1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 83 84 #ifdef IEEE80211_DEBUG 85 /* 86 * Decide if an outbound management frame should be 87 * printed when debugging is enabled. This filters some 88 * of the less interesting frames that come frequently 89 * (e.g. beacons). 90 */ 91 static __inline int 92 doprint(struct ieee80211vap *vap, int subtype) 93 { 94 switch (subtype) { 95 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 96 return (vap->iv_opmode == IEEE80211_M_IBSS); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 * Transmit a frame to the given destination on the given VAP. 104 * 105 * It's up to the caller to figure out the details of who this 106 * is going to and resolving the node. 107 * 108 * This routine takes care of queuing it for power save, 109 * A-MPDU state stuff, fast-frames state stuff, encapsulation 110 * if required, then passing it up to the driver layer. 111 * 112 * This routine (for now) consumes the mbuf and frees the node 113 * reference; it ideally will return a TX status which reflects 114 * whether the mbuf was consumed or not, so the caller can 115 * free the mbuf (if appropriate) and the node reference (again, 116 * if appropriate.) 117 */ 118 int 119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 120 struct ieee80211_node *ni) 121 { 122 struct ieee80211com *ic = vap->iv_ic; 123 struct ifnet *ifp = vap->iv_ifp; 124 #ifdef IEEE80211_SUPPORT_SUPERG 125 int mcast; 126 #endif 127 128 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 129 (m->m_flags & M_PWR_SAV) == 0) { 130 /* 131 * Station in power save mode; pass the frame 132 * to the 802.11 layer and continue. We'll get 133 * the frame back when the time is right. 134 * XXX lose WDS vap linkage? 135 */ 136 if (ieee80211_pwrsave(ni, m) != 0) 137 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 138 ieee80211_free_node(ni); 139 140 /* 141 * We queued it fine, so tell the upper layer 142 * that we consumed it. 143 */ 144 return (0); 145 } 146 /* calculate priority so drivers can find the tx queue */ 147 if (ieee80211_classify(ni, m)) { 148 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 149 ni->ni_macaddr, NULL, 150 "%s", "classification failure"); 151 vap->iv_stats.is_tx_classify++; 152 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 153 m_freem(m); 154 ieee80211_free_node(ni); 155 156 /* XXX better status? */ 157 return (0); 158 } 159 /* 160 * Stash the node pointer. Note that we do this after 161 * any call to ieee80211_dwds_mcast because that code 162 * uses any existing value for rcvif to identify the 163 * interface it (might have been) received on. 164 */ 165 m->m_pkthdr.rcvif = (void *)ni; 166 #ifdef IEEE80211_SUPPORT_SUPERG 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 #endif 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 */ 184 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 185 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 186 if ((m->m_flags & M_EAPOL) == 0) { 187 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 188 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 189 190 ieee80211_txampdu_count_packet(tap); 191 if (IEEE80211_AMPDU_RUNNING(tap)) { 192 /* 193 * Operational, mark frame for aggregation. 194 * 195 * XXX do tx aggregation here 196 */ 197 m->m_flags |= M_AMPDU_MPDU; 198 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 199 ic->ic_ampdu_enable(ni, tap)) { 200 /* 201 * Not negotiated yet, request service. 202 */ 203 ieee80211_ampdu_request(ni, tap); 204 /* XXX hold frame for reply? */ 205 } 206 } 207 } 208 209 #ifdef IEEE80211_SUPPORT_SUPERG 210 /* 211 * Check for AMSDU/FF; queue for aggregation 212 * 213 * Note: we don't bother trying to do fast frames or 214 * A-MSDU encapsulation for 802.3 drivers. Now, we 215 * likely could do it for FF (because it's a magic 216 * atheros tunnel LLC type) but I don't think we're going 217 * to really need to. For A-MSDU we'd have to set the 218 * A-MSDU QoS bit in the wifi header, so we just plain 219 * can't do it. 220 * 221 * Strictly speaking, we could actually /do/ A-MSDU / FF 222 * with A-MPDU together which for certain circumstances 223 * is beneficial (eg A-MSDU of TCK ACKs.) However, 224 * I'll ignore that for now so existing behaviour is maintained. 225 * Later on it would be good to make "amsdu + ampdu" configurable. 226 */ 227 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 228 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 229 m = ieee80211_amsdu_check(ni, m); 230 if (m == NULL) { 231 /* NB: any ni ref held on stageq */ 232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 233 "%s: amsdu_check queued frame\n", 234 __func__); 235 return (0); 236 } 237 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 238 IEEE80211_NODE_FF)) { 239 m = ieee80211_ff_check(ni, m); 240 if (m == NULL) { 241 /* NB: any ni ref held on stageq */ 242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 243 "%s: ff_check queued frame\n", 244 __func__); 245 return (0); 246 } 247 } 248 } 249 #endif /* IEEE80211_SUPPORT_SUPERG */ 250 251 /* 252 * Grab the TX lock - serialise the TX process from this 253 * point (where TX state is being checked/modified) 254 * through to driver queue. 255 */ 256 IEEE80211_TX_LOCK(ic); 257 258 /* 259 * XXX make the encap and transmit code a separate function 260 * so things like the FF (and later A-MSDU) path can just call 261 * it for flushed frames. 262 */ 263 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 264 /* 265 * Encapsulate the packet in prep for transmission. 266 */ 267 m = ieee80211_encap(vap, ni, m); 268 if (m == NULL) { 269 /* NB: stat+msg handled in ieee80211_encap */ 270 IEEE80211_TX_UNLOCK(ic); 271 ieee80211_free_node(ni); 272 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 273 return (ENOBUFS); 274 } 275 } 276 (void) ieee80211_parent_xmitpkt(ic, m); 277 278 /* 279 * Unlock at this point - no need to hold it across 280 * ieee80211_free_node() (ie, the comlock) 281 */ 282 IEEE80211_TX_UNLOCK(ic); 283 ic->ic_lastdata = ticks; 284 285 return (0); 286 } 287 288 289 290 /* 291 * Send the given mbuf through the given vap. 292 * 293 * This consumes the mbuf regardless of whether the transmit 294 * was successful or not. 295 * 296 * This does none of the initial checks that ieee80211_start() 297 * does (eg CAC timeout, interface wakeup) - the caller must 298 * do this first. 299 */ 300 static int 301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 302 { 303 #define IS_DWDS(vap) \ 304 (vap->iv_opmode == IEEE80211_M_WDS && \ 305 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 306 struct ieee80211com *ic = vap->iv_ic; 307 struct ifnet *ifp = vap->iv_ifp; 308 struct ieee80211_node *ni; 309 struct ether_header *eh; 310 311 /* 312 * Cancel any background scan. 313 */ 314 if (ic->ic_flags & IEEE80211_F_SCAN) 315 ieee80211_cancel_anyscan(vap); 316 /* 317 * Find the node for the destination so we can do 318 * things like power save and fast frames aggregation. 319 * 320 * NB: past this point various code assumes the first 321 * mbuf has the 802.3 header present (and contiguous). 322 */ 323 ni = NULL; 324 if (m->m_len < sizeof(struct ether_header) && 325 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 326 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 327 "discard frame, %s\n", "m_pullup failed"); 328 vap->iv_stats.is_tx_nobuf++; /* XXX */ 329 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 330 return (ENOBUFS); 331 } 332 eh = mtod(m, struct ether_header *); 333 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 334 if (IS_DWDS(vap)) { 335 /* 336 * Only unicast frames from the above go out 337 * DWDS vaps; multicast frames are handled by 338 * dispatching the frame as it comes through 339 * the AP vap (see below). 340 */ 341 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 342 eh->ether_dhost, "mcast", "%s", "on DWDS"); 343 vap->iv_stats.is_dwds_mcast++; 344 m_freem(m); 345 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 346 /* XXX better status? */ 347 return (ENOBUFS); 348 } 349 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 350 /* 351 * Spam DWDS vap's w/ multicast traffic. 352 */ 353 /* XXX only if dwds in use? */ 354 ieee80211_dwds_mcast(vap, m); 355 } 356 } 357 #ifdef IEEE80211_SUPPORT_MESH 358 if (vap->iv_opmode != IEEE80211_M_MBSS) { 359 #endif 360 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 361 if (ni == NULL) { 362 /* NB: ieee80211_find_txnode does stat+msg */ 363 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 364 m_freem(m); 365 /* XXX better status? */ 366 return (ENOBUFS); 367 } 368 if (ni->ni_associd == 0 && 369 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 370 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 371 eh->ether_dhost, NULL, 372 "sta not associated (type 0x%04x)", 373 htons(eh->ether_type)); 374 vap->iv_stats.is_tx_notassoc++; 375 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 376 m_freem(m); 377 ieee80211_free_node(ni); 378 /* XXX better status? */ 379 return (ENOBUFS); 380 } 381 #ifdef IEEE80211_SUPPORT_MESH 382 } else { 383 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 384 /* 385 * Proxy station only if configured. 386 */ 387 if (!ieee80211_mesh_isproxyena(vap)) { 388 IEEE80211_DISCARD_MAC(vap, 389 IEEE80211_MSG_OUTPUT | 390 IEEE80211_MSG_MESH, 391 eh->ether_dhost, NULL, 392 "%s", "proxy not enabled"); 393 vap->iv_stats.is_mesh_notproxy++; 394 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 395 m_freem(m); 396 /* XXX better status? */ 397 return (ENOBUFS); 398 } 399 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 400 "forward frame from DS SA(%6D), DA(%6D)\n", 401 eh->ether_shost, ":", 402 eh->ether_dhost, ":"); 403 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 404 } 405 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 406 if (ni == NULL) { 407 /* 408 * NB: ieee80211_mesh_discover holds/disposes 409 * frame (e.g. queueing on path discovery). 410 */ 411 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 412 /* XXX better status? */ 413 return (ENOBUFS); 414 } 415 } 416 #endif 417 418 /* 419 * We've resolved the sender, so attempt to transmit it. 420 */ 421 422 if (vap->iv_state == IEEE80211_S_SLEEP) { 423 /* 424 * In power save; queue frame and then wakeup device 425 * for transmit. 426 */ 427 ic->ic_lastdata = ticks; 428 if (ieee80211_pwrsave(ni, m) != 0) 429 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 430 ieee80211_free_node(ni); 431 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 432 return (0); 433 } 434 435 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 436 return (ENOBUFS); 437 return (0); 438 #undef IS_DWDS 439 } 440 441 /* 442 * Start method for vap's. All packets from the stack come 443 * through here. We handle common processing of the packets 444 * before dispatching them to the underlying device. 445 * 446 * if_transmit() requires that the mbuf be consumed by this call 447 * regardless of the return condition. 448 */ 449 int 450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 451 { 452 struct ieee80211vap *vap = ifp->if_softc; 453 struct ieee80211com *ic = vap->iv_ic; 454 455 /* 456 * No data frames go out unless we're running. 457 * Note in particular this covers CAC and CSA 458 * states (though maybe we should check muting 459 * for CSA). 460 */ 461 if (vap->iv_state != IEEE80211_S_RUN && 462 vap->iv_state != IEEE80211_S_SLEEP) { 463 IEEE80211_LOCK(ic); 464 /* re-check under the com lock to avoid races */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 468 "%s: ignore queue, in %s state\n", 469 __func__, ieee80211_state_name[vap->iv_state]); 470 vap->iv_stats.is_tx_badstate++; 471 IEEE80211_UNLOCK(ic); 472 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 473 m_freem(m); 474 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 475 return (ENETDOWN); 476 } 477 IEEE80211_UNLOCK(ic); 478 } 479 480 /* 481 * Sanitize mbuf flags for net80211 use. We cannot 482 * clear M_PWR_SAV or M_MORE_DATA because these may 483 * be set for frames that are re-submitted from the 484 * power save queue. 485 * 486 * NB: This must be done before ieee80211_classify as 487 * it marks EAPOL in frames with M_EAPOL. 488 */ 489 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 490 491 /* 492 * Bump to the packet transmission path. 493 * The mbuf will be consumed here. 494 */ 495 return (ieee80211_start_pkt(vap, m)); 496 } 497 498 void 499 ieee80211_vap_qflush(struct ifnet *ifp) 500 { 501 502 /* Empty for now */ 503 } 504 505 /* 506 * 802.11 raw output routine. 507 * 508 * XXX TODO: this (and other send routines) should correctly 509 * XXX keep the pwr mgmt bit set if it decides to call into the 510 * XXX driver to send a frame whilst the state is SLEEP. 511 * 512 * Otherwise the peer may decide that we're awake and flood us 513 * with traffic we are still too asleep to receive! 514 */ 515 int 516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 517 struct mbuf *m, const struct ieee80211_bpf_params *params) 518 { 519 struct ieee80211com *ic = vap->iv_ic; 520 int error; 521 522 /* 523 * Set node - the caller has taken a reference, so ensure 524 * that the mbuf has the same node value that 525 * it would if it were going via the normal path. 526 */ 527 m->m_pkthdr.rcvif = (void *)ni; 528 529 /* 530 * Attempt to add bpf transmit parameters. 531 * 532 * For now it's ok to fail; the raw_xmit api still takes 533 * them as an option. 534 * 535 * Later on when ic_raw_xmit() has params removed, 536 * they'll have to be added - so fail the transmit if 537 * they can't be. 538 */ 539 if (params) 540 (void) ieee80211_add_xmit_params(m, params); 541 542 error = ic->ic_raw_xmit(ni, m, params); 543 if (error) { 544 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 545 ieee80211_free_node(ni); 546 } 547 return (error); 548 } 549 550 /* 551 * 802.11 output routine. This is (currently) used only to 552 * connect bpf write calls to the 802.11 layer for injecting 553 * raw 802.11 frames. 