xref: /freebsd/sys/net80211/ieee80211_output.c (revision e94f204a324d7dc60476c32be5af474a736c50d4)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/kernel.h>
37 #include <sys/malloc.h>
38 #include <sys/mbuf.h>
39 #include <sys/endian.h>
40 
41 #include <sys/socket.h>
42 
43 #include <net/bpf.h>
44 #include <net/ethernet.h>
45 #include <net/if.h>
46 #include <net/if_var.h>
47 #include <net/if_llc.h>
48 #include <net/if_media.h>
49 #include <net/if_vlan_var.h>
50 
51 #include <net80211/ieee80211_var.h>
52 #include <net80211/ieee80211_regdomain.h>
53 #ifdef IEEE80211_SUPPORT_SUPERG
54 #include <net80211/ieee80211_superg.h>
55 #endif
56 #ifdef IEEE80211_SUPPORT_TDMA
57 #include <net80211/ieee80211_tdma.h>
58 #endif
59 #include <net80211/ieee80211_wds.h>
60 #include <net80211/ieee80211_mesh.h>
61 
62 #if defined(INET) || defined(INET6)
63 #include <netinet/in.h>
64 #endif
65 
66 #ifdef INET
67 #include <netinet/if_ether.h>
68 #include <netinet/in_systm.h>
69 #include <netinet/ip.h>
70 #endif
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #endif
74 
75 #include <security/mac/mac_framework.h>
76 
77 #define	ETHER_HEADER_COPY(dst, src) \
78 	memcpy(dst, src, sizeof(struct ether_header))
79 
80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
81 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
82 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
83 
84 #ifdef IEEE80211_DEBUG
85 /*
86  * Decide if an outbound management frame should be
87  * printed when debugging is enabled.  This filters some
88  * of the less interesting frames that come frequently
89  * (e.g. beacons).
90  */
91 static __inline int
92 doprint(struct ieee80211vap *vap, int subtype)
93 {
94 	switch (subtype) {
95 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
96 		return (vap->iv_opmode == IEEE80211_M_IBSS);
97 	}
98 	return 1;
99 }
100 #endif
101 
102 /*
103  * Transmit a frame to the given destination on the given VAP.
104  *
105  * It's up to the caller to figure out the details of who this
106  * is going to and resolving the node.
107  *
108  * This routine takes care of queuing it for power save,
109  * A-MPDU state stuff, fast-frames state stuff, encapsulation
110  * if required, then passing it up to the driver layer.
111  *
112  * This routine (for now) consumes the mbuf and frees the node
113  * reference; it ideally will return a TX status which reflects
114  * whether the mbuf was consumed or not, so the caller can
115  * free the mbuf (if appropriate) and the node reference (again,
116  * if appropriate.)
117  */
118 int
119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
120     struct ieee80211_node *ni)
121 {
122 	struct ieee80211com *ic = vap->iv_ic;
123 	struct ifnet *ifp = vap->iv_ifp;
124 	int len, mcast;
125 
126 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
127 	    (m->m_flags & M_PWR_SAV) == 0) {
128 		/*
129 		 * Station in power save mode; pass the frame
130 		 * to the 802.11 layer and continue.  We'll get
131 		 * the frame back when the time is right.
132 		 * XXX lose WDS vap linkage?
133 		 */
134 		if (ieee80211_pwrsave(ni, m) != 0)
135 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
136 		ieee80211_free_node(ni);
137 
138 		/*
139 		 * We queued it fine, so tell the upper layer
140 		 * that we consumed it.
141 		 */
142 		return (0);
143 	}
144 	/* calculate priority so drivers can find the tx queue */
145 	if (ieee80211_classify(ni, m)) {
146 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
147 		    ni->ni_macaddr, NULL,
148 		    "%s", "classification failure");
149 		vap->iv_stats.is_tx_classify++;
150 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
151 		m_freem(m);
152 		ieee80211_free_node(ni);
153 
154 		/* XXX better status? */
155 		return (0);
156 	}
157 	/*
158 	 * Stash the node pointer.  Note that we do this after
159 	 * any call to ieee80211_dwds_mcast because that code
160 	 * uses any existing value for rcvif to identify the
161 	 * interface it (might have been) received on.
162 	 */
163 	m->m_pkthdr.rcvif = (void *)ni;
164 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
165 	len = m->m_pkthdr.len;
166 
167 	BPF_MTAP(ifp, m);		/* 802.3 tx */
168 
169 	/*
170 	 * Check if A-MPDU tx aggregation is setup or if we
171 	 * should try to enable it.  The sta must be associated
172 	 * with HT and A-MPDU enabled for use.  When the policy
173 	 * routine decides we should enable A-MPDU we issue an
174 	 * ADDBA request and wait for a reply.  The frame being
175 	 * encapsulated will go out w/o using A-MPDU, or possibly
176 	 * it might be collected by the driver and held/retransmit.
177 	 * The default ic_ampdu_enable routine handles staggering
178 	 * ADDBA requests in case the receiver NAK's us or we are
179 	 * otherwise unable to establish a BA stream.
180 	 */
181 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
182 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
183 		if ((m->m_flags & M_EAPOL) == 0) {
184 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
185 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
186 
187 			ieee80211_txampdu_count_packet(tap);
188 			if (IEEE80211_AMPDU_RUNNING(tap)) {
189 				/*
190 				 * Operational, mark frame for aggregation.
191 				 *
192 				 * XXX do tx aggregation here
193 				 */
194 				m->m_flags |= M_AMPDU_MPDU;
195 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
196 			    ic->ic_ampdu_enable(ni, tap)) {
197 				/*
198 				 * Not negotiated yet, request service.
199 				 */
200 				ieee80211_ampdu_request(ni, tap);
201 				/* XXX hold frame for reply? */
202 			}
203 		}
204 	}
205 
206 #ifdef IEEE80211_SUPPORT_SUPERG
207 	/*
208 	 * Check for AMSDU/FF; queue for aggregation
209 	 *
210 	 * Note: we don't bother trying to do fast frames or
211 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
212 	 * likely could do it for FF (because it's a magic
213 	 * atheros tunnel LLC type) but I don't think we're going
214 	 * to really need to.  For A-MSDU we'd have to set the
215 	 * A-MSDU QoS bit in the wifi header, so we just plain
216 	 * can't do it.
217 	 *
218 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
219 	 * with A-MPDU together which for certain circumstances
220 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
221 	 * I'll ignore that for now so existing behaviour is maintained.
222 	 * Later on it would be good to make "amsdu + ampdu" configurable.
223 	 */
224 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
225 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
226 			m = ieee80211_amsdu_check(ni, m);
227 			if (m == NULL) {
228 				/* NB: any ni ref held on stageq */
229 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
230 				    "%s: amsdu_check queued frame\n",
231 				    __func__);
232 				return (0);
233 			}
234 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
235 		    IEEE80211_NODE_FF)) {
236 			m = ieee80211_ff_check(ni, m);
237 			if (m == NULL) {
238 				/* NB: any ni ref held on stageq */
239 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
240 				    "%s: ff_check queued frame\n",
241 				    __func__);
242 				return (0);
243 			}
244 		}
245 	}
246 #endif /* IEEE80211_SUPPORT_SUPERG */
247 
248 	/*
249 	 * Grab the TX lock - serialise the TX process from this
250 	 * point (where TX state is being checked/modified)
251 	 * through to driver queue.
252 	 */
253 	IEEE80211_TX_LOCK(ic);
254 
255 	/*
256 	 * XXX make the encap and transmit code a separate function
257 	 * so things like the FF (and later A-MSDU) path can just call
258 	 * it for flushed frames.
259 	 */
260 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
261 		/*
262 		 * Encapsulate the packet in prep for transmission.
263 		 */
264 		m = ieee80211_encap(vap, ni, m);
265 		if (m == NULL) {
266 			/* NB: stat+msg handled in ieee80211_encap */
267 			IEEE80211_TX_UNLOCK(ic);
268 			ieee80211_free_node(ni);
269 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
270 			return (ENOBUFS);
271 		}
272 	}
273 	(void) ieee80211_parent_xmitpkt(ic, m);
274 
275 	/*
276 	 * Unlock at this point - no need to hold it across
277 	 * ieee80211_free_node() (ie, the comlock)
278 	 */
279 	IEEE80211_TX_UNLOCK(ic);
280 	ic->ic_lastdata = ticks;
281 
282 	return (0);
283 }
284 
285 
286 
287 /*
288  * Send the given mbuf through the given vap.
289  *
290  * This consumes the mbuf regardless of whether the transmit
291  * was successful or not.
292  *
293  * This does none of the initial checks that ieee80211_start()
294  * does (eg CAC timeout, interface wakeup) - the caller must
295  * do this first.
296  */
297 static int
298 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
299 {
300 #define	IS_DWDS(vap) \
301 	(vap->iv_opmode == IEEE80211_M_WDS && \
302 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
303 	struct ieee80211com *ic = vap->iv_ic;
304 	struct ifnet *ifp = vap->iv_ifp;
305 	struct ieee80211_node *ni;
306 	struct ether_header *eh;
307 
308 	/*
309 	 * Cancel any background scan.
310 	 */
311 	if (ic->ic_flags & IEEE80211_F_SCAN)
312 		ieee80211_cancel_anyscan(vap);
313 	/*
314 	 * Find the node for the destination so we can do
315 	 * things like power save and fast frames aggregation.
316 	 *
317 	 * NB: past this point various code assumes the first
318 	 *     mbuf has the 802.3 header present (and contiguous).
319 	 */
320 	ni = NULL;
321 	if (m->m_len < sizeof(struct ether_header) &&
322 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
323 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
324 		    "discard frame, %s\n", "m_pullup failed");
325 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
326 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
327 		return (ENOBUFS);
328 	}
329 	eh = mtod(m, struct ether_header *);
330 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
331 		if (IS_DWDS(vap)) {
332 			/*
333 			 * Only unicast frames from the above go out
334 			 * DWDS vaps; multicast frames are handled by
335 			 * dispatching the frame as it comes through
336 			 * the AP vap (see below).
337 			 */
338 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
339 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
340 			vap->iv_stats.is_dwds_mcast++;
341 			m_freem(m);
342 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
343 			/* XXX better status? */
344 			return (ENOBUFS);
345 		}
346 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
347 			/*
348 			 * Spam DWDS vap's w/ multicast traffic.
349 			 */
350 			/* XXX only if dwds in use? */
351 			ieee80211_dwds_mcast(vap, m);
352 		}
353 	}
354 #ifdef IEEE80211_SUPPORT_MESH
355 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
356 #endif
357 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
358 		if (ni == NULL) {
359 			/* NB: ieee80211_find_txnode does stat+msg */
360 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
361 			m_freem(m);
362 			/* XXX better status? */
363 			return (ENOBUFS);
364 		}
365 		if (ni->ni_associd == 0 &&
366 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
367 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
368 			    eh->ether_dhost, NULL,
369 			    "sta not associated (type 0x%04x)",
370 			    htons(eh->ether_type));
371 			vap->iv_stats.is_tx_notassoc++;
372 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
373 			m_freem(m);
374 			ieee80211_free_node(ni);
375 			/* XXX better status? */
376 			return (ENOBUFS);
377 		}
378 #ifdef IEEE80211_SUPPORT_MESH
379 	} else {
380 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
381 			/*
382 			 * Proxy station only if configured.
383 			 */
384 			if (!ieee80211_mesh_isproxyena(vap)) {
385 				IEEE80211_DISCARD_MAC(vap,
386 				    IEEE80211_MSG_OUTPUT |
387 				    IEEE80211_MSG_MESH,
388 				    eh->ether_dhost, NULL,
389 				    "%s", "proxy not enabled");
390 				vap->iv_stats.is_mesh_notproxy++;
391 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
392 				m_freem(m);
393 				/* XXX better status? */
394 				return (ENOBUFS);
395 			}
396 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
397 			    "forward frame from DS SA(%6D), DA(%6D)\n",
398 			    eh->ether_shost, ":",
399 			    eh->ether_dhost, ":");
400 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
401 		}
402 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
403 		if (ni == NULL) {
404 			/*
405 			 * NB: ieee80211_mesh_discover holds/disposes
406 			 * frame (e.g. queueing on path discovery).
407 			 */
408 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
409 			/* XXX better status? */
410 			return (ENOBUFS);
411 		}
412 	}
413 #endif
414 
415 	/*
416 	 * We've resolved the sender, so attempt to transmit it.
417 	 */
418 
419 	if (vap->iv_state == IEEE80211_S_SLEEP) {
420 		/*
421 		 * In power save; queue frame and then  wakeup device
422 		 * for transmit.
423 		 */
424 		ic->ic_lastdata = ticks;
425 		if (ieee80211_pwrsave(ni, m) != 0)
426 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
427 		ieee80211_free_node(ni);
428 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
429 		return (0);
430 	}
431 
432 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
433 		return (ENOBUFS);
434 	return (0);
435 #undef	IS_DWDS
436 }
437 
438 /*
439  * Start method for vap's.  All packets from the stack come
440  * through here.  We handle common processing of the packets
441  * before dispatching them to the underlying device.
