xref: /freebsd/sys/net80211/ieee80211_output.c (revision f4b37ed0f8b307b1f3f0f630ca725d68f1dff30d)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int error, len, mcast;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		if (ieee80211_pwrsave(ni, m) != 0)
146 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147 		ieee80211_free_node(ni);
148 
149 		/*
150 		 * We queued it fine, so tell the upper layer
151 		 * that we consumed it.
152 		 */
153 		return (0);
154 	}
155 	/* calculate priority so drivers can find the tx queue */
156 	if (ieee80211_classify(ni, m)) {
157 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158 		    ni->ni_macaddr, NULL,
159 		    "%s", "classification failure");
160 		vap->iv_stats.is_tx_classify++;
161 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162 		m_freem(m);
163 		ieee80211_free_node(ni);
164 
165 		/* XXX better status? */
166 		return (0);
167 	}
168 	/*
169 	 * Stash the node pointer.  Note that we do this after
170 	 * any call to ieee80211_dwds_mcast because that code
171 	 * uses any existing value for rcvif to identify the
172 	 * interface it (might have been) received on.
173 	 */
174 	m->m_pkthdr.rcvif = (void *)ni;
175 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176 	len = m->m_pkthdr.len;
177 
178 	BPF_MTAP(ifp, m);		/* 802.3 tx */
179 
180 	/*
181 	 * Check if A-MPDU tx aggregation is setup or if we
182 	 * should try to enable it.  The sta must be associated
183 	 * with HT and A-MPDU enabled for use.  When the policy
184 	 * routine decides we should enable A-MPDU we issue an
185 	 * ADDBA request and wait for a reply.  The frame being
186 	 * encapsulated will go out w/o using A-MPDU, or possibly
187 	 * it might be collected by the driver and held/retransmit.
188 	 * The default ic_ampdu_enable routine handles staggering
189 	 * ADDBA requests in case the receiver NAK's us or we are
190 	 * otherwise unable to establish a BA stream.
191 	 */
192 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194 	    (m->m_flags & M_EAPOL) == 0) {
195 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197 
198 		ieee80211_txampdu_count_packet(tap);
199 		if (IEEE80211_AMPDU_RUNNING(tap)) {
200 			/*
201 			 * Operational, mark frame for aggregation.
202 			 *
203 			 * XXX do tx aggregation here
204 			 */
205 			m->m_flags |= M_AMPDU_MPDU;
206 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207 		    ic->ic_ampdu_enable(ni, tap)) {
208 			/*
209 			 * Not negotiated yet, request service.
210 			 */
211 			ieee80211_ampdu_request(ni, tap);
212 			/* XXX hold frame for reply? */
213 		}
214 	}
215 
216 #ifdef IEEE80211_SUPPORT_SUPERG
217 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
218 		m = ieee80211_ff_check(ni, m);
219 		if (m == NULL) {
220 			/* NB: any ni ref held on stageq */
221 			return (0);
222 		}
223 	}
224 #endif /* IEEE80211_SUPPORT_SUPERG */
225 
226 	/*
227 	 * Grab the TX lock - serialise the TX process from this
228 	 * point (where TX state is being checked/modified)
229 	 * through to driver queue.
230 	 */
231 	IEEE80211_TX_LOCK(ic);
232 
233 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
234 		/*
235 		 * Encapsulate the packet in prep for transmission.
236 		 */
237 		m = ieee80211_encap(vap, ni, m);
238 		if (m == NULL) {
239 			/* NB: stat+msg handled in ieee80211_encap */
240 			IEEE80211_TX_UNLOCK(ic);
241 			ieee80211_free_node(ni);
242 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
243 			return (ENOBUFS);
244 		}
245 	}
246 	error = ieee80211_parent_xmitpkt(ic, m);
247 
248 	/*
249 	 * Unlock at this point - no need to hold it across
250 	 * ieee80211_free_node() (ie, the comlock)
251 	 */
252 	IEEE80211_TX_UNLOCK(ic);
253 	if (error != 0) {
254 		/* NB: IFQ_HANDOFF reclaims mbuf */
255 		ieee80211_free_node(ni);
256 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
257 	} else {
258 		if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
259 		if_inc_counter(ifp, IFCOUNTER_OMCASTS, mcast);
260 		if_inc_counter(ifp, IFCOUNTER_OBYTES, len);
261 	}
262 	ic->ic_lastdata = ticks;
263 
264 	return (0);
265 }
266 
267 
268 
269 /*
270  * Send the given mbuf through the given vap.
271  *
272  * This consumes the mbuf regardless of whether the transmit
273  * was successful or not.
274  *
275  * This does none of the initial checks that ieee80211_start()
276  * does (eg CAC timeout, interface wakeup) - the caller must
277  * do this first.
278  */
279 static int
280 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
281 {
282 #define	IS_DWDS(vap) \
283 	(vap->iv_opmode == IEEE80211_M_WDS && \
284 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
285 	struct ieee80211com *ic = vap->iv_ic;
286 	struct ifnet *ifp = vap->iv_ifp;
287 	struct ieee80211_node *ni;
288 	struct ether_header *eh;
289 
290 	/*
291 	 * Cancel any background scan.
292 	 */
293 	if (ic->ic_flags & IEEE80211_F_SCAN)
294 		ieee80211_cancel_anyscan(vap);
295 	/*
296 	 * Find the node for the destination so we can do
297 	 * things like power save and fast frames aggregation.
298 	 *
299 	 * NB: past this point various code assumes the first
300 	 *     mbuf has the 802.3 header present (and contiguous).
301 	 */
302 	ni = NULL;
303 	if (m->m_len < sizeof(struct ether_header) &&
304 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
305 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
306 		    "discard frame, %s\n", "m_pullup failed");
307 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
308 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
309 		return (ENOBUFS);
310 	}
311 	eh = mtod(m, struct ether_header *);
312 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
313 		if (IS_DWDS(vap)) {
314 			/*
315 			 * Only unicast frames from the above go out
316 			 * DWDS vaps; multicast frames are handled by
317 			 * dispatching the frame as it comes through
318 			 * the AP vap (see below).
319 			 */
320 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
321 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
322 			vap->iv_stats.is_dwds_mcast++;
323 			m_freem(m);
324 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
325 			/* XXX better status? */
326 			return (ENOBUFS);
327 		}
328 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
329 			/*
330 			 * Spam DWDS vap's w/ multicast traffic.
331 			 */
332 			/* XXX only if dwds in use? */
333 			ieee80211_dwds_mcast(vap, m);
334 		}
335 	}
336 #ifdef IEEE80211_SUPPORT_MESH
337 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
338 #endif
339 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
340 		if (ni == NULL) {
341 			/* NB: ieee80211_find_txnode does stat+msg */
342 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
343 			m_freem(m);
344 			/* XXX better status? */
345 			return (ENOBUFS);
346 		}
347 		if (ni->ni_associd == 0 &&
348 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
349 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
350 			    eh->ether_dhost, NULL,
351 			    "sta not associated (type 0x%04x)",
352 			    htons(eh->ether_type));
353 			vap->iv_stats.is_tx_notassoc++;
354 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355 			m_freem(m);
356 			ieee80211_free_node(ni);
357 			/* XXX better status? */
358 			return (ENOBUFS);
359 		}
360 #ifdef IEEE80211_SUPPORT_MESH
361 	} else {
362 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
363 			/*
364 			 * Proxy station only if configured.
365 			 */
366 			if (!ieee80211_mesh_isproxyena(vap)) {
367 				IEEE80211_DISCARD_MAC(vap,
368 				    IEEE80211_MSG_OUTPUT |
369 				    IEEE80211_MSG_MESH,
370 				    eh->ether_dhost, NULL,
371 				    "%s", "proxy not enabled");
372 				vap->iv_stats.is_mesh_notproxy++;
373 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
374 				m_freem(m);
375 				/* XXX better status? */
376 				return (ENOBUFS);
377 			}
378 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
379 			    "forward frame from DS SA(%6D), DA(%6D)\n",
380 			    eh->ether_shost, ":",
381 			    eh->ether_dhost, ":");
382 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
383 		}
384 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
385 		if (ni == NULL) {
386 			/*
387 			 * NB: ieee80211_mesh_discover holds/disposes
388 			 * frame (e.g. queueing on path discovery).
389 			 */
390 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
391 			/* XXX better status? */
392 			return (ENOBUFS);
393 		}
394 	}
395 #endif
396 
397 	/*
398 	 * We've resolved the sender, so attempt to transmit it.
399 	 */
400 
401 	if (vap->iv_state == IEEE80211_S_SLEEP) {
402 		/*
403 		 * In power save; queue frame and then  wakeup device
404 		 * for transmit.
405 		 */
406 		ic->ic_lastdata = ticks;
407 		if (ieee80211_pwrsave(ni, m) != 0)
408 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 		ieee80211_free_node(ni);
410 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
411 		return (0);
412 	}
413 
414 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
415 		return (ENOBUFS);
416 	return (0);
417 #undef	IS_DWDS
418 }
419 
420 /*
421  * Start method for vap's.  All packets from the stack come
422  * through here.  We handle common processing of the packets
423  * before dispatching them to the underlying device.
424  *
425  * if_transmit() requires that the mbuf be consumed by this call
426  * regardless of the return condition.
427  */
428 int
429 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
430 {
431 	struct ieee80211vap *vap = ifp->if_softc;
432 	struct ieee80211com *ic = vap->iv_ic;
433 	struct ifnet *parent = ic->ic_ifp;
434 
435 	/* NB: parent must be up and running */
436 	if (!IFNET_IS_UP_RUNNING(parent)) {
437 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
438 		    "%s: ignore queue, parent %s not up+running\n",
439 		    __func__, parent->if_xname);
440 		m_freem(m);
441 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
442 		return (ENETDOWN);
443 	}
444 
445 	/*
446 	 * No data frames go out unless we're running.
447 	 * Note in particular this covers CAC and CSA
448 	 * states (though maybe we should check muting
449 	 * for CSA).
450 	 */
451 	if (vap->iv_state != IEEE80211_S_RUN &&
452 	    vap->iv_state != IEEE80211_S_SLEEP) {
453 		IEEE80211_LOCK(ic);
454 		/* re-check under the com lock to avoid races */
455 		if (vap->iv_state != IEEE80211_S_RUN &&
456 		    vap->iv_state != IEEE80211_S_SLEEP) {
457 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
458 			    "%s: ignore queue, in %s state\n",
459 			    __func__, ieee80211_state_name[vap->iv_state]);
460 			vap->iv_stats.is_tx_badstate++;
461 			IEEE80211_UNLOCK(ic);
462 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
463 			m_freem(m);
464 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
465 			return (ENETDOWN);
466 		}
467 		IEEE80211_UNLOCK(ic);
468 	}
469 
470 	/*
471 	 * Sanitize mbuf flags for net80211 use.  We cannot
472 	 * clear M_PWR_SAV or M_MORE_DATA because these may
473 	 * be set for frames that are re-submitted from the
474 	 * power save queue.
475 	 *
476 	 * NB: This must be done before ieee80211_classify as
477 	 *     it marks EAPOL in frames with M_EAPOL.
478 	 */
479 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
480 
481 	/*
482 	 * Bump to the packet transmission path.
483 	 * The mbuf will be consumed here.
484 	 */
485 	return (ieee80211_start_pkt(vap, m));
486 }
487 
488 void
489 ieee80211_vap_qflush(struct ifnet *ifp)
490 {
491 
492 	/* Empty for now */
493 }
494 
495 /*
496  * 802.11 raw output routine.
497  *
498  * XXX TODO: this (and other send routines) should correctly
499  * XXX keep the pwr mgmt bit set if it decides to call into the
500  * XXX driver to send a frame whilst the state is SLEEP.
501  *
502  * Otherwise the peer may decide that we're awake and flood us
503  * with traffic we are still too asleep to receive!
504  */
505 int
506 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
507     struct mbuf *m, const struct ieee80211_bpf_params *params)
508 {
509 	struct ieee80211com *ic = vap->iv_ic;
510 
511 	/*
512 	 * Set node - the caller has taken a reference, so ensure
513 	 * that the mbuf has the same node value that
514 	 * it would if it were going via the normal path.
515 	 */
516 	m->m_pkthdr.rcvif = (void *)ni;
517 
518 	/*
519 	 * Attempt to add bpf transmit parameters.
520 	 *
521 	 * For now it's ok to fail; the raw_xmit api still takes
522 	 * them as an option.
523 	 *
524 	 * Later on when ic_raw_xmit() has params removed,
525 	 * they'll have to be added - so fail the transmit if
526 	 * they can't be.
527 	 */
528 	if (params)
529 		(void) ieee80211_add_xmit_params(m, params);
530 
531 	return (ic->ic_raw_xmit(ni, m, params));
532 }
533 
534 /*
535  * 802.11 output routine. This is (currently) used only to
536  * connect bpf write calls to the 802.11 layer for injecting
537  * raw 802.11 frames.
538  */
539 int
540 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
541 	const struct sockaddr *dst, struct route *ro)
542 {
543 #define senderr(e) do { error = (e); goto bad;} while (0)
544 	struct ieee80211_node *ni = NULL;
545 	struct ieee80211vap *vap;
546 	struct ieee80211_frame *wh;
547 	struct ieee80211com *ic = NULL;
548 	int error;
549 	int ret;
550 
551 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
552 		/*
553 		 * Short-circuit requests if the vap is marked OACTIVE
554 		 * as this can happen because a packet came down through
555 		 * ieee80211_start before the vap entered RUN state in
556 		 * which case it's ok to just drop the frame.  This
557 		 * should not be necessary but callers of if_output don't
558 		 * check OACTIVE.