554 */ 555 int 556 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 557 const struct sockaddr *dst, struct route *ro) 558 { 559 #define senderr(e) do { error = (e); goto bad;} while (0) 560 struct ieee80211_node *ni = NULL; 561 struct ieee80211vap *vap; 562 struct ieee80211_frame *wh; 563 struct ieee80211com *ic = NULL; 564 int error; 565 int ret; 566 567 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 568 /* 569 * Short-circuit requests if the vap is marked OACTIVE 570 * as this can happen because a packet came down through 571 * ieee80211_start before the vap entered RUN state in 572 * which case it's ok to just drop the frame. This 573 * should not be necessary but callers of if_output don't 574 * check OACTIVE. 575 */ 576 senderr(ENETDOWN); 577 } 578 vap = ifp->if_softc; 579 ic = vap->iv_ic; 580 /* 581 * Hand to the 802.3 code if not tagged as 582 * a raw 802.11 frame. 583 */ 584 if (dst->sa_family != AF_IEEE80211) 585 return vap->iv_output(ifp, m, dst, ro); 586 #ifdef MAC 587 error = mac_ifnet_check_transmit(ifp, m); 588 if (error) 589 senderr(error); 590 #endif 591 if (ifp->if_flags & IFF_MONITOR) 592 senderr(ENETDOWN); 593 if (!IFNET_IS_UP_RUNNING(ifp)) 594 senderr(ENETDOWN); 595 if (vap->iv_state == IEEE80211_S_CAC) { 596 IEEE80211_DPRINTF(vap, 597 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 598 "block %s frame in CAC state\n", "raw data"); 599 vap->iv_stats.is_tx_badstate++; 600 senderr(EIO); /* XXX */ 601 } else if (vap->iv_state == IEEE80211_S_SCAN) 602 senderr(EIO); 603 /* XXX bypass bridge, pfil, carp, etc. */ 604 605 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 606 senderr(EIO); /* XXX */ 607 wh = mtod(m, struct ieee80211_frame *); 608 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 609 IEEE80211_FC0_VERSION_0) 610 senderr(EIO); /* XXX */ 611 if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh)) 612 senderr(EIO); /* XXX */ 613 614 /* locate destination node */ 615 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 616 case IEEE80211_FC1_DIR_NODS: 617 case IEEE80211_FC1_DIR_FROMDS: 618 ni = ieee80211_find_txnode(vap, wh->i_addr1); 619 break; 620 case IEEE80211_FC1_DIR_TODS: 621 case IEEE80211_FC1_DIR_DSTODS: 622 ni = ieee80211_find_txnode(vap, wh->i_addr3); 623 break; 624 default: 625 senderr(EIO); /* XXX */ 626 } 627 if (ni == NULL) { 628 /* 629 * Permit packets w/ bpf params through regardless 630 * (see below about sa_len). 631 */ 632 if (dst->sa_len == 0) 633 senderr(EHOSTUNREACH); 634 ni = ieee80211_ref_node(vap->iv_bss); 635 } 636 637 /* 638 * Sanitize mbuf for net80211 flags leaked from above. 639 * 640 * NB: This must be done before ieee80211_classify as 641 * it marks EAPOL in frames with M_EAPOL. 642 */ 643 m->m_flags &= ~M_80211_TX; 644 645 /* calculate priority so drivers can find the tx queue */ 646 /* XXX assumes an 802.3 frame */ 647 if (ieee80211_classify(ni, m)) 648 senderr(EIO); /* XXX */ 649 650 IEEE80211_NODE_STAT(ni, tx_data); 651 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 652 IEEE80211_NODE_STAT(ni, tx_mcast); 653 m->m_flags |= M_MCAST; 654 } else 655 IEEE80211_NODE_STAT(ni, tx_ucast); 656 /* NB: ieee80211_encap does not include 802.11 header */ 657 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 658 659 IEEE80211_TX_LOCK(ic); 660 661 /* 662 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 663 * present by setting the sa_len field of the sockaddr (yes, 664 * this is a hack). 665 * NB: we assume sa_data is suitably aligned to cast. 666 */ 667 ret = ieee80211_raw_output(vap, ni, m, 668 (const struct ieee80211_bpf_params *)(dst->sa_len ? 669 dst->sa_data : NULL)); 670 IEEE80211_TX_UNLOCK(ic); 671 return (ret); 672 bad: 673 if (m != NULL) 674 m_freem(m); 675 if (ni != NULL) 676 ieee80211_free_node(ni); 677 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 678 return error; 679 #undef senderr 680 } 681 682 /* 683 * Set the direction field and address fields of an outgoing 684 * frame. Note this should be called early on in constructing 685 * a frame as it sets i_fc[1]; other bits can then be or'd in. 686 */ 687 void 688 ieee80211_send_setup( 689 struct ieee80211_node *ni, 690 struct mbuf *m, 691 int type, int tid, 692 const uint8_t sa[IEEE80211_ADDR_LEN], 693 const uint8_t da[IEEE80211_ADDR_LEN], 694 const uint8_t bssid[IEEE80211_ADDR_LEN]) 695 { 696 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 697 struct ieee80211vap *vap = ni->ni_vap; 698 struct ieee80211_tx_ampdu *tap; 699 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 700 ieee80211_seq seqno; 701 702 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 703 704 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 705 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 706 switch (vap->iv_opmode) { 707 case IEEE80211_M_STA: 708 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 709 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 710 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 711 IEEE80211_ADDR_COPY(wh->i_addr3, da); 712 break; 713 case IEEE80211_M_IBSS: 714 case IEEE80211_M_AHDEMO: 715 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 716 IEEE80211_ADDR_COPY(wh->i_addr1, da); 717 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 718 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 719 break; 720 case IEEE80211_M_HOSTAP: 721 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 722 IEEE80211_ADDR_COPY(wh->i_addr1, da); 723 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 724 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 725 break; 726 case IEEE80211_M_WDS: 727 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 728 IEEE80211_ADDR_COPY(wh->i_addr1, da); 729 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 730 IEEE80211_ADDR_COPY(wh->i_addr3, da); 731 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 732 break; 733 case IEEE80211_M_MBSS: 734 #ifdef IEEE80211_SUPPORT_MESH 735 if (IEEE80211_IS_MULTICAST(da)) { 736 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 737 /* XXX next hop */ 738 IEEE80211_ADDR_COPY(wh->i_addr1, da); 739 IEEE80211_ADDR_COPY(wh->i_addr2, 740 vap->iv_myaddr); 741 } else { 742 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 743 IEEE80211_ADDR_COPY(wh->i_addr1, da); 744 IEEE80211_ADDR_COPY(wh->i_addr2, 745 vap->iv_myaddr); 746 IEEE80211_ADDR_COPY(wh->i_addr3, da); 747 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 748 } 749 #endif 750 break; 751 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 752 break; 753 } 754 } else { 755 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 756 IEEE80211_ADDR_COPY(wh->i_addr1, da); 757 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 758 #ifdef IEEE80211_SUPPORT_MESH 759 if (vap->iv_opmode == IEEE80211_M_MBSS) 760 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 761 else 762 #endif 763 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 764 } 765 *(uint16_t *)&wh->i_dur[0] = 0; 766 767 tap = &ni->ni_tx_ampdu[tid]; 768 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 769 m->m_flags |= M_AMPDU_MPDU; 770 else { 771 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 772 type & IEEE80211_FC0_SUBTYPE_MASK)) 773 seqno = ni->ni_txseqs[tid]++; 774 else 775 seqno = 0; 776 777 *(uint16_t *)&wh->i_seq[0] = 778 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 779 M_SEQNO_SET(m, seqno); 780 } 781 782 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 783 m->m_flags |= M_MCAST; 784 #undef WH4 785 } 786 787 /* 788 * Send a management frame to the specified node. The node pointer 789 * must have a reference as the pointer will be passed to the driver 790 * and potentially held for a long time. If the frame is successfully 791 * dispatched to the driver, then it is responsible for freeing the 792 * reference (and potentially free'ing up any associated storage); 793 * otherwise deal with reclaiming any reference (on error). 794 */ 795 int 796 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 797 struct ieee80211_bpf_params *params) 798 { 799 struct ieee80211vap *vap = ni->ni_vap; 800 struct ieee80211com *ic = ni->ni_ic; 801 struct ieee80211_frame *wh; 802 int ret; 803 804 KASSERT(ni != NULL, ("null node")); 805 806 if (vap->iv_state == IEEE80211_S_CAC) { 807 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 808 ni, "block %s frame in CAC state", 809 ieee80211_mgt_subtype_name(type)); 810 vap->iv_stats.is_tx_badstate++; 811 ieee80211_free_node(ni); 812 m_freem(m); 813 return EIO; /* XXX */ 814 } 815 816 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 817 if (m == NULL) { 818 ieee80211_free_node(ni); 819 return ENOMEM; 820 } 821 822 IEEE80211_TX_LOCK(ic); 823 824 wh = mtod(m, struct ieee80211_frame *); 825 ieee80211_send_setup(ni, m, 826 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 827 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 828 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 829 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 830 "encrypting frame (%s)", __func__); 831 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 832 } 833 m->m_flags |= M_ENCAP; /* mark encapsulated */ 834 835 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 836 M_WME_SETAC(m, params->ibp_pri); 837 838 #ifdef IEEE80211_DEBUG 839 /* avoid printing too many frames */ 840 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 841 ieee80211_msg_dumppkts(vap)) { 842 printf("[%s] send %s on channel %u\n", 843 ether_sprintf(wh->i_addr1), 844 ieee80211_mgt_subtype_name(type), 845 ieee80211_chan2ieee(ic, ic->ic_curchan)); 846 } 847 #endif 848 IEEE80211_NODE_STAT(ni, tx_mgmt); 849 850 ret = ieee80211_raw_output(vap, ni, m, params); 851 IEEE80211_TX_UNLOCK(ic); 852 return (ret); 853 } 854 855 static void 856 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 857 int status) 858 { 859 struct ieee80211vap *vap = ni->ni_vap; 860 861 wakeup(vap); 862 } 863 864 /* 865 * Send a null data frame to the specified node. If the station 866 * is setup for QoS then a QoS Null Data frame is constructed. 867 * If this is a WDS station then a 4-address frame is constructed. 868 * 869 * NB: the caller is assumed to have setup a node reference 870 * for use; this is necessary to deal with a race condition 871 * when probing for inactive stations. Like ieee80211_mgmt_output 872 * we must cleanup any node reference on error; however we 873 * can safely just unref it as we know it will never be the 874 * last reference to the node. 875 */ 876 int 877 ieee80211_send_nulldata(struct ieee80211_node *ni) 878 { 879 struct ieee80211vap *vap = ni->ni_vap; 880 struct ieee80211com *ic = ni->ni_ic; 881 struct mbuf *m; 882 struct ieee80211_frame *wh; 883 int hdrlen; 884 uint8_t *frm; 885 int ret; 886 887 if (vap->iv_state == IEEE80211_S_CAC) { 888 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 889 ni, "block %s frame in CAC state", "null data"); 890 ieee80211_unref_node(&ni); 891 vap->iv_stats.is_tx_badstate++; 892 return EIO; /* XXX */ 893 } 894 895 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 896 hdrlen = sizeof(struct ieee80211_qosframe); 897 else 898 hdrlen = sizeof(struct ieee80211_frame); 899 /* NB: only WDS vap's get 4-address frames */ 900 if (vap->iv_opmode == IEEE80211_M_WDS) 901 hdrlen += IEEE80211_ADDR_LEN; 902 if (ic->ic_flags & IEEE80211_F_DATAPAD) 903 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 904 905 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 906 if (m == NULL) { 907 /* XXX debug msg */ 908 ieee80211_unref_node(&ni); 909 vap->iv_stats.is_tx_nobuf++; 910 return ENOMEM; 911 } 912 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 913 ("leading space %zd", M_LEADINGSPACE(m))); 914 M_PREPEND(m, hdrlen, M_NOWAIT); 915 if (m == NULL) { 916 /* NB: cannot happen */ 917 ieee80211_free_node(ni); 918 return ENOMEM; 919 } 920 921 IEEE80211_TX_LOCK(ic); 922 923 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 924 if (ni->ni_flags & IEEE80211_NODE_QOS) { 925 const int tid = WME_AC_TO_TID(WME_AC_BE); 926 uint8_t *qos; 927 928 ieee80211_send_setup(ni, m, 929 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 930 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 931 932 if (vap->iv_opmode == IEEE80211_M_WDS) 933 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 934 else 935 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 936 qos[0] = tid & IEEE80211_QOS_TID; 937 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 938 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 939 qos[1] = 0; 940 } else { 941 ieee80211_send_setup(ni, m, 942 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 943 IEEE80211_NONQOS_TID, 944 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 945 } 946 if (vap->iv_opmode != IEEE80211_M_WDS) { 947 /* NB: power management bit is never sent by an AP */ 948 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 949 vap->iv_opmode != IEEE80211_M_HOSTAP) 950 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 951 } 952 if ((ic->ic_flags & IEEE80211_F_SCAN) && 953 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 954 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 955 NULL); 956 } 957 m->m_len = m->m_pkthdr.len = hdrlen; 958 m->m_flags |= M_ENCAP; /* mark encapsulated */ 959 960 M_WME_SETAC(m, WME_AC_BE); 961 962 IEEE80211_NODE_STAT(ni, tx_data); 963 964 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 965 "send %snull data frame on channel %u, pwr mgt %s", 966 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 967 ieee80211_chan2ieee(ic, ic->ic_curchan), 968 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 969 970 ret = ieee80211_raw_output(vap, ni, m, NULL); 971 IEEE80211_TX_UNLOCK(ic); 972 return (ret); 973 } 974 975 /* 976 * Assign priority to a frame based on any vlan tag assigned 977 * to the station and/or any Diffserv setting in an IP header. 978 * Finally, if an ACM policy is setup (in station mode) it's 979 * applied. 980 */ 981 int 982 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 983 { 984 const struct ether_header *eh = mtod(m, struct ether_header *); 985 int v_wme_ac, d_wme_ac, ac; 986 987 /* 988 * Always promote PAE/EAPOL frames to high priority. 