HALF,    6000,    0x00,     B(12),   2 },
12724a07b5bSSam Leffler      [3] = { .phy = HALF,    9000,    0x00,        18,   2 },
12824a07b5bSSam Leffler      [4] = { .phy = HALF,   12000,    0x00,     B(24),   4 },
12924a07b5bSSam Leffler      [5] = { .phy = HALF,   18000,    0x00,        36,   4 },
13024a07b5bSSam Leffler      [6] = { .phy = HALF,   24000,    0x00,        48,   4 },
13124a07b5bSSam Leffler      [7] = { .phy = HALF,   27000,    0x00,        54,   4 }
132b032f27cSSam Leffler     },
133b032f27cSSam Leffler };
134b032f27cSSam Leffler 
135b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_quarter_table = {
136c9f78f45SSam Leffler     .rateCount = 8,
137c9f78f45SSam Leffler     .info = {
138b032f27cSSam Leffler /*                                   short            ctrl  */
139b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
14024a07b5bSSam Leffler      [0] = { .phy = QUART,   1500,    0x00,      B(3),   0 },
14124a07b5bSSam Leffler      [1] = { .phy = QUART,   2250,    0x00,         4,   0 },
14224a07b5bSSam Leffler      [2] = { .phy = QUART,   3000,    0x00,      B(9),   2 },
14324a07b5bSSam Leffler      [3] = { .phy = QUART,   4500,    0x00,         9,   2 },
14424a07b5bSSam Leffler      [4] = { .phy = QUART,   6000,    0x00,     B(12),   4 },
14524a07b5bSSam Leffler      [5] = { .phy = QUART,   9000,    0x00,        18,   4 },
14624a07b5bSSam Leffler      [6] = { .phy = QUART,  12000,    0x00,        24,   4 },
14724a07b5bSSam Leffler      [7] = { .phy = QUART,  13500,    0x00,        27,   4 }
148b032f27cSSam Leffler     },
149b032f27cSSam Leffler };
150b032f27cSSam Leffler 
151b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turbog_table = {
152c9f78f45SSam Leffler     .rateCount = 7,
153c9f78f45SSam Leffler     .info = {
154b032f27cSSam Leffler /*                                   short            ctrl  */
155b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
156c9f78f45SSam Leffler      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
157c9f78f45SSam Leffler      [1] = { .phy = TURBO,   24000,   0x00,     B(24),   1 },
158c9f78f45SSam Leffler      [2] = { .phy = TURBO,   36000,   0x00,        36,   1 },
159c9f78f45SSam Leffler      [3] = { .phy = TURBO,   48000,   0x00,     B(48),   3 },
160c9f78f45SSam Leffler      [4] = { .phy = TURBO,   72000,   0x00,        72,   3 },
161c9f78f45SSam Leffler      [5] = { .phy = TURBO,   96000,   0x00,        96,   3 },
162c9f78f45SSam Leffler      [6] = { .phy = TURBO,  108000,   0x00,       108,   3 }
163b032f27cSSam Leffler     },
164b032f27cSSam Leffler };
165b032f27cSSam Leffler 
166b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turboa_table = {
167c9f78f45SSam Leffler     .rateCount = 8,
168c9f78f45SSam Leffler     .info = {
169b032f27cSSam Leffler /*                                   short            ctrl  */
170b032f27cSSam Leffler /*                                Preamble  dot11Rate Rate */
171c9f78f45SSam Leffler      [0] = { .phy = TURBO,   12000,   0x00,     B(12),   0 },
172c9f78f45SSam Leffler      [1] = { .phy = TURBO,   18000,   0x00,        18,   0 },
173c9f78f45SSam Leffler      [2] = { .phy = TURBO,   24000,   0x00,     B(24),   2 },
174c9f78f45SSam Leffler      [3] = { .phy = TURBO,   36000,   0x00,        36,   2 },
175c9f78f45SSam Leffler      [4] = { .phy = TURBO,   48000,   0x00,     B(48),   4 },
176c9f78f45SSam Leffler      [5] = { .phy = TURBO,   72000,   0x00,        72,   4 },
177c9f78f45SSam Leffler      [6] = { .phy = TURBO,   96000,   0x00,        96,   4 },
178c9f78f45SSam Leffler      [7] = { .phy = TURBO,  108000,   0x00,       108,   4 }
179b032f27cSSam Leffler     },
180b032f27cSSam Leffler };
181b032f27cSSam Leffler 
182*f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11ng_table = {
