1b032f27cSSam Leffler /*- 2b032f27cSSam Leffler * Copyright (c) 2007-2008 Sam Leffler, Errno Consulting 3b032f27cSSam Leffler * All rights reserved. 4b032f27cSSam Leffler * 5b032f27cSSam Leffler * Redistribution and use in source and binary forms, with or without 6b032f27cSSam Leffler * modification, are permitted provided that the following conditions 7b032f27cSSam Leffler * are met: 8b032f27cSSam Leffler * 1. Redistributions of source code must retain the above copyright 9b032f27cSSam Leffler * notice, this list of conditions and the following disclaimer. 10b032f27cSSam Leffler * 2. Redistributions in binary form must reproduce the above copyright 11b032f27cSSam Leffler * notice, this list of conditions and the following disclaimer in the 12b032f27cSSam Leffler * documentation and/or other materials provided with the distribution. 13b032f27cSSam Leffler * 14b032f27cSSam Leffler * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 15b032f27cSSam Leffler * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 16b032f27cSSam Leffler * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 17b032f27cSSam Leffler * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 18b032f27cSSam Leffler * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 19b032f27cSSam Leffler * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 20b032f27cSSam Leffler * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 21b032f27cSSam Leffler * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22b032f27cSSam Leffler * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 23b032f27cSSam Leffler * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24b032f27cSSam Leffler */ 25b032f27cSSam Leffler 26b032f27cSSam Leffler #include <sys/cdefs.h> 27b032f27cSSam Leffler __FBSDID("$FreeBSD$"); 28b032f27cSSam Leffler 29b032f27cSSam Leffler /* 30b032f27cSSam Leffler * IEEE 802.11 PHY-related support. 31b032f27cSSam Leffler */ 32b032f27cSSam Leffler 33b032f27cSSam Leffler #include "opt_inet.h" 34b032f27cSSam Leffler 35b032f27cSSam Leffler #include <sys/param.h> 36b032f27cSSam Leffler #include <sys/kernel.h> 37b032f27cSSam Leffler #include <sys/systm.h> 38b032f27cSSam Leffler 39b032f27cSSam Leffler #include <sys/socket.h> 40b032f27cSSam Leffler 41b032f27cSSam Leffler #include <net/if.h> 42b032f27cSSam Leffler #include <net/if_media.h> 43b032f27cSSam Leffler 44b032f27cSSam Leffler #include <net80211/ieee80211_var.h> 45b032f27cSSam Leffler #include <net80211/ieee80211_phy.h> 46b032f27cSSam Leffler 47b032f27cSSam Leffler #ifdef notyet 48b032f27cSSam Leffler struct ieee80211_ds_plcp_hdr { 49b032f27cSSam Leffler uint8_t i_signal; 50b032f27cSSam Leffler uint8_t i_service; 51b032f27cSSam Leffler uint16_t i_length; 52b032f27cSSam Leffler uint16_t i_crc; 53b032f27cSSam Leffler } __packed; 54b032f27cSSam Leffler 55b032f27cSSam Leffler #endif /* notyet */ 56b032f27cSSam Leffler 57b032f27cSSam Leffler /* shorthands to compact tables for readability */ 58b032f27cSSam Leffler #define OFDM IEEE80211_T_OFDM 59b032f27cSSam Leffler #define CCK IEEE80211_T_CCK 60b032f27cSSam Leffler #define TURBO IEEE80211_T_TURBO 6124a07b5bSSam Leffler #define HALF IEEE80211_T_OFDM_HALF 6224a07b5bSSam Leffler #define QUART IEEE80211_T_OFDM_QUARTER 63f8bf74f2SAdrian Chadd #define HT IEEE80211_T_HT 64f8bf74f2SAdrian Chadd /* XXX the 11n and the basic rate flag are unfortunately overlapping. Grr. */ 65f8bf74f2SAdrian Chadd #define N(r) (IEEE80211_RATE_MCS | r) 6624a07b5bSSam Leffler #define PBCC (IEEE80211_T_OFDM_QUARTER+1) /* XXX */ 67f8bf74f2SAdrian Chadd #define B(r) (IEEE80211_RATE_BASIC | r) 68c9f78f45SSam Leffler #define Mb(x) (x*1000) 69b032f27cSSam Leffler 70b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11b_table = { 71c9f78f45SSam Leffler .rateCount = 4, /* XXX no PBCC */ 72c9f78f45SSam Leffler .info = { 73b032f27cSSam Leffler /* short ctrl */ 74b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 75c9f78f45SSam Leffler [0] = { .phy = CCK, 1000, 0x00, B(2), 0 },/* 1 Mb */ 76c9f78f45SSam Leffler [1] = { .phy = CCK, 2000, 0x04, B(4), 1 },/* 2 Mb */ 77c9f78f45SSam Leffler [2] = { .phy = CCK, 5500, 0x04, B(11), 1 },/* 5.5 Mb */ 