1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 83 84 #ifdef IEEE80211_DEBUG 85 /* 86 * Decide if an outbound management frame should be 87 * printed when debugging is enabled. This filters some 88 * of the less interesting frames that come frequently 89 * (e.g. beacons). 90 */ 91 static __inline int 92 doprint(struct ieee80211vap *vap, int subtype) 93 { 94 switch (subtype) { 95 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 96 return (vap->iv_opmode == IEEE80211_M_IBSS); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 * Transmit a frame to the given destination on the given VAP. 104 * 105 * It's up to the caller to figure out the details of who this 106 * is going to and resolving the node. 107 * 108 * This routine takes care of queuing it for power save, 109 * A-MPDU state stuff, fast-frames state stuff, encapsulation 110 * if required, then passing it up to the driver layer. 111 * 112 * This routine (for now) consumes the mbuf and frees the node 113 * reference; it ideally will return a TX status which reflects 114 * whether the mbuf was consumed or not, so the caller can 115 * free the mbuf (if appropriate) and the node reference (again, 116 * if appropriate.) 117 */ 118 int 119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 120 struct ieee80211_node *ni) 121 { 122 struct ieee80211com *ic = vap->iv_ic; 123 struct ifnet *ifp = vap->iv_ifp; 124 #ifdef IEEE80211_SUPPORT_SUPERG 125 int mcast; 126 #endif 127 128 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 129 (m->m_flags & M_PWR_SAV) == 0) { 130 /* 131 * Station in power save mode; pass the frame 132 * to the 802.11 layer and continue. We'll get 133 * the frame back when the time is right. 134 * XXX lose WDS vap linkage? 135 */ 136 if (ieee80211_pwrsave(ni, m) != 0) 137 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 138 ieee80211_free_node(ni); 139 140 /* 141 * We queued it fine, so tell the upper layer 142 * that we consumed it. 143 */ 144 return (0); 145 } 146 /* calculate priority so drivers can find the tx queue */ 147 if (ieee80211_classify(ni, m)) { 148 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 149 ni->ni_macaddr, NULL, 150 "%s", "classification failure"); 151 vap->iv_stats.is_tx_classify++; 152 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 153 m_freem(m); 154 ieee80211_free_node(ni); 155 156 /* XXX better status? */ 157 return (0); 158 } 159 /* 160 * Stash the node pointer. Note that we do this after 161 * any call to ieee80211_dwds_mcast because that code 162 * uses any existing value for rcvif to identify the 163 * interface it (might have been) received on. 164 */ 165 m->m_pkthdr.rcvif = (void *)ni; 166 #ifdef IEEE80211_SUPPORT_SUPERG 167 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 168 #endif 169 170 BPF_MTAP(ifp, m); /* 802.3 tx */ 171 172 /* 173 * Check if A-MPDU tx aggregation is setup or if we 174 * should try to enable it. The sta must be associated 175 * with HT and A-MPDU enabled for use. When the policy 176 * routine decides we should enable A-MPDU we issue an 177 * ADDBA request and wait for a reply. The frame being 178 * encapsulated will go out w/o using A-MPDU, or possibly 179 * it might be collected by the driver and held/retransmit. 180 * The default ic_ampdu_enable routine handles staggering 181 * ADDBA requests in case the receiver NAK's us or we are 182 * otherwise unable to establish a BA stream. 183 */ 184 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 185 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 186 if ((m->m_flags & M_EAPOL) == 0) { 187 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 188 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 189 190 ieee80211_txampdu_count_packet(tap); 191 if (IEEE80211_AMPDU_RUNNING(tap)) { 192 /* 193 * Operational, mark frame for aggregation. 194 * 195 * XXX do tx aggregation here 196 */ 197 m->m_flags |= M_AMPDU_MPDU; 198 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 199 ic->ic_ampdu_enable(ni, tap)) { 200 /* 201 * Not negotiated yet, request service. 202 */ 203 ieee80211_ampdu_request(ni, tap); 204 /* XXX hold frame for reply? */ 205 } 206 } 207 } 208 209 #ifdef IEEE80211_SUPPORT_SUPERG 210 /* 211 * Check for AMSDU/FF; queue for aggregation 212 * 213 * Note: we don't bother trying to do fast frames or 214 * A-MSDU encapsulation for 802.3 drivers. Now, we 215 * likely could do it for FF (because it's a magic 216 * atheros tunnel LLC type) but I don't think we're going 217 * to really need to. For A-MSDU we'd have to set the 218 * A-MSDU QoS bit in the wifi header, so we just plain 219 * can't do it. 220 * 221 * Strictly speaking, we could actually /do/ A-MSDU / FF 222 * with A-MPDU together which for certain circumstances 223 * is beneficial (eg A-MSDU of TCK ACKs.) However, 224 * I'll ignore that for now so existing behaviour is maintained. 225 * Later on it would be good to make "amsdu + ampdu" configurable. 226 */ 227 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 228 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 229 m = ieee80211_amsdu_check(ni, m); 230 if (m == NULL) { 231 /* NB: any ni ref held on stageq */ 232 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 233 "%s: amsdu_check queued frame\n", 234 __func__); 235 return (0); 236 } 237 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 238 IEEE80211_NODE_FF)) { 239 m = ieee80211_ff_check(ni, m); 240 if (m == NULL) { 241 /* NB: any ni ref held on stageq */ 242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 243 "%s: ff_check queued frame\n", 244 __func__); 245 return (0); 246 } 247 } 248 } 249 #endif /* IEEE80211_SUPPORT_SUPERG */ 250 251 /* 252 * Grab the TX lock - serialise the TX process from this 253 * point (where TX state is being checked/modified) 254 * through to driver queue. 255 */ 256 IEEE80211_TX_LOCK(ic); 257 258 /* 259 * XXX make the encap and transmit code a separate function 260 * so things like the FF (and later A-MSDU) path can just call 261 * it for flushed frames. 262 */ 263 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 264 /* 265 * Encapsulate the packet in prep for transmission. 266 */ 267 m = ieee80211_encap(vap, ni, m); 268 if (m == NULL) { 269 /* NB: stat+msg handled in ieee80211_encap */ 270 IEEE80211_TX_UNLOCK(ic); 271 ieee80211_free_node(ni); 272 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 273 return (ENOBUFS); 274 } 275 } 276 (void) ieee80211_parent_xmitpkt(ic, m); 277 278 /* 279 * Unlock at this point - no need to hold it across 280 * ieee80211_free_node() (ie, the comlock) 281 */ 282 IEEE80211_TX_UNLOCK(ic); 283 ic->ic_lastdata = ticks; 284 285 return (0); 286 } 287 288 289 290 /* 291 * Send the given mbuf through the given vap. 292 * 293 * This consumes the mbuf regardless of whether the transmit 294 * was successful or not. 295 * 296 * This does none of the initial checks that ieee80211_start() 297 * does (eg CAC timeout, interface wakeup) - the caller must 298 * do this first. 299 */ 300 static int 301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 302 { 303 #define IS_DWDS(vap) \ 304 (vap->iv_opmode == IEEE80211_M_WDS && \ 305 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 306 struct ieee80211com *ic = vap->iv_ic; 307 struct ifnet *ifp = vap->iv_ifp; 308 struct ieee80211_node *ni; 309 struct ether_header *eh; 310 311 /* 312 * Cancel any background scan. 313 */ 314 if (ic->ic_flags & IEEE80211_F_SCAN) 315 ieee80211_cancel_anyscan(vap); 316 /* 317 * Find the node for the destination so we can do 318 * things like power save and fast frames aggregation. 319 * 320 * NB: past this point various code assumes the first 321 * mbuf has the 802.3 header present (and contiguous). 322 */ 323 ni = NULL; 324 if (m->m_len < sizeof(struct ether_header) && 325 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 326 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 327 "discard frame, %s\n", "m_pullup failed"); 328 vap->iv_stats.is_tx_nobuf++; /* XXX */ 329 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 330 return (ENOBUFS); 331 } 332 eh = mtod(m, struct ether_header *); 333 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 334 if (IS_DWDS(vap)) { 335 /* 336 * Only unicast frames from the above go out 337 * DWDS vaps; multicast frames are handled by 338 * dispatching the frame as it comes through 339 * the AP vap (see below). 340 */ 341 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 342 eh->ether_dhost, "mcast", "%s", "on DWDS"); 343 vap->iv_stats.is_dwds_mcast++; 344 m_freem(m); 345 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 346 /* XXX better status? */ 347 return (ENOBUFS); 348 } 349 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 350 /* 351 * Spam DWDS vap's w/ multicast traffic. 352 */ 353 /* XXX only if dwds in use? */ 354 ieee80211_dwds_mcast(vap, m); 355 } 356 } 357 #ifdef IEEE80211_SUPPORT_MESH 358 if (vap->iv_opmode != IEEE80211_M_MBSS) { 359 #endif 360 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 361 if (ni == NULL) { 362 /* NB: ieee80211_find_txnode does stat+msg */ 363 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 364 m_freem(m); 365 /* XXX better status? */ 366 return (ENOBUFS); 367 } 368 if (ni->ni_associd == 0 && 369 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 370 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 371 eh->ether_dhost, NULL, 372 "sta not associated (type 0x%04x)", 373 htons(eh->ether_type)); 374 vap->iv_stats.is_tx_notassoc++; 375 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 376 m_freem(m); 377 ieee80211_free_node(ni); 378 /* XXX better status? */ 379 return (ENOBUFS); 380 } 381 #ifdef IEEE80211_SUPPORT_MESH 382 } else { 383 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 384 /* 385 * Proxy station only if configured. 386 */ 387 if (!ieee80211_mesh_isproxyena(vap)) { 388 IEEE80211_DISCARD_MAC(vap, 389 IEEE80211_MSG_OUTPUT | 390 IEEE80211_MSG_MESH, 391 eh->ether_dhost, NULL, 392 "%s", "proxy not enabled"); 393 vap->iv_stats.is_mesh_notproxy++; 394 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 395 m_freem(m); 396 /* XXX better status? */ 397 return (ENOBUFS); 398 } 399 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 400 "forward frame from DS SA(%6D), DA(%6D)\n", 401 eh->ether_shost, ":", 402 eh->ether_dhost, ":"); 403 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 404 } 405 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 406 if (ni == NULL) { 407 /* 408 * NB: ieee80211_mesh_discover holds/disposes 409 * frame (e.g. queueing on path discovery). 410 */ 411 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 412 /* XXX better status? */ 413 return (ENOBUFS); 414 } 415 } 416 #endif 417 418 /* 419 * We've resolved the sender, so attempt to transmit it. 420 */ 421 422 if (vap->iv_state == IEEE80211_S_SLEEP) { 423 /* 424 * In power save; queue frame and then wakeup device 425 * for transmit. 426 */ 427 ic->ic_lastdata = ticks; 428 if (ieee80211_pwrsave(ni, m) != 0) 429 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 430 ieee80211_free_node(ni); 431 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 432 return (0); 433 } 434 435 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 436 return (ENOBUFS); 437 return (0); 438 #undef IS_DWDS 439 } 440 441 /* 442 * Start method for vap's. All packets from the stack come 443 * through here. We handle common processing of the packets 444 * before dispatching them to the underlying device. 445 * 446 * if_transmit() requires that the mbuf be consumed by this call 447 * regardless of the return condition. 448 */ 449 int 450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 451 { 452 struct ieee80211vap *vap = ifp->if_softc; 453 struct ieee80211com *ic = vap->iv_ic; 454 455 /* 456 * No data frames go out unless we're running. 457 * Note in particular this covers CAC and CSA 458 * states (though maybe we should check muting 459 * for CSA). 460 */ 461 if (vap->iv_state != IEEE80211_S_RUN && 462 vap->iv_state != IEEE80211_S_SLEEP) { 463 IEEE80211_LOCK(ic); 464 /* re-check under the com lock to avoid races */ 465 if (vap->iv_state != IEEE80211_S_RUN && 466 vap->iv_state != IEEE80211_S_SLEEP) { 467 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 468 "%s: ignore queue, in %s state\n", 469 __func__, ieee80211_state_name[vap->iv_state]); 470 vap->iv_stats.is_tx_badstate++; 471 IEEE80211_UNLOCK(ic); 472 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 473 m_freem(m); 474 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 475 return (ENETDOWN); 476 } 477 IEEE80211_UNLOCK(ic); 478 } 479 480 /* 481 * Sanitize mbuf flags for net80211 use. We cannot 482 * clear M_PWR_SAV or M_MORE_DATA because these may 483 * be set for frames that are re-submitted from the 484 * power save queue. 485 * 486 * NB: This must be done before ieee80211_classify as 487 * it marks EAPOL in frames with M_EAPOL. 488 */ 489 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 490 491 /* 492 * Bump to the packet transmission path. 493 * The mbuf will be consumed here. 494 */ 495 return (ieee80211_start_pkt(vap, m)); 496 } 497 498 void 499 ieee80211_vap_qflush(struct ifnet *ifp) 500 { 501 502 /* Empty for now */ 503 } 504 505 /* 506 * 802.11 raw output routine. 507 * 508 * XXX TODO: this (and other send routines) should correctly 509 * XXX keep the pwr mgmt bit set if it decides to call into the 510 * XXX driver to send a frame whilst the state is SLEEP. 511 * 512 * Otherwise the peer may decide that we're awake and flood us 513 * with traffic we are still too asleep to receive! 514 */ 515 int 516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 517 struct mbuf *m, const struct ieee80211_bpf_params *params) 518 { 519 struct ieee80211com *ic = vap->iv_ic; 520 int error; 521 522 /* 523 * Set node - the caller has taken a reference, so ensure 524 * that the mbuf has the same node value that 525 * it would if it were going via the normal path. 526 */ 527 m->m_pkthdr.rcvif = (void *)ni; 528 529 /* 530 * Attempt to add bpf transmit parameters. 531 * 532 * For now it's ok to fail; the raw_xmit api still takes 533 * them as an option. 