183*f8bf74f2SAdrian Chadd     .rateCount = 36,
184*f8bf74f2SAdrian Chadd     .info = {
185*f8bf74f2SAdrian Chadd /*                                   short            ctrl  */
186*f8bf74f2SAdrian Chadd /*                                Preamble  dot11Rate Rate */
187*f8bf74f2SAdrian Chadd      [0] = { .phy = CCK,     1000,    0x00,      B(2),   0 },
188*f8bf74f2SAdrian Chadd      [1] = { .phy = CCK,     2000,    0x04,      B(4),   1 },
189*f8bf74f2SAdrian Chadd      [2] = { .phy = CCK,     5500,    0x04,     B(11),   2 },
190*f8bf74f2SAdrian Chadd      [3] = { .phy = CCK,    11000,    0x04,     B(22),   3 },
191*f8bf74f2SAdrian Chadd      [4] = { .phy = OFDM,    6000,    0x00,        12,   4 },
192*f8bf74f2SAdrian Chadd      [5] = { .phy = OFDM,    9000,    0x00,        18,   4 },
193*f8bf74f2SAdrian Chadd      [6] = { .phy = OFDM,   12000,    0x00,        24,   6 },
194*f8bf74f2SAdrian Chadd      [7] = { .phy = OFDM,   18000,    0x00,        36,   6 },
195*f8bf74f2SAdrian Chadd      [8] = { .phy = OFDM,   24000,    0x00,        48,   8 },
196*f8bf74f2SAdrian Chadd      [9] = { .phy = OFDM,   36000,    0x00,        72,   8 },
197*f8bf74f2SAdrian Chadd     [10] = { .phy = OFDM,   48000,    0x00,        96,   8 },
198*f8bf74f2SAdrian Chadd     [11] = { .phy = OFDM,   54000,    0x00,       108,   8 },
199*f8bf74f2SAdrian Chadd 
200*f8bf74f2SAdrian Chadd     [12] = { .phy = HT,      6500,    0x00,      N(0),   4 },
201*f8bf74f2SAdrian Chadd     [13] = { .phy = HT,     13000,    0x00,      N(1),   6 },
202*f8bf74f2SAdrian Chadd     [14] = { .phy = HT,     19500,    0x00,      N(2),   6 },
203*f8bf74f2SAdrian Chadd     [15] = { .phy = HT,     26000,    0x00,      N(3),   8 },
204*f8bf74f2SAdrian Chadd     [16] = { .phy = HT,     39000,    0x00,      N(4),   8 },
205*f8bf74f2SAdrian Chadd     [17] = { .phy = HT,     52000,    0x00,      N(5),   8 },
206*f8bf74f2SAdrian Chadd     [18] = { .phy = HT,     58500,    0x00,      N(6),   8 },
207*f8bf74f2SAdrian Chadd     [19] = { .phy = HT,     65000,    0x00,      N(7),   8 },
208*f8bf74f2SAdrian Chadd 
209*f8bf74f2SAdrian Chadd     [20] = { .phy = HT,     13000,    0x00,      N(8),   4 },
210*f8bf74f2SAdrian Chadd     [21] = { .phy = HT,     26000,    0x00,      N(9),   6 },
211*f8bf74f2SAdrian Chadd     [22] = { .phy = HT,     39000,    0x00,     N(10),   6 },
212*f8bf74f2SAdrian Chadd     [23] = { .phy = HT,     52000,    0x00,     N(11),   8 },
213*f8bf74f2SAdrian Chadd     [24] = { .phy = HT,     78000,    0x00,     N(12),   8 },
214*f8bf74f2SAdrian Chadd     [25] = { .phy = HT,    104000,    0x00,     N(13),   8 },
215*f8bf74f2SAdrian Chadd     [26] = { .phy = HT,    117000,    0x00,     N(14),   8 },
216*f8bf74f2SAdrian Chadd     [27] = { .phy = HT,    130000,    0x00,     N(15),   8 },
217*f8bf74f2SAdrian Chadd 
218*f8bf74f2SAdrian Chadd     [28] = { .phy = HT,     19500,    0x00,     N(16),   4 },
219*f8bf74f2SAdrian Chadd     [29] = { .phy = HT,     39000,    0x00,     N(17),   6 },
220*f8bf74f2SAdrian Chadd     [30] = { .phy = HT,     58500,    0x00,     N(18),   6 },
221*f8bf74f2SAdrian Chadd     [31] = { .phy = HT,     78000,    0x00,     N(19),   8 },
222*f8bf74f2SAdrian Chadd     [32] = { .phy = HT,    117000,    0x00,     N(20),   8 },
223*f8bf74f2SAdrian Chadd     [33] = { .phy = HT,    156000,    0x00,     N(21),   8 },
224*f8bf74f2SAdrian Chadd     [34] = { .phy = HT,    175500,    0x00,     N(22),   8 },
225*f8bf74f2SAdrian Chadd     [35] = { .phy = HT,    195000,    0x00,     N(23),   8 },
226*f8bf74f2SAdrian Chadd 
227*f8bf74f2SAdrian Chadd     },
228*f8bf74f2SAdrian Chadd };
229*f8bf74f2SAdrian Chadd 
230*f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11na_table = {
231*f8bf74f2SAdrian Chadd     .rateCount = 32,
232*f8bf74f2SAdrian Chadd     .info = {
