1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int error, len, mcast; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 if (ieee80211_pwrsave(ni, m) != 0) 146 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 147 ieee80211_free_node(ni); 148 149 /* 150 * We queued it fine, so tell the upper layer 151 * that we consumed it. 152 */ 153 return (0); 154 } 155 /* calculate priority so drivers can find the tx queue */ 156 if (ieee80211_classify(ni, m)) { 157 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 158 ni->ni_macaddr, NULL, 159 "%s", "classification failure"); 160 vap->iv_stats.is_tx_classify++; 161 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 162 m_freem(m); 163 ieee80211_free_node(ni); 164 165 /* XXX better status? */ 166 return (0); 167 } 168 /* 169 * Stash the node pointer. Note that we do this after 170 * any call to ieee80211_dwds_mcast because that code 171 * uses any existing value for rcvif to identify the 172 * interface it (might have been) received on. 173 */ 174 m->m_pkthdr.rcvif = (void *)ni; 175 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 176 len = m->m_pkthdr.len; 177 178 BPF_MTAP(ifp, m); /* 802.3 tx */ 179 180 /* 181 * Check if A-MPDU tx aggregation is setup or if we 182 * should try to enable it. The sta must be associated 183 * with HT and A-MPDU enabled for use. When the policy 184 * routine decides we should enable A-MPDU we issue an 185 * ADDBA request and wait for a reply. The frame being 186 * encapsulated will go out w/o using A-MPDU, or possibly 187 * it might be collected by the driver and held/retransmit. 188 * The default ic_ampdu_enable routine handles staggering 189 * ADDBA requests in case the receiver NAK's us or we are 190 * otherwise unable to establish a BA stream. 191 */ 192 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 193 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 194 (m->m_flags & M_EAPOL) == 0) { 195 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 196 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 197 198 ieee80211_txampdu_count_packet(tap); 199 if (IEEE80211_AMPDU_RUNNING(tap)) { 200 /* 201 * Operational, mark frame for aggregation. 202 * 203 * XXX do tx aggregation here 204 */ 205 m->m_flags |= M_AMPDU_MPDU; 206 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 207 ic->ic_ampdu_enable(ni, tap)) { 208 /* 209 * Not negotiated yet, request service. 210 */ 211 ieee80211_ampdu_request(ni, tap); 212 /* XXX hold frame for reply? */ 213 } 214 } 215 216 #ifdef IEEE80211_SUPPORT_SUPERG 217 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 218 m = ieee80211_ff_check(ni, m); 219 if (m == NULL) { 220 /* NB: any ni ref held on stageq */ 221 return (0); 222 } 223 } 224 #endif /* IEEE80211_SUPPORT_SUPERG */ 225 226 /* 227 * Grab the TX lock - serialise the TX process from this 228 * point (where TX state is being checked/modified) 229 * through to driver queue. 230 */ 231 IEEE80211_TX_LOCK(ic); 232 233 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 234 /* 235 * Encapsulate the packet in prep for transmission. 236 */ 237 m = ieee80211_encap(vap, ni, m); 238 if (m == NULL) { 239 /* NB: stat+msg handled in ieee80211_encap */ 240 IEEE80211_TX_UNLOCK(ic); 241 ieee80211_free_node(ni); 242 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 243 return (ENOBUFS); 244 } 245 } 246 error = ieee80211_parent_xmitpkt(ic, m); 247 248 /* 249 * Unlock at this point - no need to hold it across 250 * ieee80211_free_node() (ie, the comlock) 251 */ 252 IEEE80211_TX_UNLOCK(ic); 253 if (error != 0) { 254 /* NB: IFQ_HANDOFF reclaims mbuf */ 255 ieee80211_free_node(ni); 256 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 257 } else { 258 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 259 if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast); 260 if_inc_counter(ifp, IFCOUNTER_OBYTES, len); 261 } 262 ic->ic_lastdata = ticks; 263 264 return (0); 265 } 266 267 268 269 /* 270 * Send the given mbuf through the given vap. 271 * 272 * This consumes the mbuf regardless of whether the transmit 273 * was successful or not. 274 * 275 * This does none of the initial checks that ieee80211_start() 276 * does (eg CAC timeout, interface wakeup) - the caller must 277 * do this first. 278 */ 279 static int 280 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 281 { 282 #define IS_DWDS(vap) \ 283 (vap->iv_opmode == IEEE80211_M_WDS && \ 284 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 285 struct ieee80211com *ic = vap->iv_ic; 286 struct ifnet *ifp = vap->iv_ifp; 287 struct ieee80211_node *ni; 288 struct ether_header *eh; 289 290 /* 291 * Cancel any background scan. 292 */ 293 if (ic->ic_flags & IEEE80211_F_SCAN) 294 ieee80211_cancel_anyscan(vap); 295 /* 296 * Find the node for the destination so we can do 297 * things like power save and fast frames aggregation. 298 * 299 * NB: past this point various code assumes the first 300 * mbuf has the 802.3 header present (and contiguous). 301 */ 302 ni = NULL; 303 if (m->m_len < sizeof(struct ether_header) && 304 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 305 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 306 "discard frame, %s\n", "m_pullup failed"); 307 vap->iv_stats.is_tx_nobuf++; /* XXX */ 308 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 309 return (ENOBUFS); 310 } 311 eh = mtod(m, struct ether_header *); 312 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 313 if (IS_DWDS(vap)) { 314 /* 315 * Only unicast frames from the above go out 316 * DWDS vaps; multicast frames are handled by 317 * dispatching the frame as it comes through 318 * the AP vap (see below). 319 */ 320 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 321 eh->ether_dhost, "mcast", "%s", "on DWDS"); 322 vap->iv_stats.is_dwds_mcast++; 323 m_freem(m); 324 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 325 /* XXX better status? */ 326 return (ENOBUFS); 327 } 328 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 329 /* 330 * Spam DWDS vap's w/ multicast traffic. 331 */ 332 /* XXX only if dwds in use? */ 333 ieee80211_dwds_mcast(vap, m); 334 } 335 } 336 #ifdef IEEE80211_SUPPORT_MESH 337 if (vap->iv_opmode != IEEE80211_M_MBSS) { 338 #endif 339 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 340 if (ni == NULL) { 341 /* NB: ieee80211_find_txnode does stat+msg */ 342 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 343 m_freem(m); 344 /* XXX better status? */ 345 return (ENOBUFS); 346 } 347 if (ni->ni_associd == 0 && 348 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 349 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 350 eh->ether_dhost, NULL, 351 "sta not associated (type 0x%04x)", 352 htons(eh->ether_type)); 353 vap->iv_stats.is_tx_notassoc++; 354 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 355 m_freem(m); 356 ieee80211_free_node(ni); 357 /* XXX better status? */ 358 return (ENOBUFS); 359 } 360 #ifdef IEEE80211_SUPPORT_MESH 361 } else { 362 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 363 /* 364 * Proxy station only if configured. 365 */ 366 if (!ieee80211_mesh_isproxyena(vap)) { 367 IEEE80211_DISCARD_MAC(vap, 368 IEEE80211_MSG_OUTPUT | 369 IEEE80211_MSG_MESH, 370 eh->ether_dhost, NULL, 371 "%s", "proxy not enabled"); 372 vap->iv_stats.is_mesh_notproxy++; 373 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 374 m_freem(m); 375 /* XXX better status? */ 376 return (ENOBUFS); 377 } 378 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 379 "forward frame from DS SA(%6D), DA(%6D)\n", 380 eh->ether_shost, ":", 381 eh->ether_dhost, ":"); 382 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 383 } 384 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 385 if (ni == NULL) { 386 /* 387 * NB: ieee80211_mesh_discover holds/disposes 388 * frame (e.g. queueing on path discovery). 389 */ 390 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 391 /* XXX better status? */ 392 return (ENOBUFS); 393 } 394 } 395 #endif 396 397 /* 398 * We've resolved the sender, so attempt to transmit it. 399 */ 400 401 if (vap->iv_state == IEEE80211_S_SLEEP) { 402 /* 403 * In power save; queue frame and then wakeup device 404 * for transmit. 405 */ 406 ic->ic_lastdata = ticks; 407 if (ieee80211_pwrsave(ni, m) != 0) 408 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 409 ieee80211_free_node(ni); 410 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 411 return (0); 412 } 413 414 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 415 return (ENOBUFS); 416 return (0); 417 #undef IS_DWDS 418 } 419 420 /* 421 * Start method for vap's. All packets from the stack come 422 * through here. We handle common processing of the packets 423 * before dispatching them to the underlying device. 424 * 425 * if_transmit() requires that the mbuf be consumed by this call 426 * regardless of the return condition. 427 */ 428 int 429 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 430 { 431 struct ieee80211vap *vap = ifp->if_softc; 432 struct ieee80211com *ic = vap->iv_ic; 433 struct ifnet *parent = ic->ic_ifp; 434 435 /* NB: parent must be up and running */ 436 if (!IFNET_IS_UP_RUNNING(parent)) { 437 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 438 "%s: ignore queue, parent %s not up+running\n", 439 __func__, parent->if_xname); 440 m_freem(m); 441 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 442 return (ENETDOWN); 443 } 444 445 /* 446 * No data frames go out unless we're running. 447 * Note in particular this covers CAC and CSA 448 * states (though maybe we should check muting 449 * for CSA). 450 */ 451 if (vap->iv_state != IEEE80211_S_RUN && 452 vap->iv_state != IEEE80211_S_SLEEP) { 453 IEEE80211_LOCK(ic); 454 /* re-check under the com lock to avoid races */ 455 if (vap->iv_state != IEEE80211_S_RUN && 456 vap->iv_state != IEEE80211_S_SLEEP) { 457 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 458 "%s: ignore queue, in %s state\n", 459 __func__, ieee80211_state_name[vap->iv_state]); 460 vap->iv_stats.is_tx_badstate++; 461 IEEE80211_UNLOCK(ic); 462 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 463 m_freem(m); 464 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 465 return (ENETDOWN); 466 } 467 IEEE80211_UNLOCK(ic); 468 } 469 470 /* 471 * Sanitize mbuf flags for net80211 use. We cannot 472 * clear M_PWR_SAV or M_MORE_DATA because these may 473 * be set for frames that are re-submitted from the 474 * power save queue. 475 * 476 * NB: This must be done before ieee80211_classify as 477 * it marks EAPOL in frames with M_EAPOL. 478 */ 479 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 480 481 /* 482 * Bump to the packet transmission path. 483 * The mbuf will be consumed here. 484 */ 485 return (ieee80211_start_pkt(vap, m)); 486 } 487 488 void 489 ieee80211_vap_qflush(struct ifnet *ifp) 490 { 491 492 /* Empty for now */ 493 } 494 495 /* 496 * 802.11 raw output routine. 497 * 498 * XXX TODO: this (and other send routines) should correctly 499 * XXX keep the pwr mgmt bit set if it decides to call into the 500 * XXX driver to send a frame whilst the state is SLEEP. 501 * 502 * Otherwise the peer may decide that we're awake and flood us 503 * with traffic we are still too asleep to receive! 504 */ 505 int 506 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 507 struct mbuf *m, const struct ieee80211_bpf_params *params) 508 { 509 struct ieee80211com *ic = vap->iv_ic; 510 511 /* 512 * Set node - the caller has taken a reference, so ensure 513 * that the mbuf has the same node value that 514 * it would if it were going via the normal path. 515 */ 516 m->m_pkthdr.rcvif = (void *)ni; 517 518 /* 519 * Attempt to add bpf transmit parameters. 520 * 521 * For now it's ok to fail; the raw_xmit api still takes 522 * them as an option. 523 * 524 * Later on when ic_raw_xmit() has params removed, 525 * they'll have to be added - so fail the transmit if 526 * they can't be. 527 */ 528 if (params) 529 (void) ieee80211_add_xmit_params(m, params); 530 531 return (ic->ic_raw_xmit(ni, m, params)); 532 } 533 534 /* 535 * 802.11 output routine. This is (currently) used only to 536 * connect bpf write calls to the 802.11 layer for injecting 537 * raw 802.11 frames. 538 */ 539 int 540 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 541 const struct sockaddr *dst, struct route *ro) 542 { 543 #define senderr(e) do { error = (e); goto bad;} while (0) 544 struct ieee80211_node *ni = NULL; 545 struct ieee80211vap *vap; 546 struct ieee80211_frame *wh; 547 struct ieee80211com *ic = NULL; 548 int error; 549 int ret; 550 551 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 552 /* 553 * Short-circuit requests if the vap is marked OACTIVE 554 * as this can happen because a packet came down through 555 * ieee80211_start before the vap entered RUN state in 556 * which case it's ok to just drop the frame. This 557 * should not be necessary but callers of if_output don't 558 * check OACTIVE. 559 */ 560 senderr(ENETDOWN); 561 } 562 vap = ifp->if_softc; 563 ic = vap->iv_ic; 564 /* 565 * Hand to the 802.3 code if not tagged as 566 * a raw 802.11 frame. 