442  *
443  * if_transmit() requires that the mbuf be consumed by this call
444  * regardless of the return condition.
445  */
446 int
447 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
448 {
449 	struct ieee80211vap *vap = ifp->if_softc;
450 	struct ieee80211com *ic = vap->iv_ic;
451 
452 	/*
453 	 * No data frames go out unless we're running.
454 	 * Note in particular this covers CAC and CSA
455 	 * states (though maybe we should check muting
456 	 * for CSA).
457 	 */
458 	if (vap->iv_state != IEEE80211_S_RUN &&
459 	    vap->iv_state != IEEE80211_S_SLEEP) {
460 		IEEE80211_LOCK(ic);
461 		/* re-check under the com lock to avoid races */
462 		if (vap->iv_state != IEEE80211_S_RUN &&
463 		    vap->iv_state != IEEE80211_S_SLEEP) {
464 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
465 			    "%s: ignore queue, in %s state\n",
466 			    __func__, ieee80211_state_name[vap->iv_state]);
467 			vap->iv_stats.is_tx_badstate++;
468 			IEEE80211_UNLOCK(ic);
469 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
470 			m_freem(m);
471 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
472 			return (ENETDOWN);
473 		}
474 		IEEE80211_UNLOCK(ic);
475 	}
476 
477 	/*
478 	 * Sanitize mbuf flags for net80211 use.  We cannot
479 	 * clear M_PWR_SAV or M_MORE_DATA because these may
480 	 * be set for frames that are re-submitted from the
481 	 * power save queue.
482 	 *
483 	 * NB: This must be done before ieee80211_classify as
484 	 *     it marks EAPOL in frames with M_EAPOL.
485 	 */
486 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
487 
488 	/*
489 	 * Bump to the packet transmission path.
490 	 * The mbuf will be consumed here.
491 	 */
492 	return (ieee80211_start_pkt(vap, m));
493 }
494 
495 void
496 ieee80211_vap_qflush(struct ifnet *ifp)
497 {
498 
499 	/* Empty for now */
500 }
501 
502 /*
503  * 802.11 raw output routine.
504  *
505  * XXX TODO: this (and other send routines) should correctly
506  * XXX keep the pwr mgmt bit set if it decides to call into the
507  * XXX driver to send a frame whilst the state is SLEEP.
508  *
509  * Otherwise the peer may decide that we're awake and flood us
510  * with traffic we are still too asleep to receive!
511  */
512 int
513 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
514     struct mbuf *m, const struct ieee80211_bpf_params *params)
515 {
516 	struct ieee80211com *ic = vap->iv_ic;
517 	int error;
518 
519 	/*
520 	 * Set node - the caller has taken a reference, so ensure
521 	 * that the mbuf has the same node value that
522 	 * it would if it were going via the normal path.
523 	 */
524 	m->m_pkthdr.rcvif = (void *)ni;
525 
526 	/*
527 	 * Attempt to add bpf transmit parameters.
528 	 *
529 	 * For now it's ok to fail; the raw_xmit api still takes
530 	 * them as an option.
531 	 *
532 	 * Later on when ic_raw_xmit() has params removed,
533 	 * they'll have to be added - so fail the transmit if
534 	 * they can't be.
535 	 */
536 	if (params)
537 		(void) ieee80211_add_xmit_params(m, params);
538 
539 	error = ic->ic_raw_xmit(ni, m, params);
540 	if (error) {
541 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
542 		ieee80211_free_node(ni);
543 	}
544 	return (error);
545 }
546 
547 /*
548  * 802.11 output routine. This is (currently) used only to
549  * connect bpf write calls to the 802.11 layer for injecting
550  * raw 802.11 frames.
551  */
552 int
553 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
554 	const struct sockaddr *dst, struct route *ro)
555 {
556 #define senderr(e) do { error = (e); goto bad;} while (0)
557 	struct ieee80211_node *ni = NULL;
558 	struct ieee80211vap *vap;
559 	struct ieee80211_frame *wh;
560 	struct ieee80211com *ic = NULL;
561 	int error;
562 	int ret;
563 
564 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
565 		/*
566 		 * Short-circuit requests if the vap is marked OACTIVE
567 		 * as this can happen because a packet came down through
568 		 * ieee80211_start before the vap entered RUN state in
569 		 * which case it's ok to just drop the frame.  This
570 		 * should not be necessary but callers of if_output don't
571 		 * check OACTIVE.
572 		 */
573 		senderr(ENETDOWN);
574 	}
575 	vap = ifp->if_softc;
576 	ic = vap->iv_ic;
577 	/*
578 	 * Hand to the 802.3 code if not tagged as
579 	 * a raw 802.11 frame.
580 	 */
581 	if (dst->sa_family != AF_IEEE80211)
582 		return vap->iv_output(ifp, m, dst, ro);
583 #ifdef MAC
584 	error = mac_ifnet_check_transmit(ifp, m);
585 	if (error)
586 		senderr(error);
587 #endif
588 	if (ifp->if_flags & IFF_MONITOR)
589 		senderr(ENETDOWN);
590 	if (!IFNET_IS_UP_RUNNING(ifp))
591 		senderr(ENETDOWN);
592 	if (vap->iv_state == IEEE80211_S_CAC) {
593 		IEEE80211_DPRINTF(vap,
594 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
595 		    "block %s frame in CAC state\n", "raw data");
596 		vap->iv_stats.is_tx_badstate++;
597 		senderr(EIO);		/* XXX */
598 	} else if (vap->iv_state == IEEE80211_S_SCAN)
599 		senderr(EIO);
600 	/* XXX bypass bridge, pfil, carp, etc. */
601 
602 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
603 		senderr(EIO);	/* XXX */
604 	wh = mtod(m, struct ieee80211_frame *);
605 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
606 	    IEEE80211_FC0_VERSION_0)
607 		senderr(EIO);	/* XXX */
608 
609 	/* locate destination node */
610 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
611 	case IEEE80211_FC1_DIR_NODS:
612 	case IEEE80211_FC1_DIR_FROMDS:
613 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
614 		break;
615 	case IEEE80211_FC1_DIR_TODS:
616 	case IEEE80211_FC1_DIR_DSTODS:
617 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
618 			senderr(EIO);	/* XXX */
619 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
620 		break;
621 	default:
622 		senderr(EIO);	/* XXX */
623 	}
624 	if (ni == NULL) {
625 		/*
626 		 * Permit packets w/ bpf params through regardless
627 		 * (see below about sa_len).
628 		 */
629 		if (dst->sa_len == 0)
630 			senderr(EHOSTUNREACH);
631 		ni = ieee80211_ref_node(vap->iv_bss);
632 	}
633 
634 	/*
635 	 * Sanitize mbuf for net80211 flags leaked from above.
636 	 *
637 	 * NB: This must be done before ieee80211_classify as
638 	 *     it marks EAPOL in frames with M_EAPOL.
639 	 */
640 	m->m_flags &= ~M_80211_TX;
641 
642 	/* calculate priority so drivers can find the tx queue */
643 	/* XXX assumes an 802.3 frame */
644 	if (ieee80211_classify(ni, m))
645 		senderr(EIO);		/* XXX */
646 
647 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
648 	IEEE80211_NODE_STAT(ni, tx_data);
649 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
650 		IEEE80211_NODE_STAT(ni, tx_mcast);
651 		m->m_flags |= M_MCAST;
652 	} else
653 		IEEE80211_NODE_STAT(ni, tx_ucast);
654 	/* NB: ieee80211_encap does not include 802.11 header */
655 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
656 
657 	IEEE80211_TX_LOCK(ic);
658 
659 	/*
660 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
661 	 * present by setting the sa_len field of the sockaddr (yes,
662 	 * this is a hack).
663 	 * NB: we assume sa_data is suitably aligned to cast.
664 	 */
665 	ret = ieee80211_raw_output(vap, ni, m,
666 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
667 		dst->sa_data : NULL));
668 	IEEE80211_TX_UNLOCK(ic);
669 	return (ret);
670 bad:
671 	if (m != NULL)
672 		m_freem(m);
673 	if (ni != NULL)
674 		ieee80211_free_node(ni);
675 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
676 	return error;
677 #undef senderr
678 }
679 
680 /*
681  * Set the direction field and address fields of an outgoing
682  * frame.  Note this should be called early on in constructing
683  * a frame as it sets i_fc[1]; other bits can then be or'd in.
684  */
685 void
686 ieee80211_send_setup(
687 	struct ieee80211_node *ni,
688 	struct mbuf *m,
689 	int type, int tid,
690 	const uint8_t sa[IEEE80211_ADDR_LEN],
691 	const uint8_t da[IEEE80211_ADDR_LEN],
692 	const uint8_t bssid[IEEE80211_ADDR_LEN])
693 {
694 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
695 	struct ieee80211vap *vap = ni->ni_vap;
696 	struct ieee80211_tx_ampdu *tap;
697 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
698 	ieee80211_seq seqno;
699 
700 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
701 
702 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
703 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
704 		switch (vap->iv_opmode) {
705 		case IEEE80211_M_STA:
706 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
707 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
708 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
709 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
710 			break;
711 		case IEEE80211_M_IBSS:
712 		case IEEE80211_M_AHDEMO:
713 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
714 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
715 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
716 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
717 			break;
718 		case IEEE80211_M_HOSTAP:
719 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
720 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
721 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
722 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
723 			break;
724 		case IEEE80211_M_WDS:
725 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
726 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
727 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
728 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
729 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
730 			break;
731 		case IEEE80211_M_MBSS:
732 #ifdef IEEE80211_SUPPORT_MESH
733 			if (IEEE80211_IS_MULTICAST(da)) {
734 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
735 				/* XXX next hop */
736 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
737 				IEEE80211_ADDR_COPY(wh->i_addr2,
738 				    vap->iv_myaddr);
739 			} else {
740 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
741 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
742 				IEEE80211_ADDR_COPY(wh->i_addr2,
743 				    vap->iv_myaddr);
744 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
745 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
746 			}
747 #endif
748 			break;
749 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
750 			break;
751 		}
752 	} else {
753 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
754 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
755 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
756 #ifdef IEEE80211_SUPPORT_MESH
757 		if (vap->iv_opmode == IEEE80211_M_MBSS)
758 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
759 		else
760 #endif
761 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
762 	}
763 	*(uint16_t *)&wh->i_dur[0] = 0;
764 
765 	tap = &ni->ni_tx_ampdu[tid];
766 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
767 		m->m_flags |= M_AMPDU_MPDU;
768 	else {
769 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
770 				      type & IEEE80211_FC0_SUBTYPE_MASK))
771 			seqno = ni->ni_txseqs[tid]++;
772 		else
773 			seqno = 0;
774 
775 		*(uint16_t *)&wh->i_seq[0] =
776 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
777 		M_SEQNO_SET(m, seqno);
778 	}
779 
780 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
781 		m->m_flags |= M_MCAST;
782 #undef WH4
783 }
784 
785 /*
786  * Send a management frame to the specified node.  The node pointer
787  * must have a reference as the pointer will be passed to the driver
788  * and potentially held for a long time.  If the frame is successfully
789  * dispatched to the driver, then it is responsible for freeing the
790  * reference (and potentially free'ing up any associated storage);
791  * otherwise deal with reclaiming any reference (on error).
792  */
793 int
794 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
795 	struct ieee80211_bpf_params *params)
796 {
797 	struct ieee80211vap *vap = ni->ni_vap;
798 	struct ieee80211com *ic = ni->ni_ic;
799 	struct ieee80211_frame *wh;
800 	int ret;
801 
802 	KASSERT(ni != NULL, ("null node"));
803 
804 	if (vap->iv_state == IEEE80211_S_CAC) {
805 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
806 		    ni, "block %s frame in CAC state",
807 			ieee80211_mgt_subtype_name(type));
808 		vap->iv_stats.is_tx_badstate++;
809 		ieee80211_free_node(ni);
810 		m_freem(m);
811 		return EIO;		/* XXX */
812 	}
813 
814 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
815 	if (m == NULL) {
816 		ieee80211_free_node(ni);
817 		return ENOMEM;
818 	}
819 
820 	IEEE80211_TX_LOCK(ic);
821 
822 	wh = mtod(m, struct ieee80211_frame *);
823 	ieee80211_send_setup(ni, m,
824 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
825 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
826 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
827 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
828 		    "encrypting frame (%s)", __func__);
829 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
830 	}
831 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
832 
833 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
834 	M_WME_SETAC(m, params->ibp_pri);
835 
836 #ifdef IEEE80211_DEBUG
837 	/* avoid printing too many frames */
838 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
839 	    ieee80211_msg_dumppkts(vap)) {
840 		printf("[%s] send %s on channel %u\n",
841 		    ether_sprintf(wh->i_addr1),
842 		    ieee80211_mgt_subtype_name(type),
843 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
844 	}
845 #endif
846 	IEEE80211_NODE_STAT(ni, tx_mgmt);
847 
848 	ret = ieee80211_raw_output(vap, ni, m, params);
849 	IEEE80211_TX_UNLOCK(ic);
850 	return (ret);
851 }
852 
853 static void
854 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
855     int status)
856 {
857 	struct ieee80211vap *vap = ni->ni_vap;
858 
859 	wakeup(vap);
860 }
861 
862 /*
863  * Send a null data frame to the specified node.  If the station
864  * is setup for QoS then a QoS Null Data frame is constructed.