559 		 */
560 		senderr(ENETDOWN);
561 	}
562 	vap = ifp->if_softc;
563 	ic = vap->iv_ic;
564 	/*
565 	 * Hand to the 802.3 code if not tagged as
566 	 * a raw 802.11 frame.
567 	 */
568 	if (dst->sa_family != AF_IEEE80211)
569 		return vap->iv_output(ifp, m, dst, ro);
570 #ifdef MAC
571 	error = mac_ifnet_check_transmit(ifp, m);
572 	if (error)
573 		senderr(error);
574 #endif
575 	if (ifp->if_flags & IFF_MONITOR)
576 		senderr(ENETDOWN);
577 	if (!IFNET_IS_UP_RUNNING(ifp))
578 		senderr(ENETDOWN);
579 	if (vap->iv_state == IEEE80211_S_CAC) {
580 		IEEE80211_DPRINTF(vap,
581 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
582 		    "block %s frame in CAC state\n", "raw data");
583 		vap->iv_stats.is_tx_badstate++;
584 		senderr(EIO);		/* XXX */
585 	} else if (vap->iv_state == IEEE80211_S_SCAN)
586 		senderr(EIO);
587 	/* XXX bypass bridge, pfil, carp, etc. */
588 
589 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
590 		senderr(EIO);	/* XXX */
591 	wh = mtod(m, struct ieee80211_frame *);
592 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
593 	    IEEE80211_FC0_VERSION_0)
594 		senderr(EIO);	/* XXX */
595 
596 	/* locate destination node */
597 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
598 	case IEEE80211_FC1_DIR_NODS:
599 	case IEEE80211_FC1_DIR_FROMDS:
600 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
601 		break;
602 	case IEEE80211_FC1_DIR_TODS:
603 	case IEEE80211_FC1_DIR_DSTODS:
604 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
605 			senderr(EIO);	/* XXX */
606 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
607 		break;
608 	default:
609 		senderr(EIO);	/* XXX */
610 	}
611 	if (ni == NULL) {
612 		/*
613 		 * Permit packets w/ bpf params through regardless
614 		 * (see below about sa_len).
615 		 */
616 		if (dst->sa_len == 0)
617 			senderr(EHOSTUNREACH);
618 		ni = ieee80211_ref_node(vap->iv_bss);
619 	}
620 
621 	/*
622 	 * Sanitize mbuf for net80211 flags leaked from above.
623 	 *
624 	 * NB: This must be done before ieee80211_classify as
625 	 *     it marks EAPOL in frames with M_EAPOL.
626 	 */
627 	m->m_flags &= ~M_80211_TX;
628 
629 	/* calculate priority so drivers can find the tx queue */
630 	/* XXX assumes an 802.3 frame */
631 	if (ieee80211_classify(ni, m))
632 		senderr(EIO);		/* XXX */
633 
634 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
635 	IEEE80211_NODE_STAT(ni, tx_data);
636 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
637 		IEEE80211_NODE_STAT(ni, tx_mcast);
638 		m->m_flags |= M_MCAST;
639 	} else
640 		IEEE80211_NODE_STAT(ni, tx_ucast);
641 	/* NB: ieee80211_encap does not include 802.11 header */
642 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
643 
644 	IEEE80211_TX_LOCK(ic);
645 
646 	/*
647 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
648 	 * present by setting the sa_len field of the sockaddr (yes,
649 	 * this is a hack).
650 	 * NB: we assume sa_data is suitably aligned to cast.
651 	 */
652 	ret = ieee80211_raw_output(vap, ni, m,
653 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
654 		dst->sa_data : NULL));
655 	IEEE80211_TX_UNLOCK(ic);
656 	return (ret);
657 bad:
658 	if (m != NULL)
659 		m_freem(m);
660 	if (ni != NULL)
661 		ieee80211_free_node(ni);
662 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
663 	return error;
664 #undef senderr
665 }
666 
667 /*
668  * Set the direction field and address fields of an outgoing
669  * frame.  Note this should be called early on in constructing
670  * a frame as it sets i_fc[1]; other bits can then be or'd in.
671  */
672 void
673 ieee80211_send_setup(
674 	struct ieee80211_node *ni,
675 	struct mbuf *m,
676 	int type, int tid,
677 	const uint8_t sa[IEEE80211_ADDR_LEN],
678 	const uint8_t da[IEEE80211_ADDR_LEN],
679 	const uint8_t bssid[IEEE80211_ADDR_LEN])
680 {
681 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
682 	struct ieee80211vap *vap = ni->ni_vap;
683 	struct ieee80211_tx_ampdu *tap;
684 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
685 	ieee80211_seq seqno;
686 
687 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
688 
689 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
690 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
691 		switch (vap->iv_opmode) {
692 		case IEEE80211_M_STA:
693 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
694 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
695 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
696 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
697 			break;
698 		case IEEE80211_M_IBSS:
699 		case IEEE80211_M_AHDEMO:
700 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
701 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
702 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
703 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
704 			break;
705 		case IEEE80211_M_HOSTAP:
706 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
707 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
708 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
709 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
710 			break;
711 		case IEEE80211_M_WDS:
712 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
713 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
714 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
715 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
716 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
717 			break;
718 		case IEEE80211_M_MBSS:
719 #ifdef IEEE80211_SUPPORT_MESH
720 			if (IEEE80211_IS_MULTICAST(da)) {
721 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
722 				/* XXX next hop */
723 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
724 				IEEE80211_ADDR_COPY(wh->i_addr2,
725 				    vap->iv_myaddr);
726 			} else {
727 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
728 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
729 				IEEE80211_ADDR_COPY(wh->i_addr2,
730 				    vap->iv_myaddr);
731 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
732 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
733 			}
734 #endif
735 			break;
736 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
737 			break;
738 		}
739 	} else {
740 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
741 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
742 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
743 #ifdef IEEE80211_SUPPORT_MESH
744 		if (vap->iv_opmode == IEEE80211_M_MBSS)
745 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
746 		else
747 #endif
748 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
749 	}
750 	*(uint16_t *)&wh->i_dur[0] = 0;
751 
752 	tap = &ni->ni_tx_ampdu[tid];
753 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
754 		m->m_flags |= M_AMPDU_MPDU;
755 	else {
756 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
757 				      type & IEEE80211_FC0_SUBTYPE_MASK))
758 			seqno = ni->ni_txseqs[tid]++;
759 		else
760 			seqno = 0;
761 
762 		*(uint16_t *)&wh->i_seq[0] =
763 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
764 		M_SEQNO_SET(m, seqno);
765 	}
766 
767 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
768 		m->m_flags |= M_MCAST;
769 #undef WH4
770 }
771 
772 /*
773  * Send a management frame to the specified node.  The node pointer
774  * must have a reference as the pointer will be passed to the driver
775  * and potentially held for a long time.  If the frame is successfully
776  * dispatched to the driver, then it is responsible for freeing the
777  * reference (and potentially free'ing up any associated storage);
778  * otherwise deal with reclaiming any reference (on error).
779  */
780 int
781 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
782 	struct ieee80211_bpf_params *params)
783 {
784 	struct ieee80211vap *vap = ni->ni_vap;
785 	struct ieee80211com *ic = ni->ni_ic;
786 	struct ieee80211_frame *wh;
787 	int ret;
788 
789 	KASSERT(ni != NULL, ("null node"));
790 
791 	if (vap->iv_state == IEEE80211_S_CAC) {
792 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
793 		    ni, "block %s frame in CAC state",
794 			ieee80211_mgt_subtype_name[
795 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
796 				IEEE80211_FC0_SUBTYPE_SHIFT]);
797 		vap->iv_stats.is_tx_badstate++;
798 		ieee80211_free_node(ni);
799 		m_freem(m);
800 		return EIO;		/* XXX */
801 	}
802 
803 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
804 	if (m == NULL) {
805 		ieee80211_free_node(ni);
806 		return ENOMEM;
807 	}
808 
809 	IEEE80211_TX_LOCK(ic);
810 
811 	wh = mtod(m, struct ieee80211_frame *);
812 	ieee80211_send_setup(ni, m,
813 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
814 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
815 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
816 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
817 		    "encrypting frame (%s)", __func__);
818 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
819 	}
820 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
821 
822 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
823 	M_WME_SETAC(m, params->ibp_pri);
824 
825 #ifdef IEEE80211_DEBUG
826 	/* avoid printing too many frames */
827 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
828 	    ieee80211_msg_dumppkts(vap)) {
829 		printf("[%s] send %s on channel %u\n",
830 		    ether_sprintf(wh->i_addr1),
831 		    ieee80211_mgt_subtype_name[
832 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
833 				IEEE80211_FC0_SUBTYPE_SHIFT],
834 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
835 	}
836 #endif
837 	IEEE80211_NODE_STAT(ni, tx_mgmt);
838 
839 	ret = ieee80211_raw_output(vap, ni, m, params);
840 	IEEE80211_TX_UNLOCK(ic);
841 	return (ret);
842 }
843 
844 /*
845  * Send a null data frame to the specified node.  If the station
846  * is setup for QoS then a QoS Null Data frame is constructed.
847  * If this is a WDS station then a 4-address frame is constructed.
848  *
849  * NB: the caller is assumed to have setup a node reference
850  *     for use; this is necessary to deal with a race condition
851  *     when probing for inactive stations.  Like ieee80211_mgmt_output
852  *     we must cleanup any node reference on error;  however we
853  *     can safely just unref it as we know it will never be the
854  *     last reference to the node.
855  */
856 int
857 ieee80211_send_nulldata(struct ieee80211_node *ni)
858 {
859 	struct ieee80211vap *vap = ni->ni_vap;
860 	struct ieee80211com *ic = ni->ni_ic;
861 	struct mbuf *m;
862 	struct ieee80211_frame *wh;
863 	int hdrlen;
864 	uint8_t *frm;
865 	int ret;
866 
867 	if (vap->iv_state == IEEE80211_S_CAC) {
868 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
869 		    ni, "block %s frame in CAC state", "null data");
870 		ieee80211_unref_node(&ni);
871 		vap->iv_stats.is_tx_badstate++;
872 		return EIO;		/* XXX */
873 	}
874 
875 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
876 		hdrlen = sizeof(struct ieee80211_qosframe);
877 	else
878 		hdrlen = sizeof(struct ieee80211_frame);
879 	/* NB: only WDS vap's get 4-address frames */
880 	if (vap->iv_opmode == IEEE80211_M_WDS)
881 		hdrlen += IEEE80211_ADDR_LEN;
882 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
883 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
884 
885 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
886 	if (m == NULL) {
887 		/* XXX debug msg */
888 		ieee80211_unref_node(&ni);
889 		vap->iv_stats.is_tx_nobuf++;
890 		return ENOMEM;
891 	}
892 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
893 	    ("leading space %zd", M_LEADINGSPACE(m)));
894 	M_PREPEND(m, hdrlen, M_NOWAIT);
895 	if (m == NULL) {
896 		/* NB: cannot happen */
897 		ieee80211_free_node(ni);
898 		return ENOMEM;
899 	}
900 
901 	IEEE80211_TX_LOCK(ic);
902 
903 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
904 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
905 		const int tid = WME_AC_TO_TID(WME_AC_BE);
906 		uint8_t *qos;
907 
908 		ieee80211_send_setup(ni, m,
909 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
910 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
911 
912 		if (vap->iv_opmode == IEEE80211_M_WDS)
913 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
914 		else
915 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
916 		qos[0] = tid & IEEE80211_QOS_TID;
917 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
918 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
919 		qos[1] = 0;
920 	} else {
921 		ieee80211_send_setup(ni, m,
922 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
923 		    IEEE80211_NONQOS_TID,
924 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
925 	}
926 	if (vap->iv_opmode != IEEE80211_M_WDS) {
927 		/* NB: power management bit is never sent by an AP */
928 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
929 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
930 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
931 	}
932 	m->m_len = m->m_pkthdr.len = hdrlen;
933 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
934 
935 	M_WME_SETAC(m, WME_AC_BE);
936 
937 	IEEE80211_NODE_STAT(ni, tx_data);
938 
939 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
940 	    "send %snull data frame on channel %u, pwr mgt %s",
941 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
942 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
943 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
944 
945 	ret = ieee80211_raw_output(vap, ni, m, NULL);
946 	IEEE80211_TX_UNLOCK(ic);
947 	return (ret);
948 }
949 
950 /*
951  * Assign priority to a frame based on any vlan tag assigned
952  * to the station and/or any Diffserv setting in an IP header.
953  * Finally, if an ACM policy is setup (in station mode) it's
954  * applied.
955  */
956 int
957 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
958 {
959 	const struct ether_header *eh = mtod(m, struct ether_header *);
960 	int v_wme_ac, d_wme_ac, ac;
961 
962 	/*
963 	 * Always promote PAE/EAPOL frames to high priority.
964 	 */
965 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
966 		/* NB: mark so others don't need to check header */
967 		m->m_flags |= M_EAPOL;
968 		ac = WME_AC_VO;
969 		goto done;
970 	}
971 	/*
972 	 * Non-qos traffic goes to BE.
973 	 */
974 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
975 		ac = WME_AC_BE;
976 		goto done;
977 	}
978 
979 	/*
980 	 * If node has a vlan tag then all traffic
981 	 * to it must have a matching tag.
982 	 */
983 	v_wme_ac = 0;
984 	if (ni->ni_vlan != 0) {
985 		 if ((m->m_flags & M_VLANTAG) == 0) {
986 			IEEE80211_NODE_STAT(ni, tx_novlantag);
987 			return 1;
988 		}
989 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
990 		    EVL_VLANOFTAG(ni->ni_vlan)) {
991 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
992 			return 1;
993 		}
994 		/* map vlan priority to AC */
995 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
996 	}
997 
998 	/* XXX m_copydata may be too slow for fast path */
999 #ifdef INET
1000 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1001 		uint8_t tos;
1002 		/*
1003 		 * IP frame, map the DSCP bits from the TOS field.