233*f8bf74f2SAdrian Chadd /*                                   short            ctrl  */
234*f8bf74f2SAdrian Chadd /*                                Preamble  dot11Rate Rate */
235*f8bf74f2SAdrian Chadd      [0] = { .phy = OFDM,    6000,    0x00,     B(12),   0 },
236*f8bf74f2SAdrian Chadd      [1] = { .phy = OFDM,    9000,    0x00,        18,   0 },
237*f8bf74f2SAdrian Chadd      [2] = { .phy = OFDM,   12000,    0x00,     B(24),   2 },
238*f8bf74f2SAdrian Chadd      [3] = { .phy = OFDM,   18000,    0x00,        36,   2 },
239*f8bf74f2SAdrian Chadd      [4] = { .phy = OFDM,   24000,    0x00,     B(48),   4 },
240*f8bf74f2SAdrian Chadd      [5] = { .phy = OFDM,   36000,    0x00,        72,   4 },
241*f8bf74f2SAdrian Chadd      [6] = { .phy = OFDM,   48000,    0x00,        96,   4 },
242*f8bf74f2SAdrian Chadd      [7] = { .phy = OFDM,   54000,    0x00,       108,   4 },
243*f8bf74f2SAdrian Chadd 
244*f8bf74f2SAdrian Chadd      [8] = { .phy = HT,      6500,    0x00,      N(0),   0 },
245*f8bf74f2SAdrian Chadd      [9] = { .phy = HT,     13000,    0x00,      N(1),   2 },
246*f8bf74f2SAdrian Chadd     [10] = { .phy = HT,     19500,    0x00,      N(2),   2 },
247*f8bf74f2SAdrian Chadd     [11] = { .phy = HT,     26000,    0x00,      N(3),   4 },
248*f8bf74f2SAdrian Chadd     [12] = { .phy = HT,     39000,    0x00,      N(4),   4 },
249*f8bf74f2SAdrian Chadd     [13] = { .phy = HT,     52000,    0x00,      N(5),   4 },
250*f8bf74f2SAdrian Chadd     [14] = { .phy = HT,     58500,    0x00,      N(6),   4 },
251*f8bf74f2SAdrian Chadd     [15] = { .phy = HT,     65000,    0x00,      N(7),   4 },
252*f8bf74f2SAdrian Chadd 
253*f8bf74f2SAdrian Chadd     [16] = { .phy = HT,     13000,    0x00,      N(8),   0 },
254*f8bf74f2SAdrian Chadd     [17] = { .phy = HT,     26000,    0x00,      N(9),   2 },
255*f8bf74f2SAdrian Chadd     [18] = { .phy = HT,     39000,    0x00,     N(10),   2 },
256*f8bf74f2SAdrian Chadd     [19] = { .phy = HT,     52000,    0x00,     N(11),   4 },
257*f8bf74f2SAdrian Chadd     [20] = { .phy = HT,     78000,    0x00,     N(12),   4 },
258*f8bf74f2SAdrian Chadd     [21] = { .phy = HT,    104000,    0x00,     N(13),   4 },
259*f8bf74f2SAdrian Chadd     [22] = { .phy = HT,    117000,    0x00,     N(14),   4 },
260*f8bf74f2SAdrian Chadd     [23] = { .phy = HT,    130000,    0x00,     N(15),   4 },
261*f8bf74f2SAdrian Chadd 
262*f8bf74f2SAdrian Chadd     [24] = { .phy = HT,     19500,    0x00,     N(16),   0 },
263*f8bf74f2SAdrian Chadd     [25] = { .phy = HT,     39000,    0x00,     N(17),   2 },
264*f8bf74f2SAdrian Chadd     [26] = { .phy = HT,     58500,    0x00,     N(18),   2 },
265*f8bf74f2SAdrian Chadd     [27] = { .phy = HT,     78000,    0x00,     N(19),   4 },
266*f8bf74f2SAdrian Chadd     [28] = { .phy = HT,    117000,    0x00,     N(20),   4 },
267*f8bf74f2SAdrian Chadd     [29] = { .phy = HT,    156000,    0x00,     N(21),   4 },
268*f8bf74f2SAdrian Chadd     [30] = { .phy = HT,    175500,    0x00,     N(22),   4 },
269*f8bf74f2SAdrian Chadd     [31] = { .phy = HT,    195000,    0x00,     N(23),   4 },
270*f8bf74f2SAdrian Chadd 
271*f8bf74f2SAdrian Chadd     },
272*f8bf74f2SAdrian Chadd };
273*f8bf74f2SAdrian Chadd 
274c9f78f45SSam Leffler #undef	Mb
275c9f78f45SSam Leffler #undef	B
276b032f27cSSam Leffler #undef	OFDM
27724a07b5bSSam Leffler #undef	HALF
27824a07b5bSSam Leffler #undef	QUART
279b032f27cSSam Leffler #undef	CCK
280b032f27cSSam Leffler #undef	TURBO
281b032f27cSSam Leffler #undef	XR
282*f8bf74f2SAdrian Chadd #undef	HT
283*f8bf74f2SAdrian Chadd #undef	N
284b032f27cSSam Leffler 
285b032f27cSSam Leffler /*
286b032f27cSSam Leffler  * Setup a rate table's reverse lookup table and fill in
287b032f27cSSam Leffler  * ack durations.  The reverse lookup tables are assumed
288b032f27cSSam Leffler  * to be initialized to zero (or at least the first entry).