989 */ 990 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 991 /* NB: mark so others don't need to check header */ 992 m->m_flags |= M_EAPOL; 993 ac = WME_AC_VO; 994 goto done; 995 } 996 /* 997 * Non-qos traffic goes to BE. 998 */ 999 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1000 ac = WME_AC_BE; 1001 goto done; 1002 } 1003 1004 /* 1005 * If node has a vlan tag then all traffic 1006 * to it must have a matching tag. 1007 */ 1008 v_wme_ac = 0; 1009 if (ni->ni_vlan != 0) { 1010 if ((m->m_flags & M_VLANTAG) == 0) { 1011 IEEE80211_NODE_STAT(ni, tx_novlantag); 1012 return 1; 1013 } 1014 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1015 EVL_VLANOFTAG(ni->ni_vlan)) { 1016 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1017 return 1; 1018 } 1019 /* map vlan priority to AC */ 1020 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1021 } 1022 1023 /* XXX m_copydata may be too slow for fast path */ 1024 #ifdef INET 1025 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1026 uint8_t tos; 1027 /* 1028 * IP frame, map the DSCP bits from the TOS field. 1029 */ 1030 /* NB: ip header may not be in first mbuf */ 1031 m_copydata(m, sizeof(struct ether_header) + 1032 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1033 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1034 d_wme_ac = TID_TO_WME_AC(tos); 1035 } else { 1036 #endif /* INET */ 1037 #ifdef INET6 1038 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1039 uint32_t flow; 1040 uint8_t tos; 1041 /* 1042 * IPv6 frame, map the DSCP bits from the traffic class field. 1043 */ 1044 m_copydata(m, sizeof(struct ether_header) + 1045 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1046 (caddr_t) &flow); 1047 tos = (uint8_t)(ntohl(flow) >> 20); 1048 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1049 d_wme_ac = TID_TO_WME_AC(tos); 1050 } else { 1051 #endif /* INET6 */ 1052 d_wme_ac = WME_AC_BE; 1053 #ifdef INET6 1054 } 1055 #endif 1056 #ifdef INET 1057 } 1058 #endif 1059 /* 1060 * Use highest priority AC. 1061 */ 1062 if (v_wme_ac > d_wme_ac) 1063 ac = v_wme_ac; 1064 else 1065 ac = d_wme_ac; 1066 1067 /* 1068 * Apply ACM policy. 1069 */ 1070 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1071 static const int acmap[4] = { 1072 WME_AC_BK, /* WME_AC_BE */ 1073 WME_AC_BK, /* WME_AC_BK */ 1074 WME_AC_BE, /* WME_AC_VI */ 1075 WME_AC_VI, /* WME_AC_VO */ 1076 }; 1077 struct ieee80211com *ic = ni->ni_ic; 1078 1079 while (ac != WME_AC_BK && 1080 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1081 ac = acmap[ac]; 1082 } 1083 done: 1084 M_WME_SETAC(m, ac); 1085 return 0; 1086 } 1087 1088 /* 1089 * Insure there is sufficient contiguous space to encapsulate the 1090 * 802.11 data frame. If room isn't already there, arrange for it. 1091 * Drivers and cipher modules assume we have done the necessary work 1092 * and fail rudely if they don't find the space they need. 1093 */ 1094 struct mbuf * 1095 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1096 struct ieee80211_key *key, struct mbuf *m) 1097 { 1098 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1099 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1100 1101 if (key != NULL) { 1102 /* XXX belongs in crypto code? */ 1103 needed_space += key->wk_cipher->ic_header; 1104 /* XXX frags */ 1105 /* 1106 * When crypto is being done in the host we must insure 1107 * the data are writable for the cipher routines; clone 1108 * a writable mbuf chain. 1109 * XXX handle SWMIC specially 1110 */ 1111 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1112 m = m_unshare(m, M_NOWAIT); 1113 if (m == NULL) { 1114 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1115 "%s: cannot get writable mbuf\n", __func__); 1116 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1117 return NULL; 1118 } 1119 } 1120 } 1121 /* 1122 * We know we are called just before stripping an Ethernet 1123 * header and prepending an LLC header. This means we know 1124 * there will be 1125 * sizeof(struct ether_header) - sizeof(struct llc) 1126 * bytes recovered to which we need additional space for the 1127 * 802.11 header and any crypto header. 1128 */ 1129 /* XXX check trailing space and copy instead? */ 1130 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1131 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1132 if (n == NULL) { 1133 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1134 "%s: cannot expand storage\n", __func__); 1135 vap->iv_stats.is_tx_nobuf++; 1136 m_freem(m); 1137 return NULL; 1138 } 1139 KASSERT(needed_space <= MHLEN, 1140 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1141 /* 1142 * Setup new mbuf to have leading space to prepend the 1143 * 802.11 header and any crypto header bits that are 1144 * required (the latter are added when the driver calls 1145 * back to ieee80211_crypto_encap to do crypto encapsulation). 1146 */ 1147 /* NB: must be first 'cuz it clobbers m_data */ 1148 m_move_pkthdr(n, m); 1149 n->m_len = 0; /* NB: m_gethdr does not set */ 1150 n->m_data += needed_space; 1151 /* 1152 * Pull up Ethernet header to create the expected layout. 1153 * We could use m_pullup but that's overkill (i.e. we don't 1154 * need the actual data) and it cannot fail so do it inline 1155 * for speed. 1156 */ 1157 /* NB: struct ether_header is known to be contiguous */ 1158 n->m_len += sizeof(struct ether_header); 1159 m->m_len -= sizeof(struct ether_header); 1160 m->m_data += sizeof(struct ether_header); 1161 /* 1162 * Replace the head of the chain. 1163 */ 1164 n->m_next = m; 1165 m = n; 1166 } 1167 return m; 1168 #undef TO_BE_RECLAIMED 1169 } 1170 1171 /* 1172 * Return the transmit key to use in sending a unicast frame. 1173 * If a unicast key is set we use that. When no unicast key is set 1174 * we fall back to the default transmit key. 1175 */ 1176 static __inline struct ieee80211_key * 1177 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1178 struct ieee80211_node *ni) 1179 { 1180 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1181 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1182 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1183 return NULL; 1184 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1185 } else { 1186 return &ni->ni_ucastkey; 1187 } 1188 } 1189 1190 /* 1191 * Return the transmit key to use in sending a multicast frame. 1192 * Multicast traffic always uses the group key which is installed as 1193 * the default tx key. 1194 */ 1195 static __inline struct ieee80211_key * 1196 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1197 struct ieee80211_node *ni) 1198 { 1199 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1200 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1201 return NULL; 1202 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1203 } 1204 1205 /* 1206 * Encapsulate an outbound data frame. The mbuf chain is updated. 1207 * If an error is encountered NULL is returned. The caller is required 1208 * to provide a node reference and pullup the ethernet header in the 1209 * first mbuf. 1210 * 1211 * NB: Packet is assumed to be processed by ieee80211_classify which 1212 * marked EAPOL frames w/ M_EAPOL. 1213 */ 1214 struct mbuf * 1215 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1216 struct mbuf *m) 1217 { 1218 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1219 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1220 struct ieee80211com *ic = ni->ni_ic; 1221 #ifdef IEEE80211_SUPPORT_MESH 1222 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1223 struct ieee80211_meshcntl_ae10 *mc; 1224 struct ieee80211_mesh_route *rt = NULL; 1225 int dir = -1; 1226 #endif 1227 struct ether_header eh; 1228 struct ieee80211_frame *wh; 1229 struct ieee80211_key *key; 1230 struct llc *llc; 1231 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1232 ieee80211_seq seqno; 1233 int meshhdrsize, meshae; 1234 uint8_t *qos; 1235 int is_amsdu = 0; 1236 1237 IEEE80211_TX_LOCK_ASSERT(ic); 1238 1239 /* 1240 * Copy existing Ethernet header to a safe place. The 1241 * rest of the code assumes it's ok to strip it when 1242 * reorganizing state for the final encapsulation. 1243 */ 1244 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1245 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1246 1247 /* 1248 * Insure space for additional headers. First identify 1249 * transmit key to use in calculating any buffer adjustments 1250 * required. This is also used below to do privacy 1251 * encapsulation work. Then calculate the 802.11 header 1252 * size and any padding required by the driver. 1253 * 1254 * Note key may be NULL if we fall back to the default 1255 * transmit key and that is not set. In that case the 1256 * buffer may not be expanded as needed by the cipher 1257 * routines, but they will/should discard it. 1258 */ 1259 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1260 if (vap->iv_opmode == IEEE80211_M_STA || 1261 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1262 (vap->iv_opmode == IEEE80211_M_WDS && 1263 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1264 key = ieee80211_crypto_getucastkey(vap, ni); 1265 else 1266 key = ieee80211_crypto_getmcastkey(vap, ni); 1267 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1268 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1269 eh.ether_dhost, 1270 "no default transmit key (%s) deftxkey %u", 1271 __func__, vap->iv_def_txkey); 1272 vap->iv_stats.is_tx_nodefkey++; 1273 goto bad; 1274 } 1275 } else 1276 key = NULL; 1277 /* 1278 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1279 * frames so suppress use. This may be an issue if other 1280 * ap's require all data frames to be QoS-encapsulated 1281 * once negotiated in which case we'll need to make this 1282 * configurable. 1283 * NB: mesh data frames are QoS. 1284 */ 1285 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1286 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1287 (m->m_flags & M_EAPOL) == 0; 1288 if (addqos) 1289 hdrsize = sizeof(struct ieee80211_qosframe); 1290 else 1291 hdrsize = sizeof(struct ieee80211_frame); 1292 #ifdef IEEE80211_SUPPORT_MESH 1293 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1294 /* 1295 * Mesh data frames are encapsulated according to the 1296 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1297 * o Group Addressed data (aka multicast) originating 1298 * at the local sta are sent w/ 3-address format and 1299 * address extension mode 00 1300 * o Individually Addressed data (aka unicast) originating 1301 * at the local sta are sent w/ 4-address format and 1302 * address extension mode 00 1303 * o Group Addressed data forwarded from a non-mesh sta are 1304 * sent w/ 3-address format and address extension mode 01 1305 * o Individually Address data from another sta are sent 1306 * w/ 4-address format and address extension mode 10 1307 */ 1308 is4addr = 0; /* NB: don't use, disable */ 1309 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1310 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1311 KASSERT(rt != NULL, ("route is NULL")); 1312 dir = IEEE80211_FC1_DIR_DSTODS; 1313 hdrsize += IEEE80211_ADDR_LEN; 1314 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1315 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1316 vap->iv_myaddr)) { 1317 IEEE80211_NOTE_MAC(vap, 1318 IEEE80211_MSG_MESH, 1319 eh.ether_dhost, 1320 "%s", "trying to send to ourself"); 1321 goto bad; 1322 } 1323 meshae = IEEE80211_MESH_AE_10; 1324 meshhdrsize = 1325 sizeof(struct ieee80211_meshcntl_ae10); 1326 } else { 1327 meshae = IEEE80211_MESH_AE_00; 1328 meshhdrsize = 1329 sizeof(struct ieee80211_meshcntl); 1330 } 1331 } else { 1332 dir = IEEE80211_FC1_DIR_FROMDS; 1333 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1334 /* proxy group */ 1335 meshae = IEEE80211_MESH_AE_01; 1336 meshhdrsize = 1337 sizeof(struct ieee80211_meshcntl_ae01); 1338 } else { 1339 /* group */ 1340 meshae = IEEE80211_MESH_AE_00; 1341 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1342 } 1343 } 1344 } else { 1345 #endif 1346 /* 1347 * 4-address frames need to be generated for: 1348 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1349 * o packets sent through a vap marked for relaying 1350 * (e.g. a station operating with dynamic WDS) 1351 */ 1352 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1353 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1354 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1355 if (is4addr) 1356 hdrsize += IEEE80211_ADDR_LEN; 1357 meshhdrsize = meshae = 0; 1358 #ifdef IEEE80211_SUPPORT_MESH 1359 } 1360 #endif 1361 /* 1362 * Honor driver DATAPAD requirement. 1363 */ 1364 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1365 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1366 else 1367 hdrspace = hdrsize; 1368 1369 if (__predict_true((m->m_flags & M_FF) == 0)) { 1370 /* 1371 * Normal frame. 1372 */ 1373 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1374 if (m == NULL) { 1375 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1376 goto bad; 1377 } 1378 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1379 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1380 llc = mtod(m, struct llc *); 1381 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1382 llc->llc_control = LLC_UI; 1383 llc->llc_snap.org_code[0] = 0; 1384 llc->llc_snap.org_code[1] = 0; 1385 llc->llc_snap.org_code[2] = 0; 1386 llc->llc_snap.ether_type = eh.ether_type; 1387 } else { 1388 #ifdef IEEE80211_SUPPORT_SUPERG 1389 /* 1390 * Aggregated frame. Check if it's for AMSDU or FF. 1391 * 1392 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1393 * anywhere for some reason. But, since 11n requires 1394 * AMSDU RX, we can just assume "11n" == "AMSDU". 