1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 /* unalligned little endian access */ 81 #define LE_WRITE_2(p, v) do { \ 82 ((uint8_t *)(p))[0] = (v) & 0xff; \ 83 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 84 } while (0) 85 #define LE_WRITE_4(p, v) do { \ 86 ((uint8_t *)(p))[0] = (v) & 0xff; \ 87 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 88 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 89 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 90 } while (0) 91 92 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 93 u_int hdrsize, u_int ciphdrsize, u_int mtu); 94 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 95 96 #ifdef IEEE80211_DEBUG 97 /* 98 * Decide if an outbound management frame should be 99 * printed when debugging is enabled. This filters some 100 * of the less interesting frames that come frequently 101 * (e.g. beacons). 102 */ 103 static __inline int 104 doprint(struct ieee80211vap *vap, int subtype) 105 { 106 switch (subtype) { 107 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 108 return (vap->iv_opmode == IEEE80211_M_IBSS); 109 } 110 return 1; 111 } 112 #endif 113 114 /* 115 * Transmit a frame to the given destination on the given VAP. 116 * 117 * It's up to the caller to figure out the details of who this 118 * is going to and resolving the node. 119 * 120 * This routine takes care of queuing it for power save, 121 * A-MPDU state stuff, fast-frames state stuff, encapsulation 122 * if required, then passing it up to the driver layer. 123 * 124 * This routine (for now) consumes the mbuf and frees the node 125 * reference; it ideally will return a TX status which reflects 126 * whether the mbuf was consumed or not, so the caller can 127 * free the mbuf (if appropriate) and the node reference (again, 128 * if appropriate.) 129 */ 130 int 131 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 132 struct ieee80211_node *ni) 133 { 134 struct ieee80211com *ic = vap->iv_ic; 135 struct ifnet *ifp = vap->iv_ifp; 136 int len, mcast; 137 138 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 139 (m->m_flags & M_PWR_SAV) == 0) { 140 /* 141 * Station in power save mode; pass the frame 142 * to the 802.11 layer and continue. We'll get 143 * the frame back when the time is right. 144 * XXX lose WDS vap linkage? 145 */ 146 if (ieee80211_pwrsave(ni, m) != 0) 147 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 148 ieee80211_free_node(ni); 149 150 /* 151 * We queued it fine, so tell the upper layer 152 * that we consumed it. 153 */ 154 return (0); 155 } 156 /* calculate priority so drivers can find the tx queue */ 157 if (ieee80211_classify(ni, m)) { 158 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 159 ni->ni_macaddr, NULL, 160 "%s", "classification failure"); 161 vap->iv_stats.is_tx_classify++; 162 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 163 m_freem(m); 164 ieee80211_free_node(ni); 165 166 /* XXX better status? */ 167 return (0); 168 } 169 /* 170 * Stash the node pointer. Note that we do this after 171 * any call to ieee80211_dwds_mcast because that code 172 * uses any existing value for rcvif to identify the 173 * interface it (might have been) received on. 174 */ 175 m->m_pkthdr.rcvif = (void *)ni; 176 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 177 len = m->m_pkthdr.len; 178 179 BPF_MTAP(ifp, m); /* 802.3 tx */ 180 181 /* 182 * Check if A-MPDU tx aggregation is setup or if we 183 * should try to enable it. The sta must be associated 184 * with HT and A-MPDU enabled for use. When the policy 185 * routine decides we should enable A-MPDU we issue an 186 * ADDBA request and wait for a reply. The frame being 187 * encapsulated will go out w/o using A-MPDU, or possibly 188 * it might be collected by the driver and held/retransmit. 189 * The default ic_ampdu_enable routine handles staggering 190 * ADDBA requests in case the receiver NAK's us or we are 191 * otherwise unable to establish a BA stream. 192 */ 193 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 194 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 195 (m->m_flags & M_EAPOL) == 0) { 196 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 197 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 198 199 ieee80211_txampdu_count_packet(tap); 200 if (IEEE80211_AMPDU_RUNNING(tap)) { 201 /* 202 * Operational, mark frame for aggregation. 203 * 204 * XXX do tx aggregation here 205 */ 206 m->m_flags |= M_AMPDU_MPDU; 207 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 208 ic->ic_ampdu_enable(ni, tap)) { 209 /* 210 * Not negotiated yet, request service. 211 */ 212 ieee80211_ampdu_request(ni, tap); 213 /* XXX hold frame for reply? */ 214 } 215 } 216 217 /* 218 * XXX If we aren't doing AMPDU TX then we /could/ do 219 * fast-frames encapsulation, however right now this 220 * output logic doesn't handle that case. 221 * 222 * So we'll be limited to "fast-frames" xmit for non-11n STA 223 * and "no fast frames" xmit for 11n STAs. 224 * It'd be nice to eventually test fast-frames out by 225 * gracefully falling from failing A-MPDU transmission 226 * (driver says no, fail to negotiate it with peer) to 227 * using fast-frames. 228 * 229 * Note: we can actually put A-MSDU's inside an A-MPDU, 230 * so hopefully we can figure out how to make that particular 231 * combination work right. 232 */ 233 #ifdef IEEE80211_SUPPORT_SUPERG 234 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 235 m = ieee80211_ff_check(ni, m); 236 if (m == NULL) { 237 /* NB: any ni ref held on stageq */ 238 return (0); 239 } 240 } 241 #endif /* IEEE80211_SUPPORT_SUPERG */ 242 243 /* 244 * Grab the TX lock - serialise the TX process from this 245 * point (where TX state is being checked/modified) 246 * through to driver queue. 247 */ 248 IEEE80211_TX_LOCK(ic); 249 250 /* 251 * XXX make the encap and transmit code a separate function 252 * so things like the FF (and later A-MSDU) path can just call 253 * it for flushed frames. 254 */ 255 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 256 /* 257 * Encapsulate the packet in prep for transmission. 258 */ 259 m = ieee80211_encap(vap, ni, m); 260 if (m == NULL) { 261 /* NB: stat+msg handled in ieee80211_encap */ 262 IEEE80211_TX_UNLOCK(ic); 263 ieee80211_free_node(ni); 264 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 265 return (ENOBUFS); 266 } 267 } 268 (void) ieee80211_parent_xmitpkt(ic, m); 269 270 /* 271 * Unlock at this point - no need to hold it across 272 * ieee80211_free_node() (ie, the comlock) 273 */ 274 IEEE80211_TX_UNLOCK(ic); 275 ic->ic_lastdata = ticks; 276 277 return (0); 278 } 279 280 281 282 /* 283 * Send the given mbuf through the given vap. 284 * 285 * This consumes the mbuf regardless of whether the transmit 286 * was successful or not. 287 * 288 * This does none of the initial checks that ieee80211_start() 289 * does (eg CAC timeout, interface wakeup) - the caller must 290 * do this first. 291 */ 292 static int 293 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 294 { 295 #define IS_DWDS(vap) \ 296 (vap->iv_opmode == IEEE80211_M_WDS && \ 297 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 298 struct ieee80211com *ic = vap->iv_ic; 299 struct ifnet *ifp = vap->iv_ifp; 300 struct ieee80211_node *ni; 301 struct ether_header *eh; 302 303 /* 304 * Cancel any background scan. 305 */ 306 if (ic->ic_flags & IEEE80211_F_SCAN) 307 ieee80211_cancel_anyscan(vap); 308 /* 309 * Find the node for the destination so we can do 310 * things like power save and fast frames aggregation. 311 * 312 * NB: past this point various code assumes the first 313 * mbuf has the 802.3 header present (and contiguous). 314 */ 315 ni = NULL; 316 if (m->m_len < sizeof(struct ether_header) && 317 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 318 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 319 "discard frame, %s\n", "m_pullup failed"); 320 vap->iv_stats.is_tx_nobuf++; /* XXX */ 321 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 322 return (ENOBUFS); 323 } 324 eh = mtod(m, struct ether_header *); 325 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 326 if (IS_DWDS(vap)) { 327 /* 328 * Only unicast frames from the above go out 329 * DWDS vaps; multicast frames are handled by 330 * dispatching the frame as it comes through 331 * the AP vap (see below). 332 */ 333 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 334 eh->ether_dhost, "mcast", "%s", "on DWDS"); 335 vap->iv_stats.is_dwds_mcast++; 336 m_freem(m); 337 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 338 /* XXX better status? */ 339 return (ENOBUFS); 340 } 341 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 342 /* 343 * Spam DWDS vap's w/ multicast traffic. 344 */ 345 /* XXX only if dwds in use? */ 346 ieee80211_dwds_mcast(vap, m); 347 } 348 } 349 #ifdef IEEE80211_SUPPORT_MESH 350 if (vap->iv_opmode != IEEE80211_M_MBSS) { 351 #endif 352 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 353 if (ni == NULL) { 354 /* NB: ieee80211_find_txnode does stat+msg */ 355 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 356 m_freem(m); 357 /* XXX better status? */ 358 return (ENOBUFS); 359 } 360 if (ni->ni_associd == 0 && 361 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 362 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 363 eh->ether_dhost, NULL, 364 "sta not associated (type 0x%04x)", 365 htons(eh->ether_type)); 366 vap->iv_stats.is_tx_notassoc++; 367 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 368 m_freem(m); 369 ieee80211_free_node(ni); 370 /* XXX better status? */ 371 return (ENOBUFS); 372 } 373 #ifdef IEEE80211_SUPPORT_MESH 374 } else { 375 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 376 /* 377 * Proxy station only if configured. 378 */ 379 if (!ieee80211_mesh_isproxyena(vap)) { 380 IEEE80211_DISCARD_MAC(vap, 381 IEEE80211_MSG_OUTPUT | 382 IEEE80211_MSG_MESH, 383 eh->ether_dhost, NULL, 384 "%s", "proxy not enabled"); 385 vap->iv_stats.is_mesh_notproxy++; 386 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 387 m_freem(m); 388 /* XXX better status? */ 389 return (ENOBUFS); 390 } 391 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 392 "forward frame from DS SA(%6D), DA(%6D)\n", 393 eh->ether_shost, ":", 394 eh->ether_dhost, ":"); 395 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 396 } 397 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 398 if (ni == NULL) { 399 /* 400 * NB: ieee80211_mesh_discover holds/disposes 401 * frame (e.g. queueing on path discovery). 402 */ 403 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 404 /* XXX better status? */ 405 return (ENOBUFS); 406 } 407 } 408 #endif 409 410 /* 411 * We've resolved the sender, so attempt to transmit it. 412 */ 413 414 if (vap->iv_state == IEEE80211_S_SLEEP) { 415 /* 416 * In power save; queue frame and then wakeup device 417 * for transmit. 418 */ 419 ic->ic_lastdata = ticks; 420 if (ieee80211_pwrsave(ni, m) != 0) 421 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 422 ieee80211_free_node(ni); 423 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 424 return (0); 425 } 426 427 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 428 return (ENOBUFS); 429 return (0); 430 #undef IS_DWDS 431 } 432 433 /* 434 * Start method for vap's. All packets from the stack come 435 * through here. We handle common processing of the packets 436 * before dispatching them to the underlying device. 437 * 438 * if_transmit() requires that the mbuf be consumed by this call 439 * regardless of the return condition. 440 */ 441 int 442 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 443 { 444 struct ieee80211vap *vap = ifp->if_softc; 445 struct ieee80211com *ic = vap->iv_ic; 446 447 /* 448 * No data frames go out unless we're running. 449 * Note in particular this covers CAC and CSA 450 * states (though maybe we should check muting 451 * for CSA). 452 */ 453 if (vap->iv_state != IEEE80211_S_RUN && 454 vap->iv_state != IEEE80211_S_SLEEP) { 455 IEEE80211_LOCK(ic); 456 /* re-check under the com lock to avoid races */ 457 if (vap->iv_state != IEEE80211_S_RUN && 458 vap->iv_state != IEEE80211_S_SLEEP) { 459 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 460 "%s: ignore queue, in %s state\n", 461 __func__, ieee80211_state_name[vap->iv_state]); 462 vap->iv_stats.is_tx_badstate++; 463 IEEE80211_UNLOCK(ic); 464 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 465 m_freem(m); 466 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 467 return (ENETDOWN); 468 } 469 IEEE80211_UNLOCK(ic); 470 } 471 472 /* 473 * Sanitize mbuf flags for net80211 use. We cannot 474 * clear M_PWR_SAV or M_MORE_DATA because these may 475 * be set for frames that are re-submitted from the 476 * power save queue. 477 * 478 * NB: This must be done before ieee80211_classify as 479 * it marks EAPOL in frames with M_EAPOL. 480 */ 481 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 482 483 /* 484 * Bump to the packet transmission path. 485 * The mbuf will be consumed here. 486 */ 487 return (ieee80211_start_pkt(vap, m)); 488 } 489 490 void 491 ieee80211_vap_qflush(struct ifnet *ifp) 492 { 493 494 /* Empty for now */ 495 } 496 497 /* 498 * 802.11 raw output routine. 499 * 500 * XXX TODO: this (and other send routines) should correctly 501 * XXX keep the pwr mgmt bit set if it decides to call into the 502 * XXX driver to send a frame whilst the state is SLEEP. 503 * 504 * Otherwise the peer may decide that we're awake and flood us 505 * with traffic we are still too asleep to receive! 506 */ 507 int 508 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 509 struct mbuf *m, const struct ieee80211_bpf_params *params) 510 { 511 struct ieee80211com *ic = vap->iv_ic; 512 int error; 513 514 /* 515 * Set node - the caller has taken a reference, so ensure 516 * that the mbuf has the same node value that 517 * it would if it were going via the normal path. 518 */ 519 m->m_pkthdr.rcvif = (void *)ni; 520 521 /* 522 * Attempt to add bpf transmit parameters. 523 * 524 * For now it's ok to fail; the raw_xmit api still takes 525 * them as an option. 