567 */ 568 if (dst->sa_family != AF_IEEE80211) 569 return vap->iv_output(ifp, m, dst, ro); 570 #ifdef MAC 571 error = mac_ifnet_check_transmit(ifp, m); 572 if (error) 573 senderr(error); 574 #endif 575 if (ifp->if_flags & IFF_MONITOR) 576 senderr(ENETDOWN); 577 if (!IFNET_IS_UP_RUNNING(ifp)) 578 senderr(ENETDOWN); 579 if (vap->iv_state == IEEE80211_S_CAC) { 580 IEEE80211_DPRINTF(vap, 581 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 582 "block %s frame in CAC state\n", "raw data"); 583 vap->iv_stats.is_tx_badstate++; 584 senderr(EIO); /* XXX */ 585 } else if (vap->iv_state == IEEE80211_S_SCAN) 586 senderr(EIO); 587 /* XXX bypass bridge, pfil, carp, etc. */ 588 589 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 590 senderr(EIO); /* XXX */ 591 wh = mtod(m, struct ieee80211_frame *); 592 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 593 IEEE80211_FC0_VERSION_0) 594 senderr(EIO); /* XXX */ 595 596 /* locate destination node */ 597 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 598 case IEEE80211_FC1_DIR_NODS: 599 case IEEE80211_FC1_DIR_FROMDS: 600 ni = ieee80211_find_txnode(vap, wh->i_addr1); 601 break; 602 case IEEE80211_FC1_DIR_TODS: 603 case IEEE80211_FC1_DIR_DSTODS: 604 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 605 senderr(EIO); /* XXX */ 606 ni = ieee80211_find_txnode(vap, wh->i_addr3); 607 break; 608 default: 609 senderr(EIO); /* XXX */ 610 } 611 if (ni == NULL) { 612 /* 613 * Permit packets w/ bpf params through regardless 614 * (see below about sa_len). 615 */ 616 if (dst->sa_len == 0) 617 senderr(EHOSTUNREACH); 618 ni = ieee80211_ref_node(vap->iv_bss); 619 } 620 621 /* 622 * Sanitize mbuf for net80211 flags leaked from above. 623 * 624 * NB: This must be done before ieee80211_classify as 625 * it marks EAPOL in frames with M_EAPOL. 626 */ 627 m->m_flags &= ~M_80211_TX; 628 629 /* calculate priority so drivers can find the tx queue */ 630 /* XXX assumes an 802.3 frame */ 631 if (ieee80211_classify(ni, m)) 632 senderr(EIO); /* XXX */ 633 634 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 635 IEEE80211_NODE_STAT(ni, tx_data); 636 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 637 IEEE80211_NODE_STAT(ni, tx_mcast); 638 m->m_flags |= M_MCAST; 639 } else 640 IEEE80211_NODE_STAT(ni, tx_ucast); 641 /* NB: ieee80211_encap does not include 802.11 header */ 642 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 643 644 IEEE80211_TX_LOCK(ic); 645 646 /* 647 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 648 * present by setting the sa_len field of the sockaddr (yes, 649 * this is a hack). 650 * NB: we assume sa_data is suitably aligned to cast. 651 */ 652 ret = ieee80211_raw_output(vap, ni, m, 653 (const struct ieee80211_bpf_params *)(dst->sa_len ? 654 dst->sa_data : NULL)); 655 IEEE80211_TX_UNLOCK(ic); 656 return (ret); 657 bad: 658 if (m != NULL) 659 m_freem(m); 660 if (ni != NULL) 661 ieee80211_free_node(ni); 662 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 663 return error; 664 #undef senderr 665 } 666 667 /* 668 * Set the direction field and address fields of an outgoing 669 * frame. Note this should be called early on in constructing 670 * a frame as it sets i_fc[1]; other bits can then be or'd in. 671 */ 672 void 673 ieee80211_send_setup( 674 struct ieee80211_node *ni, 675 struct mbuf *m, 676 int type, int tid, 677 const uint8_t sa[IEEE80211_ADDR_LEN], 678 const uint8_t da[IEEE80211_ADDR_LEN], 679 const uint8_t bssid[IEEE80211_ADDR_LEN]) 680 { 681 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 682 struct ieee80211vap *vap = ni->ni_vap; 683 struct ieee80211_tx_ampdu *tap; 684 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 685 ieee80211_seq seqno; 686 687 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 688 689 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 690 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 691 switch (vap->iv_opmode) { 692 case IEEE80211_M_STA: 693 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 694 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 695 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 696 IEEE80211_ADDR_COPY(wh->i_addr3, da); 697 break; 698 case IEEE80211_M_IBSS: 699 case IEEE80211_M_AHDEMO: 700 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 701 IEEE80211_ADDR_COPY(wh->i_addr1, da); 702 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 703 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 704 break; 705 case IEEE80211_M_HOSTAP: 706 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 707 IEEE80211_ADDR_COPY(wh->i_addr1, da); 708 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 709 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 710 break; 711 case IEEE80211_M_WDS: 712 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 713 IEEE80211_ADDR_COPY(wh->i_addr1, da); 714 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 715 IEEE80211_ADDR_COPY(wh->i_addr3, da); 716 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 717 break; 718 case IEEE80211_M_MBSS: 719 #ifdef IEEE80211_SUPPORT_MESH 720 if (IEEE80211_IS_MULTICAST(da)) { 721 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 722 /* XXX next hop */ 723 IEEE80211_ADDR_COPY(wh->i_addr1, da); 724 IEEE80211_ADDR_COPY(wh->i_addr2, 725 vap->iv_myaddr); 726 } else { 727 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 728 IEEE80211_ADDR_COPY(wh->i_addr1, da); 729 IEEE80211_ADDR_COPY(wh->i_addr2, 730 vap->iv_myaddr); 731 IEEE80211_ADDR_COPY(wh->i_addr3, da); 732 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 733 } 734 #endif 735 break; 736 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 737 break; 738 } 739 } else { 740 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 741 IEEE80211_ADDR_COPY(wh->i_addr1, da); 742 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 743 #ifdef IEEE80211_SUPPORT_MESH 744 if (vap->iv_opmode == IEEE80211_M_MBSS) 745 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 746 else 747 #endif 748 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 749 } 750 *(uint16_t *)&wh->i_dur[0] = 0; 751 752 tap = &ni->ni_tx_ampdu[tid]; 753 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 754 m->m_flags |= M_AMPDU_MPDU; 755 else { 756 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 757 type & IEEE80211_FC0_SUBTYPE_MASK)) 758 seqno = ni->ni_txseqs[tid]++; 759 else 760 seqno = 0; 761 762 *(uint16_t *)&wh->i_seq[0] = 763 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 764 M_SEQNO_SET(m, seqno); 765 } 766 767 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 768 m->m_flags |= M_MCAST; 769 #undef WH4 770 } 771 772 /* 773 * Send a management frame to the specified node. The node pointer 774 * must have a reference as the pointer will be passed to the driver 775 * and potentially held for a long time. If the frame is successfully 776 * dispatched to the driver, then it is responsible for freeing the 777 * reference (and potentially free'ing up any associated storage); 778 * otherwise deal with reclaiming any reference (on error). 779 */ 780 int 781 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 782 struct ieee80211_bpf_params *params) 783 { 784 struct ieee80211vap *vap = ni->ni_vap; 785 struct ieee80211com *ic = ni->ni_ic; 786 struct ieee80211_frame *wh; 787 int ret; 788 789 KASSERT(ni != NULL, ("null node")); 790 791 if (vap->iv_state == IEEE80211_S_CAC) { 792 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 793 ni, "block %s frame in CAC state", 794 ieee80211_mgt_subtype_name[ 795 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 796 IEEE80211_FC0_SUBTYPE_SHIFT]); 797 vap->iv_stats.is_tx_badstate++; 798 ieee80211_free_node(ni); 799 m_freem(m); 800 return EIO; /* XXX */ 801 } 802 803 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 804 if (m == NULL) { 805 ieee80211_free_node(ni); 806 return ENOMEM; 807 } 808 809 IEEE80211_TX_LOCK(ic); 810 811 wh = mtod(m, struct ieee80211_frame *); 812 ieee80211_send_setup(ni, m, 813 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 814 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 815 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 816 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 817 "encrypting frame (%s)", __func__); 818 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 819 } 820 m->m_flags |= M_ENCAP; /* mark encapsulated */ 821 822 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 823 M_WME_SETAC(m, params->ibp_pri); 824 825 #ifdef IEEE80211_DEBUG 826 /* avoid printing too many frames */ 827 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 828 ieee80211_msg_dumppkts(vap)) { 829 printf("[%s] send %s on channel %u\n", 830 ether_sprintf(wh->i_addr1), 831 ieee80211_mgt_subtype_name[ 832 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 833 IEEE80211_FC0_SUBTYPE_SHIFT], 834 ieee80211_chan2ieee(ic, ic->ic_curchan)); 835 } 836 #endif 837 IEEE80211_NODE_STAT(ni, tx_mgmt); 838 839 ret = ieee80211_raw_output(vap, ni, m, params); 840 IEEE80211_TX_UNLOCK(ic); 841 return (ret); 842 } 843 844 /* 845 * Send a null data frame to the specified node. If the station 846 * is setup for QoS then a QoS Null Data frame is constructed. 847 * If this is a WDS station then a 4-address frame is constructed. 848 * 849 * NB: the caller is assumed to have setup a node reference 850 * for use; this is necessary to deal with a race condition 851 * when probing for inactive stations. Like ieee80211_mgmt_output 852 * we must cleanup any node reference on error; however we 853 * can safely just unref it as we know it will never be the 854 * last reference to the node. 855 */ 856 int 857 ieee80211_send_nulldata(struct ieee80211_node *ni) 858 { 859 struct ieee80211vap *vap = ni->ni_vap; 860 struct ieee80211com *ic = ni->ni_ic; 861 struct mbuf *m; 862 struct ieee80211_frame *wh; 863 int hdrlen; 864 uint8_t *frm; 865 int ret; 866 867 if (vap->iv_state == IEEE80211_S_CAC) { 868 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 869 ni, "block %s frame in CAC state", "null data"); 870 ieee80211_unref_node(&ni); 871 vap->iv_stats.is_tx_badstate++; 872 return EIO; /* XXX */ 873 } 874 875 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 876 hdrlen = sizeof(struct ieee80211_qosframe); 877 else 878 hdrlen = sizeof(struct ieee80211_frame); 879 /* NB: only WDS vap's get 4-address frames */ 880 if (vap->iv_opmode == IEEE80211_M_WDS) 881 hdrlen += IEEE80211_ADDR_LEN; 882 if (ic->ic_flags & IEEE80211_F_DATAPAD) 883 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 884 885 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 886 if (m == NULL) { 887 /* XXX debug msg */ 888 ieee80211_unref_node(&ni); 889 vap->iv_stats.is_tx_nobuf++; 890 return ENOMEM; 891 } 892 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 893 ("leading space %zd", M_LEADINGSPACE(m))); 894 M_PREPEND(m, hdrlen, M_NOWAIT); 895 if (m == NULL) { 896 /* NB: cannot happen */ 897 ieee80211_free_node(ni); 898 return ENOMEM; 899 } 900 901 IEEE80211_TX_LOCK(ic); 902 903 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 904 if (ni->ni_flags & IEEE80211_NODE_QOS) { 905 const int tid = WME_AC_TO_TID(WME_AC_BE); 906 uint8_t *qos; 907 908 ieee80211_send_setup(ni, m, 909 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 910 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 911 912 if (vap->iv_opmode == IEEE80211_M_WDS) 913 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 914 else 915 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 916 qos[0] = tid & IEEE80211_QOS_TID; 917 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 918 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 919 qos[1] = 0; 920 } else { 921 ieee80211_send_setup(ni, m, 922 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 923 IEEE80211_NONQOS_TID, 924 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 925 } 926 if (vap->iv_opmode != IEEE80211_M_WDS) { 927 /* NB: power management bit is never sent by an AP */ 928 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 929 vap->iv_opmode != IEEE80211_M_HOSTAP) 930 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 931 } 932 m->m_len = m->m_pkthdr.len = hdrlen; 933 m->m_flags |= M_ENCAP; /* mark encapsulated */ 934 935 M_WME_SETAC(m, WME_AC_BE); 936 937 IEEE80211_NODE_STAT(ni, tx_data); 938 939 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 940 "send %snull data frame on channel %u, pwr mgt %s", 941 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 942 ieee80211_chan2ieee(ic, ic->ic_curchan), 943 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 944 945 ret = ieee80211_raw_output(vap, ni, m, NULL); 946 IEEE80211_TX_UNLOCK(ic); 947 return (ret); 948 } 949 950 /* 951 * Assign priority to a frame based on any vlan tag assigned 952 * to the station and/or any Diffserv setting in an IP header. 953 * Finally, if an ACM policy is setup (in station mode) it's 954 * applied. 955 */ 956 int 957 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 958 { 959 const struct ether_header *eh = mtod(m, struct ether_header *); 960 int v_wme_ac, d_wme_ac, ac; 961 962 /* 963 * Always promote PAE/EAPOL frames to high priority. 964 */ 965 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 966 /* NB: mark so others don't need to check header */ 967 m->m_flags |= M_EAPOL; 968 ac = WME_AC_VO; 969 goto done; 970 } 971 /* 972 * Non-qos traffic goes to BE. 973 */ 974 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 975 ac = WME_AC_BE; 976 goto done; 977 } 978 979 /* 980 * If node has a vlan tag then all traffic 981 * to it must have a matching tag. 982 */ 983 v_wme_ac = 0; 984 if (ni->ni_vlan != 0) { 985 if ((m->m_flags & M_VLANTAG) == 0) { 986 IEEE80211_NODE_STAT(ni, tx_novlantag); 987 return 1; 988 } 989 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 990 EVL_VLANOFTAG(ni->ni_vlan)) { 991 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 992 return 1; 993 } 994 /* map vlan priority to AC */ 995 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 996 } 997 998 /* XXX m_copydata may be too slow for fast path */ 999 #ifdef INET 1000 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1001 uint8_t tos; 1002 /* 1003 * IP frame, map the DSCP bits from the TOS field. 1004 */ 1005 /* NB: ip header may not be in first mbuf */ 1006 m_copydata(m, sizeof(struct ether_header) + 1007 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1008 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1009 d_wme_ac = TID_TO_WME_AC(tos); 1010 } else { 1011 #endif /* INET */ 1012 #ifdef INET6 1013 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1014 uint32_t flow; 1015 uint8_t tos; 1016 /* 1017 * IPv6 frame, map the DSCP bits from the traffic class field. 