xref: /freebsd/sys/net80211/ieee80211_output.c (revision eb9da1ada8b6b2c74378a5c17029ec5a7fb199e6)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 
62 #if defined(INET) || defined(INET6)
63 #include <netinet/in.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/if_ether.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #endif
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <security/mac/mac_framework.h>
76 
77 #define	ETHER_HEADER_COPY(dst, src) \
78 	memcpy(dst, src, sizeof(struct ether_header))
79 
80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83 
84 #ifdef IEEE80211_DEBUG
85 /*
86  * Decide if an outbound management frame should be
87  * printed when debugging is enabled.  This filters some
88  * of the less interesting frames that come frequently
89  * (e.g. beacons).
90  */
91 static __inline int
92 doprint(struct ieee80211vap *vap, int subtype)
93 {
94 	switch (subtype) {
95 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96 		return (vap->iv_opmode == IEEE80211_M_IBSS);
97 	}
98 	return 1;
99 }
100 #endif
101 
102 /*
103  * Transmit a frame to the given destination on the given VAP.
104  *
105  * It's up to the caller to figure out the details of who this
106  * is going to and resolving the node.
107  *
108  * This routine takes care of queuing it for power save,
109  * A-MPDU state stuff, fast-frames state stuff, encapsulation
110  * if required, then passing it up to the driver layer.
111  *
112  * This routine (for now) consumes the mbuf and frees the node
113  * reference; it ideally will return a TX status which reflects
114  * whether the mbuf was consumed or not, so the caller can
115  * free the mbuf (if appropriate) and the node reference (again,
116  * if appropriate.)
117  */
118 int
119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120     struct ieee80211_node *ni)
121 {
122 	struct ieee80211com *ic = vap->iv_ic;
123 	struct ifnet *ifp = vap->iv_ifp;
124 #ifdef IEEE80211_SUPPORT_SUPERG
125 	int mcast;
126 #endif
127 
128 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
129 	    (m->m_flags & M_PWR_SAV) == 0) {
130 		/*
131 		 * Station in power save mode; pass the frame
132 		 * to the 802.11 layer and continue.  We'll get
133 		 * the frame back when the time is right.
134 		 * XXX lose WDS vap linkage?
135 		 */
136 		if (ieee80211_pwrsave(ni, m) != 0)
137 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
138 		ieee80211_free_node(ni);
139 
140 		/*
141 		 * We queued it fine, so tell the upper layer
142 		 * that we consumed it.
143 		 */
144 		return (0);
145 	}
146 	/* calculate priority so drivers can find the tx queue */
147 	if (ieee80211_classify(ni, m)) {
148 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
149 		    ni->ni_macaddr, NULL,
150 		    "%s", "classification failure");
151 		vap->iv_stats.is_tx_classify++;
152 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
153 		m_freem(m);
154 		ieee80211_free_node(ni);
155 
156 		/* XXX better status? */
157 		return (0);
158 	}
159 	/*
160 	 * Stash the node pointer.  Note that we do this after
161 	 * any call to ieee80211_dwds_mcast because that code
162 	 * uses any existing value for rcvif to identify the
163 	 * interface it (might have been) received on.
164 	 */
165 	m->m_pkthdr.rcvif = (void *)ni;
166 #ifdef IEEE80211_SUPPORT_SUPERG
167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168 #endif
169 
170 	BPF_MTAP(ifp, m);		/* 802.3 tx */
171 
172 	/*
173 	 * Check if A-MPDU tx aggregation is setup or if we
174 	 * should try to enable it.  The sta must be associated
175 	 * with HT and A-MPDU enabled for use.  When the policy
176 	 * routine decides we should enable A-MPDU we issue an
177 	 * ADDBA request and wait for a reply.  The frame being
178 	 * encapsulated will go out w/o using A-MPDU, or possibly
179 	 * it might be collected by the driver and held/retransmit.
180 	 * The default ic_ampdu_enable routine handles staggering
181 	 * ADDBA requests in case the receiver NAK's us or we are
182 	 * otherwise unable to establish a BA stream.
183 	 */
184 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
185 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
186 		if ((m->m_flags & M_EAPOL) == 0) {
187 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
188 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
189 
190 			ieee80211_txampdu_count_packet(tap);
191 			if (IEEE80211_AMPDU_RUNNING(tap)) {
192 				/*
193 				 * Operational, mark frame for aggregation.
194 				 *
195 				 * XXX do tx aggregation here
196 				 */
197 				m->m_flags |= M_AMPDU_MPDU;
198 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
199 			    ic->ic_ampdu_enable(ni, tap)) {
200 				/*
201 				 * Not negotiated yet, request service.
202 				 */
203 				ieee80211_ampdu_request(ni, tap);
204 				/* XXX hold frame for reply? */
205 			}
206 		}
207 	}
208 
209 #ifdef IEEE80211_SUPPORT_SUPERG
210 	/*
211 	 * Check for AMSDU/FF; queue for aggregation
212 	 *
213 	 * Note: we don't bother trying to do fast frames or
214 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
215 	 * likely could do it for FF (because it's a magic
216 	 * atheros tunnel LLC type) but I don't think we're going
217 	 * to really need to.  For A-MSDU we'd have to set the
218 	 * A-MSDU QoS bit in the wifi header, so we just plain
219 	 * can't do it.
220 	 *
221 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
222 	 * with A-MPDU together which for certain circumstances
223 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
224 	 * I'll ignore that for now so existing behaviour is maintained.
225 	 * Later on it would be good to make "amsdu + ampdu" configurable.
226 	 */
227 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
228 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
229 			m = ieee80211_amsdu_check(ni, m);
230 			if (m == NULL) {
231 				/* NB: any ni ref held on stageq */
232 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
233 				    "%s: amsdu_check queued frame\n",
234 				    __func__);
235 				return (0);
236 			}
237 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
238 		    IEEE80211_NODE_FF)) {
239 			m = ieee80211_ff_check(ni, m);
240 			if (m == NULL) {
241 				/* NB: any ni ref held on stageq */
242 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
243 				    "%s: ff_check queued frame\n",
244 				    __func__);
245 				return (0);
246 			}
247 		}
248 	}
249 #endif /* IEEE80211_SUPPORT_SUPERG */
250 
251 	/*
252 	 * Grab the TX lock - serialise the TX process from this
253 	 * point (where TX state is being checked/modified)
254 	 * through to driver queue.
255 	 */
256 	IEEE80211_TX_LOCK(ic);
257 
258 	/*
259 	 * XXX make the encap and transmit code a separate function
260 	 * so things like the FF (and later A-MSDU) path can just call
261 	 * it for flushed frames.
262 	 */
263 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
264 		/*
265 		 * Encapsulate the packet in prep for transmission.
266 		 */
267 		m = ieee80211_encap(vap, ni, m);
268 		if (m == NULL) {
269 			/* NB: stat+msg handled in ieee80211_encap */
270 			IEEE80211_TX_UNLOCK(ic);
271 			ieee80211_free_node(ni);
272 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
273 			return (ENOBUFS);
274 		}
275 	}
276 	(void) ieee80211_parent_xmitpkt(ic, m);
277 
278 	/*
279 	 * Unlock at this point - no need to hold it across
280 	 * ieee80211_free_node() (ie, the comlock)
281 	 */
282 	IEEE80211_TX_UNLOCK(ic);
283 	ic->ic_lastdata = ticks;
284 
285 	return (0);
286 }
287 
288 
289 
290 /*
291  * Send the given mbuf through the given vap.
292  *
293  * This consumes the mbuf regardless of whether the transmit
294  * was successful or not.
295  *
296  * This does none of the initial checks that ieee80211_start()
297  * does (eg CAC timeout, interface wakeup) - the caller must
298  * do this first.
299  */
300 static int
301 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
302 {
303 #define	IS_DWDS(vap) \
304 	(vap->iv_opmode == IEEE80211_M_WDS && \
305 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
306 	struct ieee80211com *ic = vap->iv_ic;
307 	struct ifnet *ifp = vap->iv_ifp;
308 	struct ieee80211_node *ni;
309 	struct ether_header *eh;
310 
311 	/*
312 	 * Cancel any background scan.
313 	 */
314 	if (ic->ic_flags & IEEE80211_F_SCAN)
315 		ieee80211_cancel_anyscan(vap);
316 	/*
317 	 * Find the node for the destination so we can do
318 	 * things like power save and fast frames aggregation.
319 	 *
320 	 * NB: past this point various code assumes the first
321 	 *     mbuf has the 802.3 header present (and contiguous).
322 	 */
323 	ni = NULL;
324 	if (m->m_len < sizeof(struct ether_header) &&
325 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
326 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
327 		    "discard frame, %s\n", "m_pullup failed");
328 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
329 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
330 		return (ENOBUFS);
331 	}
332 	eh = mtod(m, struct ether_header *);
333 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
334 		if (IS_DWDS(vap)) {
335 			/*
336 			 * Only unicast frames from the above go out
337 			 * DWDS vaps; multicast frames are handled by
338 			 * dispatching the frame as it comes through
339 			 * the AP vap (see below).
340 			 */
341 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
342 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
343 			vap->iv_stats.is_dwds_mcast++;
344 			m_freem(m);
345 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
346 			/* XXX better status? */
347 			return (ENOBUFS);
348 		}
349 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
350 			/*
351 			 * Spam DWDS vap's w/ multicast traffic.
352 			 */
353 			/* XXX only if dwds in use? */
354 			ieee80211_dwds_mcast(vap, m);
355 		}
356 	}
357 #ifdef IEEE80211_SUPPORT_MESH
358 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
359 #endif
360 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
361 		if (ni == NULL) {
362 			/* NB: ieee80211_find_txnode does stat+msg */
363 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
364 			m_freem(m);
365 			/* XXX better status? */
366 			return (ENOBUFS);
367 		}
368 		if (ni->ni_associd == 0 &&
369 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
370 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
371 			    eh->ether_dhost, NULL,
372 			    "sta not associated (type 0x%04x)",
373 			    htons(eh->ether_type));
374 			vap->iv_stats.is_tx_notassoc++;
375 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
376 			m_freem(m);
377 			ieee80211_free_node(ni);
378 			/* XXX better status? */
379 			return (ENOBUFS);
380 		}
381 #ifdef IEEE80211_SUPPORT_MESH
382 	} else {
383 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
384 			/*
385 			 * Proxy station only if configured.
386 			 */
387 			if (!ieee80211_mesh_isproxyena(vap)) {
388 				IEEE80211_DISCARD_MAC(vap,
389 				    IEEE80211_MSG_OUTPUT |
390 				    IEEE80211_MSG_MESH,
391 				    eh->ether_dhost, NULL,
392 				    "%s", "proxy not enabled");
393 				vap->iv_stats.is_mesh_notproxy++;
394 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
395 				m_freem(m);
396 				/* XXX better status? */
397 				return (ENOBUFS);
398 			}
399 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
400 			    "forward frame from DS SA(%6D), DA(%6D)\n",
401 			    eh->ether_shost, ":",
402 			    eh->ether_dhost, ":");
403 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
404 		}
405 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
406 		if (ni == NULL) {
407 			/*
408 			 * NB: ieee80211_mesh_discover holds/disposes
409 			 * frame (e.g. queueing on path discovery).
410 			 */
411 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
412 			/* XXX better status? */
413 			return (ENOBUFS);
414 		}
415 	}
416 #endif
417 
418 	/*
419 	 * We've resolved the sender, so attempt to transmit it.
420 	 */
421 
422 	if (vap->iv_state == IEEE80211_S_SLEEP) {
423 		/*
424 		 * In power save; queue frame and then  wakeup device
425 		 * for transmit.
426 		 */
427 		ic->ic_lastdata = ticks;
428 		if (ieee80211_pwrsave(ni, m) != 0)
429 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
430 		ieee80211_free_node(ni);
431 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
432 		return (0);
433 	}
434 
435 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
436 		return (ENOBUFS);
437 	return (0);
438 #undef	IS_DWDS
439 }
440 
441 /*
442  * Start method for vap's.  All packets from the stack come
443  * through here.  We handle common processing of the packets
444  * before dispatching them to the underlying device.
445  *
446  * if_transmit() requires that the mbuf be consumed by this call
447  * regardless of the return condition.
448  */
449 int
450 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
451 {
452 	struct ieee80211vap *vap = ifp->if_softc;
453 	struct ieee80211com *ic = vap->iv_ic;
454 
455 	/*
456 	 * No data frames go out unless we're running.
457 	 * Note in particular this covers CAC and CSA
458 	 * states (though maybe we should check muting
459 	 * for CSA).
460 	 */
461 	if (vap->iv_state != IEEE80211_S_RUN &&
462 	    vap->iv_state != IEEE80211_S_SLEEP) {
463 		IEEE80211_LOCK(ic);
464 		/* re-check under the com lock to avoid races */
465 		if (vap->iv_state != IEEE80211_S_RUN &&
466 		    vap->iv_state != IEEE80211_S_SLEEP) {
467 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
468 			    "%s: ignore queue, in %s state\n",
469 			    __func__, ieee80211_state_name[vap->iv_state]);
470 			vap->iv_stats.is_tx_badstate++;
471 			IEEE80211_UNLOCK(ic);
472 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
473 			m_freem(m);
474 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
475 			return (ENETDOWN);
476 		}
477 		IEEE80211_UNLOCK(ic);
478 	}
479 
480 	/*
481 	 * Sanitize mbuf flags for net80211 use.  We cannot
482 	 * clear M_PWR_SAV or M_MORE_DATA because these may
483 	 * be set for frames that are re-submitted from the
484 	 * power save queue.
485 	 *
486 	 * NB: This must be done before ieee80211_classify as
487 	 *     it marks EAPOL in frames with M_EAPOL.
488 	 */
489 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
490 
491 	/*
492 	 * Bump to the packet transmission path.
493 	 * The mbuf will be consumed here.
494 	 */
495 	return (ieee80211_start_pkt(vap, m));
496 }
497 
498 void
499 ieee80211_vap_qflush(struct ifnet *ifp)
500 {
501 
502 	/* Empty for now */
503 }
504 
505 /*
506  * 802.11 raw output routine.