1004 		 */
1005 		/* NB: ip header may not be in first mbuf */
1006 		m_copydata(m, sizeof(struct ether_header) +
1007 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1008 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1009 		d_wme_ac = TID_TO_WME_AC(tos);
1010 	} else {
1011 #endif /* INET */
1012 #ifdef INET6
1013 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1014 		uint32_t flow;
1015 		uint8_t tos;
1016 		/*
1017 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1018 		 */
1019 		m_copydata(m, sizeof(struct ether_header) +
1020 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1021 		    (caddr_t) &flow);
1022 		tos = (uint8_t)(ntohl(flow) >> 20);
1023 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1024 		d_wme_ac = TID_TO_WME_AC(tos);
1025 	} else {
1026 #endif /* INET6 */
1027 		d_wme_ac = WME_AC_BE;
1028 #ifdef INET6
1029 	}
1030 #endif
1031 #ifdef INET
1032 	}
1033 #endif
1034 	/*
1035 	 * Use highest priority AC.
1036 	 */
1037 	if (v_wme_ac > d_wme_ac)
1038 		ac = v_wme_ac;
1039 	else
1040 		ac = d_wme_ac;
1041 
1042 	/*
1043 	 * Apply ACM policy.
1044 	 */
1045 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1046 		static const int acmap[4] = {
1047 			WME_AC_BK,	/* WME_AC_BE */
1048 			WME_AC_BK,	/* WME_AC_BK */
1049 			WME_AC_BE,	/* WME_AC_VI */
1050 			WME_AC_VI,	/* WME_AC_VO */
1051 		};
1052 		struct ieee80211com *ic = ni->ni_ic;
1053 
1054 		while (ac != WME_AC_BK &&
1055 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1056 			ac = acmap[ac];
1057 	}
1058 done:
1059 	M_WME_SETAC(m, ac);
1060 	return 0;
1061 }
1062 
1063 /*
1064  * Insure there is sufficient contiguous space to encapsulate the
1065  * 802.11 data frame.  If room isn't already there, arrange for it.
1066  * Drivers and cipher modules assume we have done the necessary work
1067  * and fail rudely if they don't find the space they need.
1068  */
1069 struct mbuf *
1070 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1071 	struct ieee80211_key *key, struct mbuf *m)
1072 {
1073 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1074 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1075 
1076 	if (key != NULL) {
1077 		/* XXX belongs in crypto code? */
1078 		needed_space += key->wk_cipher->ic_header;
1079 		/* XXX frags */
1080 		/*
1081 		 * When crypto is being done in the host we must insure
1082 		 * the data are writable for the cipher routines; clone
1083 		 * a writable mbuf chain.
1084 		 * XXX handle SWMIC specially
1085 		 */
1086 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1087 			m = m_unshare(m, M_NOWAIT);
1088 			if (m == NULL) {
1089 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1090 				    "%s: cannot get writable mbuf\n", __func__);
1091 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1092 				return NULL;
1093 			}
1094 		}
1095 	}
1096 	/*
1097 	 * We know we are called just before stripping an Ethernet
1098 	 * header and prepending an LLC header.  This means we know
1099 	 * there will be
1100 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1101 	 * bytes recovered to which we need additional space for the
1102 	 * 802.11 header and any crypto header.
1103 	 */
1104 	/* XXX check trailing space and copy instead? */
1105 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1106 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1107 		if (n == NULL) {
1108 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1109 			    "%s: cannot expand storage\n", __func__);
1110 			vap->iv_stats.is_tx_nobuf++;
1111 			m_freem(m);
1112 			return NULL;
1113 		}
1114 		KASSERT(needed_space <= MHLEN,
1115 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1116 		/*
1117 		 * Setup new mbuf to have leading space to prepend the
1118 		 * 802.11 header and any crypto header bits that are
1119 		 * required (the latter are added when the driver calls
1120 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1121 		 */
1122 		/* NB: must be first 'cuz it clobbers m_data */
1123 		m_move_pkthdr(n, m);
1124 		n->m_len = 0;			/* NB: m_gethdr does not set */
1125 		n->m_data += needed_space;
1126 		/*
1127 		 * Pull up Ethernet header to create the expected layout.
1128 		 * We could use m_pullup but that's overkill (i.e. we don't
1129 		 * need the actual data) and it cannot fail so do it inline
1130 		 * for speed.
1131 		 */
1132 		/* NB: struct ether_header is known to be contiguous */
1133 		n->m_len += sizeof(struct ether_header);
1134 		m->m_len -= sizeof(struct ether_header);
1135 		m->m_data += sizeof(struct ether_header);
1136 		/*
1137 		 * Replace the head of the chain.
1138 		 */
1139 		n->m_next = m;
1140 		m = n;
1141 	}
1142 	return m;
1143 #undef TO_BE_RECLAIMED
1144 }
1145 
1146 /*
1147  * Return the transmit key to use in sending a unicast frame.
1148  * If a unicast key is set we use that.  When no unicast key is set
1149  * we fall back to the default transmit key.
1150  */
1151 static __inline struct ieee80211_key *
1152 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1153 	struct ieee80211_node *ni)
1154 {
1155 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1156 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1157 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1158 			return NULL;
1159 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1160 	} else {
1161 		return &ni->ni_ucastkey;
1162 	}
1163 }
1164 
1165 /*
1166  * Return the transmit key to use in sending a multicast frame.
1167  * Multicast traffic always uses the group key which is installed as
1168  * the default tx key.
1169  */
1170 static __inline struct ieee80211_key *
1171 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1172 	struct ieee80211_node *ni)
1173 {
1174 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1175 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1176 		return NULL;
1177 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1178 }
1179 
1180 /*
1181  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1182  * If an error is encountered NULL is returned.  The caller is required
1183  * to provide a node reference and pullup the ethernet header in the
1184  * first mbuf.
1185  *
1186  * NB: Packet is assumed to be processed by ieee80211_classify which
1187  *     marked EAPOL frames w/ M_EAPOL.
1188  */
1189 struct mbuf *
1190 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1191     struct mbuf *m)
1192 {
1193 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1194 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1195 	struct ieee80211com *ic = ni->ni_ic;
1196 #ifdef IEEE80211_SUPPORT_MESH
1197 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1198 	struct ieee80211_meshcntl_ae10 *mc;
1199 	struct ieee80211_mesh_route *rt = NULL;
1200 	int dir = -1;
1201 #endif
1202 	struct ether_header eh;
1203 	struct ieee80211_frame *wh;
1204 	struct ieee80211_key *key;
1205 	struct llc *llc;
1206 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1207 	ieee80211_seq seqno;
1208 	int meshhdrsize, meshae;
1209 	uint8_t *qos;
1210 
1211 	IEEE80211_TX_LOCK_ASSERT(ic);
1212 
1213 	/*
1214 	 * Copy existing Ethernet header to a safe place.  The
1215 	 * rest of the code assumes it's ok to strip it when
1216 	 * reorganizing state for the final encapsulation.
1217 	 */
1218 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1219 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1220 
1221 	/*
1222 	 * Insure space for additional headers.  First identify
1223 	 * transmit key to use in calculating any buffer adjustments
1224 	 * required.  This is also used below to do privacy
1225 	 * encapsulation work.  Then calculate the 802.11 header
1226 	 * size and any padding required by the driver.
1227 	 *
1228 	 * Note key may be NULL if we fall back to the default
1229 	 * transmit key and that is not set.  In that case the
1230 	 * buffer may not be expanded as needed by the cipher
1231 	 * routines, but they will/should discard it.
1232 	 */
1233 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1234 		if (vap->iv_opmode == IEEE80211_M_STA ||
1235 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1236 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1237 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1238 			key = ieee80211_crypto_getucastkey(vap, ni);
1239 		else
1240 			key = ieee80211_crypto_getmcastkey(vap, ni);
1241 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1242 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1243 			    eh.ether_dhost,
1244 			    "no default transmit key (%s) deftxkey %u",
1245 			    __func__, vap->iv_def_txkey);
1246 			vap->iv_stats.is_tx_nodefkey++;
1247 			goto bad;
1248 		}
1249 	} else
1250 		key = NULL;
1251 	/*
1252 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1253 	 * frames so suppress use.  This may be an issue if other
1254 	 * ap's require all data frames to be QoS-encapsulated
1255 	 * once negotiated in which case we'll need to make this
1256 	 * configurable.
1257 	 * NB: mesh data frames are QoS.
1258 	 */
1259 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1260 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1261 	    (m->m_flags & M_EAPOL) == 0;
1262 	if (addqos)
1263 		hdrsize = sizeof(struct ieee80211_qosframe);
1264 	else
1265 		hdrsize = sizeof(struct ieee80211_frame);
1266 #ifdef IEEE80211_SUPPORT_MESH
1267 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1268 		/*
1269 		 * Mesh data frames are encapsulated according to the
1270 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1271 		 * o Group Addressed data (aka multicast) originating
1272 		 *   at the local sta are sent w/ 3-address format and
1273 		 *   address extension mode 00
1274 		 * o Individually Addressed data (aka unicast) originating
1275 		 *   at the local sta are sent w/ 4-address format and
1276 		 *   address extension mode 00
1277 		 * o Group Addressed data forwarded from a non-mesh sta are
1278 		 *   sent w/ 3-address format and address extension mode 01
1279 		 * o Individually Address data from another sta are sent
1280 		 *   w/ 4-address format and address extension mode 10
1281 		 */
1282 		is4addr = 0;		/* NB: don't use, disable */
1283 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1284 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1285 			KASSERT(rt != NULL, ("route is NULL"));
1286 			dir = IEEE80211_FC1_DIR_DSTODS;
1287 			hdrsize += IEEE80211_ADDR_LEN;
1288 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1289 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1290 				    vap->iv_myaddr)) {
1291 					IEEE80211_NOTE_MAC(vap,
1292 					    IEEE80211_MSG_MESH,
1293 					    eh.ether_dhost,
1294 					    "%s", "trying to send to ourself");
1295 					goto bad;
1296 				}
1297 				meshae = IEEE80211_MESH_AE_10;
1298 				meshhdrsize =
1299 				    sizeof(struct ieee80211_meshcntl_ae10);
1300 			} else {
1301 				meshae = IEEE80211_MESH_AE_00;
1302 				meshhdrsize =
1303 				    sizeof(struct ieee80211_meshcntl);
1304 			}
1305 		} else {
1306 			dir = IEEE80211_FC1_DIR_FROMDS;
1307 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1308 				/* proxy group */
1309 				meshae = IEEE80211_MESH_AE_01;
1310 				meshhdrsize =
1311 				    sizeof(struct ieee80211_meshcntl_ae01);
1312 			} else {
1313 				/* group */
1314 				meshae = IEEE80211_MESH_AE_00;
1315 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1316 			}
1317 		}
1318 	} else {
1319 #endif
1320 		/*
1321 		 * 4-address frames need to be generated for:
1322 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1323 		 * o packets sent through a vap marked for relaying
1324 		 *   (e.g. a station operating with dynamic WDS)
1325 		 */
1326 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1327 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1328 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1329 		if (is4addr)
1330 			hdrsize += IEEE80211_ADDR_LEN;
1331 		meshhdrsize = meshae = 0;
1332 #ifdef IEEE80211_SUPPORT_MESH
1333 	}
1334 #endif
1335 	/*
1336 	 * Honor driver DATAPAD requirement.
1337 	 */
1338 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1339 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1340 	else
1341 		hdrspace = hdrsize;
1342 
1343 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1344 		/*
1345 		 * Normal frame.
1346 		 */
1347 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1348 		if (m == NULL) {
1349 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1350 			goto bad;
1351 		}
1352 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1353 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1354 		llc = mtod(m, struct llc *);
1355 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1356 		llc->llc_control = LLC_UI;
1357 		llc->llc_snap.org_code[0] = 0;
1358 		llc->llc_snap.org_code[1] = 0;
1359 		llc->llc_snap.org_code[2] = 0;
1360 		llc->llc_snap.ether_type = eh.ether_type;
1361 	} else {
1362 #ifdef IEEE80211_SUPPORT_SUPERG
1363 		/*
1364 		 * Aggregated frame.