1018 */ 1019 m_copydata(m, sizeof(struct ether_header) + 1020 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1021 (caddr_t) &flow); 1022 tos = (uint8_t)(ntohl(flow) >> 20); 1023 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1024 d_wme_ac = TID_TO_WME_AC(tos); 1025 } else { 1026 #endif /* INET6 */ 1027 d_wme_ac = WME_AC_BE; 1028 #ifdef INET6 1029 } 1030 #endif 1031 #ifdef INET 1032 } 1033 #endif 1034 /* 1035 * Use highest priority AC. 1036 */ 1037 if (v_wme_ac > d_wme_ac) 1038 ac = v_wme_ac; 1039 else 1040 ac = d_wme_ac; 1041 1042 /* 1043 * Apply ACM policy. 1044 */ 1045 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1046 static const int acmap[4] = { 1047 WME_AC_BK, /* WME_AC_BE */ 1048 WME_AC_BK, /* WME_AC_BK */ 1049 WME_AC_BE, /* WME_AC_VI */ 1050 WME_AC_VI, /* WME_AC_VO */ 1051 }; 1052 struct ieee80211com *ic = ni->ni_ic; 1053 1054 while (ac != WME_AC_BK && 1055 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1056 ac = acmap[ac]; 1057 } 1058 done: 1059 M_WME_SETAC(m, ac); 1060 return 0; 1061 } 1062 1063 /* 1064 * Insure there is sufficient contiguous space to encapsulate the 1065 * 802.11 data frame. If room isn't already there, arrange for it. 1066 * Drivers and cipher modules assume we have done the necessary work 1067 * and fail rudely if they don't find the space they need. 1068 */ 1069 struct mbuf * 1070 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1071 struct ieee80211_key *key, struct mbuf *m) 1072 { 1073 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1074 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1075 1076 if (key != NULL) { 1077 /* XXX belongs in crypto code? */ 1078 needed_space += key->wk_cipher->ic_header; 1079 /* XXX frags */ 1080 /* 1081 * When crypto is being done in the host we must insure 1082 * the data are writable for the cipher routines; clone 1083 * a writable mbuf chain. 1084 * XXX handle SWMIC specially 1085 */ 1086 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1087 m = m_unshare(m, M_NOWAIT); 1088 if (m == NULL) { 1089 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1090 "%s: cannot get writable mbuf\n", __func__); 1091 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1092 return NULL; 1093 } 1094 } 1095 } 1096 /* 1097 * We know we are called just before stripping an Ethernet 1098 * header and prepending an LLC header. This means we know 1099 * there will be 1100 * sizeof(struct ether_header) - sizeof(struct llc) 1101 * bytes recovered to which we need additional space for the 1102 * 802.11 header and any crypto header. 1103 */ 1104 /* XXX check trailing space and copy instead? */ 1105 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1106 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1107 if (n == NULL) { 1108 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1109 "%s: cannot expand storage\n", __func__); 1110 vap->iv_stats.is_tx_nobuf++; 1111 m_freem(m); 1112 return NULL; 1113 } 1114 KASSERT(needed_space <= MHLEN, 1115 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1116 /* 1117 * Setup new mbuf to have leading space to prepend the 1118 * 802.11 header and any crypto header bits that are 1119 * required (the latter are added when the driver calls 1120 * back to ieee80211_crypto_encap to do crypto encapsulation). 1121 */ 1122 /* NB: must be first 'cuz it clobbers m_data */ 1123 m_move_pkthdr(n, m); 1124 n->m_len = 0; /* NB: m_gethdr does not set */ 1125 n->m_data += needed_space; 1126 /* 1127 * Pull up Ethernet header to create the expected layout. 1128 * We could use m_pullup but that's overkill (i.e. we don't 1129 * need the actual data) and it cannot fail so do it inline 1130 * for speed. 1131 */ 1132 /* NB: struct ether_header is known to be contiguous */ 1133 n->m_len += sizeof(struct ether_header); 1134 m->m_len -= sizeof(struct ether_header); 1135 m->m_data += sizeof(struct ether_header); 1136 /* 1137 * Replace the head of the chain. 1138 */ 1139 n->m_next = m; 1140 m = n; 1141 } 1142 return m; 1143 #undef TO_BE_RECLAIMED 1144 } 1145 1146 /* 1147 * Return the transmit key to use in sending a unicast frame. 1148 * If a unicast key is set we use that. When no unicast key is set 1149 * we fall back to the default transmit key. 1150 */ 1151 static __inline struct ieee80211_key * 1152 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1153 struct ieee80211_node *ni) 1154 { 1155 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1156 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1157 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1158 return NULL; 1159 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1160 } else { 1161 return &ni->ni_ucastkey; 1162 } 1163 } 1164 1165 /* 1166 * Return the transmit key to use in sending a multicast frame. 1167 * Multicast traffic always uses the group key which is installed as 1168 * the default tx key. 1169 */ 1170 static __inline struct ieee80211_key * 1171 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1172 struct ieee80211_node *ni) 1173 { 1174 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1175 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1176 return NULL; 1177 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1178 } 1179 1180 /* 1181 * Encapsulate an outbound data frame. The mbuf chain is updated. 1182 * If an error is encountered NULL is returned. The caller is required 1183 * to provide a node reference and pullup the ethernet header in the 1184 * first mbuf. 1185 * 1186 * NB: Packet is assumed to be processed by ieee80211_classify which 1187 * marked EAPOL frames w/ M_EAPOL. 1188 */ 1189 struct mbuf * 1190 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1191 struct mbuf *m) 1192 { 1193 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1194 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1195 struct ieee80211com *ic = ni->ni_ic; 1196 #ifdef IEEE80211_SUPPORT_MESH 1197 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1198 struct ieee80211_meshcntl_ae10 *mc; 1199 struct ieee80211_mesh_route *rt = NULL; 1200 int dir = -1; 1201 #endif 1202 struct ether_header eh; 1203 struct ieee80211_frame *wh; 1204 struct ieee80211_key *key; 1205 struct llc *llc; 1206 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1207 ieee80211_seq seqno; 1208 int meshhdrsize, meshae; 1209 uint8_t *qos; 1210 1211 IEEE80211_TX_LOCK_ASSERT(ic); 1212 1213 /* 1214 * Copy existing Ethernet header to a safe place. The 1215 * rest of the code assumes it's ok to strip it when 1216 * reorganizing state for the final encapsulation. 1217 */ 1218 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1219 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1220 1221 /* 1222 * Insure space for additional headers. First identify 1223 * transmit key to use in calculating any buffer adjustments 1224 * required. This is also used below to do privacy 1225 * encapsulation work. Then calculate the 802.11 header 1226 * size and any padding required by the driver. 1227 * 1228 * Note key may be NULL if we fall back to the default 1229 * transmit key and that is not set. In that case the 1230 * buffer may not be expanded as needed by the cipher 1231 * routines, but they will/should discard it. 1232 */ 1233 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1234 if (vap->iv_opmode == IEEE80211_M_STA || 1235 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1236 (vap->iv_opmode == IEEE80211_M_WDS && 1237 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1238 key = ieee80211_crypto_getucastkey(vap, ni); 1239 else 1240 key = ieee80211_crypto_getmcastkey(vap, ni); 1241 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1242 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1243 eh.ether_dhost, 1244 "no default transmit key (%s) deftxkey %u", 1245 __func__, vap->iv_def_txkey); 1246 vap->iv_stats.is_tx_nodefkey++; 1247 goto bad; 1248 } 1249 } else 1250 key = NULL; 1251 /* 1252 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1253 * frames so suppress use. This may be an issue if other 1254 * ap's require all data frames to be QoS-encapsulated 1255 * once negotiated in which case we'll need to make this 1256 * configurable. 1257 * NB: mesh data frames are QoS. 1258 */ 1259 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1260 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1261 (m->m_flags & M_EAPOL) == 0; 1262 if (addqos) 1263 hdrsize = sizeof(struct ieee80211_qosframe); 1264 else 1265 hdrsize = sizeof(struct ieee80211_frame); 1266 #ifdef IEEE80211_SUPPORT_MESH 1267 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1268 /* 1269 * Mesh data frames are encapsulated according to the 1270 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1271 * o Group Addressed data (aka multicast) originating 1272 * at the local sta are sent w/ 3-address format and 1273 * address extension mode 00 1274 * o Individually Addressed data (aka unicast) originating 1275 * at the local sta are sent w/ 4-address format and 1276 * address extension mode 00 1277 * o Group Addressed data forwarded from a non-mesh sta are 1278 * sent w/ 3-address format and address extension mode 01 1279 * o Individually Address data from another sta are sent 1280 * w/ 4-address format and address extension mode 10 1281 */ 1282 is4addr = 0; /* NB: don't use, disable */ 1283 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1284 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1285 KASSERT(rt != NULL, ("route is NULL")); 1286 dir = IEEE80211_FC1_DIR_DSTODS; 1287 hdrsize += IEEE80211_ADDR_LEN; 1288 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1289 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1290 vap->iv_myaddr)) { 1291 IEEE80211_NOTE_MAC(vap, 1292 IEEE80211_MSG_MESH, 1293 eh.ether_dhost, 1294 "%s", "trying to send to ourself"); 1295 goto bad; 1296 } 1297 meshae = IEEE80211_MESH_AE_10; 1298 meshhdrsize = 1299 sizeof(struct ieee80211_meshcntl_ae10); 1300 } else { 1301 meshae = IEEE80211_MESH_AE_00; 1302 meshhdrsize = 1303 sizeof(struct ieee80211_meshcntl); 1304 } 1305 } else { 1306 dir = IEEE80211_FC1_DIR_FROMDS; 1307 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1308 /* proxy group */ 1309 meshae = IEEE80211_MESH_AE_01; 1310 meshhdrsize = 1311 sizeof(struct ieee80211_meshcntl_ae01); 1312 } else { 1313 /* group */ 1314 meshae = IEEE80211_MESH_AE_00; 1315 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1316 } 1317 } 1318 } else { 1319 #endif 1320 /* 1321 * 4-address frames need to be generated for: 1322 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1323 * o packets sent through a vap marked for relaying 1324 * (e.g. a station operating with dynamic WDS) 1325 */ 1326 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1327 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1328 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1329 if (is4addr) 1330 hdrsize += IEEE80211_ADDR_LEN; 1331 meshhdrsize = meshae = 0; 1332 #ifdef IEEE80211_SUPPORT_MESH 1333 } 1334 #endif 1335 /* 1336 * Honor driver DATAPAD requirement. 1337 */ 1338 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1339 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1340 else 1341 hdrspace = hdrsize; 1342 1343 if (__predict_true((m->m_flags & M_FF) == 0)) { 1344 /* 1345 * Normal frame. 1346 */ 1347 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1348 if (m == NULL) { 1349 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1350 goto bad; 1351 } 1352 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1353 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1354 llc = mtod(m, struct llc *); 1355 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1356 llc->llc_control = LLC_UI; 1357 llc->llc_snap.org_code[0] = 0; 1358 llc->llc_snap.org_code[1] = 0; 1359 llc->llc_snap.org_code[2] = 0; 1360 llc->llc_snap.ether_type = eh.ether_type; 1361 } else { 1362 #ifdef IEEE80211_SUPPORT_SUPERG 1363 /* 1364 * Aggregated frame. 