865  * If this is a WDS station then a 4-address frame is constructed.
866  *
867  * NB: the caller is assumed to have setup a node reference
868  *     for use; this is necessary to deal with a race condition
869  *     when probing for inactive stations.  Like ieee80211_mgmt_output
870  *     we must cleanup any node reference on error;  however we
871  *     can safely just unref it as we know it will never be the
872  *     last reference to the node.
873  */
874 int
875 ieee80211_send_nulldata(struct ieee80211_node *ni)
876 {
877 	struct ieee80211vap *vap = ni->ni_vap;
878 	struct ieee80211com *ic = ni->ni_ic;
879 	struct mbuf *m;
880 	struct ieee80211_frame *wh;
881 	int hdrlen;
882 	uint8_t *frm;
883 	int ret;
884 
885 	if (vap->iv_state == IEEE80211_S_CAC) {
886 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
887 		    ni, "block %s frame in CAC state", "null data");
888 		ieee80211_unref_node(&ni);
889 		vap->iv_stats.is_tx_badstate++;
890 		return EIO;		/* XXX */
891 	}
892 
893 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
894 		hdrlen = sizeof(struct ieee80211_qosframe);
895 	else
896 		hdrlen = sizeof(struct ieee80211_frame);
897 	/* NB: only WDS vap's get 4-address frames */
898 	if (vap->iv_opmode == IEEE80211_M_WDS)
899 		hdrlen += IEEE80211_ADDR_LEN;
900 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
901 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
902 
903 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
904 	if (m == NULL) {
905 		/* XXX debug msg */
906 		ieee80211_unref_node(&ni);
907 		vap->iv_stats.is_tx_nobuf++;
908 		return ENOMEM;
909 	}
910 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
911 	    ("leading space %zd", M_LEADINGSPACE(m)));
912 	M_PREPEND(m, hdrlen, M_NOWAIT);
913 	if (m == NULL) {
914 		/* NB: cannot happen */
915 		ieee80211_free_node(ni);
916 		return ENOMEM;
917 	}
918 
919 	IEEE80211_TX_LOCK(ic);
920 
921 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
922 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
923 		const int tid = WME_AC_TO_TID(WME_AC_BE);
924 		uint8_t *qos;
925 
926 		ieee80211_send_setup(ni, m,
927 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
928 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
929 
930 		if (vap->iv_opmode == IEEE80211_M_WDS)
931 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
932 		else
933 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
934 		qos[0] = tid & IEEE80211_QOS_TID;
935 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
936 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
937 		qos[1] = 0;
938 	} else {
939 		ieee80211_send_setup(ni, m,
940 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
941 		    IEEE80211_NONQOS_TID,
942 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
943 	}
944 	if (vap->iv_opmode != IEEE80211_M_WDS) {
945 		/* NB: power management bit is never sent by an AP */
946 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
947 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
948 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
949 	}
950 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
951 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
952 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
953 		    NULL);
954 	}
955 	m->m_len = m->m_pkthdr.len = hdrlen;
956 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
957 
958 	M_WME_SETAC(m, WME_AC_BE);
959 
960 	IEEE80211_NODE_STAT(ni, tx_data);
961 
962 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
963 	    "send %snull data frame on channel %u, pwr mgt %s",
964 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
965 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
966 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
967 
968 	ret = ieee80211_raw_output(vap, ni, m, NULL);
969 	IEEE80211_TX_UNLOCK(ic);
970 	return (ret);
971 }
972 
973 /*
974  * Assign priority to a frame based on any vlan tag assigned
975  * to the station and/or any Diffserv setting in an IP header.
976  * Finally, if an ACM policy is setup (in station mode) it's
977  * applied.
978  */
979 int
980 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
981 {
982 	const struct ether_header *eh = mtod(m, struct ether_header *);
983 	int v_wme_ac, d_wme_ac, ac;
984 
985 	/*
986 	 * Always promote PAE/EAPOL frames to high priority.
987 	 */
988 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
989 		/* NB: mark so others don't need to check header */
990 		m->m_flags |= M_EAPOL;
991 		ac = WME_AC_VO;
992 		goto done;
993 	}
994 	/*
995 	 * Non-qos traffic goes to BE.
996 	 */
997 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
998 		ac = WME_AC_BE;
999 		goto done;
1000 	}
1001 
1002 	/*
1003 	 * If node has a vlan tag then all traffic
1004 	 * to it must have a matching tag.
1005 	 */
1006 	v_wme_ac = 0;
1007 	if (ni->ni_vlan != 0) {
1008 		 if ((m->m_flags & M_VLANTAG) == 0) {
1009 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1010 			return 1;
1011 		}
1012 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1013 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1014 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1015 			return 1;
1016 		}
1017 		/* map vlan priority to AC */
1018 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1019 	}
1020 
1021 	/* XXX m_copydata may be too slow for fast path */
1022 #ifdef INET
1023 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1024 		uint8_t tos;
1025 		/*
1026 		 * IP frame, map the DSCP bits from the TOS field.
1027 		 */
1028 		/* NB: ip header may not be in first mbuf */
1029 		m_copydata(m, sizeof(struct ether_header) +
1030 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1031 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1032 		d_wme_ac = TID_TO_WME_AC(tos);
1033 	} else {
1034 #endif /* INET */
1035 #ifdef INET6
1036 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1037 		uint32_t flow;
1038 		uint8_t tos;
1039 		/*
1040 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1041 		 */
1042 		m_copydata(m, sizeof(struct ether_header) +
1043 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1044 		    (caddr_t) &flow);
1045 		tos = (uint8_t)(ntohl(flow) >> 20);
1046 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1047 		d_wme_ac = TID_TO_WME_AC(tos);
1048 	} else {
1049 #endif /* INET6 */
1050 		d_wme_ac = WME_AC_BE;
1051 #ifdef INET6
1052 	}
1053 #endif
1054 #ifdef INET
1055 	}
1056 #endif
1057 	/*
1058 	 * Use highest priority AC.
1059 	 */
1060 	if (v_wme_ac > d_wme_ac)
1061 		ac = v_wme_ac;
1062 	else
1063 		ac = d_wme_ac;
1064 
1065 	/*
1066 	 * Apply ACM policy.
1067 	 */
1068 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1069 		static const int acmap[4] = {
1070 			WME_AC_BK,	/* WME_AC_BE */
1071 			WME_AC_BK,	/* WME_AC_BK */
1072 			WME_AC_BE,	/* WME_AC_VI */
1073 			WME_AC_VI,	/* WME_AC_VO */
1074 		};
1075 		struct ieee80211com *ic = ni->ni_ic;
1076 
1077 		while (ac != WME_AC_BK &&
1078 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1079 			ac = acmap[ac];
1080 	}
1081 done:
1082 	M_WME_SETAC(m, ac);
1083 	return 0;
1084 }
1085 
1086 /*
1087  * Insure there is sufficient contiguous space to encapsulate the
1088  * 802.11 data frame.  If room isn't already there, arrange for it.
1089  * Drivers and cipher modules assume we have done the necessary work
1090  * and fail rudely if they don't find the space they need.
1091  */
1092 struct mbuf *
1093 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1094 	struct ieee80211_key *key, struct mbuf *m)
1095 {
1096 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1097 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1098 
1099 	if (key != NULL) {
1100 		/* XXX belongs in crypto code? */
1101 		needed_space += key->wk_cipher->ic_header;
1102 		/* XXX frags */
1103 		/*
1104 		 * When crypto is being done in the host we must insure
1105 		 * the data are writable for the cipher routines; clone
1106 		 * a writable mbuf chain.
1107 		 * XXX handle SWMIC specially
1108 		 */
1109 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1110 			m = m_unshare(m, M_NOWAIT);
1111 			if (m == NULL) {
1112 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1113 				    "%s: cannot get writable mbuf\n", __func__);
1114 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1115 				return NULL;
1116 			}
1117 		}
1118 	}
1119 	/*
1120 	 * We know we are called just before stripping an Ethernet
1121 	 * header and prepending an LLC header.  This means we know
1122 	 * there will be
1123 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1124 	 * bytes recovered to which we need additional space for the
1125 	 * 802.11 header and any crypto header.
1126 	 */
1127 	/* XXX check trailing space and copy instead? */
1128 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1129 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1130 		if (n == NULL) {
1131 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1132 			    "%s: cannot expand storage\n", __func__);
1133 			vap->iv_stats.is_tx_nobuf++;
1134 			m_freem(m);
1135 			return NULL;
1136 		}
1137 		KASSERT(needed_space <= MHLEN,
1138 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1139 		/*
1140 		 * Setup new mbuf to have leading space to prepend the
1141 		 * 802.11 header and any crypto header bits that are
1142 		 * required (the latter are added when the driver calls
1143 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1144 		 */
1145 		/* NB: must be first 'cuz it clobbers m_data */
1146 		m_move_pkthdr(n, m);
1147 		n->m_len = 0;			/* NB: m_gethdr does not set */
1148 		n->m_data += needed_space;
1149 		/*
1150 		 * Pull up Ethernet header to create the expected layout.
1151 		 * We could use m_pullup but that's overkill (i.e. we don't
1152 		 * need the actual data) and it cannot fail so do it inline
1153 		 * for speed.
1154 		 */
1155 		/* NB: struct ether_header is known to be contiguous */
1156 		n->m_len += sizeof(struct ether_header);
1157 		m->m_len -= sizeof(struct ether_header);
1158 		m->m_data += sizeof(struct ether_header);
1159 		/*
1160 		 * Replace the head of the chain.
1161 		 */
1162 		n->m_next = m;
1163 		m = n;
1164 	}
1165 	return m;
1166 #undef TO_BE_RECLAIMED
1167 }
1168 
1169 /*
1170  * Return the transmit key to use in sending a unicast frame.
1171  * If a unicast key is set we use that.  When no unicast key is set
1172  * we fall back to the default transmit key.
1173  */
1174 static __inline struct ieee80211_key *
1175 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1176 	struct ieee80211_node *ni)
1177 {
1178 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1179 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1180 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1181 			return NULL;
1182 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1183 	} else {
1184 		return &ni->ni_ucastkey;
1185 	}
1186 }
1187 
1188 /*
1189  * Return the transmit key to use in sending a multicast frame.
1190  * Multicast traffic always uses the group key which is installed as
1191  * the default tx key.
1192  */
1193 static __inline struct ieee80211_key *
1194 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1195 	struct ieee80211_node *ni)
1196 {
1197 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1198 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1199 		return NULL;
1200 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1201 }
1202 
1203 /*
1204  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1205  * If an error is encountered NULL is returned.  The caller is required
1206  * to provide a node reference and pullup the ethernet header in the
1207  * first mbuf.
1208  *
1209  * NB: Packet is assumed to be processed by ieee80211_classify which
1210  *     marked EAPOL frames w/ M_EAPOL.
1211  */
1212 struct mbuf *
1213 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1214     struct mbuf *m)
1215 {
1216 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1217 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1218 	struct ieee80211com *ic = ni->ni_ic;
1219 #ifdef IEEE80211_SUPPORT_MESH
1220 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1221 	struct ieee80211_meshcntl_ae10 *mc;
1222 	struct ieee80211_mesh_route *rt = NULL;
1223 	int dir = -1;
1224 #endif
1225 	struct ether_header eh;
1226 	struct ieee80211_frame *wh;
1227 	struct ieee80211_key *key;
1228 	struct llc *llc;
1229 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1230 	ieee80211_seq seqno;
1231 	int meshhdrsize, meshae;
1232 	uint8_t *qos;
1233 	int is_amsdu = 0;
1234 
1235 	IEEE80211_TX_LOCK_ASSERT(ic);
1236 
1237 	/*
1238 	 * Copy existing Ethernet header to a safe place.  The
1239 	 * rest of the code assumes it's ok to strip it when
1240 	 * reorganizing state for the final encapsulation.
1241 	 */
1242 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1243 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1244 
1245 	/*
1246 	 * Insure space for additional headers.  First identify
1247 	 * transmit key to use in calculating any buffer adjustments
1248 	 * required.  This is also used below to do privacy
1249 	 * encapsulation work.  Then calculate the 802.11 header
1250 	 * size and any padding required by the driver.