1395 */ 1396 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1397 if (ieee80211_amsdu_tx_ok(ni)) { 1398 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1399 is_amsdu = 1; 1400 } else { 1401 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1402 } 1403 if (m == NULL) 1404 #endif 1405 goto bad; 1406 } 1407 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1408 1409 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1410 if (m == NULL) { 1411 vap->iv_stats.is_tx_nobuf++; 1412 goto bad; 1413 } 1414 wh = mtod(m, struct ieee80211_frame *); 1415 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1416 *(uint16_t *)wh->i_dur = 0; 1417 qos = NULL; /* NB: quiet compiler */ 1418 if (is4addr) { 1419 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1420 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1421 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1422 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1423 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1424 } else switch (vap->iv_opmode) { 1425 case IEEE80211_M_STA: 1426 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1427 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1428 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1429 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1430 break; 1431 case IEEE80211_M_IBSS: 1432 case IEEE80211_M_AHDEMO: 1433 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1434 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1435 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1436 /* 1437 * NB: always use the bssid from iv_bss as the 1438 * neighbor's may be stale after an ibss merge 1439 */ 1440 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1441 break; 1442 case IEEE80211_M_HOSTAP: 1443 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1444 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1445 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1446 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1447 break; 1448 #ifdef IEEE80211_SUPPORT_MESH 1449 case IEEE80211_M_MBSS: 1450 /* NB: offset by hdrspace to deal with DATAPAD */ 1451 mc = (struct ieee80211_meshcntl_ae10 *) 1452 (mtod(m, uint8_t *) + hdrspace); 1453 wh->i_fc[1] = dir; 1454 switch (meshae) { 1455 case IEEE80211_MESH_AE_00: /* no proxy */ 1456 mc->mc_flags = 0; 1457 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1458 IEEE80211_ADDR_COPY(wh->i_addr1, 1459 ni->ni_macaddr); 1460 IEEE80211_ADDR_COPY(wh->i_addr2, 1461 vap->iv_myaddr); 1462 IEEE80211_ADDR_COPY(wh->i_addr3, 1463 eh.ether_dhost); 1464 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1465 eh.ether_shost); 1466 qos =((struct ieee80211_qosframe_addr4 *) 1467 wh)->i_qos; 1468 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1469 /* mcast */ 1470 IEEE80211_ADDR_COPY(wh->i_addr1, 1471 eh.ether_dhost); 1472 IEEE80211_ADDR_COPY(wh->i_addr2, 1473 vap->iv_myaddr); 1474 IEEE80211_ADDR_COPY(wh->i_addr3, 1475 eh.ether_shost); 1476 qos = ((struct ieee80211_qosframe *) 1477 wh)->i_qos; 1478 } 1479 break; 1480 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1481 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1482 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1483 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1484 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1485 mc->mc_flags = 1; 1486 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1487 eh.ether_shost); 1488 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1489 break; 1490 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1491 KASSERT(rt != NULL, ("route is NULL")); 1492 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1493 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1494 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1495 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1496 mc->mc_flags = IEEE80211_MESH_AE_10; 1497 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1498 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1499 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1500 break; 1501 default: 1502 KASSERT(0, ("meshae %d", meshae)); 1503 break; 1504 } 1505 mc->mc_ttl = ms->ms_ttl; 1506 ms->ms_seq++; 1507 le32enc(mc->mc_seq, ms->ms_seq); 1508 break; 1509 #endif 1510 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1511 default: 1512 goto bad; 1513 } 1514 if (m->m_flags & M_MORE_DATA) 1515 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1516 if (addqos) { 1517 int ac, tid; 1518 1519 if (is4addr) { 1520 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1521 /* NB: mesh case handled earlier */ 1522 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1523 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1524 ac = M_WME_GETAC(m); 1525 /* map from access class/queue to 11e header priorty value */ 1526 tid = WME_AC_TO_TID(ac); 1527 qos[0] = tid & IEEE80211_QOS_TID; 1528 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1529 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1530 #ifdef IEEE80211_SUPPORT_MESH 1531 if (vap->iv_opmode == IEEE80211_M_MBSS) 1532 qos[1] = IEEE80211_QOS_MC; 1533 else 1534 #endif 1535 qos[1] = 0; 1536 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1537 1538 /* 1539 * If this is an A-MSDU then ensure we set the 1540 * relevant field. 1541 */ 1542 if (is_amsdu) 1543 qos[0] |= IEEE80211_QOS_AMSDU; 1544 1545 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1546 /* 1547 * NB: don't assign a sequence # to potential 1548 * aggregates; we expect this happens at the 1549 * point the frame comes off any aggregation q 1550 * as otherwise we may introduce holes in the 1551 * BA sequence space and/or make window accouting 1552 * more difficult. 1553 * 1554 * XXX may want to control this with a driver 1555 * capability; this may also change when we pull 1556 * aggregation up into net80211 1557 */ 1558 seqno = ni->ni_txseqs[tid]++; 1559 *(uint16_t *)wh->i_seq = 1560 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1561 M_SEQNO_SET(m, seqno); 1562 } 1563 } else { 1564 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1565 *(uint16_t *)wh->i_seq = 1566 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1567 M_SEQNO_SET(m, seqno); 1568 1569 /* 1570 * XXX TODO: we shouldn't allow EAPOL, etc that would 1571 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1572 */ 1573 if (is_amsdu) 1574 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1575 __func__); 1576 } 1577 1578 1579 /* check if xmit fragmentation is required */ 1580 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1581 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1582 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1583 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1584 if (key != NULL) { 1585 /* 1586 * IEEE 802.1X: send EAPOL frames always in the clear. 1587 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1588 */ 1589 if ((m->m_flags & M_EAPOL) == 0 || 1590 ((vap->iv_flags & IEEE80211_F_WPA) && 1591 (vap->iv_opmode == IEEE80211_M_STA ? 1592 !IEEE80211_KEY_UNDEFINED(key) : 1593 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1594 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1595 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1596 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1597 eh.ether_dhost, 1598 "%s", "enmic failed, discard frame"); 1599 vap->iv_stats.is_crypto_enmicfail++; 1600 goto bad; 1601 } 1602 } 1603 } 1604 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1605 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1606 goto bad; 1607 1608 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1609 1610 IEEE80211_NODE_STAT(ni, tx_data); 1611 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1612 IEEE80211_NODE_STAT(ni, tx_mcast); 1613 m->m_flags |= M_MCAST; 1614 } else 1615 IEEE80211_NODE_STAT(ni, tx_ucast); 1616 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1617 1618 return m; 1619 bad: 1620 if (m != NULL) 1621 m_freem(m); 1622 return NULL; 1623 #undef WH4 1624 #undef MC01 1625 } 1626 1627 void 1628 ieee80211_free_mbuf(struct mbuf *m) 1629 { 1630 struct mbuf *next; 1631 1632 if (m == NULL) 1633 return; 1634 1635 do { 1636 next = m->m_nextpkt; 1637 m->m_nextpkt = NULL; 1638 m_freem(m); 1639 } while ((m = next) != NULL); 1640 } 1641 1642 /* 1643 * Fragment the frame according to the specified mtu. 1644 * The size of the 802.11 header (w/o padding) is provided 1645 * so we don't need to recalculate it. We create a new 1646 * mbuf for each fragment and chain it through m_nextpkt; 1647 * we might be able to optimize this by reusing the original 1648 * packet's mbufs but that is significantly more complicated. 1649 */ 1650 static int 1651 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1652 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1653 { 1654 struct ieee80211com *ic = vap->iv_ic; 1655 struct ieee80211_frame *wh, *whf; 1656 struct mbuf *m, *prev; 1657 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1658 u_int hdrspace; 1659 1660 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1661 KASSERT(m0->m_pkthdr.len > mtu, 1662 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1663 1664 /* 1665 * Honor driver DATAPAD requirement. 1666 */ 1667 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1668 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1669 else 1670 hdrspace = hdrsize; 1671 1672 wh = mtod(m0, struct ieee80211_frame *); 1673 /* NB: mark the first frag; it will be propagated below */ 1674 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1675 totalhdrsize = hdrspace + ciphdrsize; 1676 fragno = 1; 1677 off = mtu - ciphdrsize; 1678 remainder = m0->m_pkthdr.len - off; 1679 prev = m0; 1680 do { 1681 fragsize = MIN(totalhdrsize + remainder, mtu); 1682 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1683 if (m == NULL) 1684 goto bad; 1685 /* leave room to prepend any cipher header */ 1686 m_align(m, fragsize - ciphdrsize); 1687 1688 /* 1689 * Form the header in the fragment. Note that since 1690 * we mark the first fragment with the MORE_FRAG bit 1691 * it automatically is propagated to each fragment; we 1692 * need only clear it on the last fragment (done below). 1693 * NB: frag 1+ dont have Mesh Control field present. 1694 */ 1695 whf = mtod(m, struct ieee80211_frame *); 1696 memcpy(whf, wh, hdrsize); 1697 #ifdef IEEE80211_SUPPORT_MESH 1698 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1699 if (IEEE80211_IS_DSTODS(wh)) 1700 ((struct ieee80211_qosframe_addr4 *) 1701 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1702 else 1703 ((struct ieee80211_qosframe *) 1704 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1705 } 1706 #endif 1707 *(uint16_t *)&whf->i_seq[0] |= htole16( 1708 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1709 IEEE80211_SEQ_FRAG_SHIFT); 1710 fragno++; 1711 1712 payload = fragsize - totalhdrsize; 1713 /* NB: destination is known to be contiguous */ 1714 1715 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1716 m->m_len = hdrspace + payload; 1717 m->m_pkthdr.len = hdrspace + payload; 1718 m->m_flags |= M_FRAG; 1719 1720 /* chain up the fragment */ 1721 prev->m_nextpkt = m; 1722 prev = m; 1723 1724 /* deduct fragment just formed */ 1725 remainder -= payload; 1726 off += payload; 1727 } while (remainder != 0); 1728 1729 /* set the last fragment */ 1730 m->m_flags |= M_LASTFRAG; 1731 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1732 1733 /* strip first mbuf now that everything has been copied */ 1734 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1735 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1736 1737 vap->iv_stats.is_tx_fragframes++; 1738 vap->iv_stats.is_tx_frags += fragno-1; 1739 1740 return 1; 1741 bad: 1742 /* reclaim fragments but leave original frame for caller to free */ 1743 ieee80211_free_mbuf(m0->m_nextpkt); 1744 m0->m_nextpkt = NULL; 1745 return 0; 1746 } 1747 1748 /* 1749 * Add a supported rates element id to a frame. 1750 */ 1751 uint8_t * 1752 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1753 { 1754 int nrates; 1755 1756 *frm++ = IEEE80211_ELEMID_RATES; 1757 nrates = rs->rs_nrates; 1758 if (nrates > IEEE80211_RATE_SIZE) 1759 nrates = IEEE80211_RATE_SIZE; 1760 *frm++ = nrates; 1761 memcpy(frm, rs->rs_rates, nrates); 1762 return frm + nrates; 1763 } 1764 1765 /* 1766 * Add an extended supported rates element id to a frame. 1767 */ 1768 uint8_t * 1769 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1770 { 1771 /* 1772 * Add an extended supported rates element if operating in 11g mode. 1773 */ 1774 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1775 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1776 *frm++ = IEEE80211_ELEMID_XRATES; 1777 *frm++ = nrates; 1778 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1779 frm += nrates; 1780 } 1781 return frm; 1782 } 1783 1784 /* 1785 * Add an ssid element to a frame. 1786 */ 1787 uint8_t * 1788 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1789 { 1790 *frm++ = IEEE80211_ELEMID_SSID; 1791 *frm++ = len; 1792 memcpy(frm, ssid, len); 1793 return frm + len; 1794 } 1795 1796 /* 1797 * Add an erp element to a frame. 1798 */ 1799 static uint8_t * 1800 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1801 { 1802 uint8_t erp; 1803 1804 *frm++ = IEEE80211_ELEMID_ERP; 1805 *frm++ = 1; 1806 erp = 0; 1807 if (ic->ic_nonerpsta != 0) 1808 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1809 if (ic->ic_flags & IEEE80211_F_USEPROT) 1810 erp |= IEEE80211_ERP_USE_PROTECTION; 1811 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1812 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1813 *frm++ = erp; 1814 return frm; 1815 } 1816 1817 /* 1818 * Add a CFParams element to a frame. 1819 */ 1820 static uint8_t * 1821 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1822 { 1823 #define ADDSHORT(frm, v) do { \ 1824 le16enc(frm, v); \ 1825 frm += 2; \ 1826 } while (0) 1827 *frm++ = IEEE80211_ELEMID_CFPARMS; 1828 *frm++ = 6; 1829 *frm++ = 0; /* CFP count */ 1830 *frm++ = 2; /* CFP period */ 1831 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1832 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1833 return frm; 1834 #undef ADDSHORT 1835 } 1836 1837 static __inline uint8_t * 1838 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1839 { 1840 memcpy(frm, ie->ie_data, ie->ie_len); 1841 return frm + ie->ie_len; 1842 } 1843 1844 static __inline uint8_t * 1845 add_ie(uint8_t *frm, const uint8_t *ie) 1846 { 1847 memcpy(frm, ie, 2 + ie[1]); 1848 return frm + 2 + ie[1]; 1849 } 1850 1851 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1852 /* 1853 * Add a WME information element to a frame. 1854 */ 1855 uint8_t * 1856 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1857 { 1858 static const struct ieee80211_wme_info info = { 1859 .wme_id = IEEE80211_ELEMID_VENDOR, 1860 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1861 .wme_oui = { WME_OUI_BYTES }, 1862 .wme_type = WME_OUI_TYPE, 1863 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1864 .wme_version = WME_VERSION, 1865 .wme_info = 0, 1866 }; 1867 memcpy(frm, &info, sizeof(info)); 1868 return frm + sizeof(info); 1869 } 1870 1871 /* 1872 * Add a WME parameters element to a frame. 