1365 		 */
1366 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1367 		if (m == NULL)
1368 #endif
1369 			goto bad;
1370 	}
1371 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1372 
1373 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1374 	if (m == NULL) {
1375 		vap->iv_stats.is_tx_nobuf++;
1376 		goto bad;
1377 	}
1378 	wh = mtod(m, struct ieee80211_frame *);
1379 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1380 	*(uint16_t *)wh->i_dur = 0;
1381 	qos = NULL;	/* NB: quiet compiler */
1382 	if (is4addr) {
1383 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1384 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1385 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1386 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1387 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1388 	} else switch (vap->iv_opmode) {
1389 	case IEEE80211_M_STA:
1390 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1391 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1392 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1393 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1394 		break;
1395 	case IEEE80211_M_IBSS:
1396 	case IEEE80211_M_AHDEMO:
1397 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1398 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1399 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1400 		/*
1401 		 * NB: always use the bssid from iv_bss as the
1402 		 *     neighbor's may be stale after an ibss merge
1403 		 */
1404 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1405 		break;
1406 	case IEEE80211_M_HOSTAP:
1407 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1408 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1409 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1410 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1411 		break;
1412 #ifdef IEEE80211_SUPPORT_MESH
1413 	case IEEE80211_M_MBSS:
1414 		/* NB: offset by hdrspace to deal with DATAPAD */
1415 		mc = (struct ieee80211_meshcntl_ae10 *)
1416 		     (mtod(m, uint8_t *) + hdrspace);
1417 		wh->i_fc[1] = dir;
1418 		switch (meshae) {
1419 		case IEEE80211_MESH_AE_00:	/* no proxy */
1420 			mc->mc_flags = 0;
1421 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1422 				IEEE80211_ADDR_COPY(wh->i_addr1,
1423 				    ni->ni_macaddr);
1424 				IEEE80211_ADDR_COPY(wh->i_addr2,
1425 				    vap->iv_myaddr);
1426 				IEEE80211_ADDR_COPY(wh->i_addr3,
1427 				    eh.ether_dhost);
1428 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1429 				    eh.ether_shost);
1430 				qos =((struct ieee80211_qosframe_addr4 *)
1431 				    wh)->i_qos;
1432 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1433 				 /* mcast */
1434 				IEEE80211_ADDR_COPY(wh->i_addr1,
1435 				    eh.ether_dhost);
1436 				IEEE80211_ADDR_COPY(wh->i_addr2,
1437 				    vap->iv_myaddr);
1438 				IEEE80211_ADDR_COPY(wh->i_addr3,
1439 				    eh.ether_shost);
1440 				qos = ((struct ieee80211_qosframe *)
1441 				    wh)->i_qos;
1442 			}
1443 			break;
1444 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1445 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1446 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1447 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1448 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1449 			mc->mc_flags = 1;
1450 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1451 			    eh.ether_shost);
1452 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1453 			break;
1454 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1455 			KASSERT(rt != NULL, ("route is NULL"));
1456 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1457 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1458 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1459 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1460 			mc->mc_flags = IEEE80211_MESH_AE_10;
1461 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1462 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1463 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1464 			break;
1465 		default:
1466 			KASSERT(0, ("meshae %d", meshae));
1467 			break;
1468 		}
1469 		mc->mc_ttl = ms->ms_ttl;
1470 		ms->ms_seq++;
1471 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1472 		break;
1473 #endif
1474 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1475 	default:
1476 		goto bad;
1477 	}
1478 	if (m->m_flags & M_MORE_DATA)
1479 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1480 	if (addqos) {
1481 		int ac, tid;
1482 
1483 		if (is4addr) {
1484 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1485 		/* NB: mesh case handled earlier */
1486 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1487 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1488 		ac = M_WME_GETAC(m);
1489 		/* map from access class/queue to 11e header priorty value */
1490 		tid = WME_AC_TO_TID(ac);
1491 		qos[0] = tid & IEEE80211_QOS_TID;
1492 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1493 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1494 #ifdef IEEE80211_SUPPORT_MESH
1495 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1496 			qos[1] = IEEE80211_QOS_MC;
1497 		else
1498 #endif
1499 			qos[1] = 0;
1500 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1501 
1502 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1503 			/*
1504 			 * NB: don't assign a sequence # to potential
1505 			 * aggregates; we expect this happens at the
1506 			 * point the frame comes off any aggregation q
1507 			 * as otherwise we may introduce holes in the
1508 			 * BA sequence space and/or make window accouting
1509 			 * more difficult.
1510 			 *
1511 			 * XXX may want to control this with a driver
1512 			 * capability; this may also change when we pull
1513 			 * aggregation up into net80211
1514 			 */
1515 			seqno = ni->ni_txseqs[tid]++;
1516 			*(uint16_t *)wh->i_seq =
1517 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1518 			M_SEQNO_SET(m, seqno);
1519 		}
1520 	} else {
1521 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1522 		*(uint16_t *)wh->i_seq =
1523 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1524 		M_SEQNO_SET(m, seqno);
1525 	}
1526 
1527 
1528 	/* check if xmit fragmentation is required */
1529 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1530 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1531 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1532 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1533 	if (key != NULL) {
1534 		/*
1535 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1536 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1537 		 */
1538 		if ((m->m_flags & M_EAPOL) == 0 ||
1539 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1540 		     (vap->iv_opmode == IEEE80211_M_STA ?
1541 		      !IEEE80211_KEY_UNDEFINED(key) :
1542 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1543 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1544 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1545 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1546 				    eh.ether_dhost,
1547 				    "%s", "enmic failed, discard frame");
1548 				vap->iv_stats.is_crypto_enmicfail++;
1549 				goto bad;
1550 			}
1551 		}
1552 	}
1553 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1554 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1555 		goto bad;
1556 
1557 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1558 
1559 	IEEE80211_NODE_STAT(ni, tx_data);
1560 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1561 		IEEE80211_NODE_STAT(ni, tx_mcast);
1562 		m->m_flags |= M_MCAST;
1563 	} else
1564 		IEEE80211_NODE_STAT(ni, tx_ucast);
1565 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1566 
1567 	return m;
1568 bad:
1569 	if (m != NULL)
1570 		m_freem(m);
1571 	return NULL;
1572 #undef WH4
1573 #undef MC01
1574 }
1575 
1576 /*
1577  * Fragment the frame according to the specified mtu.
1578  * The size of the 802.11 header (w/o padding) is provided
1579  * so we don't need to recalculate it.  We create a new
1580  * mbuf for each fragment and chain it through m_nextpkt;
1581  * we might be able to optimize this by reusing the original
1582  * packet's mbufs but that is significantly more complicated.
1583  */
1584 static int
1585 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1586 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1587 {
1588 	struct ieee80211com *ic = vap->iv_ic;
1589 	struct ieee80211_frame *wh, *whf;
1590 	struct mbuf *m, *prev, *next;
1591 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1592 	u_int hdrspace;
1593 
1594 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1595 	KASSERT(m0->m_pkthdr.len > mtu,
1596 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1597 
1598 	/*
1599 	 * Honor driver DATAPAD requirement.
1600 	 */
1601 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1602 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1603 	else
1604 		hdrspace = hdrsize;
1605 
1606 	wh = mtod(m0, struct ieee80211_frame *);
1607 	/* NB: mark the first frag; it will be propagated below */
1608 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1609 	totalhdrsize = hdrspace + ciphdrsize;
1610 	fragno = 1;
1611 	off = mtu - ciphdrsize;
1612 	remainder = m0->m_pkthdr.len - off;
1613 	prev = m0;
1614 	do {
1615 		fragsize = totalhdrsize + remainder;
1616 		if (fragsize > mtu)
1617 			fragsize = mtu;
1618 		/* XXX fragsize can be >2048! */
1619 		KASSERT(fragsize < MCLBYTES,
1620 			("fragment size %u too big!", fragsize));
1621 		if (fragsize > MHLEN)
1622 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1623 		else
1624 			m = m_gethdr(M_NOWAIT, MT_DATA);
1625 		if (m == NULL)
1626 			goto bad;
1627 		/* leave room to prepend any cipher header */
1628 		m_align(m, fragsize - ciphdrsize);
1629 
1630 		/*
1631 		 * Form the header in the fragment.  Note that since
1632 		 * we mark the first fragment with the MORE_FRAG bit
1633 		 * it automatically is propagated to each fragment; we
1634 		 * need only clear it on the last fragment (done below).
1635 		 * NB: frag 1+ dont have Mesh Control field present.
1636 		 */
1637 		whf = mtod(m, struct ieee80211_frame *);
1638 		memcpy(whf, wh, hdrsize);
1639 #ifdef IEEE80211_SUPPORT_MESH
1640 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1641 			if (IEEE80211_IS_DSTODS(wh))
1642 				((struct ieee80211_qosframe_addr4 *)
1643 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1644 			else
1645 				((struct ieee80211_qosframe *)
1646 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1647 		}
1648 #endif
1649 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1650 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1651 				IEEE80211_SEQ_FRAG_SHIFT);
1652 		fragno++;
1653 
1654 		payload = fragsize - totalhdrsize;
1655 		/* NB: destination is known to be contiguous */
1656 
1657 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1658 		m->m_len = hdrspace + payload;
1659 		m->m_pkthdr.len = hdrspace + payload;
1660 		m->m_flags |= M_FRAG;
1661 
1662 		/* chain up the fragment */
1663 		prev->m_nextpkt = m;
1664 		prev = m;
1665 
1666 		/* deduct fragment just formed */
1667 		remainder -= payload;
1668 		off += payload;
1669 	} while (remainder != 0);
1670 
1671 	/* set the last fragment */
1672 	m->m_flags |= M_LASTFRAG;
1673 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1674 
1675 	/* strip first mbuf now that everything has been copied */
1676 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1677 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1678 
1679 	vap->iv_stats.is_tx_fragframes++;
1680 	vap->iv_stats.is_tx_frags += fragno-1;
1681 
1682 	return 1;
1683 bad:
1684 	/* reclaim fragments but leave original frame for caller to free */
1685 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1686 		next = m->m_nextpkt;
1687 		m->m_nextpkt = NULL;		/* XXX paranoid */
1688 		m_freem(m);
1689 	}
1690 	m0->m_nextpkt = NULL;
1691 	return 0;
1692 }
1693 
1694 /*
1695  * Add a supported rates element id to a frame.
1696  */
1697 uint8_t *
1698 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1699 {
1700 	int nrates;
1701 
1702 	*frm++ = IEEE80211_ELEMID_RATES;
1703 	nrates = rs->rs_nrates;
1704 	if (nrates > IEEE80211_RATE_SIZE)
1705 		nrates = IEEE80211_RATE_SIZE;
1706 	*frm++ = nrates;
1707 	memcpy(frm, rs->rs_rates, nrates);
1708 	return frm + nrates;
1709 }
1710 
1711 /*
1712  * Add an extended supported rates element id to a frame.
1713  */
1714 uint8_t *
1715 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1716 {
1717 	/*
1718 	 * Add an extended supported rates element if operating in 11g mode.
1719 	 */
1720 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1721 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1722 		*frm++ = IEEE80211_ELEMID_XRATES;
1723 		*frm++ = nrates;
1724 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1725 		frm += nrates;
1726 	}
1727 	return frm;
1728 }
1729 
1730 /*
1731  * Add an ssid element to a frame.
1732  */
1733 uint8_t *
1734 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1735 {
1736 	*frm++ = IEEE80211_ELEMID_SSID;
1737 	*frm++ = len;
1738 	memcpy(frm, ssid, len);
1739 	return frm + len;
1740 }
1741 
1742 /*
1743  * Add an erp element to a frame.
1744  */
1745 static uint8_t *
1746 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1747 {
1748 	uint8_t erp;
1749 
1750 	*frm++ = IEEE80211_ELEMID_ERP;
1751 	*frm++ = 1;
1752 	erp = 0;
1753 	if (ic->ic_nonerpsta != 0)
1754 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1755 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1756 		erp |= IEEE80211_ERP_USE_PROTECTION;
1757 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1758 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1759 	*frm++ = erp;
1760 	return frm;
1761 }
1762 
1763 /*
1764  * Add a CFParams element to a frame.
1765  */
1766 static uint8_t *
1767 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1768 {
1769 #define	ADDSHORT(frm, v) do {	\
1770 	LE_WRITE_2(frm, v);	\
1771 	frm += 2;		\
1772 } while (0)
1773 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1774 	*frm++ = 6;
1775 	*frm++ = 0;		/* CFP count */
1776 	*frm++ = 2;		/* CFP period */
1777 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1778 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1779 	return frm;
1780 #undef ADDSHORT
1781 }
1782 
1783 static __inline uint8_t *
1784 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1785 {
1786 	memcpy(frm, ie->ie_data, ie->ie_len);
1787 	return frm + ie->ie_len;
1788 }
1789 
1790 static __inline uint8_t *
1791 add_ie(uint8_t *frm, const uint8_t *ie)
1792 {
1793 	memcpy(frm, ie, 2 + ie[1]);
1794 	return frm + 2 + ie[1];
1795 }
1796 
1797 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1798 /*
1799  * Add a WME information element to a frame.
1800  */
1801 static uint8_t *
1802 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1803 {
1804 	static const struct ieee80211_wme_info info = {
1805 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1806 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1807 		.wme_oui	= { WME_OUI_BYTES },
1808 		.wme_type	= WME_OUI_TYPE,
1809 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1810 		.wme_version	= WME_VERSION,
1811 		.wme_info	= 0,
1812 	};
1813 	memcpy(frm, &info, sizeof(info));
1814 	return frm + sizeof(info);
1815 }
1816 
1817 /*
1818  * Add a WME parameters element to a frame.
1819  */
1820 static uint8_t *
1821 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1822 {
1823 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1824 #define	ADDSHORT(frm, v) do {	\
1825 	LE_WRITE_2(frm, v);	\
1826 	frm += 2;		\
1827 } while (0)
1828 	/* NB: this works 'cuz a param has an info at the front */
1829 	static const struct ieee80211_wme_info param = {
1830 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1831 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1832 		.wme_oui	= { WME_OUI_BYTES },
1833 		.wme_type	= WME_OUI_TYPE,
1834 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1835 		.wme_version	= WME_VERSION,
1836 	};
1837 	int i;
1838 
1839 	memcpy(frm, &param, sizeof(param));
1840 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1841 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1842 	*frm++ = 0;					/* reserved field */
1843 	for (i = 0; i < WME_NUM_AC; i++) {
1844 		const struct wmeParams *ac =
1845 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1846 		*frm++ = SM(i, WME_PARAM_ACI)
1847 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1848 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1849 		       ;
1850 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1851 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1852 		       ;
1853 		ADDSHORT(frm, ac->wmep_txopLimit);
1854 	}
1855 	return frm;
1856 #undef SM
1857 #undef ADDSHORT
1858 }
1859 #undef WME_OUI_BYTES
1860 
1861 /*
1862  * Add an 11h Power Constraint element to a frame.
1863  */
1864 static uint8_t *
1865 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1866 {
1867 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1868 	/* XXX per-vap tx power limit? */
1869 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1870 
1871 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1872 	frm[1] = 1;
1873 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1874 	return frm + 3;
1875 }
1876 
1877 /*
1878  * Add an 11h Power Capability element to a frame.