1251 	 *
1252 	 * Note key may be NULL if we fall back to the default
1253 	 * transmit key and that is not set.  In that case the
1254 	 * buffer may not be expanded as needed by the cipher
1255 	 * routines, but they will/should discard it.
1256 	 */
1257 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1258 		if (vap->iv_opmode == IEEE80211_M_STA ||
1259 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1260 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1261 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1262 			key = ieee80211_crypto_getucastkey(vap, ni);
1263 		else
1264 			key = ieee80211_crypto_getmcastkey(vap, ni);
1265 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1266 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1267 			    eh.ether_dhost,
1268 			    "no default transmit key (%s) deftxkey %u",
1269 			    __func__, vap->iv_def_txkey);
1270 			vap->iv_stats.is_tx_nodefkey++;
1271 			goto bad;
1272 		}
1273 	} else
1274 		key = NULL;
1275 	/*
1276 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1277 	 * frames so suppress use.  This may be an issue if other
1278 	 * ap's require all data frames to be QoS-encapsulated
1279 	 * once negotiated in which case we'll need to make this
1280 	 * configurable.
1281 	 * NB: mesh data frames are QoS.
1282 	 */
1283 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1284 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1285 	    (m->m_flags & M_EAPOL) == 0;
1286 	if (addqos)
1287 		hdrsize = sizeof(struct ieee80211_qosframe);
1288 	else
1289 		hdrsize = sizeof(struct ieee80211_frame);
1290 #ifdef IEEE80211_SUPPORT_MESH
1291 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1292 		/*
1293 		 * Mesh data frames are encapsulated according to the
1294 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1295 		 * o Group Addressed data (aka multicast) originating
1296 		 *   at the local sta are sent w/ 3-address format and
1297 		 *   address extension mode 00
1298 		 * o Individually Addressed data (aka unicast) originating
1299 		 *   at the local sta are sent w/ 4-address format and
1300 		 *   address extension mode 00
1301 		 * o Group Addressed data forwarded from a non-mesh sta are
1302 		 *   sent w/ 3-address format and address extension mode 01
1303 		 * o Individually Address data from another sta are sent
1304 		 *   w/ 4-address format and address extension mode 10
1305 		 */
1306 		is4addr = 0;		/* NB: don't use, disable */
1307 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1308 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1309 			KASSERT(rt != NULL, ("route is NULL"));
1310 			dir = IEEE80211_FC1_DIR_DSTODS;
1311 			hdrsize += IEEE80211_ADDR_LEN;
1312 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1313 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1314 				    vap->iv_myaddr)) {
1315 					IEEE80211_NOTE_MAC(vap,
1316 					    IEEE80211_MSG_MESH,
1317 					    eh.ether_dhost,
1318 					    "%s", "trying to send to ourself");
1319 					goto bad;
1320 				}
1321 				meshae = IEEE80211_MESH_AE_10;
1322 				meshhdrsize =
1323 				    sizeof(struct ieee80211_meshcntl_ae10);
1324 			} else {
1325 				meshae = IEEE80211_MESH_AE_00;
1326 				meshhdrsize =
1327 				    sizeof(struct ieee80211_meshcntl);
1328 			}
1329 		} else {
1330 			dir = IEEE80211_FC1_DIR_FROMDS;
1331 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1332 				/* proxy group */
1333 				meshae = IEEE80211_MESH_AE_01;
1334 				meshhdrsize =
1335 				    sizeof(struct ieee80211_meshcntl_ae01);
1336 			} else {
1337 				/* group */
1338 				meshae = IEEE80211_MESH_AE_00;
1339 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1340 			}
1341 		}
1342 	} else {
1343 #endif
1344 		/*
1345 		 * 4-address frames need to be generated for:
1346 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1347 		 * o packets sent through a vap marked for relaying
1348 		 *   (e.g. a station operating with dynamic WDS)
1349 		 */
1350 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1351 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1352 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1353 		if (is4addr)
1354 			hdrsize += IEEE80211_ADDR_LEN;
1355 		meshhdrsize = meshae = 0;
1356 #ifdef IEEE80211_SUPPORT_MESH
1357 	}
1358 #endif
1359 	/*
1360 	 * Honor driver DATAPAD requirement.
1361 	 */
1362 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1363 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1364 	else
1365 		hdrspace = hdrsize;
1366 
1367 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1368 		/*
1369 		 * Normal frame.
1370 		 */
1371 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1372 		if (m == NULL) {
1373 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1374 			goto bad;
1375 		}
1376 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1377 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1378 		llc = mtod(m, struct llc *);
1379 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1380 		llc->llc_control = LLC_UI;
1381 		llc->llc_snap.org_code[0] = 0;
1382 		llc->llc_snap.org_code[1] = 0;
1383 		llc->llc_snap.org_code[2] = 0;
1384 		llc->llc_snap.ether_type = eh.ether_type;
1385 	} else {
1386 #ifdef IEEE80211_SUPPORT_SUPERG
1387 		/*
1388 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1389 		 *
1390 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1391 		 * anywhere for some reason.  But, since 11n requires
1392 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1393 		 */
1394 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1395 		if (ieee80211_amsdu_tx_ok(ni)) {
1396 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1397 			is_amsdu = 1;
1398 		} else {
1399 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1400 		}
1401 		if (m == NULL)
1402 #endif
1403 			goto bad;
1404 	}
1405 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1406 
1407 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1408 	if (m == NULL) {
1409 		vap->iv_stats.is_tx_nobuf++;
1410 		goto bad;
1411 	}
1412 	wh = mtod(m, struct ieee80211_frame *);
1413 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1414 	*(uint16_t *)wh->i_dur = 0;
1415 	qos = NULL;	/* NB: quiet compiler */
1416 	if (is4addr) {
1417 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1418 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1419 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1420 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1421 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1422 	} else switch (vap->iv_opmode) {
1423 	case IEEE80211_M_STA:
1424 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1425 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1426 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1427 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1428 		break;
1429 	case IEEE80211_M_IBSS:
1430 	case IEEE80211_M_AHDEMO:
1431 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1432 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1433 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1434 		/*
1435 		 * NB: always use the bssid from iv_bss as the
1436 		 *     neighbor's may be stale after an ibss merge
1437 		 */
1438 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1439 		break;
1440 	case IEEE80211_M_HOSTAP:
1441 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1442 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1443 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1444 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1445 		break;
1446 #ifdef IEEE80211_SUPPORT_MESH
1447 	case IEEE80211_M_MBSS:
1448 		/* NB: offset by hdrspace to deal with DATAPAD */
1449 		mc = (struct ieee80211_meshcntl_ae10 *)
1450 		     (mtod(m, uint8_t *) + hdrspace);
1451 		wh->i_fc[1] = dir;
1452 		switch (meshae) {
1453 		case IEEE80211_MESH_AE_00:	/* no proxy */
1454 			mc->mc_flags = 0;
1455 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1456 				IEEE80211_ADDR_COPY(wh->i_addr1,
1457 				    ni->ni_macaddr);
1458 				IEEE80211_ADDR_COPY(wh->i_addr2,
1459 				    vap->iv_myaddr);
1460 				IEEE80211_ADDR_COPY(wh->i_addr3,
1461 				    eh.ether_dhost);
1462 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1463 				    eh.ether_shost);
1464 				qos =((struct ieee80211_qosframe_addr4 *)
1465 				    wh)->i_qos;
1466 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1467 				 /* mcast */
1468 				IEEE80211_ADDR_COPY(wh->i_addr1,
1469 				    eh.ether_dhost);
1470 				IEEE80211_ADDR_COPY(wh->i_addr2,
1471 				    vap->iv_myaddr);
1472 				IEEE80211_ADDR_COPY(wh->i_addr3,
1473 				    eh.ether_shost);
1474 				qos = ((struct ieee80211_qosframe *)
1475 				    wh)->i_qos;
1476 			}
1477 			break;
1478 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1479 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1480 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1481 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1482 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1483 			mc->mc_flags = 1;
1484 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1485 			    eh.ether_shost);
1486 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1487 			break;
1488 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1489 			KASSERT(rt != NULL, ("route is NULL"));
1490 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1491 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1492 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1493 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1494 			mc->mc_flags = IEEE80211_MESH_AE_10;
1495 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1496 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1497 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1498 			break;
1499 		default:
1500 			KASSERT(0, ("meshae %d", meshae));
1501 			break;
1502 		}
1503 		mc->mc_ttl = ms->ms_ttl;
1504 		ms->ms_seq++;
1505 		le32enc(mc->mc_seq, ms->ms_seq);
1506 		break;
1507 #endif
1508 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1509 	default:
1510 		goto bad;
1511 	}
1512 	if (m->m_flags & M_MORE_DATA)
1513 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1514 	if (addqos) {
1515 		int ac, tid;
1516 
1517 		if (is4addr) {
1518 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1519 		/* NB: mesh case handled earlier */
1520 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1521 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1522 		ac = M_WME_GETAC(m);
1523 		/* map from access class/queue to 11e header priorty value */
1524 		tid = WME_AC_TO_TID(ac);
1525 		qos[0] = tid & IEEE80211_QOS_TID;
1526 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1527 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1528 #ifdef IEEE80211_SUPPORT_MESH
1529 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1530 			qos[1] = IEEE80211_QOS_MC;
1531 		else
1532 #endif
1533 			qos[1] = 0;
1534 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1535 
1536 		/*
1537 		 * If this is an A-MSDU then ensure we set the
1538 		 * relevant field.
1539 		 */
1540 		if (is_amsdu)
1541 			qos[0] |= IEEE80211_QOS_AMSDU;
1542 
1543 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1544 			/*
1545 			 * NB: don't assign a sequence # to potential
1546 			 * aggregates; we expect this happens at the
1547 			 * point the frame comes off any aggregation q
1548 			 * as otherwise we may introduce holes in the
1549 			 * BA sequence space and/or make window accouting
1550 			 * more difficult.
1551 			 *
1552 			 * XXX may want to control this with a driver
1553 			 * capability; this may also change when we pull
1554 			 * aggregation up into net80211
1555 			 */
1556 			seqno = ni->ni_txseqs[tid]++;
1557 			*(uint16_t *)wh->i_seq =
1558 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1559 			M_SEQNO_SET(m, seqno);
1560 		}
1561 	} else {
1562 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1563 		*(uint16_t *)wh->i_seq =
1564 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1565 		M_SEQNO_SET(m, seqno);
1566 
1567 		/*
1568 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1569 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1570 		 */
1571 		if (is_amsdu)
1572 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1573 			    __func__);
1574 	}
1575 
1576 
1577 	/* check if xmit fragmentation is required */
1578 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1579 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1580 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1581 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1582 	if (key != NULL) {
1583 		/*
1584 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1585 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1586 		 */
1587 		if ((m->m_flags & M_EAPOL) == 0 ||
1588 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1589 		     (vap->iv_opmode == IEEE80211_M_STA ?
1590 		      !IEEE80211_KEY_UNDEFINED(key) :
1591 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1592 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1593 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1594 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1595 				    eh.ether_dhost,
1596 				    "%s", "enmic failed, discard frame");
1597 				vap->iv_stats.is_crypto_enmicfail++;
1598 				goto bad;
1599 			}
1600 		}
1601 	}
1602 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1603 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1604 		goto bad;
1605 
1606 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1607 
1608 	IEEE80211_NODE_STAT(ni, tx_data);
1609 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1610 		IEEE80211_NODE_STAT(ni, tx_mcast);
1611 		m->m_flags |= M_MCAST;
1612 	} else
1613 		IEEE80211_NODE_STAT(ni, tx_ucast);
1614 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1615 
1616 	return m;
1617 bad:
1618 	if (m != NULL)
1619 		m_freem(m);
1620 	return NULL;
1621 #undef WH4
1622 #undef MC01
1623 }
1624 
1625 void
1626 ieee80211_free_mbuf(struct mbuf *m)
1627 {
1628 	struct mbuf *next;
1629 
1630 	if (m == NULL)
1631 		return;
1632 
1633 	do {
1634 		next = m->m_nextpkt;
1635 		m->m_nextpkt = NULL;
1636 		m_freem(m);
1637 	} while ((m = next) != NULL);
1638 }
1639 
1640 /*
1641  * Fragment the frame according to the specified mtu.
1642  * The size of the 802.11 header (w/o padding) is provided
1643  * so we don't need to recalculate it.  We create a new
1644  * mbuf for each fragment and chain it through m_nextpkt;
1645  * we might be able to optimize this by reusing the original
1646  * packet's mbufs but that is significantly more complicated.
1647  */
1648 static int
1649 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1650 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1651 {
1652 	struct ieee80211com *ic = vap->iv_ic;
1653 	struct ieee80211_frame *wh, *whf;
1654 	struct mbuf *m, *prev;
1655 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1656 	u_int hdrspace;
1657 
1658 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1659 	KASSERT(m0->m_pkthdr.len > mtu,
1660 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1661 
1662 	/*
1663 	 * Honor driver DATAPAD requirement.