507  *
508  * XXX TODO: this (and other send routines) should correctly
509  * XXX keep the pwr mgmt bit set if it decides to call into the
510  * XXX driver to send a frame whilst the state is SLEEP.
511  *
512  * Otherwise the peer may decide that we're awake and flood us
513  * with traffic we are still too asleep to receive!
514  */
515 int
516 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
517     struct mbuf *m, const struct ieee80211_bpf_params *params)
518 {
519 	struct ieee80211com *ic = vap->iv_ic;
520 	int error;
521 
522 	/*
523 	 * Set node - the caller has taken a reference, so ensure
524 	 * that the mbuf has the same node value that
525 	 * it would if it were going via the normal path.
526 	 */
527 	m->m_pkthdr.rcvif = (void *)ni;
528 
529 	/*
530 	 * Attempt to add bpf transmit parameters.
531 	 *
532 	 * For now it's ok to fail; the raw_xmit api still takes
533 	 * them as an option.
534 	 *
535 	 * Later on when ic_raw_xmit() has params removed,
536 	 * they'll have to be added - so fail the transmit if
537 	 * they can't be.
538 	 */
539 	if (params)
540 		(void) ieee80211_add_xmit_params(m, params);
541 
542 	error = ic->ic_raw_xmit(ni, m, params);
543 	if (error) {
544 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
545 		ieee80211_free_node(ni);
546 	}
547 	return (error);
548 }
549 
550 /*
551  * 802.11 output routine. This is (currently) used only to
552  * connect bpf write calls to the 802.11 layer for injecting
553  * raw 802.11 frames.
554  */
555 int
556 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
557 	const struct sockaddr *dst, struct route *ro)
558 {
559 #define senderr(e) do { error = (e); goto bad;} while (0)
560 	struct ieee80211_node *ni = NULL;
561 	struct ieee80211vap *vap;
562 	struct ieee80211_frame *wh;
563 	struct ieee80211com *ic = NULL;
564 	int error;
565 	int ret;
566 
567 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
568 		/*
569 		 * Short-circuit requests if the vap is marked OACTIVE
570 		 * as this can happen because a packet came down through
571 		 * ieee80211_start before the vap entered RUN state in
572 		 * which case it's ok to just drop the frame.  This
573 		 * should not be necessary but callers of if_output don't
574 		 * check OACTIVE.
575 		 */
576 		senderr(ENETDOWN);
577 	}
578 	vap = ifp->if_softc;
579 	ic = vap->iv_ic;
580 	/*
581 	 * Hand to the 802.3 code if not tagged as
582 	 * a raw 802.11 frame.
583 	 */
584 	if (dst->sa_family != AF_IEEE80211)
585 		return vap->iv_output(ifp, m, dst, ro);
586 #ifdef MAC
587 	error = mac_ifnet_check_transmit(ifp, m);
588 	if (error)
589 		senderr(error);
590 #endif
591 	if (ifp->if_flags & IFF_MONITOR)
592 		senderr(ENETDOWN);
593 	if (!IFNET_IS_UP_RUNNING(ifp))
594 		senderr(ENETDOWN);
595 	if (vap->iv_state == IEEE80211_S_CAC) {
596 		IEEE80211_DPRINTF(vap,
597 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
598 		    "block %s frame in CAC state\n", "raw data");
599 		vap->iv_stats.is_tx_badstate++;
600 		senderr(EIO);		/* XXX */
601 	} else if (vap->iv_state == IEEE80211_S_SCAN)
602 		senderr(EIO);
603 	/* XXX bypass bridge, pfil, carp, etc. */
604 
605 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
606 		senderr(EIO);	/* XXX */
607 	wh = mtod(m, struct ieee80211_frame *);
608 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
609 	    IEEE80211_FC0_VERSION_0)
610 		senderr(EIO);	/* XXX */
611 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
612 		senderr(EIO);	/* XXX */
613 
614 	/* locate destination node */
615 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
616 	case IEEE80211_FC1_DIR_NODS:
617 	case IEEE80211_FC1_DIR_FROMDS:
618 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
619 		break;
620 	case IEEE80211_FC1_DIR_TODS:
621 	case IEEE80211_FC1_DIR_DSTODS:
622 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
623 		break;
624 	default:
625 		senderr(EIO);	/* XXX */
626 	}
627 	if (ni == NULL) {
628 		/*
629 		 * Permit packets w/ bpf params through regardless
630 		 * (see below about sa_len).
631 		 */
632 		if (dst->sa_len == 0)
633 			senderr(EHOSTUNREACH);
634 		ni = ieee80211_ref_node(vap->iv_bss);
635 	}
636 
637 	/*
638 	 * Sanitize mbuf for net80211 flags leaked from above.
639 	 *
640 	 * NB: This must be done before ieee80211_classify as
641 	 *     it marks EAPOL in frames with M_EAPOL.
642 	 */
643 	m->m_flags &= ~M_80211_TX;
644 
645 	/* calculate priority so drivers can find the tx queue */
646 	/* XXX assumes an 802.3 frame */
647 	if (ieee80211_classify(ni, m))
648 		senderr(EIO);		/* XXX */
649 
650 	IEEE80211_NODE_STAT(ni, tx_data);
651 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
652 		IEEE80211_NODE_STAT(ni, tx_mcast);
653 		m->m_flags |= M_MCAST;
654 	} else
655 		IEEE80211_NODE_STAT(ni, tx_ucast);
656 	/* NB: ieee80211_encap does not include 802.11 header */
657 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
658 
659 	IEEE80211_TX_LOCK(ic);
660 
661 	/*
662 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
663 	 * present by setting the sa_len field of the sockaddr (yes,
664 	 * this is a hack).
665 	 * NB: we assume sa_data is suitably aligned to cast.
666 	 */
667 	ret = ieee80211_raw_output(vap, ni, m,
668 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
669 		dst->sa_data : NULL));
670 	IEEE80211_TX_UNLOCK(ic);
671 	return (ret);
672 bad:
673 	if (m != NULL)
674 		m_freem(m);
675 	if (ni != NULL)
676 		ieee80211_free_node(ni);
677 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
678 	return error;
679 #undef senderr
680 }
681 
682 /*
683  * Set the direction field and address fields of an outgoing
684  * frame.  Note this should be called early on in constructing
685  * a frame as it sets i_fc[1]; other bits can then be or'd in.
686  */
687 void
688 ieee80211_send_setup(
689 	struct ieee80211_node *ni,
690 	struct mbuf *m,
691 	int type, int tid,
692 	const uint8_t sa[IEEE80211_ADDR_LEN],
693 	const uint8_t da[IEEE80211_ADDR_LEN],
694 	const uint8_t bssid[IEEE80211_ADDR_LEN])
695 {
696 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
697 	struct ieee80211vap *vap = ni->ni_vap;
698 	struct ieee80211_tx_ampdu *tap;
699 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
700 	ieee80211_seq seqno;
701 
702 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
703 
704 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
705 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
706 		switch (vap->iv_opmode) {
707 		case IEEE80211_M_STA:
708 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
709 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
710 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
711 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
712 			break;
713 		case IEEE80211_M_IBSS:
714 		case IEEE80211_M_AHDEMO:
715 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
716 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
717 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
718 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
719 			break;
720 		case IEEE80211_M_HOSTAP:
721 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
722 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
723 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
724 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
725 			break;
726 		case IEEE80211_M_WDS:
727 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
728 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
729 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
730 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
731 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
732 			break;
733 		case IEEE80211_M_MBSS:
734 #ifdef IEEE80211_SUPPORT_MESH
735 			if (IEEE80211_IS_MULTICAST(da)) {
736 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
737 				/* XXX next hop */
738 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
739 				IEEE80211_ADDR_COPY(wh->i_addr2,
740 				    vap->iv_myaddr);
741 			} else {
742 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
743 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
744 				IEEE80211_ADDR_COPY(wh->i_addr2,
745 				    vap->iv_myaddr);
746 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
747 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
748 			}
749 #endif
750 			break;
751 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
752 			break;
753 		}
754 	} else {
755 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
756 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
757 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
758 #ifdef IEEE80211_SUPPORT_MESH
759 		if (vap->iv_opmode == IEEE80211_M_MBSS)
760 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
761 		else
762 #endif
763 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
764 	}
765 	*(uint16_t *)&wh->i_dur[0] = 0;
766 
767 	tap = &ni->ni_tx_ampdu[tid];
768 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
769 		m->m_flags |= M_AMPDU_MPDU;
770 	else {
771 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
772 				      type & IEEE80211_FC0_SUBTYPE_MASK))
773 			seqno = ni->ni_txseqs[tid]++;
774 		else
775 			seqno = 0;
776 
777 		*(uint16_t *)&wh->i_seq[0] =
778 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
779 		M_SEQNO_SET(m, seqno);
780 	}
781 
782 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
783 		m->m_flags |= M_MCAST;
784 #undef WH4
785 }
786 
787 /*
788  * Send a management frame to the specified node.  The node pointer
789  * must have a reference as the pointer will be passed to the driver
790  * and potentially held for a long time.  If the frame is successfully
791  * dispatched to the driver, then it is responsible for freeing the
792  * reference (and potentially free'ing up any associated storage);
793  * otherwise deal with reclaiming any reference (on error).
794  */
795 int
796 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
797 	struct ieee80211_bpf_params *params)
798 {
799 	struct ieee80211vap *vap = ni->ni_vap;
800 	struct ieee80211com *ic = ni->ni_ic;
801 	struct ieee80211_frame *wh;
802 	int ret;
803 
804 	KASSERT(ni != NULL, ("null node"));
805 
806 	if (vap->iv_state == IEEE80211_S_CAC) {
807 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
808 		    ni, "block %s frame in CAC state",
809 			ieee80211_mgt_subtype_name(type));
810 		vap->iv_stats.is_tx_badstate++;
811 		ieee80211_free_node(ni);
812 		m_freem(m);
813 		return EIO;		/* XXX */
814 	}
815 
816 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
817 	if (m == NULL) {
818 		ieee80211_free_node(ni);
819 		return ENOMEM;
820 	}
821 
822 	IEEE80211_TX_LOCK(ic);
823 
824 	wh = mtod(m, struct ieee80211_frame *);
825 	ieee80211_send_setup(ni, m,
826 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
827 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
828 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
829 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
830 		    "encrypting frame (%s)", __func__);
831 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
832 	}
833 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
834 
835 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
836 	M_WME_SETAC(m, params->ibp_pri);
837 
838 #ifdef IEEE80211_DEBUG
839 	/* avoid printing too many frames */
840 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
841 	    ieee80211_msg_dumppkts(vap)) {
842 		printf("[%s] send %s on channel %u\n",
843 		    ether_sprintf(wh->i_addr1),
844 		    ieee80211_mgt_subtype_name(type),
845 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
846 	}
847 #endif
848 	IEEE80211_NODE_STAT(ni, tx_mgmt);
849 
850 	ret = ieee80211_raw_output(vap, ni, m, params);
851 	IEEE80211_TX_UNLOCK(ic);
852 	return (ret);
853 }
854 
855 static void
856 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
857     int status)
858 {
859 	struct ieee80211vap *vap = ni->ni_vap;
860 
861 	wakeup(vap);
862 }
863 
864 /*
865  * Send a null data frame to the specified node.  If the station
866  * is setup for QoS then a QoS Null Data frame is constructed.
867  * If this is a WDS station then a 4-address frame is constructed.
868  *
869  * NB: the caller is assumed to have setup a node reference
870  *     for use; this is necessary to deal with a race condition
871  *     when probing for inactive stations.  Like ieee80211_mgmt_output
872  *     we must cleanup any node reference on error;  however we
873  *     can safely just unref it as we know it will never be the
874  *     last reference to the node.
875  */
876 int
877 ieee80211_send_nulldata(struct ieee80211_node *ni)
878 {
879 	struct ieee80211vap *vap = ni->ni_vap;
880 	struct ieee80211com *ic = ni->ni_ic;
881 	struct mbuf *m;
882 	struct ieee80211_frame *wh;
883 	int hdrlen;
884 	uint8_t *frm;
885 	int ret;
886 
887 	if (vap->iv_state == IEEE80211_S_CAC) {
888 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
889 		    ni, "block %s frame in CAC state", "null data");
890 		ieee80211_unref_node(&ni);
891 		vap->iv_stats.is_tx_badstate++;
892 		return EIO;		/* XXX */
893 	}
894 
895 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
896 		hdrlen = sizeof(struct ieee80211_qosframe);
897 	else
898 		hdrlen = sizeof(struct ieee80211_frame);
899 	/* NB: only WDS vap's get 4-address frames */
900 	if (vap->iv_opmode == IEEE80211_M_WDS)
901 		hdrlen += IEEE80211_ADDR_LEN;
902 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
903 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
904 
905 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
906 	if (m == NULL) {
907 		/* XXX debug msg */
908 		ieee80211_unref_node(&ni);
909 		vap->iv_stats.is_tx_nobuf++;
910 		return ENOMEM;
911 	}
912 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
913 	    ("leading space %zd", M_LEADINGSPACE(m)));
914 	M_PREPEND(m, hdrlen, M_NOWAIT);
915 	if (m == NULL) {
916 		/* NB: cannot happen */
917 		ieee80211_free_node(ni);
918 		return ENOMEM;
919 	}
920 
921 	IEEE80211_TX_LOCK(ic);
922 
923 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
924 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
925 		const int tid = WME_AC_TO_TID(WME_AC_BE);
926 		uint8_t *qos;
927 
928 		ieee80211_send_setup(ni, m,
929 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
930 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
931 
932 		if (vap->iv_opmode == IEEE80211_M_WDS)
933 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
934 		else
935 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
936 		qos[0] = tid & IEEE80211_QOS_TID;
937 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
938 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
939 		qos[1] = 0;
940 	} else {
941 		ieee80211_send_setup(ni, m,
942 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
943 		    IEEE80211_NONQOS_TID,
944 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
945 	}
946 	if (vap->iv_opmode != IEEE80211_M_WDS) {
947 		/* NB: power management bit is never sent by an AP */
948 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
949 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
950 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
951 	}
952 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
953 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
954 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
955 		    NULL);
956 	}
957 	m->m_len = m->m_pkthdr.len = hdrlen;
958 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
959 
960 	M_WME_SETAC(m, WME_AC_BE);
961 
962 	IEEE80211_NODE_STAT(ni, tx_data);
963 
964 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
965 	    "send %snull data frame on channel %u, pwr mgt %s",
966 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
967 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
968 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
969 
970 	ret = ieee80211_raw_output(vap, ni, m, NULL);
971 	IEEE80211_TX_UNLOCK(ic);
972 	return (ret);
973 }
974 
975 /*
976  * Assign priority to a frame based on any vlan tag assigned
977  * to the station and/or any Diffserv setting in an IP header.