1879  */
1880 static uint8_t *
1881 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1882 {
1883 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1884 	frm[1] = 2;
1885 	frm[2] = c->ic_minpower;
1886 	frm[3] = c->ic_maxpower;
1887 	return frm + 4;
1888 }
1889 
1890 /*
1891  * Add an 11h Supported Channels element to a frame.
1892  */
1893 static uint8_t *
1894 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1895 {
1896 	static const int ielen = 26;
1897 
1898 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1899 	frm[1] = ielen;
1900 	/* XXX not correct */
1901 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1902 	return frm + 2 + ielen;
1903 }
1904 
1905 /*
1906  * Add an 11h Quiet time element to a frame.
1907  */
1908 static uint8_t *
1909 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1910 {
1911 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1912 
1913 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1914 	quiet->len = 6;
1915 	if (vap->iv_quiet_count_value == 1)
1916 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1917 	else if (vap->iv_quiet_count_value > 1)
1918 		vap->iv_quiet_count_value--;
1919 
1920 	if (vap->iv_quiet_count_value == 0) {
1921 		/* value 0 is reserved as per 802.11h standerd */
1922 		vap->iv_quiet_count_value = 1;
1923 	}
1924 
1925 	quiet->tbttcount = vap->iv_quiet_count_value;
1926 	quiet->period = vap->iv_quiet_period;
1927 	quiet->duration = htole16(vap->iv_quiet_duration);
1928 	quiet->offset = htole16(vap->iv_quiet_offset);
1929 	return frm + sizeof(*quiet);
1930 }
1931 
1932 /*
1933  * Add an 11h Channel Switch Announcement element to a frame.
1934  * Note that we use the per-vap CSA count to adjust the global
1935  * counter so we can use this routine to form probe response
1936  * frames and get the current count.
1937  */
1938 static uint8_t *
1939 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1940 {
1941 	struct ieee80211com *ic = vap->iv_ic;
1942 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1943 
1944 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1945 	csa->csa_len = 3;
1946 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1947 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1948 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1949 	return frm + sizeof(*csa);
1950 }
1951 
1952 /*
1953  * Add an 11h country information element to a frame.
1954  */
1955 static uint8_t *
1956 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1957 {
1958 
1959 	if (ic->ic_countryie == NULL ||
1960 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1961 		/*
1962 		 * Handle lazy construction of ie.  This is done on
1963 		 * first use and after a channel change that requires
1964 		 * re-calculation.
1965 		 */
1966 		if (ic->ic_countryie != NULL)
1967 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1968 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1969 		if (ic->ic_countryie == NULL)
1970 			return frm;
1971 		ic->ic_countryie_chan = ic->ic_bsschan;
1972 	}
1973 	return add_appie(frm, ic->ic_countryie);
1974 }
1975 
1976 uint8_t *
1977 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1978 {
1979 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1980 		return (add_ie(frm, vap->iv_wpa_ie));
1981 	else {
1982 		/* XXX else complain? */
1983 		return (frm);
1984 	}
1985 }
1986 
1987 uint8_t *
1988 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
1989 {
1990 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
1991 		return (add_ie(frm, vap->iv_rsn_ie));
1992 	else {
1993 		/* XXX else complain? */
1994 		return (frm);
1995 	}
1996 }
1997 
1998 uint8_t *
1999 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2000 {
2001 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2002 		*frm++ = IEEE80211_ELEMID_QOS;
2003 		*frm++ = 1;
2004 		*frm++ = 0;
2005 	}
2006 
2007 	return (frm);
2008 }
2009 
2010 /*
2011  * Send a probe request frame with the specified ssid
2012  * and any optional information element data.
2013  */
2014 int
2015 ieee80211_send_probereq(struct ieee80211_node *ni,
2016 	const uint8_t sa[IEEE80211_ADDR_LEN],
2017 	const uint8_t da[IEEE80211_ADDR_LEN],
2018 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2019 	const uint8_t *ssid, size_t ssidlen)
2020 {
2021 	struct ieee80211vap *vap = ni->ni_vap;
2022 	struct ieee80211com *ic = ni->ni_ic;
2023 	const struct ieee80211_txparam *tp;
2024 	struct ieee80211_bpf_params params;
2025 	struct ieee80211_frame *wh;
2026 	const struct ieee80211_rateset *rs;
2027 	struct mbuf *m;
2028 	uint8_t *frm;
2029 	int ret;
2030 
2031 	if (vap->iv_state == IEEE80211_S_CAC) {
2032 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2033 		    "block %s frame in CAC state", "probe request");
2034 		vap->iv_stats.is_tx_badstate++;
2035 		return EIO;		/* XXX */
2036 	}
2037 
2038 	/*
2039 	 * Hold a reference on the node so it doesn't go away until after
2040 	 * the xmit is complete all the way in the driver.  On error we
2041 	 * will remove our reference.
2042 	 */
2043 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2044 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2045 		__func__, __LINE__,
2046 		ni, ether_sprintf(ni->ni_macaddr),
2047 		ieee80211_node_refcnt(ni)+1);
2048 	ieee80211_ref_node(ni);
2049 
2050 	/*
2051 	 * prreq frame format
2052 	 *	[tlv] ssid
2053 	 *	[tlv] supported rates
2054 	 *	[tlv] RSN (optional)
2055 	 *	[tlv] extended supported rates
2056 	 *	[tlv] WPA (optional)
2057 	 *	[tlv] user-specified ie's
2058 	 */
2059 	m = ieee80211_getmgtframe(&frm,
2060 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2061 	       	 2 + IEEE80211_NWID_LEN
2062 	       + 2 + IEEE80211_RATE_SIZE
2063 	       + sizeof(struct ieee80211_ie_wpa)
2064 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2065 	       + sizeof(struct ieee80211_ie_wpa)
2066 	       + (vap->iv_appie_probereq != NULL ?
2067 		   vap->iv_appie_probereq->ie_len : 0)
2068 	);
2069 	if (m == NULL) {
2070 		vap->iv_stats.is_tx_nobuf++;
2071 		ieee80211_free_node(ni);
2072 		return ENOMEM;
2073 	}
2074 
2075 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2076 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2077 	frm = ieee80211_add_rates(frm, rs);
2078 	frm = ieee80211_add_rsn(frm, vap);
2079 	frm = ieee80211_add_xrates(frm, rs);
2080 	frm = ieee80211_add_wpa(frm, vap);
2081 	if (vap->iv_appie_probereq != NULL)
2082 		frm = add_appie(frm, vap->iv_appie_probereq);
2083 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2084 
2085 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2086 	    ("leading space %zd", M_LEADINGSPACE(m)));
2087 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2088 	if (m == NULL) {
2089 		/* NB: cannot happen */
2090 		ieee80211_free_node(ni);
2091 		return ENOMEM;
2092 	}
2093 
2094 	IEEE80211_TX_LOCK(ic);
2095 	wh = mtod(m, struct ieee80211_frame *);
2096 	ieee80211_send_setup(ni, m,
2097 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2098 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2099 	/* XXX power management? */
2100 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2101 
2102 	M_WME_SETAC(m, WME_AC_BE);
2103 
2104 	IEEE80211_NODE_STAT(ni, tx_probereq);
2105 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2106 
2107 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2108 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2109 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2110 	    ssidlen, ssid);
2111 
2112 	memset(&params, 0, sizeof(params));
2113 	params.ibp_pri = M_WME_GETAC(m);
2114 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2115 	params.ibp_rate0 = tp->mgmtrate;
2116 	if (IEEE80211_IS_MULTICAST(da)) {
2117 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2118 		params.ibp_try0 = 1;
2119 	} else
2120 		params.ibp_try0 = tp->maxretry;
2121 	params.ibp_power = ni->ni_txpower;
2122 	ret = ieee80211_raw_output(vap, ni, m, &params);
2123 	IEEE80211_TX_UNLOCK(ic);
2124 	return (ret);
2125 }
2126 
2127 /*
2128  * Calculate capability information for mgt frames.
2129  */
2130 uint16_t
2131 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2132 {
2133 	struct ieee80211com *ic = vap->iv_ic;
2134 	uint16_t capinfo;
2135 
2136 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2137 
2138 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2139 		capinfo = IEEE80211_CAPINFO_ESS;
2140 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2141 		capinfo = IEEE80211_CAPINFO_IBSS;
2142 	else
2143 		capinfo = 0;
2144 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2145 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2146 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2147 	    IEEE80211_IS_CHAN_2GHZ(chan))
2148 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2149 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2150 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2151 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2152 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2153 	return capinfo;
2154 }
2155 
2156 /*
2157  * Send a management frame.  The node is for the destination (or ic_bss
2158  * when in station mode).  Nodes other than ic_bss have their reference
2159  * count bumped to reflect our use for an indeterminant time.
2160  */
2161 int
2162 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2163 {
2164 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2165 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2166 	struct ieee80211vap *vap = ni->ni_vap;
2167 	struct ieee80211com *ic = ni->ni_ic;
2168 	struct ieee80211_node *bss = vap->iv_bss;
2169 	struct ieee80211_bpf_params params;
2170 	struct mbuf *m;
2171 	uint8_t *frm;
2172 	uint16_t capinfo;
2173 	int has_challenge, is_shared_key, ret, status;
2174 
2175 	KASSERT(ni != NULL, ("null node"));
2176 
2177 	/*
2178 	 * Hold a reference on the node so it doesn't go away until after
2179 	 * the xmit is complete all the way in the driver.  On error we
2180 	 * will remove our reference.
2181 	 */
2182 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2183 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2184 		__func__, __LINE__,
2185 		ni, ether_sprintf(ni->ni_macaddr),
2186 		ieee80211_node_refcnt(ni)+1);
2187 	ieee80211_ref_node(ni);
2188 
2189 	memset(&params, 0, sizeof(params));
2190 	switch (type) {
2191 
2192 	case IEEE80211_FC0_SUBTYPE_AUTH:
2193 		status = arg >> 16;
2194 		arg &= 0xffff;
2195 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2196 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2197 		    ni->ni_challenge != NULL);
2198 
2199 		/*
2200 		 * Deduce whether we're doing open authentication or
2201 		 * shared key authentication.  We do the latter if
2202 		 * we're in the middle of a shared key authentication
2203 		 * handshake or if we're initiating an authentication
2204 		 * request and configured to use shared key.
2205 		 */
2206 		is_shared_key = has_challenge ||
2207 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2208 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2209 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2210 
2211 		m = ieee80211_getmgtframe(&frm,
2212 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2213 			  3 * sizeof(uint16_t)
2214 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2215 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2216 		);
2217 		if (m == NULL)
2218 			senderr(ENOMEM, is_tx_nobuf);
2219 
2220 		((uint16_t *)frm)[0] =
2221 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2222 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2223 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2224 		((uint16_t *)frm)[2] = htole16(status);/* status */
2225 
2226 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2227 			((uint16_t *)frm)[3] =
2228 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2229 			    IEEE80211_ELEMID_CHALLENGE);
2230 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2231 			    IEEE80211_CHALLENGE_LEN);
2232 			m->m_pkthdr.len = m->m_len =
2233 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2234 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2235 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2236 				    "request encrypt frame (%s)", __func__);
2237 				/* mark frame for encryption */
2238 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2239 			}
2240 		} else
2241 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2242 
2243 		/* XXX not right for shared key */
2244 		if (status == IEEE80211_STATUS_SUCCESS)
2245 			IEEE80211_NODE_STAT(ni, tx_auth);
2246 		else
2247 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2248 
2249 		if (vap->iv_opmode == IEEE80211_M_STA)
2250 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2251 				(void *) vap->iv_state);
2252 		break;
2253 
2254 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2255 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2256 		    "send station deauthenticate (reason %d)", arg);
2257 		m = ieee80211_getmgtframe(&frm,
2258 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2259 			sizeof(uint16_t));
2260 		if (m == NULL)
2261 			senderr(ENOMEM, is_tx_nobuf);
2262 		*(uint16_t *)frm = htole16(arg);	/* reason */
2263 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2264 
2265 		IEEE80211_NODE_STAT(ni, tx_deauth);
2266 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2267 
2268 		ieee80211_node_unauthorize(ni);		/* port closed */
2269 		break;
2270 
2271 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2272 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2273 		/*
2274 		 * asreq frame format
2275 		 *	[2] capability information
2276 		 *	[2] listen interval
2277 		 *	[6*] current AP address (reassoc only)
2278 		 *	[tlv] ssid
2279 		 *	[tlv] supported rates
2280 		 *	[tlv] extended supported rates
2281 		 *	[4] power capability (optional)
2282 		 *	[28] supported channels (optional)
2283 		 *	[tlv] HT capabilities
2284 		 *	[tlv] WME (optional)
2285 		 *	[tlv] Vendor OUI HT capabilities (optional)
2286 		 *	[tlv] Atheros capabilities (if negotiated)
2287 		 *	[tlv] AppIE's (optional)
2288 		 */
2289 		m = ieee80211_getmgtframe(&frm,
2290 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2291 			 sizeof(uint16_t)
2292 		       + sizeof(uint16_t)
2293 		       + IEEE80211_ADDR_LEN
2294 		       + 2 + IEEE80211_NWID_LEN
2295 		       + 2 + IEEE80211_RATE_SIZE
2296 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2297 		       + 4
2298 		       + 2 + 26
2299 		       + sizeof(struct ieee80211_wme_info)
2300 		       + sizeof(struct ieee80211_ie_htcap)
2301 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2302 #ifdef IEEE80211_SUPPORT_SUPERG
2303 		       + sizeof(struct ieee80211_ath_ie)
2304 #endif
2305 		       + (vap->iv_appie_wpa != NULL ?