289b032f27cSSam Leffler  * We use this as a key that indicates whether or not
290b032f27cSSam Leffler  * we've previously setup the reverse lookup table.
291b032f27cSSam Leffler  *
292b032f27cSSam Leffler  * XXX not reentrant, but shouldn't matter
293b032f27cSSam Leffler  */
294b032f27cSSam Leffler static void
295b032f27cSSam Leffler ieee80211_setup_ratetable(struct ieee80211_rate_table *rt)
296b032f27cSSam Leffler {
297b032f27cSSam Leffler #define	N(a)	(sizeof(a)/sizeof(a[0]))
298b032f27cSSam Leffler #define	WLAN_CTRL_FRAME_SIZE \
299b032f27cSSam Leffler 	(sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN)
300b032f27cSSam Leffler 
301b032f27cSSam Leffler 	int i;
302b032f27cSSam Leffler 
303b032f27cSSam Leffler 	for (i = 0; i < N(rt->rateCodeToIndex); i++)
304b032f27cSSam Leffler 		rt->rateCodeToIndex[i] = (uint8_t) -1;
305b032f27cSSam Leffler 	for (i = 0; i < rt->rateCount; i++) {
306b032f27cSSam Leffler 		uint8_t code = rt->info[i].dot11Rate;
307b032f27cSSam Leffler 		uint8_t cix = rt->info[i].ctlRateIndex;
308b032f27cSSam Leffler 		uint8_t ctl_rate = rt->info[cix].dot11Rate;
309b032f27cSSam Leffler 
310b032f27cSSam Leffler 		/*
311*f8bf74f2SAdrian Chadd 		 * Map without the basic rate bit.
312*f8bf74f2SAdrian Chadd 		 *
313*f8bf74f2SAdrian Chadd 		 * It's up to the caller to ensure that the basic
314*f8bf74f2SAdrian Chadd 		 * rate bit is stripped here.
315*f8bf74f2SAdrian Chadd 		 *
316*f8bf74f2SAdrian Chadd 		 * For HT, use the MCS rate bit.
317b032f27cSSam Leffler 		 */
318b032f27cSSam Leffler 		code &= IEEE80211_RATE_VAL;
319*f8bf74f2SAdrian Chadd 		if (rt->info[i].phy == IEEE80211_T_HT) {
320*f8bf74f2SAdrian Chadd 			code |= IEEE80211_RATE_MCS;
321b032f27cSSam Leffler 		}
322b032f27cSSam Leffler 
323*f8bf74f2SAdrian Chadd 		/* XXX assume the control rate is non-MCS? */
324*f8bf74f2SAdrian Chadd 		ctl_rate &= IEEE80211_RATE_VAL;
325*f8bf74f2SAdrian Chadd 		rt->rateCodeToIndex[code] = i;
326*f8bf74f2SAdrian Chadd 
327b032f27cSSam Leffler 		/*
328b032f27cSSam Leffler 		 * XXX for 11g the control rate to use for 5.5 and 11 Mb/s
329b032f27cSSam Leffler 		 *     depends on whether they are marked as basic rates;
330b032f27cSSam Leffler 		 *     the static tables are setup with an 11b-compatible
331b032f27cSSam Leffler 		 *     2Mb/s rate which will work but is suboptimal
332b032f27cSSam Leffler 		 *
333b032f27cSSam Leffler 		 * NB: Control rate is always less than or equal to the
334b032f27cSSam Leffler 		 *     current rate, so control rate's reverse lookup entry
335b032f27cSSam Leffler 		 *     has been installed and following call is safe.