1664 	 */
1665 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1666 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1667 	else
1668 		hdrspace = hdrsize;
1669 
1670 	wh = mtod(m0, struct ieee80211_frame *);
1671 	/* NB: mark the first frag; it will be propagated below */
1672 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1673 	totalhdrsize = hdrspace + ciphdrsize;
1674 	fragno = 1;
1675 	off = mtu - ciphdrsize;
1676 	remainder = m0->m_pkthdr.len - off;
1677 	prev = m0;
1678 	do {
1679 		fragsize = totalhdrsize + remainder;
1680 		if (fragsize > mtu)
1681 			fragsize = mtu;
1682 		/* XXX fragsize can be >2048! */
1683 		KASSERT(fragsize < MCLBYTES,
1684 			("fragment size %u too big!", fragsize));
1685 		if (fragsize > MHLEN)
1686 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1687 		else
1688 			m = m_gethdr(M_NOWAIT, MT_DATA);
1689 		if (m == NULL)
1690 			goto bad;
1691 		/* leave room to prepend any cipher header */
1692 		m_align(m, fragsize - ciphdrsize);
1693 
1694 		/*
1695 		 * Form the header in the fragment.  Note that since
1696 		 * we mark the first fragment with the MORE_FRAG bit
1697 		 * it automatically is propagated to each fragment; we
1698 		 * need only clear it on the last fragment (done below).
1699 		 * NB: frag 1+ dont have Mesh Control field present.
1700 		 */
1701 		whf = mtod(m, struct ieee80211_frame *);
1702 		memcpy(whf, wh, hdrsize);
1703 #ifdef IEEE80211_SUPPORT_MESH
1704 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1705 			if (IEEE80211_IS_DSTODS(wh))
1706 				((struct ieee80211_qosframe_addr4 *)
1707 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1708 			else
1709 				((struct ieee80211_qosframe *)
1710 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1711 		}
1712 #endif
1713 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1714 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1715 				IEEE80211_SEQ_FRAG_SHIFT);
1716 		fragno++;
1717 
1718 		payload = fragsize - totalhdrsize;
1719 		/* NB: destination is known to be contiguous */
1720 
1721 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1722 		m->m_len = hdrspace + payload;
1723 		m->m_pkthdr.len = hdrspace + payload;
1724 		m->m_flags |= M_FRAG;
1725 
1726 		/* chain up the fragment */
1727 		prev->m_nextpkt = m;
1728 		prev = m;
1729 
1730 		/* deduct fragment just formed */
1731 		remainder -= payload;
1732 		off += payload;
1733 	} while (remainder != 0);
1734 
1735 	/* set the last fragment */
1736 	m->m_flags |= M_LASTFRAG;
1737 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1738 
1739 	/* strip first mbuf now that everything has been copied */
1740 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1741 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1742 
1743 	vap->iv_stats.is_tx_fragframes++;
1744 	vap->iv_stats.is_tx_frags += fragno-1;
1745 
1746 	return 1;
1747 bad:
1748 	/* reclaim fragments but leave original frame for caller to free */
1749 	ieee80211_free_mbuf(m0->m_nextpkt);
1750 	m0->m_nextpkt = NULL;
1751 	return 0;
1752 }
1753 
1754 /*
1755  * Add a supported rates element id to a frame.
1756  */
1757 uint8_t *
1758 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1759 {
1760 	int nrates;
1761 
1762 	*frm++ = IEEE80211_ELEMID_RATES;
1763 	nrates = rs->rs_nrates;
1764 	if (nrates > IEEE80211_RATE_SIZE)
1765 		nrates = IEEE80211_RATE_SIZE;
1766 	*frm++ = nrates;
1767 	memcpy(frm, rs->rs_rates, nrates);
1768 	return frm + nrates;
1769 }
1770 
1771 /*
1772  * Add an extended supported rates element id to a frame.
1773  */
1774 uint8_t *
1775 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1776 {
1777 	/*
1778 	 * Add an extended supported rates element if operating in 11g mode.
1779 	 */
1780 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1781 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1782 		*frm++ = IEEE80211_ELEMID_XRATES;
1783 		*frm++ = nrates;
1784 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1785 		frm += nrates;
1786 	}
1787 	return frm;
1788 }
1789 
1790 /*
1791  * Add an ssid element to a frame.
1792  */
1793 uint8_t *
1794 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1795 {
1796 	*frm++ = IEEE80211_ELEMID_SSID;
1797 	*frm++ = len;
1798 	memcpy(frm, ssid, len);
1799 	return frm + len;
1800 }
1801 
1802 /*
1803  * Add an erp element to a frame.
1804  */
1805 static uint8_t *
1806 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1807 {
1808 	uint8_t erp;
1809 
1810 	*frm++ = IEEE80211_ELEMID_ERP;
1811 	*frm++ = 1;
1812 	erp = 0;
1813 	if (ic->ic_nonerpsta != 0)
1814 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1815 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1816 		erp |= IEEE80211_ERP_USE_PROTECTION;
1817 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1818 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1819 	*frm++ = erp;
1820 	return frm;
1821 }
1822 
1823 /*
1824  * Add a CFParams element to a frame.
1825  */
1826 static uint8_t *
1827 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1828 {
1829 #define	ADDSHORT(frm, v) do {	\
1830 	le16enc(frm, v);	\
1831 	frm += 2;		\
1832 } while (0)
1833 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1834 	*frm++ = 6;
1835 	*frm++ = 0;		/* CFP count */
1836 	*frm++ = 2;		/* CFP period */
1837 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1838 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1839 	return frm;
1840 #undef ADDSHORT
1841 }
1842 
1843 static __inline uint8_t *
1844 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1845 {
1846 	memcpy(frm, ie->ie_data, ie->ie_len);
1847 	return frm + ie->ie_len;
1848 }
1849 
1850 static __inline uint8_t *
1851 add_ie(uint8_t *frm, const uint8_t *ie)
1852 {
1853 	memcpy(frm, ie, 2 + ie[1]);
1854 	return frm + 2 + ie[1];
1855 }
1856 
1857 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1858 /*
1859  * Add a WME information element to a frame.
1860  */
1861 uint8_t *
1862 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1863 {
1864 	static const struct ieee80211_wme_info info = {
1865 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1866 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1867 		.wme_oui	= { WME_OUI_BYTES },
1868 		.wme_type	= WME_OUI_TYPE,
1869 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1870 		.wme_version	= WME_VERSION,
1871 		.wme_info	= 0,
1872 	};
1873 	memcpy(frm, &info, sizeof(info));
1874 	return frm + sizeof(info);
1875 }
1876 
1877 /*
1878  * Add a WME parameters element to a frame.
1879  */
1880 static uint8_t *
1881 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1882 {
1883 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1884 #define	ADDSHORT(frm, v) do {	\
1885 	le16enc(frm, v);	\
1886 	frm += 2;		\
1887 } while (0)
1888 	/* NB: this works 'cuz a param has an info at the front */
1889 	static const struct ieee80211_wme_info param = {
1890 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1891 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1892 		.wme_oui	= { WME_OUI_BYTES },
1893 		.wme_type	= WME_OUI_TYPE,
1894 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1895 		.wme_version	= WME_VERSION,
1896 	};
1897 	int i;
1898 
1899 	memcpy(frm, &param, sizeof(param));
1900 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1901 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1902 	*frm++ = 0;					/* reserved field */
1903 	for (i = 0; i < WME_NUM_AC; i++) {
1904 		const struct wmeParams *ac =
1905 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1906 		*frm++ = SM(i, WME_PARAM_ACI)
1907 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1908 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1909 		       ;
1910 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1911 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1912 		       ;
1913 		ADDSHORT(frm, ac->wmep_txopLimit);
1914 	}
1915 	return frm;
1916 #undef SM
1917 #undef ADDSHORT
1918 }
1919 #undef WME_OUI_BYTES
1920 
1921 /*
1922  * Add an 11h Power Constraint element to a frame.
1923  */
1924 static uint8_t *
1925 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1926 {
1927 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1928 	/* XXX per-vap tx power limit? */
1929 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1930 
1931 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1932 	frm[1] = 1;
1933 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1934 	return frm + 3;
1935 }
1936 
1937 /*
1938  * Add an 11h Power Capability element to a frame.
1939  */
1940 static uint8_t *
1941 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1942 {
1943 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1944 	frm[1] = 2;
1945 	frm[2] = c->ic_minpower;
1946 	frm[3] = c->ic_maxpower;
1947 	return frm + 4;
1948 }
1949 
1950 /*
1951  * Add an 11h Supported Channels element to a frame.
1952  */
1953 static uint8_t *
1954 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1955 {
1956 	static const int ielen = 26;
1957 
1958 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1959 	frm[1] = ielen;
1960 	/* XXX not correct */
1961 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1962 	return frm + 2 + ielen;
1963 }
1964 
1965 /*
1966  * Add an 11h Quiet time element to a frame.
1967  */
1968 static uint8_t *
1969 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1970 {
1971 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1972 
1973 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1974 	quiet->len = 6;
1975 	if (vap->iv_quiet_count_value == 1)
1976 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1977 	else if (vap->iv_quiet_count_value > 1)
1978 		vap->iv_quiet_count_value--;
1979 
1980 	if (vap->iv_quiet_count_value == 0) {
1981 		/* value 0 is reserved as per 802.11h standerd */
1982 		vap->iv_quiet_count_value = 1;
1983 	}
1984 
1985 	quiet->tbttcount = vap->iv_quiet_count_value;
1986 	quiet->period = vap->iv_quiet_period;
1987 	quiet->duration = htole16(vap->iv_quiet_duration);
1988 	quiet->offset = htole16(vap->iv_quiet_offset);
1989 	return frm + sizeof(*quiet);
1990 }
1991 
1992 /*
1993  * Add an 11h Channel Switch Announcement element to a frame.
1994  * Note that we use the per-vap CSA count to adjust the global
1995  * counter so we can use this routine to form probe response
1996  * frames and get the current count.
1997  */
1998 static uint8_t *
1999 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2000 {
2001 	struct ieee80211com *ic = vap->iv_ic;
2002 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2003 
2004 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2005 	csa->csa_len = 3;
2006 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2007 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2008 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2009 	return frm + sizeof(*csa);
2010 }
2011 
2012 /*
2013  * Add an 11h country information element to a frame.
2014  */
2015 static uint8_t *
2016 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2017 {
2018 
2019 	if (ic->ic_countryie == NULL ||
2020 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2021 		/*
2022 		 * Handle lazy construction of ie.  This is done on
2023 		 * first use and after a channel change that requires
2024 		 * re-calculation.
2025 		 */
2026 		if (ic->ic_countryie != NULL)
2027 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2028 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2029 		if (ic->ic_countryie == NULL)
2030 			return frm;
2031 		ic->ic_countryie_chan = ic->ic_bsschan;
2032 	}
2033 	return add_appie(frm, ic->ic_countryie);
2034 }
2035 
2036 uint8_t *
2037 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2038 {
2039 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2040 		return (add_ie(frm, vap->iv_wpa_ie));
2041 	else {
2042 		/* XXX else complain? */
2043 		return (frm);
2044 	}
2045 }
2046 
2047 uint8_t *
2048 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2049 {
2050 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2051 		return (add_ie(frm, vap->iv_rsn_ie));
2052 	else {
2053 		/* XXX else complain? */
2054 		return (frm);
2055 	}
2056 }
2057 
2058 uint8_t *
2059 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2060 {
2061 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2062 		*frm++ = IEEE80211_ELEMID_QOS;
2063 		*frm++ = 1;
2064 		*frm++ = 0;
2065 	}
2066 
2067 	return (frm);
2068 }
2069 
2070 /*
2071  * Send a probe request frame with the specified ssid
2072  * and any optional information element data.
2073  */
2074 int
2075 ieee80211_send_probereq(struct ieee80211_node *ni,
2076 	const uint8_t sa[IEEE80211_ADDR_LEN],
2077 	const uint8_t da[IEEE80211_ADDR_LEN],
2078 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2079 	const uint8_t *ssid, size_t ssidlen)
2080 {
2081 	struct ieee80211vap *vap = ni->ni_vap;
2082 	struct ieee80211com *ic = ni->ni_ic;
2083 	const struct ieee80211_txparam *tp;
2084 	struct ieee80211_bpf_params params;
2085 	struct ieee80211_frame *wh;
2086 	const struct ieee80211_rateset *rs;
2087 	struct mbuf *m;
2088 	uint8_t *frm;
2089 	int ret;
2090 
2091 	if (vap->iv_state == IEEE80211_S_CAC) {
2092 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2093 		    "block %s frame in CAC state", "probe request");
2094 		vap->iv_stats.is_tx_badstate++;
2095 		return EIO;		/* XXX */
2096 	}
2097 
2098 	/*
2099 	 * Hold a reference on the node so it doesn't go away until after
2100 	 * the xmit is complete all the way in the driver.  On error we
2101 	 * will remove our reference.