2306 				vap->iv_appie_wpa->ie_len : 0)
2307 		       + (vap->iv_appie_assocreq != NULL ?
2308 				vap->iv_appie_assocreq->ie_len : 0)
2309 		);
2310 		if (m == NULL)
2311 			senderr(ENOMEM, is_tx_nobuf);
2312 
2313 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2314 		    ("wrong mode %u", vap->iv_opmode));
2315 		capinfo = IEEE80211_CAPINFO_ESS;
2316 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2317 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2318 		/*
2319 		 * NB: Some 11a AP's reject the request when
2320 		 *     short premable is set.
2321 		 */
2322 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2323 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2324 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2325 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2326 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2327 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2328 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2329 		    (vap->iv_flags & IEEE80211_F_DOTH))
2330 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2331 		*(uint16_t *)frm = htole16(capinfo);
2332 		frm += 2;
2333 
2334 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2335 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2336 						    bss->ni_intval));
2337 		frm += 2;
2338 
2339 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2340 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2341 			frm += IEEE80211_ADDR_LEN;
2342 		}
2343 
2344 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2345 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2346 		frm = ieee80211_add_rsn(frm, vap);
2347 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2348 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2349 			frm = ieee80211_add_powercapability(frm,
2350 			    ic->ic_curchan);
2351 			frm = ieee80211_add_supportedchannels(frm, ic);
2352 		}
2353 
2354 		/*
2355 		 * Check the channel - we may be using an 11n NIC with an
2356 		 * 11n capable station, but we're configured to be an 11b
2357 		 * channel.
2358 		 */
2359 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2360 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2361 		    ni->ni_ies.htcap_ie != NULL &&
2362 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2363 			frm = ieee80211_add_htcap(frm, ni);
2364 		}
2365 		frm = ieee80211_add_wpa(frm, vap);
2366 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2367 		    ni->ni_ies.wme_ie != NULL)
2368 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2369 
2370 		/*
2371 		 * Same deal - only send HT info if we're on an 11n
2372 		 * capable channel.
2373 		 */
2374 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2375 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2376 		    ni->ni_ies.htcap_ie != NULL &&
2377 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2378 			frm = ieee80211_add_htcap_vendor(frm, ni);
2379 		}
2380 #ifdef IEEE80211_SUPPORT_SUPERG
2381 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2382 			frm = ieee80211_add_ath(frm,
2383 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2384 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2385 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2386 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2387 		}
2388 #endif /* IEEE80211_SUPPORT_SUPERG */
2389 		if (vap->iv_appie_assocreq != NULL)
2390 			frm = add_appie(frm, vap->iv_appie_assocreq);
2391 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2392 
2393 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2394 			(void *) vap->iv_state);
2395 		break;
2396 
2397 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2398 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2399 		/*
2400 		 * asresp frame format
2401 		 *	[2] capability information
2402 		 *	[2] status
2403 		 *	[2] association ID
2404 		 *	[tlv] supported rates
2405 		 *	[tlv] extended supported rates
2406 		 *	[tlv] HT capabilities (standard, if STA enabled)
2407 		 *	[tlv] HT information (standard, if STA enabled)
2408 		 *	[tlv] WME (if configured and STA enabled)
2409 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2410 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2411 		 *	[tlv] Atheros capabilities (if STA enabled)
2412 		 *	[tlv] AppIE's (optional)
2413 		 */
2414 		m = ieee80211_getmgtframe(&frm,
2415 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2416 			 sizeof(uint16_t)
2417 		       + sizeof(uint16_t)
2418 		       + sizeof(uint16_t)
2419 		       + 2 + IEEE80211_RATE_SIZE
2420 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2421 		       + sizeof(struct ieee80211_ie_htcap) + 4
2422 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2423 		       + sizeof(struct ieee80211_wme_param)
2424 #ifdef IEEE80211_SUPPORT_SUPERG
2425 		       + sizeof(struct ieee80211_ath_ie)
2426 #endif
2427 		       + (vap->iv_appie_assocresp != NULL ?
2428 				vap->iv_appie_assocresp->ie_len : 0)
2429 		);
2430 		if (m == NULL)
2431 			senderr(ENOMEM, is_tx_nobuf);
2432 
2433 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2434 		*(uint16_t *)frm = htole16(capinfo);
2435 		frm += 2;
2436 
2437 		*(uint16_t *)frm = htole16(arg);	/* status */
2438 		frm += 2;
2439 
2440 		if (arg == IEEE80211_STATUS_SUCCESS) {
2441 			*(uint16_t *)frm = htole16(ni->ni_associd);
2442 			IEEE80211_NODE_STAT(ni, tx_assoc);
2443 		} else
2444 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2445 		frm += 2;
2446 
2447 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2448 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2449 		/* NB: respond according to what we received */
2450 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2451 			frm = ieee80211_add_htcap(frm, ni);
2452 			frm = ieee80211_add_htinfo(frm, ni);
2453 		}
2454 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2455 		    ni->ni_ies.wme_ie != NULL)
2456 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2457 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2458 			frm = ieee80211_add_htcap_vendor(frm, ni);
2459 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2460 		}
2461 #ifdef IEEE80211_SUPPORT_SUPERG
2462 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2463 			frm = ieee80211_add_ath(frm,
2464 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2465 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2466 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2467 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2468 #endif /* IEEE80211_SUPPORT_SUPERG */
2469 		if (vap->iv_appie_assocresp != NULL)
2470 			frm = add_appie(frm, vap->iv_appie_assocresp);
2471 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2472 		break;
2473 
2474 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2475 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2476 		    "send station disassociate (reason %d)", arg);
2477 		m = ieee80211_getmgtframe(&frm,
2478 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2479 			sizeof(uint16_t));
2480 		if (m == NULL)
2481 			senderr(ENOMEM, is_tx_nobuf);
2482 		*(uint16_t *)frm = htole16(arg);	/* reason */
2483 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2484 
2485 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2486 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2487 		break;
2488 
2489 	default:
2490 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2491 		    "invalid mgmt frame type %u", type);
2492 		senderr(EINVAL, is_tx_unknownmgt);
2493 		/* NOTREACHED */
2494 	}
2495 
2496 	/* NB: force non-ProbeResp frames to the highest queue */
2497 	params.ibp_pri = WME_AC_VO;
2498 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2499 	/* NB: we know all frames are unicast */
2500 	params.ibp_try0 = bss->ni_txparms->maxretry;
2501 	params.ibp_power = bss->ni_txpower;
2502 	return ieee80211_mgmt_output(ni, m, type, &params);
2503 bad:
2504 	ieee80211_free_node(ni);
2505 	return ret;
2506 #undef senderr
2507 #undef HTFLAGS
2508 }
2509 
2510 /*
2511  * Return an mbuf with a probe response frame in it.
2512  * Space is left to prepend and 802.11 header at the
2513  * front but it's left to the caller to fill in.
2514  */
2515 struct mbuf *
2516 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2517 {
2518 	struct ieee80211vap *vap = bss->ni_vap;
2519 	struct ieee80211com *ic = bss->ni_ic;
2520 	const struct ieee80211_rateset *rs;
2521 	struct mbuf *m;
2522 	uint16_t capinfo;
2523 	uint8_t *frm;
2524 
2525 	/*
2526 	 * probe response frame format
2527 	 *	[8] time stamp
2528 	 *	[2] beacon interval
2529 	 *	[2] cabability information
2530 	 *	[tlv] ssid
2531 	 *	[tlv] supported rates
2532 	 *	[tlv] parameter set (FH/DS)
2533 	 *	[tlv] parameter set (IBSS)
2534 	 *	[tlv] country (optional)
2535 	 *	[3] power control (optional)
2536 	 *	[5] channel switch announcement (CSA) (optional)
2537 	 *	[tlv] extended rate phy (ERP)
2538 	 *	[tlv] extended supported rates
2539 	 *	[tlv] RSN (optional)
2540 	 *	[tlv] HT capabilities
2541 	 *	[tlv] HT information
2542 	 *	[tlv] WPA (optional)
2543 	 *	[tlv] WME (optional)
2544 	 *	[tlv] Vendor OUI HT capabilities (optional)
2545 	 *	[tlv] Vendor OUI HT information (optional)
2546 	 *	[tlv] Atheros capabilities
2547 	 *	[tlv] AppIE's (optional)
2548 	 *	[tlv] Mesh ID (MBSS)
2549 	 *	[tlv] Mesh Conf (MBSS)
2550 	 */
2551 	m = ieee80211_getmgtframe(&frm,
2552 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2553 		 8
2554 	       + sizeof(uint16_t)
2555 	       + sizeof(uint16_t)
2556 	       + 2 + IEEE80211_NWID_LEN
2557 	       + 2 + IEEE80211_RATE_SIZE
2558 	       + 7	/* max(7,3) */
2559 	       + IEEE80211_COUNTRY_MAX_SIZE
2560 	       + 3
2561 	       + sizeof(struct ieee80211_csa_ie)
2562 	       + sizeof(struct ieee80211_quiet_ie)
2563 	       + 3
2564 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2565 	       + sizeof(struct ieee80211_ie_wpa)
2566 	       + sizeof(struct ieee80211_ie_htcap)
2567 	       + sizeof(struct ieee80211_ie_htinfo)
2568 	       + sizeof(struct ieee80211_ie_wpa)
2569 	       + sizeof(struct ieee80211_wme_param)
2570 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2571 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2572 #ifdef IEEE80211_SUPPORT_SUPERG
2573 	       + sizeof(struct ieee80211_ath_ie)
2574 #endif
2575 #ifdef IEEE80211_SUPPORT_MESH
2576 	       + 2 + IEEE80211_MESHID_LEN
2577 	       + sizeof(struct ieee80211_meshconf_ie)
2578 #endif
2579 	       + (vap->iv_appie_proberesp != NULL ?
2580 			vap->iv_appie_proberesp->ie_len : 0)
2581 	);
2582 	if (m == NULL) {
2583 		vap->iv_stats.is_tx_nobuf++;
2584 		return NULL;
2585 	}
2586 
2587 	memset(frm, 0, 8);	/* timestamp should be filled later */
2588 	frm += 8;
2589 	*(uint16_t *)frm = htole16(bss->ni_intval);
2590 	frm += 2;
2591 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2592 	*(uint16_t *)frm = htole16(capinfo);
2593 	frm += 2;
2594 
2595 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2596 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2597 	frm = ieee80211_add_rates(frm, rs);
2598 
2599 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2600 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2601 		*frm++ = 5;
2602 		*frm++ = bss->ni_fhdwell & 0x00ff;
2603 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2604 		*frm++ = IEEE80211_FH_CHANSET(
2605 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2606 		*frm++ = IEEE80211_FH_CHANPAT(
2607 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2608 		*frm++ = bss->ni_fhindex;
2609 	} else {
2610 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2611 		*frm++ = 1;
2612 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2613 	}
2614 
2615 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2616 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2617 		*frm++ = 2;
2618 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2619 	}
2620 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2621 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2622 		frm = ieee80211_add_countryie(frm, ic);
2623 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2624 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2625 			frm = ieee80211_add_powerconstraint(frm, vap);
2626 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2627 			frm = ieee80211_add_csa(frm, vap);
2628 	}
2629 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2630 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2631 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2632 			if (vap->iv_quiet)
2633 				frm = ieee80211_add_quiet(frm, vap);
2634 		}
2635 	}
2636 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2637 		frm = ieee80211_add_erp(frm, ic);
2638 	frm = ieee80211_add_xrates(frm, rs);
2639 	frm = ieee80211_add_rsn(frm, vap);
2640 	/*
2641 	 * NB: legacy 11b clients do not get certain ie's.
2642 	 *     The caller identifies such clients by passing
2643 	 *     a token in legacy to us.  Could expand this to be
2644 	 *     any legacy client for stuff like HT ie's.
2645 	 */
2646 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2647 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2648 		frm = ieee80211_add_htcap(frm, bss);
2649 		frm = ieee80211_add_htinfo(frm, bss);
2650 	}
2651 	frm = ieee80211_add_wpa(frm, vap);
2652 	if (vap->iv_flags & IEEE80211_F_WME)
2653 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2654 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2655 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2656 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2657 		frm = ieee80211_add_htcap_vendor(frm, bss);
2658 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2659 	}
2660 #ifdef IEEE80211_SUPPORT_SUPERG
2661 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2662 	    legacy != IEEE80211_SEND_LEGACY_11B)
2663 		frm = ieee80211_add_athcaps(frm, bss);
2664 #endif
2665 	if (vap->iv_appie_proberesp != NULL)
2666 		frm = add_appie(frm, vap->iv_appie_proberesp);
2667 #ifdef IEEE80211_SUPPORT_MESH
2668 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2669 		frm = ieee80211_add_meshid(frm, vap);
2670 		frm = ieee80211_add_meshconf(frm, vap);
2671 	}
2672 #endif
2673 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2674 
2675 	return m;
2676 }
2677 
2678 /*
2679  * Send a probe response frame to the specified mac address.
2680  * This does not go through the normal mgt frame api so we
2681  * can specify the destination address and re-use the bss node
2682  * for the sta reference.
2683  */
2684 int
2685 ieee80211_send_proberesp(struct ieee80211vap *vap,
2686 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2687 {
2688 	struct ieee80211_node *bss = vap->iv_bss;
2689 	struct ieee80211com *ic = vap->iv_ic;
2690 	struct ieee80211_frame *wh;
2691 	struct mbuf *m;
2692 	int ret;
2693 
2694 	if (vap->iv_state == IEEE80211_S_CAC) {
2695 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2696 		    "block %s frame in CAC state", "probe response");
2697 		vap->iv_stats.is_tx_badstate++;
2698 		return EIO;		/* XXX */
2699 	}
2700 
2701 	/*
2702 	 * Hold a reference on the node so it doesn't go away until after
2703 	 * the xmit is complete all the way in the driver.  On error we
2704 	 * will remove our reference.