78c9f78f45SSam Leffler [3] = { .phy = CCK, 11000, 0x04, B(22), 1 },/* 11 Mb */ 79c9f78f45SSam Leffler [4] = { .phy = PBCC, 22000, 0x04, 44, 3 } /* 22 Mb */ 80b032f27cSSam Leffler }, 81b032f27cSSam Leffler }; 82b032f27cSSam Leffler 83b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11g_table = { 84c9f78f45SSam Leffler .rateCount = 12, 85c9f78f45SSam Leffler .info = { 86b032f27cSSam Leffler /* short ctrl */ 87b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 88c9f78f45SSam Leffler [0] = { .phy = CCK, 1000, 0x00, B(2), 0 }, 89c9f78f45SSam Leffler [1] = { .phy = CCK, 2000, 0x04, B(4), 1 }, 90c9f78f45SSam Leffler [2] = { .phy = CCK, 5500, 0x04, B(11), 2 }, 91c9f78f45SSam Leffler [3] = { .phy = CCK, 11000, 0x04, B(22), 3 }, 92c9f78f45SSam Leffler [4] = { .phy = OFDM, 6000, 0x00, 12, 4 }, 93c9f78f45SSam Leffler [5] = { .phy = OFDM, 9000, 0x00, 18, 4 }, 94c9f78f45SSam Leffler [6] = { .phy = OFDM, 12000, 0x00, 24, 6 }, 95c9f78f45SSam Leffler [7] = { .phy = OFDM, 18000, 0x00, 36, 6 }, 96c9f78f45SSam Leffler [8] = { .phy = OFDM, 24000, 0x00, 48, 8 }, 97c9f78f45SSam Leffler [9] = { .phy = OFDM, 36000, 0x00, 72, 8 }, 98c9f78f45SSam Leffler [10] = { .phy = OFDM, 48000, 0x00, 96, 8 }, 99c9f78f45SSam Leffler [11] = { .phy = OFDM, 54000, 0x00, 108, 8 } 100b032f27cSSam Leffler }, 101b032f27cSSam Leffler }; 102b032f27cSSam Leffler 103b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_11a_table = { 104c9f78f45SSam Leffler .rateCount = 8, 105c9f78f45SSam Leffler .info = { 106b032f27cSSam Leffler /* short ctrl */ 107b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 108c9f78f45SSam Leffler [0] = { .phy = OFDM, 6000, 0x00, B(12), 0 }, 109c9f78f45SSam Leffler [1] = { .phy = OFDM, 9000, 0x00, 18, 0 }, 110c9f78f45SSam Leffler [2] = { .phy = OFDM, 12000, 0x00, B(24), 2 }, 111c9f78f45SSam Leffler [3] = { .phy = OFDM, 18000, 0x00, 36, 2 }, 112c9f78f45SSam Leffler [4] = { .phy = OFDM, 24000, 0x00, B(48), 4 }, 113c9f78f45SSam Leffler [5] = { .phy = OFDM, 36000, 0x00, 72, 4 }, 114c9f78f45SSam Leffler [6] = { .phy = OFDM, 48000, 0x00, 96, 4 }, 115c9f78f45SSam Leffler [7] = { .phy = OFDM, 54000, 0x00, 108, 4 } 116b032f27cSSam Leffler }, 117b032f27cSSam Leffler }; 118b032f27cSSam Leffler 119b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_half_table = { 120c9f78f45SSam Leffler .rateCount = 8, 121c9f78f45SSam Leffler .info = { 122b032f27cSSam Leffler /* short ctrl */ 123b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 12424a07b5bSSam Leffler [0] = { .phy = HALF, 3000, 0x00, B(6), 0 }, 12524a07b5bSSam Leffler [1] = { .phy = HALF, 4500, 0x00, 9, 0 }, 12624a07b5bSSam Leffler [2] = { .phy = HALF, 6000, 0x00, B(12), 2 }, 12724a07b5bSSam Leffler [3] = { .phy = HALF, 9000, 0x00, 18, 2 }, 12824a07b5bSSam Leffler [4] = { .phy = HALF, 12000, 0x00, B(24), 4 }, 12924a07b5bSSam Leffler [5] = { .phy = HALF, 18000, 0x00, 36, 4 }, 13024a07b5bSSam Leffler [6] = { .phy = HALF, 24000, 0x00, 48, 4 }, 13124a07b5bSSam Leffler [7] = { .phy = HALF, 27000, 0x00, 54, 4 } 132b032f27cSSam Leffler }, 133b032f27cSSam Leffler }; 134b032f27cSSam Leffler 135b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_quarter_table = { 136c9f78f45SSam Leffler .rateCount = 8, 137c9f78f45SSam Leffler .info = { 138b032f27cSSam Leffler /* short ctrl */ 139b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 14024a07b5bSSam Leffler [0] = { .phy = QUART, 1500, 0x00, B(3), 0 }, 14124a07b5bSSam Leffler [1] = { .phy = QUART, 2250, 0x00, 4, 0 }, 14224a07b5bSSam Leffler [2] = { .phy = QUART, 3000, 0x00, B(9), 2 }, 14324a07b5bSSam Leffler [3] = { .phy = QUART, 4500, 0x00, 9, 2 }, 14424a07b5bSSam Leffler [4] = { .phy = QUART, 6000, 0x00, B(12), 4 }, 14524a07b5bSSam Leffler [5] = { .phy = QUART, 9000, 0x00, 18, 4 }, 14624a07b5bSSam Leffler [6] = { .phy = QUART, 12000, 0x00, 24, 4 }, 14724a07b5bSSam Leffler [7] = { .phy = QUART, 13500, 0x00, 27, 4 } 148b032f27cSSam Leffler }, 149b032f27cSSam Leffler }; 150b032f27cSSam Leffler 151b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turbog_table = { 152c9f78f45SSam Leffler .rateCount = 7, 153c9f78f45SSam Leffler .info = { 154b032f27cSSam Leffler /* short ctrl */ 