2102 	 */
2103 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2104 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2105 		__func__, __LINE__,
2106 		ni, ether_sprintf(ni->ni_macaddr),
2107 		ieee80211_node_refcnt(ni)+1);
2108 	ieee80211_ref_node(ni);
2109 
2110 	/*
2111 	 * prreq frame format
2112 	 *	[tlv] ssid
2113 	 *	[tlv] supported rates
2114 	 *	[tlv] RSN (optional)
2115 	 *	[tlv] extended supported rates
2116 	 *	[tlv] WPA (optional)
2117 	 *	[tlv] user-specified ie's
2118 	 */
2119 	m = ieee80211_getmgtframe(&frm,
2120 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2121 	       	 2 + IEEE80211_NWID_LEN
2122 	       + 2 + IEEE80211_RATE_SIZE
2123 	       + sizeof(struct ieee80211_ie_wpa)
2124 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2125 	       + sizeof(struct ieee80211_ie_wpa)
2126 	       + (vap->iv_appie_probereq != NULL ?
2127 		   vap->iv_appie_probereq->ie_len : 0)
2128 	);
2129 	if (m == NULL) {
2130 		vap->iv_stats.is_tx_nobuf++;
2131 		ieee80211_free_node(ni);
2132 		return ENOMEM;
2133 	}
2134 
2135 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2136 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2137 	frm = ieee80211_add_rates(frm, rs);
2138 	frm = ieee80211_add_rsn(frm, vap);
2139 	frm = ieee80211_add_xrates(frm, rs);
2140 	frm = ieee80211_add_wpa(frm, vap);
2141 	if (vap->iv_appie_probereq != NULL)
2142 		frm = add_appie(frm, vap->iv_appie_probereq);
2143 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2144 
2145 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2146 	    ("leading space %zd", M_LEADINGSPACE(m)));
2147 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2148 	if (m == NULL) {
2149 		/* NB: cannot happen */
2150 		ieee80211_free_node(ni);
2151 		return ENOMEM;
2152 	}
2153 
2154 	IEEE80211_TX_LOCK(ic);
2155 	wh = mtod(m, struct ieee80211_frame *);
2156 	ieee80211_send_setup(ni, m,
2157 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2158 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2159 	/* XXX power management? */
2160 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2161 
2162 	M_WME_SETAC(m, WME_AC_BE);
2163 
2164 	IEEE80211_NODE_STAT(ni, tx_probereq);
2165 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2166 
2167 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2168 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2169 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2170 	    ssidlen, ssid);
2171 
2172 	memset(&params, 0, sizeof(params));
2173 	params.ibp_pri = M_WME_GETAC(m);
2174 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2175 	params.ibp_rate0 = tp->mgmtrate;
2176 	if (IEEE80211_IS_MULTICAST(da)) {
2177 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2178 		params.ibp_try0 = 1;
2179 	} else
2180 		params.ibp_try0 = tp->maxretry;
2181 	params.ibp_power = ni->ni_txpower;
2182 	ret = ieee80211_raw_output(vap, ni, m, &params);
2183 	IEEE80211_TX_UNLOCK(ic);
2184 	return (ret);
2185 }
2186 
2187 /*
2188  * Calculate capability information for mgt frames.
2189  */
2190 uint16_t
2191 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2192 {
2193 	struct ieee80211com *ic = vap->iv_ic;
2194 	uint16_t capinfo;
2195 
2196 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2197 
2198 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2199 		capinfo = IEEE80211_CAPINFO_ESS;
2200 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2201 		capinfo = IEEE80211_CAPINFO_IBSS;
2202 	else
2203 		capinfo = 0;
2204 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2205 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2206 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2207 	    IEEE80211_IS_CHAN_2GHZ(chan))
2208 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2209 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2210 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2211 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2212 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2213 	return capinfo;
2214 }
2215 
2216 /*
2217  * Send a management frame.  The node is for the destination (or ic_bss
2218  * when in station mode).  Nodes other than ic_bss have their reference
2219  * count bumped to reflect our use for an indeterminant time.
2220  */
2221 int
2222 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2223 {
2224 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2225 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2226 	struct ieee80211vap *vap = ni->ni_vap;
2227 	struct ieee80211com *ic = ni->ni_ic;
2228 	struct ieee80211_node *bss = vap->iv_bss;
2229 	struct ieee80211_bpf_params params;
2230 	struct mbuf *m;
2231 	uint8_t *frm;
2232 	uint16_t capinfo;
2233 	int has_challenge, is_shared_key, ret, status;
2234 
2235 	KASSERT(ni != NULL, ("null node"));
2236 
2237 	/*
2238 	 * Hold a reference on the node so it doesn't go away until after
2239 	 * the xmit is complete all the way in the driver.  On error we
2240 	 * will remove our reference.
2241 	 */
2242 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2243 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2244 		__func__, __LINE__,
2245 		ni, ether_sprintf(ni->ni_macaddr),
2246 		ieee80211_node_refcnt(ni)+1);
2247 	ieee80211_ref_node(ni);
2248 
2249 	memset(&params, 0, sizeof(params));
2250 	switch (type) {
2251 
2252 	case IEEE80211_FC0_SUBTYPE_AUTH:
2253 		status = arg >> 16;
2254 		arg &= 0xffff;
2255 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2256 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2257 		    ni->ni_challenge != NULL);
2258 
2259 		/*
2260 		 * Deduce whether we're doing open authentication or
2261 		 * shared key authentication.  We do the latter if
2262 		 * we're in the middle of a shared key authentication
2263 		 * handshake or if we're initiating an authentication
2264 		 * request and configured to use shared key.
2265 		 */
2266 		is_shared_key = has_challenge ||
2267 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2268 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2269 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2270 
2271 		m = ieee80211_getmgtframe(&frm,
2272 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2273 			  3 * sizeof(uint16_t)
2274 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2275 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2276 		);
2277 		if (m == NULL)
2278 			senderr(ENOMEM, is_tx_nobuf);
2279 
2280 		((uint16_t *)frm)[0] =
2281 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2282 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2283 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2284 		((uint16_t *)frm)[2] = htole16(status);/* status */
2285 
2286 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2287 			((uint16_t *)frm)[3] =
2288 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2289 			    IEEE80211_ELEMID_CHALLENGE);
2290 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2291 			    IEEE80211_CHALLENGE_LEN);
2292 			m->m_pkthdr.len = m->m_len =
2293 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2294 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2295 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2296 				    "request encrypt frame (%s)", __func__);
2297 				/* mark frame for encryption */
2298 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2299 			}
2300 		} else
2301 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2302 
2303 		/* XXX not right for shared key */
2304 		if (status == IEEE80211_STATUS_SUCCESS)
2305 			IEEE80211_NODE_STAT(ni, tx_auth);
2306 		else
2307 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2308 
2309 		if (vap->iv_opmode == IEEE80211_M_STA)
2310 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2311 				(void *) vap->iv_state);
2312 		break;
2313 
2314 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2315 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2316 		    "send station deauthenticate (reason: %d (%s))", arg,
2317 		    ieee80211_reason_to_string(arg));
2318 		m = ieee80211_getmgtframe(&frm,
2319 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2320 			sizeof(uint16_t));
2321 		if (m == NULL)
2322 			senderr(ENOMEM, is_tx_nobuf);
2323 		*(uint16_t *)frm = htole16(arg);	/* reason */
2324 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2325 
2326 		IEEE80211_NODE_STAT(ni, tx_deauth);
2327 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2328 
2329 		ieee80211_node_unauthorize(ni);		/* port closed */
2330 		break;
2331 
2332 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2333 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2334 		/*
2335 		 * asreq frame format
2336 		 *	[2] capability information
2337 		 *	[2] listen interval
2338 		 *	[6*] current AP address (reassoc only)
2339 		 *	[tlv] ssid
2340 		 *	[tlv] supported rates
2341 		 *	[tlv] extended supported rates
2342 		 *	[4] power capability (optional)
2343 		 *	[28] supported channels (optional)
2344 		 *	[tlv] HT capabilities
2345 		 *	[tlv] WME (optional)
2346 		 *	[tlv] Vendor OUI HT capabilities (optional)
2347 		 *	[tlv] Atheros capabilities (if negotiated)
2348 		 *	[tlv] AppIE's (optional)
2349 		 */
2350 		m = ieee80211_getmgtframe(&frm,
2351 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2352 			 sizeof(uint16_t)
2353 		       + sizeof(uint16_t)
2354 		       + IEEE80211_ADDR_LEN
2355 		       + 2 + IEEE80211_NWID_LEN
2356 		       + 2 + IEEE80211_RATE_SIZE
2357 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2358 		       + 4
2359 		       + 2 + 26
2360 		       + sizeof(struct ieee80211_wme_info)
2361 		       + sizeof(struct ieee80211_ie_htcap)
2362 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2363 #ifdef IEEE80211_SUPPORT_SUPERG
2364 		       + sizeof(struct ieee80211_ath_ie)
2365 #endif
2366 		       + (vap->iv_appie_wpa != NULL ?
2367 				vap->iv_appie_wpa->ie_len : 0)
2368 		       + (vap->iv_appie_assocreq != NULL ?
2369 				vap->iv_appie_assocreq->ie_len : 0)
2370 		);
2371 		if (m == NULL)
2372 			senderr(ENOMEM, is_tx_nobuf);
2373 
2374 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2375 		    ("wrong mode %u", vap->iv_opmode));
2376 		capinfo = IEEE80211_CAPINFO_ESS;
2377 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2378 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2379 		/*
2380 		 * NB: Some 11a AP's reject the request when
2381 		 *     short premable is set.
2382 		 */
2383 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2384 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2385 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2386 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2387 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2388 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2389 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2390 		    (vap->iv_flags & IEEE80211_F_DOTH))
2391 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2392 		*(uint16_t *)frm = htole16(capinfo);
2393 		frm += 2;
2394 
2395 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2396 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2397 						    bss->ni_intval));
2398 		frm += 2;
2399 
2400 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2401 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2402 			frm += IEEE80211_ADDR_LEN;
2403 		}
2404 
2405 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2406 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2407 		frm = ieee80211_add_rsn(frm, vap);
2408 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2409 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2410 			frm = ieee80211_add_powercapability(frm,
2411 			    ic->ic_curchan);
2412 			frm = ieee80211_add_supportedchannels(frm, ic);
2413 		}
2414 
2415 		/*
2416 		 * Check the channel - we may be using an 11n NIC with an
2417 		 * 11n capable station, but we're configured to be an 11b
2418 		 * channel.
2419 		 */
2420 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2421 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2422 		    ni->ni_ies.htcap_ie != NULL &&
2423 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2424 			frm = ieee80211_add_htcap(frm, ni);
2425 		}
2426 		frm = ieee80211_add_wpa(frm, vap);
2427 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2428 		    ni->ni_ies.wme_ie != NULL)
2429 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2430 
2431 		/*
2432 		 * Same deal - only send HT info if we're on an 11n
2433 		 * capable channel.
2434 		 */
2435 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2436 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2437 		    ni->ni_ies.htcap_ie != NULL &&
2438 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2439 			frm = ieee80211_add_htcap_vendor(frm, ni);
2440 		}
2441 #ifdef IEEE80211_SUPPORT_SUPERG
2442 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2443 			frm = ieee80211_add_ath(frm,
2444 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2445 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2446 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2447 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2448 		}
2449 #endif /* IEEE80211_SUPPORT_SUPERG */
2450 		if (vap->iv_appie_assocreq != NULL)
2451 			frm = add_appie(frm, vap->iv_appie_assocreq);
2452 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2453 
2454 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2455 			(void *) vap->iv_state);
2456 		break;
2457 
2458 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2459 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2460 		/*
2461 		 * asresp frame format
2462 		 *	[2] capability information
2463 		 *	[2] status
2464 		 *	[2] association ID
2465 		 *	[tlv] supported rates
2466 		 *	[tlv] extended supported rates
2467 		 *	[tlv] HT capabilities (standard, if STA enabled)
2468 		 *	[tlv] HT information (standard, if STA enabled)
2469 		 *	[tlv] WME (if configured and STA enabled)
2470 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2471 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2472 		 *	[tlv] Atheros capabilities (if STA enabled)
2473 		 *	[tlv] AppIE's (optional)
2474 		 */
2475 		m = ieee80211_getmgtframe(&frm,
2476 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2477 			 sizeof(uint16_t)
2478 		       + sizeof(uint16_t)
2479 		       + sizeof(uint16_t)
2480 		       + 2 + IEEE80211_RATE_SIZE
2481 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2482 		       + sizeof(struct ieee80211_ie_htcap) + 4
2483 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2484 		       + sizeof(struct ieee80211_wme_param)
2485 #ifdef IEEE80211_SUPPORT_SUPERG
2486 		       + sizeof(struct ieee80211_ath_ie)
2487 #endif
2488 		       + (vap->iv_appie_assocresp != NULL ?