336b032f27cSSam Leffler 		 */
337b032f27cSSam Leffler 		rt->info[i].lpAckDuration = ieee80211_compute_duration(rt,
338b032f27cSSam Leffler 			WLAN_CTRL_FRAME_SIZE, ctl_rate, 0);
339b032f27cSSam Leffler 		rt->info[i].spAckDuration = ieee80211_compute_duration(rt,
340b032f27cSSam Leffler 			WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE);
341b032f27cSSam Leffler 	}
342b032f27cSSam Leffler 
343b032f27cSSam Leffler #undef WLAN_CTRL_FRAME_SIZE
344b032f27cSSam Leffler #undef N
345b032f27cSSam Leffler }
346b032f27cSSam Leffler 
347b032f27cSSam Leffler /* Setup all rate tables */
348b032f27cSSam Leffler static void
349b032f27cSSam Leffler ieee80211_phy_init(void)
350b032f27cSSam Leffler {
351b032f27cSSam Leffler #define N(arr)	(int)(sizeof(arr) / sizeof(arr[0]))
352b032f27cSSam Leffler 	static struct ieee80211_rate_table * const ratetables[] = {
353b032f27cSSam Leffler 		&ieee80211_half_table,
354b032f27cSSam Leffler 		&ieee80211_quarter_table,
355*f8bf74f2SAdrian Chadd 		&ieee80211_11na_table,
356*f8bf74f2SAdrian Chadd 		&ieee80211_11ng_table,
357b032f27cSSam Leffler 		&ieee80211_turbog_table,
358b032f27cSSam Leffler 		&ieee80211_turboa_table,
359b032f27cSSam Leffler 		&ieee80211_11a_table,
360b032f27cSSam Leffler 		&ieee80211_11g_table,
361b032f27cSSam Leffler 		&ieee80211_11b_table
362b032f27cSSam Leffler 	};
363b032f27cSSam Leffler 	int i;
364b032f27cSSam Leffler 
365b032f27cSSam Leffler 	for (i = 0; i < N(ratetables); ++i)
366b032f27cSSam Leffler 		ieee80211_setup_ratetable(ratetables[i]);
367b032f27cSSam Leffler 
368b032f27cSSam Leffler #undef N
369b032f27cSSam Leffler }
370b032f27cSSam Leffler SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL);
371b032f27cSSam Leffler 
372b032f27cSSam Leffler const struct ieee80211_rate_table *
373b032f27cSSam Leffler ieee80211_get_ratetable(struct ieee80211_channel *c)
374b032f27cSSam Leffler {
375b032f27cSSam Leffler 	const struct ieee80211_rate_table *rt;
376b032f27cSSam Leffler 
377b032f27cSSam Leffler 	/* XXX HT */
378b032f27cSSam Leffler 	if (IEEE80211_IS_CHAN_HALF(c))
379b032f27cSSam Leffler 		rt = &ieee80211_half_table;
380b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_QUARTER(c))
381b032f27cSSam Leffler 		rt = &ieee80211_quarter_table;
382b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_HTA(c))
383*f8bf74f2SAdrian Chadd 		rt = &ieee80211_11na_table;
384b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_HTG(c))
385*f8bf74f2SAdrian Chadd 		rt = &ieee80211_11ng_table;
386b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_108G(c))
387b032f27cSSam Leffler 		rt = &ieee80211_turbog_table;
388b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_ST(c))
389b032f27cSSam Leffler 		rt = &ieee80211_turboa_table;
390b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_TURBO(c))
391b032f27cSSam Leffler 		rt = &ieee80211_turboa_table;
392b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_A(c))
393b032f27cSSam Leffler 		rt = &ieee80211_11a_table;
394b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_ANYG(c))
395b032f27cSSam Leffler 		rt = &ieee80211_11g_table;
396b032f27cSSam Leffler 	else if (IEEE80211_IS_CHAN_B(c))
397b032f27cSSam Leffler 		rt = &ieee80211_11b_table;
398b032f27cSSam Leffler 	else {
399b032f27cSSam Leffler 		/* NB: should not get here */
400b032f27cSSam Leffler 		panic("%s: no rate table for channel; freq %u flags 0x%x\n",
401b032f27cSSam Leffler 		      __func__, c->ic_freq, c->ic_flags);
402b032f27cSSam Leffler 	}
403b032f27cSSam Leffler 	return rt;
404b032f27cSSam Leffler }
405b032f27cSSam Leffler 
406b032f27cSSam Leffler /*
407b032f27cSSam Leffler  * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s)
408b032f27cSSam Leffler  *
409b032f27cSSam Leffler  * Note we do no parameter checking; this routine is mainly
410b032f27cSSam Leffler  * used to derive an 802.11 rate for constructing radiotap
411b032f27cSSam Leffler  * header data for rx frames.
412b032f27cSSam Leffler  *
413b032f27cSSam Leffler  * XXX might be a candidate for inline
414b032f27cSSam Leffler  */
415b032f27cSSam Leffler uint8_t
4168215d906SSam Leffler ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type)
417b032f27cSSam Leffler {
4188215d906SSam Leffler 	if (type == IEEE80211_T_OFDM) {
419b032f27cSSam Leffler 		static const uint8_t ofdm_plcp2rate[16] = {
420b032f27cSSam Leffler 			[0xb]	= 12,
421b032f27cSSam Leffler 			[0xf]	= 18,
422b032f27cSSam Leffler 			[0xa]	= 24,
423b032f27cSSam Leffler 			[0xe]	= 36,
424b032f27cSSam Leffler 			[0x9]	= 48,
425b032f27cSSam Leffler 			[0xd]	= 72,
426b032f27cSSam Leffler 			[0x8]	= 96,
427b032f27cSSam Leffler 			[0xc]	= 108
428b032f27cSSam Leffler 		};
429b032f27cSSam Leffler 		return ofdm_plcp2rate[plcp & 0xf];
4308215d906SSam Leffler 	}
4318215d906SSam Leffler 	if (type == IEEE80211_T_CCK) {
432b032f27cSSam Leffler 		static const uint8_t cck_plcp2rate[16] = {
433b032f27cSSam Leffler 			[0xa]	= 2,	/* 0x0a */
434b032f27cSSam Leffler 			[0x4]	= 4,	/* 0x14 */
435b032f27cSSam Leffler 			[0x7]	= 11,	/* 0x37 */
436b032f27cSSam Leffler 			[0xe]	= 22,	/* 0x6e */
437b032f27cSSam Leffler 			[0xc]	= 44,	/* 0xdc , actually PBCC */
438b032f27cSSam Leffler 		};
439b032f27cSSam Leffler 		return cck_plcp2rate[plcp & 0xf];
440b032f27cSSam Leffler 	}
4418215d906SSam Leffler 	return 0;
442b032f27cSSam Leffler }
443b032f27cSSam Leffler 
444b032f27cSSam Leffler /*
445b032f27cSSam Leffler  * Covert 802.11 rate to PLCP signal.