534 * 535 * Later on when ic_raw_xmit() has params removed, 536 * they'll have to be added - so fail the transmit if 537 * they can't be. 538 */ 539 if (params) 540 (void) ieee80211_add_xmit_params(m, params); 541 542 error = ic->ic_raw_xmit(ni, m, params); 543 if (error) { 544 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 545 ieee80211_free_node(ni); 546 } 547 return (error); 548 } 549 550 /* 551 * 802.11 output routine. This is (currently) used only to 552 * connect bpf write calls to the 802.11 layer for injecting 553 * raw 802.11 frames. 554 */ 555 int 556 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 557 const struct sockaddr *dst, struct route *ro) 558 { 559 #define senderr(e) do { error = (e); goto bad;} while (0) 560 struct ieee80211_node *ni = NULL; 561 struct ieee80211vap *vap; 562 struct ieee80211_frame *wh; 563 struct ieee80211com *ic = NULL; 564 int error; 565 int ret; 566 567 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 568 /* 569 * Short-circuit requests if the vap is marked OACTIVE 570 * as this can happen because a packet came down through 571 * ieee80211_start before the vap entered RUN state in 572 * which case it's ok to just drop the frame. This 573 * should not be necessary but callers of if_output don't 574 * check OACTIVE. 575 */ 576 senderr(ENETDOWN); 577 } 578 vap = ifp->if_softc; 579 ic = vap->iv_ic; 580 /* 581 * Hand to the 802.3 code if not tagged as 582 * a raw 802.11 frame. 583 */ 584 if (dst->sa_family != AF_IEEE80211) 585 return vap->iv_output(ifp, m, dst, ro); 586 #ifdef MAC 587 error = mac_ifnet_check_transmit(ifp, m); 588 if (error) 589 senderr(error); 590 #endif 591 if (ifp->if_flags & IFF_MONITOR) 592 senderr(ENETDOWN); 593 if (!IFNET_IS_UP_RUNNING(ifp)) 594 senderr(ENETDOWN); 595 if (vap->iv_state == IEEE80211_S_CAC) { 596 IEEE80211_DPRINTF(vap, 597 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 598 "block %s frame in CAC state\n", "raw data"); 599 vap->iv_stats.is_tx_badstate++; 600 senderr(EIO); /* XXX */ 601 } else if (vap->iv_state == IEEE80211_S_SCAN) 602 senderr(EIO); 603 /* XXX bypass bridge, pfil, carp, etc. */ 604 605 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 606 senderr(EIO); /* XXX */ 607 wh = mtod(m, struct ieee80211_frame *); 608 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 609 IEEE80211_FC0_VERSION_0) 610 senderr(EIO); /* XXX */ 611 612 /* locate destination node */ 613 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 614 case IEEE80211_FC1_DIR_NODS: 615 case IEEE80211_FC1_DIR_FROMDS: 616 ni = ieee80211_find_txnode(vap, wh->i_addr1); 617 break; 618 case IEEE80211_FC1_DIR_TODS: 619 case IEEE80211_FC1_DIR_DSTODS: 620 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 621 senderr(EIO); /* XXX */ 622 ni = ieee80211_find_txnode(vap, wh->i_addr3); 623 break; 624 default: 625 senderr(EIO); /* XXX */ 626 } 627 if (ni == NULL) { 628 /* 629 * Permit packets w/ bpf params through regardless 630 * (see below about sa_len). 631 */ 632 if (dst->sa_len == 0) 633 senderr(EHOSTUNREACH); 634 ni = ieee80211_ref_node(vap->iv_bss); 635 } 636 637 /* 638 * Sanitize mbuf for net80211 flags leaked from above. 639 * 640 * NB: This must be done before ieee80211_classify as 641 * it marks EAPOL in frames with M_EAPOL. 642 */ 643 m->m_flags &= ~M_80211_TX; 644 645 /* calculate priority so drivers can find the tx queue */ 646 /* XXX assumes an 802.3 frame */ 647 if (ieee80211_classify(ni, m)) 648 senderr(EIO); /* XXX */ 649 650 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 651 IEEE80211_NODE_STAT(ni, tx_data); 652 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 653 IEEE80211_NODE_STAT(ni, tx_mcast); 654 m->m_flags |= M_MCAST; 655 } else 656 IEEE80211_NODE_STAT(ni, tx_ucast); 657 /* NB: ieee80211_encap does not include 802.11 header */ 658 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 659 660 IEEE80211_TX_LOCK(ic); 661 662 /* 663 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 664 * present by setting the sa_len field of the sockaddr (yes, 665 * this is a hack). 666 * NB: we assume sa_data is suitably aligned to cast. 667 */ 668 ret = ieee80211_raw_output(vap, ni, m, 669 (const struct ieee80211_bpf_params *)(dst->sa_len ? 670 dst->sa_data : NULL)); 671 IEEE80211_TX_UNLOCK(ic); 672 return (ret); 673 bad: 674 if (m != NULL) 675 m_freem(m); 676 if (ni != NULL) 677 ieee80211_free_node(ni); 678 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 679 return error; 680 #undef senderr 681 } 682 683 /* 684 * Set the direction field and address fields of an outgoing 685 * frame. Note this should be called early on in constructing 686 * a frame as it sets i_fc[1]; other bits can then be or'd in. 687 */ 688 void 689 ieee80211_send_setup( 690 struct ieee80211_node *ni, 691 struct mbuf *m, 692 int type, int tid, 693 const uint8_t sa[IEEE80211_ADDR_LEN], 694 const uint8_t da[IEEE80211_ADDR_LEN], 695 const uint8_t bssid[IEEE80211_ADDR_LEN]) 696 { 697 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 698 struct ieee80211vap *vap = ni->ni_vap; 699 struct ieee80211_tx_ampdu *tap; 700 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 701 ieee80211_seq seqno; 702 703 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 704 705 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 706 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 707 switch (vap->iv_opmode) { 708 case IEEE80211_M_STA: 709 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 710 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 711 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 712 IEEE80211_ADDR_COPY(wh->i_addr3, da); 713 break; 714 case IEEE80211_M_IBSS: 715 case IEEE80211_M_AHDEMO: 716 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 717 IEEE80211_ADDR_COPY(wh->i_addr1, da); 718 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 719 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 720 break; 721 case IEEE80211_M_HOSTAP: 722 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 723 IEEE80211_ADDR_COPY(wh->i_addr1, da); 724 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 725 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 726 break; 727 case IEEE80211_M_WDS: 728 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 729 IEEE80211_ADDR_COPY(wh->i_addr1, da); 730 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 731 IEEE80211_ADDR_COPY(wh->i_addr3, da); 732 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 733 break; 734 case IEEE80211_M_MBSS: 735 #ifdef IEEE80211_SUPPORT_MESH 736 if (IEEE80211_IS_MULTICAST(da)) { 737 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 738 /* XXX next hop */ 739 IEEE80211_ADDR_COPY(wh->i_addr1, da); 740 IEEE80211_ADDR_COPY(wh->i_addr2, 741 vap->iv_myaddr); 742 } else { 743 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 744 IEEE80211_ADDR_COPY(wh->i_addr1, da); 745 IEEE80211_ADDR_COPY(wh->i_addr2, 746 vap->iv_myaddr); 747 IEEE80211_ADDR_COPY(wh->i_addr3, da); 748 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 749 } 750 #endif 751 break; 752 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 753 break; 754 } 755 } else { 756 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 757 IEEE80211_ADDR_COPY(wh->i_addr1, da); 758 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 759 #ifdef IEEE80211_SUPPORT_MESH 760 if (vap->iv_opmode == IEEE80211_M_MBSS) 761 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 762 else 763 #endif 764 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 765 } 766 *(uint16_t *)&wh->i_dur[0] = 0; 767 768 tap = &ni->ni_tx_ampdu[tid]; 769 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 770 m->m_flags |= M_AMPDU_MPDU; 771 else { 772 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 773 type & IEEE80211_FC0_SUBTYPE_MASK)) 774 seqno = ni->ni_txseqs[tid]++; 775 else 776 seqno = 0; 777 778 *(uint16_t *)&wh->i_seq[0] = 779 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 780 M_SEQNO_SET(m, seqno); 781 } 782 783 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 784 m->m_flags |= M_MCAST; 785 #undef WH4 786 } 787 788 /* 789 * Send a management frame to the specified node. The node pointer 790 * must have a reference as the pointer will be passed to the driver 791 * and potentially held for a long time. If the frame is successfully 792 * dispatched to the driver, then it is responsible for freeing the 793 * reference (and potentially free'ing up any associated storage); 794 * otherwise deal with reclaiming any reference (on error). 795 */ 796 int 797 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 798 struct ieee80211_bpf_params *params) 799 { 800 struct ieee80211vap *vap = ni->ni_vap; 801 struct ieee80211com *ic = ni->ni_ic; 802 struct ieee80211_frame *wh; 803 int ret; 804 805 KASSERT(ni != NULL, ("null node")); 806 807 if (vap->iv_state == IEEE80211_S_CAC) { 808 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 809 ni, "block %s frame in CAC state", 810 ieee80211_mgt_subtype_name(type)); 811 vap->iv_stats.is_tx_badstate++; 812 ieee80211_free_node(ni); 813 m_freem(m); 814 return EIO; /* XXX */ 815 } 816 817 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 818 if (m == NULL) { 819 ieee80211_free_node(ni); 820 return ENOMEM; 821 } 822 823 IEEE80211_TX_LOCK(ic); 824 825 wh = mtod(m, struct ieee80211_frame *); 826 ieee80211_send_setup(ni, m, 827 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 828 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 829 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 830 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 831 "encrypting frame (%s)", __func__); 832 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 833 } 834 m->m_flags |= M_ENCAP; /* mark encapsulated */ 835 836 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 837 M_WME_SETAC(m, params->ibp_pri); 838 839 #ifdef IEEE80211_DEBUG 840 /* avoid printing too many frames */ 841 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 842 ieee80211_msg_dumppkts(vap)) { 843 printf("[%s] send %s on channel %u\n", 844 ether_sprintf(wh->i_addr1), 845 ieee80211_mgt_subtype_name(type), 846 ieee80211_chan2ieee(ic, ic->ic_curchan)); 847 } 848 #endif 849 IEEE80211_NODE_STAT(ni, tx_mgmt); 850 851 ret = ieee80211_raw_output(vap, ni, m, params); 852 IEEE80211_TX_UNLOCK(ic); 853 return (ret); 854 } 855 856 static void 857 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 858 int status) 859 { 860 struct ieee80211vap *vap = ni->ni_vap; 861 862 wakeup(vap); 863 } 864 865 /* 866 * Send a null data frame to the specified node. If the station 867 * is setup for QoS then a QoS Null Data frame is constructed. 868 * If this is a WDS station then a 4-address frame is constructed. 869 * 870 * NB: the caller is assumed to have setup a node reference 871 * for use; this is necessary to deal with a race condition 872 * when probing for inactive stations. Like ieee80211_mgmt_output 873 * we must cleanup any node reference on error; however we 874 * can safely just unref it as we know it will never be the 875 * last reference to the node. 876 */ 877 int 878 ieee80211_send_nulldata(struct ieee80211_node *ni) 879 { 880 struct ieee80211vap *vap = ni->ni_vap; 881 struct ieee80211com *ic = ni->ni_ic; 882 struct mbuf *m; 883 struct ieee80211_frame *wh; 884 int hdrlen; 885 uint8_t *frm; 886 int ret; 887 888 if (vap->iv_state == IEEE80211_S_CAC) { 889 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 890 ni, "block %s frame in CAC state", "null data"); 891 ieee80211_unref_node(&ni); 892 vap->iv_stats.is_tx_badstate++; 893 return EIO; /* XXX */ 894 } 895 896 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 897 hdrlen = sizeof(struct ieee80211_qosframe); 898 else 899 hdrlen = sizeof(struct ieee80211_frame); 900 /* NB: only WDS vap's get 4-address frames */ 901 if (vap->iv_opmode == IEEE80211_M_WDS) 902 hdrlen += IEEE80211_ADDR_LEN; 903 if (ic->ic_flags & IEEE80211_F_DATAPAD) 904 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 905 906 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 907 if (m == NULL) { 908 /* XXX debug msg */ 909 ieee80211_unref_node(&ni); 910 vap->iv_stats.is_tx_nobuf++; 911 return ENOMEM; 912 } 913 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 914 ("leading space %zd", M_LEADINGSPACE(m))); 915 M_PREPEND(m, hdrlen, M_NOWAIT); 916 if (m == NULL) { 917 /* NB: cannot happen */ 918 ieee80211_free_node(ni); 919 return ENOMEM; 920 } 921 922 IEEE80211_TX_LOCK(ic); 923 924 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 925 if (ni->ni_flags & IEEE80211_NODE_QOS) { 926 const int tid = WME_AC_TO_TID(WME_AC_BE); 927 uint8_t *qos; 928 929 ieee80211_send_setup(ni, m, 930 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 931 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 932 933 if (vap->iv_opmode == IEEE80211_M_WDS) 934 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 935 else 936 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 937 qos[0] = tid & IEEE80211_QOS_TID; 938 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 939 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 940 qos[1] = 0; 941 } else { 942 ieee80211_send_setup(ni, m, 943 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 944 IEEE80211_NONQOS_TID, 945 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 946 } 947 if (vap->iv_opmode != IEEE80211_M_WDS) { 948 /* NB: power management bit is never sent by an AP */ 949 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 950 vap->iv_opmode != IEEE80211_M_HOSTAP) 951 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 952 } 953 if ((ic->ic_flags & IEEE80211_F_SCAN) && 954 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 955 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 956 NULL); 957 } 958 m->m_len = m->m_pkthdr.len = hdrlen; 959 m->m_flags |= M_ENCAP; /* mark encapsulated */ 960 961 M_WME_SETAC(m, WME_AC_BE); 962 963 IEEE80211_NODE_STAT(ni, tx_data); 964 965 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 966 "send %snull data frame on channel %u, pwr mgt %s", 967 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 968 ieee80211_chan2ieee(ic, ic->ic_curchan), 969 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 970 971 ret = ieee80211_raw_output(vap, ni, m, NULL); 972 IEEE80211_TX_UNLOCK(ic); 973 return (ret); 974 } 975 976 /* 977 * Assign priority to a frame based on any vlan tag assigned 978 * to the station and/or any Diffserv setting in an IP header. 