155b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 156c9f78f45SSam Leffler [0] = { .phy = TURBO, 12000, 0x00, B(12), 0 }, 157c9f78f45SSam Leffler [1] = { .phy = TURBO, 24000, 0x00, B(24), 1 }, 158c9f78f45SSam Leffler [2] = { .phy = TURBO, 36000, 0x00, 36, 1 }, 159c9f78f45SSam Leffler [3] = { .phy = TURBO, 48000, 0x00, B(48), 3 }, 160c9f78f45SSam Leffler [4] = { .phy = TURBO, 72000, 0x00, 72, 3 }, 161c9f78f45SSam Leffler [5] = { .phy = TURBO, 96000, 0x00, 96, 3 }, 162c9f78f45SSam Leffler [6] = { .phy = TURBO, 108000, 0x00, 108, 3 } 163b032f27cSSam Leffler }, 164b032f27cSSam Leffler }; 165b032f27cSSam Leffler 166b032f27cSSam Leffler static struct ieee80211_rate_table ieee80211_turboa_table = { 167c9f78f45SSam Leffler .rateCount = 8, 168c9f78f45SSam Leffler .info = { 169b032f27cSSam Leffler /* short ctrl */ 170b032f27cSSam Leffler /* Preamble dot11Rate Rate */ 171c9f78f45SSam Leffler [0] = { .phy = TURBO, 12000, 0x00, B(12), 0 }, 172c9f78f45SSam Leffler [1] = { .phy = TURBO, 18000, 0x00, 18, 0 }, 173c9f78f45SSam Leffler [2] = { .phy = TURBO, 24000, 0x00, B(24), 2 }, 174c9f78f45SSam Leffler [3] = { .phy = TURBO, 36000, 0x00, 36, 2 }, 175c9f78f45SSam Leffler [4] = { .phy = TURBO, 48000, 0x00, B(48), 4 }, 176c9f78f45SSam Leffler [5] = { .phy = TURBO, 72000, 0x00, 72, 4 }, 177c9f78f45SSam Leffler [6] = { .phy = TURBO, 96000, 0x00, 96, 4 }, 178c9f78f45SSam Leffler [7] = { .phy = TURBO, 108000, 0x00, 108, 4 } 179b032f27cSSam Leffler }, 180b032f27cSSam Leffler }; 181b032f27cSSam Leffler 182f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11ng_table = { 183f8bf74f2SAdrian Chadd .rateCount = 36, 184f8bf74f2SAdrian Chadd .info = { 185f8bf74f2SAdrian Chadd /* short ctrl */ 186f8bf74f2SAdrian Chadd /* Preamble dot11Rate Rate */ 187f8bf74f2SAdrian Chadd [0] = { .phy = CCK, 1000, 0x00, B(2), 0 }, 188f8bf74f2SAdrian Chadd [1] = { .phy = CCK, 2000, 0x04, B(4), 1 }, 189f8bf74f2SAdrian Chadd [2] = { .phy = CCK, 5500, 0x04, B(11), 2 }, 190f8bf74f2SAdrian Chadd [3] = { .phy = CCK, 11000, 0x04, B(22), 3 }, 191f8bf74f2SAdrian Chadd [4] = { .phy = OFDM, 6000, 0x00, 12, 4 }, 192f8bf74f2SAdrian Chadd [5] = { .phy = OFDM, 9000, 0x00, 18, 4 }, 193f8bf74f2SAdrian Chadd [6] = { .phy = OFDM, 12000, 0x00, 24, 6 }, 194f8bf74f2SAdrian Chadd [7] = { .phy = OFDM, 18000, 0x00, 36, 6 }, 195f8bf74f2SAdrian Chadd [8] = { .phy = OFDM, 24000, 0x00, 48, 8 }, 196f8bf74f2SAdrian Chadd [9] = { .phy = OFDM, 36000, 0x00, 72, 8 }, 197f8bf74f2SAdrian Chadd [10] = { .phy = OFDM, 48000, 0x00, 96, 8 }, 198f8bf74f2SAdrian Chadd [11] = { .phy = OFDM, 54000, 0x00, 108, 8 }, 199f8bf74f2SAdrian Chadd 200f8bf74f2SAdrian Chadd [12] = { .phy = HT, 6500, 0x00, N(0), 4 }, 201f8bf74f2SAdrian Chadd [13] = { .phy = HT, 13000, 0x00, N(1), 6 }, 202f8bf74f2SAdrian Chadd [14] = { .phy = HT, 19500, 0x00, N(2), 6 }, 203f8bf74f2SAdrian Chadd [15] = { .phy = HT, 26000, 0x00, N(3), 8 }, 204f8bf74f2SAdrian Chadd [16] = { .phy = HT, 39000, 0x00, N(4), 8 }, 205f8bf74f2SAdrian Chadd [17] = { .phy = HT, 52000, 0x00, N(5), 8 }, 206f8bf74f2SAdrian Chadd [18] = { .phy = HT, 58500, 0x00, N(6), 8 }, 207f8bf74f2SAdrian Chadd [19] = { .phy = HT, 65000, 0x00, N(7), 8 }, 208f8bf74f2SAdrian Chadd 209f8bf74f2SAdrian Chadd [20] = { .phy = HT, 13000, 0x00, N(8), 4 }, 210f8bf74f2SAdrian Chadd [21] = { .phy = HT, 26000, 0x00, N(9), 6 }, 211f8bf74f2SAdrian Chadd [22] = { .phy = HT, 39000, 0x00, N(10), 6 }, 212f8bf74f2SAdrian Chadd [23] = { .phy = HT, 52000, 0x00, N(11), 8 }, 213f8bf74f2SAdrian Chadd [24] = { .phy = HT, 78000, 0x00, N(12), 8 }, 214f8bf74f2SAdrian Chadd [25] = { .phy = HT, 104000, 0x00, N(13), 8 }, 215f8bf74f2SAdrian Chadd [26] = { .phy = HT, 117000, 0x00, N(14), 8 }, 216f8bf74f2SAdrian Chadd [27] = { .phy = HT, 130000, 0x00, N(15), 8 }, 217f8bf74f2SAdrian Chadd 218f8bf74f2SAdrian Chadd [28] = { .phy = HT, 19500, 0x00, N(16), 4 }, 219f8bf74f2SAdrian Chadd [29] = { .phy = HT, 39000, 0x00, N(17), 6 }, 220f8bf74f2SAdrian Chadd [30] = { .phy = HT, 58500, 0x00, N(18), 6 }, 221f8bf74f2SAdrian Chadd [31] = { .phy = HT, 78000, 0x00, N(19), 8 }, 222f8bf74f2SAdrian Chadd [32] = { .phy = HT, 117000, 0x00, N(20), 8 }, 223f8bf74f2SAdrian Chadd [33] = { .phy = HT, 156000, 0x00, N(21), 