978  * Finally, if an ACM policy is setup (in station mode) it's
979  * applied.
980  */
981 int
982 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
983 {
984 	const struct ether_header *eh = mtod(m, struct ether_header *);
985 	int v_wme_ac, d_wme_ac, ac;
986 
987 	/*
988 	 * Always promote PAE/EAPOL frames to high priority.
989 	 */
990 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
991 		/* NB: mark so others don't need to check header */
992 		m->m_flags |= M_EAPOL;
993 		ac = WME_AC_VO;
994 		goto done;
995 	}
996 	/*
997 	 * Non-qos traffic goes to BE.
998 	 */
999 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1000 		ac = WME_AC_BE;
1001 		goto done;
1002 	}
1003 
1004 	/*
1005 	 * If node has a vlan tag then all traffic
1006 	 * to it must have a matching tag.
1007 	 */
1008 	v_wme_ac = 0;
1009 	if (ni->ni_vlan != 0) {
1010 		 if ((m->m_flags & M_VLANTAG) == 0) {
1011 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1012 			return 1;
1013 		}
1014 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1015 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1016 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1017 			return 1;
1018 		}
1019 		/* map vlan priority to AC */
1020 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1021 	}
1022 
1023 	/* XXX m_copydata may be too slow for fast path */
1024 #ifdef INET
1025 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1026 		uint8_t tos;
1027 		/*
1028 		 * IP frame, map the DSCP bits from the TOS field.
1029 		 */
1030 		/* NB: ip header may not be in first mbuf */
1031 		m_copydata(m, sizeof(struct ether_header) +
1032 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1033 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1034 		d_wme_ac = TID_TO_WME_AC(tos);
1035 	} else {
1036 #endif /* INET */
1037 #ifdef INET6
1038 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1039 		uint32_t flow;
1040 		uint8_t tos;
1041 		/*
1042 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1043 		 */
1044 		m_copydata(m, sizeof(struct ether_header) +
1045 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1046 		    (caddr_t) &flow);
1047 		tos = (uint8_t)(ntohl(flow) >> 20);
1048 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1049 		d_wme_ac = TID_TO_WME_AC(tos);
1050 	} else {
1051 #endif /* INET6 */
1052 		d_wme_ac = WME_AC_BE;
1053 #ifdef INET6
1054 	}
1055 #endif
1056 #ifdef INET
1057 	}
1058 #endif
1059 	/*
1060 	 * Use highest priority AC.
1061 	 */
1062 	if (v_wme_ac > d_wme_ac)
1063 		ac = v_wme_ac;
1064 	else
1065 		ac = d_wme_ac;
1066 
1067 	/*
1068 	 * Apply ACM policy.
1069 	 */
1070 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1071 		static const int acmap[4] = {
1072 			WME_AC_BK,	/* WME_AC_BE */
1073 			WME_AC_BK,	/* WME_AC_BK */
1074 			WME_AC_BE,	/* WME_AC_VI */
1075 			WME_AC_VI,	/* WME_AC_VO */
1076 		};
1077 		struct ieee80211com *ic = ni->ni_ic;
1078 
1079 		while (ac != WME_AC_BK &&
1080 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1081 			ac = acmap[ac];
1082 	}
1083 done:
1084 	M_WME_SETAC(m, ac);
1085 	return 0;
1086 }
1087 
1088 /*
1089  * Insure there is sufficient contiguous space to encapsulate the
1090  * 802.11 data frame.  If room isn't already there, arrange for it.
1091  * Drivers and cipher modules assume we have done the necessary work
1092  * and fail rudely if they don't find the space they need.
1093  */
1094 struct mbuf *
1095 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1096 	struct ieee80211_key *key, struct mbuf *m)
1097 {
1098 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1099 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1100 
1101 	if (key != NULL) {
1102 		/* XXX belongs in crypto code? */
1103 		needed_space += key->wk_cipher->ic_header;
1104 		/* XXX frags */
1105 		/*
1106 		 * When crypto is being done in the host we must insure
1107 		 * the data are writable for the cipher routines; clone
1108 		 * a writable mbuf chain.
1109 		 * XXX handle SWMIC specially
1110 		 */
1111 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1112 			m = m_unshare(m, M_NOWAIT);
1113 			if (m == NULL) {
1114 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1115 				    "%s: cannot get writable mbuf\n", __func__);
1116 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1117 				return NULL;
1118 			}
1119 		}
1120 	}
1121 	/*
1122 	 * We know we are called just before stripping an Ethernet
1123 	 * header and prepending an LLC header.  This means we know
1124 	 * there will be
1125 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1126 	 * bytes recovered to which we need additional space for the
1127 	 * 802.11 header and any crypto header.
1128 	 */
1129 	/* XXX check trailing space and copy instead? */
1130 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1131 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1132 		if (n == NULL) {
1133 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1134 			    "%s: cannot expand storage\n", __func__);
1135 			vap->iv_stats.is_tx_nobuf++;
1136 			m_freem(m);
1137 			return NULL;
1138 		}
1139 		KASSERT(needed_space <= MHLEN,
1140 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1141 		/*
1142 		 * Setup new mbuf to have leading space to prepend the
1143 		 * 802.11 header and any crypto header bits that are
1144 		 * required (the latter are added when the driver calls
1145 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1146 		 */
1147 		/* NB: must be first 'cuz it clobbers m_data */
1148 		m_move_pkthdr(n, m);
1149 		n->m_len = 0;			/* NB: m_gethdr does not set */
1150 		n->m_data += needed_space;
1151 		/*
1152 		 * Pull up Ethernet header to create the expected layout.
1153 		 * We could use m_pullup but that's overkill (i.e. we don't
1154 		 * need the actual data) and it cannot fail so do it inline
1155 		 * for speed.
1156 		 */
1157 		/* NB: struct ether_header is known to be contiguous */
1158 		n->m_len += sizeof(struct ether_header);
1159 		m->m_len -= sizeof(struct ether_header);
1160 		m->m_data += sizeof(struct ether_header);
1161 		/*
1162 		 * Replace the head of the chain.
1163 		 */
1164 		n->m_next = m;
1165 		m = n;
1166 	}
1167 	return m;
1168 #undef TO_BE_RECLAIMED
1169 }
1170 
1171 /*
1172  * Return the transmit key to use in sending a unicast frame.
1173  * If a unicast key is set we use that.  When no unicast key is set
1174  * we fall back to the default transmit key.
1175  */
1176 static __inline struct ieee80211_key *
1177 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1178 	struct ieee80211_node *ni)
1179 {
1180 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1181 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1182 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1183 			return NULL;
1184 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1185 	} else {
1186 		return &ni->ni_ucastkey;
1187 	}
1188 }
1189 
1190 /*
1191  * Return the transmit key to use in sending a multicast frame.
1192  * Multicast traffic always uses the group key which is installed as
1193  * the default tx key.
1194  */
1195 static __inline struct ieee80211_key *
1196 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1197 	struct ieee80211_node *ni)
1198 {
1199 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1200 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1201 		return NULL;
1202 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1203 }
1204 
1205 /*
1206  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1207  * If an error is encountered NULL is returned.  The caller is required
1208  * to provide a node reference and pullup the ethernet header in the
1209  * first mbuf.
1210  *
1211  * NB: Packet is assumed to be processed by ieee80211_classify which
1212  *     marked EAPOL frames w/ M_EAPOL.
1213  */
1214 struct mbuf *
1215 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1216     struct mbuf *m)
1217 {
1218 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1219 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1220 	struct ieee80211com *ic = ni->ni_ic;
1221 #ifdef IEEE80211_SUPPORT_MESH
1222 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1223 	struct ieee80211_meshcntl_ae10 *mc;
1224 	struct ieee80211_mesh_route *rt = NULL;
1225 	int dir = -1;
1226 #endif
1227 	struct ether_header eh;
1228 	struct ieee80211_frame *wh;
1229 	struct ieee80211_key *key;
1230 	struct llc *llc;
1231 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1232 	ieee80211_seq seqno;
1233 	int meshhdrsize, meshae;
1234 	uint8_t *qos;
1235 	int is_amsdu = 0;
1236 
1237 	IEEE80211_TX_LOCK_ASSERT(ic);
1238 
1239 	/*
1240 	 * Copy existing Ethernet header to a safe place.  The
1241 	 * rest of the code assumes it's ok to strip it when
1242 	 * reorganizing state for the final encapsulation.
1243 	 */
1244 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1245 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1246 
1247 	/*
1248 	 * Insure space for additional headers.  First identify
1249 	 * transmit key to use in calculating any buffer adjustments
1250 	 * required.  This is also used below to do privacy
1251 	 * encapsulation work.  Then calculate the 802.11 header
1252 	 * size and any padding required by the driver.
1253 	 *
1254 	 * Note key may be NULL if we fall back to the default
1255 	 * transmit key and that is not set.  In that case the
1256 	 * buffer may not be expanded as needed by the cipher
1257 	 * routines, but they will/should discard it.
1258 	 */
1259 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1260 		if (vap->iv_opmode == IEEE80211_M_STA ||
1261 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1262 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1263 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1264 			key = ieee80211_crypto_getucastkey(vap, ni);
1265 		else
1266 			key = ieee80211_crypto_getmcastkey(vap, ni);
1267 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1268 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1269 			    eh.ether_dhost,
1270 			    "no default transmit key (%s) deftxkey %u",
1271 			    __func__, vap->iv_def_txkey);
1272 			vap->iv_stats.is_tx_nodefkey++;
1273 			goto bad;
1274 		}
1275 	} else
1276 		key = NULL;
1277 	/*
1278 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1279 	 * frames so suppress use.  This may be an issue if other
1280 	 * ap's require all data frames to be QoS-encapsulated
1281 	 * once negotiated in which case we'll need to make this
1282 	 * configurable.
1283 	 * NB: mesh data frames are QoS.
1284 	 */
1285 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1286 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1287 	    (m->m_flags & M_EAPOL) == 0;
1288 	if (addqos)
1289 		hdrsize = sizeof(struct ieee80211_qosframe);
1290 	else
1291 		hdrsize = sizeof(struct ieee80211_frame);
1292 #ifdef IEEE80211_SUPPORT_MESH
1293 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1294 		/*
1295 		 * Mesh data frames are encapsulated according to the
1296 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1297 		 * o Group Addressed data (aka multicast) originating
1298 		 *   at the local sta are sent w/ 3-address format and
1299 		 *   address extension mode 00
1300 		 * o Individually Addressed data (aka unicast) originating
1301 		 *   at the local sta are sent w/ 4-address format and
1302 		 *   address extension mode 00
1303 		 * o Group Addressed data forwarded from a non-mesh sta are
1304 		 *   sent w/ 3-address format and address extension mode 01
1305 		 * o Individually Address data from another sta are sent
1306 		 *   w/ 4-address format and address extension mode 10
1307 		 */
1308 		is4addr = 0;		/* NB: don't use, disable */
1309 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1310 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1311 			KASSERT(rt != NULL, ("route is NULL"));
1312 			dir = IEEE80211_FC1_DIR_DSTODS;
1313 			hdrsize += IEEE80211_ADDR_LEN;
1314 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1315 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1316 				    vap->iv_myaddr)) {
1317 					IEEE80211_NOTE_MAC(vap,
1318 					    IEEE80211_MSG_MESH,
1319 					    eh.ether_dhost,
1320 					    "%s", "trying to send to ourself");
1321 					goto bad;
1322 				}
1323 				meshae = IEEE80211_MESH_AE_10;
1324 				meshhdrsize =
1325 				    sizeof(struct ieee80211_meshcntl_ae10);
1326 			} else {
1327 				meshae = IEEE80211_MESH_AE_00;
1328 				meshhdrsize =
1329 				    sizeof(struct ieee80211_meshcntl);
1330 			}
1331 		} else {
1332 			dir = IEEE80211_FC1_DIR_FROMDS;
1333 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1334 				/* proxy group */
1335 				meshae = IEEE80211_MESH_AE_01;
1336 				meshhdrsize =
1337 				    sizeof(struct ieee80211_meshcntl_ae01);
1338 			} else {
1339 				/* group */
1340 				meshae = IEEE80211_MESH_AE_00;
1341 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1342 			}
1343 		}
1344 	} else {
1345 #endif
1346 		/*
1347 		 * 4-address frames need to be generated for:
1348 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1349 		 * o packets sent through a vap marked for relaying
1350 		 *   (e.g. a station operating with dynamic WDS)
1351 		 */
1352 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1353 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1354 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1355 		if (is4addr)
1356 			hdrsize += IEEE80211_ADDR_LEN;
1357 		meshhdrsize = meshae = 0;
1358 #ifdef IEEE80211_SUPPORT_MESH
1359 	}
1360 #endif
1361 	/*
1362 	 * Honor driver DATAPAD requirement.
1363 	 */
1364 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1365 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1366 	else
1367 		hdrspace = hdrsize;
1368 
1369 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1370 		/*
1371 		 * Normal frame.