526 * 527 * Later on when ic_raw_xmit() has params removed, 528 * they'll have to be added - so fail the transmit if 529 * they can't be. 530 */ 531 if (params) 532 (void) ieee80211_add_xmit_params(m, params); 533 534 error = ic->ic_raw_xmit(ni, m, params); 535 if (error) { 536 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 537 ieee80211_free_node(ni); 538 } 539 return (error); 540 } 541 542 /* 543 * 802.11 output routine. This is (currently) used only to 544 * connect bpf write calls to the 802.11 layer for injecting 545 * raw 802.11 frames. 546 */ 547 int 548 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 549 const struct sockaddr *dst, struct route *ro) 550 { 551 #define senderr(e) do { error = (e); goto bad;} while (0) 552 struct ieee80211_node *ni = NULL; 553 struct ieee80211vap *vap; 554 struct ieee80211_frame *wh; 555 struct ieee80211com *ic = NULL; 556 int error; 557 int ret; 558 559 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 560 /* 561 * Short-circuit requests if the vap is marked OACTIVE 562 * as this can happen because a packet came down through 563 * ieee80211_start before the vap entered RUN state in 564 * which case it's ok to just drop the frame. This 565 * should not be necessary but callers of if_output don't 566 * check OACTIVE. 567 */ 568 senderr(ENETDOWN); 569 } 570 vap = ifp->if_softc; 571 ic = vap->iv_ic; 572 /* 573 * Hand to the 802.3 code if not tagged as 574 * a raw 802.11 frame. 575 */ 576 if (dst->sa_family != AF_IEEE80211) 577 return vap->iv_output(ifp, m, dst, ro); 578 #ifdef MAC 579 error = mac_ifnet_check_transmit(ifp, m); 580 if (error) 581 senderr(error); 582 #endif 583 if (ifp->if_flags & IFF_MONITOR) 584 senderr(ENETDOWN); 585 if (!IFNET_IS_UP_RUNNING(ifp)) 586 senderr(ENETDOWN); 587 if (vap->iv_state == IEEE80211_S_CAC) { 588 IEEE80211_DPRINTF(vap, 589 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 590 "block %s frame in CAC state\n", "raw data"); 591 vap->iv_stats.is_tx_badstate++; 592 senderr(EIO); /* XXX */ 593 } else if (vap->iv_state == IEEE80211_S_SCAN) 594 senderr(EIO); 595 /* XXX bypass bridge, pfil, carp, etc. */ 596 597 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 598 senderr(EIO); /* XXX */ 599 wh = mtod(m, struct ieee80211_frame *); 600 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 601 IEEE80211_FC0_VERSION_0) 602 senderr(EIO); /* XXX */ 603 604 /* locate destination node */ 605 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 606 case IEEE80211_FC1_DIR_NODS: 607 case IEEE80211_FC1_DIR_FROMDS: 608 ni = ieee80211_find_txnode(vap, wh->i_addr1); 609 break; 610 case IEEE80211_FC1_DIR_TODS: 611 case IEEE80211_FC1_DIR_DSTODS: 612 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 613 senderr(EIO); /* XXX */ 614 ni = ieee80211_find_txnode(vap, wh->i_addr3); 615 break; 616 default: 617 senderr(EIO); /* XXX */ 618 } 619 if (ni == NULL) { 620 /* 621 * Permit packets w/ bpf params through regardless 622 * (see below about sa_len). 623 */ 624 if (dst->sa_len == 0) 625 senderr(EHOSTUNREACH); 626 ni = ieee80211_ref_node(vap->iv_bss); 627 } 628 629 /* 630 * Sanitize mbuf for net80211 flags leaked from above. 631 * 632 * NB: This must be done before ieee80211_classify as 633 * it marks EAPOL in frames with M_EAPOL. 634 */ 635 m->m_flags &= ~M_80211_TX; 636 637 /* calculate priority so drivers can find the tx queue */ 638 /* XXX assumes an 802.3 frame */ 639 if (ieee80211_classify(ni, m)) 640 senderr(EIO); /* XXX */ 641 642 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 643 IEEE80211_NODE_STAT(ni, tx_data); 644 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 645 IEEE80211_NODE_STAT(ni, tx_mcast); 646 m->m_flags |= M_MCAST; 647 } else 648 IEEE80211_NODE_STAT(ni, tx_ucast); 649 /* NB: ieee80211_encap does not include 802.11 header */ 650 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 651 652 IEEE80211_TX_LOCK(ic); 653 654 /* 655 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 656 * present by setting the sa_len field of the sockaddr (yes, 657 * this is a hack). 658 * NB: we assume sa_data is suitably aligned to cast. 659 */ 660 ret = ieee80211_raw_output(vap, ni, m, 661 (const struct ieee80211_bpf_params *)(dst->sa_len ? 662 dst->sa_data : NULL)); 663 IEEE80211_TX_UNLOCK(ic); 664 return (ret); 665 bad: 666 if (m != NULL) 667 m_freem(m); 668 if (ni != NULL) 669 ieee80211_free_node(ni); 670 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 671 return error; 672 #undef senderr 673 } 674 675 /* 676 * Set the direction field and address fields of an outgoing 677 * frame. Note this should be called early on in constructing 678 * a frame as it sets i_fc[1]; other bits can then be or'd in. 679 */ 680 void 681 ieee80211_send_setup( 682 struct ieee80211_node *ni, 683 struct mbuf *m, 684 int type, int tid, 685 const uint8_t sa[IEEE80211_ADDR_LEN], 686 const uint8_t da[IEEE80211_ADDR_LEN], 687 const uint8_t bssid[IEEE80211_ADDR_LEN]) 688 { 689 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 690 struct ieee80211vap *vap = ni->ni_vap; 691 struct ieee80211_tx_ampdu *tap; 692 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 693 ieee80211_seq seqno; 694 695 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 696 697 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 698 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 699 switch (vap->iv_opmode) { 700 case IEEE80211_M_STA: 701 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 702 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 703 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 704 IEEE80211_ADDR_COPY(wh->i_addr3, da); 705 break; 706 case IEEE80211_M_IBSS: 707 case IEEE80211_M_AHDEMO: 708 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 709 IEEE80211_ADDR_COPY(wh->i_addr1, da); 710 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 711 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 712 break; 713 case IEEE80211_M_HOSTAP: 714 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 715 IEEE80211_ADDR_COPY(wh->i_addr1, da); 716 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 717 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 718 break; 719 case IEEE80211_M_WDS: 720 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 721 IEEE80211_ADDR_COPY(wh->i_addr1, da); 722 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 723 IEEE80211_ADDR_COPY(wh->i_addr3, da); 724 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 725 break; 726 case IEEE80211_M_MBSS: 727 #ifdef IEEE80211_SUPPORT_MESH 728 if (IEEE80211_IS_MULTICAST(da)) { 729 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 730 /* XXX next hop */ 731 IEEE80211_ADDR_COPY(wh->i_addr1, da); 732 IEEE80211_ADDR_COPY(wh->i_addr2, 733 vap->iv_myaddr); 734 } else { 735 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 736 IEEE80211_ADDR_COPY(wh->i_addr1, da); 737 IEEE80211_ADDR_COPY(wh->i_addr2, 738 vap->iv_myaddr); 739 IEEE80211_ADDR_COPY(wh->i_addr3, da); 740 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 741 } 742 #endif 743 break; 744 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 745 break; 746 } 747 } else { 748 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 749 IEEE80211_ADDR_COPY(wh->i_addr1, da); 750 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 751 #ifdef IEEE80211_SUPPORT_MESH 752 if (vap->iv_opmode == IEEE80211_M_MBSS) 753 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 754 else 755 #endif 756 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 757 } 758 *(uint16_t *)&wh->i_dur[0] = 0; 759 760 tap = &ni->ni_tx_ampdu[tid]; 761 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 762 m->m_flags |= M_AMPDU_MPDU; 763 else { 764 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 765 type & IEEE80211_FC0_SUBTYPE_MASK)) 766 seqno = ni->ni_txseqs[tid]++; 767 else 768 seqno = 0; 769 770 *(uint16_t *)&wh->i_seq[0] = 771 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 772 M_SEQNO_SET(m, seqno); 773 } 774 775 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 776 m->m_flags |= M_MCAST; 777 #undef WH4 778 } 779 780 /* 781 * Send a management frame to the specified node. The node pointer 782 * must have a reference as the pointer will be passed to the driver 783 * and potentially held for a long time. If the frame is successfully 784 * dispatched to the driver, then it is responsible for freeing the 785 * reference (and potentially free'ing up any associated storage); 786 * otherwise deal with reclaiming any reference (on error). 787 */ 788 int 789 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 790 struct ieee80211_bpf_params *params) 791 { 792 struct ieee80211vap *vap = ni->ni_vap; 793 struct ieee80211com *ic = ni->ni_ic; 794 struct ieee80211_frame *wh; 795 int ret; 796 797 KASSERT(ni != NULL, ("null node")); 798 799 if (vap->iv_state == IEEE80211_S_CAC) { 800 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 801 ni, "block %s frame in CAC state", 802 ieee80211_mgt_subtype_name[ 803 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 804 IEEE80211_FC0_SUBTYPE_SHIFT]); 805 vap->iv_stats.is_tx_badstate++; 806 ieee80211_free_node(ni); 807 m_freem(m); 808 return EIO; /* XXX */ 809 } 810 811 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 812 if (m == NULL) { 813 ieee80211_free_node(ni); 814 return ENOMEM; 815 } 816 817 IEEE80211_TX_LOCK(ic); 818 819 wh = mtod(m, struct ieee80211_frame *); 820 ieee80211_send_setup(ni, m, 821 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 822 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 823 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 824 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 825 "encrypting frame (%s)", __func__); 826 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 827 } 828 m->m_flags |= M_ENCAP; /* mark encapsulated */ 829 830 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 831 M_WME_SETAC(m, params->ibp_pri); 832 833 #ifdef IEEE80211_DEBUG 834 /* avoid printing too many frames */ 835 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 836 ieee80211_msg_dumppkts(vap)) { 837 printf("[%s] send %s on channel %u\n", 838 ether_sprintf(wh->i_addr1), 839 ieee80211_mgt_subtype_name[ 840 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 841 IEEE80211_FC0_SUBTYPE_SHIFT], 842 ieee80211_chan2ieee(ic, ic->ic_curchan)); 843 } 844 #endif 845 IEEE80211_NODE_STAT(ni, tx_mgmt); 846 847 ret = ieee80211_raw_output(vap, ni, m, params); 848 IEEE80211_TX_UNLOCK(ic); 849 return (ret); 850 } 851 852 static void 853 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 854 int status) 855 { 856 struct ieee80211vap *vap = ni->ni_vap; 857 858 wakeup(vap); 859 } 860 861 /* 862 * Send a null data frame to the specified node. If the station 863 * is setup for QoS then a QoS Null Data frame is constructed. 864 * If this is a WDS station then a 4-address frame is constructed. 865 * 866 * NB: the caller is assumed to have setup a node reference 867 * for use; this is necessary to deal with a race condition 868 * when probing for inactive stations. Like ieee80211_mgmt_output 869 * we must cleanup any node reference on error; however we 870 * can safely just unref it as we know it will never be the 871 * last reference to the node. 872 */ 873 int 874 ieee80211_send_nulldata(struct ieee80211_node *ni) 875 { 876 struct ieee80211vap *vap = ni->ni_vap; 877 struct ieee80211com *ic = ni->ni_ic; 878 struct mbuf *m; 879 struct ieee80211_frame *wh; 880 int hdrlen; 881 uint8_t *frm; 882 int ret; 883 884 if (vap->iv_state == IEEE80211_S_CAC) { 885 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 886 ni, "block %s frame in CAC state", "null data"); 887 ieee80211_unref_node(&ni); 888 vap->iv_stats.is_tx_badstate++; 889 return EIO; /* XXX */ 890 } 891 892 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 893 hdrlen = sizeof(struct ieee80211_qosframe); 894 else 895 hdrlen = sizeof(struct ieee80211_frame); 896 /* NB: only WDS vap's get 4-address frames */ 897 if (vap->iv_opmode == IEEE80211_M_WDS) 898 hdrlen += IEEE80211_ADDR_LEN; 899 if (ic->ic_flags & IEEE80211_F_DATAPAD) 900 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 901 902 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 903 if (m == NULL) { 904 /* XXX debug msg */ 905 ieee80211_unref_node(&ni); 906 vap->iv_stats.is_tx_nobuf++; 907 return ENOMEM; 908 } 909 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 910 ("leading space %zd", M_LEADINGSPACE(m))); 911 M_PREPEND(m, hdrlen, M_NOWAIT); 912 if (m == NULL) { 913 /* NB: cannot happen */ 914 ieee80211_free_node(ni); 915 return ENOMEM; 916 } 917 918 IEEE80211_TX_LOCK(ic); 919 920 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 921 if (ni->ni_flags & IEEE80211_NODE_QOS) { 922 const int tid = WME_AC_TO_TID(WME_AC_BE); 923 uint8_t *qos; 924 925 ieee80211_send_setup(ni, m, 926 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 927 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 928 929 if (vap->iv_opmode == IEEE80211_M_WDS) 930 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 931 else 932 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 933 qos[0] = tid & IEEE80211_QOS_TID; 934 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 935 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 936 qos[1] = 0; 937 } else { 938 ieee80211_send_setup(ni, m, 939 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 940 IEEE80211_NONQOS_TID, 941 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 942 } 943 if (vap->iv_opmode != IEEE80211_M_WDS) { 944 /* NB: power management bit is never sent by an AP */ 945 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 946 vap->iv_opmode != IEEE80211_M_HOSTAP) 947 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 948 } 949 if ((ic->ic_flags & IEEE80211_F_SCAN) && 950 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 951 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 952 NULL); 953 } 954 m->m_len = m->m_pkthdr.len = hdrlen; 955 m->m_flags |= M_ENCAP; /* mark encapsulated */ 956 957 M_WME_SETAC(m, WME_AC_BE); 958 959 IEEE80211_NODE_STAT(ni, tx_data); 960 961 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 962 "send %snull data frame on channel %u, pwr mgt %s", 963 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 964 ieee80211_chan2ieee(ic, ic->ic_curchan), 965 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 966 967 ret = ieee80211_raw_output(vap, ni, m, NULL); 968 IEEE80211_TX_UNLOCK(ic); 969 return (ret); 970 } 971 972 /* 973 * Assign priority to a frame based on any vlan tag assigned 974 * to the station and/or any Diffserv setting in an IP header. 