979 * Finally, if an ACM policy is setup (in station mode) it's 980 * applied. 981 */ 982 int 983 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 984 { 985 const struct ether_header *eh = mtod(m, struct ether_header *); 986 int v_wme_ac, d_wme_ac, ac; 987 988 /* 989 * Always promote PAE/EAPOL frames to high priority. 990 */ 991 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 992 /* NB: mark so others don't need to check header */ 993 m->m_flags |= M_EAPOL; 994 ac = WME_AC_VO; 995 goto done; 996 } 997 /* 998 * Non-qos traffic goes to BE. 999 */ 1000 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 1001 ac = WME_AC_BE; 1002 goto done; 1003 } 1004 1005 /* 1006 * If node has a vlan tag then all traffic 1007 * to it must have a matching tag. 1008 */ 1009 v_wme_ac = 0; 1010 if (ni->ni_vlan != 0) { 1011 if ((m->m_flags & M_VLANTAG) == 0) { 1012 IEEE80211_NODE_STAT(ni, tx_novlantag); 1013 return 1; 1014 } 1015 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1016 EVL_VLANOFTAG(ni->ni_vlan)) { 1017 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1018 return 1; 1019 } 1020 /* map vlan priority to AC */ 1021 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1022 } 1023 1024 /* XXX m_copydata may be too slow for fast path */ 1025 #ifdef INET 1026 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1027 uint8_t tos; 1028 /* 1029 * IP frame, map the DSCP bits from the TOS field. 1030 */ 1031 /* NB: ip header may not be in first mbuf */ 1032 m_copydata(m, sizeof(struct ether_header) + 1033 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1034 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1035 d_wme_ac = TID_TO_WME_AC(tos); 1036 } else { 1037 #endif /* INET */ 1038 #ifdef INET6 1039 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1040 uint32_t flow; 1041 uint8_t tos; 1042 /* 1043 * IPv6 frame, map the DSCP bits from the traffic class field. 1044 */ 1045 m_copydata(m, sizeof(struct ether_header) + 1046 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1047 (caddr_t) &flow); 1048 tos = (uint8_t)(ntohl(flow) >> 20); 1049 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1050 d_wme_ac = TID_TO_WME_AC(tos); 1051 } else { 1052 #endif /* INET6 */ 1053 d_wme_ac = WME_AC_BE; 1054 #ifdef INET6 1055 } 1056 #endif 1057 #ifdef INET 1058 } 1059 #endif 1060 /* 1061 * Use highest priority AC. 1062 */ 1063 if (v_wme_ac > d_wme_ac) 1064 ac = v_wme_ac; 1065 else 1066 ac = d_wme_ac; 1067 1068 /* 1069 * Apply ACM policy. 1070 */ 1071 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1072 static const int acmap[4] = { 1073 WME_AC_BK, /* WME_AC_BE */ 1074 WME_AC_BK, /* WME_AC_BK */ 1075 WME_AC_BE, /* WME_AC_VI */ 1076 WME_AC_VI, /* WME_AC_VO */ 1077 }; 1078 struct ieee80211com *ic = ni->ni_ic; 1079 1080 while (ac != WME_AC_BK && 1081 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1082 ac = acmap[ac]; 1083 } 1084 done: 1085 M_WME_SETAC(m, ac); 1086 return 0; 1087 } 1088 1089 /* 1090 * Insure there is sufficient contiguous space to encapsulate the 1091 * 802.11 data frame. If room isn't already there, arrange for it. 1092 * Drivers and cipher modules assume we have done the necessary work 1093 * and fail rudely if they don't find the space they need. 1094 */ 1095 struct mbuf * 1096 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1097 struct ieee80211_key *key, struct mbuf *m) 1098 { 1099 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1100 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1101 1102 if (key != NULL) { 1103 /* XXX belongs in crypto code? */ 1104 needed_space += key->wk_cipher->ic_header; 1105 /* XXX frags */ 1106 /* 1107 * When crypto is being done in the host we must insure 1108 * the data are writable for the cipher routines; clone 1109 * a writable mbuf chain. 1110 * XXX handle SWMIC specially 1111 */ 1112 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1113 m = m_unshare(m, M_NOWAIT); 1114 if (m == NULL) { 1115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1116 "%s: cannot get writable mbuf\n", __func__); 1117 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1118 return NULL; 1119 } 1120 } 1121 } 1122 /* 1123 * We know we are called just before stripping an Ethernet 1124 * header and prepending an LLC header. This means we know 1125 * there will be 1126 * sizeof(struct ether_header) - sizeof(struct llc) 1127 * bytes recovered to which we need additional space for the 1128 * 802.11 header and any crypto header. 1129 */ 1130 /* XXX check trailing space and copy instead? */ 1131 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1132 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1133 if (n == NULL) { 1134 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1135 "%s: cannot expand storage\n", __func__); 1136 vap->iv_stats.is_tx_nobuf++; 1137 m_freem(m); 1138 return NULL; 1139 } 1140 KASSERT(needed_space <= MHLEN, 1141 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1142 /* 1143 * Setup new mbuf to have leading space to prepend the 1144 * 802.11 header and any crypto header bits that are 1145 * required (the latter are added when the driver calls 1146 * back to ieee80211_crypto_encap to do crypto encapsulation). 1147 */ 1148 /* NB: must be first 'cuz it clobbers m_data */ 1149 m_move_pkthdr(n, m); 1150 n->m_len = 0; /* NB: m_gethdr does not set */ 1151 n->m_data += needed_space; 1152 /* 1153 * Pull up Ethernet header to create the expected layout. 1154 * We could use m_pullup but that's overkill (i.e. we don't 1155 * need the actual data) and it cannot fail so do it inline 1156 * for speed. 1157 */ 1158 /* NB: struct ether_header is known to be contiguous */ 1159 n->m_len += sizeof(struct ether_header); 1160 m->m_len -= sizeof(struct ether_header); 1161 m->m_data += sizeof(struct ether_header); 1162 /* 1163 * Replace the head of the chain. 1164 */ 1165 n->m_next = m; 1166 m = n; 1167 } 1168 return m; 1169 #undef TO_BE_RECLAIMED 1170 } 1171 1172 /* 1173 * Return the transmit key to use in sending a unicast frame. 1174 * If a unicast key is set we use that. When no unicast key is set 1175 * we fall back to the default transmit key. 1176 */ 1177 static __inline struct ieee80211_key * 1178 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1179 struct ieee80211_node *ni) 1180 { 1181 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1182 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1183 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1184 return NULL; 1185 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1186 } else { 1187 return &ni->ni_ucastkey; 1188 } 1189 } 1190 1191 /* 1192 * Return the transmit key to use in sending a multicast frame. 1193 * Multicast traffic always uses the group key which is installed as 1194 * the default tx key. 1195 */ 1196 static __inline struct ieee80211_key * 1197 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1198 struct ieee80211_node *ni) 1199 { 1200 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1201 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1202 return NULL; 1203 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1204 } 1205 1206 /* 1207 * Encapsulate an outbound data frame. The mbuf chain is updated. 1208 * If an error is encountered NULL is returned. The caller is required 1209 * to provide a node reference and pullup the ethernet header in the 1210 * first mbuf. 1211 * 1212 * NB: Packet is assumed to be processed by ieee80211_classify which 1213 * marked EAPOL frames w/ M_EAPOL. 1214 */ 1215 struct mbuf * 1216 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1217 struct mbuf *m) 1218 { 1219 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1220 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1221 struct ieee80211com *ic = ni->ni_ic; 1222 #ifdef IEEE80211_SUPPORT_MESH 1223 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1224 struct ieee80211_meshcntl_ae10 *mc; 1225 struct ieee80211_mesh_route *rt = NULL; 1226 int dir = -1; 1227 #endif 1228 struct ether_header eh; 1229 struct ieee80211_frame *wh; 1230 struct ieee80211_key *key; 1231 struct llc *llc; 1232 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1233 ieee80211_seq seqno; 1234 int meshhdrsize, meshae; 1235 uint8_t *qos; 1236 int is_amsdu = 0; 1237 1238 IEEE80211_TX_LOCK_ASSERT(ic); 1239 1240 /* 1241 * Copy existing Ethernet header to a safe place. The 1242 * rest of the code assumes it's ok to strip it when 1243 * reorganizing state for the final encapsulation. 1244 */ 1245 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1246 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1247 1248 /* 1249 * Insure space for additional headers. First identify 1250 * transmit key to use in calculating any buffer adjustments 1251 * required. This is also used below to do privacy 1252 * encapsulation work. Then calculate the 802.11 header 1253 * size and any padding required by the driver. 1254 * 1255 * Note key may be NULL if we fall back to the default 1256 * transmit key and that is not set. In that case the 1257 * buffer may not be expanded as needed by the cipher 1258 * routines, but they will/should discard it. 1259 */ 1260 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1261 if (vap->iv_opmode == IEEE80211_M_STA || 1262 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1263 (vap->iv_opmode == IEEE80211_M_WDS && 1264 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1265 key = ieee80211_crypto_getucastkey(vap, ni); 1266 else 1267 key = ieee80211_crypto_getmcastkey(vap, ni); 1268 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1269 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1270 eh.ether_dhost, 1271 "no default transmit key (%s) deftxkey %u", 1272 __func__, vap->iv_def_txkey); 1273 vap->iv_stats.is_tx_nodefkey++; 1274 goto bad; 1275 } 1276 } else 1277 key = NULL; 1278 /* 1279 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1280 * frames so suppress use. This may be an issue if other 1281 * ap's require all data frames to be QoS-encapsulated 1282 * once negotiated in which case we'll need to make this 1283 * configurable. 1284 * NB: mesh data frames are QoS. 1285 */ 1286 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1287 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1288 (m->m_flags & M_EAPOL) == 0; 1289 if (addqos) 1290 hdrsize = sizeof(struct ieee80211_qosframe); 1291 else 1292 hdrsize = sizeof(struct ieee80211_frame); 1293 #ifdef IEEE80211_SUPPORT_MESH 1294 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1295 /* 1296 * Mesh data frames are encapsulated according to the 1297 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1298 * o Group Addressed data (aka multicast) originating 1299 * at the local sta are sent w/ 3-address format and 1300 * address extension mode 00 1301 * o Individually Addressed data (aka unicast) originating 1302 * at the local sta are sent w/ 4-address format and 1303 * address extension mode 00 1304 * o Group Addressed data forwarded from a non-mesh sta are 1305 * sent w/ 3-address format and address extension mode 01 1306 * o Individually Address data from another sta are sent 1307 * w/ 4-address format and address extension mode 10 1308 */ 1309 is4addr = 0; /* NB: don't use, disable */ 1310 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1311 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1312 KASSERT(rt != NULL, ("route is NULL")); 1313 dir = IEEE80211_FC1_DIR_DSTODS; 1314 hdrsize += IEEE80211_ADDR_LEN; 1315 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1316 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1317 vap->iv_myaddr)) { 1318 IEEE80211_NOTE_MAC(vap, 1319 IEEE80211_MSG_MESH, 1320 eh.ether_dhost, 1321 "%s", "trying to send to ourself"); 1322 goto bad; 1323 } 1324 meshae = IEEE80211_MESH_AE_10; 1325 meshhdrsize = 1326 sizeof(struct ieee80211_meshcntl_ae10); 1327 } else { 1328 meshae = IEEE80211_MESH_AE_00; 1329 meshhdrsize = 1330 sizeof(struct ieee80211_meshcntl); 1331 } 1332 } else { 1333 dir = IEEE80211_FC1_DIR_FROMDS; 1334 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1335 /* proxy group */ 1336 meshae = IEEE80211_MESH_AE_01; 1337 meshhdrsize = 1338 sizeof(struct ieee80211_meshcntl_ae01); 1339 } else { 1340 /* group */ 1341 meshae = IEEE80211_MESH_AE_00; 1342 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1343 } 1344 } 1345 } else { 1346 #endif 1347 /* 1348 * 4-address frames need to be generated for: 1349 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1350 * o packets sent through a vap marked for relaying 1351 * (e.g. a station operating with dynamic WDS) 1352 */ 1353 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1354 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1355 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1356 if (is4addr) 1357 hdrsize += IEEE80211_ADDR_LEN; 1358 meshhdrsize = meshae = 0; 1359 #ifdef IEEE80211_SUPPORT_MESH 1360 } 1361 #endif 1362 /* 1363 * Honor driver DATAPAD requirement. 1364 */ 1365 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1366 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1367 else 1368 hdrspace = hdrsize; 1369 1370 if (__predict_true((m->m_flags & M_FF) == 0)) { 1371 /* 1372 * Normal frame. 1373 */ 1374 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1375 if (m == NULL) { 1376 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1377 goto bad; 1378 } 1379 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1380 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1381 llc = mtod(m, struct llc *); 1382 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1383 llc->llc_control = LLC_UI; 1384 llc->llc_snap.org_code[0] = 0; 1385 llc->llc_snap.org_code[1] = 0; 1386 llc->llc_snap.org_code[2] = 0; 1387 llc->llc_snap.ether_type = eh.ether_type; 1388 } else { 1389 #ifdef IEEE80211_SUPPORT_SUPERG 1390 /* 1391 * Aggregated frame. Check if it's for AMSDU or FF. 1392 * 1393 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1394 * anywhere for some reason. But, since 11n requires 1395 * AMSDU RX, we can just assume "11n" == "AMSDU". 