1365 */ 1366 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1367 if (m == NULL) 1368 #endif 1369 goto bad; 1370 } 1371 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1372 1373 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1374 if (m == NULL) { 1375 vap->iv_stats.is_tx_nobuf++; 1376 goto bad; 1377 } 1378 wh = mtod(m, struct ieee80211_frame *); 1379 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1380 *(uint16_t *)wh->i_dur = 0; 1381 qos = NULL; /* NB: quiet compiler */ 1382 if (is4addr) { 1383 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1384 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1385 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1386 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1387 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1388 } else switch (vap->iv_opmode) { 1389 case IEEE80211_M_STA: 1390 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1391 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1392 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1393 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1394 break; 1395 case IEEE80211_M_IBSS: 1396 case IEEE80211_M_AHDEMO: 1397 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1398 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1399 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1400 /* 1401 * NB: always use the bssid from iv_bss as the 1402 * neighbor's may be stale after an ibss merge 1403 */ 1404 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1405 break; 1406 case IEEE80211_M_HOSTAP: 1407 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1408 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1409 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1410 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1411 break; 1412 #ifdef IEEE80211_SUPPORT_MESH 1413 case IEEE80211_M_MBSS: 1414 /* NB: offset by hdrspace to deal with DATAPAD */ 1415 mc = (struct ieee80211_meshcntl_ae10 *) 1416 (mtod(m, uint8_t *) + hdrspace); 1417 wh->i_fc[1] = dir; 1418 switch (meshae) { 1419 case IEEE80211_MESH_AE_00: /* no proxy */ 1420 mc->mc_flags = 0; 1421 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1422 IEEE80211_ADDR_COPY(wh->i_addr1, 1423 ni->ni_macaddr); 1424 IEEE80211_ADDR_COPY(wh->i_addr2, 1425 vap->iv_myaddr); 1426 IEEE80211_ADDR_COPY(wh->i_addr3, 1427 eh.ether_dhost); 1428 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1429 eh.ether_shost); 1430 qos =((struct ieee80211_qosframe_addr4 *) 1431 wh)->i_qos; 1432 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1433 /* mcast */ 1434 IEEE80211_ADDR_COPY(wh->i_addr1, 1435 eh.ether_dhost); 1436 IEEE80211_ADDR_COPY(wh->i_addr2, 1437 vap->iv_myaddr); 1438 IEEE80211_ADDR_COPY(wh->i_addr3, 1439 eh.ether_shost); 1440 qos = ((struct ieee80211_qosframe *) 1441 wh)->i_qos; 1442 } 1443 break; 1444 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1445 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1446 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1447 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1448 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1449 mc->mc_flags = 1; 1450 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1451 eh.ether_shost); 1452 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1453 break; 1454 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1455 KASSERT(rt != NULL, ("route is NULL")); 1456 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1457 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1458 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1459 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1460 mc->mc_flags = IEEE80211_MESH_AE_10; 1461 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1462 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1463 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1464 break; 1465 default: 1466 KASSERT(0, ("meshae %d", meshae)); 1467 break; 1468 } 1469 mc->mc_ttl = ms->ms_ttl; 1470 ms->ms_seq++; 1471 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1472 break; 1473 #endif 1474 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1475 default: 1476 goto bad; 1477 } 1478 if (m->m_flags & M_MORE_DATA) 1479 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1480 if (addqos) { 1481 int ac, tid; 1482 1483 if (is4addr) { 1484 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1485 /* NB: mesh case handled earlier */ 1486 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1487 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1488 ac = M_WME_GETAC(m); 1489 /* map from access class/queue to 11e header priorty value */ 1490 tid = WME_AC_TO_TID(ac); 1491 qos[0] = tid & IEEE80211_QOS_TID; 1492 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1493 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1494 #ifdef IEEE80211_SUPPORT_MESH 1495 if (vap->iv_opmode == IEEE80211_M_MBSS) 1496 qos[1] = IEEE80211_QOS_MC; 1497 else 1498 #endif 1499 qos[1] = 0; 1500 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1501 1502 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1503 /* 1504 * NB: don't assign a sequence # to potential 1505 * aggregates; we expect this happens at the 1506 * point the frame comes off any aggregation q 1507 * as otherwise we may introduce holes in the 1508 * BA sequence space and/or make window accouting 1509 * more difficult. 1510 * 1511 * XXX may want to control this with a driver 1512 * capability; this may also change when we pull 1513 * aggregation up into net80211 1514 */ 1515 seqno = ni->ni_txseqs[tid]++; 1516 *(uint16_t *)wh->i_seq = 1517 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1518 M_SEQNO_SET(m, seqno); 1519 } 1520 } else { 1521 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1522 *(uint16_t *)wh->i_seq = 1523 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1524 M_SEQNO_SET(m, seqno); 1525 } 1526 1527 1528 /* check if xmit fragmentation is required */ 1529 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1530 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1531 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1532 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1533 if (key != NULL) { 1534 /* 1535 * IEEE 802.1X: send EAPOL frames always in the clear. 1536 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1537 */ 1538 if ((m->m_flags & M_EAPOL) == 0 || 1539 ((vap->iv_flags & IEEE80211_F_WPA) && 1540 (vap->iv_opmode == IEEE80211_M_STA ? 1541 !IEEE80211_KEY_UNDEFINED(key) : 1542 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1543 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1544 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1545 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1546 eh.ether_dhost, 1547 "%s", "enmic failed, discard frame"); 1548 vap->iv_stats.is_crypto_enmicfail++; 1549 goto bad; 1550 } 1551 } 1552 } 1553 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1554 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1555 goto bad; 1556 1557 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1558 1559 IEEE80211_NODE_STAT(ni, tx_data); 1560 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1561 IEEE80211_NODE_STAT(ni, tx_mcast); 1562 m->m_flags |= M_MCAST; 1563 } else 1564 IEEE80211_NODE_STAT(ni, tx_ucast); 1565 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1566 1567 return m; 1568 bad: 1569 if (m != NULL) 1570 m_freem(m); 1571 return NULL; 1572 #undef WH4 1573 #undef MC01 1574 } 1575 1576 /* 1577 * Fragment the frame according to the specified mtu. 1578 * The size of the 802.11 header (w/o padding) is provided 1579 * so we don't need to recalculate it. We create a new 1580 * mbuf for each fragment and chain it through m_nextpkt; 1581 * we might be able to optimize this by reusing the original 1582 * packet's mbufs but that is significantly more complicated. 1583 */ 1584 static int 1585 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1586 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1587 { 1588 struct ieee80211com *ic = vap->iv_ic; 1589 struct ieee80211_frame *wh, *whf; 1590 struct mbuf *m, *prev, *next; 1591 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1592 u_int hdrspace; 1593 1594 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1595 KASSERT(m0->m_pkthdr.len > mtu, 1596 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1597 1598 /* 1599 * Honor driver DATAPAD requirement. 1600 */ 1601 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1602 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1603 else 1604 hdrspace = hdrsize; 1605 1606 wh = mtod(m0, struct ieee80211_frame *); 1607 /* NB: mark the first frag; it will be propagated below */ 1608 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1609 totalhdrsize = hdrspace + ciphdrsize; 1610 fragno = 1; 1611 off = mtu - ciphdrsize; 1612 remainder = m0->m_pkthdr.len - off; 1613 prev = m0; 1614 do { 1615 fragsize = totalhdrsize + remainder; 1616 if (fragsize > mtu) 1617 fragsize = mtu; 1618 /* XXX fragsize can be >2048! */ 1619 KASSERT(fragsize < MCLBYTES, 1620 ("fragment size %u too big!", fragsize)); 1621 if (fragsize > MHLEN) 1622 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1623 else 1624 m = m_gethdr(M_NOWAIT, MT_DATA); 1625 if (m == NULL) 1626 goto bad; 1627 /* leave room to prepend any cipher header */ 1628 m_align(m, fragsize - ciphdrsize); 1629 1630 /* 1631 * Form the header in the fragment. Note that since 1632 * we mark the first fragment with the MORE_FRAG bit 1633 * it automatically is propagated to each fragment; we 1634 * need only clear it on the last fragment (done below). 1635 * NB: frag 1+ dont have Mesh Control field present. 1636 */ 1637 whf = mtod(m, struct ieee80211_frame *); 1638 memcpy(whf, wh, hdrsize); 1639 #ifdef IEEE80211_SUPPORT_MESH 1640 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1641 if (IEEE80211_IS_DSTODS(wh)) 1642 ((struct ieee80211_qosframe_addr4 *) 1643 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1644 else 1645 ((struct ieee80211_qosframe *) 1646 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1647 } 1648 #endif 1649 *(uint16_t *)&whf->i_seq[0] |= htole16( 1650 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1651 IEEE80211_SEQ_FRAG_SHIFT); 1652 fragno++; 1653 1654 payload = fragsize - totalhdrsize; 1655 /* NB: destination is known to be contiguous */ 1656 1657 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1658 m->m_len = hdrspace + payload; 1659 m->m_pkthdr.len = hdrspace + payload; 1660 m->m_flags |= M_FRAG; 1661 1662 /* chain up the fragment */ 1663 prev->m_nextpkt = m; 1664 prev = m; 1665 1666 /* deduct fragment just formed */ 1667 remainder -= payload; 1668 off += payload; 1669 } while (remainder != 0); 1670 1671 /* set the last fragment */ 1672 m->m_flags |= M_LASTFRAG; 1673 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1674 1675 /* strip first mbuf now that everything has been copied */ 1676 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1677 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1678 1679 vap->iv_stats.is_tx_fragframes++; 1680 vap->iv_stats.is_tx_frags += fragno-1; 1681 1682 return 1; 1683 bad: 1684 /* reclaim fragments but leave original frame for caller to free */ 1685 for (m = m0->m_nextpkt; m != NULL; m = next) { 1686 next = m->m_nextpkt; 1687 m->m_nextpkt = NULL; /* XXX paranoid */ 1688 m_freem(m); 1689 } 1690 m0->m_nextpkt = NULL; 1691 return 0; 1692 } 1693 1694 /* 1695 * Add a supported rates element id to a frame. 1696 */ 1697 uint8_t * 1698 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1699 { 1700 int nrates; 1701 1702 *frm++ = IEEE80211_ELEMID_RATES; 1703 nrates = rs->rs_nrates; 1704 if (nrates > IEEE80211_RATE_SIZE) 1705 nrates = IEEE80211_RATE_SIZE; 1706 *frm++ = nrates; 1707 memcpy(frm, rs->rs_rates, nrates); 1708 return frm + nrates; 1709 } 1710 1711 /* 1712 * Add an extended supported rates element id to a frame. 1713 */ 1714 uint8_t * 1715 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1716 { 1717 /* 1718 * Add an extended supported rates element if operating in 11g mode. 1719 */ 1720 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1721 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1722 *frm++ = IEEE80211_ELEMID_XRATES; 1723 *frm++ = nrates; 1724 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1725 frm += nrates; 1726 } 1727 return frm; 1728 } 1729 1730 /* 1731 * Add an ssid element to a frame. 1732 */ 1733 uint8_t * 1734 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1735 { 1736 *frm++ = IEEE80211_ELEMID_SSID; 1737 *frm++ = len; 1738 memcpy(frm, ssid, len); 1739 return frm + len; 1740 } 1741 1742 /* 1743 * Add an erp element to a frame. 1744 */ 1745 static uint8_t * 1746 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1747 { 1748 uint8_t erp; 1749 1750 *frm++ = IEEE80211_ELEMID_ERP; 1751 *frm++ = 1; 1752 erp = 0; 1753 if (ic->ic_nonerpsta != 0) 1754 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1755 if (ic->ic_flags & IEEE80211_F_USEPROT) 1756 erp |= IEEE80211_ERP_USE_PROTECTION; 1757 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1758 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1759 *frm++ = erp; 1760 return frm; 1761 } 1762 1763 /* 1764 * Add a CFParams element to a frame. 1765 */ 1766 static uint8_t * 1767 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1768 { 1769 #define ADDSHORT(frm, v) do { \ 1770 LE_WRITE_2(frm, v); \ 1771 frm += 2; \ 1772 } while (0) 1773 *frm++ = IEEE80211_ELEMID_CFPARMS; 1774 *frm++ = 6; 1775 *frm++ = 0; /* CFP count */ 1776 *frm++ = 2; /* CFP period */ 1777 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1778 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1779 return frm; 1780 #undef ADDSHORT 1781 } 1782 1783 static __inline uint8_t * 1784 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1785 { 1786 memcpy(frm, ie->ie_data, ie->ie_len); 1787 return frm + ie->ie_len; 1788 } 1789 1790 static __inline uint8_t * 1791 add_ie(uint8_t *frm, const uint8_t *ie) 1792 { 1793 memcpy(frm, ie, 2 + ie[1]); 1794 return frm + 2 + ie[1]; 1795 } 1796 1797 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1798 /* 1799 * Add a WME information element to a frame. 1800 */ 1801 static uint8_t * 1802 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1803 { 1804 static const struct ieee80211_wme_info info = { 1805 .wme_id = IEEE80211_ELEMID_VENDOR, 1806 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1807 .wme_oui = { WME_OUI_BYTES }, 1808 .wme_type = WME_OUI_TYPE, 1809 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1810 .wme_version = WME_VERSION, 1811 .wme_info = 0, 1812 }; 1813 memcpy(frm, &info, sizeof(info)); 1814 return frm + sizeof(info); 1815 } 1816 1817 /* 1818 * Add a WME parameters element to a frame. 1819 */ 1820 static uint8_t * 1821 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1822 { 1823 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1824 #define ADDSHORT(frm, v) do { \ 1825 LE_WRITE_2(frm, v); \ 1826 frm += 2; \ 1827 } while (0) 1828 /* NB: this works 'cuz a param has an info at the front */ 1829 static const struct ieee80211_wme_info param = { 1830 .wme_id = IEEE80211_ELEMID_VENDOR, 1831 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1832 .wme_oui = { WME_OUI_BYTES }, 1833 .wme_type = WME_OUI_TYPE, 1834 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1835 .wme_version = WME_VERSION, 1836 }; 1837 int i; 1838 1839 memcpy(frm, ¶m, sizeof(param)); 1840 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1841 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1842 *frm++ = 0; /* reserved field */ 1843 for (i = 0; i < WME_NUM_AC; i++) { 1844 const struct wmeParams *ac = 1845 &wme->wme_bssChanParams.cap_wmeParams[i]; 1846 *frm++ = SM(i, WME_PARAM_ACI) 1847 | SM(ac->wmep_acm, WME_PARAM_ACM) 1848 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1849 ; 1850 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1851 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1852 ; 1853 ADDSHORT(frm, ac->wmep_txopLimit); 1854 } 1855 return frm; 1856 #undef SM 1857 #undef ADDSHORT 1858 } 1859 #undef WME_OUI_BYTES 1860 1861 /* 1862 * Add an 11h Power Constraint element to a frame. 