2705 	 */
2706 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2707 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2708 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2709 	    ieee80211_node_refcnt(bss)+1);
2710 	ieee80211_ref_node(bss);
2711 
2712 	m = ieee80211_alloc_proberesp(bss, legacy);
2713 	if (m == NULL) {
2714 		ieee80211_free_node(bss);
2715 		return ENOMEM;
2716 	}
2717 
2718 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2719 	KASSERT(m != NULL, ("no room for header"));
2720 
2721 	IEEE80211_TX_LOCK(ic);
2722 	wh = mtod(m, struct ieee80211_frame *);
2723 	ieee80211_send_setup(bss, m,
2724 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2725 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2726 	/* XXX power management? */
2727 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2728 
2729 	M_WME_SETAC(m, WME_AC_BE);
2730 
2731 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2732 	    "send probe resp on channel %u to %s%s\n",
2733 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2734 	    legacy ? " <legacy>" : "");
2735 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2736 
2737 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2738 	IEEE80211_TX_UNLOCK(ic);
2739 	return (ret);
2740 }
2741 
2742 /*
2743  * Allocate and build a RTS (Request To Send) control frame.
2744  */
2745 struct mbuf *
2746 ieee80211_alloc_rts(struct ieee80211com *ic,
2747 	const uint8_t ra[IEEE80211_ADDR_LEN],
2748 	const uint8_t ta[IEEE80211_ADDR_LEN],
2749 	uint16_t dur)
2750 {
2751 	struct ieee80211_frame_rts *rts;
2752 	struct mbuf *m;
2753 
2754 	/* XXX honor ic_headroom */
2755 	m = m_gethdr(M_NOWAIT, MT_DATA);
2756 	if (m != NULL) {
2757 		rts = mtod(m, struct ieee80211_frame_rts *);
2758 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2759 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2760 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2761 		*(u_int16_t *)rts->i_dur = htole16(dur);
2762 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2763 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2764 
2765 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2766 	}
2767 	return m;
2768 }
2769 
2770 /*
2771  * Allocate and build a CTS (Clear To Send) control frame.
2772  */
2773 struct mbuf *
2774 ieee80211_alloc_cts(struct ieee80211com *ic,
2775 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2776 {
2777 	struct ieee80211_frame_cts *cts;
2778 	struct mbuf *m;
2779 
2780 	/* XXX honor ic_headroom */
2781 	m = m_gethdr(M_NOWAIT, MT_DATA);
2782 	if (m != NULL) {
2783 		cts = mtod(m, struct ieee80211_frame_cts *);
2784 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2785 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2786 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2787 		*(u_int16_t *)cts->i_dur = htole16(dur);
2788 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2789 
2790 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2791 	}
2792 	return m;
2793 }
2794 
2795 static void
2796 ieee80211_tx_mgt_timeout(void *arg)
2797 {
2798 	struct ieee80211vap *vap = arg;
2799 
2800 	IEEE80211_LOCK(vap->iv_ic);
2801 	if (vap->iv_state != IEEE80211_S_INIT &&
2802 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2803 		/*
2804 		 * NB: it's safe to specify a timeout as the reason here;
2805 		 *     it'll only be used in the right state.
2806 		 */
2807 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2808 			IEEE80211_SCAN_FAIL_TIMEOUT);
2809 	}
2810 	IEEE80211_UNLOCK(vap->iv_ic);
2811 }
2812 
2813 /*
2814  * This is the callback set on net80211-sourced transmitted
2815  * authentication request frames.
2816  *
2817  * This does a couple of things:
2818  *
2819  * + If the frame transmitted was a success, it schedules a future
2820  *   event which will transition the interface to scan.
2821  *   If a state transition _then_ occurs before that event occurs,
2822  *   said state transition will cancel this callout.
2823  *
2824  * + If the frame transmit was a failure, it immediately schedules
2825  *   the transition back to scan.
2826  */
2827 static void
2828 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2829 {
2830 	struct ieee80211vap *vap = ni->ni_vap;
2831 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2832 
2833 	/*
2834 	 * Frame transmit completed; arrange timer callback.  If
2835 	 * transmit was successfuly we wait for response.  Otherwise
2836 	 * we arrange an immediate callback instead of doing the
2837 	 * callback directly since we don't know what state the driver
2838 	 * is in (e.g. what locks it is holding).  This work should
2839 	 * not be too time-critical and not happen too often so the
2840 	 * added overhead is acceptable.
2841 	 *
2842 	 * XXX what happens if !acked but response shows up before callback?
2843 	 */
2844 	if (vap->iv_state == ostate) {
2845 		callout_reset(&vap->iv_mgtsend,
2846 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2847 			ieee80211_tx_mgt_timeout, vap);
2848 	}
2849 }
2850 
2851 static void
2852 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2853 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2854 {
2855 	struct ieee80211vap *vap = ni->ni_vap;
2856 	struct ieee80211com *ic = ni->ni_ic;
2857 	struct ieee80211_rateset *rs = &ni->ni_rates;
2858 	uint16_t capinfo;
2859 
2860 	/*
2861 	 * beacon frame format
2862 	 *	[8] time stamp
2863 	 *	[2] beacon interval
2864 	 *	[2] cabability information
2865 	 *	[tlv] ssid
2866 	 *	[tlv] supported rates
2867 	 *	[3] parameter set (DS)
2868 	 *	[8] CF parameter set (optional)
2869 	 *	[tlv] parameter set (IBSS/TIM)
2870 	 *	[tlv] country (optional)
2871 	 *	[3] power control (optional)
2872 	 *	[5] channel switch announcement (CSA) (optional)
2873 	 *	[tlv] extended rate phy (ERP)
2874 	 *	[tlv] extended supported rates
2875 	 *	[tlv] RSN parameters
2876 	 *	[tlv] HT capabilities
2877 	 *	[tlv] HT information
2878 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2879 	 *	[tlv] WPA parameters
2880 	 *	[tlv] WME parameters
2881 	 *	[tlv] Vendor OUI HT capabilities (optional)
2882 	 *	[tlv] Vendor OUI HT information (optional)
2883 	 *	[tlv] Atheros capabilities (optional)
2884 	 *	[tlv] TDMA parameters (optional)
2885 	 *	[tlv] Mesh ID (MBSS)
2886 	 *	[tlv] Mesh Conf (MBSS)
2887 	 *	[tlv] application data (optional)
2888 	 */
2889 
2890 	memset(bo, 0, sizeof(*bo));
2891 
2892 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2893 	frm += 8;
2894 	*(uint16_t *)frm = htole16(ni->ni_intval);
2895 	frm += 2;
2896 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2897 	bo->bo_caps = (uint16_t *)frm;
2898 	*(uint16_t *)frm = htole16(capinfo);
2899 	frm += 2;
2900 	*frm++ = IEEE80211_ELEMID_SSID;
2901 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2902 		*frm++ = ni->ni_esslen;
2903 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2904 		frm += ni->ni_esslen;
2905 	} else
2906 		*frm++ = 0;
2907 	frm = ieee80211_add_rates(frm, rs);
2908 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2909 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2910 		*frm++ = 1;
2911 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2912 	}
2913 	if (ic->ic_flags & IEEE80211_F_PCF) {
2914 		bo->bo_cfp = frm;
2915 		frm = ieee80211_add_cfparms(frm, ic);
2916 	}
2917 	bo->bo_tim = frm;
2918 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2919 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2920 		*frm++ = 2;
2921 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2922 		bo->bo_tim_len = 0;
2923 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2924 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2925 		/* TIM IE is the same for Mesh and Hostap */
2926 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2927 
2928 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2929 		tie->tim_len = 4;	/* length */
2930 		tie->tim_count = 0;	/* DTIM count */
2931 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2932 		tie->tim_bitctl = 0;	/* bitmap control */
2933 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2934 		frm += sizeof(struct ieee80211_tim_ie);
2935 		bo->bo_tim_len = 1;
2936 	}
2937 	bo->bo_tim_trailer = frm;
2938 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2939 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2940 		frm = ieee80211_add_countryie(frm, ic);
2941 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2942 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2943 			frm = ieee80211_add_powerconstraint(frm, vap);
2944 		bo->bo_csa = frm;
2945 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2946 			frm = ieee80211_add_csa(frm, vap);
2947 	} else
2948 		bo->bo_csa = frm;
2949 
2950 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2951 		bo->bo_quiet = frm;
2952 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2953 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2954 			if (vap->iv_quiet)
2955 				frm = ieee80211_add_quiet(frm,vap);
2956 		}
2957 	} else
2958 		bo->bo_quiet = frm;
2959 
2960 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2961 		bo->bo_erp = frm;
2962 		frm = ieee80211_add_erp(frm, ic);
2963 	}
2964 	frm = ieee80211_add_xrates(frm, rs);
2965 	frm = ieee80211_add_rsn(frm, vap);
2966 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2967 		frm = ieee80211_add_htcap(frm, ni);
2968 		bo->bo_htinfo = frm;
2969 		frm = ieee80211_add_htinfo(frm, ni);
2970 	}
2971 	frm = ieee80211_add_wpa(frm, vap);
2972 	if (vap->iv_flags & IEEE80211_F_WME) {
2973 		bo->bo_wme = frm;
2974 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2975 	}
2976 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2977 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2978 		frm = ieee80211_add_htcap_vendor(frm, ni);
2979 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2980 	}
2981 #ifdef IEEE80211_SUPPORT_SUPERG
2982 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2983 		bo->bo_ath = frm;
2984 		frm = ieee80211_add_athcaps(frm, ni);
2985 	}
2986 #endif
2987 #ifdef IEEE80211_SUPPORT_TDMA
2988 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2989 		bo->bo_tdma = frm;
2990 		frm = ieee80211_add_tdma(frm, vap);
2991 	}
2992 #endif
2993 	if (vap->iv_appie_beacon != NULL) {
2994 		bo->bo_appie = frm;
2995 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2996 		frm = add_appie(frm, vap->iv_appie_beacon);
2997 	}
2998 #ifdef IEEE80211_SUPPORT_MESH
2999 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3000 		frm = ieee80211_add_meshid(frm, vap);
3001 		bo->bo_meshconf = frm;
3002 		frm = ieee80211_add_meshconf(frm, vap);
3003 	}
3004 #endif
3005 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3006 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3007 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3008 }
3009 
3010 /*
3011  * Allocate a beacon frame and fillin the appropriate bits.
3012  */
3013 struct mbuf *
3014 ieee80211_beacon_alloc(struct ieee80211_node *ni,
3015 	struct ieee80211_beacon_offsets *bo)
3016 {
3017 	struct ieee80211vap *vap = ni->ni_vap;
3018 	struct ieee80211com *ic = ni->ni_ic;
3019 	struct ifnet *ifp = vap->iv_ifp;
3020 	struct ieee80211_frame *wh;
3021 	struct mbuf *m;
3022 	int pktlen;
3023 	uint8_t *frm;
3024 
3025 	/*
3026 	 * beacon frame format
3027 	 *	[8] time stamp
3028 	 *	[2] beacon interval
3029 	 *	[2] cabability information
3030 	 *	[tlv] ssid
3031 	 *	[tlv] supported rates
3032 	 *	[3] parameter set (DS)
3033 	 *	[8] CF parameter set (optional)
3034 	 *	[tlv] parameter set (IBSS/TIM)
3035 	 *	[tlv] country (optional)
3036 	 *	[3] power control (optional)
3037 	 *	[5] channel switch announcement (CSA) (optional)
3038 	 *	[tlv] extended rate phy (ERP)
3039 	 *	[tlv] extended supported rates
3040 	 *	[tlv] RSN parameters
3041 	 *	[tlv] HT capabilities
3042 	 *	[tlv] HT information
3043 	 *	[tlv] Vendor OUI HT capabilities (optional)
3044 	 *	[tlv] Vendor OUI HT information (optional)
3045 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3046 	 *	[tlv] WPA parameters
3047 	 *	[tlv] WME parameters
3048 	 *	[tlv] TDMA parameters (optional)
3049 	 *	[tlv] Mesh ID (MBSS)
3050 	 *	[tlv] Mesh Conf (MBSS)
3051 	 *	[tlv] application data (optional)
3052 	 * NB: we allocate the max space required for the TIM bitmap.
3053 	 * XXX how big is this?
3054 	 */
3055 	pktlen =   8					/* time stamp */
3056 		 + sizeof(uint16_t)			/* beacon interval */
3057 		 + sizeof(uint16_t)			/* capabilities */
3058 		 + 2 + ni->ni_esslen			/* ssid */
3059 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3060 	         + 2 + 1				/* DS parameters */
3061 		 + 2 + 6				/* CF parameters */
3062 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3063 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3064 		 + 2 + 1				/* power control */
3065 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3066 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3067 		 + 2 + 1				/* ERP */
3068 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3069 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3070 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3071 		 /* XXX conditional? */
3072 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3073 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3074 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3075 			sizeof(struct ieee80211_wme_param) : 0)
3076 #ifdef IEEE80211_SUPPORT_SUPERG
3077 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3078 #endif
3079 #ifdef IEEE80211_SUPPORT_TDMA
3080 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3081 			sizeof(struct ieee80211_tdma_param) : 0)
3082 #endif
3083 #ifdef IEEE80211_SUPPORT_MESH
3084 		 + 2 + ni->ni_meshidlen
3085 		 + sizeof(struct ieee80211_meshconf_ie)
3086 #endif
3087 		 + IEEE80211_MAX_APPIE
3088 		 ;
3089 	m = ieee80211_getmgtframe(&frm,
3090 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3091 	if (m == NULL) {
3092 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3093 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3094 		vap->iv_stats.is_tx_nobuf++;
3095 		return NULL;
3096 	}
3097 	ieee80211_beacon_construct(m, frm, bo, ni);
3098 
3099 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3100 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3101 	wh = mtod(m, struct ieee80211_frame *);
3102 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3103 	    IEEE80211_FC0_SUBTYPE_BEACON;
3104 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3105 	*(uint16_t *)wh->i_dur = 0;
3106 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3107 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3108 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3109 	*(uint16_t *)wh->i_seq = 0;
3110 
3111 	return m;
3112 }
3113 
3114 /*
3115  * Update the dynamic parts of a beacon frame based on the current state.