1396 */ 1397 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1398 if (ieee80211_amsdu_tx_ok(ni)) { 1399 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1400 is_amsdu = 1; 1401 } else { 1402 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1403 } 1404 if (m == NULL) 1405 #endif 1406 goto bad; 1407 } 1408 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1409 1410 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1411 if (m == NULL) { 1412 vap->iv_stats.is_tx_nobuf++; 1413 goto bad; 1414 } 1415 wh = mtod(m, struct ieee80211_frame *); 1416 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1417 *(uint16_t *)wh->i_dur = 0; 1418 qos = NULL; /* NB: quiet compiler */ 1419 if (is4addr) { 1420 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1421 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1422 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1423 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1424 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1425 } else switch (vap->iv_opmode) { 1426 case IEEE80211_M_STA: 1427 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1428 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1429 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1430 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1431 break; 1432 case IEEE80211_M_IBSS: 1433 case IEEE80211_M_AHDEMO: 1434 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1435 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1436 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1437 /* 1438 * NB: always use the bssid from iv_bss as the 1439 * neighbor's may be stale after an ibss merge 1440 */ 1441 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1442 break; 1443 case IEEE80211_M_HOSTAP: 1444 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1445 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1446 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1447 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1448 break; 1449 #ifdef IEEE80211_SUPPORT_MESH 1450 case IEEE80211_M_MBSS: 1451 /* NB: offset by hdrspace to deal with DATAPAD */ 1452 mc = (struct ieee80211_meshcntl_ae10 *) 1453 (mtod(m, uint8_t *) + hdrspace); 1454 wh->i_fc[1] = dir; 1455 switch (meshae) { 1456 case IEEE80211_MESH_AE_00: /* no proxy */ 1457 mc->mc_flags = 0; 1458 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1459 IEEE80211_ADDR_COPY(wh->i_addr1, 1460 ni->ni_macaddr); 1461 IEEE80211_ADDR_COPY(wh->i_addr2, 1462 vap->iv_myaddr); 1463 IEEE80211_ADDR_COPY(wh->i_addr3, 1464 eh.ether_dhost); 1465 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1466 eh.ether_shost); 1467 qos =((struct ieee80211_qosframe_addr4 *) 1468 wh)->i_qos; 1469 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1470 /* mcast */ 1471 IEEE80211_ADDR_COPY(wh->i_addr1, 1472 eh.ether_dhost); 1473 IEEE80211_ADDR_COPY(wh->i_addr2, 1474 vap->iv_myaddr); 1475 IEEE80211_ADDR_COPY(wh->i_addr3, 1476 eh.ether_shost); 1477 qos = ((struct ieee80211_qosframe *) 1478 wh)->i_qos; 1479 } 1480 break; 1481 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1482 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1483 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1484 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1485 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1486 mc->mc_flags = 1; 1487 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1488 eh.ether_shost); 1489 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1490 break; 1491 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1492 KASSERT(rt != NULL, ("route is NULL")); 1493 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1494 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1495 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1496 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1497 mc->mc_flags = IEEE80211_MESH_AE_10; 1498 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1499 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1500 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1501 break; 1502 default: 1503 KASSERT(0, ("meshae %d", meshae)); 1504 break; 1505 } 1506 mc->mc_ttl = ms->ms_ttl; 1507 ms->ms_seq++; 1508 le32enc(mc->mc_seq, ms->ms_seq); 1509 break; 1510 #endif 1511 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1512 default: 1513 goto bad; 1514 } 1515 if (m->m_flags & M_MORE_DATA) 1516 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1517 if (addqos) { 1518 int ac, tid; 1519 1520 if (is4addr) { 1521 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1522 /* NB: mesh case handled earlier */ 1523 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1524 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1525 ac = M_WME_GETAC(m); 1526 /* map from access class/queue to 11e header priorty value */ 1527 tid = WME_AC_TO_TID(ac); 1528 qos[0] = tid & IEEE80211_QOS_TID; 1529 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1530 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1531 #ifdef IEEE80211_SUPPORT_MESH 1532 if (vap->iv_opmode == IEEE80211_M_MBSS) 1533 qos[1] = IEEE80211_QOS_MC; 1534 else 1535 #endif 1536 qos[1] = 0; 1537 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1538 1539 /* 1540 * If this is an A-MSDU then ensure we set the 1541 * relevant field. 1542 */ 1543 if (is_amsdu) 1544 qos[0] |= IEEE80211_QOS_AMSDU; 1545 1546 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1547 /* 1548 * NB: don't assign a sequence # to potential 1549 * aggregates; we expect this happens at the 1550 * point the frame comes off any aggregation q 1551 * as otherwise we may introduce holes in the 1552 * BA sequence space and/or make window accouting 1553 * more difficult. 1554 * 1555 * XXX may want to control this with a driver 1556 * capability; this may also change when we pull 1557 * aggregation up into net80211 1558 */ 1559 seqno = ni->ni_txseqs[tid]++; 1560 *(uint16_t *)wh->i_seq = 1561 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1562 M_SEQNO_SET(m, seqno); 1563 } 1564 } else { 1565 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1566 *(uint16_t *)wh->i_seq = 1567 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1568 M_SEQNO_SET(m, seqno); 1569 1570 /* 1571 * XXX TODO: we shouldn't allow EAPOL, etc that would 1572 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1573 */ 1574 if (is_amsdu) 1575 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1576 __func__); 1577 } 1578 1579 1580 /* check if xmit fragmentation is required */ 1581 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1582 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1583 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1584 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1585 if (key != NULL) { 1586 /* 1587 * IEEE 802.1X: send EAPOL frames always in the clear. 1588 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1589 */ 1590 if ((m->m_flags & M_EAPOL) == 0 || 1591 ((vap->iv_flags & IEEE80211_F_WPA) && 1592 (vap->iv_opmode == IEEE80211_M_STA ? 1593 !IEEE80211_KEY_UNDEFINED(key) : 1594 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1595 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1596 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1597 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1598 eh.ether_dhost, 1599 "%s", "enmic failed, discard frame"); 1600 vap->iv_stats.is_crypto_enmicfail++; 1601 goto bad; 1602 } 1603 } 1604 } 1605 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1606 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1607 goto bad; 1608 1609 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1610 1611 IEEE80211_NODE_STAT(ni, tx_data); 1612 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1613 IEEE80211_NODE_STAT(ni, tx_mcast); 1614 m->m_flags |= M_MCAST; 1615 } else 1616 IEEE80211_NODE_STAT(ni, tx_ucast); 1617 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1618 1619 return m; 1620 bad: 1621 if (m != NULL) 1622 m_freem(m); 1623 return NULL; 1624 #undef WH4 1625 #undef MC01 1626 } 1627 1628 void 1629 ieee80211_free_mbuf(struct mbuf *m) 1630 { 1631 struct mbuf *next; 1632 1633 if (m == NULL) 1634 return; 1635 1636 do { 1637 next = m->m_nextpkt; 1638 m->m_nextpkt = NULL; 1639 m_freem(m); 1640 } while ((m = next) != NULL); 1641 } 1642 1643 /* 1644 * Fragment the frame according to the specified mtu. 1645 * The size of the 802.11 header (w/o padding) is provided 1646 * so we don't need to recalculate it. We create a new 1647 * mbuf for each fragment and chain it through m_nextpkt; 1648 * we might be able to optimize this by reusing the original 1649 * packet's mbufs but that is significantly more complicated. 1650 */ 1651 static int 1652 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1653 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1654 { 1655 struct ieee80211com *ic = vap->iv_ic; 1656 struct ieee80211_frame *wh, *whf; 1657 struct mbuf *m, *prev; 1658 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1659 u_int hdrspace; 1660 1661 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1662 KASSERT(m0->m_pkthdr.len > mtu, 1663 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1664 1665 /* 1666 * Honor driver DATAPAD requirement. 1667 */ 1668 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1669 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1670 else 1671 hdrspace = hdrsize; 1672 1673 wh = mtod(m0, struct ieee80211_frame *); 1674 /* NB: mark the first frag; it will be propagated below */ 1675 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1676 totalhdrsize = hdrspace + ciphdrsize; 1677 fragno = 1; 1678 off = mtu - ciphdrsize; 1679 remainder = m0->m_pkthdr.len - off; 1680 prev = m0; 1681 do { 1682 fragsize = MIN(totalhdrsize + remainder, mtu); 1683 m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR); 1684 if (m == NULL) 1685 goto bad; 1686 /* leave room to prepend any cipher header */ 1687 m_align(m, fragsize - ciphdrsize); 1688 1689 /* 1690 * Form the header in the fragment. Note that since 1691 * we mark the first fragment with the MORE_FRAG bit 1692 * it automatically is propagated to each fragment; we 1693 * need only clear it on the last fragment (done below). 1694 * NB: frag 1+ dont have Mesh Control field present. 1695 */ 1696 whf = mtod(m, struct ieee80211_frame *); 1697 memcpy(whf, wh, hdrsize); 1698 #ifdef IEEE80211_SUPPORT_MESH 1699 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1700 if (IEEE80211_IS_DSTODS(wh)) 1701 ((struct ieee80211_qosframe_addr4 *) 1702 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1703 else 1704 ((struct ieee80211_qosframe *) 1705 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1706 } 1707 #endif 1708 *(uint16_t *)&whf->i_seq[0] |= htole16( 1709 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1710 IEEE80211_SEQ_FRAG_SHIFT); 1711 fragno++; 1712 1713 payload = fragsize - totalhdrsize; 1714 /* NB: destination is known to be contiguous */ 1715 1716 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1717 m->m_len = hdrspace + payload; 1718 m->m_pkthdr.len = hdrspace + payload; 1719 m->m_flags |= M_FRAG; 1720 1721 /* chain up the fragment */ 1722 prev->m_nextpkt = m; 1723 prev = m; 1724 1725 /* deduct fragment just formed */ 1726 remainder -= payload; 1727 off += payload; 1728 } while (remainder != 0); 1729 1730 /* set the last fragment */ 1731 m->m_flags |= M_LASTFRAG; 1732 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1733 1734 /* strip first mbuf now that everything has been copied */ 1735 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1736 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1737 1738 vap->iv_stats.is_tx_fragframes++; 1739 vap->iv_stats.is_tx_frags += fragno-1; 1740 1741 return 1; 1742 bad: 1743 /* reclaim fragments but leave original frame for caller to free */ 1744 ieee80211_free_mbuf(m0->m_nextpkt); 1745 m0->m_nextpkt = NULL; 1746 return 0; 1747 } 1748 1749 /* 1750 * Add a supported rates element id to a frame. 1751 */ 1752 uint8_t * 1753 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1754 { 1755 int nrates; 1756 1757 *frm++ = IEEE80211_ELEMID_RATES; 1758 nrates = rs->rs_nrates; 1759 if (nrates > IEEE80211_RATE_SIZE) 1760 nrates = IEEE80211_RATE_SIZE; 1761 *frm++ = nrates; 1762 memcpy(frm, rs->rs_rates, nrates); 1763 return frm + nrates; 1764 } 1765 1766 /* 1767 * Add an extended supported rates element id to a frame. 1768 */ 1769 uint8_t * 1770 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1771 { 1772 /* 1773 * Add an extended supported rates element if operating in 11g mode. 1774 */ 1775 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1776 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1777 *frm++ = IEEE80211_ELEMID_XRATES; 1778 *frm++ = nrates; 1779 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1780 frm += nrates; 1781 } 1782 return frm; 1783 } 1784 1785 /* 1786 * Add an ssid element to a frame. 1787 */ 1788 uint8_t * 1789 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1790 { 1791 *frm++ = IEEE80211_ELEMID_SSID; 1792 *frm++ = len; 1793 memcpy(frm, ssid, len); 1794 return frm + len; 1795 } 1796 1797 /* 1798 * Add an erp element to a frame. 1799 */ 1800 static uint8_t * 1801 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1802 { 1803 uint8_t erp; 1804 1805 *frm++ = IEEE80211_ELEMID_ERP; 1806 *frm++ = 1; 1807 erp = 0; 1808 if (ic->ic_nonerpsta != 0) 1809 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1810 if (ic->ic_flags & IEEE80211_F_USEPROT) 1811 erp |= IEEE80211_ERP_USE_PROTECTION; 1812 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1813 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1814 *frm++ = erp; 1815 return frm; 1816 } 1817 1818 /* 1819 * Add a CFParams element to a frame. 1820 */ 1821 static uint8_t * 1822 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1823 { 1824 #define ADDSHORT(frm, v) do { \ 1825 le16enc(frm, v); \ 1826 frm += 2; \ 1827 } while (0) 1828 *frm++ = IEEE80211_ELEMID_CFPARMS; 1829 *frm++ = 6; 1830 *frm++ = 0; /* CFP count */ 1831 *frm++ = 2; /* CFP period */ 1832 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1833 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1834 return frm; 1835 #undef ADDSHORT 1836 } 1837 1838 static __inline uint8_t * 1839 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1840 { 1841 memcpy(frm, ie->ie_data, ie->ie_len); 1842 return frm + ie->ie_len; 1843 } 1844 1845 static __inline uint8_t * 1846 add_ie(uint8_t *frm, const uint8_t *ie) 1847 { 1848 memcpy(frm, ie, 2 + ie[1]); 1849 return frm + 2 + ie[1]; 1850 } 1851 1852 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1853 /* 1854 * Add a WME information element to a frame. 