446b032f27cSSam Leffler  */
447b032f27cSSam Leffler uint8_t
4488215d906SSam Leffler ieee80211_rate2plcp(int rate, enum ieee80211_phytype type)
449b032f27cSSam Leffler {
4508215d906SSam Leffler 	/* XXX ignore type for now since rates are unique */
451b032f27cSSam Leffler 	switch (rate) {
452b032f27cSSam Leffler 	/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
453b032f27cSSam Leffler 	case 12:	return 0xb;
454b032f27cSSam Leffler 	case 18:	return 0xf;
455b032f27cSSam Leffler 	case 24:	return 0xa;
456b032f27cSSam Leffler 	case 36:	return 0xe;
457b032f27cSSam Leffler 	case 48:	return 0x9;
458b032f27cSSam Leffler 	case 72:	return 0xd;
459b032f27cSSam Leffler 	case 96:	return 0x8;
460b032f27cSSam Leffler 	case 108:	return 0xc;
4618215d906SSam Leffler 	/* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */
4628215d906SSam Leffler 	case 2:		return 10;
4638215d906SSam Leffler 	case 4:		return 20;
4648215d906SSam Leffler 	case 11:	return 55;
4658215d906SSam Leffler 	case 22:	return 110;
4668215d906SSam Leffler 	/* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */
4678215d906SSam Leffler 	case 44:	return 220;
468b032f27cSSam Leffler 	}
4698215d906SSam Leffler 	return 0;		/* XXX unsupported/unknown rate */
470b032f27cSSam Leffler }
4718215d906SSam Leffler 
47224a07b5bSSam Leffler #define CCK_SIFS_TIME		10
47324a07b5bSSam Leffler #define CCK_PREAMBLE_BITS	144
47424a07b5bSSam Leffler #define CCK_PLCP_BITS		48
47524a07b5bSSam Leffler 
47624a07b5bSSam Leffler #define OFDM_SIFS_TIME		16
47724a07b5bSSam Leffler #define OFDM_PREAMBLE_TIME	20
47824a07b5bSSam Leffler #define OFDM_PLCP_BITS		22
47924a07b5bSSam Leffler #define OFDM_SYMBOL_TIME	4
48024a07b5bSSam Leffler 
48124a07b5bSSam Leffler #define OFDM_HALF_SIFS_TIME	32
48224a07b5bSSam Leffler #define OFDM_HALF_PREAMBLE_TIME	40
48324a07b5bSSam Leffler #define OFDM_HALF_PLCP_BITS	22
48424a07b5bSSam Leffler #define OFDM_HALF_SYMBOL_TIME	8
48524a07b5bSSam Leffler 
48624a07b5bSSam Leffler #define OFDM_QUARTER_SIFS_TIME 		64
48724a07b5bSSam Leffler #define OFDM_QUARTER_PREAMBLE_TIME	80
48824a07b5bSSam Leffler #define OFDM_QUARTER_PLCP_BITS		22
48924a07b5bSSam Leffler #define OFDM_QUARTER_SYMBOL_TIME	16
49024a07b5bSSam Leffler 
49124a07b5bSSam Leffler #define TURBO_SIFS_TIME		8
49224a07b5bSSam Leffler #define TURBO_PREAMBLE_TIME	14
49324a07b5bSSam Leffler #define TURBO_PLCP_BITS		22
49424a07b5bSSam Leffler #define TURBO_SYMBOL_TIME	4
49524a07b5bSSam Leffler 
496b032f27cSSam Leffler /*
497b032f27cSSam Leffler  * Compute the time to transmit a frame of length frameLen bytes
498b032f27cSSam Leffler  * using the specified rate, phy, and short preamble setting.
499b032f27cSSam Leffler  * SIFS is included.