3116  */
3117 int
3118 ieee80211_beacon_update(struct ieee80211_node *ni,
3119 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
3120 {
3121 	struct ieee80211vap *vap = ni->ni_vap;
3122 	struct ieee80211com *ic = ni->ni_ic;
3123 	int len_changed = 0;
3124 	uint16_t capinfo;
3125 	struct ieee80211_frame *wh;
3126 	ieee80211_seq seqno;
3127 
3128 	IEEE80211_LOCK(ic);
3129 	/*
3130 	 * Handle 11h channel change when we've reached the count.
3131 	 * We must recalculate the beacon frame contents to account
3132 	 * for the new channel.  Note we do this only for the first
3133 	 * vap that reaches this point; subsequent vaps just update
3134 	 * their beacon state to reflect the recalculated channel.
3135 	 */
3136 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3137 	    vap->iv_csa_count == ic->ic_csa_count) {
3138 		vap->iv_csa_count = 0;
3139 		/*
3140 		 * Effect channel change before reconstructing the beacon
3141 		 * frame contents as many places reference ni_chan.
3142 		 */
3143 		if (ic->ic_csa_newchan != NULL)
3144 			ieee80211_csa_completeswitch(ic);
3145 		/*
3146 		 * NB: ieee80211_beacon_construct clears all pending
3147 		 * updates in bo_flags so we don't need to explicitly
3148 		 * clear IEEE80211_BEACON_CSA.
3149 		 */
3150 		ieee80211_beacon_construct(m,
3151 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
3152 
3153 		/* XXX do WME aggressive mode processing? */
3154 		IEEE80211_UNLOCK(ic);
3155 		return 1;		/* just assume length changed */
3156 	}
3157 
3158 	wh = mtod(m, struct ieee80211_frame *);
3159 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3160 	*(uint16_t *)&wh->i_seq[0] =
3161 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3162 	M_SEQNO_SET(m, seqno);
3163 
3164 	/* XXX faster to recalculate entirely or just changes? */
3165 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3166 	*bo->bo_caps = htole16(capinfo);
3167 
3168 	if (vap->iv_flags & IEEE80211_F_WME) {
3169 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3170 
3171 		/*
3172 		 * Check for agressive mode change.  When there is
3173 		 * significant high priority traffic in the BSS
3174 		 * throttle back BE traffic by using conservative
3175 		 * parameters.  Otherwise BE uses agressive params
3176 		 * to optimize performance of legacy/non-QoS traffic.
3177 		 */
3178 		if (wme->wme_flags & WME_F_AGGRMODE) {
3179 			if (wme->wme_hipri_traffic >
3180 			    wme->wme_hipri_switch_thresh) {
3181 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3182 				    "%s: traffic %u, disable aggressive mode\n",
3183 				    __func__, wme->wme_hipri_traffic);
3184 				wme->wme_flags &= ~WME_F_AGGRMODE;
3185 				ieee80211_wme_updateparams_locked(vap);
3186 				wme->wme_hipri_traffic =
3187 					wme->wme_hipri_switch_hysteresis;
3188 			} else
3189 				wme->wme_hipri_traffic = 0;
3190 		} else {
3191 			if (wme->wme_hipri_traffic <=
3192 			    wme->wme_hipri_switch_thresh) {
3193 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3194 				    "%s: traffic %u, enable aggressive mode\n",
3195 				    __func__, wme->wme_hipri_traffic);
3196 				wme->wme_flags |= WME_F_AGGRMODE;
3197 				ieee80211_wme_updateparams_locked(vap);
3198 				wme->wme_hipri_traffic = 0;
3199 			} else
3200 				wme->wme_hipri_traffic =
3201 					wme->wme_hipri_switch_hysteresis;
3202 		}
3203 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3204 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3205 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3206 		}
3207 	}
3208 
3209 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3210 		ieee80211_ht_update_beacon(vap, bo);
3211 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3212 	}
3213 #ifdef IEEE80211_SUPPORT_TDMA
3214 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3215 		/*
3216 		 * NB: the beacon is potentially updated every TBTT.
3217 		 */
3218 		ieee80211_tdma_update_beacon(vap, bo);
3219 	}
3220 #endif
3221 #ifdef IEEE80211_SUPPORT_MESH
3222 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3223 		ieee80211_mesh_update_beacon(vap, bo);
3224 #endif
3225 
3226 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3227 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3228 		struct ieee80211_tim_ie *tie =
3229 			(struct ieee80211_tim_ie *) bo->bo_tim;
3230 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3231 			u_int timlen, timoff, i;
3232 			/*
3233 			 * ATIM/DTIM needs updating.  If it fits in the
3234 			 * current space allocated then just copy in the
3235 			 * new bits.  Otherwise we need to move any trailing
3236 			 * data to make room.  Note that we know there is
3237 			 * contiguous space because ieee80211_beacon_allocate
3238 			 * insures there is space in the mbuf to write a
3239 			 * maximal-size virtual bitmap (based on iv_max_aid).
3240 			 */
3241 			/*
3242 			 * Calculate the bitmap size and offset, copy any
3243 			 * trailer out of the way, and then copy in the
3244 			 * new bitmap and update the information element.
3245 			 * Note that the tim bitmap must contain at least
3246 			 * one byte and any offset must be even.
3247 			 */
3248 			if (vap->iv_ps_pending != 0) {
3249 				timoff = 128;		/* impossibly large */
3250 				for (i = 0; i < vap->iv_tim_len; i++)
3251 					if (vap->iv_tim_bitmap[i]) {
3252 						timoff = i &~ 1;
3253 						break;
3254 					}
3255 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3256 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3257 					if (vap->iv_tim_bitmap[i])
3258 						break;
3259 				timlen = 1 + (i - timoff);
3260 			} else {
3261 				timoff = 0;
3262 				timlen = 1;
3263 			}
3264 			if (timlen != bo->bo_tim_len) {
3265 				/* copy up/down trailer */
3266 				int adjust = tie->tim_bitmap+timlen
3267 					   - bo->bo_tim_trailer;
3268 				ovbcopy(bo->bo_tim_trailer,
3269 				    bo->bo_tim_trailer+adjust,
3270 				    bo->bo_tim_trailer_len);
3271 				bo->bo_tim_trailer += adjust;
3272 				bo->bo_erp += adjust;
3273 				bo->bo_htinfo += adjust;
3274 #ifdef IEEE80211_SUPPORT_SUPERG
3275 				bo->bo_ath += adjust;
3276 #endif
3277 #ifdef IEEE80211_SUPPORT_TDMA
3278 				bo->bo_tdma += adjust;
3279 #endif
3280 #ifdef IEEE80211_SUPPORT_MESH
3281 				bo->bo_meshconf += adjust;
3282 #endif
3283 				bo->bo_appie += adjust;
3284 				bo->bo_wme += adjust;
3285 				bo->bo_csa += adjust;
3286 				bo->bo_quiet += adjust;
3287 				bo->bo_tim_len = timlen;
3288 
3289 				/* update information element */
3290 				tie->tim_len = 3 + timlen;
3291 				tie->tim_bitctl = timoff;
3292 				len_changed = 1;
3293 			}
3294 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3295 				bo->bo_tim_len);
3296 
3297 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3298 
3299 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3300 				"%s: TIM updated, pending %u, off %u, len %u\n",
3301 				__func__, vap->iv_ps_pending, timoff, timlen);
3302 		}
3303 		/* count down DTIM period */
3304 		if (tie->tim_count == 0)
3305 			tie->tim_count = tie->tim_period - 1;
3306 		else
3307 			tie->tim_count--;
3308 		/* update state for buffered multicast frames on DTIM */
3309 		if (mcast && tie->tim_count == 0)
3310 			tie->tim_bitctl |= 1;
3311 		else
3312 			tie->tim_bitctl &= ~1;
3313 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3314 			struct ieee80211_csa_ie *csa =
3315 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3316 
3317 			/*
3318 			 * Insert or update CSA ie.  If we're just starting
3319 			 * to count down to the channel switch then we need
3320 			 * to insert the CSA ie.  Otherwise we just need to
3321 			 * drop the count.  The actual change happens above
3322 			 * when the vap's count reaches the target count.
3323 			 */
3324 			if (vap->iv_csa_count == 0) {
3325 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3326 				bo->bo_erp += sizeof(*csa);
3327 				bo->bo_htinfo += sizeof(*csa);
3328 				bo->bo_wme += sizeof(*csa);
3329 #ifdef IEEE80211_SUPPORT_SUPERG
3330 				bo->bo_ath += sizeof(*csa);
3331 #endif
3332 #ifdef IEEE80211_SUPPORT_TDMA
3333 				bo->bo_tdma += sizeof(*csa);
3334 #endif
3335 #ifdef IEEE80211_SUPPORT_MESH
3336 				bo->bo_meshconf += sizeof(*csa);
3337 #endif
3338 				bo->bo_appie += sizeof(*csa);
3339 				bo->bo_csa_trailer_len += sizeof(*csa);
3340 				bo->bo_quiet += sizeof(*csa);
3341 				bo->bo_tim_trailer_len += sizeof(*csa);
3342 				m->m_len += sizeof(*csa);
3343 				m->m_pkthdr.len += sizeof(*csa);
3344 
3345 				ieee80211_add_csa(bo->bo_csa, vap);
3346 			} else
3347 				csa->csa_count--;
3348 			vap->iv_csa_count++;
3349 			/* NB: don't clear IEEE80211_BEACON_CSA */
3350 		}
3351 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3352 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3353 			if (vap->iv_quiet)
3354 				ieee80211_add_quiet(bo->bo_quiet, vap);
3355 		}
3356 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3357 			/*
3358 			 * ERP element needs updating.
3359 			 */
3360 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3361 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3362 		}
3363 #ifdef IEEE80211_SUPPORT_SUPERG
3364 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3365 			ieee80211_add_athcaps(bo->bo_ath, ni);
3366 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3367 		}
3368 #endif
3369 	}
3370 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3371 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3372 		int aielen;
3373 		uint8_t *frm;
3374 
3375 		aielen = 0;
3376 		if (aie != NULL)
3377 			aielen += aie->ie_len;
3378 		if (aielen != bo->bo_appie_len) {
3379 			/* copy up/down trailer */
3380 			int adjust = aielen - bo->bo_appie_len;
3381 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3382 				bo->bo_tim_trailer_len);
3383 			bo->bo_tim_trailer += adjust;
3384 			bo->bo_appie += adjust;
3385 			bo->bo_appie_len = aielen;
3386 
3387 			len_changed = 1;
3388 		}
3389 		frm = bo->bo_appie;
3390 		if (aie != NULL)
3391 			frm  = add_appie(frm, aie);
3392 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3393 	}
3394 	IEEE80211_UNLOCK(ic);
3395 
3396 	return len_changed;
3397 }
3398 
3399 /*
3400  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3401  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3402  * header at the front that must be stripped before prepending the
3403  * LLC followed by the Ethernet header passed in (with an Ethernet
3404  * type that specifies the payload size).
3405  */
3406 struct mbuf *
3407 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3408 	const struct ether_header *eh)
3409 {
3410 	struct llc *llc;
3411 	uint16_t payload;
3412 
3413 	/* XXX optimize by combining m_adj+M_PREPEND */
3414 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3415 	llc = mtod(m, struct llc *);
3416 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3417 	llc->llc_control = LLC_UI;
3418 	llc->llc_snap.org_code[0] = 0;
3419 	llc->llc_snap.org_code[1] = 0;
3420 	llc->llc_snap.org_code[2] = 0;
3421 	llc->llc_snap.ether_type = eh->ether_type;
3422 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3423 
3424 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3425 	if (m == NULL) {		/* XXX cannot happen */
3426 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3427 			"%s: no space for ether_header\n", __func__);
3428 		vap->iv_stats.is_tx_nobuf++;
3429 		return NULL;
3430 	}
3431 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3432 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3433 	return m;
3434 }
3435 
3436 /*
3437  * Complete an mbuf transmission.
3438  *
3439  * For now, this simply processes a completed frame after the
3440  * driver has completed it's transmission and/or retransmission.
3441  * It assumes the frame is an 802.11 encapsulated frame.
3442  *
3443  * Later on it will grow to become the exit path for a given frame
3444  * from the driver and, depending upon how it's been encapsulated
3445  * and already transmitted, it may end up doing A-MPDU retransmission,
3446  * power save requeuing, etc.
3447  *
3448  * In order for the above to work, the driver entry point to this
3449  * must not hold any driver locks.  Thus, the driver needs to delay
3450  * any actual mbuf completion until it can release said locks.
3451  *
3452  * This frees the mbuf and if the mbuf has a node reference,
3453  * the node reference will be freed.
3454  */
3455 void
3456 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3457 {
3458 
3459 	if (ni != NULL) {
3460 		if (m->m_flags & M_TXCB)
3461 			ieee80211_process_callback(ni, m, status);
3462 		ieee80211_free_node(ni);
3463 	}
3464 	m_freem(m);
3465 }
3466