975 * Finally, if an ACM policy is setup (in station mode) it's 976 * applied. 977 */ 978 int 979 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 980 { 981 const struct ether_header *eh = mtod(m, struct ether_header *); 982 int v_wme_ac, d_wme_ac, ac; 983 984 /* 985 * Always promote PAE/EAPOL frames to high priority. 986 */ 987 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 988 /* NB: mark so others don't need to check header */ 989 m->m_flags |= M_EAPOL; 990 ac = WME_AC_VO; 991 goto done; 992 } 993 /* 994 * Non-qos traffic goes to BE. 995 */ 996 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 997 ac = WME_AC_BE; 998 goto done; 999 } 1000 1001 /* 1002 * If node has a vlan tag then all traffic 1003 * to it must have a matching tag. 1004 */ 1005 v_wme_ac = 0; 1006 if (ni->ni_vlan != 0) { 1007 if ((m->m_flags & M_VLANTAG) == 0) { 1008 IEEE80211_NODE_STAT(ni, tx_novlantag); 1009 return 1; 1010 } 1011 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1012 EVL_VLANOFTAG(ni->ni_vlan)) { 1013 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1014 return 1; 1015 } 1016 /* map vlan priority to AC */ 1017 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1018 } 1019 1020 /* XXX m_copydata may be too slow for fast path */ 1021 #ifdef INET 1022 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1023 uint8_t tos; 1024 /* 1025 * IP frame, map the DSCP bits from the TOS field. 1026 */ 1027 /* NB: ip header may not be in first mbuf */ 1028 m_copydata(m, sizeof(struct ether_header) + 1029 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1030 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1031 d_wme_ac = TID_TO_WME_AC(tos); 1032 } else { 1033 #endif /* INET */ 1034 #ifdef INET6 1035 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1036 uint32_t flow; 1037 uint8_t tos; 1038 /* 1039 * IPv6 frame, map the DSCP bits from the traffic class field. 1040 */ 1041 m_copydata(m, sizeof(struct ether_header) + 1042 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1043 (caddr_t) &flow); 1044 tos = (uint8_t)(ntohl(flow) >> 20); 1045 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1046 d_wme_ac = TID_TO_WME_AC(tos); 1047 } else { 1048 #endif /* INET6 */ 1049 d_wme_ac = WME_AC_BE; 1050 #ifdef INET6 1051 } 1052 #endif 1053 #ifdef INET 1054 } 1055 #endif 1056 /* 1057 * Use highest priority AC. 1058 */ 1059 if (v_wme_ac > d_wme_ac) 1060 ac = v_wme_ac; 1061 else 1062 ac = d_wme_ac; 1063 1064 /* 1065 * Apply ACM policy. 1066 */ 1067 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1068 static const int acmap[4] = { 1069 WME_AC_BK, /* WME_AC_BE */ 1070 WME_AC_BK, /* WME_AC_BK */ 1071 WME_AC_BE, /* WME_AC_VI */ 1072 WME_AC_VI, /* WME_AC_VO */ 1073 }; 1074 struct ieee80211com *ic = ni->ni_ic; 1075 1076 while (ac != WME_AC_BK && 1077 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1078 ac = acmap[ac]; 1079 } 1080 done: 1081 M_WME_SETAC(m, ac); 1082 return 0; 1083 } 1084 1085 /* 1086 * Insure there is sufficient contiguous space to encapsulate the 1087 * 802.11 data frame. If room isn't already there, arrange for it. 1088 * Drivers and cipher modules assume we have done the necessary work 1089 * and fail rudely if they don't find the space they need. 1090 */ 1091 struct mbuf * 1092 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1093 struct ieee80211_key *key, struct mbuf *m) 1094 { 1095 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1096 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1097 1098 if (key != NULL) { 1099 /* XXX belongs in crypto code? */ 1100 needed_space += key->wk_cipher->ic_header; 1101 /* XXX frags */ 1102 /* 1103 * When crypto is being done in the host we must insure 1104 * the data are writable for the cipher routines; clone 1105 * a writable mbuf chain. 1106 * XXX handle SWMIC specially 1107 */ 1108 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1109 m = m_unshare(m, M_NOWAIT); 1110 if (m == NULL) { 1111 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1112 "%s: cannot get writable mbuf\n", __func__); 1113 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1114 return NULL; 1115 } 1116 } 1117 } 1118 /* 1119 * We know we are called just before stripping an Ethernet 1120 * header and prepending an LLC header. This means we know 1121 * there will be 1122 * sizeof(struct ether_header) - sizeof(struct llc) 1123 * bytes recovered to which we need additional space for the 1124 * 802.11 header and any crypto header. 1125 */ 1126 /* XXX check trailing space and copy instead? */ 1127 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1128 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1129 if (n == NULL) { 1130 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1131 "%s: cannot expand storage\n", __func__); 1132 vap->iv_stats.is_tx_nobuf++; 1133 m_freem(m); 1134 return NULL; 1135 } 1136 KASSERT(needed_space <= MHLEN, 1137 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1138 /* 1139 * Setup new mbuf to have leading space to prepend the 1140 * 802.11 header and any crypto header bits that are 1141 * required (the latter are added when the driver calls 1142 * back to ieee80211_crypto_encap to do crypto encapsulation). 1143 */ 1144 /* NB: must be first 'cuz it clobbers m_data */ 1145 m_move_pkthdr(n, m); 1146 n->m_len = 0; /* NB: m_gethdr does not set */ 1147 n->m_data += needed_space; 1148 /* 1149 * Pull up Ethernet header to create the expected layout. 1150 * We could use m_pullup but that's overkill (i.e. we don't 1151 * need the actual data) and it cannot fail so do it inline 1152 * for speed. 1153 */ 1154 /* NB: struct ether_header is known to be contiguous */ 1155 n->m_len += sizeof(struct ether_header); 1156 m->m_len -= sizeof(struct ether_header); 1157 m->m_data += sizeof(struct ether_header); 1158 /* 1159 * Replace the head of the chain. 1160 */ 1161 n->m_next = m; 1162 m = n; 1163 } 1164 return m; 1165 #undef TO_BE_RECLAIMED 1166 } 1167 1168 /* 1169 * Return the transmit key to use in sending a unicast frame. 1170 * If a unicast key is set we use that. When no unicast key is set 1171 * we fall back to the default transmit key. 1172 */ 1173 static __inline struct ieee80211_key * 1174 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1175 struct ieee80211_node *ni) 1176 { 1177 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1178 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1179 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1180 return NULL; 1181 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1182 } else { 1183 return &ni->ni_ucastkey; 1184 } 1185 } 1186 1187 /* 1188 * Return the transmit key to use in sending a multicast frame. 1189 * Multicast traffic always uses the group key which is installed as 1190 * the default tx key. 1191 */ 1192 static __inline struct ieee80211_key * 1193 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1194 struct ieee80211_node *ni) 1195 { 1196 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1197 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1198 return NULL; 1199 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1200 } 1201 1202 /* 1203 * Encapsulate an outbound data frame. The mbuf chain is updated. 1204 * If an error is encountered NULL is returned. The caller is required 1205 * to provide a node reference and pullup the ethernet header in the 1206 * first mbuf. 1207 * 1208 * NB: Packet is assumed to be processed by ieee80211_classify which 1209 * marked EAPOL frames w/ M_EAPOL. 1210 */ 1211 struct mbuf * 1212 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1213 struct mbuf *m) 1214 { 1215 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1216 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1217 struct ieee80211com *ic = ni->ni_ic; 1218 #ifdef IEEE80211_SUPPORT_MESH 1219 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1220 struct ieee80211_meshcntl_ae10 *mc; 1221 struct ieee80211_mesh_route *rt = NULL; 1222 int dir = -1; 1223 #endif 1224 struct ether_header eh; 1225 struct ieee80211_frame *wh; 1226 struct ieee80211_key *key; 1227 struct llc *llc; 1228 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1229 ieee80211_seq seqno; 1230 int meshhdrsize, meshae; 1231 uint8_t *qos; 1232 1233 IEEE80211_TX_LOCK_ASSERT(ic); 1234 1235 /* 1236 * Copy existing Ethernet header to a safe place. The 1237 * rest of the code assumes it's ok to strip it when 1238 * reorganizing state for the final encapsulation. 1239 */ 1240 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1241 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1242 1243 /* 1244 * Insure space for additional headers. First identify 1245 * transmit key to use in calculating any buffer adjustments 1246 * required. This is also used below to do privacy 1247 * encapsulation work. Then calculate the 802.11 header 1248 * size and any padding required by the driver. 1249 * 1250 * Note key may be NULL if we fall back to the default 1251 * transmit key and that is not set. In that case the 1252 * buffer may not be expanded as needed by the cipher 1253 * routines, but they will/should discard it. 1254 */ 1255 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1256 if (vap->iv_opmode == IEEE80211_M_STA || 1257 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1258 (vap->iv_opmode == IEEE80211_M_WDS && 1259 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1260 key = ieee80211_crypto_getucastkey(vap, ni); 1261 else 1262 key = ieee80211_crypto_getmcastkey(vap, ni); 1263 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1264 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1265 eh.ether_dhost, 1266 "no default transmit key (%s) deftxkey %u", 1267 __func__, vap->iv_def_txkey); 1268 vap->iv_stats.is_tx_nodefkey++; 1269 goto bad; 1270 } 1271 } else 1272 key = NULL; 1273 /* 1274 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1275 * frames so suppress use. This may be an issue if other 1276 * ap's require all data frames to be QoS-encapsulated 1277 * once negotiated in which case we'll need to make this 1278 * configurable. 1279 * NB: mesh data frames are QoS. 1280 */ 1281 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1282 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1283 (m->m_flags & M_EAPOL) == 0; 1284 if (addqos) 1285 hdrsize = sizeof(struct ieee80211_qosframe); 1286 else 1287 hdrsize = sizeof(struct ieee80211_frame); 1288 #ifdef IEEE80211_SUPPORT_MESH 1289 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1290 /* 1291 * Mesh data frames are encapsulated according to the 1292 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1293 * o Group Addressed data (aka multicast) originating 1294 * at the local sta are sent w/ 3-address format and 1295 * address extension mode 00 1296 * o Individually Addressed data (aka unicast) originating 1297 * at the local sta are sent w/ 4-address format and 1298 * address extension mode 00 1299 * o Group Addressed data forwarded from a non-mesh sta are 1300 * sent w/ 3-address format and address extension mode 01 1301 * o Individually Address data from another sta are sent 1302 * w/ 4-address format and address extension mode 10 1303 */ 1304 is4addr = 0; /* NB: don't use, disable */ 1305 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1306 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1307 KASSERT(rt != NULL, ("route is NULL")); 1308 dir = IEEE80211_FC1_DIR_DSTODS; 1309 hdrsize += IEEE80211_ADDR_LEN; 1310 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1311 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1312 vap->iv_myaddr)) { 1313 IEEE80211_NOTE_MAC(vap, 1314 IEEE80211_MSG_MESH, 1315 eh.ether_dhost, 1316 "%s", "trying to send to ourself"); 1317 goto bad; 1318 } 1319 meshae = IEEE80211_MESH_AE_10; 1320 meshhdrsize = 1321 sizeof(struct ieee80211_meshcntl_ae10); 1322 } else { 1323 meshae = IEEE80211_MESH_AE_00; 1324 meshhdrsize = 1325 sizeof(struct ieee80211_meshcntl); 1326 } 1327 } else { 1328 dir = IEEE80211_FC1_DIR_FROMDS; 1329 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1330 /* proxy group */ 1331 meshae = IEEE80211_MESH_AE_01; 1332 meshhdrsize = 1333 sizeof(struct ieee80211_meshcntl_ae01); 1334 } else { 1335 /* group */ 1336 meshae = IEEE80211_MESH_AE_00; 1337 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1338 } 1339 } 1340 } else { 1341 #endif 1342 /* 1343 * 4-address frames need to be generated for: 1344 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1345 * o packets sent through a vap marked for relaying 1346 * (e.g. a station operating with dynamic WDS) 1347 */ 1348 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1349 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1350 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1351 if (is4addr) 1352 hdrsize += IEEE80211_ADDR_LEN; 1353 meshhdrsize = meshae = 0; 1354 #ifdef IEEE80211_SUPPORT_MESH 1355 } 1356 #endif 1357 /* 1358 * Honor driver DATAPAD requirement. 1359 */ 1360 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1361 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1362 else 1363 hdrspace = hdrsize; 1364 1365 if (__predict_true((m->m_flags & M_FF) == 0)) { 1366 /* 1367 * Normal frame. 1368 */ 1369 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1370 if (m == NULL) { 1371 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1372 goto bad; 1373 } 1374 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1375 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1376 llc = mtod(m, struct llc *); 1377 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1378 llc->llc_control = LLC_UI; 1379 llc->llc_snap.org_code[0] = 0; 1380 llc->llc_snap.org_code[1] = 0; 1381 llc->llc_snap.org_code[2] = 0; 1382 llc->llc_snap.ether_type = eh.ether_type; 1383 } else { 1384 #ifdef IEEE80211_SUPPORT_SUPERG 1385 /* 1386 * Aggregated frame. 