1873 */ 1874 static uint8_t * 1875 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1876 { 1877 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1878 #define ADDSHORT(frm, v) do { \ 1879 le16enc(frm, v); \ 1880 frm += 2; \ 1881 } while (0) 1882 /* NB: this works 'cuz a param has an info at the front */ 1883 static const struct ieee80211_wme_info param = { 1884 .wme_id = IEEE80211_ELEMID_VENDOR, 1885 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1886 .wme_oui = { WME_OUI_BYTES }, 1887 .wme_type = WME_OUI_TYPE, 1888 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1889 .wme_version = WME_VERSION, 1890 }; 1891 int i; 1892 1893 memcpy(frm, ¶m, sizeof(param)); 1894 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1895 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1896 *frm++ = 0; /* reserved field */ 1897 for (i = 0; i < WME_NUM_AC; i++) { 1898 const struct wmeParams *ac = 1899 &wme->wme_bssChanParams.cap_wmeParams[i]; 1900 *frm++ = SM(i, WME_PARAM_ACI) 1901 | SM(ac->wmep_acm, WME_PARAM_ACM) 1902 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1903 ; 1904 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1905 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1906 ; 1907 ADDSHORT(frm, ac->wmep_txopLimit); 1908 } 1909 return frm; 1910 #undef SM 1911 #undef ADDSHORT 1912 } 1913 #undef WME_OUI_BYTES 1914 1915 /* 1916 * Add an 11h Power Constraint element to a frame. 1917 */ 1918 static uint8_t * 1919 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1920 { 1921 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1922 /* XXX per-vap tx power limit? */ 1923 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1924 1925 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1926 frm[1] = 1; 1927 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1928 return frm + 3; 1929 } 1930 1931 /* 1932 * Add an 11h Power Capability element to a frame. 1933 */ 1934 static uint8_t * 1935 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1936 { 1937 frm[0] = IEEE80211_ELEMID_PWRCAP; 1938 frm[1] = 2; 1939 frm[2] = c->ic_minpower; 1940 frm[3] = c->ic_maxpower; 1941 return frm + 4; 1942 } 1943 1944 /* 1945 * Add an 11h Supported Channels element to a frame. 1946 */ 1947 static uint8_t * 1948 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1949 { 1950 static const int ielen = 26; 1951 1952 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1953 frm[1] = ielen; 1954 /* XXX not correct */ 1955 memcpy(frm+2, ic->ic_chan_avail, ielen); 1956 return frm + 2 + ielen; 1957 } 1958 1959 /* 1960 * Add an 11h Quiet time element to a frame. 1961 */ 1962 static uint8_t * 1963 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1964 { 1965 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1966 1967 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1968 quiet->len = 6; 1969 if (vap->iv_quiet_count_value == 1) 1970 vap->iv_quiet_count_value = vap->iv_quiet_count; 1971 else if (vap->iv_quiet_count_value > 1) 1972 vap->iv_quiet_count_value--; 1973 1974 if (vap->iv_quiet_count_value == 0) { 1975 /* value 0 is reserved as per 802.11h standerd */ 1976 vap->iv_quiet_count_value = 1; 1977 } 1978 1979 quiet->tbttcount = vap->iv_quiet_count_value; 1980 quiet->period = vap->iv_quiet_period; 1981 quiet->duration = htole16(vap->iv_quiet_duration); 1982 quiet->offset = htole16(vap->iv_quiet_offset); 1983 return frm + sizeof(*quiet); 1984 } 1985 1986 /* 1987 * Add an 11h Channel Switch Announcement element to a frame. 1988 * Note that we use the per-vap CSA count to adjust the global 1989 * counter so we can use this routine to form probe response 1990 * frames and get the current count. 1991 */ 1992 static uint8_t * 1993 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1994 { 1995 struct ieee80211com *ic = vap->iv_ic; 1996 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1997 1998 csa->csa_ie = IEEE80211_ELEMID_CSA; 1999 csa->csa_len = 3; 2000 csa->csa_mode = 1; /* XXX force quiet on channel */ 2001 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2002 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2003 return frm + sizeof(*csa); 2004 } 2005 2006 /* 2007 * Add an 11h country information element to a frame. 2008 */ 2009 static uint8_t * 2010 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2011 { 2012 2013 if (ic->ic_countryie == NULL || 2014 ic->ic_countryie_chan != ic->ic_bsschan) { 2015 /* 2016 * Handle lazy construction of ie. This is done on 2017 * first use and after a channel change that requires 2018 * re-calculation. 2019 */ 2020 if (ic->ic_countryie != NULL) 2021 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2022 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2023 if (ic->ic_countryie == NULL) 2024 return frm; 2025 ic->ic_countryie_chan = ic->ic_bsschan; 2026 } 2027 return add_appie(frm, ic->ic_countryie); 2028 } 2029 2030 uint8_t * 2031 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2032 { 2033 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2034 return (add_ie(frm, vap->iv_wpa_ie)); 2035 else { 2036 /* XXX else complain? */ 2037 return (frm); 2038 } 2039 } 2040 2041 uint8_t * 2042 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2043 { 2044 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2045 return (add_ie(frm, vap->iv_rsn_ie)); 2046 else { 2047 /* XXX else complain? */ 2048 return (frm); 2049 } 2050 } 2051 2052 uint8_t * 2053 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2054 { 2055 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2056 *frm++ = IEEE80211_ELEMID_QOS; 2057 *frm++ = 1; 2058 *frm++ = 0; 2059 } 2060 2061 return (frm); 2062 } 2063 2064 /* 2065 * Send a probe request frame with the specified ssid 2066 * and any optional information element data. 2067 */ 2068 int 2069 ieee80211_send_probereq(struct ieee80211_node *ni, 2070 const uint8_t sa[IEEE80211_ADDR_LEN], 2071 const uint8_t da[IEEE80211_ADDR_LEN], 2072 const uint8_t bssid[IEEE80211_ADDR_LEN], 2073 const uint8_t *ssid, size_t ssidlen) 2074 { 2075 struct ieee80211vap *vap = ni->ni_vap; 2076 struct ieee80211com *ic = ni->ni_ic; 2077 struct ieee80211_node *bss; 2078 const struct ieee80211_txparam *tp; 2079 struct ieee80211_bpf_params params; 2080 const struct ieee80211_rateset *rs; 2081 struct mbuf *m; 2082 uint8_t *frm; 2083 int ret; 2084 2085 bss = ieee80211_ref_node(vap->iv_bss); 2086 2087 if (vap->iv_state == IEEE80211_S_CAC) { 2088 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2089 "block %s frame in CAC state", "probe request"); 2090 vap->iv_stats.is_tx_badstate++; 2091 ieee80211_free_node(bss); 2092 return EIO; /* XXX */ 2093 } 2094 2095 /* 2096 * Hold a reference on the node so it doesn't go away until after 2097 * the xmit is complete all the way in the driver. On error we 2098 * will remove our reference. 2099 */ 2100 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2101 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2102 __func__, __LINE__, 2103 ni, ether_sprintf(ni->ni_macaddr), 2104 ieee80211_node_refcnt(ni)+1); 2105 ieee80211_ref_node(ni); 2106 2107 /* 2108 * prreq frame format 2109 * [tlv] ssid 2110 * [tlv] supported rates 2111 * [tlv] RSN (optional) 2112 * [tlv] extended supported rates 2113 * [tlv] HT cap (optional) 2114 * [tlv] WPA (optional) 2115 * [tlv] user-specified ie's 2116 */ 2117 m = ieee80211_getmgtframe(&frm, 2118 ic->ic_headroom + sizeof(struct ieee80211_frame), 2119 2 + IEEE80211_NWID_LEN 2120 + 2 + IEEE80211_RATE_SIZE 2121 + sizeof(struct ieee80211_ie_htcap) 2122 + sizeof(struct ieee80211_ie_htinfo) 2123 + sizeof(struct ieee80211_ie_wpa) 2124 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2125 + sizeof(struct ieee80211_ie_wpa) 2126 + (vap->iv_appie_probereq != NULL ? 2127 vap->iv_appie_probereq->ie_len : 0) 2128 ); 2129 if (m == NULL) { 2130 vap->iv_stats.is_tx_nobuf++; 2131 ieee80211_free_node(ni); 2132 ieee80211_free_node(bss); 2133 return ENOMEM; 2134 } 2135 2136 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2137 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2138 frm = ieee80211_add_rates(frm, rs); 2139 frm = ieee80211_add_rsn(frm, vap); 2140 frm = ieee80211_add_xrates(frm, rs); 2141 2142 /* 2143 * Note: we can't use bss; we don't have one yet. 2144 * 2145 * So, we should announce our capabilities 2146 * in this channel mode (2g/5g), not the 2147 * channel details itself. 2148 */ 2149 if ((vap->iv_opmode == IEEE80211_M_IBSS) && 2150 (vap->iv_flags_ht & IEEE80211_FHT_HT)) { 2151 struct ieee80211_channel *c; 2152 2153 /* 2154 * Get the HT channel that we should try upgrading to. 2155 * If we can do 40MHz then this'll upgrade it appropriately. 2156 */ 2157 c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan, 2158 vap->iv_flags_ht); 2159 frm = ieee80211_add_htcap_ch(frm, vap, c); 2160 } 2161 2162 frm = ieee80211_add_wpa(frm, vap); 2163 if (vap->iv_appie_probereq != NULL) 2164 frm = add_appie(frm, vap->iv_appie_probereq); 2165 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2166 2167 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2168 ("leading space %zd", M_LEADINGSPACE(m))); 2169 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2170 if (m == NULL) { 2171 /* NB: cannot happen */ 2172 ieee80211_free_node(ni); 2173 ieee80211_free_node(bss); 2174 return ENOMEM; 2175 } 2176 2177 IEEE80211_TX_LOCK(ic); 2178 ieee80211_send_setup(ni, m, 2179 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2180 IEEE80211_NONQOS_TID, sa, da, bssid); 2181 /* XXX power management? */ 2182 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2183 2184 M_WME_SETAC(m, WME_AC_BE); 2185 2186 IEEE80211_NODE_STAT(ni, tx_probereq); 2187 IEEE80211_NODE_STAT(ni, tx_mgmt); 2188 2189 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2190 "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n", 2191 ieee80211_chan2ieee(ic, ic->ic_curchan), 2192 ether_sprintf(bssid), 2193 sa, ":", 2194 da, ":", 2195 ssidlen, ssid); 2196 2197 memset(¶ms, 0, sizeof(params)); 2198 params.ibp_pri = M_WME_GETAC(m); 2199 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2200 params.ibp_rate0 = tp->mgmtrate; 2201 if (IEEE80211_IS_MULTICAST(da)) { 2202 params.ibp_flags |= IEEE80211_BPF_NOACK; 2203 params.ibp_try0 = 1; 2204 } else 2205 params.ibp_try0 = tp->maxretry; 2206 params.ibp_power = ni->ni_txpower; 2207 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2208 IEEE80211_TX_UNLOCK(ic); 2209 ieee80211_free_node(bss); 2210 return (ret); 2211 } 2212 2213 /* 2214 * Calculate capability information for mgt frames. 2215 */ 2216 uint16_t 2217 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2218 { 2219 struct ieee80211com *ic = vap->iv_ic; 2220 uint16_t capinfo; 2221 2222 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2223 2224 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2225 capinfo = IEEE80211_CAPINFO_ESS; 2226 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2227 capinfo = IEEE80211_CAPINFO_IBSS; 2228 else 2229 capinfo = 0; 2230 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2231 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2232 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2233 IEEE80211_IS_CHAN_2GHZ(chan)) 2234 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2235 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2236 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2237 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2238 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2239 return capinfo; 2240 } 2241 2242 /* 2243 * Send a management frame. The node is for the destination (or ic_bss 2244 * when in station mode). Nodes other than ic_bss have their reference 2245 * count bumped to reflect our use for an indeterminant time. 2246 */ 2247 int 2248 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2249 { 2250 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2251 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2252 struct ieee80211vap *vap = ni->ni_vap; 2253 struct ieee80211com *ic = ni->ni_ic; 2254 struct ieee80211_node *bss = vap->iv_bss; 2255 struct ieee80211_bpf_params params; 2256 struct mbuf *m; 2257 uint8_t *frm; 2258 uint16_t capinfo; 2259 int has_challenge, is_shared_key, ret, status; 2260 2261 KASSERT(ni != NULL, ("null node")); 2262 2263 /* 2264 * Hold a reference on the node so it doesn't go away until after 2265 * the xmit is complete all the way in the driver. On error we 2266 * will remove our reference. 2267 */ 2268 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2269 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2270 __func__, __LINE__, 2271 ni, ether_sprintf(ni->ni_macaddr), 2272 ieee80211_node_refcnt(ni)+1); 2273 ieee80211_ref_node(ni); 2274 2275 memset(¶ms, 0, sizeof(params)); 2276 switch (type) { 2277 2278 case IEEE80211_FC0_SUBTYPE_AUTH: 2279 status = arg >> 16; 2280 arg &= 0xffff; 2281 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2282 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2283 ni->ni_challenge != NULL); 2284 2285 /* 2286 * Deduce whether we're doing open authentication or 2287 * shared key authentication. We do the latter if 2288 * we're in the middle of a shared key authentication 2289 * handshake or if we're initiating an authentication 2290 * request and configured to use shared key. 2291 */ 2292 is_shared_key = has_challenge || 2293 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2294 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2295 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2296 2297 m = ieee80211_getmgtframe(&frm, 2298 ic->ic_headroom + sizeof(struct ieee80211_frame), 2299 3 * sizeof(uint16_t) 2300 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2301 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2302 ); 2303 if (m == NULL) 2304 senderr(ENOMEM, is_tx_nobuf); 2305 2306 ((uint16_t *)frm)[0] = 2307 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2308 : htole16(IEEE80211_AUTH_ALG_OPEN); 2309 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2310 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2311 2312 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2313 ((uint16_t *)frm)[3] = 2314 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2315 IEEE80211_ELEMID_CHALLENGE); 2316 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2317 IEEE80211_CHALLENGE_LEN); 2318 m->m_pkthdr.len = m->m_len = 2319 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2320 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2321 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2322 "request encrypt frame (%s)", __func__); 2323 /* mark frame