1372 		 */
1373 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1374 		if (m == NULL) {
1375 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1376 			goto bad;
1377 		}
1378 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1379 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1380 		llc = mtod(m, struct llc *);
1381 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1382 		llc->llc_control = LLC_UI;
1383 		llc->llc_snap.org_code[0] = 0;
1384 		llc->llc_snap.org_code[1] = 0;
1385 		llc->llc_snap.org_code[2] = 0;
1386 		llc->llc_snap.ether_type = eh.ether_type;
1387 	} else {
1388 #ifdef IEEE80211_SUPPORT_SUPERG
1389 		/*
1390 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1391 		 *
1392 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1393 		 * anywhere for some reason.  But, since 11n requires
1394 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1395 		 */
1396 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1397 		if (ieee80211_amsdu_tx_ok(ni)) {
1398 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1399 			is_amsdu = 1;
1400 		} else {
1401 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1402 		}
1403 		if (m == NULL)
1404 #endif
1405 			goto bad;
1406 	}
1407 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1408 
1409 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1410 	if (m == NULL) {
1411 		vap->iv_stats.is_tx_nobuf++;
1412 		goto bad;
1413 	}
1414 	wh = mtod(m, struct ieee80211_frame *);
1415 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1416 	*(uint16_t *)wh->i_dur = 0;
1417 	qos = NULL;	/* NB: quiet compiler */
1418 	if (is4addr) {
1419 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1420 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1421 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1422 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1423 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1424 	} else switch (vap->iv_opmode) {
1425 	case IEEE80211_M_STA:
1426 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1427 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1428 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1429 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1430 		break;
1431 	case IEEE80211_M_IBSS:
1432 	case IEEE80211_M_AHDEMO:
1433 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1434 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1435 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1436 		/*
1437 		 * NB: always use the bssid from iv_bss as the
1438 		 *     neighbor's may be stale after an ibss merge
1439 		 */
1440 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1441 		break;
1442 	case IEEE80211_M_HOSTAP:
1443 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1444 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1445 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1446 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1447 		break;
1448 #ifdef IEEE80211_SUPPORT_MESH
1449 	case IEEE80211_M_MBSS:
1450 		/* NB: offset by hdrspace to deal with DATAPAD */
1451 		mc = (struct ieee80211_meshcntl_ae10 *)
1452 		     (mtod(m, uint8_t *) + hdrspace);
1453 		wh->i_fc[1] = dir;
1454 		switch (meshae) {
1455 		case IEEE80211_MESH_AE_00:	/* no proxy */
1456 			mc->mc_flags = 0;
1457 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1458 				IEEE80211_ADDR_COPY(wh->i_addr1,
1459 				    ni->ni_macaddr);
1460 				IEEE80211_ADDR_COPY(wh->i_addr2,
1461 				    vap->iv_myaddr);
1462 				IEEE80211_ADDR_COPY(wh->i_addr3,
1463 				    eh.ether_dhost);
1464 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1465 				    eh.ether_shost);
1466 				qos =((struct ieee80211_qosframe_addr4 *)
1467 				    wh)->i_qos;
1468 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1469 				 /* mcast */
1470 				IEEE80211_ADDR_COPY(wh->i_addr1,
1471 				    eh.ether_dhost);
1472 				IEEE80211_ADDR_COPY(wh->i_addr2,
1473 				    vap->iv_myaddr);
1474 				IEEE80211_ADDR_COPY(wh->i_addr3,
1475 				    eh.ether_shost);
1476 				qos = ((struct ieee80211_qosframe *)
1477 				    wh)->i_qos;
1478 			}
1479 			break;
1480 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1481 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1482 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1483 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1484 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1485 			mc->mc_flags = 1;
1486 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1487 			    eh.ether_shost);
1488 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1489 			break;
1490 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1491 			KASSERT(rt != NULL, ("route is NULL"));
1492 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1493 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1494 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1495 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1496 			mc->mc_flags = IEEE80211_MESH_AE_10;
1497 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1498 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1499 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1500 			break;
1501 		default:
1502 			KASSERT(0, ("meshae %d", meshae));
1503 			break;
1504 		}
1505 		mc->mc_ttl = ms->ms_ttl;
1506 		ms->ms_seq++;
1507 		le32enc(mc->mc_seq, ms->ms_seq);
1508 		break;
1509 #endif
1510 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1511 	default:
1512 		goto bad;
1513 	}
1514 	if (m->m_flags & M_MORE_DATA)
1515 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1516 	if (addqos) {
1517 		int ac, tid;
1518 
1519 		if (is4addr) {
1520 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1521 		/* NB: mesh case handled earlier */
1522 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1523 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1524 		ac = M_WME_GETAC(m);
1525 		/* map from access class/queue to 11e header priorty value */
1526 		tid = WME_AC_TO_TID(ac);
1527 		qos[0] = tid & IEEE80211_QOS_TID;
1528 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1529 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1530 #ifdef IEEE80211_SUPPORT_MESH
1531 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1532 			qos[1] = IEEE80211_QOS_MC;
1533 		else
1534 #endif
1535 			qos[1] = 0;
1536 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1537 
1538 		/*
1539 		 * If this is an A-MSDU then ensure we set the
1540 		 * relevant field.
1541 		 */
1542 		if (is_amsdu)
1543 			qos[0] |= IEEE80211_QOS_AMSDU;
1544 
1545 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1546 			/*
1547 			 * NB: don't assign a sequence # to potential
1548 			 * aggregates; we expect this happens at the
1549 			 * point the frame comes off any aggregation q
1550 			 * as otherwise we may introduce holes in the
1551 			 * BA sequence space and/or make window accouting
1552 			 * more difficult.
1553 			 *
1554 			 * XXX may want to control this with a driver
1555 			 * capability; this may also change when we pull
1556 			 * aggregation up into net80211
1557 			 */
1558 			seqno = ni->ni_txseqs[tid]++;
1559 			*(uint16_t *)wh->i_seq =
1560 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1561 			M_SEQNO_SET(m, seqno);
1562 		}
1563 	} else {
1564 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1565 		*(uint16_t *)wh->i_seq =
1566 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1567 		M_SEQNO_SET(m, seqno);
1568 
1569 		/*
1570 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1571 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1572 		 */
1573 		if (is_amsdu)
1574 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1575 			    __func__);
1576 	}
1577 
1578 
1579 	/* check if xmit fragmentation is required */
1580 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1581 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1582 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1583 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1584 	if (key != NULL) {
1585 		/*
1586 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1587 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1588 		 */
1589 		if ((m->m_flags & M_EAPOL) == 0 ||
1590 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1591 		     (vap->iv_opmode == IEEE80211_M_STA ?
1592 		      !IEEE80211_KEY_UNDEFINED(key) :
1593 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1594 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1595 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1596 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1597 				    eh.ether_dhost,
1598 				    "%s", "enmic failed, discard frame");
1599 				vap->iv_stats.is_crypto_enmicfail++;
1600 				goto bad;
1601 			}
1602 		}
1603 	}
1604 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1605 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1606 		goto bad;
1607 
1608 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1609 
1610 	IEEE80211_NODE_STAT(ni, tx_data);
1611 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1612 		IEEE80211_NODE_STAT(ni, tx_mcast);
1613 		m->m_flags |= M_MCAST;
1614 	} else
1615 		IEEE80211_NODE_STAT(ni, tx_ucast);
1616 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1617 
1618 	return m;
1619 bad:
1620 	if (m != NULL)
1621 		m_freem(m);
1622 	return NULL;
1623 #undef WH4
1624 #undef MC01
1625 }
1626 
1627 void
1628 ieee80211_free_mbuf(struct mbuf *m)
1629 {
1630 	struct mbuf *next;
1631 
1632 	if (m == NULL)
1633 		return;
1634 
1635 	do {
1636 		next = m->m_nextpkt;
1637 		m->m_nextpkt = NULL;
1638 		m_freem(m);
1639 	} while ((m = next) != NULL);
1640 }
1641 
1642 /*
1643  * Fragment the frame according to the specified mtu.
1644  * The size of the 802.11 header (w/o padding) is provided
1645  * so we don't need to recalculate it.  We create a new
1646  * mbuf for each fragment and chain it through m_nextpkt;
1647  * we might be able to optimize this by reusing the original
1648  * packet's mbufs but that is significantly more complicated.
1649  */
1650 static int
1651 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1652 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1653 {
1654 	struct ieee80211com *ic = vap->iv_ic;
1655 	struct ieee80211_frame *wh, *whf;
1656 	struct mbuf *m, *prev;
1657 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1658 	u_int hdrspace;
1659 
1660 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1661 	KASSERT(m0->m_pkthdr.len > mtu,
1662 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1663 
1664 	/*
1665 	 * Honor driver DATAPAD requirement.
1666 	 */
1667 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1668 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1669 	else
1670 		hdrspace = hdrsize;
1671 
1672 	wh = mtod(m0, struct ieee80211_frame *);
1673 	/* NB: mark the first frag; it will be propagated below */
1674 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1675 	totalhdrsize = hdrspace + ciphdrsize;
1676 	fragno = 1;
1677 	off = mtu - ciphdrsize;
1678 	remainder = m0->m_pkthdr.len - off;
1679 	prev = m0;
1680 	do {
1681 		fragsize = MIN(totalhdrsize + remainder, mtu);
1682 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1683 		if (m == NULL)
1684 			goto bad;
1685 		/* leave room to prepend any cipher header */
1686 		m_align(m, fragsize - ciphdrsize);
1687 
1688 		/*
1689 		 * Form the header in the fragment.  Note that since
1690 		 * we mark the first fragment with the MORE_FRAG bit
1691 		 * it automatically is propagated to each fragment; we
1692 		 * need only clear it on the last fragment (done below).
1693 		 * NB: frag 1+ dont have Mesh Control field present.
1694 		 */
1695 		whf = mtod(m, struct ieee80211_frame *);
1696 		memcpy(whf, wh, hdrsize);
1697 #ifdef IEEE80211_SUPPORT_MESH
1698 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1699 			if (IEEE80211_IS_DSTODS(wh))
1700 				((struct ieee80211_qosframe_addr4 *)
1701 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1702 			else
1703 				((struct ieee80211_qosframe *)
1704 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1705 		}
1706 #endif
1707 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1708 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1709 				IEEE80211_SEQ_FRAG_SHIFT);
1710 		fragno++;
1711 
1712 		payload = fragsize - totalhdrsize;
1713 		/* NB: destination is known to be contiguous */
1714 
1715 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1716 		m->m_len = hdrspace + payload;
1717 		m->m_pkthdr.len = hdrspace + payload;
1718 		m->m_flags |= M_FRAG;
1719 
1720 		/* chain up the fragment */
1721 		prev->m_nextpkt = m;
1722 		prev = m;
1723 
1724 		/* deduct fragment just formed */
1725 		remainder -= payload;
1726 		off += payload;
1727 	} while (remainder != 0);
1728 
1729 	/* set the last fragment */
1730 	m->m_flags |= M_LASTFRAG;
1731 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1732 
1733 	/* strip first mbuf now that everything has been copied */
1734 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1735 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1736 
1737 	vap->iv_stats.is_tx_fragframes++;
1738 	vap->iv_stats.is_tx_frags += fragno-1;
1739 
1740 	return 1;
1741 bad:
1742 	/* reclaim fragments but leave original frame for caller to free */
1743 	ieee80211_free_mbuf(m0->m_nextpkt);
1744 	m0->m_nextpkt = NULL;
1745 	return 0;
1746 }
1747 
1748 /*
1749  * Add a supported rates element id to a frame.
1750  */
1751 uint8_t *
1752 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1753 {
1754 	int nrates;
1755 
1756 	*frm++ = IEEE80211_ELEMID_RATES;
1757 	nrates = rs->rs_nrates;
1758 	if (nrates > IEEE80211_RATE_SIZE)
1759 		nrates = IEEE80211_RATE_SIZE;
1760 	*frm++ = nrates;
1761 	memcpy(frm, rs->rs_rates, nrates);
1762 	return frm + nrates;
1763 }
1764 
1765 /*
1766  * Add an extended supported rates element id to a frame.
1767  */
1768 uint8_t *
1769 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1770 {
1771 	/*
1772 	 * Add an extended supported rates element if operating in 11g mode.
1773 	 */
1774 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1775 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1776 		*frm++ = IEEE80211_ELEMID_XRATES;
1777 		*frm++ = nrates;
1778 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1779 		frm += nrates;
1780 	}
1781 	return frm;
1782 }
1783 
1784 /*
1785  * Add an ssid element to a frame.
1786  */
1787 uint8_t *
1788 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1789 {
1790 	*frm++ = IEEE80211_ELEMID_SSID;
1791 	*frm++ = len;
1792 	memcpy(frm, ssid, len);
1793 	return frm + len;
1794 }
1795 
1796 /*
1797  * Add an erp element to a frame.
1798  */
1799 static uint8_t *
1800 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1801 {
1802 	uint8_t erp;
1803 
1804 	*frm++ = IEEE80211_ELEMID_ERP;
1805 	*frm++ = 1;
1806 	erp = 0;
1807 	if (ic->ic_nonerpsta != 0)
1808 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1809 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1810 		erp |= IEEE80211_ERP_USE_PROTECTION;
1811 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1812 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1813 	*frm++ = erp;
1814 	return frm;
1815 }
1816 
1817 /*
1818  * Add a CFParams element to a frame.
1819  */
1820 static uint8_t *
1821 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1822 {
1823 #define	ADDSHORT(frm, v) do {	\
1824 	le16enc(frm, v);	\
1825 	frm += 2;		\
1826 } while (0)
1827 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1828 	*frm++ = 6;
1829 	*frm++ = 0;		/* CFP count */
1830 	*frm++ = 2;		/* CFP period */
1831 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1832 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1833 	return frm;
1834 #undef ADDSHORT
1835 }
1836 
1837 static __inline uint8_t *
1838 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1839 {
1840 	memcpy(frm, ie->ie_data, ie->ie_len);
1841 	return frm + ie->ie_len;
1842 }
1843 
1844 static __inline uint8_t *
1845 add_ie(uint8_t *frm, const uint8_t *ie)
1846 {
1847 	memcpy(frm, ie, 2 + ie[1]);
1848 	return frm + 2 + ie[1];
1849 }
1850 
1851 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1852 /*
1853  * Add a WME information element to a frame.
1854  */
1855 uint8_t *
1856 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1857 {
1858 	static const struct ieee80211_wme_info info = {
1859 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1860 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1861 		.wme_oui	= { WME_OUI_BYTES },
1862 		.wme_type	= WME_OUI_TYPE,
1863 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1864 		.wme_version	= WME_VERSION,
1865 		.wme_info	= 0,
1866 	};
1867 	memcpy(frm, &info, sizeof(info));
1868 	return frm + sizeof(info);
1869 }
1870 
1871 /*
1872  * Add a WME parameters element to a frame.