1855 */ 1856 uint8_t * 1857 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1858 { 1859 static const struct ieee80211_wme_info info = { 1860 .wme_id = IEEE80211_ELEMID_VENDOR, 1861 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1862 .wme_oui = { WME_OUI_BYTES }, 1863 .wme_type = WME_OUI_TYPE, 1864 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1865 .wme_version = WME_VERSION, 1866 .wme_info = 0, 1867 }; 1868 memcpy(frm, &info, sizeof(info)); 1869 return frm + sizeof(info); 1870 } 1871 1872 /* 1873 * Add a WME parameters element to a frame. 1874 */ 1875 static uint8_t * 1876 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1877 { 1878 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1879 #define ADDSHORT(frm, v) do { \ 1880 le16enc(frm, v); \ 1881 frm += 2; \ 1882 } while (0) 1883 /* NB: this works 'cuz a param has an info at the front */ 1884 static const struct ieee80211_wme_info param = { 1885 .wme_id = IEEE80211_ELEMID_VENDOR, 1886 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1887 .wme_oui = { WME_OUI_BYTES }, 1888 .wme_type = WME_OUI_TYPE, 1889 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1890 .wme_version = WME_VERSION, 1891 }; 1892 int i; 1893 1894 memcpy(frm, ¶m, sizeof(param)); 1895 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1896 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1897 *frm++ = 0; /* reserved field */ 1898 for (i = 0; i < WME_NUM_AC; i++) { 1899 const struct wmeParams *ac = 1900 &wme->wme_bssChanParams.cap_wmeParams[i]; 1901 *frm++ = SM(i, WME_PARAM_ACI) 1902 | SM(ac->wmep_acm, WME_PARAM_ACM) 1903 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1904 ; 1905 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1906 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1907 ; 1908 ADDSHORT(frm, ac->wmep_txopLimit); 1909 } 1910 return frm; 1911 #undef SM 1912 #undef ADDSHORT 1913 } 1914 #undef WME_OUI_BYTES 1915 1916 /* 1917 * Add an 11h Power Constraint element to a frame. 1918 */ 1919 static uint8_t * 1920 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1921 { 1922 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1923 /* XXX per-vap tx power limit? */ 1924 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1925 1926 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1927 frm[1] = 1; 1928 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1929 return frm + 3; 1930 } 1931 1932 /* 1933 * Add an 11h Power Capability element to a frame. 1934 */ 1935 static uint8_t * 1936 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1937 { 1938 frm[0] = IEEE80211_ELEMID_PWRCAP; 1939 frm[1] = 2; 1940 frm[2] = c->ic_minpower; 1941 frm[3] = c->ic_maxpower; 1942 return frm + 4; 1943 } 1944 1945 /* 1946 * Add an 11h Supported Channels element to a frame. 1947 */ 1948 static uint8_t * 1949 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1950 { 1951 static const int ielen = 26; 1952 1953 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1954 frm[1] = ielen; 1955 /* XXX not correct */ 1956 memcpy(frm+2, ic->ic_chan_avail, ielen); 1957 return frm + 2 + ielen; 1958 } 1959 1960 /* 1961 * Add an 11h Quiet time element to a frame. 1962 */ 1963 static uint8_t * 1964 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1965 { 1966 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1967 1968 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1969 quiet->len = 6; 1970 if (vap->iv_quiet_count_value == 1) 1971 vap->iv_quiet_count_value = vap->iv_quiet_count; 1972 else if (vap->iv_quiet_count_value > 1) 1973 vap->iv_quiet_count_value--; 1974 1975 if (vap->iv_quiet_count_value == 0) { 1976 /* value 0 is reserved as per 802.11h standerd */ 1977 vap->iv_quiet_count_value = 1; 1978 } 1979 1980 quiet->tbttcount = vap->iv_quiet_count_value; 1981 quiet->period = vap->iv_quiet_period; 1982 quiet->duration = htole16(vap->iv_quiet_duration); 1983 quiet->offset = htole16(vap->iv_quiet_offset); 1984 return frm + sizeof(*quiet); 1985 } 1986 1987 /* 1988 * Add an 11h Channel Switch Announcement element to a frame. 1989 * Note that we use the per-vap CSA count to adjust the global 1990 * counter so we can use this routine to form probe response 1991 * frames and get the current count. 1992 */ 1993 static uint8_t * 1994 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1995 { 1996 struct ieee80211com *ic = vap->iv_ic; 1997 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1998 1999 csa->csa_ie = IEEE80211_ELEMID_CSA; 2000 csa->csa_len = 3; 2001 csa->csa_mode = 1; /* XXX force quiet on channel */ 2002 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2003 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2004 return frm + sizeof(*csa); 2005 } 2006 2007 /* 2008 * Add an 11h country information element to a frame. 2009 */ 2010 static uint8_t * 2011 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2012 { 2013 2014 if (ic->ic_countryie == NULL || 2015 ic->ic_countryie_chan != ic->ic_bsschan) { 2016 /* 2017 * Handle lazy construction of ie. This is done on 2018 * first use and after a channel change that requires 2019 * re-calculation. 2020 */ 2021 if (ic->ic_countryie != NULL) 2022 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2023 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2024 if (ic->ic_countryie == NULL) 2025 return frm; 2026 ic->ic_countryie_chan = ic->ic_bsschan; 2027 } 2028 return add_appie(frm, ic->ic_countryie); 2029 } 2030 2031 uint8_t * 2032 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2033 { 2034 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2035 return (add_ie(frm, vap->iv_wpa_ie)); 2036 else { 2037 /* XXX else complain? */ 2038 return (frm); 2039 } 2040 } 2041 2042 uint8_t * 2043 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2044 { 2045 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2046 return (add_ie(frm, vap->iv_rsn_ie)); 2047 else { 2048 /* XXX else complain? */ 2049 return (frm); 2050 } 2051 } 2052 2053 uint8_t * 2054 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2055 { 2056 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2057 *frm++ = IEEE80211_ELEMID_QOS; 2058 *frm++ = 1; 2059 *frm++ = 0; 2060 } 2061 2062 return (frm); 2063 } 2064 2065 /* 2066 * Send a probe request frame with the specified ssid 2067 * and any optional information element data. 2068 */ 2069 int 2070 ieee80211_send_probereq(struct ieee80211_node *ni, 2071 const uint8_t sa[IEEE80211_ADDR_LEN], 2072 const uint8_t da[IEEE80211_ADDR_LEN], 2073 const uint8_t bssid[IEEE80211_ADDR_LEN], 2074 const uint8_t *ssid, size_t ssidlen) 2075 { 2076 struct ieee80211vap *vap = ni->ni_vap; 2077 struct ieee80211com *ic = ni->ni_ic; 2078 const struct ieee80211_txparam *tp; 2079 struct ieee80211_bpf_params params; 2080 const struct ieee80211_rateset *rs; 2081 struct mbuf *m; 2082 uint8_t *frm; 2083 int ret; 2084 2085 if (vap->iv_state == IEEE80211_S_CAC) { 2086 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2087 "block %s frame in CAC state", "probe request"); 2088 vap->iv_stats.is_tx_badstate++; 2089 return EIO; /* XXX */ 2090 } 2091 2092 /* 2093 * Hold a reference on the node so it doesn't go away until after 2094 * the xmit is complete all the way in the driver. On error we 2095 * will remove our reference. 2096 */ 2097 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2098 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2099 __func__, __LINE__, 2100 ni, ether_sprintf(ni->ni_macaddr), 2101 ieee80211_node_refcnt(ni)+1); 2102 ieee80211_ref_node(ni); 2103 2104 /* 2105 * prreq frame format 2106 * [tlv] ssid 2107 * [tlv] supported rates 2108 * [tlv] RSN (optional) 2109 * [tlv] extended supported rates 2110 * [tlv] WPA (optional) 2111 * [tlv] user-specified ie's 2112 */ 2113 m = ieee80211_getmgtframe(&frm, 2114 ic->ic_headroom + sizeof(struct ieee80211_frame), 2115 2 + IEEE80211_NWID_LEN 2116 + 2 + IEEE80211_RATE_SIZE 2117 + sizeof(struct ieee80211_ie_wpa) 2118 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2119 + sizeof(struct ieee80211_ie_wpa) 2120 + (vap->iv_appie_probereq != NULL ? 2121 vap->iv_appie_probereq->ie_len : 0) 2122 ); 2123 if (m == NULL) { 2124 vap->iv_stats.is_tx_nobuf++; 2125 ieee80211_free_node(ni); 2126 return ENOMEM; 2127 } 2128 2129 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2130 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2131 frm = ieee80211_add_rates(frm, rs); 2132 frm = ieee80211_add_rsn(frm, vap); 2133 frm = ieee80211_add_xrates(frm, rs); 2134 frm = ieee80211_add_wpa(frm, vap); 2135 if (vap->iv_appie_probereq != NULL) 2136 frm = add_appie(frm, vap->iv_appie_probereq); 2137 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2138 2139 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2140 ("leading space %zd", M_LEADINGSPACE(m))); 2141 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2142 if (m == NULL) { 2143 /* NB: cannot happen */ 2144 ieee80211_free_node(ni); 2145 return ENOMEM; 2146 } 2147 2148 IEEE80211_TX_LOCK(ic); 2149 ieee80211_send_setup(ni, m, 2150 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2151 IEEE80211_NONQOS_TID, sa, da, bssid); 2152 /* XXX power management? */ 2153 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2154 2155 M_WME_SETAC(m, WME_AC_BE); 2156 2157 IEEE80211_NODE_STAT(ni, tx_probereq); 2158 IEEE80211_NODE_STAT(ni, tx_mgmt); 2159 2160 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2161 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2162 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2163 ssidlen, ssid); 2164 2165 memset(¶ms, 0, sizeof(params)); 2166 params.ibp_pri = M_WME_GETAC(m); 2167 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2168 params.ibp_rate0 = tp->mgmtrate; 2169 if (IEEE80211_IS_MULTICAST(da)) { 2170 params.ibp_flags |= IEEE80211_BPF_NOACK; 2171 params.ibp_try0 = 1; 2172 } else 2173 params.ibp_try0 = tp->maxretry; 2174 params.ibp_power = ni->ni_txpower; 2175 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2176 IEEE80211_TX_UNLOCK(ic); 2177 return (ret); 2178 } 2179 2180 /* 2181 * Calculate capability information for mgt frames. 2182 */ 2183 uint16_t 2184 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2185 { 2186 struct ieee80211com *ic = vap->iv_ic; 2187 uint16_t capinfo; 2188 2189 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2190 2191 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2192 capinfo = IEEE80211_CAPINFO_ESS; 2193 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2194 capinfo = IEEE80211_CAPINFO_IBSS; 2195 else 2196 capinfo = 0; 2197 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2198 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2199 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2200 IEEE80211_IS_CHAN_2GHZ(chan)) 2201 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2202 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2203 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2204 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2205 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2206 return capinfo; 2207 } 2208 2209 /* 2210 * Send a management frame. The node is for the destination (or ic_bss 2211 * when in station mode). Nodes other than ic_bss have their reference 2212 * count bumped to reflect our use for an indeterminant time. 2213 */ 2214 int 2215 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2216 { 2217 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2218 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2219 struct ieee80211vap *vap = ni->ni_vap; 2220 struct ieee80211com *ic = ni->ni_ic; 2221 struct ieee80211_node *bss = vap->iv_bss; 2222 struct ieee80211_bpf_params params; 2223 struct mbuf *m; 2224 uint8_t *frm; 2225 uint16_t capinfo; 2226 int has_challenge, is_shared_key, ret, status; 2227 2228 KASSERT(ni != NULL, ("null node")); 2229 2230 /* 2231 * Hold a reference on the node so it doesn't go away until after 2232 * the xmit is complete all the way in the driver. On error we 2233 * will remove our reference. 2234 */ 2235 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2236 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2237 __func__, __LINE__, 2238 ni, ether_sprintf(ni->ni_macaddr), 2239 ieee80211_node_refcnt(ni)+1); 2240 ieee80211_ref_node(ni); 2241 2242 memset(¶ms, 0, sizeof(params)); 2243 switch (type) { 2244 2245 case IEEE80211_FC0_SUBTYPE_AUTH: 2246 status = arg >> 16; 2247 arg &= 0xffff; 2248 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2249 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2250 ni->ni_challenge != NULL); 2251 2252 /* 2253 * Deduce whether we're doing open authentication or 2254 * shared key authentication. We do the latter if 2255 * we're in the middle of a shared key authentication 2256 * handshake or if we're initiating an authentication 2257 * request and configured to use shared key. 2258 */ 2259 is_shared_key = has_challenge || 2260 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2261 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2262 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2263 2264 m = ieee80211_getmgtframe(&frm, 2265 ic->ic_headroom + sizeof(struct ieee80211_frame), 2266 3 * sizeof(uint16_t) 2267 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2268 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2269 ); 2270 if (m == NULL) 2271 senderr(ENOMEM, is_tx_nobuf); 2272 2273 ((uint16_t *)frm)[0] = 2274 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2275 : htole16(IEEE80211_AUTH_ALG_OPEN); 2276 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2277 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2278 2279 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2280 ((uint16_t *)frm)[3] = 2281 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2282 IEEE80211_ELEMID_CHALLENGE); 2283 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2284 IEEE80211_CHALLENGE_LEN); 2285 m->m_pkthdr.len = m->m_len = 2286 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2287 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2288 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2289 "request encrypt frame (%s)", __func__); 2290 /* mark frame for encryption */ 2291 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2292 } 2293 } else 2294 