for encryption */ 2324 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2325 } 2326 } else 2327 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2328 2329 /* XXX not right for shared key */ 2330 if (status == IEEE80211_STATUS_SUCCESS) 2331 IEEE80211_NODE_STAT(ni, tx_auth); 2332 else 2333 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2334 2335 if (vap->iv_opmode == IEEE80211_M_STA) 2336 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2337 (void *) vap->iv_state); 2338 break; 2339 2340 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2341 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2342 "send station deauthenticate (reason: %d (%s))", arg, 2343 ieee80211_reason_to_string(arg)); 2344 m = ieee80211_getmgtframe(&frm, 2345 ic->ic_headroom + sizeof(struct ieee80211_frame), 2346 sizeof(uint16_t)); 2347 if (m == NULL) 2348 senderr(ENOMEM, is_tx_nobuf); 2349 *(uint16_t *)frm = htole16(arg); /* reason */ 2350 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2351 2352 IEEE80211_NODE_STAT(ni, tx_deauth); 2353 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2354 2355 ieee80211_node_unauthorize(ni); /* port closed */ 2356 break; 2357 2358 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2359 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2360 /* 2361 * asreq frame format 2362 * [2] capability information 2363 * [2] listen interval 2364 * [6*] current AP address (reassoc only) 2365 * [tlv] ssid 2366 * [tlv] supported rates 2367 * [tlv] extended supported rates 2368 * [4] power capability (optional) 2369 * [28] supported channels (optional) 2370 * [tlv] HT capabilities 2371 * [tlv] WME (optional) 2372 * [tlv] Vendor OUI HT capabilities (optional) 2373 * [tlv] Atheros capabilities (if negotiated) 2374 * [tlv] AppIE's (optional) 2375 */ 2376 m = ieee80211_getmgtframe(&frm, 2377 ic->ic_headroom + sizeof(struct ieee80211_frame), 2378 sizeof(uint16_t) 2379 + sizeof(uint16_t) 2380 + IEEE80211_ADDR_LEN 2381 + 2 + IEEE80211_NWID_LEN 2382 + 2 + IEEE80211_RATE_SIZE 2383 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2384 + 4 2385 + 2 + 26 2386 + sizeof(struct ieee80211_wme_info) 2387 + sizeof(struct ieee80211_ie_htcap) 2388 + 4 + sizeof(struct ieee80211_ie_htcap) 2389 #ifdef IEEE80211_SUPPORT_SUPERG 2390 + sizeof(struct ieee80211_ath_ie) 2391 #endif 2392 + (vap->iv_appie_wpa != NULL ? 2393 vap->iv_appie_wpa->ie_len : 0) 2394 + (vap->iv_appie_assocreq != NULL ? 2395 vap->iv_appie_assocreq->ie_len : 0) 2396 ); 2397 if (m == NULL) 2398 senderr(ENOMEM, is_tx_nobuf); 2399 2400 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2401 ("wrong mode %u", vap->iv_opmode)); 2402 capinfo = IEEE80211_CAPINFO_ESS; 2403 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2404 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2405 /* 2406 * NB: Some 11a AP's reject the request when 2407 * short premable is set. 2408 */ 2409 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2410 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2411 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2412 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2413 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2414 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2415 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2416 (vap->iv_flags & IEEE80211_F_DOTH)) 2417 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2418 *(uint16_t *)frm = htole16(capinfo); 2419 frm += 2; 2420 2421 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2422 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2423 bss->ni_intval)); 2424 frm += 2; 2425 2426 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2427 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2428 frm += IEEE80211_ADDR_LEN; 2429 } 2430 2431 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2432 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2433 frm = ieee80211_add_rsn(frm, vap); 2434 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2435 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2436 frm = ieee80211_add_powercapability(frm, 2437 ic->ic_curchan); 2438 frm = ieee80211_add_supportedchannels(frm, ic); 2439 } 2440 2441 /* 2442 * Check the channel - we may be using an 11n NIC with an 2443 * 11n capable station, but we're configured to be an 11b 2444 * channel. 2445 */ 2446 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2447 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2448 ni->ni_ies.htcap_ie != NULL && 2449 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2450 frm = ieee80211_add_htcap(frm, ni); 2451 } 2452 frm = ieee80211_add_wpa(frm, vap); 2453 if ((ic->ic_flags & IEEE80211_F_WME) && 2454 ni->ni_ies.wme_ie != NULL) 2455 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2456 2457 /* 2458 * Same deal - only send HT info if we're on an 11n 2459 * capable channel. 2460 */ 2461 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2462 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2463 ni->ni_ies.htcap_ie != NULL && 2464 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2465 frm = ieee80211_add_htcap_vendor(frm, ni); 2466 } 2467 #ifdef IEEE80211_SUPPORT_SUPERG 2468 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2469 frm = ieee80211_add_ath(frm, 2470 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2471 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2472 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2473 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2474 } 2475 #endif /* IEEE80211_SUPPORT_SUPERG */ 2476 if (vap->iv_appie_assocreq != NULL) 2477 frm = add_appie(frm, vap->iv_appie_assocreq); 2478 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2479 2480 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2481 (void *) vap->iv_state); 2482 break; 2483 2484 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2485 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2486 /* 2487 * asresp frame format 2488 * [2] capability information 2489 * [2] status 2490 * [2] association ID 2491 * [tlv] supported rates 2492 * [tlv] extended supported rates 2493 * [tlv] HT capabilities (standard, if STA enabled) 2494 * [tlv] HT information (standard, if STA enabled) 2495 * [tlv] WME (if configured and STA enabled) 2496 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2497 * [tlv] HT information (vendor OUI, if STA enabled) 2498 * [tlv] Atheros capabilities (if STA enabled) 2499 * [tlv] AppIE's (optional) 2500 */ 2501 m = ieee80211_getmgtframe(&frm, 2502 ic->ic_headroom + sizeof(struct ieee80211_frame), 2503 sizeof(uint16_t) 2504 + sizeof(uint16_t) 2505 + sizeof(uint16_t) 2506 + 2 + IEEE80211_RATE_SIZE 2507 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2508 + sizeof(struct ieee80211_ie_htcap) + 4 2509 + sizeof(struct ieee80211_ie_htinfo) + 4 2510 + sizeof(struct ieee80211_wme_param) 2511 #ifdef IEEE80211_SUPPORT_SUPERG 2512 + sizeof(struct ieee80211_ath_ie) 2513 #endif 2514 + (vap->iv_appie_assocresp != NULL ? 2515 vap->iv_appie_assocresp->ie_len : 0) 2516 ); 2517 if (m == NULL) 2518 senderr(ENOMEM, is_tx_nobuf); 2519 2520 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2521 *(uint16_t *)frm = htole16(capinfo); 2522 frm += 2; 2523 2524 *(uint16_t *)frm = htole16(arg); /* status */ 2525 frm += 2; 2526 2527 if (arg == IEEE80211_STATUS_SUCCESS) { 2528 *(uint16_t *)frm = htole16(ni->ni_associd); 2529 IEEE80211_NODE_STAT(ni, tx_assoc); 2530 } else 2531 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2532 frm += 2; 2533 2534 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2535 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2536 /* NB: respond according to what we received */ 2537 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2538 frm = ieee80211_add_htcap(frm, ni); 2539 frm = ieee80211_add_htinfo(frm, ni); 2540 } 2541 if ((vap->iv_flags & IEEE80211_F_WME) && 2542 ni->ni_ies.wme_ie != NULL) 2543 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2544 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2545 frm = ieee80211_add_htcap_vendor(frm, ni); 2546 frm = ieee80211_add_htinfo_vendor(frm, ni); 2547 } 2548 #ifdef IEEE80211_SUPPORT_SUPERG 2549 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2550 frm = ieee80211_add_ath(frm, 2551 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2552 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2553 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2554 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2555 #endif /* IEEE80211_SUPPORT_SUPERG */ 2556 if (vap->iv_appie_assocresp != NULL) 2557 frm = add_appie(frm, vap->iv_appie_assocresp); 2558 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2559 break; 2560 2561 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2562 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2563 "send station disassociate (reason: %d (%s))", arg, 2564 ieee80211_reason_to_string(arg)); 2565 m = ieee80211_getmgtframe(&frm, 2566 ic->ic_headroom + sizeof(struct ieee80211_frame), 2567 sizeof(uint16_t)); 2568 if (m == NULL) 2569 senderr(ENOMEM, is_tx_nobuf); 2570 *(uint16_t *)frm = htole16(arg); /* reason */ 2571 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2572 2573 IEEE80211_NODE_STAT(ni, tx_disassoc); 2574 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2575 break; 2576 2577 default: 2578 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2579 "invalid mgmt frame type %u", type); 2580 senderr(EINVAL, is_tx_unknownmgt); 2581 /* NOTREACHED */ 2582 } 2583 2584 /* NB: force non-ProbeResp frames to the highest queue */ 2585 params.ibp_pri = WME_AC_VO; 2586 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2587 /* NB: we know all frames are unicast */ 2588 params.ibp_try0 = bss->ni_txparms->maxretry; 2589 params.ibp_power = bss->ni_txpower; 2590 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2591 bad: 2592 ieee80211_free_node(ni); 2593 return ret; 2594 #undef senderr 2595 #undef HTFLAGS 2596 } 2597 2598 /* 2599 * Return an mbuf with a probe response frame in it. 2600 * Space is left to prepend and 802.11 header at the 2601 * front but it's left to the caller to fill in. 2602 */ 2603 struct mbuf * 2604 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2605 { 2606 struct ieee80211vap *vap = bss->ni_vap; 2607 struct ieee80211com *ic = bss->ni_ic; 2608 const struct ieee80211_rateset *rs; 2609 struct mbuf *m; 2610 uint16_t capinfo; 2611 uint8_t *frm; 2612 2613 /* 2614 * probe response frame format 2615 * [8] time stamp 2616 * [2] beacon interval 2617 * [2] cabability information 2618 * [tlv] ssid 2619 * [tlv] supported rates 2620 * [tlv] parameter set (FH/DS) 2621 * [tlv] parameter set (IBSS) 2622 * [tlv] country (optional) 2623 * [3] power control (optional) 2624 * [5] channel switch announcement (CSA) (optional) 2625 * [tlv] extended rate phy (ERP) 2626 * [tlv] extended supported rates 2627 * [tlv] RSN (optional) 2628 * [tlv] HT capabilities 2629 * [tlv] HT information 2630 * [tlv] WPA (optional) 2631 * [tlv] WME (optional) 2632 * [tlv] Vendor OUI HT capabilities (optional) 2633 * [tlv] Vendor OUI HT information (optional) 2634 * [tlv] Atheros capabilities 2635 * [tlv] AppIE's (optional) 2636 * [tlv] Mesh ID (MBSS) 2637 * [tlv] Mesh Conf (MBSS) 2638 */ 2639 m = ieee80211_getmgtframe(&frm, 2640 ic->ic_headroom + sizeof(struct ieee80211_frame), 2641 8 2642 + sizeof(uint16_t) 2643 + sizeof(uint16_t) 2644 + 2 + IEEE80211_NWID_LEN 2645 + 2 + IEEE80211_RATE_SIZE 2646 + 7 /* max(7,3) */ 2647 + IEEE80211_COUNTRY_MAX_SIZE 2648 + 3 2649 + sizeof(struct ieee80211_csa_ie) 2650 + sizeof(struct ieee80211_quiet_ie) 2651 + 3 2652 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2653 + sizeof(struct ieee80211_ie_wpa) 2654 + sizeof(struct ieee80211_ie_htcap) 2655 + sizeof(struct ieee80211_ie_htinfo) 2656 + sizeof(struct ieee80211_ie_wpa) 2657 + sizeof(struct ieee80211_wme_param) 2658 + 4 + sizeof(struct ieee80211_ie_htcap) 2659 + 4 + sizeof(struct ieee80211_ie_htinfo) 2660 #ifdef IEEE80211_SUPPORT_SUPERG 2661 + sizeof(struct ieee80211_ath_ie) 2662 #endif 2663 #ifdef IEEE80211_SUPPORT_MESH 2664 + 2 + IEEE80211_MESHID_LEN 2665 + sizeof(struct ieee80211_meshconf_ie) 2666 #endif 2667 + (vap->iv_appie_proberesp != NULL ? 2668 vap->iv_appie_proberesp->ie_len : 0) 2669 ); 2670 if (m == NULL) { 2671 vap->iv_stats.is_tx_nobuf++; 2672 return NULL; 2673 } 2674 2675 memset(frm, 0, 8); /* timestamp should be filled later */ 2676 frm += 8; 2677 *(uint16_t *)frm = htole16(bss->ni_intval); 2678 frm += 2; 2679 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2680 *(uint16_t *)frm = htole16(capinfo); 2681 frm += 2; 2682 2683 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2684 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2685 frm = ieee80211_add_rates(frm, rs); 2686 2687 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2688 *frm++ = IEEE80211_ELEMID_FHPARMS; 2689 *frm++ = 5; 2690 *frm++ = bss->ni_fhdwell & 0x00ff; 2691 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2692 *frm++ = IEEE80211_FH_CHANSET( 2693 ieee80211_chan2ieee(ic, bss->ni_chan)); 2694 *frm++ = IEEE80211_FH_CHANPAT( 2695 ieee80211_chan2ieee(ic, bss->ni_chan)); 2696 *frm++ = bss->ni_fhindex; 2697 } else { 2698 *frm++ = IEEE80211_ELEMID_DSPARMS; 2699 *frm++ = 1; 2700 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2701 } 2702 2703 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2704 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2705 *frm++ = 2; 2706 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2707 } 2708 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2709 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2710 frm = ieee80211_add_countryie(frm, ic); 2711 if (vap->iv_flags & IEEE80211_F_DOTH) { 2712 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2713 frm = ieee80211_add_powerconstraint(frm, vap); 2714 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2715 frm = ieee80211_add_csa(frm, vap); 2716 } 2717 if (vap->iv_flags & IEEE80211_F_DOTH) { 2718 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2719 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2720 if (vap->iv_quiet) 2721 frm = ieee80211_add_quiet(frm, vap); 2722 } 2723 } 2724 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2725 frm = ieee80211_add_erp(frm, ic); 2726 frm = ieee80211_add_xrates(frm, rs); 2727 frm = ieee80211_add_rsn(frm, vap); 2728 /* 2729 * NB: legacy 11b clients do not get certain ie's. 2730 * The caller identifies such clients by passing 2731 * a token in legacy to us. Could expand this to be 2732 * any legacy client for stuff like HT ie's. 2733 */ 2734 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2735 legacy != IEEE80211_SEND_LEGACY_11B) { 2736 frm = ieee80211_add_htcap(frm, bss); 2737 frm = ieee80211_add_htinfo(frm, bss); 2738 } 2739 frm = ieee80211_add_wpa(frm, vap); 2740 if (vap->iv_flags & IEEE80211_F_WME) 2741 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2742 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2743 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2744 legacy != IEEE80211_SEND_LEGACY_11B) { 2745 frm = ieee80211_add_htcap_vendor(frm, bss); 2746 frm = ieee80211_add_htinfo_vendor(frm, bss); 2747 } 2748 #ifdef IEEE80211_SUPPORT_SUPERG 2749 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2750 legacy != IEEE80211_SEND_LEGACY_11B) 2751 frm = ieee80211_add_athcaps(frm, bss); 2752 #endif 2753 if (vap->iv_appie_proberesp != NULL) 2754 frm = add_appie(frm, vap->iv_appie_proberesp); 2755 #ifdef IEEE80211_SUPPORT_MESH 2756 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2757 frm = ieee80211_add_meshid(frm, vap); 2758 frm = ieee80211_add_meshconf(frm, vap); 2759 } 2760 #endif 2761 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2762 2763 return m; 2764 } 2765 2766 /* 2767 * Send a probe response frame to the specified mac address. 