1387 */ 1388 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1389 if (m == NULL) 1390 #endif 1391 goto bad; 1392 } 1393 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1394 1395 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1396 if (m == NULL) { 1397 vap->iv_stats.is_tx_nobuf++; 1398 goto bad; 1399 } 1400 wh = mtod(m, struct ieee80211_frame *); 1401 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1402 *(uint16_t *)wh->i_dur = 0; 1403 qos = NULL; /* NB: quiet compiler */ 1404 if (is4addr) { 1405 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1406 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1407 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1408 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1409 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1410 } else switch (vap->iv_opmode) { 1411 case IEEE80211_M_STA: 1412 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1413 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1414 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1415 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1416 break; 1417 case IEEE80211_M_IBSS: 1418 case IEEE80211_M_AHDEMO: 1419 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1420 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1421 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1422 /* 1423 * NB: always use the bssid from iv_bss as the 1424 * neighbor's may be stale after an ibss merge 1425 */ 1426 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1427 break; 1428 case IEEE80211_M_HOSTAP: 1429 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1430 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1431 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1432 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1433 break; 1434 #ifdef IEEE80211_SUPPORT_MESH 1435 case IEEE80211_M_MBSS: 1436 /* NB: offset by hdrspace to deal with DATAPAD */ 1437 mc = (struct ieee80211_meshcntl_ae10 *) 1438 (mtod(m, uint8_t *) + hdrspace); 1439 wh->i_fc[1] = dir; 1440 switch (meshae) { 1441 case IEEE80211_MESH_AE_00: /* no proxy */ 1442 mc->mc_flags = 0; 1443 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1444 IEEE80211_ADDR_COPY(wh->i_addr1, 1445 ni->ni_macaddr); 1446 IEEE80211_ADDR_COPY(wh->i_addr2, 1447 vap->iv_myaddr); 1448 IEEE80211_ADDR_COPY(wh->i_addr3, 1449 eh.ether_dhost); 1450 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1451 eh.ether_shost); 1452 qos =((struct ieee80211_qosframe_addr4 *) 1453 wh)->i_qos; 1454 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1455 /* mcast */ 1456 IEEE80211_ADDR_COPY(wh->i_addr1, 1457 eh.ether_dhost); 1458 IEEE80211_ADDR_COPY(wh->i_addr2, 1459 vap->iv_myaddr); 1460 IEEE80211_ADDR_COPY(wh->i_addr3, 1461 eh.ether_shost); 1462 qos = ((struct ieee80211_qosframe *) 1463 wh)->i_qos; 1464 } 1465 break; 1466 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1467 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1468 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1469 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1470 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1471 mc->mc_flags = 1; 1472 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1473 eh.ether_shost); 1474 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1475 break; 1476 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1477 KASSERT(rt != NULL, ("route is NULL")); 1478 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1479 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1480 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1481 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1482 mc->mc_flags = IEEE80211_MESH_AE_10; 1483 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1484 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1485 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1486 break; 1487 default: 1488 KASSERT(0, ("meshae %d", meshae)); 1489 break; 1490 } 1491 mc->mc_ttl = ms->ms_ttl; 1492 ms->ms_seq++; 1493 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1494 break; 1495 #endif 1496 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1497 default: 1498 goto bad; 1499 } 1500 if (m->m_flags & M_MORE_DATA) 1501 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1502 if (addqos) { 1503 int ac, tid; 1504 1505 if (is4addr) { 1506 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1507 /* NB: mesh case handled earlier */ 1508 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1509 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1510 ac = M_WME_GETAC(m); 1511 /* map from access class/queue to 11e header priorty value */ 1512 tid = WME_AC_TO_TID(ac); 1513 qos[0] = tid & IEEE80211_QOS_TID; 1514 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1515 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1516 #ifdef IEEE80211_SUPPORT_MESH 1517 if (vap->iv_opmode == IEEE80211_M_MBSS) 1518 qos[1] = IEEE80211_QOS_MC; 1519 else 1520 #endif 1521 qos[1] = 0; 1522 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1523 1524 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1525 /* 1526 * NB: don't assign a sequence # to potential 1527 * aggregates; we expect this happens at the 1528 * point the frame comes off any aggregation q 1529 * as otherwise we may introduce holes in the 1530 * BA sequence space and/or make window accouting 1531 * more difficult. 1532 * 1533 * XXX may want to control this with a driver 1534 * capability; this may also change when we pull 1535 * aggregation up into net80211 1536 */ 1537 seqno = ni->ni_txseqs[tid]++; 1538 *(uint16_t *)wh->i_seq = 1539 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1540 M_SEQNO_SET(m, seqno); 1541 } 1542 } else { 1543 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1544 *(uint16_t *)wh->i_seq = 1545 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1546 M_SEQNO_SET(m, seqno); 1547 } 1548 1549 1550 /* check if xmit fragmentation is required */ 1551 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1552 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1553 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1554 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1555 if (key != NULL) { 1556 /* 1557 * IEEE 802.1X: send EAPOL frames always in the clear. 1558 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1559 */ 1560 if ((m->m_flags & M_EAPOL) == 0 || 1561 ((vap->iv_flags & IEEE80211_F_WPA) && 1562 (vap->iv_opmode == IEEE80211_M_STA ? 1563 !IEEE80211_KEY_UNDEFINED(key) : 1564 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1565 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1566 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1567 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1568 eh.ether_dhost, 1569 "%s", "enmic failed, discard frame"); 1570 vap->iv_stats.is_crypto_enmicfail++; 1571 goto bad; 1572 } 1573 } 1574 } 1575 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1576 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1577 goto bad; 1578 1579 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1580 1581 IEEE80211_NODE_STAT(ni, tx_data); 1582 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1583 IEEE80211_NODE_STAT(ni, tx_mcast); 1584 m->m_flags |= M_MCAST; 1585 } else 1586 IEEE80211_NODE_STAT(ni, tx_ucast); 1587 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1588 1589 return m; 1590 bad: 1591 if (m != NULL) 1592 m_freem(m); 1593 return NULL; 1594 #undef WH4 1595 #undef MC01 1596 } 1597 1598 void 1599 ieee80211_free_mbuf(struct mbuf *m) 1600 { 1601 struct mbuf *next; 1602 1603 if (m == NULL) 1604 return; 1605 1606 do { 1607 next = m->m_nextpkt; 1608 m->m_nextpkt = NULL; 1609 m_freem(m); 1610 } while ((m = next) != NULL); 1611 } 1612 1613 /* 1614 * Fragment the frame according to the specified mtu. 1615 * The size of the 802.11 header (w/o padding) is provided 1616 * so we don't need to recalculate it. We create a new 1617 * mbuf for each fragment and chain it through m_nextpkt; 1618 * we might be able to optimize this by reusing the original 1619 * packet's mbufs but that is significantly more complicated. 1620 */ 1621 static int 1622 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1623 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1624 { 1625 struct ieee80211com *ic = vap->iv_ic; 1626 struct ieee80211_frame *wh, *whf; 1627 struct mbuf *m, *prev; 1628 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1629 u_int hdrspace; 1630 1631 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1632 KASSERT(m0->m_pkthdr.len > mtu, 1633 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1634 1635 /* 1636 * Honor driver DATAPAD requirement. 1637 */ 1638 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1639 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1640 else 1641 hdrspace = hdrsize; 1642 1643 wh = mtod(m0, struct ieee80211_frame *); 1644 /* NB: mark the first frag; it will be propagated below */ 1645 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1646 totalhdrsize = hdrspace + ciphdrsize; 1647 fragno = 1; 1648 off = mtu - ciphdrsize; 1649 remainder = m0->m_pkthdr.len - off; 1650 prev = m0; 1651 do { 1652 fragsize = totalhdrsize + remainder; 1653 if (fragsize > mtu) 1654 fragsize = mtu; 1655 /* XXX fragsize can be >2048! */ 1656 KASSERT(fragsize < MCLBYTES, 1657 ("fragment size %u too big!", fragsize)); 1658 if (fragsize > MHLEN) 1659 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1660 else 1661 m = m_gethdr(M_NOWAIT, MT_DATA); 1662 if (m == NULL) 1663 goto bad; 1664 /* leave room to prepend any cipher header */ 1665 m_align(m, fragsize - ciphdrsize); 1666 1667 /* 1668 * Form the header in the fragment. Note that since 1669 * we mark the first fragment with the MORE_FRAG bit 1670 * it automatically is propagated to each fragment; we 1671 * need only clear it on the last fragment (done below). 1672 * NB: frag 1+ dont have Mesh Control field present. 1673 */ 1674 whf = mtod(m, struct ieee80211_frame *); 1675 memcpy(whf, wh, hdrsize); 1676 #ifdef IEEE80211_SUPPORT_MESH 1677 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1678 if (IEEE80211_IS_DSTODS(wh)) 1679 ((struct ieee80211_qosframe_addr4 *) 1680 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1681 else 1682 ((struct ieee80211_qosframe *) 1683 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1684 } 1685 #endif 1686 *(uint16_t *)&whf->i_seq[0] |= htole16( 1687 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1688 IEEE80211_SEQ_FRAG_SHIFT); 1689 fragno++; 1690 1691 payload = fragsize - totalhdrsize; 1692 /* NB: destination is known to be contiguous */ 1693 1694 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1695 m->m_len = hdrspace + payload; 1696 m->m_pkthdr.len = hdrspace + payload; 1697 m->m_flags |= M_FRAG; 1698 1699 /* chain up the fragment */ 1700 prev->m_nextpkt = m; 1701 prev = m; 1702 1703 /* deduct fragment just formed */ 1704 remainder -= payload; 1705 off += payload; 1706 } while (remainder != 0); 1707 1708 /* set the last fragment */ 1709 m->m_flags |= M_LASTFRAG; 1710 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1711 1712 /* strip first mbuf now that everything has been copied */ 1713 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1714 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1715 1716 vap->iv_stats.is_tx_fragframes++; 1717 vap->iv_stats.is_tx_frags += fragno-1; 1718 1719 return 1; 1720 bad: 1721 /* reclaim fragments but leave original frame for caller to free */ 1722 ieee80211_free_mbuf(m0->m_nextpkt); 1723 m0->m_nextpkt = NULL; 1724 return 0; 1725 } 1726 1727 /* 1728 * Add a supported rates element id to a frame. 1729 */ 1730 uint8_t * 1731 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1732 { 1733 int nrates; 1734 1735 *frm++ = IEEE80211_ELEMID_RATES; 1736 nrates = rs->rs_nrates; 1737 if (nrates > IEEE80211_RATE_SIZE) 1738 nrates = IEEE80211_RATE_SIZE; 1739 *frm++ = nrates; 1740 memcpy(frm, rs->rs_rates, nrates); 1741 return frm + nrates; 1742 } 1743 1744 /* 1745 * Add an extended supported rates element id to a frame. 1746 */ 1747 uint8_t * 1748 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1749 { 1750 /* 1751 * Add an extended supported rates element if operating in 11g mode. 1752 */ 1753 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1754 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1755 *frm++ = IEEE80211_ELEMID_XRATES; 1756 *frm++ = nrates; 1757 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1758 frm += nrates; 1759 } 1760 return frm; 1761 } 1762 1763 /* 1764 * Add an ssid element to a frame. 1765 */ 1766 uint8_t * 1767 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1768 { 1769 *frm++ = IEEE80211_ELEMID_SSID; 1770 *frm++ = len; 1771 memcpy(frm, ssid, len); 1772 return frm + len; 1773 } 1774 1775 /* 1776 * Add an erp element to a frame. 1777 */ 1778 static uint8_t * 1779 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1780 { 1781 uint8_t erp; 1782 1783 *frm++ = IEEE80211_ELEMID_ERP; 1784 *frm++ = 1; 1785 erp = 0; 1786 if (ic->ic_nonerpsta != 0) 1787 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1788 if (ic->ic_flags & IEEE80211_F_USEPROT) 1789 erp |= IEEE80211_ERP_USE_PROTECTION; 1790 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1791 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1792 *frm++ = erp; 1793 return frm; 1794 } 1795 1796 /* 1797 * Add a CFParams element to a frame. 1798 */ 1799 static uint8_t * 1800 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1801 { 1802 #define ADDSHORT(frm, v) do { \ 1803 LE_WRITE_2(frm, v); \ 1804 frm += 2; \ 1805 } while (0) 1806 *frm++ = IEEE80211_ELEMID_CFPARMS; 1807 *frm++ = 6; 1808 *frm++ = 0; /* CFP count */ 1809 *frm++ = 2; /* CFP period */ 1810 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1811 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1812 return frm; 1813 #undef ADDSHORT 1814 } 1815 1816 static __inline uint8_t * 1817 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1818 { 1819 memcpy(frm, ie->ie_data, ie->ie_len); 1820 return frm + ie->ie_len; 1821 } 1822 1823 static __inline uint8_t * 1824 add_ie(uint8_t *frm, const uint8_t *ie) 1825 { 1826 memcpy(frm, ie, 2 + ie[1]); 1827 return frm + 2 + ie[1]; 1828 } 1829 1830 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1831 /* 1832 * Add a WME information element to a frame. 