1863 */ 1864 static uint8_t * 1865 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1866 { 1867 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1868 /* XXX per-vap tx power limit? */ 1869 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1870 1871 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1872 frm[1] = 1; 1873 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1874 return frm + 3; 1875 } 1876 1877 /* 1878 * Add an 11h Power Capability element to a frame. 1879 */ 1880 static uint8_t * 1881 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1882 { 1883 frm[0] = IEEE80211_ELEMID_PWRCAP; 1884 frm[1] = 2; 1885 frm[2] = c->ic_minpower; 1886 frm[3] = c->ic_maxpower; 1887 return frm + 4; 1888 } 1889 1890 /* 1891 * Add an 11h Supported Channels element to a frame. 1892 */ 1893 static uint8_t * 1894 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1895 { 1896 static const int ielen = 26; 1897 1898 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1899 frm[1] = ielen; 1900 /* XXX not correct */ 1901 memcpy(frm+2, ic->ic_chan_avail, ielen); 1902 return frm + 2 + ielen; 1903 } 1904 1905 /* 1906 * Add an 11h Quiet time element to a frame. 1907 */ 1908 static uint8_t * 1909 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1910 { 1911 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1912 1913 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1914 quiet->len = 6; 1915 if (vap->iv_quiet_count_value == 1) 1916 vap->iv_quiet_count_value = vap->iv_quiet_count; 1917 else if (vap->iv_quiet_count_value > 1) 1918 vap->iv_quiet_count_value--; 1919 1920 if (vap->iv_quiet_count_value == 0) { 1921 /* value 0 is reserved as per 802.11h standerd */ 1922 vap->iv_quiet_count_value = 1; 1923 } 1924 1925 quiet->tbttcount = vap->iv_quiet_count_value; 1926 quiet->period = vap->iv_quiet_period; 1927 quiet->duration = htole16(vap->iv_quiet_duration); 1928 quiet->offset = htole16(vap->iv_quiet_offset); 1929 return frm + sizeof(*quiet); 1930 } 1931 1932 /* 1933 * Add an 11h Channel Switch Announcement element to a frame. 1934 * Note that we use the per-vap CSA count to adjust the global 1935 * counter so we can use this routine to form probe response 1936 * frames and get the current count. 1937 */ 1938 static uint8_t * 1939 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1940 { 1941 struct ieee80211com *ic = vap->iv_ic; 1942 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1943 1944 csa->csa_ie = IEEE80211_ELEMID_CSA; 1945 csa->csa_len = 3; 1946 csa->csa_mode = 1; /* XXX force quiet on channel */ 1947 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1948 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1949 return frm + sizeof(*csa); 1950 } 1951 1952 /* 1953 * Add an 11h country information element to a frame. 1954 */ 1955 static uint8_t * 1956 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1957 { 1958 1959 if (ic->ic_countryie == NULL || 1960 ic->ic_countryie_chan != ic->ic_bsschan) { 1961 /* 1962 * Handle lazy construction of ie. This is done on 1963 * first use and after a channel change that requires 1964 * re-calculation. 1965 */ 1966 if (ic->ic_countryie != NULL) 1967 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 1968 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1969 if (ic->ic_countryie == NULL) 1970 return frm; 1971 ic->ic_countryie_chan = ic->ic_bsschan; 1972 } 1973 return add_appie(frm, ic->ic_countryie); 1974 } 1975 1976 uint8_t * 1977 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1978 { 1979 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1980 return (add_ie(frm, vap->iv_wpa_ie)); 1981 else { 1982 /* XXX else complain? */ 1983 return (frm); 1984 } 1985 } 1986 1987 uint8_t * 1988 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 1989 { 1990 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 1991 return (add_ie(frm, vap->iv_rsn_ie)); 1992 else { 1993 /* XXX else complain? */ 1994 return (frm); 1995 } 1996 } 1997 1998 uint8_t * 1999 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2000 { 2001 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2002 *frm++ = IEEE80211_ELEMID_QOS; 2003 *frm++ = 1; 2004 *frm++ = 0; 2005 } 2006 2007 return (frm); 2008 } 2009 2010 /* 2011 * Send a probe request frame with the specified ssid 2012 * and any optional information element data. 2013 */ 2014 int 2015 ieee80211_send_probereq(struct ieee80211_node *ni, 2016 const uint8_t sa[IEEE80211_ADDR_LEN], 2017 const uint8_t da[IEEE80211_ADDR_LEN], 2018 const uint8_t bssid[IEEE80211_ADDR_LEN], 2019 const uint8_t *ssid, size_t ssidlen) 2020 { 2021 struct ieee80211vap *vap = ni->ni_vap; 2022 struct ieee80211com *ic = ni->ni_ic; 2023 const struct ieee80211_txparam *tp; 2024 struct ieee80211_bpf_params params; 2025 struct ieee80211_frame *wh; 2026 const struct ieee80211_rateset *rs; 2027 struct mbuf *m; 2028 uint8_t *frm; 2029 int ret; 2030 2031 if (vap->iv_state == IEEE80211_S_CAC) { 2032 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2033 "block %s frame in CAC state", "probe request"); 2034 vap->iv_stats.is_tx_badstate++; 2035 return EIO; /* XXX */ 2036 } 2037 2038 /* 2039 * Hold a reference on the node so it doesn't go away until after 2040 * the xmit is complete all the way in the driver. On error we 2041 * will remove our reference. 2042 */ 2043 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2044 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2045 __func__, __LINE__, 2046 ni, ether_sprintf(ni->ni_macaddr), 2047 ieee80211_node_refcnt(ni)+1); 2048 ieee80211_ref_node(ni); 2049 2050 /* 2051 * prreq frame format 2052 * [tlv] ssid 2053 * [tlv] supported rates 2054 * [tlv] RSN (optional) 2055 * [tlv] extended supported rates 2056 * [tlv] WPA (optional) 2057 * [tlv] user-specified ie's 2058 */ 2059 m = ieee80211_getmgtframe(&frm, 2060 ic->ic_headroom + sizeof(struct ieee80211_frame), 2061 2 + IEEE80211_NWID_LEN 2062 + 2 + IEEE80211_RATE_SIZE 2063 + sizeof(struct ieee80211_ie_wpa) 2064 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2065 + sizeof(struct ieee80211_ie_wpa) 2066 + (vap->iv_appie_probereq != NULL ? 2067 vap->iv_appie_probereq->ie_len : 0) 2068 ); 2069 if (m == NULL) { 2070 vap->iv_stats.is_tx_nobuf++; 2071 ieee80211_free_node(ni); 2072 return ENOMEM; 2073 } 2074 2075 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2076 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2077 frm = ieee80211_add_rates(frm, rs); 2078 frm = ieee80211_add_rsn(frm, vap); 2079 frm = ieee80211_add_xrates(frm, rs); 2080 frm = ieee80211_add_wpa(frm, vap); 2081 if (vap->iv_appie_probereq != NULL) 2082 frm = add_appie(frm, vap->iv_appie_probereq); 2083 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2084 2085 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2086 ("leading space %zd", M_LEADINGSPACE(m))); 2087 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2088 if (m == NULL) { 2089 /* NB: cannot happen */ 2090 ieee80211_free_node(ni); 2091 return ENOMEM; 2092 } 2093 2094 IEEE80211_TX_LOCK(ic); 2095 wh = mtod(m, struct ieee80211_frame *); 2096 ieee80211_send_setup(ni, m, 2097 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2098 IEEE80211_NONQOS_TID, sa, da, bssid); 2099 /* XXX power management? */ 2100 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2101 2102 M_WME_SETAC(m, WME_AC_BE); 2103 2104 IEEE80211_NODE_STAT(ni, tx_probereq); 2105 IEEE80211_NODE_STAT(ni, tx_mgmt); 2106 2107 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2108 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2109 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2110 ssidlen, ssid); 2111 2112 memset(¶ms, 0, sizeof(params)); 2113 params.ibp_pri = M_WME_GETAC(m); 2114 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2115 params.ibp_rate0 = tp->mgmtrate; 2116 if (IEEE80211_IS_MULTICAST(da)) { 2117 params.ibp_flags |= IEEE80211_BPF_NOACK; 2118 params.ibp_try0 = 1; 2119 } else 2120 params.ibp_try0 = tp->maxretry; 2121 params.ibp_power = ni->ni_txpower; 2122 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2123 IEEE80211_TX_UNLOCK(ic); 2124 return (ret); 2125 } 2126 2127 /* 2128 * Calculate capability information for mgt frames. 2129 */ 2130 uint16_t 2131 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2132 { 2133 struct ieee80211com *ic = vap->iv_ic; 2134 uint16_t capinfo; 2135 2136 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2137 2138 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2139 capinfo = IEEE80211_CAPINFO_ESS; 2140 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2141 capinfo = IEEE80211_CAPINFO_IBSS; 2142 else 2143 capinfo = 0; 2144 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2145 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2146 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2147 IEEE80211_IS_CHAN_2GHZ(chan)) 2148 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2149 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2150 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2151 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2152 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2153 return capinfo; 2154 } 2155 2156 /* 2157 * Send a management frame. The node is for the destination (or ic_bss 2158 * when in station mode). Nodes other than ic_bss have their reference 2159 * count bumped to reflect our use for an indeterminant time. 2160 */ 2161 int 2162 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2163 { 2164 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2165 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2166 struct ieee80211vap *vap = ni->ni_vap; 2167 struct ieee80211com *ic = ni->ni_ic; 2168 struct ieee80211_node *bss = vap->iv_bss; 2169 struct ieee80211_bpf_params params; 2170 struct mbuf *m; 2171 uint8_t *frm; 2172 uint16_t capinfo; 2173 int has_challenge, is_shared_key, ret, status; 2174 2175 KASSERT(ni != NULL, ("null node")); 2176 2177 /* 2178 * Hold a reference on the node so it doesn't go away until after 2179 * the xmit is complete all the way in the driver. On error we 2180 * will remove our reference. 2181 */ 2182 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2183 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2184 __func__, __LINE__, 2185 ni, ether_sprintf(ni->ni_macaddr), 2186 ieee80211_node_refcnt(ni)+1); 2187 ieee80211_ref_node(ni); 2188 2189 memset(¶ms, 0, sizeof(params)); 2190 switch (type) { 2191 2192 case IEEE80211_FC0_SUBTYPE_AUTH: 2193 status = arg >> 16; 2194 arg &= 0xffff; 2195 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2196 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2197 ni->ni_challenge != NULL); 2198 2199 /* 2200 * Deduce whether we're doing open authentication or 2201 * shared key authentication. We do the latter if 2202 * we're in the middle of a shared key authentication 2203 * handshake or if we're initiating an authentication 2204 * request and configured to use shared key. 2205 */ 2206 is_shared_key = has_challenge || 2207 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2208 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2209 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2210 2211 m = ieee80211_getmgtframe(&frm, 2212 ic->ic_headroom + sizeof(struct ieee80211_frame), 2213 3 * sizeof(uint16_t) 2214 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2215 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2216 ); 2217 if (m == NULL) 2218 senderr(ENOMEM, is_tx_nobuf); 2219 2220 ((uint16_t *)frm)[0] = 2221 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2222 : htole16(IEEE80211_AUTH_ALG_OPEN); 2223 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2224 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2225 2226 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2227 ((uint16_t *)frm)[3] = 2228 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2229 IEEE80211_ELEMID_CHALLENGE); 2230 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2231 IEEE80211_CHALLENGE_LEN); 2232 m->m_pkthdr.len = m->m_len = 2233 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2234 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2235 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2236 "request encrypt frame (%s)", __func__); 2237 /* mark frame for encryption */ 2238 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2239 } 2240 } else 2241 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2242 2243 /* XXX not right for shared key */ 2244 if (status == IEEE80211_STATUS_SUCCESS) 2245 IEEE80211_NODE_STAT(ni, tx_auth); 2246 else 2247 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2248 2249 if (vap->iv_opmode == IEEE80211_M_STA) 2250 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2251 (void *) vap->iv_state); 2252 break; 2253 2254 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2255 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2256 "send station deauthenticate (reason %d)", arg); 2257 m = ieee80211_getmgtframe(&frm, 2258 ic->ic_headroom + sizeof(struct ieee80211_frame), 2259 sizeof(uint16_t)); 2260 if (m == NULL) 2261 senderr(ENOMEM, is_tx_nobuf); 2262 *(uint16_t *)frm = htole16(arg); /* reason */ 2263 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2264 2265 IEEE80211_NODE_STAT(ni, tx_deauth); 2266 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2267 2268 ieee80211_node_unauthorize(ni); /* port closed */ 2269 break; 2270 2271 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2272 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2273 /* 2274 * asreq frame format 2275 * [2] capability information 2276 * [2] listen interval 2277 * [6*] current AP address (reassoc only) 2278 * [tlv] ssid 2279 * [tlv] supported rates 2280 * [tlv] extended supported rates 2281 * [4] power capability (optional) 2282 * [28] supported channels (optional) 2283 * [tlv] HT capabilities 2284 * [tlv] WME (optional) 2285 * [tlv] Vendor OUI HT capabilities (optional) 2286 * [tlv] Atheros capabilities (if negotiated) 2287 * [tlv] AppIE's (optional) 2288 */ 2289 m = ieee80211_getmgtframe(&frm, 2290 ic->ic_headroom + sizeof(struct ieee80211_frame), 2291 sizeof(uint16_t) 2292 + sizeof(uint16_t) 2293 + IEEE80211_ADDR_LEN 2294 + 2 + IEEE80211_NWID_LEN 2295 + 2 + IEEE80211_RATE_SIZE 2296 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2297 + 4 2298 + 2 + 26 2299 + sizeof(struct ieee80211_wme_info) 2300 + sizeof(struct ieee80211_ie_htcap) 2301 + 4 + sizeof(struct ieee80211_ie_htcap) 2302 #ifdef IEEE80211_SUPPORT_SUPERG 2303 + sizeof(struct ieee80211_ath_ie) 2304 #endif 2305 + (vap->iv_appie_wpa != NULL ? 