1873  */
1874 static uint8_t *
1875 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1876 {
1877 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1878 #define	ADDSHORT(frm, v) do {	\
1879 	le16enc(frm, v);	\
1880 	frm += 2;		\
1881 } while (0)
1882 	/* NB: this works 'cuz a param has an info at the front */
1883 	static const struct ieee80211_wme_info param = {
1884 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1885 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1886 		.wme_oui	= { WME_OUI_BYTES },
1887 		.wme_type	= WME_OUI_TYPE,
1888 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1889 		.wme_version	= WME_VERSION,
1890 	};
1891 	int i;
1892 
1893 	memcpy(frm, &param, sizeof(param));
1894 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1895 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1896 	*frm++ = 0;					/* reserved field */
1897 	for (i = 0; i < WME_NUM_AC; i++) {
1898 		const struct wmeParams *ac =
1899 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1900 		*frm++ = SM(i, WME_PARAM_ACI)
1901 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1902 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1903 		       ;
1904 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1905 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1906 		       ;
1907 		ADDSHORT(frm, ac->wmep_txopLimit);
1908 	}
1909 	return frm;
1910 #undef SM
1911 #undef ADDSHORT
1912 }
1913 #undef WME_OUI_BYTES
1914 
1915 /*
1916  * Add an 11h Power Constraint element to a frame.
1917  */
1918 static uint8_t *
1919 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1920 {
1921 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1922 	/* XXX per-vap tx power limit? */
1923 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1924 
1925 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1926 	frm[1] = 1;
1927 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1928 	return frm + 3;
1929 }
1930 
1931 /*
1932  * Add an 11h Power Capability element to a frame.
1933  */
1934 static uint8_t *
1935 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1936 {
1937 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1938 	frm[1] = 2;
1939 	frm[2] = c->ic_minpower;
1940 	frm[3] = c->ic_maxpower;
1941 	return frm + 4;
1942 }
1943 
1944 /*
1945  * Add an 11h Supported Channels element to a frame.
1946  */
1947 static uint8_t *
1948 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1949 {
1950 	static const int ielen = 26;
1951 
1952 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1953 	frm[1] = ielen;
1954 	/* XXX not correct */
1955 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1956 	return frm + 2 + ielen;
1957 }
1958 
1959 /*
1960  * Add an 11h Quiet time element to a frame.
1961  */
1962 static uint8_t *
1963 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1964 {
1965 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1966 
1967 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1968 	quiet->len = 6;
1969 	if (vap->iv_quiet_count_value == 1)
1970 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1971 	else if (vap->iv_quiet_count_value > 1)
1972 		vap->iv_quiet_count_value--;
1973 
1974 	if (vap->iv_quiet_count_value == 0) {
1975 		/* value 0 is reserved as per 802.11h standerd */
1976 		vap->iv_quiet_count_value = 1;
1977 	}
1978 
1979 	quiet->tbttcount = vap->iv_quiet_count_value;
1980 	quiet->period = vap->iv_quiet_period;
1981 	quiet->duration = htole16(vap->iv_quiet_duration);
1982 	quiet->offset = htole16(vap->iv_quiet_offset);
1983 	return frm + sizeof(*quiet);
1984 }
1985 
1986 /*
1987  * Add an 11h Channel Switch Announcement element to a frame.
1988  * Note that we use the per-vap CSA count to adjust the global
1989  * counter so we can use this routine to form probe response
1990  * frames and get the current count.
1991  */
1992 static uint8_t *
1993 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1994 {
1995 	struct ieee80211com *ic = vap->iv_ic;
1996 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1997 
1998 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1999 	csa->csa_len = 3;
2000 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2001 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2002 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2003 	return frm + sizeof(*csa);
2004 }
2005 
2006 /*
2007  * Add an 11h country information element to a frame.
2008  */
2009 static uint8_t *
2010 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2011 {
2012 
2013 	if (ic->ic_countryie == NULL ||
2014 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2015 		/*
2016 		 * Handle lazy construction of ie.  This is done on
2017 		 * first use and after a channel change that requires
2018 		 * re-calculation.
2019 		 */
2020 		if (ic->ic_countryie != NULL)
2021 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2022 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2023 		if (ic->ic_countryie == NULL)
2024 			return frm;
2025 		ic->ic_countryie_chan = ic->ic_bsschan;
2026 	}
2027 	return add_appie(frm, ic->ic_countryie);
2028 }
2029 
2030 uint8_t *
2031 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2032 {
2033 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2034 		return (add_ie(frm, vap->iv_wpa_ie));
2035 	else {
2036 		/* XXX else complain? */
2037 		return (frm);
2038 	}
2039 }
2040 
2041 uint8_t *
2042 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2043 {
2044 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2045 		return (add_ie(frm, vap->iv_rsn_ie));
2046 	else {
2047 		/* XXX else complain? */
2048 		return (frm);
2049 	}
2050 }
2051 
2052 uint8_t *
2053 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2054 {
2055 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2056 		*frm++ = IEEE80211_ELEMID_QOS;
2057 		*frm++ = 1;
2058 		*frm++ = 0;
2059 	}
2060 
2061 	return (frm);
2062 }
2063 
2064 /*
2065  * Send a probe request frame with the specified ssid
2066  * and any optional information element data.
2067  */
2068 int
2069 ieee80211_send_probereq(struct ieee80211_node *ni,
2070 	const uint8_t sa[IEEE80211_ADDR_LEN],
2071 	const uint8_t da[IEEE80211_ADDR_LEN],
2072 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2073 	const uint8_t *ssid, size_t ssidlen)
2074 {
2075 	struct ieee80211vap *vap = ni->ni_vap;
2076 	struct ieee80211com *ic = ni->ni_ic;
2077 	const struct ieee80211_txparam *tp;
2078 	struct ieee80211_bpf_params params;
2079 	const struct ieee80211_rateset *rs;
2080 	struct mbuf *m;
2081 	uint8_t *frm;
2082 	int ret;
2083 
2084 	if (vap->iv_state == IEEE80211_S_CAC) {
2085 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2086 		    "block %s frame in CAC state", "probe request");
2087 		vap->iv_stats.is_tx_badstate++;
2088 		return EIO;		/* XXX */
2089 	}
2090 
2091 	/*
2092 	 * Hold a reference on the node so it doesn't go away until after
2093 	 * the xmit is complete all the way in the driver.  On error we
2094 	 * will remove our reference.
2095 	 */
2096 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2097 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2098 		__func__, __LINE__,
2099 		ni, ether_sprintf(ni->ni_macaddr),
2100 		ieee80211_node_refcnt(ni)+1);
2101 	ieee80211_ref_node(ni);
2102 
2103 	/*
2104 	 * prreq frame format
2105 	 *	[tlv] ssid
2106 	 *	[tlv] supported rates
2107 	 *	[tlv] RSN (optional)
2108 	 *	[tlv] extended supported rates
2109 	 *	[tlv] WPA (optional)
2110 	 *	[tlv] user-specified ie's
2111 	 */
2112 	m = ieee80211_getmgtframe(&frm,
2113 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2114 	       	 2 + IEEE80211_NWID_LEN
2115 	       + 2 + IEEE80211_RATE_SIZE
2116 	       + sizeof(struct ieee80211_ie_wpa)
2117 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2118 	       + sizeof(struct ieee80211_ie_wpa)
2119 	       + (vap->iv_appie_probereq != NULL ?
2120 		   vap->iv_appie_probereq->ie_len : 0)
2121 	);
2122 	if (m == NULL) {
2123 		vap->iv_stats.is_tx_nobuf++;
2124 		ieee80211_free_node(ni);
2125 		return ENOMEM;
2126 	}
2127 
2128 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2129 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2130 	frm = ieee80211_add_rates(frm, rs);
2131 	frm = ieee80211_add_rsn(frm, vap);
2132 	frm = ieee80211_add_xrates(frm, rs);
2133 	frm = ieee80211_add_wpa(frm, vap);
2134 	if (vap->iv_appie_probereq != NULL)
2135 		frm = add_appie(frm, vap->iv_appie_probereq);
2136 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2137 
2138 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2139 	    ("leading space %zd", M_LEADINGSPACE(m)));
2140 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2141 	if (m == NULL) {
2142 		/* NB: cannot happen */
2143 		ieee80211_free_node(ni);
2144 		return ENOMEM;
2145 	}
2146 
2147 	IEEE80211_TX_LOCK(ic);
2148 	ieee80211_send_setup(ni, m,
2149 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2150 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2151 	/* XXX power management? */
2152 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2153 
2154 	M_WME_SETAC(m, WME_AC_BE);
2155 
2156 	IEEE80211_NODE_STAT(ni, tx_probereq);
2157 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2158 
2159 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2160 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2161 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2162 	    ssidlen, ssid);
2163 
2164 	memset(&params, 0, sizeof(params));
2165 	params.ibp_pri = M_WME_GETAC(m);
2166 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2167 	params.ibp_rate0 = tp->mgmtrate;
2168 	if (IEEE80211_IS_MULTICAST(da)) {
2169 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2170 		params.ibp_try0 = 1;
2171 	} else
2172 		params.ibp_try0 = tp->maxretry;
2173 	params.ibp_power = ni->ni_txpower;
2174 	ret = ieee80211_raw_output(vap, ni, m, &params);
2175 	IEEE80211_TX_UNLOCK(ic);
2176 	return (ret);
2177 }
2178 
2179 /*
2180  * Calculate capability information for mgt frames.
2181  */
2182 uint16_t
2183 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2184 {
2185 	struct ieee80211com *ic = vap->iv_ic;
2186 	uint16_t capinfo;
2187 
2188 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2189 
2190 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2191 		capinfo = IEEE80211_CAPINFO_ESS;
2192 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2193 		capinfo = IEEE80211_CAPINFO_IBSS;
2194 	else
2195 		capinfo = 0;
2196 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2197 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2198 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2199 	    IEEE80211_IS_CHAN_2GHZ(chan))
2200 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2201 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2202 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2203 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2204 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2205 	return capinfo;
2206 }
2207 
2208 /*
2209  * Send a management frame.  The node is for the destination (or ic_bss
2210  * when in station mode).  Nodes other than ic_bss have their reference
2211  * count bumped to reflect our use for an indeterminant time.
2212  */
2213 int
2214 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2215 {
2216 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2217 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2218 	struct ieee80211vap *vap = ni->ni_vap;
2219 	struct ieee80211com *ic = ni->ni_ic;
2220 	struct ieee80211_node *bss = vap->iv_bss;
2221 	struct ieee80211_bpf_params params;
2222 	struct mbuf *m;
2223 	uint8_t *frm;
2224 	uint16_t capinfo;
2225 	int has_challenge, is_shared_key, ret, status;
2226 
2227 	KASSERT(ni != NULL, ("null node"));
2228 
2229 	/*
2230 	 * Hold a reference on the node so it doesn't go away until after
2231 	 * the xmit is complete all the way in the driver.  On error we
2232 	 * will remove our reference.
2233 	 */
2234 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2235 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2236 		__func__, __LINE__,
2237 		ni, ether_sprintf(ni->ni_macaddr),
2238 		ieee80211_node_refcnt(ni)+1);
2239 	ieee80211_ref_node(ni);
2240 
2241 	memset(&params, 0, sizeof(params));
2242 	switch (type) {
2243 
2244 	case IEEE80211_FC0_SUBTYPE_AUTH:
2245 		status = arg >> 16;
2246 		arg &= 0xffff;
2247 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2248 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2249 		    ni->ni_challenge != NULL);
2250 
2251 		/*
2252 		 * Deduce whether we're doing open authentication or
2253 		 * shared key authentication.  We do the latter if
2254 		 * we're in the middle of a shared key authentication
2255 		 * handshake or if we're initiating an authentication
2256 		 * request and configured to use shared key.
2257 		 */
2258 		is_shared_key = has_challenge ||
2259 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2260 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2261 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2262 
2263 		m = ieee80211_getmgtframe(&frm,
2264 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2265 			  3 * sizeof(uint16_t)
2266 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2267 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2268 		);
2269 		if (m == NULL)
2270 			senderr(ENOMEM, is_tx_nobuf);
2271 
2272 		((uint16_t *)frm)[0] =
2273 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2274 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2275 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2276 		((uint16_t *)frm)[2] = htole16(status);/* status */
2277 
2278 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2279 			((uint16_t *)frm)[3] =
2280 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2281 			    IEEE80211_ELEMID_CHALLENGE);
2282 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2283 			    IEEE80211_CHALLENGE_LEN);
2284 			m->m_pkthdr.len = m->m_len =
2285 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2286 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2287 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2288 				    "request encrypt frame (%s)", __func__);
2289 				/* mark frame for encryption */
2290 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2291 			}
2292 		} else
2293 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2294 
2295 		/* XXX not right for shared key */
2296 		if (status == IEEE80211_STATUS_SUCCESS)
2297 			IEEE80211_NODE_STAT(ni, tx_auth);
2298 		else
2299 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2300 
2301 		if (vap->iv_opmode == IEEE80211_M_STA)
2302 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2303 				(void *) vap->iv_state);
2304 		break;
2305 
2306 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2307 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2308 		    "send station deauthenticate (reason: %d (%s))", arg,
2309 		    ieee80211_reason_to_string(arg));
2310 		m = ieee80211_getmgtframe(&frm,
2311 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2312 			sizeof(uint16_t));
2313 		if (m == NULL)
2314 			senderr(ENOMEM, is_tx_nobuf);
2315 		*(uint16_t *)frm = htole16(arg);	/* reason */
2316 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2317 
2318 		IEEE80211_NODE_STAT(ni, tx_deauth);
2319 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2320 
2321 		ieee80211_node_unauthorize(ni);		/* port closed */
2322 		break;
2323 
2324 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2325 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2326 		/*
2327 		 * asreq frame format
2328 		 *	[2] capability information
2329 		 *	[2] listen interval
2330 		 *	[6*] current AP address (reassoc only)
2331 		 *	[tlv] ssid
2332 		 *	[tlv] supported rates
2333 		 *	[tlv] extended supported rates
2334 		 *	[4] power capability (optional)
2335 		 *	[28] supported channels (optional)
2336 		 *	[tlv] HT capabilities
2337 		 *	[tlv] WME (optional)
2338 		 *	[tlv] Vendor OUI HT capabilities (optional)
2339 		 *	[tlv] Atheros capabilities (if negotiated)
2340 		 *	[tlv] AppIE's (optional)
2341 		 */
2342 		m = ieee80211_getmgtframe(&frm,
2343 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2344 			 sizeof(uint16_t)
2345 		       + sizeof(uint16_t)
2346 		       + IEEE80211_ADDR_LEN
2347 		       + 2 + IEEE80211_NWID_LEN
2348 		       + 2 + IEEE80211_RATE_SIZE
2349 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2350 		       + 4
2351 		       + 2 + 26
2352 		       + sizeof(struct ieee80211_wme_info)
2353 		       + sizeof(struct ieee80211_ie_htcap)
2354 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2355 #ifdef IEEE80211_SUPPORT_SUPERG
2356 		       + sizeof(struct ieee80211_ath_ie)
2357 #endif
2358 		       + (vap->iv_appie_wpa != NULL ?