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2295 2296 /* XXX not right for shared key */ 2297 if (status == IEEE80211_STATUS_SUCCESS) 2298 IEEE80211_NODE_STAT(ni, tx_auth); 2299 else 2300 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2301 2302 if (vap->iv_opmode == IEEE80211_M_STA) 2303 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2304 (void *) vap->iv_state); 2305 break; 2306 2307 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2308 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2309 "send station deauthenticate (reason: %d (%s))", arg, 2310 ieee80211_reason_to_string(arg)); 2311 m = ieee80211_getmgtframe(&frm, 2312 ic->ic_headroom + sizeof(struct ieee80211_frame), 2313 sizeof(uint16_t)); 2314 if (m == NULL) 2315 senderr(ENOMEM, is_tx_nobuf); 2316 *(uint16_t *)frm = htole16(arg); /* reason */ 2317 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2318 2319 IEEE80211_NODE_STAT(ni, tx_deauth); 2320 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2321 2322 ieee80211_node_unauthorize(ni); /* port closed */ 2323 break; 2324 2325 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2326 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2327 /* 2328 * asreq frame format 2329 * [2] capability information 2330 * [2] listen interval 2331 * [6*] current AP address (reassoc only) 2332 * [tlv] ssid 2333 * [tlv] supported rates 2334 * [tlv] extended supported rates 2335 * [4] power capability (optional) 2336 * [28] supported channels (optional) 2337 * [tlv] HT capabilities 2338 * [tlv] WME (optional) 2339 * [tlv] Vendor OUI HT capabilities (optional) 2340 * [tlv] Atheros capabilities (if negotiated) 2341 * [tlv] AppIE's (optional) 2342 */ 2343 m = ieee80211_getmgtframe(&frm, 2344 ic->ic_headroom + sizeof(struct ieee80211_frame), 2345 sizeof(uint16_t) 2346 + sizeof(uint16_t) 2347 + IEEE80211_ADDR_LEN 2348 + 2 + IEEE80211_NWID_LEN 2349 + 2 + IEEE80211_RATE_SIZE 2350 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2351 + 4 2352 + 2 + 26 2353 + sizeof(struct ieee80211_wme_info) 2354 + sizeof(struct ieee80211_ie_htcap) 2355 + 4 + sizeof(struct ieee80211_ie_htcap) 2356 #ifdef IEEE80211_SUPPORT_SUPERG 2357 + sizeof(struct ieee80211_ath_ie) 2358 #endif 2359 + (vap->iv_appie_wpa != NULL ? 2360 vap->iv_appie_wpa->ie_len : 0) 2361 + (vap->iv_appie_assocreq != NULL ? 2362 vap->iv_appie_assocreq->ie_len : 0) 2363 ); 2364 if (m == NULL) 2365 senderr(ENOMEM, is_tx_nobuf); 2366 2367 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2368 ("wrong mode %u", vap->iv_opmode)); 2369 capinfo = IEEE80211_CAPINFO_ESS; 2370 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2371 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2372 /* 2373 * NB: Some 11a AP's reject the request when 2374 * short premable is set. 2375 */ 2376 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2377 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2378 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2379 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2380 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2381 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2382 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2383 (vap->iv_flags & IEEE80211_F_DOTH)) 2384 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2385 *(uint16_t *)frm = htole16(capinfo); 2386 frm += 2; 2387 2388 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2389 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2390 bss->ni_intval)); 2391 frm += 2; 2392 2393 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2394 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2395 frm += IEEE80211_ADDR_LEN; 2396 } 2397 2398 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2399 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2400 frm = ieee80211_add_rsn(frm, vap); 2401 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2402 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2403 frm = ieee80211_add_powercapability(frm, 2404 ic->ic_curchan); 2405 frm = ieee80211_add_supportedchannels(frm, ic); 2406 } 2407 2408 /* 2409 * Check the channel - we may be using an 11n NIC with an 2410 * 11n capable station, but we're configured to be an 11b 2411 * channel. 2412 */ 2413 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2414 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2415 ni->ni_ies.htcap_ie != NULL && 2416 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2417 frm = ieee80211_add_htcap(frm, ni); 2418 } 2419 frm = ieee80211_add_wpa(frm, vap); 2420 if ((ic->ic_flags & IEEE80211_F_WME) && 2421 ni->ni_ies.wme_ie != NULL) 2422 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2423 2424 /* 2425 * Same deal - only send HT info if we're on an 11n 2426 * capable channel. 2427 */ 2428 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2429 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2430 ni->ni_ies.htcap_ie != NULL && 2431 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2432 frm = ieee80211_add_htcap_vendor(frm, ni); 2433 } 2434 #ifdef IEEE80211_SUPPORT_SUPERG 2435 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2436 frm = ieee80211_add_ath(frm, 2437 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2438 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2439 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2440 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2441 } 2442 #endif /* IEEE80211_SUPPORT_SUPERG */ 2443 if (vap->iv_appie_assocreq != NULL) 2444 frm = add_appie(frm, vap->iv_appie_assocreq); 2445 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2446 2447 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2448 (void *) vap->iv_state); 2449 break; 2450 2451 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2452 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2453 /* 2454 * asresp frame format 2455 * [2] capability information 2456 * [2] status 2457 * [2] association ID 2458 * [tlv] supported rates 2459 * [tlv] extended supported rates 2460 * [tlv] HT capabilities (standard, if STA enabled) 2461 * [tlv] HT information (standard, if STA enabled) 2462 * [tlv] WME (if configured and STA enabled) 2463 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2464 * [tlv] HT information (vendor OUI, if STA enabled) 2465 * [tlv] Atheros capabilities (if STA enabled) 2466 * [tlv] AppIE's (optional) 2467 */ 2468 m = ieee80211_getmgtframe(&frm, 2469 ic->ic_headroom + sizeof(struct ieee80211_frame), 2470 sizeof(uint16_t) 2471 + sizeof(uint16_t) 2472 + sizeof(uint16_t) 2473 + 2 + IEEE80211_RATE_SIZE 2474 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2475 + sizeof(struct ieee80211_ie_htcap) + 4 2476 + sizeof(struct ieee80211_ie_htinfo) + 4 2477 + sizeof(struct ieee80211_wme_param) 2478 #ifdef IEEE80211_SUPPORT_SUPERG 2479 + sizeof(struct ieee80211_ath_ie) 2480 #endif 2481 + (vap->iv_appie_assocresp != NULL ? 2482 vap->iv_appie_assocresp->ie_len : 0) 2483 ); 2484 if (m == NULL) 2485 senderr(ENOMEM, is_tx_nobuf); 2486 2487 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2488 *(uint16_t *)frm = htole16(capinfo); 2489 frm += 2; 2490 2491 *(uint16_t *)frm = htole16(arg); /* status */ 2492 frm += 2; 2493 2494 if (arg == IEEE80211_STATUS_SUCCESS) { 2495 *(uint16_t *)frm = htole16(ni->ni_associd); 2496 IEEE80211_NODE_STAT(ni, tx_assoc); 2497 } else 2498 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2499 frm += 2; 2500 2501 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2502 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2503 /* NB: respond according to what we received */ 2504 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2505 frm = ieee80211_add_htcap(frm, ni); 2506 frm = ieee80211_add_htinfo(frm, ni); 2507 } 2508 if ((vap->iv_flags & IEEE80211_F_WME) && 2509 ni->ni_ies.wme_ie != NULL) 2510 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2511 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2512 frm = ieee80211_add_htcap_vendor(frm, ni); 2513 frm = ieee80211_add_htinfo_vendor(frm, ni); 2514 } 2515 #ifdef IEEE80211_SUPPORT_SUPERG 2516 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2517 frm = ieee80211_add_ath(frm, 2518 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2519 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2520 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2521 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2522 #endif /* IEEE80211_SUPPORT_SUPERG */ 2523 if (vap->iv_appie_assocresp != NULL) 2524 frm = add_appie(frm, vap->iv_appie_assocresp); 2525 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2526 break; 2527 2528 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2529 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2530 "send station disassociate (reason: %d (%s))", arg, 2531 ieee80211_reason_to_string(arg)); 2532 m = ieee80211_getmgtframe(&frm, 2533 ic->ic_headroom + sizeof(struct ieee80211_frame), 2534 sizeof(uint16_t)); 2535 if (m == NULL) 2536 senderr(ENOMEM, is_tx_nobuf); 2537 *(uint16_t *)frm = htole16(arg); /* reason */ 2538 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2539 2540 IEEE80211_NODE_STAT(ni, tx_disassoc); 2541 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2542 break; 2543 2544 default: 2545 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2546 "invalid mgmt frame type %u", type); 2547 senderr(EINVAL, is_tx_unknownmgt); 2548 /* NOTREACHED */ 2549 } 2550 2551 /* NB: force non-ProbeResp frames to the highest queue */ 2552 params.ibp_pri = WME_AC_VO; 2553 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2554 /* NB: we know all frames are unicast */ 2555 params.ibp_try0 = bss->ni_txparms->maxretry; 2556 params.ibp_power = bss->ni_txpower; 2557 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2558 bad: 2559 ieee80211_free_node(ni); 2560 return ret; 2561 #undef senderr 2562 #undef HTFLAGS 2563 } 2564 2565 /* 2566 * Return an mbuf with a probe response frame in it. 2567 * Space is left to prepend and 802.11 header at the 2568 * front but it's left to the caller to fill in. 2569 */ 2570 struct mbuf * 2571 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2572 { 2573 struct ieee80211vap *vap = bss->ni_vap; 2574 struct ieee80211com *ic = bss->ni_ic; 2575 const struct ieee80211_rateset *rs; 2576 struct mbuf *m; 2577 uint16_t capinfo; 2578 uint8_t *frm; 2579 2580 /* 2581 * probe response frame format 2582 * [8] time stamp 2583 * [2] beacon interval 2584 * [2] cabability information 2585 * [tlv] ssid 2586 * [tlv] supported rates 2587 * [tlv] parameter set (FH/DS) 2588 * [tlv] parameter set (IBSS) 2589 * [tlv] country (optional) 2590 * [3] power control (optional) 2591 * [5] channel switch announcement (CSA) (optional) 2592 * [tlv] extended rate phy (ERP) 2593 * [tlv] extended supported rates 2594 * [tlv] RSN (optional) 2595 * [tlv] HT capabilities 2596 * [tlv] HT information 2597 * [tlv] WPA (optional) 2598 * [tlv] WME (optional) 2599 * [tlv] Vendor OUI HT capabilities (optional) 2600 * [tlv] Vendor OUI HT information (optional) 2601 * [tlv] Atheros capabilities 2602 * [tlv] AppIE's (optional) 2603 * [tlv] Mesh ID (MBSS) 2604 * [tlv] Mesh Conf (MBSS) 2605 */ 2606 m = ieee80211_getmgtframe(&frm, 2607 ic->ic_headroom + sizeof(struct ieee80211_frame), 2608 8 2609 + sizeof(uint16_t) 2610 + sizeof(uint16_t) 2611 + 2 + IEEE80211_NWID_LEN 2612 + 2 + IEEE80211_RATE_SIZE 2613 + 7 /* max(7,3) */ 2614 + IEEE80211_COUNTRY_MAX_SIZE 2615 + 3 2616 + sizeof(struct ieee80211_csa_ie) 2617 + sizeof(struct ieee80211_quiet_ie) 2618 + 3 2619 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2620 + sizeof(struct ieee80211_ie_wpa) 2621 + sizeof(struct ieee80211_ie_htcap) 2622 + sizeof(struct ieee80211_ie_htinfo) 2623 + sizeof(struct ieee80211_ie_wpa) 2624 + sizeof(struct ieee80211_wme_param) 2625 + 4 + sizeof(struct ieee80211_ie_htcap) 2626 + 4 + sizeof(struct ieee80211_ie_htinfo) 2627 #ifdef IEEE80211_SUPPORT_SUPERG 2628 + sizeof(struct ieee80211_ath_ie) 2629 #endif 2630 #ifdef IEEE80211_SUPPORT_MESH 2631 + 2 + IEEE80211_MESHID_LEN 2632 + sizeof(struct ieee80211_meshconf_ie) 2633 #endif 2634 + (vap->iv_appie_proberesp != NULL ? 2635 vap->iv_appie_proberesp->ie_len : 0) 2636 ); 2637 if (m == NULL) { 2638 vap->iv_stats.is_tx_nobuf++; 2639 return NULL; 2640 } 2641 2642 memset(frm, 0, 8); /* timestamp should be filled later */ 2643 frm += 8; 2644 *(uint16_t *)frm = htole16(bss->ni_intval); 2645 frm += 2; 2646 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2647 *(uint16_t *)frm = htole16(capinfo); 2648 frm += 2; 2649 2650 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2651 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2652 frm = ieee80211_add_rates(frm, rs); 2653 2654 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2655 *frm++ = IEEE80211_ELEMID_FHPARMS; 2656 *frm++ = 5; 2657 *frm++ = bss->ni_fhdwell & 0x00ff; 2658 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2659 *frm++ = IEEE80211_FH_CHANSET( 2660 ieee80211_chan2ieee(ic, bss->ni_chan)); 2661 *frm++ = IEEE80211_FH_CHANPAT( 2662 ieee80211_chan2ieee(ic, bss->ni_chan)); 2663 *frm++ = bss->ni_fhindex; 2664 } else { 2665 *frm++ = IEEE80211_ELEMID_DSPARMS; 2666 *frm++ = 1; 2667 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2668 } 2669 2670 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2671 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2672 *frm++ = 2; 2673 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2674 } 2675 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2676 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2677 frm = ieee80211_add_countryie(frm, ic); 2678 if (vap->iv_flags & IEEE80211_F_DOTH) { 2679 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2680 frm = ieee80211_add_powerconstraint(frm, vap); 2681 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2682 frm = ieee80211_add_csa(frm, vap); 2683 } 2684 if (vap->iv_flags & IEEE80211_F_DOTH) { 2685 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2686 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2687 if (vap->iv_quiet) 2688 frm = ieee80211_add_quiet(frm, vap); 2689 } 2690 } 2691 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2692 frm = ieee80211_add_erp(frm, ic); 2693 frm = ieee80211_add_xrates(frm, rs); 2694 frm = ieee80211_add_rsn(frm, vap); 2695 /* 2696 * NB: legacy 11b clients do not get certain ie's. 2697 * The caller identifies such clients by passing 2698 * a token in legacy to us. Could expand this to be 2699 * any legacy client for stuff like HT ie's. 2700 */ 2701 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2702 legacy != IEEE80211_SEND_LEGACY_11B) { 2703 frm = ieee80211_add_htcap(frm, bss); 2704 frm = ieee80211_add_htinfo(frm, bss); 2705 } 2706 frm = ieee80211_add_wpa(frm, vap); 2707 if (vap->iv_flags & IEEE80211_F_WME) 2708 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2709 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2710 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2711 legacy != IEEE80211_SEND_LEGACY_11B) { 2712 frm = ieee80211_add_htcap_vendor(frm, bss); 2713 frm = ieee80211_add_htinfo_vendor(frm, bss); 2714 } 2715 #ifdef IEEE80211_SUPPORT_SUPERG 2716 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2717 legacy != IEEE80211_SEND_LEGACY_11B) 2718 frm = ieee80211_add_athcaps(frm, bss); 2719 #endif 2720 if (vap->iv_appie_proberesp != NULL) 2721 frm = add_appie(frm, vap->iv_appie_proberesp); 2722 #ifdef IEEE80211_SUPPORT_MESH 2723 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2724 frm = ieee80211_add_meshid(frm, vap); 2725 frm = ieee80211_add_meshconf(frm, vap); 2726 } 2727 #endif 2728 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2729 2730 return m; 2731 } 2732 2733 /* 2734 * Send a probe response frame to the specified mac address. 