8 }, 224f8bf74f2SAdrian Chadd [34] = { .phy = HT, 175500, 0x00, N(22), 8 }, 225f8bf74f2SAdrian Chadd [35] = { .phy = HT, 195000, 0x00, N(23), 8 }, 226f8bf74f2SAdrian Chadd 227f8bf74f2SAdrian Chadd }, 228f8bf74f2SAdrian Chadd }; 229f8bf74f2SAdrian Chadd 230f8bf74f2SAdrian Chadd static struct ieee80211_rate_table ieee80211_11na_table = { 231f8bf74f2SAdrian Chadd .rateCount = 32, 232f8bf74f2SAdrian Chadd .info = { 233f8bf74f2SAdrian Chadd /* short ctrl */ 234f8bf74f2SAdrian Chadd /* Preamble dot11Rate Rate */ 235f8bf74f2SAdrian Chadd [0] = { .phy = OFDM, 6000, 0x00, B(12), 0 }, 236f8bf74f2SAdrian Chadd [1] = { .phy = OFDM, 9000, 0x00, 18, 0 }, 237f8bf74f2SAdrian Chadd [2] = { .phy = OFDM, 12000, 0x00, B(24), 2 }, 238f8bf74f2SAdrian Chadd [3] = { .phy = OFDM, 18000, 0x00, 36, 2 }, 239f8bf74f2SAdrian Chadd [4] = { .phy = OFDM, 24000, 0x00, B(48), 4 }, 240f8bf74f2SAdrian Chadd [5] = { .phy = OFDM, 36000, 0x00, 72, 4 }, 241f8bf74f2SAdrian Chadd [6] = { .phy = OFDM, 48000, 0x00, 96, 4 }, 242f8bf74f2SAdrian Chadd [7] = { .phy = OFDM, 54000, 0x00, 108, 4 }, 243f8bf74f2SAdrian Chadd 244f8bf74f2SAdrian Chadd [8] = { .phy = HT, 6500, 0x00, N(0), 0 }, 245f8bf74f2SAdrian Chadd [9] = { .phy = HT, 13000, 0x00, N(1), 2 }, 246f8bf74f2SAdrian Chadd [10] = { .phy = HT, 19500, 0x00, N(2), 2 }, 247f8bf74f2SAdrian Chadd [11] = { .phy = HT, 26000, 0x00, N(3), 4 }, 248f8bf74f2SAdrian Chadd [12] = { .phy = HT, 39000, 0x00, N(4), 4 }, 249f8bf74f2SAdrian Chadd [13] = { .phy = HT, 52000, 0x00, N(5), 4 }, 250f8bf74f2SAdrian Chadd [14] = { .phy = HT, 58500, 0x00, N(6), 4 }, 251f8bf74f2SAdrian Chadd [15] = { .phy = HT, 65000, 0x00, N(7), 4 }, 252f8bf74f2SAdrian Chadd 253f8bf74f2SAdrian Chadd [16] = { .phy = HT, 13000, 0x00, N(8), 0 }, 254f8bf74f2SAdrian Chadd [17] = { .phy = HT, 26000, 0x00, N(9), 2 }, 255f8bf74f2SAdrian Chadd [18] = { .phy = HT, 39000, 0x00, N(10), 2 }, 256f8bf74f2SAdrian Chadd [19] = { .phy = HT, 52000, 0x00, N(11), 4 }, 257f8bf74f2SAdrian Chadd [20] = { .phy = HT, 78000, 0x00, N(12), 4 }, 258f8bf74f2SAdrian Chadd [21] = { .phy = HT, 104000, 0x00, N(13), 4 }, 259f8bf74f2SAdrian Chadd [22] = { .phy = HT, 117000, 0x00, N(14), 4 }, 260f8bf74f2SAdrian Chadd [23] = { .phy = HT, 130000, 0x00, N(15), 4 }, 261f8bf74f2SAdrian Chadd 262f8bf74f2SAdrian Chadd [24] = { .phy = HT, 19500, 0x00, N(16), 0 }, 263f8bf74f2SAdrian Chadd [25] = { .phy = HT, 39000, 0x00, N(17), 2 }, 264f8bf74f2SAdrian Chadd [26] = { .phy = HT, 58500, 0x00, N(18), 2 }, 265f8bf74f2SAdrian Chadd [27] = { .phy = HT, 78000, 0x00, N(19), 4 }, 266f8bf74f2SAdrian Chadd [28] = { .phy = HT, 117000, 0x00, N(20), 4 }, 267f8bf74f2SAdrian Chadd [29] = { .phy = HT, 156000, 0x00, N(21), 4 }, 268f8bf74f2SAdrian Chadd [30] = { .phy = HT, 175500, 0x00, N(22), 4 }, 269f8bf74f2SAdrian Chadd [31] = { .phy = HT, 195000, 0x00, N(23), 4 }, 270f8bf74f2SAdrian Chadd 271f8bf74f2SAdrian Chadd }, 272f8bf74f2SAdrian Chadd }; 273f8bf74f2SAdrian Chadd 274c9f78f45SSam Leffler #undef Mb 275c9f78f45SSam Leffler #undef B 276b032f27cSSam Leffler #undef OFDM 27724a07b5bSSam Leffler #undef HALF 27824a07b5bSSam Leffler #undef QUART 279b032f27cSSam Leffler #undef CCK 280b032f27cSSam Leffler #undef TURBO 281b032f27cSSam Leffler #undef XR 282f8bf74f2SAdrian Chadd #undef HT 283f8bf74f2SAdrian Chadd #undef N 284b032f27cSSam Leffler 285b032f27cSSam Leffler /* 286b032f27cSSam Leffler * Setup a rate table's reverse lookup table and fill in 287b032f27cSSam Leffler * ack durations. The reverse lookup tables are assumed 288b032f27cSSam Leffler * to be initialized to zero (or at least the first entry). 289b032f27cSSam Leffler * We use this as a key that indicates whether or not 290b032f27cSSam Leffler * we've previously setup the reverse lookup table. 