2489 				vap->iv_appie_assocresp->ie_len : 0)
2490 		);
2491 		if (m == NULL)
2492 			senderr(ENOMEM, is_tx_nobuf);
2493 
2494 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2495 		*(uint16_t *)frm = htole16(capinfo);
2496 		frm += 2;
2497 
2498 		*(uint16_t *)frm = htole16(arg);	/* status */
2499 		frm += 2;
2500 
2501 		if (arg == IEEE80211_STATUS_SUCCESS) {
2502 			*(uint16_t *)frm = htole16(ni->ni_associd);
2503 			IEEE80211_NODE_STAT(ni, tx_assoc);
2504 		} else
2505 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2506 		frm += 2;
2507 
2508 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2509 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2510 		/* NB: respond according to what we received */
2511 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2512 			frm = ieee80211_add_htcap(frm, ni);
2513 			frm = ieee80211_add_htinfo(frm, ni);
2514 		}
2515 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2516 		    ni->ni_ies.wme_ie != NULL)
2517 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2518 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2519 			frm = ieee80211_add_htcap_vendor(frm, ni);
2520 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2521 		}
2522 #ifdef IEEE80211_SUPPORT_SUPERG
2523 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2524 			frm = ieee80211_add_ath(frm,
2525 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2526 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2527 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2528 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2529 #endif /* IEEE80211_SUPPORT_SUPERG */
2530 		if (vap->iv_appie_assocresp != NULL)
2531 			frm = add_appie(frm, vap->iv_appie_assocresp);
2532 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2533 		break;
2534 
2535 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2536 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2537 		    "send station disassociate (reason: %d (%s))", arg,
2538 		    ieee80211_reason_to_string(arg));
2539 		m = ieee80211_getmgtframe(&frm,
2540 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2541 			sizeof(uint16_t));
2542 		if (m == NULL)
2543 			senderr(ENOMEM, is_tx_nobuf);
2544 		*(uint16_t *)frm = htole16(arg);	/* reason */
2545 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2546 
2547 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2548 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2549 		break;
2550 
2551 	default:
2552 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2553 		    "invalid mgmt frame type %u", type);
2554 		senderr(EINVAL, is_tx_unknownmgt);
2555 		/* NOTREACHED */
2556 	}
2557 
2558 	/* NB: force non-ProbeResp frames to the highest queue */
2559 	params.ibp_pri = WME_AC_VO;
2560 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2561 	/* NB: we know all frames are unicast */
2562 	params.ibp_try0 = bss->ni_txparms->maxretry;
2563 	params.ibp_power = bss->ni_txpower;
2564 	return ieee80211_mgmt_output(ni, m, type, &params);
2565 bad:
2566 	ieee80211_free_node(ni);
2567 	return ret;
2568 #undef senderr
2569 #undef HTFLAGS
2570 }
2571 
2572 /*
2573  * Return an mbuf with a probe response frame in it.
2574  * Space is left to prepend and 802.11 header at the
2575  * front but it's left to the caller to fill in.
2576  */
2577 struct mbuf *
2578 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2579 {
2580 	struct ieee80211vap *vap = bss->ni_vap;
2581 	struct ieee80211com *ic = bss->ni_ic;
2582 	const struct ieee80211_rateset *rs;
2583 	struct mbuf *m;
2584 	uint16_t capinfo;
2585 	uint8_t *frm;
2586 
2587 	/*
2588 	 * probe response frame format
2589 	 *	[8] time stamp
2590 	 *	[2] beacon interval
2591 	 *	[2] cabability information
2592 	 *	[tlv] ssid
2593 	 *	[tlv] supported rates
2594 	 *	[tlv] parameter set (FH/DS)
2595 	 *	[tlv] parameter set (IBSS)
2596 	 *	[tlv] country (optional)
2597 	 *	[3] power control (optional)
2598 	 *	[5] channel switch announcement (CSA) (optional)
2599 	 *	[tlv] extended rate phy (ERP)
2600 	 *	[tlv] extended supported rates
2601 	 *	[tlv] RSN (optional)
2602 	 *	[tlv] HT capabilities
2603 	 *	[tlv] HT information
2604 	 *	[tlv] WPA (optional)
2605 	 *	[tlv] WME (optional)
2606 	 *	[tlv] Vendor OUI HT capabilities (optional)
2607 	 *	[tlv] Vendor OUI HT information (optional)
2608 	 *	[tlv] Atheros capabilities
2609 	 *	[tlv] AppIE's (optional)
2610 	 *	[tlv] Mesh ID (MBSS)
2611 	 *	[tlv] Mesh Conf (MBSS)
2612 	 */
2613 	m = ieee80211_getmgtframe(&frm,
2614 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2615 		 8
2616 	       + sizeof(uint16_t)
2617 	       + sizeof(uint16_t)
2618 	       + 2 + IEEE80211_NWID_LEN
2619 	       + 2 + IEEE80211_RATE_SIZE
2620 	       + 7	/* max(7,3) */
2621 	       + IEEE80211_COUNTRY_MAX_SIZE
2622 	       + 3
2623 	       + sizeof(struct ieee80211_csa_ie)
2624 	       + sizeof(struct ieee80211_quiet_ie)
2625 	       + 3
2626 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2627 	       + sizeof(struct ieee80211_ie_wpa)
2628 	       + sizeof(struct ieee80211_ie_htcap)
2629 	       + sizeof(struct ieee80211_ie_htinfo)
2630 	       + sizeof(struct ieee80211_ie_wpa)
2631 	       + sizeof(struct ieee80211_wme_param)
2632 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2633 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2634 #ifdef IEEE80211_SUPPORT_SUPERG
2635 	       + sizeof(struct ieee80211_ath_ie)
2636 #endif
2637 #ifdef IEEE80211_SUPPORT_MESH
2638 	       + 2 + IEEE80211_MESHID_LEN
2639 	       + sizeof(struct ieee80211_meshconf_ie)
2640 #endif
2641 	       + (vap->iv_appie_proberesp != NULL ?
2642 			vap->iv_appie_proberesp->ie_len : 0)
2643 	);
2644 	if (m == NULL) {
2645 		vap->iv_stats.is_tx_nobuf++;
2646 		return NULL;
2647 	}
2648 
2649 	memset(frm, 0, 8);	/* timestamp should be filled later */
2650 	frm += 8;
2651 	*(uint16_t *)frm = htole16(bss->ni_intval);
2652 	frm += 2;
2653 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2654 	*(uint16_t *)frm = htole16(capinfo);
2655 	frm += 2;
2656 
2657 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2658 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2659 	frm = ieee80211_add_rates(frm, rs);
2660 
2661 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2662 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2663 		*frm++ = 5;
2664 		*frm++ = bss->ni_fhdwell & 0x00ff;
2665 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2666 		*frm++ = IEEE80211_FH_CHANSET(
2667 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2668 		*frm++ = IEEE80211_FH_CHANPAT(
2669 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2670 		*frm++ = bss->ni_fhindex;
2671 	} else {
2672 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2673 		*frm++ = 1;
2674 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2675 	}
2676 
2677 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2678 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2679 		*frm++ = 2;
2680 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2681 	}
2682 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2683 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2684 		frm = ieee80211_add_countryie(frm, ic);
2685 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2686 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2687 			frm = ieee80211_add_powerconstraint(frm, vap);
2688 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2689 			frm = ieee80211_add_csa(frm, vap);
2690 	}
2691 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2692 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2693 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2694 			if (vap->iv_quiet)
2695 				frm = ieee80211_add_quiet(frm, vap);
2696 		}
2697 	}
2698 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2699 		frm = ieee80211_add_erp(frm, ic);
2700 	frm = ieee80211_add_xrates(frm, rs);
2701 	frm = ieee80211_add_rsn(frm, vap);
2702 	/*
2703 	 * NB: legacy 11b clients do not get certain ie's.
2704 	 *     The caller identifies such clients by passing
2705 	 *     a token in legacy to us.  Could expand this to be
2706 	 *     any legacy client for stuff like HT ie's.
2707 	 */
2708 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2709 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2710 		frm = ieee80211_add_htcap(frm, bss);
2711 		frm = ieee80211_add_htinfo(frm, bss);
2712 	}
2713 	frm = ieee80211_add_wpa(frm, vap);
2714 	if (vap->iv_flags & IEEE80211_F_WME)
2715 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2716 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2717 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2718 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2719 		frm = ieee80211_add_htcap_vendor(frm, bss);
2720 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2721 	}
2722 #ifdef IEEE80211_SUPPORT_SUPERG
2723 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2724 	    legacy != IEEE80211_SEND_LEGACY_11B)
2725 		frm = ieee80211_add_athcaps(frm, bss);
2726 #endif
2727 	if (vap->iv_appie_proberesp != NULL)
2728 		frm = add_appie(frm, vap->iv_appie_proberesp);
2729 #ifdef IEEE80211_SUPPORT_MESH
2730 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2731 		frm = ieee80211_add_meshid(frm, vap);
2732 		frm = ieee80211_add_meshconf(frm, vap);
2733 	}
2734 #endif
2735 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2736 
2737 	return m;
2738 }
2739 
2740 /*
2741  * Send a probe response frame to the specified mac address.
2742  * This does not go through the normal mgt frame api so we
2743  * can specify the destination address and re-use the bss node
2744  * for the sta reference.
2745  */
2746 int
2747 ieee80211_send_proberesp(struct ieee80211vap *vap,
2748 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2749 {
2750 	struct ieee80211_node *bss = vap->iv_bss;
2751 	struct ieee80211com *ic = vap->iv_ic;
2752 	struct ieee80211_frame *wh;
2753 	struct mbuf *m;
2754 	int ret;
2755 
2756 	if (vap->iv_state == IEEE80211_S_CAC) {
2757 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2758 		    "block %s frame in CAC state", "probe response");
2759 		vap->iv_stats.is_tx_badstate++;
2760 		return EIO;		/* XXX */
2761 	}
2762 
2763 	/*
2764 	 * Hold a reference on the node so it doesn't go away until after
2765 	 * the xmit is complete all the way in the driver.  On error we
2766 	 * will remove our reference.
2767 	 */
2768 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2769 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2770 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2771 	    ieee80211_node_refcnt(bss)+1);
2772 	ieee80211_ref_node(bss);
2773 
2774 	m = ieee80211_alloc_proberesp(bss, legacy);
2775 	if (m == NULL) {
2776 		ieee80211_free_node(bss);
2777 		return ENOMEM;
2778 	}
2779 
2780 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2781 	KASSERT(m != NULL, ("no room for header"));
2782 
2783 	IEEE80211_TX_LOCK(ic);
2784 	wh = mtod(m, struct ieee80211_frame *);
2785 	ieee80211_send_setup(bss, m,
2786 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2787 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2788 	/* XXX power management? */
2789 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2790 
2791 	M_WME_SETAC(m, WME_AC_BE);
2792 
2793 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2794 	    "send probe resp on channel %u to %s%s\n",
2795 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2796 	    legacy ? " <legacy>" : "");
2797 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2798 
2799 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2800 	IEEE80211_TX_UNLOCK(ic);
2801 	return (ret);
2802 }
2803 
2804 /*
2805  * Allocate and build a RTS (Request To Send) control frame.
2806  */
2807 struct mbuf *
2808 ieee80211_alloc_rts(struct ieee80211com *ic,
2809 	const uint8_t ra[IEEE80211_ADDR_LEN],
2810 	const uint8_t ta[IEEE80211_ADDR_LEN],
2811 	uint16_t dur)
2812 {
2813 	struct ieee80211_frame_rts *rts;
2814 	struct mbuf *m;
2815 
2816 	/* XXX honor ic_headroom */
2817 	m = m_gethdr(M_NOWAIT, MT_DATA);
2818 	if (m != NULL) {
2819 		rts = mtod(m, struct ieee80211_frame_rts *);
2820 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2821 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2822 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2823 		*(u_int16_t *)rts->i_dur = htole16(dur);
2824 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2825 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2826 
2827 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2828 	}
2829 	return m;
2830 }
2831 
2832 /*
2833  * Allocate and build a CTS (Clear To Send) control frame.
2834  */
2835 struct mbuf *
2836 ieee80211_alloc_cts(struct ieee80211com *ic,
2837 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2838 {
2839 	struct ieee80211_frame_cts *cts;
2840 	struct mbuf *m;
2841 
2842 	/* XXX honor ic_headroom */
2843 	m = m_gethdr(M_NOWAIT, MT_DATA);
2844 	if (m != NULL) {
2845 		cts = mtod(m, struct ieee80211_frame_cts *);
2846 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2847 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2848 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2849 		*(u_int16_t *)cts->i_dur = htole16(dur);
2850 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2851 
2852 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2853 	}
2854 	return m;
2855 }
2856 
2857 static void
2858 ieee80211_tx_mgt_timeout(void *arg)
2859 {
2860 	struct ieee80211vap *vap = arg;
2861 
2862 	IEEE80211_LOCK(vap->iv_ic);
2863 	if (vap->iv_state != IEEE80211_S_INIT &&
2864 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2865 		/*
2866 		 * NB: it's safe to specify a timeout as the reason here;
2867 		 *     it'll only be used in the right state.