2306 vap->iv_appie_wpa->ie_len : 0) 2307 + (vap->iv_appie_assocreq != NULL ? 2308 vap->iv_appie_assocreq->ie_len : 0) 2309 ); 2310 if (m == NULL) 2311 senderr(ENOMEM, is_tx_nobuf); 2312 2313 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2314 ("wrong mode %u", vap->iv_opmode)); 2315 capinfo = IEEE80211_CAPINFO_ESS; 2316 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2317 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2318 /* 2319 * NB: Some 11a AP's reject the request when 2320 * short premable is set. 2321 */ 2322 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2323 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2324 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2325 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2326 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2327 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2328 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2329 (vap->iv_flags & IEEE80211_F_DOTH)) 2330 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2331 *(uint16_t *)frm = htole16(capinfo); 2332 frm += 2; 2333 2334 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2335 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2336 bss->ni_intval)); 2337 frm += 2; 2338 2339 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2340 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2341 frm += IEEE80211_ADDR_LEN; 2342 } 2343 2344 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2345 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2346 frm = ieee80211_add_rsn(frm, vap); 2347 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2348 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2349 frm = ieee80211_add_powercapability(frm, 2350 ic->ic_curchan); 2351 frm = ieee80211_add_supportedchannels(frm, ic); 2352 } 2353 2354 /* 2355 * Check the channel - we may be using an 11n NIC with an 2356 * 11n capable station, but we're configured to be an 11b 2357 * channel. 2358 */ 2359 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2360 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2361 ni->ni_ies.htcap_ie != NULL && 2362 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2363 frm = ieee80211_add_htcap(frm, ni); 2364 } 2365 frm = ieee80211_add_wpa(frm, vap); 2366 if ((ic->ic_flags & IEEE80211_F_WME) && 2367 ni->ni_ies.wme_ie != NULL) 2368 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2369 2370 /* 2371 * Same deal - only send HT info if we're on an 11n 2372 * capable channel. 2373 */ 2374 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2375 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2376 ni->ni_ies.htcap_ie != NULL && 2377 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2378 frm = ieee80211_add_htcap_vendor(frm, ni); 2379 } 2380 #ifdef IEEE80211_SUPPORT_SUPERG 2381 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2382 frm = ieee80211_add_ath(frm, 2383 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2384 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2385 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2386 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2387 } 2388 #endif /* IEEE80211_SUPPORT_SUPERG */ 2389 if (vap->iv_appie_assocreq != NULL) 2390 frm = add_appie(frm, vap->iv_appie_assocreq); 2391 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2392 2393 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2394 (void *) vap->iv_state); 2395 break; 2396 2397 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2398 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2399 /* 2400 * asresp frame format 2401 * [2] capability information 2402 * [2] status 2403 * [2] association ID 2404 * [tlv] supported rates 2405 * [tlv] extended supported rates 2406 * [tlv] HT capabilities (standard, if STA enabled) 2407 * [tlv] HT information (standard, if STA enabled) 2408 * [tlv] WME (if configured and STA enabled) 2409 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2410 * [tlv] HT information (vendor OUI, if STA enabled) 2411 * [tlv] Atheros capabilities (if STA enabled) 2412 * [tlv] AppIE's (optional) 2413 */ 2414 m = ieee80211_getmgtframe(&frm, 2415 ic->ic_headroom + sizeof(struct ieee80211_frame), 2416 sizeof(uint16_t) 2417 + sizeof(uint16_t) 2418 + sizeof(uint16_t) 2419 + 2 + IEEE80211_RATE_SIZE 2420 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2421 + sizeof(struct ieee80211_ie_htcap) + 4 2422 + sizeof(struct ieee80211_ie_htinfo) + 4 2423 + sizeof(struct ieee80211_wme_param) 2424 #ifdef IEEE80211_SUPPORT_SUPERG 2425 + sizeof(struct ieee80211_ath_ie) 2426 #endif 2427 + (vap->iv_appie_assocresp != NULL ? 2428 vap->iv_appie_assocresp->ie_len : 0) 2429 ); 2430 if (m == NULL) 2431 senderr(ENOMEM, is_tx_nobuf); 2432 2433 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2434 *(uint16_t *)frm = htole16(capinfo); 2435 frm += 2; 2436 2437 *(uint16_t *)frm = htole16(arg); /* status */ 2438 frm += 2; 2439 2440 if (arg == IEEE80211_STATUS_SUCCESS) { 2441 *(uint16_t *)frm = htole16(ni->ni_associd); 2442 IEEE80211_NODE_STAT(ni, tx_assoc); 2443 } else 2444 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2445 frm += 2; 2446 2447 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2448 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2449 /* NB: respond according to what we received */ 2450 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2451 frm = ieee80211_add_htcap(frm, ni); 2452 frm = ieee80211_add_htinfo(frm, ni); 2453 } 2454 if ((vap->iv_flags & IEEE80211_F_WME) && 2455 ni->ni_ies.wme_ie != NULL) 2456 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2457 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2458 frm = ieee80211_add_htcap_vendor(frm, ni); 2459 frm = ieee80211_add_htinfo_vendor(frm, ni); 2460 } 2461 #ifdef IEEE80211_SUPPORT_SUPERG 2462 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2463 frm = ieee80211_add_ath(frm, 2464 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2465 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2466 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2467 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2468 #endif /* IEEE80211_SUPPORT_SUPERG */ 2469 if (vap->iv_appie_assocresp != NULL) 2470 frm = add_appie(frm, vap->iv_appie_assocresp); 2471 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2472 break; 2473 2474 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2475 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2476 "send station disassociate (reason %d)", arg); 2477 m = ieee80211_getmgtframe(&frm, 2478 ic->ic_headroom + sizeof(struct ieee80211_frame), 2479 sizeof(uint16_t)); 2480 if (m == NULL) 2481 senderr(ENOMEM, is_tx_nobuf); 2482 *(uint16_t *)frm = htole16(arg); /* reason */ 2483 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2484 2485 IEEE80211_NODE_STAT(ni, tx_disassoc); 2486 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2487 break; 2488 2489 default: 2490 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2491 "invalid mgmt frame type %u", type); 2492 senderr(EINVAL, is_tx_unknownmgt); 2493 /* NOTREACHED */ 2494 } 2495 2496 /* NB: force non-ProbeResp frames to the highest queue */ 2497 params.ibp_pri = WME_AC_VO; 2498 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2499 /* NB: we know all frames are unicast */ 2500 params.ibp_try0 = bss->ni_txparms->maxretry; 2501 params.ibp_power = bss->ni_txpower; 2502 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2503 bad: 2504 ieee80211_free_node(ni); 2505 return ret; 2506 #undef senderr 2507 #undef HTFLAGS 2508 } 2509 2510 /* 2511 * Return an mbuf with a probe response frame in it. 2512 * Space is left to prepend and 802.11 header at the 2513 * front but it's left to the caller to fill in. 2514 */ 2515 struct mbuf * 2516 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2517 { 2518 struct ieee80211vap *vap = bss->ni_vap; 2519 struct ieee80211com *ic = bss->ni_ic; 2520 const struct ieee80211_rateset *rs; 2521 struct mbuf *m; 2522 uint16_t capinfo; 2523 uint8_t *frm; 2524 2525 /* 2526 * probe response frame format 2527 * [8] time stamp 2528 * [2] beacon interval 2529 * [2] cabability information 2530 * [tlv] ssid 2531 * [tlv] supported rates 2532 * [tlv] parameter set (FH/DS) 2533 * [tlv] parameter set (IBSS) 2534 * [tlv] country (optional) 2535 * [3] power control (optional) 2536 * [5] channel switch announcement (CSA) (optional) 2537 * [tlv] extended rate phy (ERP) 2538 * [tlv] extended supported rates 2539 * [tlv] RSN (optional) 2540 * [tlv] HT capabilities 2541 * [tlv] HT information 2542 * [tlv] WPA (optional) 2543 * [tlv] WME (optional) 2544 * [tlv] Vendor OUI HT capabilities (optional) 2545 * [tlv] Vendor OUI HT information (optional) 2546 * [tlv] Atheros capabilities 2547 * [tlv] AppIE's (optional) 2548 * [tlv] Mesh ID (MBSS) 2549 * [tlv] Mesh Conf (MBSS) 2550 */ 2551 m = ieee80211_getmgtframe(&frm, 2552 ic->ic_headroom + sizeof(struct ieee80211_frame), 2553 8 2554 + sizeof(uint16_t) 2555 + sizeof(uint16_t) 2556 + 2 + IEEE80211_NWID_LEN 2557 + 2 + IEEE80211_RATE_SIZE 2558 + 7 /* max(7,3) */ 2559 + IEEE80211_COUNTRY_MAX_SIZE 2560 + 3 2561 + sizeof(struct ieee80211_csa_ie) 2562 + sizeof(struct ieee80211_quiet_ie) 2563 + 3 2564 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2565 + sizeof(struct ieee80211_ie_wpa) 2566 + sizeof(struct ieee80211_ie_htcap) 2567 + sizeof(struct ieee80211_ie_htinfo) 2568 + sizeof(struct ieee80211_ie_wpa) 2569 + sizeof(struct ieee80211_wme_param) 2570 + 4 + sizeof(struct ieee80211_ie_htcap) 2571 + 4 + sizeof(struct ieee80211_ie_htinfo) 2572 #ifdef IEEE80211_SUPPORT_SUPERG 2573 + sizeof(struct ieee80211_ath_ie) 2574 #endif 2575 #ifdef IEEE80211_SUPPORT_MESH 2576 + 2 + IEEE80211_MESHID_LEN 2577 + sizeof(struct ieee80211_meshconf_ie) 2578 #endif 2579 + (vap->iv_appie_proberesp != NULL ? 2580 vap->iv_appie_proberesp->ie_len : 0) 2581 ); 2582 if (m == NULL) { 2583 vap->iv_stats.is_tx_nobuf++; 2584 return NULL; 2585 } 2586 2587 memset(frm, 0, 8); /* timestamp should be filled later */ 2588 frm += 8; 2589 *(uint16_t *)frm = htole16(bss->ni_intval); 2590 frm += 2; 2591 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2592 *(uint16_t *)frm = htole16(capinfo); 2593 frm += 2; 2594 2595 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2596 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2597 frm = ieee80211_add_rates(frm, rs); 2598 2599 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2600 *frm++ = IEEE80211_ELEMID_FHPARMS; 2601 *frm++ = 5; 2602 *frm++ = bss->ni_fhdwell & 0x00ff; 2603 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2604 *frm++ = IEEE80211_FH_CHANSET( 2605 ieee80211_chan2ieee(ic, bss->ni_chan)); 2606 *frm++ = IEEE80211_FH_CHANPAT( 2607 ieee80211_chan2ieee(ic, bss->ni_chan)); 2608 *frm++ = bss->ni_fhindex; 2609 } else { 2610 *frm++ = IEEE80211_ELEMID_DSPARMS; 2611 *frm++ = 1; 2612 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2613 } 2614 2615 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2616 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2617 *frm++ = 2; 2618 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2619 } 2620 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2621 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2622 frm = ieee80211_add_countryie(frm, ic); 2623 if (vap->iv_flags & IEEE80211_F_DOTH) { 2624 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2625 frm = ieee80211_add_powerconstraint(frm, vap); 2626 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2627 frm = ieee80211_add_csa(frm, vap); 2628 } 2629 if (vap->iv_flags & IEEE80211_F_DOTH) { 2630 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2631 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2632 if (vap->iv_quiet) 2633 frm = ieee80211_add_quiet(frm, vap); 2634 } 2635 } 2636 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2637 frm = ieee80211_add_erp(frm, ic); 2638 frm = ieee80211_add_xrates(frm, rs); 2639 frm = ieee80211_add_rsn(frm, vap); 2640 /* 2641 * NB: legacy 11b clients do not get certain ie's. 2642 * The caller identifies such clients by passing 2643 * a token in legacy to us. Could expand this to be 2644 * any legacy client for stuff like HT ie's. 2645 */ 2646 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2647 legacy != IEEE80211_SEND_LEGACY_11B) { 2648 frm = ieee80211_add_htcap(frm, bss); 2649 frm = ieee80211_add_htinfo(frm, bss); 2650 } 2651 frm = ieee80211_add_wpa(frm, vap); 2652 if (vap->iv_flags & IEEE80211_F_WME) 2653 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2654 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2655 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2656 legacy != IEEE80211_SEND_LEGACY_11B) { 2657 frm = ieee80211_add_htcap_vendor(frm, bss); 2658 frm = ieee80211_add_htinfo_vendor(frm, bss); 2659 } 2660 #ifdef IEEE80211_SUPPORT_SUPERG 2661 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2662 legacy != IEEE80211_SEND_LEGACY_11B) 2663 frm = ieee80211_add_athcaps(frm, bss); 2664 #endif 2665 if (vap->iv_appie_proberesp != NULL) 2666 frm = add_appie(frm, vap->iv_appie_proberesp); 2667 #ifdef IEEE80211_SUPPORT_MESH 2668 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2669 frm = ieee80211_add_meshid(frm, vap); 2670 frm = ieee80211_add_meshconf(frm, vap); 2671 } 2672 #endif 2673 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2674 2675 return m; 2676 } 2677 2678 /* 2679 * Send a probe response frame to the specified mac address. 