2735 * This does not go through the normal mgt frame api so we 2736 * can specify the destination address and re-use the bss node 2737 * for the sta reference. 2738 */ 2739 int 2740 ieee80211_send_proberesp(struct ieee80211vap *vap, 2741 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2742 { 2743 struct ieee80211_node *bss = vap->iv_bss; 2744 struct ieee80211com *ic = vap->iv_ic; 2745 struct mbuf *m; 2746 int ret; 2747 2748 if (vap->iv_state == IEEE80211_S_CAC) { 2749 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2750 "block %s frame in CAC state", "probe response"); 2751 vap->iv_stats.is_tx_badstate++; 2752 return EIO; /* XXX */ 2753 } 2754 2755 /* 2756 * Hold a reference on the node so it doesn't go away until after 2757 * the xmit is complete all the way in the driver. On error we 2758 * will remove our reference. 2759 */ 2760 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2761 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2762 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2763 ieee80211_node_refcnt(bss)+1); 2764 ieee80211_ref_node(bss); 2765 2766 m = ieee80211_alloc_proberesp(bss, legacy); 2767 if (m == NULL) { 2768 ieee80211_free_node(bss); 2769 return ENOMEM; 2770 } 2771 2772 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2773 KASSERT(m != NULL, ("no room for header")); 2774 2775 IEEE80211_TX_LOCK(ic); 2776 ieee80211_send_setup(bss, m, 2777 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2778 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2779 /* XXX power management? */ 2780 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2781 2782 M_WME_SETAC(m, WME_AC_BE); 2783 2784 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2785 "send probe resp on channel %u to %s%s\n", 2786 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2787 legacy ? " <legacy>" : ""); 2788 IEEE80211_NODE_STAT(bss, tx_mgmt); 2789 2790 ret = ieee80211_raw_output(vap, bss, m, NULL); 2791 IEEE80211_TX_UNLOCK(ic); 2792 return (ret); 2793 } 2794 2795 /* 2796 * Allocate and build a RTS (Request To Send) control frame. 2797 */ 2798 struct mbuf * 2799 ieee80211_alloc_rts(struct ieee80211com *ic, 2800 const uint8_t ra[IEEE80211_ADDR_LEN], 2801 const uint8_t ta[IEEE80211_ADDR_LEN], 2802 uint16_t dur) 2803 { 2804 struct ieee80211_frame_rts *rts; 2805 struct mbuf *m; 2806 2807 /* XXX honor ic_headroom */ 2808 m = m_gethdr(M_NOWAIT, MT_DATA); 2809 if (m != NULL) { 2810 rts = mtod(m, struct ieee80211_frame_rts *); 2811 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2812 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2813 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2814 *(u_int16_t *)rts->i_dur = htole16(dur); 2815 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2816 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2817 2818 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2819 } 2820 return m; 2821 } 2822 2823 /* 2824 * Allocate and build a CTS (Clear To Send) control frame. 2825 */ 2826 struct mbuf * 2827 ieee80211_alloc_cts(struct ieee80211com *ic, 2828 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2829 { 2830 struct ieee80211_frame_cts *cts; 2831 struct mbuf *m; 2832 2833 /* XXX honor ic_headroom */ 2834 m = m_gethdr(M_NOWAIT, MT_DATA); 2835 if (m != NULL) { 2836 cts = mtod(m, struct ieee80211_frame_cts *); 2837 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2838 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2839 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2840 *(u_int16_t *)cts->i_dur = htole16(dur); 2841 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2842 2843 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2844 } 2845 return m; 2846 } 2847 2848 static void 2849 ieee80211_tx_mgt_timeout(void *arg) 2850 { 2851 struct ieee80211vap *vap = arg; 2852 2853 IEEE80211_LOCK(vap->iv_ic); 2854 if (vap->iv_state != IEEE80211_S_INIT && 2855 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2856 /* 2857 * NB: it's safe to specify a timeout as the reason here; 2858 * it'll only be used in the right state. 2859 */ 2860 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2861 IEEE80211_SCAN_FAIL_TIMEOUT); 2862 } 2863 IEEE80211_UNLOCK(vap->iv_ic); 2864 } 2865 2866 /* 2867 * This is the callback set on net80211-sourced transmitted 2868 * authentication request frames. 2869 * 2870 * This does a couple of things: 2871 * 2872 * + If the frame transmitted was a success, it schedules a future 2873 * event which will transition the interface to scan. 2874 * If a state transition _then_ occurs before that event occurs, 2875 * said state transition will cancel this callout. 2876 * 2877 * + If the frame transmit was a failure, it immediately schedules 2878 * the transition back to scan. 2879 */ 2880 static void 2881 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2882 { 2883 struct ieee80211vap *vap = ni->ni_vap; 2884 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2885 2886 /* 2887 * Frame transmit completed; arrange timer callback. If 2888 * transmit was successfully we wait for response. Otherwise 2889 * we arrange an immediate callback instead of doing the 2890 * callback directly since we don't know what state the driver 2891 * is in (e.g. what locks it is holding). This work should 2892 * not be too time-critical and not happen too often so the 2893 * added overhead is acceptable. 2894 * 2895 * XXX what happens if !acked but response shows up before callback? 2896 */ 2897 if (vap->iv_state == ostate) { 2898 callout_reset(&vap->iv_mgtsend, 2899 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2900 ieee80211_tx_mgt_timeout, vap); 2901 } 2902 } 2903 2904 static void 2905 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2906 struct ieee80211_node *ni) 2907 { 2908 struct ieee80211vap *vap = ni->ni_vap; 2909 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2910 struct ieee80211com *ic = ni->ni_ic; 2911 struct ieee80211_rateset *rs = &ni->ni_rates; 2912 uint16_t capinfo; 2913 2914 /* 2915 * beacon frame format 2916 * [8] time stamp 2917 * [2] beacon interval 2918 * [2] cabability information 2919 * [tlv] ssid 2920 * [tlv] supported rates 2921 * [3] parameter set (DS) 2922 * [8] CF parameter set (optional) 2923 * [tlv] parameter set (IBSS/TIM) 2924 * [tlv] country (optional) 2925 * [3] power control (optional) 2926 * [5] channel switch announcement (CSA) (optional) 2927 * [tlv] extended rate phy (ERP) 2928 * [tlv] extended supported rates 2929 * [tlv] RSN parameters 2930 * [tlv] HT capabilities 2931 * [tlv] HT information 2932 * XXX Vendor-specific OIDs (e.g. Atheros) 2933 * [tlv] WPA parameters 2934 * [tlv] WME parameters 2935 * [tlv] Vendor OUI HT capabilities (optional) 2936 * [tlv] Vendor OUI HT information (optional) 2937 * [tlv] Atheros capabilities (optional) 2938 * [tlv] TDMA parameters (optional) 2939 * [tlv] Mesh ID (MBSS) 2940 * [tlv] Mesh Conf (MBSS) 2941 * [tlv] application data (optional) 2942 */ 2943 2944 memset(bo, 0, sizeof(*bo)); 2945 2946 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2947 frm += 8; 2948 *(uint16_t *)frm = htole16(ni->ni_intval); 2949 frm += 2; 2950 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2951 bo->bo_caps = (uint16_t *)frm; 2952 *(uint16_t *)frm = htole16(capinfo); 2953 frm += 2; 2954 *frm++ = IEEE80211_ELEMID_SSID; 2955 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2956 *frm++ = ni->ni_esslen; 2957 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2958 frm += ni->ni_esslen; 2959 } else 2960 *frm++ = 0; 2961 frm = ieee80211_add_rates(frm, rs); 2962 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2963 *frm++ = IEEE80211_ELEMID_DSPARMS; 2964 *frm++ = 1; 2965 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2966 } 2967 if (ic->ic_flags & IEEE80211_F_PCF) { 2968 bo->bo_cfp = frm; 2969 frm = ieee80211_add_cfparms(frm, ic); 2970 } 2971 bo->bo_tim = frm; 2972 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2973 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2974 *frm++ = 2; 2975 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2976 bo->bo_tim_len = 0; 2977 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2978 vap->iv_opmode == IEEE80211_M_MBSS) { 2979 /* TIM IE is the same for Mesh and Hostap */ 2980 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2981 2982 tie->tim_ie = IEEE80211_ELEMID_TIM; 2983 tie->tim_len = 4; /* length */ 2984 tie->tim_count = 0; /* DTIM count */ 2985 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2986 tie->tim_bitctl = 0; /* bitmap control */ 2987 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2988 frm += sizeof(struct ieee80211_tim_ie); 2989 bo->bo_tim_len = 1; 2990 } 2991 bo->bo_tim_trailer = frm; 2992 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2993 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2994 frm = ieee80211_add_countryie(frm, ic); 2995 if (vap->iv_flags & IEEE80211_F_DOTH) { 2996 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2997 frm = ieee80211_add_powerconstraint(frm, vap); 2998 bo->bo_csa = frm; 2999 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3000 frm = ieee80211_add_csa(frm, vap); 3001 } else 3002 bo->bo_csa = frm; 3003 3004 if (vap->iv_flags & IEEE80211_F_DOTH) { 3005 bo->bo_quiet = frm; 3006 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3007 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3008 if (vap->iv_quiet) 3009 frm = ieee80211_add_quiet(frm,vap); 3010 } 3011 } else 3012 bo->bo_quiet = frm; 3013 3014 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3015 bo->bo_erp = frm; 3016 frm = ieee80211_add_erp(frm, ic); 3017 } 3018 frm = ieee80211_add_xrates(frm, rs); 3019 frm = ieee80211_add_rsn(frm, vap); 3020 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3021 frm = ieee80211_add_htcap(frm, ni); 3022 bo->bo_htinfo = frm; 3023 frm = ieee80211_add_htinfo(frm, ni); 3024 } 3025 frm = ieee80211_add_wpa(frm, vap); 3026 if (vap->iv_flags & IEEE80211_F_WME) { 3027 bo->bo_wme = frm; 3028 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3029 } 3030 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3031 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3032 frm = ieee80211_add_htcap_vendor(frm, ni); 3033 frm = ieee80211_add_htinfo_vendor(frm, ni); 3034 } 3035 #ifdef IEEE80211_SUPPORT_SUPERG 3036 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3037 bo->bo_ath = frm; 3038 frm = ieee80211_add_athcaps(frm, ni); 3039 } 3040 #endif 3041 #ifdef IEEE80211_SUPPORT_TDMA 3042 if (vap->iv_caps & IEEE80211_C_TDMA) { 3043 bo->bo_tdma = frm; 3044 frm = ieee80211_add_tdma(frm, vap); 3045 } 3046 #endif 3047 if (vap->iv_appie_beacon != NULL) { 3048 bo->bo_appie = frm; 3049 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3050 frm = add_appie(frm, vap->iv_appie_beacon); 3051 } 3052 #ifdef IEEE80211_SUPPORT_MESH 3053 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3054 frm = ieee80211_add_meshid(frm, vap); 3055 bo->bo_meshconf = frm; 3056 frm = ieee80211_add_meshconf(frm, vap); 3057 } 3058 #endif 3059 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3060 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3061 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3062 } 3063 3064 /* 3065 * Allocate a beacon frame and fillin the appropriate bits. 3066 */ 3067 struct mbuf * 3068 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3069 { 3070 struct ieee80211vap *vap = ni->ni_vap; 3071 struct ieee80211com *ic = ni->ni_ic; 3072 struct ifnet *ifp = vap->iv_ifp; 3073 struct ieee80211_frame *wh; 3074 struct mbuf *m; 3075 int pktlen; 3076 uint8_t *frm; 3077 3078 /* 3079 * beacon frame format 3080 * [8] time stamp 3081 * [2] beacon interval 3082 * [2] cabability information 3083 * [tlv] ssid 3084 * [tlv] supported rates 3085 * [3] parameter set (DS) 3086 * [8] CF parameter set (optional) 3087 * [tlv] parameter set (IBSS/TIM) 3088 * [tlv] country (optional) 3089 * [3] power control (optional) 3090 * [5] channel switch announcement (CSA) (optional) 3091 * [tlv] extended rate phy (ERP) 3092 * [tlv] extended supported rates 3093 * [tlv] RSN parameters 3094 * [tlv] HT capabilities 3095 * [tlv] HT information 3096 * [tlv] Vendor OUI HT capabilities (optional) 3097 * [tlv] Vendor OUI HT information (optional) 3098 * XXX Vendor-specific OIDs (e.g. Atheros) 3099 * [tlv] WPA parameters 3100 * [tlv] WME parameters 3101 * [tlv] TDMA parameters (optional) 3102 * [tlv] Mesh ID (MBSS) 3103 * [tlv] Mesh Conf (MBSS) 3104 * [tlv] application data (optional) 3105 * NB: we allocate the max space required for the TIM bitmap. 