291b032f27cSSam Leffler * 292b032f27cSSam Leffler * XXX not reentrant, but shouldn't matter 293b032f27cSSam Leffler */ 294b032f27cSSam Leffler static void 295b032f27cSSam Leffler ieee80211_setup_ratetable(struct ieee80211_rate_table *rt) 296b032f27cSSam Leffler { 297b032f27cSSam Leffler #define WLAN_CTRL_FRAME_SIZE \ 298b032f27cSSam Leffler (sizeof(struct ieee80211_frame_ack) + IEEE80211_CRC_LEN) 299b032f27cSSam Leffler 300b032f27cSSam Leffler int i; 301b032f27cSSam Leffler 302*a3e08d6fSRui Paulo for (i = 0; i < nitems(rt->rateCodeToIndex); i++) 303b032f27cSSam Leffler rt->rateCodeToIndex[i] = (uint8_t) -1; 304b032f27cSSam Leffler for (i = 0; i < rt->rateCount; i++) { 305b032f27cSSam Leffler uint8_t code = rt->info[i].dot11Rate; 306b032f27cSSam Leffler uint8_t cix = rt->info[i].ctlRateIndex; 307b032f27cSSam Leffler uint8_t ctl_rate = rt->info[cix].dot11Rate; 308b032f27cSSam Leffler 309b032f27cSSam Leffler /* 310f8bf74f2SAdrian Chadd * Map without the basic rate bit. 311f8bf74f2SAdrian Chadd * 312f8bf74f2SAdrian Chadd * It's up to the caller to ensure that the basic 313f8bf74f2SAdrian Chadd * rate bit is stripped here. 314f8bf74f2SAdrian Chadd * 315f8bf74f2SAdrian Chadd * For HT, use the MCS rate bit. 316b032f27cSSam Leffler */ 317b032f27cSSam Leffler code &= IEEE80211_RATE_VAL; 318f8bf74f2SAdrian Chadd if (rt->info[i].phy == IEEE80211_T_HT) { 319f8bf74f2SAdrian Chadd code |= IEEE80211_RATE_MCS; 320b032f27cSSam Leffler } 321b032f27cSSam Leffler 322f8bf74f2SAdrian Chadd /* XXX assume the control rate is non-MCS? */ 323f8bf74f2SAdrian Chadd ctl_rate &= IEEE80211_RATE_VAL; 324f8bf74f2SAdrian Chadd rt->rateCodeToIndex[code] = i; 325f8bf74f2SAdrian Chadd 326b032f27cSSam Leffler /* 327b032f27cSSam Leffler * XXX for 11g the control rate to use for 5.5 and 11 Mb/s 328b032f27cSSam Leffler * depends on whether they are marked as basic rates; 329b032f27cSSam Leffler * the static tables are setup with an 11b-compatible 330b032f27cSSam Leffler * 2Mb/s rate which will work but is suboptimal 331b032f27cSSam Leffler * 332b032f27cSSam Leffler * NB: Control rate is always less than or equal to the 333b032f27cSSam Leffler * current rate, so control rate's reverse lookup entry 334b032f27cSSam Leffler * has been installed and following call is safe. 335b032f27cSSam Leffler */ 336b032f27cSSam Leffler rt->info[i].lpAckDuration = ieee80211_compute_duration(rt, 337b032f27cSSam Leffler WLAN_CTRL_FRAME_SIZE, ctl_rate, 0); 338b032f27cSSam Leffler rt->info[i].spAckDuration = ieee80211_compute_duration(rt, 339b032f27cSSam Leffler WLAN_CTRL_FRAME_SIZE, ctl_rate, IEEE80211_F_SHPREAMBLE); 340b032f27cSSam Leffler } 341b032f27cSSam Leffler 342b032f27cSSam Leffler #undef WLAN_CTRL_FRAME_SIZE 343b032f27cSSam Leffler } 344b032f27cSSam Leffler 345b032f27cSSam Leffler /* Setup all rate tables */ 346b032f27cSSam Leffler static void 347b032f27cSSam Leffler ieee80211_phy_init(void) 348b032f27cSSam Leffler { 349b032f27cSSam Leffler static struct ieee80211_rate_table * const ratetables[] = { 350b032f27cSSam Leffler &ieee80211_half_table, 351b032f27cSSam Leffler &ieee80211_quarter_table, 352f8bf74f2SAdrian Chadd &ieee80211_11na_table, 353f8bf74f2SAdrian Chadd &ieee80211_11ng_table, 354b032f27cSSam Leffler &ieee80211_turbog_table, 355b032f27cSSam Leffler &ieee80211_turboa_table, 356b032f27cSSam Leffler &ieee80211_11a_table, 357b032f27cSSam Leffler &ieee80211_11g_table, 358b032f27cSSam Leffler &ieee80211_11b_table 359b032f27cSSam Leffler }; 360b032f27cSSam Leffler int i; 361b032f27cSSam Leffler 362*a3e08d6fSRui Paulo for (i = 0; i < nitems(ratetables); ++i) 363b032f27cSSam Leffler ieee80211_setup_ratetable(ratetables[i]); 364b032f27cSSam Leffler 365b032f27cSSam Leffler } 366b032f27cSSam Leffler SYSINIT(wlan_phy, SI_SUB_DRIVERS, SI_ORDER_FIRST, ieee80211_phy_init, NULL); 367b032f27cSSam Leffler 368b032f27cSSam Leffler const struct ieee80211_rate_table * 369b032f27cSSam Leffler ieee80211_get_ratetable(struct ieee80211_channel *c) 370b032f27cSSam Leffler { 371b032f27cSSam Leffler const struct ieee80211_rate_table *rt; 372b032f27cSSam Leffler 373b032f27cSSam Leffler /* XXX HT */ 374b032f27cSSam Leffler if (IEEE80211_IS_CHAN_HALF(c)) 375b032f27cSSam Leffler rt = &ieee80211_half_table; 376b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_QUARTER(c)) 377b032f27cSSam Leffler rt = &ieee80211_quarter_table; 378b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_HTA(c)) 379f8bf74f2SAdrian Chadd rt = &ieee80211_11na_table; 380b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_HTG(c)) 381f8bf74f2SAdrian Chadd rt = &ieee80211_11ng_table; 