2680 * This does not go through the normal mgt frame api so we 2681 * can specify the destination address and re-use the bss node 2682 * for the sta reference. 2683 */ 2684 int 2685 ieee80211_send_proberesp(struct ieee80211vap *vap, 2686 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2687 { 2688 struct ieee80211_node *bss = vap->iv_bss; 2689 struct ieee80211com *ic = vap->iv_ic; 2690 struct ieee80211_frame *wh; 2691 struct mbuf *m; 2692 int ret; 2693 2694 if (vap->iv_state == IEEE80211_S_CAC) { 2695 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2696 "block %s frame in CAC state", "probe response"); 2697 vap->iv_stats.is_tx_badstate++; 2698 return EIO; /* XXX */ 2699 } 2700 2701 /* 2702 * Hold a reference on the node so it doesn't go away until after 2703 * the xmit is complete all the way in the driver. On error we 2704 * will remove our reference. 2705 */ 2706 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2707 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2708 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2709 ieee80211_node_refcnt(bss)+1); 2710 ieee80211_ref_node(bss); 2711 2712 m = ieee80211_alloc_proberesp(bss, legacy); 2713 if (m == NULL) { 2714 ieee80211_free_node(bss); 2715 return ENOMEM; 2716 } 2717 2718 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2719 KASSERT(m != NULL, ("no room for header")); 2720 2721 IEEE80211_TX_LOCK(ic); 2722 wh = mtod(m, struct ieee80211_frame *); 2723 ieee80211_send_setup(bss, m, 2724 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2725 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2726 /* XXX power management? */ 2727 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2728 2729 M_WME_SETAC(m, WME_AC_BE); 2730 2731 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2732 "send probe resp on channel %u to %s%s\n", 2733 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2734 legacy ? " <legacy>" : ""); 2735 IEEE80211_NODE_STAT(bss, tx_mgmt); 2736 2737 ret = ieee80211_raw_output(vap, bss, m, NULL); 2738 IEEE80211_TX_UNLOCK(ic); 2739 return (ret); 2740 } 2741 2742 /* 2743 * Allocate and build a RTS (Request To Send) control frame. 2744 */ 2745 struct mbuf * 2746 ieee80211_alloc_rts(struct ieee80211com *ic, 2747 const uint8_t ra[IEEE80211_ADDR_LEN], 2748 const uint8_t ta[IEEE80211_ADDR_LEN], 2749 uint16_t dur) 2750 { 2751 struct ieee80211_frame_rts *rts; 2752 struct mbuf *m; 2753 2754 /* XXX honor ic_headroom */ 2755 m = m_gethdr(M_NOWAIT, MT_DATA); 2756 if (m != NULL) { 2757 rts = mtod(m, struct ieee80211_frame_rts *); 2758 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2759 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2760 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2761 *(u_int16_t *)rts->i_dur = htole16(dur); 2762 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2763 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2764 2765 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2766 } 2767 return m; 2768 } 2769 2770 /* 2771 * Allocate and build a CTS (Clear To Send) control frame. 2772 */ 2773 struct mbuf * 2774 ieee80211_alloc_cts(struct ieee80211com *ic, 2775 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2776 { 2777 struct ieee80211_frame_cts *cts; 2778 struct mbuf *m; 2779 2780 /* XXX honor ic_headroom */ 2781 m = m_gethdr(M_NOWAIT, MT_DATA); 2782 if (m != NULL) { 2783 cts = mtod(m, struct ieee80211_frame_cts *); 2784 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2785 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2786 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2787 *(u_int16_t *)cts->i_dur = htole16(dur); 2788 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2789 2790 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2791 } 2792 return m; 2793 } 2794 2795 static void 2796 ieee80211_tx_mgt_timeout(void *arg) 2797 { 2798 struct ieee80211vap *vap = arg; 2799 2800 IEEE80211_LOCK(vap->iv_ic); 2801 if (vap->iv_state != IEEE80211_S_INIT && 2802 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2803 /* 2804 * NB: it's safe to specify a timeout as the reason here; 2805 * it'll only be used in the right state. 2806 */ 2807 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2808 IEEE80211_SCAN_FAIL_TIMEOUT); 2809 } 2810 IEEE80211_UNLOCK(vap->iv_ic); 2811 } 2812 2813 /* 2814 * This is the callback set on net80211-sourced transmitted 2815 * authentication request frames. 2816 * 2817 * This does a couple of things: 2818 * 2819 * + If the frame transmitted was a success, it schedules a future 2820 * event which will transition the interface to scan. 2821 * If a state transition _then_ occurs before that event occurs, 2822 * said state transition will cancel this callout. 2823 * 2824 * + If the frame transmit was a failure, it immediately schedules 2825 * the transition back to scan. 2826 */ 2827 static void 2828 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2829 { 2830 struct ieee80211vap *vap = ni->ni_vap; 2831 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2832 2833 /* 2834 * Frame transmit completed; arrange timer callback. If 2835 * transmit was successfuly we wait for response. Otherwise 2836 * we arrange an immediate callback instead of doing the 2837 * callback directly since we don't know what state the driver 2838 * is in (e.g. what locks it is holding). This work should 2839 * not be too time-critical and not happen too often so the 2840 * added overhead is acceptable. 2841 * 2842 * XXX what happens if !acked but response shows up before callback? 2843 */ 2844 if (vap->iv_state == ostate) { 2845 callout_reset(&vap->iv_mgtsend, 2846 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2847 ieee80211_tx_mgt_timeout, vap); 2848 } 2849 } 2850 2851 static void 2852 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2853 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2854 { 2855 struct ieee80211vap *vap = ni->ni_vap; 2856 struct ieee80211com *ic = ni->ni_ic; 2857 struct ieee80211_rateset *rs = &ni->ni_rates; 2858 uint16_t capinfo; 2859 2860 /* 2861 * beacon frame format 2862 * [8] time stamp 2863 * [2] beacon interval 2864 * [2] cabability information 2865 * [tlv] ssid 2866 * [tlv] supported rates 2867 * [3] parameter set (DS) 2868 * [8] CF parameter set (optional) 2869 * [tlv] parameter set (IBSS/TIM) 2870 * [tlv] country (optional) 2871 * [3] power control (optional) 2872 * [5] channel switch announcement (CSA) (optional) 2873 * [tlv] extended rate phy (ERP) 2874 * [tlv] extended supported rates 2875 * [tlv] RSN parameters 2876 * [tlv] HT capabilities 2877 * [tlv] HT information 2878 * XXX Vendor-specific OIDs (e.g. Atheros) 2879 * [tlv] WPA parameters 2880 * [tlv] WME parameters 2881 * [tlv] Vendor OUI HT capabilities (optional) 2882 * [tlv] Vendor OUI HT information (optional) 2883 * [tlv] Atheros capabilities (optional) 2884 * [tlv] TDMA parameters (optional) 2885 * [tlv] Mesh ID (MBSS) 2886 * [tlv] Mesh Conf (MBSS) 2887 * [tlv] application data (optional) 2888 */ 2889 2890 memset(bo, 0, sizeof(*bo)); 2891 2892 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2893 frm += 8; 2894 *(uint16_t *)frm = htole16(ni->ni_intval); 2895 frm += 2; 2896 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2897 bo->bo_caps = (uint16_t *)frm; 2898 *(uint16_t *)frm = htole16(capinfo); 2899 frm += 2; 2900 *frm++ = IEEE80211_ELEMID_SSID; 2901 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2902 *frm++ = ni->ni_esslen; 2903 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2904 frm += ni->ni_esslen; 2905 } else 2906 *frm++ = 0; 2907 frm = ieee80211_add_rates(frm, rs); 2908 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2909 *frm++ = IEEE80211_ELEMID_DSPARMS; 2910 *frm++ = 1; 2911 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2912 } 2913 if (ic->ic_flags & IEEE80211_F_PCF) { 2914 bo->bo_cfp = frm; 2915 frm = ieee80211_add_cfparms(frm, ic); 2916 } 2917 bo->bo_tim = frm; 2918 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2919 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2920 *frm++ = 2; 2921 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2922 bo->bo_tim_len = 0; 2923 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2924 vap->iv_opmode == IEEE80211_M_MBSS) { 2925 /* TIM IE is the same for Mesh and Hostap */ 2926 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2927 2928 tie->tim_ie = IEEE80211_ELEMID_TIM; 2929 tie->tim_len = 4; /* length */ 2930 tie->tim_count = 0; /* DTIM count */ 2931 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2932 tie->tim_bitctl = 0; /* bitmap control */ 2933 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2934 frm += sizeof(struct ieee80211_tim_ie); 2935 bo->bo_tim_len = 1; 2936 } 2937 bo->bo_tim_trailer = frm; 2938 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2939 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2940 frm = ieee80211_add_countryie(frm, ic); 2941 if (vap->iv_flags & IEEE80211_F_DOTH) { 2942 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2943 frm = ieee80211_add_powerconstraint(frm, vap); 2944 bo->bo_csa = frm; 2945 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2946 frm = ieee80211_add_csa(frm, vap); 2947 } else 2948 bo->bo_csa = frm; 2949 2950 if (vap->iv_flags & IEEE80211_F_DOTH) { 2951 bo->bo_quiet = frm; 2952 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2953 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2954 if (vap->iv_quiet) 2955 frm = ieee80211_add_quiet(frm,vap); 2956 } 2957 } else 2958 bo->bo_quiet = frm; 2959 2960 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2961 bo->bo_erp = frm; 2962 frm = ieee80211_add_erp(frm, ic); 2963 } 2964 frm = ieee80211_add_xrates(frm, rs); 2965 frm = ieee80211_add_rsn(frm, vap); 2966 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2967 frm = ieee80211_add_htcap(frm, ni); 2968 bo->bo_htinfo = frm; 2969 frm = ieee80211_add_htinfo(frm, ni); 2970 } 2971 frm = ieee80211_add_wpa(frm, vap); 2972 if (vap->iv_flags & IEEE80211_F_WME) { 2973 bo->bo_wme = frm; 2974 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2975 } 2976 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2977 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2978 frm = ieee80211_add_htcap_vendor(frm, ni); 2979 frm = ieee80211_add_htinfo_vendor(frm, ni); 2980 } 2981 #ifdef IEEE80211_SUPPORT_SUPERG 2982 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2983 bo->bo_ath = frm; 2984 frm = ieee80211_add_athcaps(frm, ni); 2985 } 2986 #endif 2987 #ifdef IEEE80211_SUPPORT_TDMA 2988 if (vap->iv_caps & IEEE80211_C_TDMA) { 2989 bo->bo_tdma = frm; 2990 frm = ieee80211_add_tdma(frm, vap); 2991 } 2992 #endif 2993 if (vap->iv_appie_beacon != NULL) { 2994 bo->bo_appie = frm; 2995 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2996 frm = add_appie(frm, vap->iv_appie_beacon); 2997 } 2998 #ifdef IEEE80211_SUPPORT_MESH 2999 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3000 frm = ieee80211_add_meshid(frm, vap); 3001 bo->bo_meshconf = frm; 3002 frm = ieee80211_add_meshconf(frm, vap); 3003 } 3004 #endif 3005 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3006 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3007 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3008 } 3009 3010 /* 3011 * Allocate a beacon frame and fillin the appropriate bits. 3012 */ 3013 struct mbuf * 3014 ieee80211_beacon_alloc(struct ieee80211_node *ni, 3015 struct ieee80211_beacon_offsets *bo) 3016 { 3017 struct ieee80211vap *vap = ni->ni_vap; 3018 struct ieee80211com *ic = ni->ni_ic; 3019 struct ifnet *ifp = vap->iv_ifp; 3020 struct ieee80211_frame *wh; 3021 struct mbuf *m; 3022 int pktlen; 3023 uint8_t *frm; 3024 3025 /* 3026 * beacon frame format 3027 * [8] time stamp 3028 * [2] beacon interval 3029 * [2] cabability information 3030 * [tlv] ssid 3031 * [tlv] supported rates 3032 * [3] parameter set (DS) 3033 * [8] CF parameter set (optional) 3034 * [tlv] parameter set (IBSS/TIM) 3035 * [tlv] country (optional) 3036 * [3] power control (optional) 3037 * [5] channel switch announcement (CSA) (optional) 3038 * [tlv] extended rate phy (ERP) 3039 * [tlv] extended supported rates 3040 * [tlv] RSN parameters 3041 * [tlv] HT capabilities 3042 * [tlv] HT information 3043 * [tlv] Vendor OUI HT capabilities (optional) 3044 * [tlv] Vendor OUI HT information (optional) 3045 * XXX Vendor-specific OIDs (e.g. Atheros) 3046 * [tlv] WPA parameters 3047 * [tlv] WME parameters 3048 * [tlv] TDMA parameters (optional) 3049 * [tlv] Mesh ID (MBSS) 3050 * [tlv] Mesh Conf (MBSS) 3051 * [tlv] application data (optional) 3052 * NB: we allocate the max space required for the TIM bitmap. 