1833 */ 1834 uint8_t * 1835 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1836 { 1837 static const struct ieee80211_wme_info info = { 1838 .wme_id = IEEE80211_ELEMID_VENDOR, 1839 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1840 .wme_oui = { WME_OUI_BYTES }, 1841 .wme_type = WME_OUI_TYPE, 1842 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1843 .wme_version = WME_VERSION, 1844 .wme_info = 0, 1845 }; 1846 memcpy(frm, &info, sizeof(info)); 1847 return frm + sizeof(info); 1848 } 1849 1850 /* 1851 * Add a WME parameters element to a frame. 1852 */ 1853 static uint8_t * 1854 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1855 { 1856 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1857 #define ADDSHORT(frm, v) do { \ 1858 LE_WRITE_2(frm, v); \ 1859 frm += 2; \ 1860 } while (0) 1861 /* NB: this works 'cuz a param has an info at the front */ 1862 static const struct ieee80211_wme_info param = { 1863 .wme_id = IEEE80211_ELEMID_VENDOR, 1864 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1865 .wme_oui = { WME_OUI_BYTES }, 1866 .wme_type = WME_OUI_TYPE, 1867 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1868 .wme_version = WME_VERSION, 1869 }; 1870 int i; 1871 1872 memcpy(frm, ¶m, sizeof(param)); 1873 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1874 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1875 *frm++ = 0; /* reserved field */ 1876 for (i = 0; i < WME_NUM_AC; i++) { 1877 const struct wmeParams *ac = 1878 &wme->wme_bssChanParams.cap_wmeParams[i]; 1879 *frm++ = SM(i, WME_PARAM_ACI) 1880 | SM(ac->wmep_acm, WME_PARAM_ACM) 1881 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1882 ; 1883 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1884 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1885 ; 1886 ADDSHORT(frm, ac->wmep_txopLimit); 1887 } 1888 return frm; 1889 #undef SM 1890 #undef ADDSHORT 1891 } 1892 #undef WME_OUI_BYTES 1893 1894 /* 1895 * Add an 11h Power Constraint element to a frame. 1896 */ 1897 static uint8_t * 1898 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1899 { 1900 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1901 /* XXX per-vap tx power limit? */ 1902 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1903 1904 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1905 frm[1] = 1; 1906 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1907 return frm + 3; 1908 } 1909 1910 /* 1911 * Add an 11h Power Capability element to a frame. 1912 */ 1913 static uint8_t * 1914 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1915 { 1916 frm[0] = IEEE80211_ELEMID_PWRCAP; 1917 frm[1] = 2; 1918 frm[2] = c->ic_minpower; 1919 frm[3] = c->ic_maxpower; 1920 return frm + 4; 1921 } 1922 1923 /* 1924 * Add an 11h Supported Channels element to a frame. 1925 */ 1926 static uint8_t * 1927 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1928 { 1929 static const int ielen = 26; 1930 1931 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1932 frm[1] = ielen; 1933 /* XXX not correct */ 1934 memcpy(frm+2, ic->ic_chan_avail, ielen); 1935 return frm + 2 + ielen; 1936 } 1937 1938 /* 1939 * Add an 11h Quiet time element to a frame. 1940 */ 1941 static uint8_t * 1942 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1943 { 1944 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1945 1946 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1947 quiet->len = 6; 1948 if (vap->iv_quiet_count_value == 1) 1949 vap->iv_quiet_count_value = vap->iv_quiet_count; 1950 else if (vap->iv_quiet_count_value > 1) 1951 vap->iv_quiet_count_value--; 1952 1953 if (vap->iv_quiet_count_value == 0) { 1954 /* value 0 is reserved as per 802.11h standerd */ 1955 vap->iv_quiet_count_value = 1; 1956 } 1957 1958 quiet->tbttcount = vap->iv_quiet_count_value; 1959 quiet->period = vap->iv_quiet_period; 1960 quiet->duration = htole16(vap->iv_quiet_duration); 1961 quiet->offset = htole16(vap->iv_quiet_offset); 1962 return frm + sizeof(*quiet); 1963 } 1964 1965 /* 1966 * Add an 11h Channel Switch Announcement element to a frame. 1967 * Note that we use the per-vap CSA count to adjust the global 1968 * counter so we can use this routine to form probe response 1969 * frames and get the current count. 1970 */ 1971 static uint8_t * 1972 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1973 { 1974 struct ieee80211com *ic = vap->iv_ic; 1975 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1976 1977 csa->csa_ie = IEEE80211_ELEMID_CSA; 1978 csa->csa_len = 3; 1979 csa->csa_mode = 1; /* XXX force quiet on channel */ 1980 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1981 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1982 return frm + sizeof(*csa); 1983 } 1984 1985 /* 1986 * Add an 11h country information element to a frame. 1987 */ 1988 static uint8_t * 1989 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1990 { 1991 1992 if (ic->ic_countryie == NULL || 1993 ic->ic_countryie_chan != ic->ic_bsschan) { 1994 /* 1995 * Handle lazy construction of ie. This is done on 1996 * first use and after a channel change that requires 1997 * re-calculation. 1998 */ 1999 if (ic->ic_countryie != NULL) 2000 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2001 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2002 if (ic->ic_countryie == NULL) 2003 return frm; 2004 ic->ic_countryie_chan = ic->ic_bsschan; 2005 } 2006 return add_appie(frm, ic->ic_countryie); 2007 } 2008 2009 uint8_t * 2010 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2011 { 2012 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2013 return (add_ie(frm, vap->iv_wpa_ie)); 2014 else { 2015 /* XXX else complain? */ 2016 return (frm); 2017 } 2018 } 2019 2020 uint8_t * 2021 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2022 { 2023 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2024 return (add_ie(frm, vap->iv_rsn_ie)); 2025 else { 2026 /* XXX else complain? */ 2027 return (frm); 2028 } 2029 } 2030 2031 uint8_t * 2032 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2033 { 2034 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2035 *frm++ = IEEE80211_ELEMID_QOS; 2036 *frm++ = 1; 2037 *frm++ = 0; 2038 } 2039 2040 return (frm); 2041 } 2042 2043 /* 2044 * Send a probe request frame with the specified ssid 2045 * and any optional information element data. 2046 */ 2047 int 2048 ieee80211_send_probereq(struct ieee80211_node *ni, 2049 const uint8_t sa[IEEE80211_ADDR_LEN], 2050 const uint8_t da[IEEE80211_ADDR_LEN], 2051 const uint8_t bssid[IEEE80211_ADDR_LEN], 2052 const uint8_t *ssid, size_t ssidlen) 2053 { 2054 struct ieee80211vap *vap = ni->ni_vap; 2055 struct ieee80211com *ic = ni->ni_ic; 2056 const struct ieee80211_txparam *tp; 2057 struct ieee80211_bpf_params params; 2058 struct ieee80211_frame *wh; 2059 const struct ieee80211_rateset *rs; 2060 struct mbuf *m; 2061 uint8_t *frm; 2062 int ret; 2063 2064 if (vap->iv_state == IEEE80211_S_CAC) { 2065 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2066 "block %s frame in CAC state", "probe request"); 2067 vap->iv_stats.is_tx_badstate++; 2068 return EIO; /* XXX */ 2069 } 2070 2071 /* 2072 * Hold a reference on the node so it doesn't go away until after 2073 * the xmit is complete all the way in the driver. On error we 2074 * will remove our reference. 2075 */ 2076 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2077 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2078 __func__, __LINE__, 2079 ni, ether_sprintf(ni->ni_macaddr), 2080 ieee80211_node_refcnt(ni)+1); 2081 ieee80211_ref_node(ni); 2082 2083 /* 2084 * prreq frame format 2085 * [tlv] ssid 2086 * [tlv] supported rates 2087 * [tlv] RSN (optional) 2088 * [tlv] extended supported rates 2089 * [tlv] WPA (optional) 2090 * [tlv] user-specified ie's 2091 */ 2092 m = ieee80211_getmgtframe(&frm, 2093 ic->ic_headroom + sizeof(struct ieee80211_frame), 2094 2 + IEEE80211_NWID_LEN 2095 + 2 + IEEE80211_RATE_SIZE 2096 + sizeof(struct ieee80211_ie_wpa) 2097 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2098 + sizeof(struct ieee80211_ie_wpa) 2099 + (vap->iv_appie_probereq != NULL ? 2100 vap->iv_appie_probereq->ie_len : 0) 2101 ); 2102 if (m == NULL) { 2103 vap->iv_stats.is_tx_nobuf++; 2104 ieee80211_free_node(ni); 2105 return ENOMEM; 2106 } 2107 2108 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2109 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2110 frm = ieee80211_add_rates(frm, rs); 2111 frm = ieee80211_add_rsn(frm, vap); 2112 frm = ieee80211_add_xrates(frm, rs); 2113 frm = ieee80211_add_wpa(frm, vap); 2114 if (vap->iv_appie_probereq != NULL) 2115 frm = add_appie(frm, vap->iv_appie_probereq); 2116 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2117 2118 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2119 ("leading space %zd", M_LEADINGSPACE(m))); 2120 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2121 if (m == NULL) { 2122 /* NB: cannot happen */ 2123 ieee80211_free_node(ni); 2124 return ENOMEM; 2125 } 2126 2127 IEEE80211_TX_LOCK(ic); 2128 wh = mtod(m, struct ieee80211_frame *); 2129 ieee80211_send_setup(ni, m, 2130 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2131 IEEE80211_NONQOS_TID, sa, da, bssid); 2132 /* XXX power management? */ 2133 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2134 2135 M_WME_SETAC(m, WME_AC_BE); 2136 2137 IEEE80211_NODE_STAT(ni, tx_probereq); 2138 IEEE80211_NODE_STAT(ni, tx_mgmt); 2139 2140 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2141 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2142 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2143 ssidlen, ssid); 2144 2145 memset(¶ms, 0, sizeof(params)); 2146 params.ibp_pri = M_WME_GETAC(m); 2147 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2148 params.ibp_rate0 = tp->mgmtrate; 2149 if (IEEE80211_IS_MULTICAST(da)) { 2150 params.ibp_flags |= IEEE80211_BPF_NOACK; 2151 params.ibp_try0 = 1; 2152 } else 2153 params.ibp_try0 = tp->maxretry; 2154 params.ibp_power = ni->ni_txpower; 2155 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2156 IEEE80211_TX_UNLOCK(ic); 2157 return (ret); 2158 } 2159 2160 /* 2161 * Calculate capability information for mgt frames. 2162 */ 2163 uint16_t 2164 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2165 { 2166 struct ieee80211com *ic = vap->iv_ic; 2167 uint16_t capinfo; 2168 2169 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2170 2171 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2172 capinfo = IEEE80211_CAPINFO_ESS; 2173 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2174 capinfo = IEEE80211_CAPINFO_IBSS; 2175 else 2176 capinfo = 0; 2177 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2178 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2179 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2180 IEEE80211_IS_CHAN_2GHZ(chan)) 2181 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2182 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2183 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2184 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2185 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2186 return capinfo; 2187 } 2188 2189 /* 2190 * Send a management frame. The node is for the destination (or ic_bss 2191 * when in station mode). Nodes other than ic_bss have their reference 2192 * count bumped to reflect our use for an indeterminant time. 2193 */ 2194 int 2195 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2196 { 2197 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2198 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2199 struct ieee80211vap *vap = ni->ni_vap; 2200 struct ieee80211com *ic = ni->ni_ic; 2201 struct ieee80211_node *bss = vap->iv_bss; 2202 struct ieee80211_bpf_params params; 2203 struct mbuf *m; 2204 uint8_t *frm; 2205 uint16_t capinfo; 2206 int has_challenge, is_shared_key, ret, status; 2207 2208 KASSERT(ni != NULL, ("null node")); 2209 2210 /* 2211 * Hold a reference on the node so it doesn't go away until after 2212 * the xmit is complete all the way in the driver. On error we 2213 * will remove our reference. 2214 */ 2215 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2216 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2217 __func__, __LINE__, 2218 ni, ether_sprintf(ni->ni_macaddr), 2219 ieee80211_node_refcnt(ni)+1); 2220 ieee80211_ref_node(ni); 2221 2222 memset(¶ms, 0, sizeof(params)); 2223 switch (type) { 2224 2225 case IEEE80211_FC0_SUBTYPE_AUTH: 2226 status = arg >> 16; 2227 arg &= 0xffff; 2228 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2229 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2230 ni->ni_challenge != NULL); 2231 2232 /* 2233 * Deduce whether we're doing open authentication or 2234 * shared key authentication. We do the latter if 2235 * we're in the middle of a shared key authentication 2236 * handshake or if we're initiating an authentication 2237 * request and configured to use shared key. 2238 */ 2239 is_shared_key = has_challenge || 2240 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2241 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2242 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2243 2244 m = ieee80211_getmgtframe(&frm, 2245 ic->ic_headroom + sizeof(struct ieee80211_frame), 2246 3 * sizeof(uint16_t) 2247 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2248 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2249 ); 2250 if (m == NULL) 2251 senderr(ENOMEM, is_tx_nobuf); 2252 2253 ((uint16_t *)frm)[0] = 2254 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2255 : htole16(IEEE80211_AUTH_ALG_OPEN); 2256 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2257 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2258 2259 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2260 ((uint16_t *)frm)[3] = 2261 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2262 IEEE80211_ELEMID_CHALLENGE); 2263 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2264 IEEE80211_CHALLENGE_LEN); 2265 m->m_pkthdr.len = m->m_len = 2266 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2267 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2268 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2269 "request encrypt frame (%s)", __func__); 2270 /* mark frame for encryption */ 2271 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2272 } 2273 } else 2274 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2275 2276 /* XXX not right for shared key */ 2277 if (status == IEEE80211_STATUS_SUCCESS) 2278 IEEE80211_NODE_STAT(ni, tx_auth); 2279 else 2280 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2281 2282 if (vap->iv_opmode == IEEE80211_M_STA) 2283 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2284 (void *) vap->iv_state); 2285 break; 2286 2287 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2288 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2289 "send station deauthenticate (reason %d)", arg); 2290 m = ieee80211_getmgtframe(&frm, 2291 ic->ic_headroom + sizeof(struct ieee80211_frame), 2292 sizeof(uint16_t)); 2293 if (m == NULL) 2294 senderr(ENOMEM, is_tx_nobuf); 2295 *(uint16_t *)frm = htole16(arg); /* reason */ 2296 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2297 2298 IEEE80211_NODE_STAT(ni, tx_deauth); 2299 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2300 2301 ieee80211_node_unauthorize(ni); /* port closed */ 2302 break; 2303 2304 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2305 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2306 /* 2307 * asreq frame format 2308 * [2] capability information 2309 * [2] listen interval 2310 * [6*] current AP address (reassoc only) 2311 * [tlv] ssid 2312 * [tlv] supported rates 2313 * [tlv] extended supported rates 2314 * [4] power capability (optional) 2315 * [28] supported channels (optional) 2316 * [tlv] HT capabilities 2317 * [tlv] WME (optional) 2318 * [tlv] Vendor OUI HT capabilities (optional) 2319 * [tlv] Atheros capabilities (if negotiated) 2320 * [tlv] AppIE's (optional) 2321 */ 2322 m = ieee80211_getmgtframe(&frm, 2323 ic->ic_headroom + sizeof(struct ieee80211_frame), 2324 sizeof(uint16_t) 2325 + sizeof(uint16_t) 2326 + IEEE80211_ADDR_LEN 2327 + 2 + IEEE80211_NWID_LEN 2328 + 2 + IEEE80211_RATE_SIZE 2329 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2330 + 4 2331 + 2 + 26 2332 + sizeof(struct ieee80211_wme_info) 2333 + sizeof(struct ieee80211_ie_htcap) 2334 + 4 + sizeof(struct ieee80211_ie_htcap) 2335 #ifdef IEEE80211_SUPPORT_SUPERG 2336 + sizeof(struct ieee80211_ath_ie) 2337 #endif 2338 + (vap->iv_appie_wpa != NULL ? 