382b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_108G(c)) 383b032f27cSSam Leffler rt = &ieee80211_turbog_table; 384b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_ST(c)) 385b032f27cSSam Leffler rt = &ieee80211_turboa_table; 386b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_TURBO(c)) 387b032f27cSSam Leffler rt = &ieee80211_turboa_table; 388b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_A(c)) 389b032f27cSSam Leffler rt = &ieee80211_11a_table; 390b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_ANYG(c)) 391b032f27cSSam Leffler rt = &ieee80211_11g_table; 392b032f27cSSam Leffler else if (IEEE80211_IS_CHAN_B(c)) 393b032f27cSSam Leffler rt = &ieee80211_11b_table; 394b032f27cSSam Leffler else { 395b032f27cSSam Leffler /* NB: should not get here */ 396b032f27cSSam Leffler panic("%s: no rate table for channel; freq %u flags 0x%x\n", 397b032f27cSSam Leffler __func__, c->ic_freq, c->ic_flags); 398b032f27cSSam Leffler } 399b032f27cSSam Leffler return rt; 400b032f27cSSam Leffler } 401b032f27cSSam Leffler 402b032f27cSSam Leffler /* 403b032f27cSSam Leffler * Convert PLCP signal/rate field to 802.11 rate (.5Mbits/s) 404b032f27cSSam Leffler * 405b032f27cSSam Leffler * Note we do no parameter checking; this routine is mainly 406b032f27cSSam Leffler * used to derive an 802.11 rate for constructing radiotap 407b032f27cSSam Leffler * header data for rx frames. 408b032f27cSSam Leffler * 409b032f27cSSam Leffler * XXX might be a candidate for inline 410b032f27cSSam Leffler */ 411b032f27cSSam Leffler uint8_t 4128215d906SSam Leffler ieee80211_plcp2rate(uint8_t plcp, enum ieee80211_phytype type) 413b032f27cSSam Leffler { 4148215d906SSam Leffler if (type == IEEE80211_T_OFDM) { 415b032f27cSSam Leffler static const uint8_t ofdm_plcp2rate[16] = { 416b032f27cSSam Leffler [0xb] = 12, 417b032f27cSSam Leffler [0xf] = 18, 418b032f27cSSam Leffler [0xa] = 24, 419b032f27cSSam Leffler [0xe] = 36, 420b032f27cSSam Leffler [0x9] = 48, 421b032f27cSSam Leffler [0xd] = 72, 422b032f27cSSam Leffler [0x8] = 96, 423b032f27cSSam Leffler [0xc] = 108 424b032f27cSSam Leffler }; 425b032f27cSSam Leffler return ofdm_plcp2rate[plcp & 0xf]; 4268215d906SSam Leffler } 4278215d906SSam Leffler if (type == IEEE80211_T_CCK) { 428b032f27cSSam Leffler static const uint8_t cck_plcp2rate[16] = { 429b032f27cSSam Leffler [0xa] = 2, /* 0x0a */ 430b032f27cSSam Leffler [0x4] = 4, /* 0x14 */ 431b032f27cSSam Leffler [0x7] = 11, /* 0x37 */ 432b032f27cSSam Leffler [0xe] = 22, /* 0x6e */ 433b032f27cSSam Leffler [0xc] = 44, /* 0xdc , actually PBCC */ 434b032f27cSSam Leffler }; 435b032f27cSSam Leffler return cck_plcp2rate[plcp & 0xf]; 436b032f27cSSam Leffler } 4378215d906SSam Leffler return 0; 438b032f27cSSam Leffler } 439b032f27cSSam Leffler 440b032f27cSSam Leffler /* 441b032f27cSSam Leffler * Covert 802.11 rate to PLCP signal. 442b032f27cSSam Leffler */ 443b032f27cSSam Leffler uint8_t 4448215d906SSam Leffler ieee80211_rate2plcp(int rate, enum ieee80211_phytype type) 445b032f27cSSam Leffler { 4468215d906SSam Leffler /* XXX ignore type for now since rates are unique */ 447b032f27cSSam Leffler switch (rate) { 448b032f27cSSam Leffler /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 449b032f27cSSam Leffler case 12: return 0xb; 450b032f27cSSam Leffler case 18: return 0xf; 451b032f27cSSam Leffler case 24: return 0xa; 452b032f27cSSam Leffler case 36: return 0xe; 453b032f27cSSam Leffler case 48: return 0x9; 454b032f27cSSam Leffler case 72: return 0xd; 455b032f27cSSam Leffler case 96: return 0x8; 456b032f27cSSam Leffler case 108: return 0xc; 4578215d906SSam Leffler /* CCK rates (IEEE Std 802.11b-1999 page 15, subclause 18.2.3.3) */ 4588215d906SSam Leffler case 2: return 10; 4598215d906SSam Leffler case 4: return 20; 4608215d906SSam Leffler case 11: return 55; 4618215d906SSam Leffler case 22: return 110; 4628215d906SSam Leffler /* IEEE Std 802.11g-2003 page 19, subclause 19.3.2.1 */ 4638215d906SSam Leffler case 44: return 220; 464b032f27cSSam Leffler } 4658215d906SSam Leffler return 0; /* XXX unsupported/unknown rate */ 466b032f27cSSam Leffler } 4678215d906SSam Leffler 46824a07b5bSSam Leffler #define CCK_SIFS_TIME 10 