3053 * XXX how big is this? 3054 */ 3055 pktlen = 8 /* time stamp */ 3056 + sizeof(uint16_t) /* beacon interval */ 3057 + sizeof(uint16_t) /* capabilities */ 3058 + 2 + ni->ni_esslen /* ssid */ 3059 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3060 + 2 + 1 /* DS parameters */ 3061 + 2 + 6 /* CF parameters */ 3062 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3063 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3064 + 2 + 1 /* power control */ 3065 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3066 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3067 + 2 + 1 /* ERP */ 3068 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3069 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3070 2*sizeof(struct ieee80211_ie_wpa) : 0) 3071 /* XXX conditional? */ 3072 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3073 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3074 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3075 sizeof(struct ieee80211_wme_param) : 0) 3076 #ifdef IEEE80211_SUPPORT_SUPERG 3077 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3078 #endif 3079 #ifdef IEEE80211_SUPPORT_TDMA 3080 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3081 sizeof(struct ieee80211_tdma_param) : 0) 3082 #endif 3083 #ifdef IEEE80211_SUPPORT_MESH 3084 + 2 + ni->ni_meshidlen 3085 + sizeof(struct ieee80211_meshconf_ie) 3086 #endif 3087 + IEEE80211_MAX_APPIE 3088 ; 3089 m = ieee80211_getmgtframe(&frm, 3090 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3091 if (m == NULL) { 3092 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3093 "%s: cannot get buf; size %u\n", __func__, pktlen); 3094 vap->iv_stats.is_tx_nobuf++; 3095 return NULL; 3096 } 3097 ieee80211_beacon_construct(m, frm, bo, ni); 3098 3099 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3100 KASSERT(m != NULL, ("no space for 802.11 header?")); 3101 wh = mtod(m, struct ieee80211_frame *); 3102 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3103 IEEE80211_FC0_SUBTYPE_BEACON; 3104 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3105 *(uint16_t *)wh->i_dur = 0; 3106 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3107 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3108 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3109 *(uint16_t *)wh->i_seq = 0; 3110 3111 return m; 3112 } 3113 3114 /* 3115 * Update the dynamic parts of a beacon frame based on the current state. 3116 */ 3117 int 3118 ieee80211_beacon_update(struct ieee80211_node *ni, 3119 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 3120 { 3121 struct ieee80211vap *vap = ni->ni_vap; 3122 struct ieee80211com *ic = ni->ni_ic; 3123 int len_changed = 0; 3124 uint16_t capinfo; 3125 struct ieee80211_frame *wh; 3126 ieee80211_seq seqno; 3127 3128 IEEE80211_LOCK(ic); 3129 /* 3130 * Handle 11h channel change when we've reached the count. 3131 * We must recalculate the beacon frame contents to account 3132 * for the new channel. Note we do this only for the first 3133 * vap that reaches this point; subsequent vaps just update 3134 * their beacon state to reflect the recalculated channel. 3135 */ 3136 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3137 vap->iv_csa_count == ic->ic_csa_count) { 3138 vap->iv_csa_count = 0; 3139 /* 3140 * Effect channel change before reconstructing the beacon 3141 * frame contents as many places reference ni_chan. 3142 */ 3143 if (ic->ic_csa_newchan != NULL) 3144 ieee80211_csa_completeswitch(ic); 3145 /* 3146 * NB: ieee80211_beacon_construct clears all pending 3147 * updates in bo_flags so we don't need to explicitly 3148 * clear IEEE80211_BEACON_CSA. 3149 */ 3150 ieee80211_beacon_construct(m, 3151 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3152 3153 /* XXX do WME aggressive mode processing? */ 3154 IEEE80211_UNLOCK(ic); 3155 return 1; /* just assume length changed */ 3156 } 3157 3158 wh = mtod(m, struct ieee80211_frame *); 3159 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3160 *(uint16_t *)&wh->i_seq[0] = 3161 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3162 M_SEQNO_SET(m, seqno); 3163 3164 /* XXX faster to recalculate entirely or just changes? */ 3165 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3166 *bo->bo_caps = htole16(capinfo); 3167 3168 if (vap->iv_flags & IEEE80211_F_WME) { 3169 struct ieee80211_wme_state *wme = &ic->ic_wme; 3170 3171 /* 3172 * Check for agressive mode change. When there is 3173 * significant high priority traffic in the BSS 3174 * throttle back BE traffic by using conservative 3175 * parameters. Otherwise BE uses agressive params 3176 * to optimize performance of legacy/non-QoS traffic. 3177 */ 3178 if (wme->wme_flags & WME_F_AGGRMODE) { 3179 if (wme->wme_hipri_traffic > 3180 wme->wme_hipri_switch_thresh) { 3181 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3182 "%s: traffic %u, disable aggressive mode\n", 3183 __func__, wme->wme_hipri_traffic); 3184 wme->wme_flags &= ~WME_F_AGGRMODE; 3185 ieee80211_wme_updateparams_locked(vap); 3186 wme->wme_hipri_traffic = 3187 wme->wme_hipri_switch_hysteresis; 3188 } else 3189 wme->wme_hipri_traffic = 0; 3190 } else { 3191 if (wme->wme_hipri_traffic <= 3192 wme->wme_hipri_switch_thresh) { 3193 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3194 "%s: traffic %u, enable aggressive mode\n", 3195 __func__, wme->wme_hipri_traffic); 3196 wme->wme_flags |= WME_F_AGGRMODE; 3197 ieee80211_wme_updateparams_locked(vap); 3198 wme->wme_hipri_traffic = 0; 3199 } else 3200 wme->wme_hipri_traffic = 3201 wme->wme_hipri_switch_hysteresis; 3202 } 3203 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3204 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3205 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3206 } 3207 } 3208 3209 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3210 ieee80211_ht_update_beacon(vap, bo); 3211 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3212 } 3213 #ifdef IEEE80211_SUPPORT_TDMA 3214 if (vap->iv_caps & IEEE80211_C_TDMA) { 3215 /* 3216 * NB: the beacon is potentially updated every TBTT. 3217 */ 3218 ieee80211_tdma_update_beacon(vap, bo); 3219 } 3220 #endif 3221 #ifdef IEEE80211_SUPPORT_MESH 3222 if (vap->iv_opmode == IEEE80211_M_MBSS) 3223 ieee80211_mesh_update_beacon(vap, bo); 3224 #endif 3225 3226 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3227 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3228 struct ieee80211_tim_ie *tie = 3229 (struct ieee80211_tim_ie *) bo->bo_tim; 3230 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3231 u_int timlen, timoff, i; 3232 /* 3233 * ATIM/DTIM needs updating. If it fits in the 3234 * current space allocated then just copy in the 3235 * new bits. Otherwise we need to move any trailing 3236 * data to make room. Note that we know there is 3237 * contiguous space because ieee80211_beacon_allocate 3238 * insures there is space in the mbuf to write a 3239 * maximal-size virtual bitmap (based on iv_max_aid). 3240 */ 3241 /* 3242 * Calculate the bitmap size and offset, copy any 3243 * trailer out of the way, and then copy in the 3244 * new bitmap and update the information element. 3245 * Note that the tim bitmap must contain at least 3246 * one byte and any offset must be even. 3247 */ 3248 if (vap->iv_ps_pending != 0) { 3249 timoff = 128; /* impossibly large */ 3250 for (i = 0; i < vap->iv_tim_len; i++) 3251 if (vap->iv_tim_bitmap[i]) { 3252 timoff = i &~ 1; 3253 break; 3254 } 3255 KASSERT(timoff != 128, ("tim bitmap empty!")); 3256 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3257 if (vap->iv_tim_bitmap[i]) 3258 break; 3259 timlen = 1 + (i - timoff); 3260 } else { 3261 timoff = 0; 3262 timlen = 1; 3263 } 3264 if (timlen != bo->bo_tim_len) { 3265 /* copy up/down trailer */ 3266 int adjust = tie->tim_bitmap+timlen 3267 - bo->bo_tim_trailer; 3268 ovbcopy(bo->bo_tim_trailer, 3269 bo->bo_tim_trailer+adjust, 3270 bo->bo_tim_trailer_len); 3271 bo->bo_tim_trailer += adjust; 3272 bo->bo_erp += adjust; 3273 bo->bo_htinfo += adjust; 3274 #ifdef IEEE80211_SUPPORT_SUPERG 3275 bo->bo_ath += adjust; 3276 #endif 3277 #ifdef IEEE80211_SUPPORT_TDMA 3278 bo->bo_tdma += adjust; 3279 #endif 3280 #ifdef IEEE80211_SUPPORT_MESH 3281 bo->bo_meshconf += adjust; 3282 #endif 3283 bo->bo_appie += adjust; 3284 bo->bo_wme += adjust; 3285 bo->bo_csa += adjust; 3286 bo->bo_quiet += adjust; 3287 bo->bo_tim_len = timlen; 3288 3289 /* update information element */ 3290 tie->tim_len = 3 + timlen; 3291 tie->tim_bitctl = timoff; 3292 len_changed = 1; 3293 } 3294 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3295 bo->bo_tim_len); 3296 3297 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3298 3299 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3300 "%s: TIM updated, pending %u, off %u, len %u\n", 3301 __func__, vap->iv_ps_pending, timoff, timlen); 3302 } 3303 /* count down DTIM period */ 3304 if (tie->tim_count == 0) 3305 tie->tim_count = tie->tim_period - 1; 3306 else 3307 tie->tim_count--; 3308 /* update state for buffered multicast frames on DTIM */ 3309 if (mcast && tie->tim_count == 0) 3310 tie->tim_bitctl |= 1; 3311 else 3312 tie->tim_bitctl &= ~1; 3313 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3314 struct ieee80211_csa_ie *csa = 3315 (struct ieee80211_csa_ie *) bo->bo_csa; 3316 3317 /* 3318 * Insert or update CSA ie. If we're just starting 3319 * to count down to the channel switch then we need 3320 * to insert the CSA ie. Otherwise we just need to 3321 * drop the count. The actual change happens above 3322 * when the vap's count reaches the target count. 3323 */ 3324 if (vap->iv_csa_count == 0) { 3325 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3326 bo->bo_erp += sizeof(*csa); 3327 bo->bo_htinfo += sizeof(*csa); 3328 bo->bo_wme += sizeof(*csa); 3329 #ifdef IEEE80211_SUPPORT_SUPERG 3330 bo->bo_ath += sizeof(*csa); 3331 #endif 3332 #ifdef IEEE80211_SUPPORT_TDMA 3333 bo->bo_tdma += sizeof(*csa); 3334 #endif 3335 #ifdef IEEE80211_SUPPORT_MESH 3336 bo->bo_meshconf += sizeof(*csa); 3337 #endif 3338 bo->bo_appie += sizeof(*csa); 3339 bo->bo_csa_trailer_len += sizeof(*csa); 3340 bo->bo_quiet += sizeof(*csa); 3341 bo->bo_tim_trailer_len += sizeof(*csa); 3342 m->m_len += sizeof(*csa); 3343 m->m_pkthdr.len += sizeof(*csa); 3344 3345 ieee80211_add_csa(bo->bo_csa, vap); 3346 } else 3347 csa->csa_count--; 3348 vap->iv_csa_count++; 3349 /* NB: don't clear IEEE80211_BEACON_CSA */ 3350 } 3351 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3352 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3353 if (vap->iv_quiet) 3354 ieee80211_add_quiet(bo->bo_quiet, vap); 3355 } 3356 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3357 /* 3358 * ERP element needs updating. 3359 */ 3360 (void) ieee80211_add_erp(bo->bo_erp, ic); 3361 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3362 } 3363 #ifdef IEEE80211_SUPPORT_SUPERG 3364 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3365 ieee80211_add_athcaps(bo->bo_ath, ni); 3366 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3367 } 3368 #endif 3369 } 3370 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3371 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3372 int aielen; 3373 uint8_t *frm; 3374 3375 aielen = 0; 3376 if (aie != NULL) 3377 aielen += aie->ie_len; 3378 if (aielen != bo->bo_appie_len) { 3379 /* copy up/down trailer */ 3380 int adjust = aielen - bo->bo_appie_len; 3381 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3382 bo->bo_tim_trailer_len); 3383 bo->bo_tim_trailer += adjust; 3384 bo->bo_appie += adjust; 3385 bo->bo_appie_len = aielen; 3386 3387 len_changed = 1; 3388 } 3389 frm = bo->bo_appie; 3390 if (aie != NULL) 3391 frm = add_appie(frm, aie); 3392 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3393 } 3394 IEEE80211_UNLOCK(ic); 3395 3396 return len_changed; 3397 } 3398 3399 /* 3400 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3401 * tunnel encapsulation. The frame is assumed to have an Ethernet 3402 * header at the front that must be stripped before prepending the 3403 * LLC followed by the Ethernet header passed in (with an Ethernet 3404 * type that specifies the payload size). 3405 */ 3406 struct mbuf * 3407 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3408 const struct ether_header *eh) 3409 { 3410 struct llc *llc; 3411 uint16_t payload; 3412 3413 /* XXX optimize by combining m_adj+M_PREPEND */ 3414 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3415 llc = mtod(m, struct llc *); 3416 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3417 llc->llc_control = LLC_UI; 3418 llc->llc_snap.org_code[0] = 0; 3419 llc->llc_snap.org_code[1] = 0; 3420 llc->llc_snap.org_code[2] = 0; 3421 llc->llc_snap.ether_type = eh->ether_type; 3422 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3423 3424 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3425 if (m == NULL) { /* XXX cannot happen */ 3426 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3427 "%s: no space for ether_header\n", __func__); 3428 vap->iv_stats.is_tx_nobuf++; 3429 return NULL; 3430 } 3431 ETHER_HEADER_COPY(mtod(m, void *), eh); 3432 mtod(m, struct ether_header *)->ether_type = htons(payload); 3433 return m; 3434 } 3435 3436 /* 3437 * Complete an mbuf transmission. 3438 * 3439 * For now, this simply processes a completed frame after the 3440 * driver has completed it's transmission and/or retransmission. 3441 * It assumes the frame is an 802.11 encapsulated frame. 3442 * 3443 * Later on it will grow to become the exit path for a given frame 3444 * from the driver and, depending upon how it's been encapsulated 3445 * and already transmitted, it may end up doing A-MPDU retransmission, 3446 * power save requeuing, etc. 3447 * 3448 * In order for the above to work, the driver entry point to this 3449 * must not hold any driver locks. Thus, the driver needs to delay 3450 * any actual mbuf completion until it can release said locks. 3451 * 3452 * This frees the mbuf and if the mbuf has a node reference, 3453 * the node reference will be freed. 3454 */ 3455 void 3456 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3457 { 3458 3459 if (ni != NULL) { 3460 if (m->m_flags & M_TXCB) 3461 ieee80211_process_callback(ni, m, status); 3462 ieee80211_free_node(ni); 3463 } 3464 m_freem(m); 3465 } 3466