2359 				vap->iv_appie_wpa->ie_len : 0)
2360 		       + (vap->iv_appie_assocreq != NULL ?
2361 				vap->iv_appie_assocreq->ie_len : 0)
2362 		);
2363 		if (m == NULL)
2364 			senderr(ENOMEM, is_tx_nobuf);
2365 
2366 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2367 		    ("wrong mode %u", vap->iv_opmode));
2368 		capinfo = IEEE80211_CAPINFO_ESS;
2369 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2370 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2371 		/*
2372 		 * NB: Some 11a AP's reject the request when
2373 		 *     short premable is set.
2374 		 */
2375 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2376 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2377 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2378 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2379 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2380 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2381 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2382 		    (vap->iv_flags & IEEE80211_F_DOTH))
2383 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2384 		*(uint16_t *)frm = htole16(capinfo);
2385 		frm += 2;
2386 
2387 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2388 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2389 						    bss->ni_intval));
2390 		frm += 2;
2391 
2392 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2393 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2394 			frm += IEEE80211_ADDR_LEN;
2395 		}
2396 
2397 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2398 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2399 		frm = ieee80211_add_rsn(frm, vap);
2400 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2401 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2402 			frm = ieee80211_add_powercapability(frm,
2403 			    ic->ic_curchan);
2404 			frm = ieee80211_add_supportedchannels(frm, ic);
2405 		}
2406 
2407 		/*
2408 		 * Check the channel - we may be using an 11n NIC with an
2409 		 * 11n capable station, but we're configured to be an 11b
2410 		 * channel.
2411 		 */
2412 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2413 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2414 		    ni->ni_ies.htcap_ie != NULL &&
2415 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2416 			frm = ieee80211_add_htcap(frm, ni);
2417 		}
2418 		frm = ieee80211_add_wpa(frm, vap);
2419 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2420 		    ni->ni_ies.wme_ie != NULL)
2421 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2422 
2423 		/*
2424 		 * Same deal - only send HT info if we're on an 11n
2425 		 * capable channel.
2426 		 */
2427 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2428 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2429 		    ni->ni_ies.htcap_ie != NULL &&
2430 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2431 			frm = ieee80211_add_htcap_vendor(frm, ni);
2432 		}
2433 #ifdef IEEE80211_SUPPORT_SUPERG
2434 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2435 			frm = ieee80211_add_ath(frm,
2436 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2437 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2438 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2439 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2440 		}
2441 #endif /* IEEE80211_SUPPORT_SUPERG */
2442 		if (vap->iv_appie_assocreq != NULL)
2443 			frm = add_appie(frm, vap->iv_appie_assocreq);
2444 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2445 
2446 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2447 			(void *) vap->iv_state);
2448 		break;
2449 
2450 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2451 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2452 		/*
2453 		 * asresp frame format
2454 		 *	[2] capability information
2455 		 *	[2] status
2456 		 *	[2] association ID
2457 		 *	[tlv] supported rates
2458 		 *	[tlv] extended supported rates
2459 		 *	[tlv] HT capabilities (standard, if STA enabled)
2460 		 *	[tlv] HT information (standard, if STA enabled)
2461 		 *	[tlv] WME (if configured and STA enabled)
2462 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2463 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2464 		 *	[tlv] Atheros capabilities (if STA enabled)
2465 		 *	[tlv] AppIE's (optional)
2466 		 */
2467 		m = ieee80211_getmgtframe(&frm,
2468 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2469 			 sizeof(uint16_t)
2470 		       + sizeof(uint16_t)
2471 		       + sizeof(uint16_t)
2472 		       + 2 + IEEE80211_RATE_SIZE
2473 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2474 		       + sizeof(struct ieee80211_ie_htcap) + 4
2475 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2476 		       + sizeof(struct ieee80211_wme_param)
2477 #ifdef IEEE80211_SUPPORT_SUPERG
2478 		       + sizeof(struct ieee80211_ath_ie)
2479 #endif
2480 		       + (vap->iv_appie_assocresp != NULL ?
2481 				vap->iv_appie_assocresp->ie_len : 0)
2482 		);
2483 		if (m == NULL)
2484 			senderr(ENOMEM, is_tx_nobuf);
2485 
2486 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2487 		*(uint16_t *)frm = htole16(capinfo);
2488 		frm += 2;
2489 
2490 		*(uint16_t *)frm = htole16(arg);	/* status */
2491 		frm += 2;
2492 
2493 		if (arg == IEEE80211_STATUS_SUCCESS) {
2494 			*(uint16_t *)frm = htole16(ni->ni_associd);
2495 			IEEE80211_NODE_STAT(ni, tx_assoc);
2496 		} else
2497 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2498 		frm += 2;
2499 
2500 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2501 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2502 		/* NB: respond according to what we received */
2503 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2504 			frm = ieee80211_add_htcap(frm, ni);
2505 			frm = ieee80211_add_htinfo(frm, ni);
2506 		}
2507 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2508 		    ni->ni_ies.wme_ie != NULL)
2509 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2510 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2511 			frm = ieee80211_add_htcap_vendor(frm, ni);
2512 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2513 		}
2514 #ifdef IEEE80211_SUPPORT_SUPERG
2515 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2516 			frm = ieee80211_add_ath(frm,
2517 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2518 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2519 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2520 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2521 #endif /* IEEE80211_SUPPORT_SUPERG */
2522 		if (vap->iv_appie_assocresp != NULL)
2523 			frm = add_appie(frm, vap->iv_appie_assocresp);
2524 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2525 		break;
2526 
2527 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2528 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2529 		    "send station disassociate (reason: %d (%s))", arg,
2530 		    ieee80211_reason_to_string(arg));
2531 		m = ieee80211_getmgtframe(&frm,
2532 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2533 			sizeof(uint16_t));
2534 		if (m == NULL)
2535 			senderr(ENOMEM, is_tx_nobuf);
2536 		*(uint16_t *)frm = htole16(arg);	/* reason */
2537 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2538 
2539 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2540 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2541 		break;
2542 
2543 	default:
2544 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2545 		    "invalid mgmt frame type %u", type);
2546 		senderr(EINVAL, is_tx_unknownmgt);
2547 		/* NOTREACHED */
2548 	}
2549 
2550 	/* NB: force non-ProbeResp frames to the highest queue */
2551 	params.ibp_pri = WME_AC_VO;
2552 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2553 	/* NB: we know all frames are unicast */
2554 	params.ibp_try0 = bss->ni_txparms->maxretry;
2555 	params.ibp_power = bss->ni_txpower;
2556 	return ieee80211_mgmt_output(ni, m, type, &params);
2557 bad:
2558 	ieee80211_free_node(ni);
2559 	return ret;
2560 #undef senderr
2561 #undef HTFLAGS
2562 }
2563 
2564 /*
2565  * Return an mbuf with a probe response frame in it.
2566  * Space is left to prepend and 802.11 header at the
2567  * front but it's left to the caller to fill in.
2568  */
2569 struct mbuf *
2570 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2571 {
2572 	struct ieee80211vap *vap = bss->ni_vap;
2573 	struct ieee80211com *ic = bss->ni_ic;
2574 	const struct ieee80211_rateset *rs;
2575 	struct mbuf *m;
2576 	uint16_t capinfo;
2577 	uint8_t *frm;
2578 
2579 	/*
2580 	 * probe response frame format
2581 	 *	[8] time stamp
2582 	 *	[2] beacon interval
2583 	 *	[2] cabability information
2584 	 *	[tlv] ssid
2585 	 *	[tlv] supported rates
2586 	 *	[tlv] parameter set (FH/DS)
2587 	 *	[tlv] parameter set (IBSS)
2588 	 *	[tlv] country (optional)
2589 	 *	[3] power control (optional)
2590 	 *	[5] channel switch announcement (CSA) (optional)
2591 	 *	[tlv] extended rate phy (ERP)
2592 	 *	[tlv] extended supported rates
2593 	 *	[tlv] RSN (optional)
2594 	 *	[tlv] HT capabilities
2595 	 *	[tlv] HT information
2596 	 *	[tlv] WPA (optional)
2597 	 *	[tlv] WME (optional)
2598 	 *	[tlv] Vendor OUI HT capabilities (optional)
2599 	 *	[tlv] Vendor OUI HT information (optional)
2600 	 *	[tlv] Atheros capabilities
2601 	 *	[tlv] AppIE's (optional)
2602 	 *	[tlv] Mesh ID (MBSS)
2603 	 *	[tlv] Mesh Conf (MBSS)
2604 	 */
2605 	m = ieee80211_getmgtframe(&frm,
2606 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2607 		 8
2608 	       + sizeof(uint16_t)
2609 	       + sizeof(uint16_t)
2610 	       + 2 + IEEE80211_NWID_LEN
2611 	       + 2 + IEEE80211_RATE_SIZE
2612 	       + 7	/* max(7,3) */
2613 	       + IEEE80211_COUNTRY_MAX_SIZE
2614 	       + 3
2615 	       + sizeof(struct ieee80211_csa_ie)
2616 	       + sizeof(struct ieee80211_quiet_ie)
2617 	       + 3
2618 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2619 	       + sizeof(struct ieee80211_ie_wpa)
2620 	       + sizeof(struct ieee80211_ie_htcap)
2621 	       + sizeof(struct ieee80211_ie_htinfo)
2622 	       + sizeof(struct ieee80211_ie_wpa)
2623 	       + sizeof(struct ieee80211_wme_param)
2624 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2625 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2626 #ifdef IEEE80211_SUPPORT_SUPERG
2627 	       + sizeof(struct ieee80211_ath_ie)
2628 #endif
2629 #ifdef IEEE80211_SUPPORT_MESH
2630 	       + 2 + IEEE80211_MESHID_LEN
2631 	       + sizeof(struct ieee80211_meshconf_ie)
2632 #endif
2633 	       + (vap->iv_appie_proberesp != NULL ?
2634 			vap->iv_appie_proberesp->ie_len : 0)
2635 	);
2636 	if (m == NULL) {
2637 		vap->iv_stats.is_tx_nobuf++;
2638 		return NULL;
2639 	}
2640 
2641 	memset(frm, 0, 8);	/* timestamp should be filled later */
2642 	frm += 8;
2643 	*(uint16_t *)frm = htole16(bss->ni_intval);
2644 	frm += 2;
2645 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2646 	*(uint16_t *)frm = htole16(capinfo);
2647 	frm += 2;
2648 
2649 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2650 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2651 	frm = ieee80211_add_rates(frm, rs);
2652 
2653 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2654 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2655 		*frm++ = 5;
2656 		*frm++ = bss->ni_fhdwell & 0x00ff;
2657 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2658 		*frm++ = IEEE80211_FH_CHANSET(
2659 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2660 		*frm++ = IEEE80211_FH_CHANPAT(
2661 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2662 		*frm++ = bss->ni_fhindex;
2663 	} else {
2664 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2665 		*frm++ = 1;
2666 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2667 	}
2668 
2669 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2670 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2671 		*frm++ = 2;
2672 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2673 	}
2674 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2675 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2676 		frm = ieee80211_add_countryie(frm, ic);
2677 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2678 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2679 			frm = ieee80211_add_powerconstraint(frm, vap);
2680 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2681 			frm = ieee80211_add_csa(frm, vap);
2682 	}
2683 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2684 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2685 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2686 			if (vap->iv_quiet)
2687 				frm = ieee80211_add_quiet(frm, vap);
2688 		}
2689 	}
2690 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2691 		frm = ieee80211_add_erp(frm, ic);
2692 	frm = ieee80211_add_xrates(frm, rs);
2693 	frm = ieee80211_add_rsn(frm, vap);
2694 	/*
2695 	 * NB: legacy 11b clients do not get certain ie's.
2696 	 *     The caller identifies such clients by passing
2697 	 *     a token in legacy to us.  Could expand this to be
2698 	 *     any legacy client for stuff like HT ie's.
2699 	 */
2700 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2701 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2702 		frm = ieee80211_add_htcap(frm, bss);
2703 		frm = ieee80211_add_htinfo(frm, bss);
2704 	}
2705 	frm = ieee80211_add_wpa(frm, vap);
2706 	if (vap->iv_flags & IEEE80211_F_WME)
2707 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2708 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2709 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2710 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2711 		frm = ieee80211_add_htcap_vendor(frm, bss);
2712 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2713 	}
2714 #ifdef IEEE80211_SUPPORT_SUPERG
2715 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2716 	    legacy != IEEE80211_SEND_LEGACY_11B)
2717 		frm = ieee80211_add_athcaps(frm, bss);
2718 #endif
2719 	if (vap->iv_appie_proberesp != NULL)
2720 		frm = add_appie(frm, vap->iv_appie_proberesp);
2721 #ifdef IEEE80211_SUPPORT_MESH
2722 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2723 		frm = ieee80211_add_meshid(frm, vap);
2724 		frm = ieee80211_add_meshconf(frm, vap);
2725 	}
2726 #endif
2727 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2728 
2729 	return m;
2730 }
2731 
2732 /*
2733  * Send a probe response frame to the specified mac address.