46924a07b5bSSam Leffler #define CCK_PREAMBLE_BITS 144 47024a07b5bSSam Leffler #define CCK_PLCP_BITS 48 47124a07b5bSSam Leffler 47224a07b5bSSam Leffler #define OFDM_SIFS_TIME 16 47324a07b5bSSam Leffler #define OFDM_PREAMBLE_TIME 20 47424a07b5bSSam Leffler #define OFDM_PLCP_BITS 22 47524a07b5bSSam Leffler #define OFDM_SYMBOL_TIME 4 47624a07b5bSSam Leffler 47724a07b5bSSam Leffler #define OFDM_HALF_SIFS_TIME 32 47824a07b5bSSam Leffler #define OFDM_HALF_PREAMBLE_TIME 40 47924a07b5bSSam Leffler #define OFDM_HALF_PLCP_BITS 22 48024a07b5bSSam Leffler #define OFDM_HALF_SYMBOL_TIME 8 48124a07b5bSSam Leffler 48224a07b5bSSam Leffler #define OFDM_QUARTER_SIFS_TIME 64 48324a07b5bSSam Leffler #define OFDM_QUARTER_PREAMBLE_TIME 80 48424a07b5bSSam Leffler #define OFDM_QUARTER_PLCP_BITS 22 48524a07b5bSSam Leffler #define OFDM_QUARTER_SYMBOL_TIME 16 48624a07b5bSSam Leffler 48724a07b5bSSam Leffler #define TURBO_SIFS_TIME 8 48824a07b5bSSam Leffler #define TURBO_PREAMBLE_TIME 14 48924a07b5bSSam Leffler #define TURBO_PLCP_BITS 22 49024a07b5bSSam Leffler #define TURBO_SYMBOL_TIME 4 49124a07b5bSSam Leffler 492b032f27cSSam Leffler /* 493b032f27cSSam Leffler * Compute the time to transmit a frame of length frameLen bytes 494b032f27cSSam Leffler * using the specified rate, phy, and short preamble setting. 495b032f27cSSam Leffler * SIFS is included. 496b032f27cSSam Leffler */ 497b032f27cSSam Leffler uint16_t 498b032f27cSSam Leffler ieee80211_compute_duration(const struct ieee80211_rate_table *rt, 499b032f27cSSam Leffler uint32_t frameLen, uint16_t rate, int isShortPreamble) 500b032f27cSSam Leffler { 501b032f27cSSam Leffler uint8_t rix = rt->rateCodeToIndex[rate]; 502b032f27cSSam Leffler uint32_t bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 503b032f27cSSam Leffler uint32_t kbps; 504b032f27cSSam Leffler 505b032f27cSSam Leffler KASSERT(rix != (uint8_t)-1, ("rate %d has no info", rate)); 506b032f27cSSam Leffler kbps = rt->info[rix].rateKbps; 507b032f27cSSam Leffler if (kbps == 0) /* XXX bandaid for channel changes */ 508b032f27cSSam Leffler return 0; 509b032f27cSSam Leffler 510b032f27cSSam Leffler switch (rt->info[rix].phy) { 511b032f27cSSam Leffler case IEEE80211_T_CCK: 512b032f27cSSam Leffler phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 513b032f27cSSam Leffler if (isShortPreamble && rt->info[rix].shortPreamble) 514b032f27cSSam Leffler phyTime >>= 1; 515b032f27cSSam Leffler numBits = frameLen << 3; 516b032f27cSSam Leffler txTime = CCK_SIFS_TIME + phyTime 517b032f27cSSam Leffler + ((numBits * 1000)/kbps); 518b032f27cSSam Leffler break; 519b032f27cSSam Leffler case IEEE80211_T_OFDM: 520b032f27cSSam Leffler bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 521b032f27cSSam Leffler KASSERT(bitsPerSymbol != 0, ("full rate bps")); 522b032f27cSSam Leffler 523b032f27cSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 524b032f27cSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 525b032f27cSSam Leffler txTime = OFDM_SIFS_TIME 526b032f27cSSam Leffler + OFDM_PREAMBLE_TIME 527b032f27cSSam Leffler + (numSymbols * OFDM_SYMBOL_TIME); 528b032f27cSSam Leffler break; 52924a07b5bSSam Leffler case IEEE80211_T_OFDM_HALF: 53024a07b5bSSam Leffler bitsPerSymbol = (kbps * OFDM_HALF_SYMBOL_TIME) / 1000; 53124a07b5bSSam Leffler KASSERT(bitsPerSymbol != 0, ("1/4 rate bps")); 532b032f27cSSam Leffler 53324a07b5bSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 53424a07b5bSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 53524a07b5bSSam Leffler txTime = OFDM_HALF_SIFS_TIME 53624a07b5bSSam Leffler + OFDM_HALF_PREAMBLE_TIME 53724a07b5bSSam Leffler + (numSymbols * OFDM_HALF_SYMBOL_TIME); 53824a07b5bSSam Leffler break; 53924a07b5bSSam Leffler case IEEE80211_T_OFDM_QUARTER: 54024a07b5bSSam Leffler bitsPerSymbol = (kbps * OFDM_QUARTER_SYMBOL_TIME) / 1000; 54124a07b5bSSam Leffler KASSERT(bitsPerSymbol != 0, ("1/2 rate bps")); 542b032f27cSSam Leffler 54324a07b5bSSam Leffler numBits = OFDM_PLCP_BITS + (frameLen << 3); 54424a07b5bSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 54524a07b5bSSam Leffler txTime = OFDM_QUARTER_SIFS_TIME 54624a07b5bSSam Leffler + OFDM_QUARTER_PREAMBLE_TIME 54724a07b5bSSam