2768 * This does not go through the normal mgt frame api so we 2769 * can specify the destination address and re-use the bss node 2770 * for the sta reference. 2771 */ 2772 int 2773 ieee80211_send_proberesp(struct ieee80211vap *vap, 2774 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2775 { 2776 struct ieee80211_node *bss = vap->iv_bss; 2777 struct ieee80211com *ic = vap->iv_ic; 2778 struct mbuf *m; 2779 int ret; 2780 2781 if (vap->iv_state == IEEE80211_S_CAC) { 2782 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2783 "block %s frame in CAC state", "probe response"); 2784 vap->iv_stats.is_tx_badstate++; 2785 return EIO; /* XXX */ 2786 } 2787 2788 /* 2789 * Hold a reference on the node so it doesn't go away until after 2790 * the xmit is complete all the way in the driver. On error we 2791 * will remove our reference. 2792 */ 2793 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2794 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2795 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2796 ieee80211_node_refcnt(bss)+1); 2797 ieee80211_ref_node(bss); 2798 2799 m = ieee80211_alloc_proberesp(bss, legacy); 2800 if (m == NULL) { 2801 ieee80211_free_node(bss); 2802 return ENOMEM; 2803 } 2804 2805 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2806 KASSERT(m != NULL, ("no room for header")); 2807 2808 IEEE80211_TX_LOCK(ic); 2809 ieee80211_send_setup(bss, m, 2810 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2811 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2812 /* XXX power management? */ 2813 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2814 2815 M_WME_SETAC(m, WME_AC_BE); 2816 2817 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2818 "send probe resp on channel %u to %s%s\n", 2819 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2820 legacy ? " <legacy>" : ""); 2821 IEEE80211_NODE_STAT(bss, tx_mgmt); 2822 2823 ret = ieee80211_raw_output(vap, bss, m, NULL); 2824 IEEE80211_TX_UNLOCK(ic); 2825 return (ret); 2826 } 2827 2828 /* 2829 * Allocate and build a RTS (Request To Send) control frame. 2830 */ 2831 struct mbuf * 2832 ieee80211_alloc_rts(struct ieee80211com *ic, 2833 const uint8_t ra[IEEE80211_ADDR_LEN], 2834 const uint8_t ta[IEEE80211_ADDR_LEN], 2835 uint16_t dur) 2836 { 2837 struct ieee80211_frame_rts *rts; 2838 struct mbuf *m; 2839 2840 /* XXX honor ic_headroom */ 2841 m = m_gethdr(M_NOWAIT, MT_DATA); 2842 if (m != NULL) { 2843 rts = mtod(m, struct ieee80211_frame_rts *); 2844 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2845 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2846 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2847 *(u_int16_t *)rts->i_dur = htole16(dur); 2848 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2849 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2850 2851 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2852 } 2853 return m; 2854 } 2855 2856 /* 2857 * Allocate and build a CTS (Clear To Send) control frame. 2858 */ 2859 struct mbuf * 2860 ieee80211_alloc_cts(struct ieee80211com *ic, 2861 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2862 { 2863 struct ieee80211_frame_cts *cts; 2864 struct mbuf *m; 2865 2866 /* XXX honor ic_headroom */ 2867 m = m_gethdr(M_NOWAIT, MT_DATA); 2868 if (m != NULL) { 2869 cts = mtod(m, struct ieee80211_frame_cts *); 2870 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2871 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2872 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2873 *(u_int16_t *)cts->i_dur = htole16(dur); 2874 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2875 2876 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2877 } 2878 return m; 2879 } 2880 2881 static void 2882 ieee80211_tx_mgt_timeout(void *arg) 2883 { 2884 struct ieee80211vap *vap = arg; 2885 2886 IEEE80211_LOCK(vap->iv_ic); 2887 if (vap->iv_state != IEEE80211_S_INIT && 2888 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2889 /* 2890 * NB: it's safe to specify a timeout as the reason here; 2891 * it'll only be used in the right state. 2892 */ 2893 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2894 IEEE80211_SCAN_FAIL_TIMEOUT); 2895 } 2896 IEEE80211_UNLOCK(vap->iv_ic); 2897 } 2898 2899 /* 2900 * This is the callback set on net80211-sourced transmitted 2901 * authentication request frames. 2902 * 2903 * This does a couple of things: 2904 * 2905 * + If the frame transmitted was a success, it schedules a future 2906 * event which will transition the interface to scan. 2907 * If a state transition _then_ occurs before that event occurs, 2908 * said state transition will cancel this callout. 2909 * 2910 * + If the frame transmit was a failure, it immediately schedules 2911 * the transition back to scan. 2912 */ 2913 static void 2914 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2915 { 2916 struct ieee80211vap *vap = ni->ni_vap; 2917 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2918 2919 /* 2920 * Frame transmit completed; arrange timer callback. If 2921 * transmit was successfully we wait for response. Otherwise 2922 * we arrange an immediate callback instead of doing the 2923 * callback directly since we don't know what state the driver 2924 * is in (e.g. what locks it is holding). This work should 2925 * not be too time-critical and not happen too often so the 2926 * added overhead is acceptable. 2927 * 2928 * XXX what happens if !acked but response shows up before callback? 2929 */ 2930 if (vap->iv_state == ostate) { 2931 callout_reset(&vap->iv_mgtsend, 2932 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2933 ieee80211_tx_mgt_timeout, vap); 2934 } 2935 } 2936 2937 static void 2938 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2939 struct ieee80211_node *ni) 2940 { 2941 struct ieee80211vap *vap = ni->ni_vap; 2942 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2943 struct ieee80211com *ic = ni->ni_ic; 2944 struct ieee80211_rateset *rs = &ni->ni_rates; 2945 uint16_t capinfo; 2946 2947 /* 2948 * beacon frame format 2949 * [8] time stamp 2950 * [2] beacon interval 2951 * [2] cabability information 2952 * [tlv] ssid 2953 * [tlv] supported rates 2954 * [3] parameter set (DS) 2955 * [8] CF parameter set (optional) 2956 * [tlv] parameter set (IBSS/TIM) 2957 * [tlv] country (optional) 2958 * [3] power control (optional) 2959 * [5] channel switch announcement (CSA) (optional) 2960 * [tlv] extended rate phy (ERP) 2961 * [tlv] extended supported rates 2962 * [tlv] RSN parameters 2963 * [tlv] HT capabilities 2964 * [tlv] HT information 2965 * XXX Vendor-specific OIDs (e.g. Atheros) 2966 * [tlv] WPA parameters 2967 * [tlv] WME parameters 2968 * [tlv] Vendor OUI HT capabilities (optional) 2969 * [tlv] Vendor OUI HT information (optional) 2970 * [tlv] Atheros capabilities (optional) 2971 * [tlv] TDMA parameters (optional) 2972 * [tlv] Mesh ID (MBSS) 2973 * [tlv] Mesh Conf (MBSS) 2974 * [tlv] application data (optional) 2975 */ 2976 2977 memset(bo, 0, sizeof(*bo)); 2978 2979 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2980 frm += 8; 2981 *(uint16_t *)frm = htole16(ni->ni_intval); 2982 frm += 2; 2983 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2984 bo->bo_caps = (uint16_t *)frm; 2985 *(uint16_t *)frm = htole16(capinfo); 2986 frm += 2; 2987 *frm++ = IEEE80211_ELEMID_SSID; 2988 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2989 *frm++ = ni->ni_esslen; 2990 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2991 frm += ni->ni_esslen; 2992 } else 2993 *frm++ = 0; 2994 frm = ieee80211_add_rates(frm, rs); 2995 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2996 *frm++ = IEEE80211_ELEMID_DSPARMS; 2997 *frm++ = 1; 2998 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2999 } 3000 if (ic->ic_flags & IEEE80211_F_PCF) { 3001 bo->bo_cfp = frm; 3002 frm = ieee80211_add_cfparms(frm, ic); 3003 } 3004 bo->bo_tim = frm; 3005 if (vap->iv_opmode == IEEE80211_M_IBSS) { 3006 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 3007 *frm++ = 2; 3008 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 3009 bo->bo_tim_len = 0; 3010 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3011 vap->iv_opmode == IEEE80211_M_MBSS) { 3012 /* TIM IE is the same for Mesh and Hostap */ 3013 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 3014 3015 tie->tim_ie = IEEE80211_ELEMID_TIM; 3016 tie->tim_len = 4; /* length */ 3017 tie->tim_count = 0; /* DTIM count */ 3018 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 3019 tie->tim_bitctl = 0; /* bitmap control */ 3020 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 3021 frm += sizeof(struct ieee80211_tim_ie); 3022 bo->bo_tim_len = 1; 3023 } 3024 bo->bo_tim_trailer = frm; 3025 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3026 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3027 frm = ieee80211_add_countryie(frm, ic); 3028 if (vap->iv_flags & IEEE80211_F_DOTH) { 3029 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3030 frm = ieee80211_add_powerconstraint(frm, vap); 3031 bo->bo_csa = frm; 3032 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3033 frm = ieee80211_add_csa(frm, vap); 3034 } else 3035 bo->bo_csa = frm; 3036 3037 if (vap->iv_flags & IEEE80211_F_DOTH) { 3038 bo->bo_quiet = frm; 3039 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3040 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3041 if (vap->iv_quiet) 3042 frm = ieee80211_add_quiet(frm,vap); 3043 } 3044 } else 3045 bo->bo_quiet = frm; 3046 3047 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3048 bo->bo_erp = frm; 3049 frm = ieee80211_add_erp(frm, ic); 3050 } 3051 frm = ieee80211_add_xrates(frm, rs); 3052 frm = ieee80211_add_rsn(frm, vap); 3053 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3054 frm = ieee80211_add_htcap(frm, ni); 3055 bo->bo_htinfo = frm; 3056 frm = ieee80211_add_htinfo(frm, ni); 3057 } 3058 frm = ieee80211_add_wpa(frm, vap); 3059 if (vap->iv_flags & IEEE80211_F_WME) { 3060 bo->bo_wme = frm; 3061 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3062 } 3063 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3064 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3065 frm = ieee80211_add_htcap_vendor(frm, ni); 3066 frm = ieee80211_add_htinfo_vendor(frm, ni); 3067 } 3068 #ifdef IEEE80211_SUPPORT_SUPERG 3069 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3070 bo->bo_ath = frm; 3071 frm = ieee80211_add_athcaps(frm, ni); 3072 } 3073 #endif 3074 #ifdef IEEE80211_SUPPORT_TDMA 3075 if (vap->iv_caps & IEEE80211_C_TDMA) { 3076 bo->bo_tdma = frm; 3077 frm = ieee80211_add_tdma(frm, vap); 3078 } 3079 #endif 3080 if (vap->iv_appie_beacon != NULL) { 3081 bo->bo_appie = frm; 3082 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3083 frm = add_appie(frm, vap->iv_appie_beacon); 3084 } 3085 #ifdef IEEE80211_SUPPORT_MESH 3086 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3087 frm = ieee80211_add_meshid(frm, vap); 3088 bo->bo_meshconf = frm; 3089 frm = ieee80211_add_meshconf(frm, vap); 3090 } 3091 #endif 3092 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3093 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3094 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3095 } 3096 3097 /* 3098 * Allocate a beacon frame and fillin the appropriate bits. 3099 */ 3100 struct mbuf * 3101 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3102 { 3103 struct ieee80211vap *vap = ni->ni_vap; 3104 struct ieee80211com *ic = ni->ni_ic; 3105 struct ifnet *ifp = vap->iv_ifp; 3106 struct ieee80211_frame *wh; 3107 struct mbuf *m; 3108 int pktlen; 3109 uint8_t *frm; 3110 3111 /* 3112 * beacon frame format 3113 * [8] time stamp 3114 * [2] beacon interval 3115 * [2] cabability information 3116 * [tlv] ssid 3117 * [tlv] supported rates 3118 * [3] parameter set (DS) 3119 * [8] CF parameter set (optional) 3120 * [tlv] parameter set (IBSS/TIM) 3121 * [tlv] country (optional) 3122 * [3] power control (optional) 3123 * [5] channel switch announcement (CSA) (optional) 3124 * [tlv] extended rate phy (ERP) 3125 * [tlv] extended supported rates 3126 * [tlv] RSN parameters 3127 * [tlv] HT capabilities 3128 * [tlv] HT information 3129 * [tlv] Vendor OUI HT capabilities (optional) 3130 * [tlv] Vendor OUI HT information (optional) 3131 * XXX Vendor-specific OIDs (e.g. Atheros) 3132 * [tlv] WPA parameters 3133 * [tlv] WME parameters 3134 * [tlv] TDMA parameters (optional) 3135 * [tlv] Mesh ID (MBSS) 3136 * [tlv] Mesh Conf (MBSS) 3137 * [tlv] application data (optional) 3138 * NB: we allocate the max space required for the TIM bitmap. 