500b032f27cSSam Leffler  */
501b032f27cSSam Leffler uint16_t
502b032f27cSSam Leffler ieee80211_compute_duration(const struct ieee80211_rate_table *rt,
503b032f27cSSam Leffler 	uint32_t frameLen, uint16_t rate, int isShortPreamble)
504b032f27cSSam Leffler {
505b032f27cSSam Leffler 	uint8_t rix = rt->rateCodeToIndex[rate];
506b032f27cSSam Leffler 	uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
507b032f27cSSam Leffler 	uint32_t kbps;
508b032f27cSSam Leffler 
509b032f27cSSam Leffler 	KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate));
510b032f27cSSam Leffler 	kbps = rt->info[rix].rateKbps;
511b032f27cSSam Leffler 	if (kbps == 0)			/* XXX bandaid for channel changes */
512b032f27cSSam Leffler 		return 0;
513b032f27cSSam Leffler 
514b032f27cSSam Leffler 	switch (rt->info[rix].phy) {
515b032f27cSSam Leffler 	case IEEE80211_T_CCK:
516b032f27cSSam Leffler 		phyTime		= CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
517b032f27cSSam Leffler 		if (isShortPreamble && rt->info[rix].shortPreamble)
518b032f27cSSam Leffler 			phyTime >>= 1;
519b032f27cSSam Leffler 		numBits		= frameLen << 3;
520b032f27cSSam Leffler 		txTime		= CCK_SIFS_TIME + phyTime
521b032f27cSSam Leffler 				+ ((numBits * 1000)/kbps);
522b032f27cSSam Leffler 		break;
523b032f27cSSam Leffler 	case IEEE80211_T_OFDM:
524b032f27cSSam Leffler 		bitsPerSymbol	= (kbps * OFDM_SYMBOL_TIME) / 1000;
525b032f27cSSam Leffler 		KASSERT(bitsPerSymbol != 0, ("full rate bps"));
526b032f27cSSam Leffler 
527b032f27cSSam Leffler 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
528b032f27cSSam Leffler 		numSymbols	= howmany(numBits, bitsPerSymbol);
529b032f27cSSam Leffler 		txTime		= OFDM_SIFS_TIME
530b032f27cSSam Leffler 				+ OFDM_PREAMBLE_TIME
531b032f27cSSam Leffler 				+ (numSymbols * OFDM_SYMBOL_TIME);
532b032f27cSSam Leffler 		break;
53324a07b5bSSam Leffler 	case IEEE80211_T_OFDM_HALF:
53424a07b5bSSam Leffler 		bitsPerSymbol	= (kbps * OFDM_HALF_SYMBOL_TIME) / 1000;
53524a07b5bSSam Leffler 		KASSERT(bitsPerSymbol != 0, ("1/4 rate bps"));
536b032f27cSSam Leffler 
53724a07b5bSSam Leffler 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
53824a07b5bSSam Leffler 		numSymbols	= howmany(numBits, bitsPerSymbol);
53924a07b5bSSam Leffler 		txTime		= OFDM_HALF_SIFS_TIME
54024a07b5bSSam Leffler 				+ OFDM_HALF_PREAMBLE_TIME
54124a07b5bSSam Leffler 				+ (numSymbols * OFDM_HALF_SYMBOL_TIME);
54224a07b5bSSam Leffler 		break;
54324a07b5bSSam Leffler 	case IEEE80211_T_OFDM_QUARTER:
54424a07b5bSSam Leffler 		bitsPerSymbol	= (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000;
54524a07b5bSSam Leffler 		KASSERT(bitsPerSymbol != 0, ("1/2 rate bps"));
546b032f27cSSam Leffler 
54724a07b5bSSam Leffler 		numBits		= OFDM_PLCP_BITS + (frameLen << 3);
54824a07b5bSSam Leffler 		numSymbols	= howmany(numBits, bitsPerSymbol);
54924a07b5bSSam Leffler 		txTime		= OFDM_QUARTER_SIFS_TIME
55024a07b5bSSam Leffler 				+ OFDM_QUARTER_PREAMBLE_TIME
55124a07b5bSSam Leffler 				+ (numSymbols * OFDM_QUARTER_SYMBOL_TIME);
55224a07b5bSSam Leffler 		break;
553b032f27cSSam Leffler 	case IEEE80211_T_TURBO:
554b032f27cSSam Leffler 		/* we still save OFDM rates in kbps - so double them */
555b032f27cSSam Leffler 		bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000;
556b032f27cSSam Leffler 		KASSERT(bitsPerSymbol != 0, ("turbo bps"));
557b032f27cSSam Leffler 
558b032f27cSSam Leffler 		numBits       = TURBO_PLCP_BITS + (frameLen << 3);
559b032f27cSSam Leffler 		numSymbols    = howmany(numBits, bitsPerSymbol);
560b032f27cSSam Leffler 		txTime        = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME
561b032f27cSSam Leffler 			      + (numSymbols * TURBO_SYMBOL_TIME);