Leffler + (numSymbols * OFDM_QUARTER_SYMBOL_TIME); 54824a07b5bSSam Leffler break; 549b032f27cSSam Leffler case IEEE80211_T_TURBO: 550b032f27cSSam Leffler /* we still save OFDM rates in kbps - so double them */ 551b032f27cSSam Leffler bitsPerSymbol = ((kbps << 1) * TURBO_SYMBOL_TIME) / 1000; 552b032f27cSSam Leffler KASSERT(bitsPerSymbol != 0, ("turbo bps")); 553b032f27cSSam Leffler 554b032f27cSSam Leffler numBits = TURBO_PLCP_BITS + (frameLen << 3); 555b032f27cSSam Leffler numSymbols = howmany(numBits, bitsPerSymbol); 556b032f27cSSam Leffler txTime = TURBO_SIFS_TIME + TURBO_PREAMBLE_TIME 557b032f27cSSam Leffler + (numSymbols * TURBO_SYMBOL_TIME); 558b032f27cSSam Leffler break; 559b032f27cSSam Leffler default: 560b032f27cSSam Leffler panic("%s: unknown phy %u (rate %u)\n", __func__, 561b032f27cSSam Leffler rt->info[rix].phy, rate); 562b032f27cSSam Leffler break; 563b032f27cSSam Leffler } 564b032f27cSSam Leffler return txTime; 565b032f27cSSam Leffler } 566f8bf74f2SAdrian Chadd 567f8bf74f2SAdrian Chadd static const uint16_t ht20_bps[32] = { 568f8bf74f2SAdrian Chadd 26, 52, 78, 104, 156, 208, 234, 260, 569f8bf74f2SAdrian Chadd 52, 104, 156, 208, 312, 416, 468, 520, 570f8bf74f2SAdrian Chadd 78, 156, 234, 312, 468, 624, 702, 780, 571f8bf74f2SAdrian Chadd 104, 208, 312, 416, 624, 832, 936, 1040 572f8bf74f2SAdrian Chadd }; 573f8bf74f2SAdrian Chadd static const uint16_t ht40_bps[32] = { 574f8bf74f2SAdrian Chadd 54, 108, 162, 216, 324, 432, 486, 540, 575f8bf74f2SAdrian Chadd 108, 216, 324, 432, 648, 864, 972, 1080, 576f8bf74f2SAdrian Chadd 162, 324, 486, 648, 972, 1296, 1458, 1620, 577f8bf74f2SAdrian Chadd 216, 432, 648, 864, 1296, 1728, 1944, 2160 578f8bf74f2SAdrian Chadd }; 579f8bf74f2SAdrian Chadd 580f8bf74f2SAdrian Chadd 581f8bf74f2SAdrian Chadd #define OFDM_PLCP_BITS 22 582f8bf74f2SAdrian Chadd #define HT_L_STF 8 583f8bf74f2SAdrian Chadd #define HT_L_LTF 8 584f8bf74f2SAdrian Chadd #define HT_L_SIG 4 585f8bf74f2SAdrian Chadd #define HT_SIG 8 586f8bf74f2SAdrian Chadd #define HT_STF 4 587f8bf74f2SAdrian Chadd #define HT_LTF(n) ((n) * 4) 588f8bf74f2SAdrian Chadd 589f8bf74f2SAdrian Chadd #define HT_RC_2_MCS(_rc) ((_rc) & 0xf) 590f8bf74f2SAdrian Chadd #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 591f8bf74f2SAdrian Chadd #define IS_HT_RATE(_rc) ( (_rc) & IEEE80211_RATE_MCS) 592f8bf74f2SAdrian Chadd 593f8bf74f2SAdrian Chadd /* 594f8bf74f2SAdrian Chadd * Calculate the transmit duration of an 11n frame. 595f8bf74f2SAdrian Chadd */ 596f8bf74f2SAdrian Chadd uint32_t 597f8bf74f2SAdrian Chadd ieee80211_compute_duration_ht(uint32_t frameLen, uint16_t rate, 598f8bf74f2SAdrian Chadd int streams, int isht40, int isShortGI) 599f8bf74f2SAdrian Chadd { 600f8bf74f2SAdrian Chadd uint32_t bitsPerSymbol, numBits, numSymbols, txTime; 601f8bf74f2SAdrian Chadd 602f8bf74f2SAdrian Chadd KASSERT(rate & IEEE80211_RATE_MCS, ("not mcs %d", rate)); 603f8bf74f2SAdrian Chadd KASSERT((rate &~ IEEE80211_RATE_MCS) < 31, ("bad mcs 0x%x", rate)); 604f8bf74f2SAdrian Chadd 605f8bf74f2SAdrian Chadd if (isht40) 606f8bf74f2SAdrian Chadd bitsPerSymbol = ht40_bps[rate & 0x1f]; 607f8bf74f2SAdrian Chadd else 608f8bf74f2SAdrian Chadd bitsPerSymbol = ht20_bps[rate & 0x1f]; 609f8bf74f2SAdrian Chadd numBits = OFDM_PLCP_BITS + (frameLen << 3); 610f8bf74f2SAdrian Chadd numSymbols = howmany(numBits, bitsPerSymbol); 611f8bf74f2SAdrian Chadd if (isShortGI) 612f8bf74f2SAdrian Chadd txTime = ((numSymbols * 18) + 4) / 5; /* 3.6us */ 613f8bf74f2SAdrian Chadd else 614f8bf74f2SAdrian Chadd txTime = numSymbols * 4; /* 4us */ 615f8bf74f2SAdrian Chadd return txTime + HT_L_STF + HT_L_LTF + 616f8bf74f2SAdrian Chadd HT_L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 617f8bf74f2SAdrian Chadd } 618f8bf74f2SAdrian Chadd 619f8bf74f2SAdrian Chadd #undef IS_HT_RATE 620f8bf74f2SAdrian Chadd #undef HT_RC_2_STREAMS 621f8bf74f2SAdrian Chadd #undef HT_RC_2_MCS 622f8bf74f2SAdrian Chadd #undef HT_LTF 623f8bf74f2SAdrian Chadd #undef HT_STF 624f8bf74f2SAdrian Chadd #undef HT_SIG 625f8bf74f2SAdrian Chadd #undef HT_L_SIG 626f8bf74f2SAdrian Chadd #undef HT_L_LTF 627f8bf74f2SAdrian Chadd #undef HT_L_STF 628f8bf74f2SAdrian Chadd #undef OFDM_PLCP_BITS 629