3139 * XXX how big is this? 3140 */ 3141 pktlen = 8 /* time stamp */ 3142 + sizeof(uint16_t) /* beacon interval */ 3143 + sizeof(uint16_t) /* capabilities */ 3144 + 2 + ni->ni_esslen /* ssid */ 3145 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3146 + 2 + 1 /* DS parameters */ 3147 + 2 + 6 /* CF parameters */ 3148 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3149 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3150 + 2 + 1 /* power control */ 3151 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3152 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3153 + 2 + 1 /* ERP */ 3154 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3155 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3156 2*sizeof(struct ieee80211_ie_wpa) : 0) 3157 /* XXX conditional? */ 3158 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3159 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3160 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3161 sizeof(struct ieee80211_wme_param) : 0) 3162 #ifdef IEEE80211_SUPPORT_SUPERG 3163 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3164 #endif 3165 #ifdef IEEE80211_SUPPORT_TDMA 3166 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3167 sizeof(struct ieee80211_tdma_param) : 0) 3168 #endif 3169 #ifdef IEEE80211_SUPPORT_MESH 3170 + 2 + ni->ni_meshidlen 3171 + sizeof(struct ieee80211_meshconf_ie) 3172 #endif 3173 + IEEE80211_MAX_APPIE 3174 ; 3175 m = ieee80211_getmgtframe(&frm, 3176 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3177 if (m == NULL) { 3178 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3179 "%s: cannot get buf; size %u\n", __func__, pktlen); 3180 vap->iv_stats.is_tx_nobuf++; 3181 return NULL; 3182 } 3183 ieee80211_beacon_construct(m, frm, ni); 3184 3185 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3186 KASSERT(m != NULL, ("no space for 802.11 header?")); 3187 wh = mtod(m, struct ieee80211_frame *); 3188 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3189 IEEE80211_FC0_SUBTYPE_BEACON; 3190 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3191 *(uint16_t *)wh->i_dur = 0; 3192 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3193 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3194 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3195 *(uint16_t *)wh->i_seq = 0; 3196 3197 return m; 3198 } 3199 3200 /* 3201 * Update the dynamic parts of a beacon frame based on the current state. 3202 */ 3203 int 3204 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3205 { 3206 struct ieee80211vap *vap = ni->ni_vap; 3207 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3208 struct ieee80211com *ic = ni->ni_ic; 3209 int len_changed = 0; 3210 uint16_t capinfo; 3211 struct ieee80211_frame *wh; 3212 ieee80211_seq seqno; 3213 3214 IEEE80211_LOCK(ic); 3215 /* 3216 * Handle 11h channel change when we've reached the count. 3217 * We must recalculate the beacon frame contents to account 3218 * for the new channel. Note we do this only for the first 3219 * vap that reaches this point; subsequent vaps just update 3220 * their beacon state to reflect the recalculated channel. 3221 */ 3222 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3223 vap->iv_csa_count == ic->ic_csa_count) { 3224 vap->iv_csa_count = 0; 3225 /* 3226 * Effect channel change before reconstructing the beacon 3227 * frame contents as many places reference ni_chan. 3228 */ 3229 if (ic->ic_csa_newchan != NULL) 3230 ieee80211_csa_completeswitch(ic); 3231 /* 3232 * NB: ieee80211_beacon_construct clears all pending 3233 * updates in bo_flags so we don't need to explicitly 3234 * clear IEEE80211_BEACON_CSA. 3235 */ 3236 ieee80211_beacon_construct(m, 3237 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3238 3239 /* XXX do WME aggressive mode processing? */ 3240 IEEE80211_UNLOCK(ic); 3241 return 1; /* just assume length changed */ 3242 } 3243 3244 wh = mtod(m, struct ieee80211_frame *); 3245 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3246 *(uint16_t *)&wh->i_seq[0] = 3247 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3248 M_SEQNO_SET(m, seqno); 3249 3250 /* XXX faster to recalculate entirely or just changes? */ 3251 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3252 *bo->bo_caps = htole16(capinfo); 3253 3254 if (vap->iv_flags & IEEE80211_F_WME) { 3255 struct ieee80211_wme_state *wme = &ic->ic_wme; 3256 3257 /* 3258 * Check for aggressive mode change. When there is 3259 * significant high priority traffic in the BSS 3260 * throttle back BE traffic by using conservative 3261 * parameters. Otherwise BE uses aggressive params 3262 * to optimize performance of legacy/non-QoS traffic. 3263 */ 3264 if (wme->wme_flags & WME_F_AGGRMODE) { 3265 if (wme->wme_hipri_traffic > 3266 wme->wme_hipri_switch_thresh) { 3267 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3268 "%s: traffic %u, disable aggressive mode\n", 3269 __func__, wme->wme_hipri_traffic); 3270 wme->wme_flags &= ~WME_F_AGGRMODE; 3271 ieee80211_wme_updateparams_locked(vap); 3272 wme->wme_hipri_traffic = 3273 wme->wme_hipri_switch_hysteresis; 3274 } else 3275 wme->wme_hipri_traffic = 0; 3276 } else { 3277 if (wme->wme_hipri_traffic <= 3278 wme->wme_hipri_switch_thresh) { 3279 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3280 "%s: traffic %u, enable aggressive mode\n", 3281 __func__, wme->wme_hipri_traffic); 3282 wme->wme_flags |= WME_F_AGGRMODE; 3283 ieee80211_wme_updateparams_locked(vap); 3284 wme->wme_hipri_traffic = 0; 3285 } else 3286 wme->wme_hipri_traffic = 3287 wme->wme_hipri_switch_hysteresis; 3288 } 3289 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3290 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3291 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3292 } 3293 } 3294 3295 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3296 ieee80211_ht_update_beacon(vap, bo); 3297 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3298 } 3299 #ifdef IEEE80211_SUPPORT_TDMA 3300 if (vap->iv_caps & IEEE80211_C_TDMA) { 3301 /* 3302 * NB: the beacon is potentially updated every TBTT. 3303 */ 3304 ieee80211_tdma_update_beacon(vap, bo); 3305 } 3306 #endif 3307 #ifdef IEEE80211_SUPPORT_MESH 3308 if (vap->iv_opmode == IEEE80211_M_MBSS) 3309 ieee80211_mesh_update_beacon(vap, bo); 3310 #endif 3311 3312 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3313 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3314 struct ieee80211_tim_ie *tie = 3315 (struct ieee80211_tim_ie *) bo->bo_tim; 3316 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3317 u_int timlen, timoff, i; 3318 /* 3319 * ATIM/DTIM needs updating. If it fits in the 3320 * current space allocated then just copy in the 3321 * new bits. Otherwise we need to move any trailing 3322 * data to make room. Note that we know there is 3323 * contiguous space because ieee80211_beacon_allocate 3324 * insures there is space in the mbuf to write a 3325 * maximal-size virtual bitmap (based on iv_max_aid). 3326 */ 3327 /* 3328 * Calculate the bitmap size and offset, copy any 3329 * trailer out of the way, and then copy in the 3330 * new bitmap and update the information element. 3331 * Note that the tim bitmap must contain at least 3332 * one byte and any offset must be even. 3333 */ 3334 if (vap->iv_ps_pending != 0) { 3335 timoff = 128; /* impossibly large */ 3336 for (i = 0; i < vap->iv_tim_len; i++) 3337 if (vap->iv_tim_bitmap[i]) { 3338 timoff = i &~ 1; 3339 break; 3340 } 3341 KASSERT(timoff != 128, ("tim bitmap empty!")); 3342 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3343 if (vap->iv_tim_bitmap[i]) 3344 break; 3345 timlen = 1 + (i - timoff); 3346 } else { 3347 timoff = 0; 3348 timlen = 1; 3349 } 3350 if (timlen != bo->bo_tim_len) { 3351 /* copy up/down trailer */ 3352 int adjust = tie->tim_bitmap+timlen 3353 - bo->bo_tim_trailer; 3354 ovbcopy(bo->bo_tim_trailer, 3355 bo->bo_tim_trailer+adjust, 3356 bo->bo_tim_trailer_len); 3357 bo->bo_tim_trailer += adjust; 3358 bo->bo_erp += adjust; 3359 bo->bo_htinfo += adjust; 3360 #ifdef IEEE80211_SUPPORT_SUPERG 3361 bo->bo_ath += adjust; 3362 #endif 3363 #ifdef IEEE80211_SUPPORT_TDMA 3364 bo->bo_tdma += adjust; 3365 #endif 3366 #ifdef IEEE80211_SUPPORT_MESH 3367 bo->bo_meshconf += adjust; 3368 #endif 3369 bo->bo_appie += adjust; 3370 bo->bo_wme += adjust; 3371 bo->bo_csa += adjust; 3372 bo->bo_quiet += adjust; 3373 bo->bo_tim_len = timlen; 3374 3375 /* update information element */ 3376 tie->tim_len = 3 + timlen; 3377 tie->tim_bitctl = timoff; 3378 len_changed = 1; 3379 } 3380 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3381 bo->bo_tim_len); 3382 3383 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3384 3385 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3386 "%s: TIM updated, pending %u, off %u, len %u\n", 3387 __func__, vap->iv_ps_pending, timoff, timlen); 3388 } 3389 /* count down DTIM period */ 3390 if (tie->tim_count == 0) 3391 tie->tim_count = tie->tim_period - 1; 3392 else 3393 tie->tim_count--; 3394 /* update state for buffered multicast frames on DTIM */ 3395 if (mcast && tie->tim_count == 0) 3396 tie->tim_bitctl |= 1; 3397 else 3398 tie->tim_bitctl &= ~1; 3399 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3400 struct ieee80211_csa_ie *csa = 3401 (struct ieee80211_csa_ie *) bo->bo_csa; 3402 3403 /* 3404 * Insert or update CSA ie. If we're just starting 3405 * to count down to the channel switch then we need 3406 * to insert the CSA ie. Otherwise we just need to 3407 * drop the count. The actual change happens above 3408 * when the vap's count reaches the target count. 3409 */ 3410 if (vap->iv_csa_count == 0) { 3411 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3412 bo->bo_erp += sizeof(*csa); 3413 bo->bo_htinfo += sizeof(*csa); 3414 bo->bo_wme += sizeof(*csa); 3415 #ifdef IEEE80211_SUPPORT_SUPERG 3416 bo->bo_ath += sizeof(*csa); 3417 #endif 3418 #ifdef IEEE80211_SUPPORT_TDMA 3419 bo->bo_tdma += sizeof(*csa); 3420 #endif 3421 #ifdef IEEE80211_SUPPORT_MESH 3422 bo->bo_meshconf += sizeof(*csa); 3423 #endif 3424 bo->bo_appie += sizeof(*csa); 3425 bo->bo_csa_trailer_len += sizeof(*csa); 3426 bo->bo_quiet += sizeof(*csa); 3427 bo->bo_tim_trailer_len += sizeof(*csa); 3428 m->m_len += sizeof(*csa); 3429 m->m_pkthdr.len += sizeof(*csa); 3430 3431 ieee80211_add_csa(bo->bo_csa, vap); 3432 } else 3433 csa->csa_count--; 3434 vap->iv_csa_count++; 3435 /* NB: don't clear IEEE80211_BEACON_CSA */ 3436 } 3437 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3438 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3439 if (vap->iv_quiet) 3440 ieee80211_add_quiet(bo->bo_quiet, vap); 3441 } 3442 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3443 /* 3444 * ERP element needs updating. 3445 */ 3446 (void) ieee80211_add_erp(bo->bo_erp, ic); 3447 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3448 } 3449 #ifdef IEEE80211_SUPPORT_SUPERG 3450 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3451 ieee80211_add_athcaps(bo->bo_ath, ni); 3452 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3453 } 3454 #endif 3455 } 3456 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3457 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3458 int aielen; 3459 uint8_t *frm; 3460 3461 aielen = 0; 3462 if (aie != NULL) 3463 aielen += aie->ie_len; 3464 if (aielen != bo->bo_appie_len) { 3465 /* copy up/down trailer */ 3466 int adjust = aielen - bo->bo_appie_len; 3467 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3468 bo->bo_tim_trailer_len); 3469 bo->bo_tim_trailer += adjust; 3470 bo->bo_appie += adjust; 3471 bo->bo_appie_len = aielen; 3472 3473 len_changed = 1; 3474 } 3475 frm = bo->bo_appie; 3476 if (aie != NULL) 3477 frm = add_appie(frm, aie); 3478 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3479 } 3480 IEEE80211_UNLOCK(ic); 3481 3482 return len_changed; 3483 } 3484 3485 /* 3486 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3487 * tunnel encapsulation. The frame is assumed to have an Ethernet 3488 * header at the front that must be stripped before prepending the 3489 * LLC followed by the Ethernet header passed in (with an Ethernet 3490 * type that specifies the payload size). 3491 */ 3492 struct mbuf * 3493 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3494 const struct ether_header *eh) 3495 { 3496 struct llc *llc; 3497 uint16_t payload; 3498 3499 /* XXX optimize by combining m_adj+M_PREPEND */ 3500 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3501 llc = mtod(m, struct llc *); 3502 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3503 llc->llc_control = LLC_UI; 3504 llc->llc_snap.org_code[0] = 0; 3505 llc->llc_snap.org_code[1] = 0; 3506 llc->llc_snap.org_code[2] = 0; 3507 llc->llc_snap.ether_type = eh->ether_type; 3508 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3509 3510 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3511 if (m == NULL) { /* XXX cannot happen */ 3512 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3513 "%s: no space for ether_header\n", __func__); 3514 vap->iv_stats.is_tx_nobuf++; 3515 return NULL; 3516 } 3517 ETHER_HEADER_COPY(mtod(m, void *), eh); 3518 mtod(m, struct ether_header *)->ether_type = htons(payload); 3519 return m; 3520 } 3521 3522 /* 3523 * Complete an mbuf transmission. 3524 * 3525 * For now, this simply processes a completed frame after the 3526 * driver has completed it's transmission and/or retransmission. 3527 * It assumes the frame is an 802.11 encapsulated frame. 3528 * 3529 * Later on it will grow to become the exit path for a given frame 3530 * from the driver and, depending upon how it's been encapsulated 3531 * and already transmitted, it may end up doing A-MPDU retransmission, 3532 * power save requeuing, etc. 3533 * 3534 * In order for the above to work, the driver entry point to this 3535 * must not hold any driver locks. Thus, the driver needs to delay 3536 * any actual mbuf completion until it can release said locks. 3537 * 3538 * This frees the mbuf and if the mbuf has a node reference, 3539 * the node reference will be freed. 3540 */ 3541 void 3542 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3543 { 3544 3545 if (ni != NULL) { 3546 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3547 3548 if (status == 0) { 3549 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3550 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3551 if (m->m_flags & M_MCAST) 3552 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3553 } else 3554 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3555 if (m->m_flags & M_TXCB) 3556 ieee80211_process_callback(ni, m, status); 3557 ieee80211_free_node(ni); 3558 } 3559 m_freem(m); 3560 } 3561