562b032f27cSSam Leffler 		break;
563b032f27cSSam Leffler 	default:
564b032f27cSSam Leffler 		panic("%s: unknown phy %u (rate %u)\n", __func__,
565b032f27cSSam Leffler 		      rt->info[rix].phy, rate);
566b032f27cSSam Leffler 		break;
567b032f27cSSam Leffler 	}
568b032f27cSSam Leffler 	return txTime;
569b032f27cSSam Leffler }
570*f8bf74f2SAdrian Chadd 
571*f8bf74f2SAdrian Chadd static const uint16_t ht20_bps[32] = {
572*f8bf74f2SAdrian Chadd 	26, 52, 78, 104, 156, 208, 234, 260,
573*f8bf74f2SAdrian Chadd 	52, 104, 156, 208, 312, 416, 468, 520,
574*f8bf74f2SAdrian Chadd 	78, 156, 234, 312, 468, 624, 702, 780,
575*f8bf74f2SAdrian Chadd 	104, 208, 312, 416, 624, 832, 936, 1040
576*f8bf74f2SAdrian Chadd };
577*f8bf74f2SAdrian Chadd static const uint16_t ht40_bps[32] = {
578*f8bf74f2SAdrian Chadd 	54, 108, 162, 216, 324, 432, 486, 540,
579*f8bf74f2SAdrian Chadd 	108, 216, 324, 432, 648, 864, 972, 1080,
580*f8bf74f2SAdrian Chadd 	162, 324, 486, 648, 972, 1296, 1458, 1620,
581*f8bf74f2SAdrian Chadd 	216, 432, 648, 864, 1296, 1728, 1944, 2160
582*f8bf74f2SAdrian Chadd };
583*f8bf74f2SAdrian Chadd 
584*f8bf74f2SAdrian Chadd 
585*f8bf74f2SAdrian Chadd #define	OFDM_PLCP_BITS	22
586*f8bf74f2SAdrian Chadd #define	HT_L_STF	8
587*f8bf74f2SAdrian Chadd #define	HT_L_LTF	8
588*f8bf74f2SAdrian Chadd #define	HT_L_SIG	4
589*f8bf74f2SAdrian Chadd #define	HT_SIG		8
590*f8bf74f2SAdrian Chadd #define	HT_STF		4
591*f8bf74f2SAdrian Chadd #define	HT_LTF(n)	((n) * 4)
592*f8bf74f2SAdrian Chadd 
593*f8bf74f2SAdrian Chadd #define	HT_RC_2_MCS(_rc)	((_rc) & 0xf)
594*f8bf74f2SAdrian Chadd #define	HT_RC_2_STREAMS(_rc)	((((_rc) & 0x78) >> 3) + 1)
595*f8bf74f2SAdrian Chadd #define	IS_HT_RATE(_rc)		( (_rc) & IEEE80211_RATE_MCS)
596*f8bf74f2SAdrian Chadd 
597*f8bf74f2SAdrian Chadd /*
598*f8bf74f2SAdrian Chadd  * Calculate the transmit duration of an 11n frame.
599*f8bf74f2SAdrian Chadd  */
600*f8bf74f2SAdrian Chadd uint32_t
601*f8bf74f2SAdrian Chadd ieee80211_compute_duration_ht(uint32_t frameLen, uint16_t rate,
602*f8bf74f2SAdrian Chadd     int streams, int isht40, int isShortGI)
603*f8bf74f2SAdrian Chadd {
604*f8bf74f2SAdrian Chadd 	uint32_t bitsPerSymbol, numBits, numSymbols, txTime;
605*f8bf74f2SAdrian Chadd 
606*f8bf74f2SAdrian Chadd 	KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate));
607*f8bf74f2SAdrian Chadd 	KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate));
608*f8bf74f2SAdrian Chadd 
609*f8bf74f2SAdrian Chadd 	if (isht40)
610*f8bf74f2SAdrian Chadd 		bitsPerSymbol = ht40_bps[rate & 0x1f];
611*f8bf74f2SAdrian Chadd 	else
612*f8bf74f2SAdrian Chadd 		bitsPerSymbol = ht20_bps[rate & 0x1f];
613*f8bf74f2SAdrian Chadd 	numBits = OFDM_PLCP_BITS + (frameLen << 3);
614*f8bf74f2SAdrian Chadd 	numSymbols = howmany(numBits, bitsPerSymbol);
615*f8bf74f2SAdrian Chadd 	if (isShortGI)
616*f8bf74f2SAdrian Chadd 		txTime = ((numSymbols * 18) + 4) / 5;   /* 3.6us */
617*f8bf74f2SAdrian Chadd 	else
618*f8bf74f2SAdrian Chadd 		txTime = numSymbols * 4;                /* 4us */
619*f8bf74f2SAdrian Chadd 	return txTime + HT_L_STF + HT_L_LTF +
620*f8bf74f2SAdrian Chadd 	    HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
621*f8bf74f2SAdrian Chadd }
622*f8bf74f2SAdrian Chadd 
623*f8bf74f2SAdrian Chadd #undef	IS_HT_RATE
624*f8bf74f2SAdrian Chadd #undef	HT_RC_2_STREAMS
625*f8bf74f2SAdrian Chadd #undef	HT_RC_2_MCS
626*f8bf74f2SAdrian Chadd #undef	HT_LTF
627*f8bf74f2SAdrian Chadd #undef	HT_STF
628*f8bf74f2SAdrian Chadd #undef	HT_SIG
629*f8bf74f2SAdrian Chadd #undef	HT_L_SIG
630*f8bf74f2SAdrian Chadd #undef	HT_L_LTF
631*f8bf74f2SAdrian Chadd #undef	HT_L_STF
632*f8bf74f2SAdrian Chadd #undef	OFDM_PLCP_BITS
633