3106 * XXX how big is this? 3107 */ 3108 pktlen = 8 /* time stamp */ 3109 + sizeof(uint16_t) /* beacon interval */ 3110 + sizeof(uint16_t) /* capabilities */ 3111 + 2 + ni->ni_esslen /* ssid */ 3112 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3113 + 2 + 1 /* DS parameters */ 3114 + 2 + 6 /* CF parameters */ 3115 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3116 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3117 + 2 + 1 /* power control */ 3118 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3119 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3120 + 2 + 1 /* ERP */ 3121 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3122 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3123 2*sizeof(struct ieee80211_ie_wpa) : 0) 3124 /* XXX conditional? */ 3125 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3126 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3127 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3128 sizeof(struct ieee80211_wme_param) : 0) 3129 #ifdef IEEE80211_SUPPORT_SUPERG 3130 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3131 #endif 3132 #ifdef IEEE80211_SUPPORT_TDMA 3133 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3134 sizeof(struct ieee80211_tdma_param) : 0) 3135 #endif 3136 #ifdef IEEE80211_SUPPORT_MESH 3137 + 2 + ni->ni_meshidlen 3138 + sizeof(struct ieee80211_meshconf_ie) 3139 #endif 3140 + IEEE80211_MAX_APPIE 3141 ; 3142 m = ieee80211_getmgtframe(&frm, 3143 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3144 if (m == NULL) { 3145 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3146 "%s: cannot get buf; size %u\n", __func__, pktlen); 3147 vap->iv_stats.is_tx_nobuf++; 3148 return NULL; 3149 } 3150 ieee80211_beacon_construct(m, frm, ni); 3151 3152 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3153 KASSERT(m != NULL, ("no space for 802.11 header?")); 3154 wh = mtod(m, struct ieee80211_frame *); 3155 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3156 IEEE80211_FC0_SUBTYPE_BEACON; 3157 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3158 *(uint16_t *)wh->i_dur = 0; 3159 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3160 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3161 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3162 *(uint16_t *)wh->i_seq = 0; 3163 3164 return m; 3165 } 3166 3167 /* 3168 * Update the dynamic parts of a beacon frame based on the current state. 3169 */ 3170 int 3171 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3172 { 3173 struct ieee80211vap *vap = ni->ni_vap; 3174 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3175 struct ieee80211com *ic = ni->ni_ic; 3176 int len_changed = 0; 3177 uint16_t capinfo; 3178 struct ieee80211_frame *wh; 3179 ieee80211_seq seqno; 3180 3181 IEEE80211_LOCK(ic); 3182 /* 3183 * Handle 11h channel change when we've reached the count. 3184 * We must recalculate the beacon frame contents to account 3185 * for the new channel. Note we do this only for the first 3186 * vap that reaches this point; subsequent vaps just update 3187 * their beacon state to reflect the recalculated channel. 3188 */ 3189 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3190 vap->iv_csa_count == ic->ic_csa_count) { 3191 vap->iv_csa_count = 0; 3192 /* 3193 * Effect channel change before reconstructing the beacon 3194 * frame contents as many places reference ni_chan. 3195 */ 3196 if (ic->ic_csa_newchan != NULL) 3197 ieee80211_csa_completeswitch(ic); 3198 /* 3199 * NB: ieee80211_beacon_construct clears all pending 3200 * updates in bo_flags so we don't need to explicitly 3201 * clear IEEE80211_BEACON_CSA. 3202 */ 3203 ieee80211_beacon_construct(m, 3204 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3205 3206 /* XXX do WME aggressive mode processing? */ 3207 IEEE80211_UNLOCK(ic); 3208 return 1; /* just assume length changed */ 3209 } 3210 3211 wh = mtod(m, struct ieee80211_frame *); 3212 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3213 *(uint16_t *)&wh->i_seq[0] = 3214 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3215 M_SEQNO_SET(m, seqno); 3216 3217 /* XXX faster to recalculate entirely or just changes? */ 3218 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3219 *bo->bo_caps = htole16(capinfo); 3220 3221 if (vap->iv_flags & IEEE80211_F_WME) { 3222 struct ieee80211_wme_state *wme = &ic->ic_wme; 3223 3224 /* 3225 * Check for aggressive mode change. When there is 3226 * significant high priority traffic in the BSS 3227 * throttle back BE traffic by using conservative 3228 * parameters. Otherwise BE uses aggressive params 3229 * to optimize performance of legacy/non-QoS traffic. 3230 */ 3231 if (wme->wme_flags & WME_F_AGGRMODE) { 3232 if (wme->wme_hipri_traffic > 3233 wme->wme_hipri_switch_thresh) { 3234 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3235 "%s: traffic %u, disable aggressive mode\n", 3236 __func__, wme->wme_hipri_traffic); 3237 wme->wme_flags &= ~WME_F_AGGRMODE; 3238 ieee80211_wme_updateparams_locked(vap); 3239 wme->wme_hipri_traffic = 3240 wme->wme_hipri_switch_hysteresis; 3241 } else 3242 wme->wme_hipri_traffic = 0; 3243 } else { 3244 if (wme->wme_hipri_traffic <= 3245 wme->wme_hipri_switch_thresh) { 3246 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3247 "%s: traffic %u, enable aggressive mode\n", 3248 __func__, wme->wme_hipri_traffic); 3249 wme->wme_flags |= WME_F_AGGRMODE; 3250 ieee80211_wme_updateparams_locked(vap); 3251 wme->wme_hipri_traffic = 0; 3252 } else 3253 wme->wme_hipri_traffic = 3254 wme->wme_hipri_switch_hysteresis; 3255 } 3256 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3257 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3258 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3259 } 3260 } 3261 3262 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3263 ieee80211_ht_update_beacon(vap, bo); 3264 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3265 } 3266 #ifdef IEEE80211_SUPPORT_TDMA 3267 if (vap->iv_caps & IEEE80211_C_TDMA) { 3268 /* 3269 * NB: the beacon is potentially updated every TBTT. 3270 */ 3271 ieee80211_tdma_update_beacon(vap, bo); 3272 } 3273 #endif 3274 #ifdef IEEE80211_SUPPORT_MESH 3275 if (vap->iv_opmode == IEEE80211_M_MBSS) 3276 ieee80211_mesh_update_beacon(vap, bo); 3277 #endif 3278 3279 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3280 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3281 struct ieee80211_tim_ie *tie = 3282 (struct ieee80211_tim_ie *) bo->bo_tim; 3283 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3284 u_int timlen, timoff, i; 3285 /* 3286 * ATIM/DTIM needs updating. If it fits in the 3287 * current space allocated then just copy in the 3288 * new bits. Otherwise we need to move any trailing 3289 * data to make room. Note that we know there is 3290 * contiguous space because ieee80211_beacon_allocate 3291 * insures there is space in the mbuf to write a 3292 * maximal-size virtual bitmap (based on iv_max_aid). 3293 */ 3294 /* 3295 * Calculate the bitmap size and offset, copy any 3296 * trailer out of the way, and then copy in the 3297 * new bitmap and update the information element. 3298 * Note that the tim bitmap must contain at least 3299 * one byte and any offset must be even. 3300 */ 3301 if (vap->iv_ps_pending != 0) { 3302 timoff = 128; /* impossibly large */ 3303 for (i = 0; i < vap->iv_tim_len; i++) 3304 if (vap->iv_tim_bitmap[i]) { 3305 timoff = i &~ 1; 3306 break; 3307 } 3308 KASSERT(timoff != 128, ("tim bitmap empty!")); 3309 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3310 if (vap->iv_tim_bitmap[i]) 3311 break; 3312 timlen = 1 + (i - timoff); 3313 } else { 3314 timoff = 0; 3315 timlen = 1; 3316 } 3317 if (timlen != bo->bo_tim_len) { 3318 /* copy up/down trailer */ 3319 int adjust = tie->tim_bitmap+timlen 3320 - bo->bo_tim_trailer; 3321 ovbcopy(bo->bo_tim_trailer, 3322 bo->bo_tim_trailer+adjust, 3323 bo->bo_tim_trailer_len); 3324 bo->bo_tim_trailer += adjust; 3325 bo->bo_erp += adjust; 3326 bo->bo_htinfo += adjust; 3327 #ifdef IEEE80211_SUPPORT_SUPERG 3328 bo->bo_ath += adjust; 3329 #endif 3330 #ifdef IEEE80211_SUPPORT_TDMA 3331 bo->bo_tdma += adjust; 3332 #endif 3333 #ifdef IEEE80211_SUPPORT_MESH 3334 bo->bo_meshconf += adjust; 3335 #endif 3336 bo->bo_appie += adjust; 3337 bo->bo_wme += adjust; 3338 bo->bo_csa += adjust; 3339 bo->bo_quiet += adjust; 3340 bo->bo_tim_len = timlen; 3341 3342 /* update information element */ 3343 tie->tim_len = 3 + timlen; 3344 tie->tim_bitctl = timoff; 3345 len_changed = 1; 3346 } 3347 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3348 bo->bo_tim_len); 3349 3350 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3351 3352 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3353 "%s: TIM updated, pending %u, off %u, len %u\n", 3354 __func__, vap->iv_ps_pending, timoff, timlen); 3355 } 3356 /* count down DTIM period */ 3357 if (tie->tim_count == 0) 3358 tie->tim_count = tie->tim_period - 1; 3359 else 3360 tie->tim_count--; 3361 /* update state for buffered multicast frames on DTIM */ 3362 if (mcast && tie->tim_count == 0) 3363 tie->tim_bitctl |= 1; 3364 else 3365 tie->tim_bitctl &= ~1; 3366 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3367 struct ieee80211_csa_ie *csa = 3368 (struct ieee80211_csa_ie *) bo->bo_csa; 3369 3370 /* 3371 * Insert or update CSA ie. If we're just starting 3372 * to count down to the channel switch then we need 3373 * to insert the CSA ie. Otherwise we just need to 3374 * drop the count. The actual change happens above 3375 * when the vap's count reaches the target count. 3376 */ 3377 if (vap->iv_csa_count == 0) { 3378 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3379 bo->bo_erp += sizeof(*csa); 3380 bo->bo_htinfo += sizeof(*csa); 3381 bo->bo_wme += sizeof(*csa); 3382 #ifdef IEEE80211_SUPPORT_SUPERG 3383 bo->bo_ath += sizeof(*csa); 3384 #endif 3385 #ifdef IEEE80211_SUPPORT_TDMA 3386 bo->bo_tdma += sizeof(*csa); 3387 #endif 3388 #ifdef IEEE80211_SUPPORT_MESH 3389 bo->bo_meshconf += sizeof(*csa); 3390 #endif 3391 bo->bo_appie += sizeof(*csa); 3392 bo->bo_csa_trailer_len += sizeof(*csa); 3393 bo->bo_quiet += sizeof(*csa); 3394 bo->bo_tim_trailer_len += sizeof(*csa); 3395 m->m_len += sizeof(*csa); 3396 m->m_pkthdr.len += sizeof(*csa); 3397 3398 ieee80211_add_csa(bo->bo_csa, vap); 3399 } else 3400 csa->csa_count--; 3401 vap->iv_csa_count++; 3402 /* NB: don't clear IEEE80211_BEACON_CSA */ 3403 } 3404 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3405 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3406 if (vap->iv_quiet) 3407 ieee80211_add_quiet(bo->bo_quiet, vap); 3408 } 3409 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3410 /* 3411 * ERP element needs updating. 3412 */ 3413 (void) ieee80211_add_erp(bo->bo_erp, ic); 3414 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3415 } 3416 #ifdef IEEE80211_SUPPORT_SUPERG 3417 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3418 ieee80211_add_athcaps(bo->bo_ath, ni); 3419 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3420 } 3421 #endif 3422 } 3423 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3424 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3425 int aielen; 3426 uint8_t *frm; 3427 3428 aielen = 0; 3429 if (aie != NULL) 3430 aielen += aie->ie_len; 3431 if (aielen != bo->bo_appie_len) { 3432 /* copy up/down trailer */ 3433 int adjust = aielen - bo->bo_appie_len; 3434 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3435 bo->bo_tim_trailer_len); 3436 bo->bo_tim_trailer += adjust; 3437 bo->bo_appie += adjust; 3438 bo->bo_appie_len = aielen; 3439 3440 len_changed = 1; 3441 } 3442 frm = bo->bo_appie; 3443 if (aie != NULL) 3444 frm = add_appie(frm, aie); 3445 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3446 } 3447 IEEE80211_UNLOCK(ic); 3448 3449 return len_changed; 3450 } 3451 3452 /* 3453 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3454 * tunnel encapsulation. The frame is assumed to have an Ethernet 3455 * header at the front that must be stripped before prepending the 3456 * LLC followed by the Ethernet header passed in (with an Ethernet 3457 * type that specifies the payload size). 3458 */ 3459 struct mbuf * 3460 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3461 const struct ether_header *eh) 3462 { 3463 struct llc *llc; 3464 uint16_t payload; 3465 3466 /* XXX optimize by combining m_adj+M_PREPEND */ 3467 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3468 llc = mtod(m, struct llc *); 3469 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3470 llc->llc_control = LLC_UI; 3471 llc->llc_snap.org_code[0] = 0; 3472 llc->llc_snap.org_code[1] = 0; 3473 llc->llc_snap.org_code[2] = 0; 3474 llc->llc_snap.ether_type = eh->ether_type; 3475 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3476 3477 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3478 if (m == NULL) { /* XXX cannot happen */ 3479 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3480 "%s: no space for ether_header\n", __func__); 3481 vap->iv_stats.is_tx_nobuf++; 3482 return NULL; 3483 } 3484 ETHER_HEADER_COPY(mtod(m, void *), eh); 3485 mtod(m, struct ether_header *)->ether_type = htons(payload); 3486 return m; 3487 } 3488 3489 /* 3490 * Complete an mbuf transmission. 3491 * 3492 * For now, this simply processes a completed frame after the 3493 * driver has completed it's transmission and/or retransmission. 3494 * It assumes the frame is an 802.11 encapsulated frame. 3495 * 3496 * Later on it will grow to become the exit path for a given frame 3497 * from the driver and, depending upon how it's been encapsulated 3498 * and already transmitted, it may end up doing A-MPDU retransmission, 3499 * power save requeuing, etc. 3500 * 3501 * In order for the above to work, the driver entry point to this 3502 * must not hold any driver locks. Thus, the driver needs to delay 3503 * any actual mbuf completion until it can release said locks. 3504 * 3505 * This frees the mbuf and if the mbuf has a node reference, 3506 * the node reference will be freed. 3507 */ 3508 void 3509 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3510 { 3511 3512 if (ni != NULL) { 3513 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3514 3515 if (status == 0) { 3516 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3517 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3518 if (m->m_flags & M_MCAST) 3519 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3520 } else 3521 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3522 if (m->m_flags & M_TXCB) 3523 ieee80211_process_callback(ni, m, status); 3524 ieee80211_free_node(ni); 3525 } 3526 m_freem(m); 3527 } 3528