2339 vap->iv_appie_wpa->ie_len : 0) 2340 + (vap->iv_appie_assocreq != NULL ? 2341 vap->iv_appie_assocreq->ie_len : 0) 2342 ); 2343 if (m == NULL) 2344 senderr(ENOMEM, is_tx_nobuf); 2345 2346 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2347 ("wrong mode %u", vap->iv_opmode)); 2348 capinfo = IEEE80211_CAPINFO_ESS; 2349 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2350 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2351 /* 2352 * NB: Some 11a AP's reject the request when 2353 * short premable is set. 2354 */ 2355 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2356 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2357 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2358 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2359 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2360 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2361 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2362 (vap->iv_flags & IEEE80211_F_DOTH)) 2363 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2364 *(uint16_t *)frm = htole16(capinfo); 2365 frm += 2; 2366 2367 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2368 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2369 bss->ni_intval)); 2370 frm += 2; 2371 2372 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2373 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2374 frm += IEEE80211_ADDR_LEN; 2375 } 2376 2377 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2378 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2379 frm = ieee80211_add_rsn(frm, vap); 2380 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2381 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2382 frm = ieee80211_add_powercapability(frm, 2383 ic->ic_curchan); 2384 frm = ieee80211_add_supportedchannels(frm, ic); 2385 } 2386 2387 /* 2388 * Check the channel - we may be using an 11n NIC with an 2389 * 11n capable station, but we're configured to be an 11b 2390 * channel. 2391 */ 2392 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2393 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2394 ni->ni_ies.htcap_ie != NULL && 2395 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2396 frm = ieee80211_add_htcap(frm, ni); 2397 } 2398 frm = ieee80211_add_wpa(frm, vap); 2399 if ((ic->ic_flags & IEEE80211_F_WME) && 2400 ni->ni_ies.wme_ie != NULL) 2401 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2402 2403 /* 2404 * Same deal - only send HT info if we're on an 11n 2405 * capable channel. 2406 */ 2407 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2408 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2409 ni->ni_ies.htcap_ie != NULL && 2410 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2411 frm = ieee80211_add_htcap_vendor(frm, ni); 2412 } 2413 #ifdef IEEE80211_SUPPORT_SUPERG 2414 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2415 frm = ieee80211_add_ath(frm, 2416 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2417 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2418 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2419 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2420 } 2421 #endif /* IEEE80211_SUPPORT_SUPERG */ 2422 if (vap->iv_appie_assocreq != NULL) 2423 frm = add_appie(frm, vap->iv_appie_assocreq); 2424 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2425 2426 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2427 (void *) vap->iv_state); 2428 break; 2429 2430 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2431 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2432 /* 2433 * asresp frame format 2434 * [2] capability information 2435 * [2] status 2436 * [2] association ID 2437 * [tlv] supported rates 2438 * [tlv] extended supported rates 2439 * [tlv] HT capabilities (standard, if STA enabled) 2440 * [tlv] HT information (standard, if STA enabled) 2441 * [tlv] WME (if configured and STA enabled) 2442 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2443 * [tlv] HT information (vendor OUI, if STA enabled) 2444 * [tlv] Atheros capabilities (if STA enabled) 2445 * [tlv] AppIE's (optional) 2446 */ 2447 m = ieee80211_getmgtframe(&frm, 2448 ic->ic_headroom + sizeof(struct ieee80211_frame), 2449 sizeof(uint16_t) 2450 + sizeof(uint16_t) 2451 + sizeof(uint16_t) 2452 + 2 + IEEE80211_RATE_SIZE 2453 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2454 + sizeof(struct ieee80211_ie_htcap) + 4 2455 + sizeof(struct ieee80211_ie_htinfo) + 4 2456 + sizeof(struct ieee80211_wme_param) 2457 #ifdef IEEE80211_SUPPORT_SUPERG 2458 + sizeof(struct ieee80211_ath_ie) 2459 #endif 2460 + (vap->iv_appie_assocresp != NULL ? 2461 vap->iv_appie_assocresp->ie_len : 0) 2462 ); 2463 if (m == NULL) 2464 senderr(ENOMEM, is_tx_nobuf); 2465 2466 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2467 *(uint16_t *)frm = htole16(capinfo); 2468 frm += 2; 2469 2470 *(uint16_t *)frm = htole16(arg); /* status */ 2471 frm += 2; 2472 2473 if (arg == IEEE80211_STATUS_SUCCESS) { 2474 *(uint16_t *)frm = htole16(ni->ni_associd); 2475 IEEE80211_NODE_STAT(ni, tx_assoc); 2476 } else 2477 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2478 frm += 2; 2479 2480 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2481 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2482 /* NB: respond according to what we received */ 2483 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2484 frm = ieee80211_add_htcap(frm, ni); 2485 frm = ieee80211_add_htinfo(frm, ni); 2486 } 2487 if ((vap->iv_flags & IEEE80211_F_WME) && 2488 ni->ni_ies.wme_ie != NULL) 2489 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2490 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2491 frm = ieee80211_add_htcap_vendor(frm, ni); 2492 frm = ieee80211_add_htinfo_vendor(frm, ni); 2493 } 2494 #ifdef IEEE80211_SUPPORT_SUPERG 2495 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2496 frm = ieee80211_add_ath(frm, 2497 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2498 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2499 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2500 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2501 #endif /* IEEE80211_SUPPORT_SUPERG */ 2502 if (vap->iv_appie_assocresp != NULL) 2503 frm = add_appie(frm, vap->iv_appie_assocresp); 2504 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2505 break; 2506 2507 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2508 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2509 "send station disassociate (reason %d)", arg); 2510 m = ieee80211_getmgtframe(&frm, 2511 ic->ic_headroom + sizeof(struct ieee80211_frame), 2512 sizeof(uint16_t)); 2513 if (m == NULL) 2514 senderr(ENOMEM, is_tx_nobuf); 2515 *(uint16_t *)frm = htole16(arg); /* reason */ 2516 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2517 2518 IEEE80211_NODE_STAT(ni, tx_disassoc); 2519 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2520 break; 2521 2522 default: 2523 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2524 "invalid mgmt frame type %u", type); 2525 senderr(EINVAL, is_tx_unknownmgt); 2526 /* NOTREACHED */ 2527 } 2528 2529 /* NB: force non-ProbeResp frames to the highest queue */ 2530 params.ibp_pri = WME_AC_VO; 2531 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2532 /* NB: we know all frames are unicast */ 2533 params.ibp_try0 = bss->ni_txparms->maxretry; 2534 params.ibp_power = bss->ni_txpower; 2535 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2536 bad: 2537 ieee80211_free_node(ni); 2538 return ret; 2539 #undef senderr 2540 #undef HTFLAGS 2541 } 2542 2543 /* 2544 * Return an mbuf with a probe response frame in it. 2545 * Space is left to prepend and 802.11 header at the 2546 * front but it's left to the caller to fill in. 2547 */ 2548 struct mbuf * 2549 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2550 { 2551 struct ieee80211vap *vap = bss->ni_vap; 2552 struct ieee80211com *ic = bss->ni_ic; 2553 const struct ieee80211_rateset *rs; 2554 struct mbuf *m; 2555 uint16_t capinfo; 2556 uint8_t *frm; 2557 2558 /* 2559 * probe response frame format 2560 * [8] time stamp 2561 * [2] beacon interval 2562 * [2] cabability information 2563 * [tlv] ssid 2564 * [tlv] supported rates 2565 * [tlv] parameter set (FH/DS) 2566 * [tlv] parameter set (IBSS) 2567 * [tlv] country (optional) 2568 * [3] power control (optional) 2569 * [5] channel switch announcement (CSA) (optional) 2570 * [tlv] extended rate phy (ERP) 2571 * [tlv] extended supported rates 2572 * [tlv] RSN (optional) 2573 * [tlv] HT capabilities 2574 * [tlv] HT information 2575 * [tlv] WPA (optional) 2576 * [tlv] WME (optional) 2577 * [tlv] Vendor OUI HT capabilities (optional) 2578 * [tlv] Vendor OUI HT information (optional) 2579 * [tlv] Atheros capabilities 2580 * [tlv] AppIE's (optional) 2581 * [tlv] Mesh ID (MBSS) 2582 * [tlv] Mesh Conf (MBSS) 2583 */ 2584 m = ieee80211_getmgtframe(&frm, 2585 ic->ic_headroom + sizeof(struct ieee80211_frame), 2586 8 2587 + sizeof(uint16_t) 2588 + sizeof(uint16_t) 2589 + 2 + IEEE80211_NWID_LEN 2590 + 2 + IEEE80211_RATE_SIZE 2591 + 7 /* max(7,3) */ 2592 + IEEE80211_COUNTRY_MAX_SIZE 2593 + 3 2594 + sizeof(struct ieee80211_csa_ie) 2595 + sizeof(struct ieee80211_quiet_ie) 2596 + 3 2597 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2598 + sizeof(struct ieee80211_ie_wpa) 2599 + sizeof(struct ieee80211_ie_htcap) 2600 + sizeof(struct ieee80211_ie_htinfo) 2601 + sizeof(struct ieee80211_ie_wpa) 2602 + sizeof(struct ieee80211_wme_param) 2603 + 4 + sizeof(struct ieee80211_ie_htcap) 2604 + 4 + sizeof(struct ieee80211_ie_htinfo) 2605 #ifdef IEEE80211_SUPPORT_SUPERG 2606 + sizeof(struct ieee80211_ath_ie) 2607 #endif 2608 #ifdef IEEE80211_SUPPORT_MESH 2609 + 2 + IEEE80211_MESHID_LEN 2610 + sizeof(struct ieee80211_meshconf_ie) 2611 #endif 2612 + (vap->iv_appie_proberesp != NULL ? 2613 vap->iv_appie_proberesp->ie_len : 0) 2614 ); 2615 if (m == NULL) { 2616 vap->iv_stats.is_tx_nobuf++; 2617 return NULL; 2618 } 2619 2620 memset(frm, 0, 8); /* timestamp should be filled later */ 2621 frm += 8; 2622 *(uint16_t *)frm = htole16(bss->ni_intval); 2623 frm += 2; 2624 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2625 *(uint16_t *)frm = htole16(capinfo); 2626 frm += 2; 2627 2628 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2629 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2630 frm = ieee80211_add_rates(frm, rs); 2631 2632 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2633 *frm++ = IEEE80211_ELEMID_FHPARMS; 2634 *frm++ = 5; 2635 *frm++ = bss->ni_fhdwell & 0x00ff; 2636 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2637 *frm++ = IEEE80211_FH_CHANSET( 2638 ieee80211_chan2ieee(ic, bss->ni_chan)); 2639 *frm++ = IEEE80211_FH_CHANPAT( 2640 ieee80211_chan2ieee(ic, bss->ni_chan)); 2641 *frm++ = bss->ni_fhindex; 2642 } else { 2643 *frm++ = IEEE80211_ELEMID_DSPARMS; 2644 *frm++ = 1; 2645 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2646 } 2647 2648 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2649 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2650 *frm++ = 2; 2651 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2652 } 2653 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2654 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2655 frm = ieee80211_add_countryie(frm, ic); 2656 if (vap->iv_flags & IEEE80211_F_DOTH) { 2657 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2658 frm = ieee80211_add_powerconstraint(frm, vap); 2659 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2660 frm = ieee80211_add_csa(frm, vap); 2661 } 2662 if (vap->iv_flags & IEEE80211_F_DOTH) { 2663 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2664 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2665 if (vap->iv_quiet) 2666 frm = ieee80211_add_quiet(frm, vap); 2667 } 2668 } 2669 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2670 frm = ieee80211_add_erp(frm, ic); 2671 frm = ieee80211_add_xrates(frm, rs); 2672 frm = ieee80211_add_rsn(frm, vap); 2673 /* 2674 * NB: legacy 11b clients do not get certain ie's. 2675 * The caller identifies such clients by passing 2676 * a token in legacy to us. Could expand this to be 2677 * any legacy client for stuff like HT ie's. 2678 */ 2679 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2680 legacy != IEEE80211_SEND_LEGACY_11B) { 2681 frm = ieee80211_add_htcap(frm, bss); 2682 frm = ieee80211_add_htinfo(frm, bss); 2683 } 2684 frm = ieee80211_add_wpa(frm, vap); 2685 if (vap->iv_flags & IEEE80211_F_WME) 2686 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2687 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2688 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2689 legacy != IEEE80211_SEND_LEGACY_11B) { 2690 frm = ieee80211_add_htcap_vendor(frm, bss); 2691 frm = ieee80211_add_htinfo_vendor(frm, bss); 2692 } 2693 #ifdef IEEE80211_SUPPORT_SUPERG 2694 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2695 legacy != IEEE80211_SEND_LEGACY_11B) 2696 frm = ieee80211_add_athcaps(frm, bss); 2697 #endif 2698 if (vap->iv_appie_proberesp != NULL) 2699 frm = add_appie(frm, vap->iv_appie_proberesp); 2700 #ifdef IEEE80211_SUPPORT_MESH 2701 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2702 frm = ieee80211_add_meshid(frm, vap); 2703 frm = ieee80211_add_meshconf(frm, vap); 2704 } 2705 #endif 2706 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2707 2708 return m; 2709 } 2710 2711 /* 2712 * Send a probe response frame to the specified mac address. 