2734  * This does not go through the normal mgt frame api so we
2735  * can specify the destination address and re-use the bss node
2736  * for the sta reference.
2737  */
2738 int
2739 ieee80211_send_proberesp(struct ieee80211vap *vap,
2740 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2741 {
2742 	struct ieee80211_node *bss = vap->iv_bss;
2743 	struct ieee80211com *ic = vap->iv_ic;
2744 	struct mbuf *m;
2745 	int ret;
2746 
2747 	if (vap->iv_state == IEEE80211_S_CAC) {
2748 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2749 		    "block %s frame in CAC state", "probe response");
2750 		vap->iv_stats.is_tx_badstate++;
2751 		return EIO;		/* XXX */
2752 	}
2753 
2754 	/*
2755 	 * Hold a reference on the node so it doesn't go away until after
2756 	 * the xmit is complete all the way in the driver.  On error we
2757 	 * will remove our reference.
2758 	 */
2759 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2760 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2761 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2762 	    ieee80211_node_refcnt(bss)+1);
2763 	ieee80211_ref_node(bss);
2764 
2765 	m = ieee80211_alloc_proberesp(bss, legacy);
2766 	if (m == NULL) {
2767 		ieee80211_free_node(bss);
2768 		return ENOMEM;
2769 	}
2770 
2771 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2772 	KASSERT(m != NULL, ("no room for header"));
2773 
2774 	IEEE80211_TX_LOCK(ic);
2775 	ieee80211_send_setup(bss, m,
2776 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2777 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2778 	/* XXX power management? */
2779 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2780 
2781 	M_WME_SETAC(m, WME_AC_BE);
2782 
2783 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2784 	    "send probe resp on channel %u to %s%s\n",
2785 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2786 	    legacy ? " <legacy>" : "");
2787 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2788 
2789 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2790 	IEEE80211_TX_UNLOCK(ic);
2791 	return (ret);
2792 }
2793 
2794 /*
2795  * Allocate and build a RTS (Request To Send) control frame.
2796  */
2797 struct mbuf *
2798 ieee80211_alloc_rts(struct ieee80211com *ic,
2799 	const uint8_t ra[IEEE80211_ADDR_LEN],
2800 	const uint8_t ta[IEEE80211_ADDR_LEN],
2801 	uint16_t dur)
2802 {
2803 	struct ieee80211_frame_rts *rts;
2804 	struct mbuf *m;
2805 
2806 	/* XXX honor ic_headroom */
2807 	m = m_gethdr(M_NOWAIT, MT_DATA);
2808 	if (m != NULL) {
2809 		rts = mtod(m, struct ieee80211_frame_rts *);
2810 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2811 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2812 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2813 		*(u_int16_t *)rts->i_dur = htole16(dur);
2814 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2815 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2816 
2817 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2818 	}
2819 	return m;
2820 }
2821 
2822 /*
2823  * Allocate and build a CTS (Clear To Send) control frame.
2824  */
2825 struct mbuf *
2826 ieee80211_alloc_cts(struct ieee80211com *ic,
2827 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2828 {
2829 	struct ieee80211_frame_cts *cts;
2830 	struct mbuf *m;
2831 
2832 	/* XXX honor ic_headroom */
2833 	m = m_gethdr(M_NOWAIT, MT_DATA);
2834 	if (m != NULL) {
2835 		cts = mtod(m, struct ieee80211_frame_cts *);
2836 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2837 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2838 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2839 		*(u_int16_t *)cts->i_dur = htole16(dur);
2840 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2841 
2842 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2843 	}
2844 	return m;
2845 }
2846 
2847 static void
2848 ieee80211_tx_mgt_timeout(void *arg)
2849 {
2850 	struct ieee80211vap *vap = arg;
2851 
2852 	IEEE80211_LOCK(vap->iv_ic);
2853 	if (vap->iv_state != IEEE80211_S_INIT &&
2854 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2855 		/*
2856 		 * NB: it's safe to specify a timeout as the reason here;
2857 		 *     it'll only be used in the right state.
2858 		 */
2859 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2860 			IEEE80211_SCAN_FAIL_TIMEOUT);
2861 	}
2862 	IEEE80211_UNLOCK(vap->iv_ic);
2863 }
2864 
2865 /*
2866  * This is the callback set on net80211-sourced transmitted
2867  * authentication request frames.
2868  *
2869  * This does a couple of things:
2870  *
2871  * + If the frame transmitted was a success, it schedules a future
2872  *   event which will transition the interface to scan.
2873  *   If a state transition _then_ occurs before that event occurs,
2874  *   said state transition will cancel this callout.
2875  *
2876  * + If the frame transmit was a failure, it immediately schedules
2877  *   the transition back to scan.
2878  */
2879 static void
2880 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2881 {
2882 	struct ieee80211vap *vap = ni->ni_vap;
2883 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2884 
2885 	/*
2886 	 * Frame transmit completed; arrange timer callback.  If
2887 	 * transmit was successfully we wait for response.  Otherwise
2888 	 * we arrange an immediate callback instead of doing the
2889 	 * callback directly since we don't know what state the driver
2890 	 * is in (e.g. what locks it is holding).  This work should
2891 	 * not be too time-critical and not happen too often so the
2892 	 * added overhead is acceptable.
2893 	 *
2894 	 * XXX what happens if !acked but response shows up before callback?
2895 	 */
2896 	if (vap->iv_state == ostate) {
2897 		callout_reset(&vap->iv_mgtsend,
2898 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2899 			ieee80211_tx_mgt_timeout, vap);
2900 	}
2901 }
2902 
2903 static void
2904 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2905 	struct ieee80211_node *ni)
2906 {
2907 	struct ieee80211vap *vap = ni->ni_vap;
2908 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2909 	struct ieee80211com *ic = ni->ni_ic;
2910 	struct ieee80211_rateset *rs = &ni->ni_rates;
2911 	uint16_t capinfo;
2912 
2913 	/*
2914 	 * beacon frame format
2915 	 *	[8] time stamp
2916 	 *	[2] beacon interval
2917 	 *	[2] cabability information
2918 	 *	[tlv] ssid
2919 	 *	[tlv] supported rates
2920 	 *	[3] parameter set (DS)
2921 	 *	[8] CF parameter set (optional)
2922 	 *	[tlv] parameter set (IBSS/TIM)
2923 	 *	[tlv] country (optional)
2924 	 *	[3] power control (optional)
2925 	 *	[5] channel switch announcement (CSA) (optional)
2926 	 *	[tlv] extended rate phy (ERP)
2927 	 *	[tlv] extended supported rates
2928 	 *	[tlv] RSN parameters
2929 	 *	[tlv] HT capabilities
2930 	 *	[tlv] HT information
2931 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2932 	 *	[tlv] WPA parameters
2933 	 *	[tlv] WME parameters
2934 	 *	[tlv] Vendor OUI HT capabilities (optional)
2935 	 *	[tlv] Vendor OUI HT information (optional)
2936 	 *	[tlv] Atheros capabilities (optional)
2937 	 *	[tlv] TDMA parameters (optional)
2938 	 *	[tlv] Mesh ID (MBSS)
2939 	 *	[tlv] Mesh Conf (MBSS)
2940 	 *	[tlv] application data (optional)
2941 	 */
2942 
2943 	memset(bo, 0, sizeof(*bo));
2944 
2945 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2946 	frm += 8;
2947 	*(uint16_t *)frm = htole16(ni->ni_intval);
2948 	frm += 2;
2949 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2950 	bo->bo_caps = (uint16_t *)frm;
2951 	*(uint16_t *)frm = htole16(capinfo);
2952 	frm += 2;
2953 	*frm++ = IEEE80211_ELEMID_SSID;
2954 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2955 		*frm++ = ni->ni_esslen;
2956 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2957 		frm += ni->ni_esslen;
2958 	} else
2959 		*frm++ = 0;
2960 	frm = ieee80211_add_rates(frm, rs);
2961 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2962 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2963 		*frm++ = 1;
2964 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2965 	}
2966 	if (ic->ic_flags & IEEE80211_F_PCF) {
2967 		bo->bo_cfp = frm;
2968 		frm = ieee80211_add_cfparms(frm, ic);
2969 	}
2970 	bo->bo_tim = frm;
2971 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2972 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2973 		*frm++ = 2;
2974 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2975 		bo->bo_tim_len = 0;
2976 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2977 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2978 		/* TIM IE is the same for Mesh and Hostap */
2979 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2980 
2981 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2982 		tie->tim_len = 4;	/* length */
2983 		tie->tim_count = 0;	/* DTIM count */
2984 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2985 		tie->tim_bitctl = 0;	/* bitmap control */
2986 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2987 		frm += sizeof(struct ieee80211_tim_ie);
2988 		bo->bo_tim_len = 1;
2989 	}
2990 	bo->bo_tim_trailer = frm;
2991 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2992 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2993 		frm = ieee80211_add_countryie(frm, ic);
2994 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2995 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2996 			frm = ieee80211_add_powerconstraint(frm, vap);
2997 		bo->bo_csa = frm;
2998 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2999 			frm = ieee80211_add_csa(frm, vap);
3000 	} else
3001 		bo->bo_csa = frm;
3002 
3003 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3004 		bo->bo_quiet = frm;
3005 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3006 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3007 			if (vap->iv_quiet)
3008 				frm = ieee80211_add_quiet(frm,vap);
3009 		}
3010 	} else
3011 		bo->bo_quiet = frm;
3012 
3013 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3014 		bo->bo_erp = frm;
3015 		frm = ieee80211_add_erp(frm, ic);
3016 	}
3017 	frm = ieee80211_add_xrates(frm, rs);
3018 	frm = ieee80211_add_rsn(frm, vap);
3019 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3020 		frm = ieee80211_add_htcap(frm, ni);
3021 		bo->bo_htinfo = frm;
3022 		frm = ieee80211_add_htinfo(frm, ni);
3023 	}
3024 	frm = ieee80211_add_wpa(frm, vap);
3025 	if (vap->iv_flags & IEEE80211_F_WME) {
3026 		bo->bo_wme = frm;
3027 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3028 	}
3029 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3030 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3031 		frm = ieee80211_add_htcap_vendor(frm, ni);
3032 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3033 	}
3034 #ifdef IEEE80211_SUPPORT_SUPERG
3035 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3036 		bo->bo_ath = frm;
3037 		frm = ieee80211_add_athcaps(frm, ni);
3038 	}
3039 #endif
3040 #ifdef IEEE80211_SUPPORT_TDMA
3041 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3042 		bo->bo_tdma = frm;
3043 		frm = ieee80211_add_tdma(frm, vap);
3044 	}
3045 #endif
3046 	if (vap->iv_appie_beacon != NULL) {
3047 		bo->bo_appie = frm;
3048 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3049 		frm = add_appie(frm, vap->iv_appie_beacon);
3050 	}
3051 #ifdef IEEE80211_SUPPORT_MESH
3052 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3053 		frm = ieee80211_add_meshid(frm, vap);
3054 		bo->bo_meshconf = frm;
3055 		frm = ieee80211_add_meshconf(frm, vap);
3056 	}
3057 #endif
3058 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3059 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3060 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3061 }
3062 
3063 /*
3064  * Allocate a beacon frame and fillin the appropriate bits.
3065  */
3066 struct mbuf *
3067 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3068 {
3069 	struct ieee80211vap *vap = ni->ni_vap;
3070 	struct ieee80211com *ic = ni->ni_ic;
3071 	struct ifnet *ifp = vap->iv_ifp;
3072 	struct ieee80211_frame *wh;
3073 	struct mbuf *m;
3074 	int pktlen;
3075 	uint8_t *frm;
3076 
3077 	/*
3078 	 * beacon frame format
3079 	 *	[8] time stamp
3080 	 *	[2] beacon interval
3081 	 *	[2] cabability information
3082 	 *	[tlv] ssid
3083 	 *	[tlv] supported rates
3084 	 *	[3] parameter set (DS)
3085 	 *	[8] CF parameter set (optional)
3086 	 *	[tlv] parameter set (IBSS/TIM)
3087 	 *	[tlv] country (optional)
3088 	 *	[3] power control (optional)
3089 	 *	[5] channel switch announcement (CSA) (optional)
3090 	 *	[tlv] extended rate phy (ERP)
3091 	 *	[tlv] extended supported rates
3092 	 *	[tlv] RSN parameters
3093 	 *	[tlv] HT capabilities
3094 	 *	[tlv] HT information
3095 	 *	[tlv] Vendor OUI HT capabilities (optional)
3096 	 *	[tlv] Vendor OUI HT information (optional)
3097 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3098 	 *	[tlv] WPA parameters
3099 	 *	[tlv] WME parameters
3100 	 *	[tlv] TDMA parameters (optional)
3101 	 *	[tlv] Mesh ID (MBSS)
3102 	 *	[tlv] Mesh Conf (MBSS)
3103 	 *	[tlv] application data (optional)
3104 	 * NB: we allocate the max space required for the TIM bitmap.
3105 	 * XXX how big is this?
3106 	 */
3107 	pktlen =   8					/* time stamp */
3108 		 + sizeof(uint16_t)			/* beacon interval */
3109 		 + sizeof(uint16_t)			/* capabilities */
3110 		 + 2 + ni->ni_esslen			/* ssid */
3111 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3112 	         + 2 + 1				/* DS parameters */
3113 		 + 2 + 6				/* CF parameters */
3114 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3115 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3116 		 + 2 + 1				/* power control */
3117 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3118 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3119 		 + 2 + 1				/* ERP */
3120 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3121 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3122 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3123 		 /* XXX conditional? */
3124 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3125 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3126 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3127 			sizeof(struct ieee80211_wme_param) : 0)
3128 #ifdef IEEE80211_SUPPORT_SUPERG
3129 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3130 #endif
3131 #ifdef IEEE80211_SUPPORT_TDMA
3132 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3133 			sizeof(struct ieee80211_tdma_param) : 0)
3134 #endif
3135 #ifdef IEEE80211_SUPPORT_MESH
3136 		 + 2 + ni->ni_meshidlen
3137 		 + sizeof(struct ieee80211_meshconf_ie)
3138 #endif
3139 		 + IEEE80211_MAX_APPIE
3140 		 ;
3141 	m = ieee80211_getmgtframe(&frm,
3142 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3143 	if (m == NULL) {
3144 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3145 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3146 		vap->iv_stats.is_tx_nobuf++;
3147 		return NULL;
3148 	}
3149 	ieee80211_beacon_construct(m, frm, ni);
3150 
3151 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3152 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3153 	wh = mtod(m, struct ieee80211_frame *);
3154 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3155 	    IEEE80211_FC0_SUBTYPE_BEACON;
3156 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3157 	*(uint16_t *)wh->i_dur = 0;
3158 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3159 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3160 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3161 	*(uint16_t *)wh->i_seq = 0;
3162 
3163 	return m;
3164 }
3165 
3166 /*
3167  * Update the dynamic parts of a beacon frame based on the current state.
3168  */
3169 int
3170 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3171 {
3172 	struct ieee80211vap *vap = ni->ni_vap;
3173 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3174 	struct ieee80211com *ic = ni->ni_ic;
3175 	int len_changed = 0;
3176 	uint16_t capinfo;
3177 	struct ieee80211_frame *wh;
3178 	ieee80211_seq seqno;
3179 
3180 	IEEE80211_LOCK(ic);
3181 	/*
3182 	 * Handle 11h channel change when we've reached the count.
3183 	 * We must recalculate the beacon frame contents to account
3184 	 * for the new channel.  Note we do this only for the first
3185 	 * vap that reaches this point; subsequent vaps just update
3186 	 * their beacon state to reflect the recalculated channel.
3187 	 */
3188 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3189 	    vap->iv_csa_count == ic->ic_csa_count) {
3190 		vap->iv_csa_count = 0;
3191 		/*
3192 		 * Effect channel change before reconstructing the beacon
3193 		 * frame contents as many places reference ni_chan.
3194 		 */
3195 		if (ic->ic_csa_newchan != NULL)
3196 			ieee80211_csa_completeswitch(ic);
3197 		/*
3198 		 * NB: ieee80211_beacon_construct clears all pending
3199 		 * updates in bo_flags so we don't need to explicitly
3200 		 * clear IEEE80211_BEACON_CSA.
3201 		 */
3202 		ieee80211_beacon_construct(m,
3203 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3204 
3205 		/* XXX do WME aggressive mode processing? */
3206 		IEEE80211_UNLOCK(ic);
3207 		return 1;		/* just assume length changed */
3208 	}
3209 
3210 	wh = mtod(m, struct ieee80211_frame *);
3211 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3212 	*(uint16_t *)&wh->i_seq[0] =
3213 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3214 	M_SEQNO_SET(m, seqno);
3215 
3216 	/* XXX faster to recalculate entirely or just changes? */
3217 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3218 	*bo->bo_caps = htole16(capinfo);
3219 
3220 	if (vap->iv_flags & IEEE80211_F_WME) {
3221 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3222 
3223 		/*
3224 		 * Check for aggressive mode change.  When there is
3225 		 * significant high priority traffic in the BSS
3226 		 * throttle back BE traffic by using conservative
3227 		 * parameters.  Otherwise BE uses aggressive params
3228 		 * to optimize performance of legacy/non-QoS traffic.
3229 		 */
3230 		if (wme->wme_flags & WME_F_AGGRMODE) {
3231 			if (wme->wme_hipri_traffic >
3232 			    wme->wme_hipri_switch_thresh) {
3233 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3234 				    "%s: traffic %u, disable aggressive mode\n",
3235 				    __func__, wme->wme_hipri_traffic);
3236 				wme->wme_flags &= ~WME_F_AGGRMODE;
3237 				ieee80211_wme_updateparams_locked(vap);
3238 				wme->wme_hipri_traffic =
3239 					wme->wme_hipri_switch_hysteresis;
3240 			} else
3241 				wme->wme_hipri_traffic = 0;
3242 		} else {
3243 			if (wme->wme_hipri_traffic <=
3244 			    wme->wme_hipri_switch_thresh) {
3245 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3246 				    "%s: traffic %u, enable aggressive mode\n",
3247 				    __func__, wme->wme_hipri_traffic);
3248 				wme->wme_flags |= WME_F_AGGRMODE;
3249 				ieee80211_wme_updateparams_locked(vap);
3250 				wme->wme_hipri_traffic = 0;
3251 			} else
3252 				wme->wme_hipri_traffic =
3253 					wme->wme_hipri_switch_hysteresis;
3254 		}
3255 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3256 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3257 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3258 		}
3259 	}
3260 
3261 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3262 		ieee80211_ht_update_beacon(vap, bo);
3263 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3264 	}
3265 #ifdef IEEE80211_SUPPORT_TDMA
3266 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3267 		/*
3268 		 * NB: the beacon is potentially updated every TBTT.
3269 		 */
3270 		ieee80211_tdma_update_beacon(vap, bo);
3271 	}
3272 #endif
3273 #ifdef IEEE80211_SUPPORT_MESH
3274 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3275 		ieee80211_mesh_update_beacon(vap, bo);
3276 #endif
3277 
3278 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3279 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3280 		struct ieee80211_tim_ie *tie =
3281 			(struct ieee80211_tim_ie *) bo->bo_tim;
3282 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3283 			u_int timlen, timoff, i;
3284 			/*
3285 			 * ATIM/DTIM needs updating.  If it fits in the
3286 			 * current space allocated then just copy in the
3287 			 * new bits.  Otherwise we need to move any trailing
3288 			 * data to make room.  Note that we know there is
3289 			 * contiguous space because ieee80211_beacon_allocate
3290 			 * insures there is space in the mbuf to write a
3291 			 * maximal-size virtual bitmap (based on iv_max_aid).
3292 			 */
3293 			/*
3294 			 * Calculate the bitmap size and offset, copy any
3295 			 * trailer out of the way, and then copy in the
3296 			 * new bitmap and update the information element.
3297 			 * Note that the tim bitmap must contain at least
3298 			 * one byte and any offset must be even.
3299 			 */
3300 			if (vap->iv_ps_pending != 0) {
3301 				timoff = 128;		/* impossibly large */
3302 				for (i = 0; i < vap->iv_tim_len; i++)
3303 					if (vap->iv_tim_bitmap[i]) {
3304 						timoff = i &~ 1;
3305 						break;
3306 					}
3307 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3308 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3309 					if (vap->iv_tim_bitmap[i])
3310 						break;
3311 				timlen = 1 + (i - timoff);
3312 			} else {
3313 				timoff = 0;
3314 				timlen = 1;
3315 			}
3316 			if (timlen != bo->bo_tim_len) {
3317 				/* copy up/down trailer */
3318 				int adjust = tie->tim_bitmap+timlen
3319 					   - bo->bo_tim_trailer;
3320 				ovbcopy(bo->bo_tim_trailer,
3321 				    bo->bo_tim_trailer+adjust,
3322 				    bo->bo_tim_trailer_len);
3323 				bo->bo_tim_trailer += adjust;
3324 				bo->bo_erp += adjust;
3325 				bo->bo_htinfo += adjust;
3326 #ifdef IEEE80211_SUPPORT_SUPERG
3327 				bo->bo_ath += adjust;
3328 #endif
3329 #ifdef IEEE80211_SUPPORT_TDMA
3330 				bo->bo_tdma += adjust;
3331 #endif
3332 #ifdef IEEE80211_SUPPORT_MESH
3333 				bo->bo_meshconf += adjust;
3334 #endif
3335 				bo->bo_appie += adjust;
3336 				bo->bo_wme += adjust;
3337 				bo->bo_csa += adjust;
3338 				bo->bo_quiet += adjust;
3339 				bo->bo_tim_len = timlen;
3340 
3341 				/* update information element */
3342 				tie->tim_len = 3 + timlen;
3343 				tie->tim_bitctl = timoff;
3344 				len_changed = 1;
3345 			}
3346 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3347 				bo->bo_tim_len);
3348 
3349 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3350 
3351 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3352 				"%s: TIM updated, pending %u, off %u, len %u\n",
3353 				__func__, vap->iv_ps_pending, timoff, timlen);
3354 		}
3355 		/* count down DTIM period */
3356 		if (tie->tim_count == 0)
3357 			tie->tim_count = tie->tim_period - 1;
3358 		else
3359 			tie->tim_count--;
3360 		/* update state for buffered multicast frames on DTIM */
3361 		if (mcast && tie->tim_count == 0)
3362 			tie->tim_bitctl |= 1;
3363 		else
3364 			tie->tim_bitctl &= ~1;
3365 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3366 			struct ieee80211_csa_ie *csa =
3367 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3368 
3369 			/*
3370 			 * Insert or update CSA ie.  If we're just starting
3371 			 * to count down to the channel switch then we need
3372 			 * to insert the CSA ie.  Otherwise we just need to
3373 			 * drop the count.  The actual change happens above
3374 			 * when the vap's count reaches the target count.
3375 			 */
3376 			if (vap->iv_csa_count == 0) {
3377 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3378 				bo->bo_erp += sizeof(*csa);
3379 				bo->bo_htinfo += sizeof(*csa);
3380 				bo->bo_wme += sizeof(*csa);
3381 #ifdef IEEE80211_SUPPORT_SUPERG
3382 				bo->bo_ath += sizeof(*csa);
3383 #endif
3384 #ifdef IEEE80211_SUPPORT_TDMA
3385 				bo->bo_tdma += sizeof(*csa);
3386 #endif
3387 #ifdef IEEE80211_SUPPORT_MESH
3388 				bo->bo_meshconf += sizeof(*csa);
3389 #endif
3390 				bo->bo_appie += sizeof(*csa);
3391 				bo->bo_csa_trailer_len += sizeof(*csa);
3392 				bo->bo_quiet += sizeof(*csa);
3393 				bo->bo_tim_trailer_len += sizeof(*csa);
3394 				m->m_len += sizeof(*csa);
3395 				m->m_pkthdr.len += sizeof(*csa);
3396 
3397 				ieee80211_add_csa(bo->bo_csa, vap);
3398 			} else
3399 				csa->csa_count--;
3400 			vap->iv_csa_count++;
3401 			/* NB: don't clear IEEE80211_BEACON_CSA */
3402 		}
3403 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3404 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3405 			if (vap->iv_quiet)
3406 				ieee80211_add_quiet(bo->bo_quiet, vap);
3407 		}
3408 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3409 			/*
3410 			 * ERP element needs updating.
3411 			 */
3412 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3413 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3414 		}
3415 #ifdef IEEE80211_SUPPORT_SUPERG
3416 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3417 			ieee80211_add_athcaps(bo->bo_ath, ni);
3418 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3419 		}
3420 #endif
3421 	}
3422 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3423 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3424 		int aielen;
3425 		uint8_t *frm;
3426 
3427 		aielen = 0;
3428 		if (aie != NULL)
3429 			aielen += aie->ie_len;
3430 		if (aielen != bo->bo_appie_len) {
3431 			/* copy up/down trailer */
3432 			int adjust = aielen - bo->bo_appie_len;
3433 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3434 				bo->bo_tim_trailer_len);
3435 			bo->bo_tim_trailer += adjust;
3436 			bo->bo_appie += adjust;
3437 			bo->bo_appie_len = aielen;
3438 
3439 			len_changed = 1;
3440 		}
3441 		frm = bo->bo_appie;
3442 		if (aie != NULL)
3443 			frm  = add_appie(frm, aie);
3444 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3445 	}
3446 	IEEE80211_UNLOCK(ic);
3447 
3448 	return len_changed;
3449 }
3450 
3451 /*
3452  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3453  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3454  * header at the front that must be stripped before prepending the
3455  * LLC followed by the Ethernet header passed in (with an Ethernet
3456  * type that specifies the payload size).
3457  */
3458 struct mbuf *
3459 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3460 	const struct ether_header *eh)
3461 {
3462 	struct llc *llc;
3463 	uint16_t payload;
3464 
3465 	/* XXX optimize by combining m_adj+M_PREPEND */
3466 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3467 	llc = mtod(m, struct llc *);
3468 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3469 	llc->llc_control = LLC_UI;
3470 	llc->llc_snap.org_code[0] = 0;
3471 	llc->llc_snap.org_code[1] = 0;
3472 	llc->llc_snap.org_code[2] = 0;
3473 	llc->llc_snap.ether_type = eh->ether_type;
3474 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3475 
3476 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3477 	if (m == NULL) {		/* XXX cannot happen */
3478 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3479 			"%s: no space for ether_header\n", __func__);
3480 		vap->iv_stats.is_tx_nobuf++;
3481 		return NULL;
3482 	}
3483 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3484 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3485 	return m;
3486 }
3487 
3488 /*
3489  * Complete an mbuf transmission.
3490  *
3491  * For now, this simply processes a completed frame after the
3492  * driver has completed it's transmission and/or retransmission.
3493  * It assumes the frame is an 802.11 encapsulated frame.
3494  *
3495  * Later on it will grow to become the exit path for a given frame
3496  * from the driver and, depending upon how it's been encapsulated
3497  * and already transmitted, it may end up doing A-MPDU retransmission,
3498  * power save requeuing, etc.
3499  *
3500  * In order for the above to work, the driver entry point to this
3501  * must not hold any driver locks.  Thus, the driver needs to delay
3502  * any actual mbuf completion until it can release said locks.
3503  *
3504  * This frees the mbuf and if the mbuf has a node reference,
3505  * the node reference will be freed.
3506  */
3507 void
3508 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3509 {
3510 
3511 	if (ni != NULL) {
3512 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3513 
3514 		if (status == 0) {
3515 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3516 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3517 			if (m->m_flags & M_MCAST)
3518 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3519 		} else
3520 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3521 		if (m->m_flags & M_TXCB)
3522 			ieee80211_process_callback(ni, m, status);
3523 		ieee80211_free_node(ni);
3524 	}
3525 	m_freem(m);
3526 }
3527