2713 * This does not go through the normal mgt frame api so we 2714 * can specify the destination address and re-use the bss node 2715 * for the sta reference. 2716 */ 2717 int 2718 ieee80211_send_proberesp(struct ieee80211vap *vap, 2719 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2720 { 2721 struct ieee80211_node *bss = vap->iv_bss; 2722 struct ieee80211com *ic = vap->iv_ic; 2723 struct ieee80211_frame *wh; 2724 struct mbuf *m; 2725 int ret; 2726 2727 if (vap->iv_state == IEEE80211_S_CAC) { 2728 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2729 "block %s frame in CAC state", "probe response"); 2730 vap->iv_stats.is_tx_badstate++; 2731 return EIO; /* XXX */ 2732 } 2733 2734 /* 2735 * Hold a reference on the node so it doesn't go away until after 2736 * the xmit is complete all the way in the driver. On error we 2737 * will remove our reference. 2738 */ 2739 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2740 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2741 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2742 ieee80211_node_refcnt(bss)+1); 2743 ieee80211_ref_node(bss); 2744 2745 m = ieee80211_alloc_proberesp(bss, legacy); 2746 if (m == NULL) { 2747 ieee80211_free_node(bss); 2748 return ENOMEM; 2749 } 2750 2751 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2752 KASSERT(m != NULL, ("no room for header")); 2753 2754 IEEE80211_TX_LOCK(ic); 2755 wh = mtod(m, struct ieee80211_frame *); 2756 ieee80211_send_setup(bss, m, 2757 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2758 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2759 /* XXX power management? */ 2760 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2761 2762 M_WME_SETAC(m, WME_AC_BE); 2763 2764 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2765 "send probe resp on channel %u to %s%s\n", 2766 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2767 legacy ? " <legacy>" : ""); 2768 IEEE80211_NODE_STAT(bss, tx_mgmt); 2769 2770 ret = ieee80211_raw_output(vap, bss, m, NULL); 2771 IEEE80211_TX_UNLOCK(ic); 2772 return (ret); 2773 } 2774 2775 /* 2776 * Allocate and build a RTS (Request To Send) control frame. 2777 */ 2778 struct mbuf * 2779 ieee80211_alloc_rts(struct ieee80211com *ic, 2780 const uint8_t ra[IEEE80211_ADDR_LEN], 2781 const uint8_t ta[IEEE80211_ADDR_LEN], 2782 uint16_t dur) 2783 { 2784 struct ieee80211_frame_rts *rts; 2785 struct mbuf *m; 2786 2787 /* XXX honor ic_headroom */ 2788 m = m_gethdr(M_NOWAIT, MT_DATA); 2789 if (m != NULL) { 2790 rts = mtod(m, struct ieee80211_frame_rts *); 2791 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2792 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2793 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2794 *(u_int16_t *)rts->i_dur = htole16(dur); 2795 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2796 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2797 2798 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2799 } 2800 return m; 2801 } 2802 2803 /* 2804 * Allocate and build a CTS (Clear To Send) control frame. 2805 */ 2806 struct mbuf * 2807 ieee80211_alloc_cts(struct ieee80211com *ic, 2808 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2809 { 2810 struct ieee80211_frame_cts *cts; 2811 struct mbuf *m; 2812 2813 /* XXX honor ic_headroom */ 2814 m = m_gethdr(M_NOWAIT, MT_DATA); 2815 if (m != NULL) { 2816 cts = mtod(m, struct ieee80211_frame_cts *); 2817 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2818 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2819 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2820 *(u_int16_t *)cts->i_dur = htole16(dur); 2821 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2822 2823 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2824 } 2825 return m; 2826 } 2827 2828 static void 2829 ieee80211_tx_mgt_timeout(void *arg) 2830 { 2831 struct ieee80211vap *vap = arg; 2832 2833 IEEE80211_LOCK(vap->iv_ic); 2834 if (vap->iv_state != IEEE80211_S_INIT && 2835 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2836 /* 2837 * NB: it's safe to specify a timeout as the reason here; 2838 * it'll only be used in the right state. 2839 */ 2840 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2841 IEEE80211_SCAN_FAIL_TIMEOUT); 2842 } 2843 IEEE80211_UNLOCK(vap->iv_ic); 2844 } 2845 2846 /* 2847 * This is the callback set on net80211-sourced transmitted 2848 * authentication request frames. 2849 * 2850 * This does a couple of things: 2851 * 2852 * + If the frame transmitted was a success, it schedules a future 2853 * event which will transition the interface to scan. 2854 * If a state transition _then_ occurs before that event occurs, 2855 * said state transition will cancel this callout. 2856 * 2857 * + If the frame transmit was a failure, it immediately schedules 2858 * the transition back to scan. 2859 */ 2860 static void 2861 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2862 { 2863 struct ieee80211vap *vap = ni->ni_vap; 2864 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2865 2866 /* 2867 * Frame transmit completed; arrange timer callback. If 2868 * transmit was successfuly we wait for response. Otherwise 2869 * we arrange an immediate callback instead of doing the 2870 * callback directly since we don't know what state the driver 2871 * is in (e.g. what locks it is holding). This work should 2872 * not be too time-critical and not happen too often so the 2873 * added overhead is acceptable. 2874 * 2875 * XXX what happens if !acked but response shows up before callback? 2876 */ 2877 if (vap->iv_state == ostate) { 2878 callout_reset(&vap->iv_mgtsend, 2879 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2880 ieee80211_tx_mgt_timeout, vap); 2881 } 2882 } 2883 2884 static void 2885 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2886 struct ieee80211_node *ni) 2887 { 2888 struct ieee80211vap *vap = ni->ni_vap; 2889 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2890 struct ieee80211com *ic = ni->ni_ic; 2891 struct ieee80211_rateset *rs = &ni->ni_rates; 2892 uint16_t capinfo; 2893 2894 /* 2895 * beacon frame format 2896 * [8] time stamp 2897 * [2] beacon interval 2898 * [2] cabability information 2899 * [tlv] ssid 2900 * [tlv] supported rates 2901 * [3] parameter set (DS) 2902 * [8] CF parameter set (optional) 2903 * [tlv] parameter set (IBSS/TIM) 2904 * [tlv] country (optional) 2905 * [3] power control (optional) 2906 * [5] channel switch announcement (CSA) (optional) 2907 * [tlv] extended rate phy (ERP) 2908 * [tlv] extended supported rates 2909 * [tlv] RSN parameters 2910 * [tlv] HT capabilities 2911 * [tlv] HT information 2912 * XXX Vendor-specific OIDs (e.g. Atheros) 2913 * [tlv] WPA parameters 2914 * [tlv] WME parameters 2915 * [tlv] Vendor OUI HT capabilities (optional) 2916 * [tlv] Vendor OUI HT information (optional) 2917 * [tlv] Atheros capabilities (optional) 2918 * [tlv] TDMA parameters (optional) 2919 * [tlv] Mesh ID (MBSS) 2920 * [tlv] Mesh Conf (MBSS) 2921 * [tlv] application data (optional) 2922 */ 2923 2924 memset(bo, 0, sizeof(*bo)); 2925 2926 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2927 frm += 8; 2928 *(uint16_t *)frm = htole16(ni->ni_intval); 2929 frm += 2; 2930 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2931 bo->bo_caps = (uint16_t *)frm; 2932 *(uint16_t *)frm = htole16(capinfo); 2933 frm += 2; 2934 *frm++ = IEEE80211_ELEMID_SSID; 2935 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2936 *frm++ = ni->ni_esslen; 2937 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2938 frm += ni->ni_esslen; 2939 } else 2940 *frm++ = 0; 2941 frm = ieee80211_add_rates(frm, rs); 2942 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2943 *frm++ = IEEE80211_ELEMID_DSPARMS; 2944 *frm++ = 1; 2945 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2946 } 2947 if (ic->ic_flags & IEEE80211_F_PCF) { 2948 bo->bo_cfp = frm; 2949 frm = ieee80211_add_cfparms(frm, ic); 2950 } 2951 bo->bo_tim = frm; 2952 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2953 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2954 *frm++ = 2; 2955 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2956 bo->bo_tim_len = 0; 2957 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2958 vap->iv_opmode == IEEE80211_M_MBSS) { 2959 /* TIM IE is the same for Mesh and Hostap */ 2960 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2961 2962 tie->tim_ie = IEEE80211_ELEMID_TIM; 2963 tie->tim_len = 4; /* length */ 2964 tie->tim_count = 0; /* DTIM count */ 2965 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2966 tie->tim_bitctl = 0; /* bitmap control */ 2967 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2968 frm += sizeof(struct ieee80211_tim_ie); 2969 bo->bo_tim_len = 1; 2970 } 2971 bo->bo_tim_trailer = frm; 2972 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2973 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2974 frm = ieee80211_add_countryie(frm, ic); 2975 if (vap->iv_flags & IEEE80211_F_DOTH) { 2976 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2977 frm = ieee80211_add_powerconstraint(frm, vap); 2978 bo->bo_csa = frm; 2979 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2980 frm = ieee80211_add_csa(frm, vap); 2981 } else 2982 bo->bo_csa = frm; 2983 2984 if (vap->iv_flags & IEEE80211_F_DOTH) { 2985 bo->bo_quiet = frm; 2986 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2987 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2988 if (vap->iv_quiet) 2989 frm = ieee80211_add_quiet(frm,vap); 2990 } 2991 } else 2992 bo->bo_quiet = frm; 2993 2994 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2995 bo->bo_erp = frm; 2996 frm = ieee80211_add_erp(frm, ic); 2997 } 2998 frm = ieee80211_add_xrates(frm, rs); 2999 frm = ieee80211_add_rsn(frm, vap); 3000 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3001 frm = ieee80211_add_htcap(frm, ni); 3002 bo->bo_htinfo = frm; 3003 frm = ieee80211_add_htinfo(frm, ni); 3004 } 3005 frm = ieee80211_add_wpa(frm, vap); 3006 if (vap->iv_flags & IEEE80211_F_WME) { 3007 bo->bo_wme = frm; 3008 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3009 } 3010 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3011 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3012 frm = ieee80211_add_htcap_vendor(frm, ni); 3013 frm = ieee80211_add_htinfo_vendor(frm, ni); 3014 } 3015 #ifdef IEEE80211_SUPPORT_SUPERG 3016 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3017 bo->bo_ath = frm; 3018 frm = ieee80211_add_athcaps(frm, ni); 3019 } 3020 #endif 3021 #ifdef IEEE80211_SUPPORT_TDMA 3022 if (vap->iv_caps & IEEE80211_C_TDMA) { 3023 bo->bo_tdma = frm; 3024 frm = ieee80211_add_tdma(frm, vap); 3025 } 3026 #endif 3027 if (vap->iv_appie_beacon != NULL) { 3028 bo->bo_appie = frm; 3029 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3030 frm = add_appie(frm, vap->iv_appie_beacon); 3031 } 3032 #ifdef IEEE80211_SUPPORT_MESH 3033 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3034 frm = ieee80211_add_meshid(frm, vap); 3035 bo->bo_meshconf = frm; 3036 frm = ieee80211_add_meshconf(frm, vap); 3037 } 3038 #endif 3039 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3040 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3041 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3042 } 3043 3044 /* 3045 * Allocate a beacon frame and fillin the appropriate bits. 3046 */ 3047 struct mbuf * 3048 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3049 { 3050 struct ieee80211vap *vap = ni->ni_vap; 3051 struct ieee80211com *ic = ni->ni_ic; 3052 struct ifnet *ifp = vap->iv_ifp; 3053 struct ieee80211_frame *wh; 3054 struct mbuf *m; 3055 int pktlen; 3056 uint8_t *frm; 3057 3058 /* 3059 * beacon frame format 3060 * [8] time stamp 3061 * [2] beacon interval 3062 * [2] cabability information 3063 * [tlv] ssid 3064 * [tlv] supported rates 3065 * [3] parameter set (DS) 3066 * [8] CF parameter set (optional) 3067 * [tlv] parameter set (IBSS/TIM) 3068 * [tlv] country (optional) 3069 * [3] power control (optional) 3070 * [5] channel switch announcement (CSA) (optional) 3071 * [tlv] extended rate phy (ERP) 3072 * [tlv] extended supported rates 3073 * [tlv] RSN parameters 3074 * [tlv] HT capabilities 3075 * [tlv] HT information 3076 * [tlv] Vendor OUI HT capabilities (optional) 3077 * [tlv] Vendor OUI HT information (optional) 3078 * XXX Vendor-specific OIDs (e.g. Atheros) 3079 * [tlv] WPA parameters 3080 * [tlv] WME parameters 3081 * [tlv] TDMA parameters (optional) 3082 * [tlv] Mesh ID (MBSS) 3083 * [tlv] Mesh Conf (MBSS) 3084 * [tlv] application data (optional) 3085 * NB: we allocate the max space required for the TIM bitmap. 3086 * XXX how big is this? 3087 */ 3088 pktlen = 8 /* time stamp */ 3089 + sizeof(uint16_t) /* beacon interval */ 3090 + sizeof(uint16_t) /* capabilities */ 3091 + 2 + ni->ni_esslen /* ssid */ 3092 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3093 + 2 + 1 /* DS parameters */ 3094 + 2 + 6 /* CF parameters */ 3095 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3096 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3097 + 2 + 1 /* power control */ 3098 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3099 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3100 + 2 + 1 /* ERP */ 3101 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3102 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3103 2*sizeof(struct ieee80211_ie_wpa) : 0) 3104 /* XXX conditional? */ 3105 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3106 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3107 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3108 sizeof(struct ieee80211_wme_param) : 0) 3109 #ifdef IEEE80211_SUPPORT_SUPERG 3110 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3111 #endif 3112 #ifdef IEEE80211_SUPPORT_TDMA 3113 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3114 sizeof(struct ieee80211_tdma_param) : 0) 3115 #endif 3116 #ifdef IEEE80211_SUPPORT_MESH 3117 + 2 + ni->ni_meshidlen 3118 + sizeof(struct ieee80211_meshconf_ie) 3119 #endif 3120 + IEEE80211_MAX_APPIE 3121 ; 3122 m = ieee80211_getmgtframe(&frm, 3123 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3124 if (m == NULL) { 3125 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3126 "%s: cannot get buf; size %u\n", __func__, pktlen); 3127 vap->iv_stats.is_tx_nobuf++; 3128 return NULL; 3129 } 3130 ieee80211_beacon_construct(m, frm, ni); 3131 3132 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3133 KASSERT(m != NULL, ("no space for 802.11 header?")); 3134 wh = mtod(m, struct ieee80211_frame *); 3135 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3136 IEEE80211_FC0_SUBTYPE_BEACON; 3137 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3138 *(uint16_t *)wh->i_dur = 0; 3139 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3140 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3141 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3142 *(uint16_t *)wh->i_seq = 0; 3143 3144 return m; 3145 } 3146 3147 /* 3148 * Update the dynamic parts of a beacon frame based on the current state. 3149 */ 3150 int 3151 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3152 { 3153 struct ieee80211vap *vap = ni->ni_vap; 3154 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3155 struct ieee80211com *ic = ni->ni_ic; 3156 int len_changed = 0; 3157 uint16_t capinfo; 3158 struct ieee80211_frame *wh; 3159 ieee80211_seq seqno; 3160 3161 IEEE80211_LOCK(ic); 3162 /* 3163 * Handle 11h channel change when we've reached the count. 3164 * We must recalculate the beacon frame contents to account 3165 * for the new channel. Note we do this only for the first 3166 * vap that reaches this point; subsequent vaps just update 3167 * their beacon state to reflect the recalculated channel. 3168 */ 3169 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3170 vap->iv_csa_count == ic->ic_csa_count) { 3171 vap->iv_csa_count = 0; 3172 /* 3173 * Effect channel change before reconstructing the beacon 3174 * frame contents as many places reference ni_chan. 3175 */ 3176 if (ic->ic_csa_newchan != NULL) 3177 ieee80211_csa_completeswitch(ic); 3178 /* 3179 * NB: ieee80211_beacon_construct clears all pending 3180 * updates in bo_flags so we don't need to explicitly 3181 * clear IEEE80211_BEACON_CSA. 3182 */ 3183 ieee80211_beacon_construct(m, 3184 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3185 3186 /* XXX do WME aggressive mode processing? */ 3187 IEEE80211_UNLOCK(ic); 3188 return 1; /* just assume length changed */ 3189 } 3190 3191 wh = mtod(m, struct ieee80211_frame *); 3192 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3193 *(uint16_t *)&wh->i_seq[0] = 3194 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3195 M_SEQNO_SET(m, seqno); 3196 3197 /* XXX faster to recalculate entirely or just changes? */ 3198 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3199 *bo->bo_caps = htole16(capinfo); 3200 3201 if (vap->iv_flags & IEEE80211_F_WME) { 3202 struct ieee80211_wme_state *wme = &ic->ic_wme; 3203 3204 /* 3205 * Check for agressive mode change. When there is 3206 * significant high priority traffic in the BSS 3207 * throttle back BE traffic by using conservative 3208 * parameters. Otherwise BE uses agressive params 3209 * to optimize performance of legacy/non-QoS traffic. 3210 */ 3211 if (wme->wme_flags & WME_F_AGGRMODE) { 3212 if (wme->wme_hipri_traffic > 3213 wme->wme_hipri_switch_thresh) { 3214 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3215 "%s: traffic %u, disable aggressive mode\n", 3216 __func__, wme->wme_hipri_traffic); 3217 wme->wme_flags &= ~WME_F_AGGRMODE; 3218 ieee80211_wme_updateparams_locked(vap); 3219 wme->wme_hipri_traffic = 3220 wme->wme_hipri_switch_hysteresis; 3221 } else 3222 wme->wme_hipri_traffic = 0; 3223 } else { 3224 if (wme->wme_hipri_traffic <= 3225 wme->wme_hipri_switch_thresh) { 3226 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3227 "%s: traffic %u, enable aggressive mode\n", 3228 __func__, wme->wme_hipri_traffic); 3229 wme->wme_flags |= WME_F_AGGRMODE; 3230 ieee80211_wme_updateparams_locked(vap); 3231 wme->wme_hipri_traffic = 0; 3232 } else 3233 wme->wme_hipri_traffic = 3234 wme->wme_hipri_switch_hysteresis; 3235 } 3236 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3237 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3238 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3239 } 3240 } 3241 3242 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3243 ieee80211_ht_update_beacon(vap, bo); 3244 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3245 } 3246 #ifdef IEEE80211_SUPPORT_TDMA 3247 if (vap->iv_caps & IEEE80211_C_TDMA) { 3248 /* 3249 * NB: the beacon is potentially updated every TBTT. 3250 */ 3251 ieee80211_tdma_update_beacon(vap, bo); 3252 } 3253 #endif 3254 #ifdef IEEE80211_SUPPORT_MESH 3255 if (vap->iv_opmode == IEEE80211_M_MBSS) 3256 ieee80211_mesh_update_beacon(vap, bo); 3257 #endif 3258 3259 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3260 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3261 struct ieee80211_tim_ie *tie = 3262 (struct ieee80211_tim_ie *) bo->bo_tim; 3263 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3264 u_int timlen, timoff, i; 3265 /* 3266 * ATIM/DTIM needs updating. If it fits in the 3267 * current space allocated then just copy in the 3268 * new bits. Otherwise we need to move any trailing 3269 * data to make room. Note that we know there is 3270 * contiguous space because ieee80211_beacon_allocate 3271 * insures there is space in the mbuf to write a 3272 * maximal-size virtual bitmap (based on iv_max_aid). 3273 */ 3274 /* 3275 * Calculate the bitmap size and offset, copy any 3276 * trailer out of the way, and then copy in the 3277 * new bitmap and update the information element. 3278 * Note that the tim bitmap must contain at least 3279 * one byte and any offset must be even. 3280 */ 3281 if (vap->iv_ps_pending != 0) { 3282 timoff = 128; /* impossibly large */ 3283 for (i = 0; i < vap->iv_tim_len; i++) 3284 if (vap->iv_tim_bitmap[i]) { 3285 timoff = i &~ 1; 3286 break; 3287 } 3288 KASSERT(timoff != 128, ("tim bitmap empty!")); 3289 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3290 if (vap->iv_tim_bitmap[i]) 3291 break; 3292 timlen = 1 + (i - timoff); 3293 } else { 3294 timoff = 0; 3295 timlen = 1; 3296 } 3297 if (timlen != bo->bo_tim_len) { 3298 /* copy up/down trailer */ 3299 int adjust = tie->tim_bitmap+timlen 3300 - bo->bo_tim_trailer; 3301 ovbcopy(bo->bo_tim_trailer, 3302 bo->bo_tim_trailer+adjust, 3303 bo->bo_tim_trailer_len); 3304 bo->bo_tim_trailer += adjust; 3305 bo->bo_erp += adjust; 3306 bo->bo_htinfo += adjust; 3307 #ifdef IEEE80211_SUPPORT_SUPERG 3308 bo->bo_ath += adjust; 3309 #endif 3310 #ifdef IEEE80211_SUPPORT_TDMA 3311 bo->bo_tdma += adjust; 3312 #endif 3313 #ifdef IEEE80211_SUPPORT_MESH 3314 bo->bo_meshconf += adjust; 3315 #endif 3316 bo->bo_appie += adjust; 3317 bo->bo_wme += adjust; 3318 bo->bo_csa += adjust; 3319 bo->bo_quiet += adjust; 3320 bo->bo_tim_len = timlen; 3321 3322 /* update information element */ 3323 tie->tim_len = 3 + timlen; 3324 tie->tim_bitctl = timoff; 3325 len_changed = 1; 3326 } 3327 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3328 bo->bo_tim_len); 3329 3330 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3331 3332 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3333 "%s: TIM updated, pending %u, off %u, len %u\n", 3334 __func__, vap->iv_ps_pending, timoff, timlen); 3335 } 3336 /* count down DTIM period */ 3337 if (tie->tim_count == 0) 3338 tie->tim_count = tie->tim_period - 1; 3339 else 3340 tie->tim_count--; 3341 /* update state for buffered multicast frames on DTIM */ 3342 if (mcast && tie->tim_count == 0) 3343 tie->tim_bitctl |= 1; 3344 else 3345 tie->tim_bitctl &= ~1; 3346 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3347 struct ieee80211_csa_ie *csa = 3348 (struct ieee80211_csa_ie *) bo->bo_csa; 3349 3350 /* 3351 * Insert or update CSA ie. If we're just starting 3352 * to count down to the channel switch then we need 3353 * to insert the CSA ie. Otherwise we just need to 3354 * drop the count. The actual change happens above 3355 * when the vap's count reaches the target count. 3356 */ 3357 if (vap->iv_csa_count == 0) { 3358 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3359 bo->bo_erp += sizeof(*csa); 3360 bo->bo_htinfo += sizeof(*csa); 3361 bo->bo_wme += sizeof(*csa); 3362 #ifdef IEEE80211_SUPPORT_SUPERG 3363 bo->bo_ath += sizeof(*csa); 3364 #endif 3365 #ifdef IEEE80211_SUPPORT_TDMA 3366 bo->bo_tdma += sizeof(*csa); 3367 #endif 3368 #ifdef IEEE80211_SUPPORT_MESH 3369 bo->bo_meshconf += sizeof(*csa); 3370 #endif 3371 bo->bo_appie += sizeof(*csa); 3372 bo->bo_csa_trailer_len += sizeof(*csa); 3373 bo->bo_quiet += sizeof(*csa); 3374 bo->bo_tim_trailer_len += sizeof(*csa); 3375 m->m_len += sizeof(*csa); 3376 m->m_pkthdr.len += sizeof(*csa); 3377 3378 ieee80211_add_csa(bo->bo_csa, vap); 3379 } else 3380 csa->csa_count--; 3381 vap->iv_csa_count++; 3382 /* NB: don't clear IEEE80211_BEACON_CSA */ 3383 } 3384 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3385 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3386 if (vap->iv_quiet) 3387 ieee80211_add_quiet(bo->bo_quiet, vap); 3388 } 3389 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3390 /* 3391 * ERP element needs updating. 3392 */ 3393 (void) ieee80211_add_erp(bo->bo_erp, ic); 3394 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3395 } 3396 #ifdef IEEE80211_SUPPORT_SUPERG 3397 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3398 ieee80211_add_athcaps(bo->bo_ath, ni); 3399 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3400 } 3401 #endif 3402 } 3403 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3404 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3405 int aielen; 3406 uint8_t *frm; 3407 3408 aielen = 0; 3409 if (aie != NULL) 3410 aielen += aie->ie_len; 3411 if (aielen != bo->bo_appie_len) { 3412 /* copy up/down trailer */ 3413 int adjust = aielen - bo->bo_appie_len; 3414 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3415 bo->bo_tim_trailer_len); 3416 bo->bo_tim_trailer += adjust; 3417 bo->bo_appie += adjust; 3418 bo->bo_appie_len = aielen; 3419 3420 len_changed = 1; 3421 } 3422 frm = bo->bo_appie; 3423 if (aie != NULL) 3424 frm = add_appie(frm, aie); 3425 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3426 } 3427 IEEE80211_UNLOCK(ic); 3428 3429 return len_changed; 3430 } 3431 3432 /* 3433 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3434 * tunnel encapsulation. The frame is assumed to have an Ethernet 3435 * header at the front that must be stripped before prepending the 3436 * LLC followed by the Ethernet header passed in (with an Ethernet 3437 * type that specifies the payload size). 3438 */ 3439 struct mbuf * 3440 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3441 const struct ether_header *eh) 3442 { 3443 struct llc *llc; 3444 uint16_t payload; 3445 3446 /* XXX optimize by combining m_adj+M_PREPEND */ 3447 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3448 llc = mtod(m, struct llc *); 3449 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3450 llc->llc_control = LLC_UI; 3451 llc->llc_snap.org_code[0] = 0; 3452 llc->llc_snap.org_code[1] = 0; 3453 llc->llc_snap.org_code[2] = 0; 3454 llc->llc_snap.ether_type = eh->ether_type; 3455 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3456 3457 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3458 if (m == NULL) { /* XXX cannot happen */ 3459 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3460 "%s: no space for ether_header\n", __func__); 3461 vap->iv_stats.is_tx_nobuf++; 3462 return NULL; 3463 } 3464 ETHER_HEADER_COPY(mtod(m, void *), eh); 3465 mtod(m, struct ether_header *)->ether_type = htons(payload); 3466 return m; 3467 } 3468 3469 /* 3470 * Complete an mbuf transmission. 3471 * 3472 * For now, this simply processes a completed frame after the 3473 * driver has completed it's transmission and/or retransmission. 3474 * It assumes the frame is an 802.11 encapsulated frame. 3475 * 3476 * Later on it will grow to become the exit path for a given frame 3477 * from the driver and, depending upon how it's been encapsulated 3478 * and already transmitted, it may end up doing A-MPDU retransmission, 3479 * power save requeuing, etc. 3480 * 3481 * In order for the above to work, the driver entry point to this 3482 * must not hold any driver locks. Thus, the driver needs to delay 3483 * any actual mbuf completion until it can release said locks. 3484 * 3485 * This frees the mbuf and if the mbuf has a node reference, 3486 * the node reference will be freed. 3487 */ 3488 void 3489 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3490 { 3491 3492 if (ni != NULL) { 3493 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3494 3495 if (status == 0) { 3496 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3497 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3498 if (m->m_flags & M_MCAST) 3499 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3500 } else 3501 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3502 if (m->m_flags & M_TXCB) 3503 ieee80211_process_callback(ni, m, status); 3504 ieee80211_free_node(ni); 3505 } 3506 m_freem(m); 3507 } 3508