2868 		 */
2869 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2870 			IEEE80211_SCAN_FAIL_TIMEOUT);
2871 	}
2872 	IEEE80211_UNLOCK(vap->iv_ic);
2873 }
2874 
2875 /*
2876  * This is the callback set on net80211-sourced transmitted
2877  * authentication request frames.
2878  *
2879  * This does a couple of things:
2880  *
2881  * + If the frame transmitted was a success, it schedules a future
2882  *   event which will transition the interface to scan.
2883  *   If a state transition _then_ occurs before that event occurs,
2884  *   said state transition will cancel this callout.
2885  *
2886  * + If the frame transmit was a failure, it immediately schedules
2887  *   the transition back to scan.
2888  */
2889 static void
2890 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2891 {
2892 	struct ieee80211vap *vap = ni->ni_vap;
2893 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2894 
2895 	/*
2896 	 * Frame transmit completed; arrange timer callback.  If
2897 	 * transmit was successfully we wait for response.  Otherwise
2898 	 * we arrange an immediate callback instead of doing the
2899 	 * callback directly since we don't know what state the driver
2900 	 * is in (e.g. what locks it is holding).  This work should
2901 	 * not be too time-critical and not happen too often so the
2902 	 * added overhead is acceptable.
2903 	 *
2904 	 * XXX what happens if !acked but response shows up before callback?
2905 	 */
2906 	if (vap->iv_state == ostate) {
2907 		callout_reset(&vap->iv_mgtsend,
2908 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2909 			ieee80211_tx_mgt_timeout, vap);
2910 	}
2911 }
2912 
2913 static void
2914 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2915 	struct ieee80211_node *ni)
2916 {
2917 	struct ieee80211vap *vap = ni->ni_vap;
2918 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2919 	struct ieee80211com *ic = ni->ni_ic;
2920 	struct ieee80211_rateset *rs = &ni->ni_rates;
2921 	uint16_t capinfo;
2922 
2923 	/*
2924 	 * beacon frame format
2925 	 *	[8] time stamp
2926 	 *	[2] beacon interval
2927 	 *	[2] cabability information
2928 	 *	[tlv] ssid
2929 	 *	[tlv] supported rates
2930 	 *	[3] parameter set (DS)
2931 	 *	[8] CF parameter set (optional)
2932 	 *	[tlv] parameter set (IBSS/TIM)
2933 	 *	[tlv] country (optional)
2934 	 *	[3] power control (optional)
2935 	 *	[5] channel switch announcement (CSA) (optional)
2936 	 *	[tlv] extended rate phy (ERP)
2937 	 *	[tlv] extended supported rates
2938 	 *	[tlv] RSN parameters
2939 	 *	[tlv] HT capabilities
2940 	 *	[tlv] HT information
2941 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2942 	 *	[tlv] WPA parameters
2943 	 *	[tlv] WME parameters
2944 	 *	[tlv] Vendor OUI HT capabilities (optional)
2945 	 *	[tlv] Vendor OUI HT information (optional)
2946 	 *	[tlv] Atheros capabilities (optional)
2947 	 *	[tlv] TDMA parameters (optional)
2948 	 *	[tlv] Mesh ID (MBSS)
2949 	 *	[tlv] Mesh Conf (MBSS)
2950 	 *	[tlv] application data (optional)
2951 	 */
2952 
2953 	memset(bo, 0, sizeof(*bo));
2954 
2955 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2956 	frm += 8;
2957 	*(uint16_t *)frm = htole16(ni->ni_intval);
2958 	frm += 2;
2959 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2960 	bo->bo_caps = (uint16_t *)frm;
2961 	*(uint16_t *)frm = htole16(capinfo);
2962 	frm += 2;
2963 	*frm++ = IEEE80211_ELEMID_SSID;
2964 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2965 		*frm++ = ni->ni_esslen;
2966 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2967 		frm += ni->ni_esslen;
2968 	} else
2969 		*frm++ = 0;
2970 	frm = ieee80211_add_rates(frm, rs);
2971 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2972 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2973 		*frm++ = 1;
2974 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2975 	}
2976 	if (ic->ic_flags & IEEE80211_F_PCF) {
2977 		bo->bo_cfp = frm;
2978 		frm = ieee80211_add_cfparms(frm, ic);
2979 	}
2980 	bo->bo_tim = frm;
2981 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2982 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2983 		*frm++ = 2;
2984 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2985 		bo->bo_tim_len = 0;
2986 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2987 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2988 		/* TIM IE is the same for Mesh and Hostap */
2989 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2990 
2991 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2992 		tie->tim_len = 4;	/* length */
2993 		tie->tim_count = 0;	/* DTIM count */
2994 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2995 		tie->tim_bitctl = 0;	/* bitmap control */
2996 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2997 		frm += sizeof(struct ieee80211_tim_ie);
2998 		bo->bo_tim_len = 1;
2999 	}
3000 	bo->bo_tim_trailer = frm;
3001 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3002 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3003 		frm = ieee80211_add_countryie(frm, ic);
3004 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3005 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3006 			frm = ieee80211_add_powerconstraint(frm, vap);
3007 		bo->bo_csa = frm;
3008 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3009 			frm = ieee80211_add_csa(frm, vap);
3010 	} else
3011 		bo->bo_csa = frm;
3012 
3013 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3014 		bo->bo_quiet = frm;
3015 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3016 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3017 			if (vap->iv_quiet)
3018 				frm = ieee80211_add_quiet(frm,vap);
3019 		}
3020 	} else
3021 		bo->bo_quiet = frm;
3022 
3023 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3024 		bo->bo_erp = frm;
3025 		frm = ieee80211_add_erp(frm, ic);
3026 	}
3027 	frm = ieee80211_add_xrates(frm, rs);
3028 	frm = ieee80211_add_rsn(frm, vap);
3029 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3030 		frm = ieee80211_add_htcap(frm, ni);
3031 		bo->bo_htinfo = frm;
3032 		frm = ieee80211_add_htinfo(frm, ni);
3033 	}
3034 	frm = ieee80211_add_wpa(frm, vap);
3035 	if (vap->iv_flags & IEEE80211_F_WME) {
3036 		bo->bo_wme = frm;
3037 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3038 	}
3039 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3040 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3041 		frm = ieee80211_add_htcap_vendor(frm, ni);
3042 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3043 	}
3044 #ifdef IEEE80211_SUPPORT_SUPERG
3045 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3046 		bo->bo_ath = frm;
3047 		frm = ieee80211_add_athcaps(frm, ni);
3048 	}
3049 #endif
3050 #ifdef IEEE80211_SUPPORT_TDMA
3051 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3052 		bo->bo_tdma = frm;
3053 		frm = ieee80211_add_tdma(frm, vap);
3054 	}
3055 #endif
3056 	if (vap->iv_appie_beacon != NULL) {
3057 		bo->bo_appie = frm;
3058 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3059 		frm = add_appie(frm, vap->iv_appie_beacon);
3060 	}
3061 #ifdef IEEE80211_SUPPORT_MESH
3062 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3063 		frm = ieee80211_add_meshid(frm, vap);
3064 		bo->bo_meshconf = frm;
3065 		frm = ieee80211_add_meshconf(frm, vap);
3066 	}
3067 #endif
3068 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3069 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3070 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3071 }
3072 
3073 /*
3074  * Allocate a beacon frame and fillin the appropriate bits.
3075  */
3076 struct mbuf *
3077 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3078 {
3079 	struct ieee80211vap *vap = ni->ni_vap;
3080 	struct ieee80211com *ic = ni->ni_ic;
3081 	struct ifnet *ifp = vap->iv_ifp;
3082 	struct ieee80211_frame *wh;
3083 	struct mbuf *m;
3084 	int pktlen;
3085 	uint8_t *frm;
3086 
3087 	/*
3088 	 * beacon frame format
3089 	 *	[8] time stamp
3090 	 *	[2] beacon interval
3091 	 *	[2] cabability information
3092 	 *	[tlv] ssid
3093 	 *	[tlv] supported rates
3094 	 *	[3] parameter set (DS)
3095 	 *	[8] CF parameter set (optional)
3096 	 *	[tlv] parameter set (IBSS/TIM)
3097 	 *	[tlv] country (optional)
3098 	 *	[3] power control (optional)
3099 	 *	[5] channel switch announcement (CSA) (optional)
3100 	 *	[tlv] extended rate phy (ERP)
3101 	 *	[tlv] extended supported rates
3102 	 *	[tlv] RSN parameters
3103 	 *	[tlv] HT capabilities
3104 	 *	[tlv] HT information
3105 	 *	[tlv] Vendor OUI HT capabilities (optional)
3106 	 *	[tlv] Vendor OUI HT information (optional)
3107 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3108 	 *	[tlv] WPA parameters
3109 	 *	[tlv] WME parameters
3110 	 *	[tlv] TDMA parameters (optional)
3111 	 *	[tlv] Mesh ID (MBSS)
3112 	 *	[tlv] Mesh Conf (MBSS)
3113 	 *	[tlv] application data (optional)
3114 	 * NB: we allocate the max space required for the TIM bitmap.
3115 	 * XXX how big is this?
3116 	 */
3117 	pktlen =   8					/* time stamp */
3118 		 + sizeof(uint16_t)			/* beacon interval */
3119 		 + sizeof(uint16_t)			/* capabilities */
3120 		 + 2 + ni->ni_esslen			/* ssid */
3121 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3122 	         + 2 + 1				/* DS parameters */
3123 		 + 2 + 6				/* CF parameters */
3124 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3125 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3126 		 + 2 + 1				/* power control */
3127 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3128 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3129 		 + 2 + 1				/* ERP */
3130 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3131 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3132 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3133 		 /* XXX conditional? */
3134 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3135 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3136 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3137 			sizeof(struct ieee80211_wme_param) : 0)
3138 #ifdef IEEE80211_SUPPORT_SUPERG
3139 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3140 #endif
3141 #ifdef IEEE80211_SUPPORT_TDMA
3142 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3143 			sizeof(struct ieee80211_tdma_param) : 0)
3144 #endif
3145 #ifdef IEEE80211_SUPPORT_MESH
3146 		 + 2 + ni->ni_meshidlen
3147 		 + sizeof(struct ieee80211_meshconf_ie)
3148 #endif
3149 		 + IEEE80211_MAX_APPIE
3150 		 ;
3151 	m = ieee80211_getmgtframe(&frm,
3152 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3153 	if (m == NULL) {
3154 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3155 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3156 		vap->iv_stats.is_tx_nobuf++;
3157 		return NULL;
3158 	}
3159 	ieee80211_beacon_construct(m, frm, ni);
3160 
3161 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3162 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3163 	wh = mtod(m, struct ieee80211_frame *);
3164 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3165 	    IEEE80211_FC0_SUBTYPE_BEACON;
3166 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3167 	*(uint16_t *)wh->i_dur = 0;
3168 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3169 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3170 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3171 	*(uint16_t *)wh->i_seq = 0;
3172 
3173 	return m;
3174 }
3175 
3176 /*
3177  * Update the dynamic parts of a beacon frame based on the current state.
3178  */
3179 int
3180 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3181 {
3182 	struct ieee80211vap *vap = ni->ni_vap;
3183 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3184 	struct ieee80211com *ic = ni->ni_ic;
3185 	int len_changed = 0;
3186 	uint16_t capinfo;
3187 	struct ieee80211_frame *wh;
3188 	ieee80211_seq seqno;
3189 
3190 	IEEE80211_LOCK(ic);
3191 	/*
3192 	 * Handle 11h channel change when we've reached the count.
3193 	 * We must recalculate the beacon frame contents to account
3194 	 * for the new channel.  Note we do this only for the first
3195 	 * vap that reaches this point; subsequent vaps just update
3196 	 * their beacon state to reflect the recalculated channel.
3197 	 */
3198 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3199 	    vap->iv_csa_count == ic->ic_csa_count) {
3200 		vap->iv_csa_count = 0;
3201 		/*
3202 		 * Effect channel change before reconstructing the beacon
3203 		 * frame contents as many places reference ni_chan.
3204 		 */
3205 		if (ic->ic_csa_newchan != NULL)
3206 			ieee80211_csa_completeswitch(ic);
3207 		/*
3208 		 * NB: ieee80211_beacon_construct clears all pending
3209 		 * updates in bo_flags so we don't need to explicitly
3210 		 * clear IEEE80211_BEACON_CSA.
3211 		 */
3212 		ieee80211_beacon_construct(m,
3213 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3214 
3215 		/* XXX do WME aggressive mode processing? */
3216 		IEEE80211_UNLOCK(ic);
3217 		return 1;		/* just assume length changed */
3218 	}
3219 
3220 	wh = mtod(m, struct ieee80211_frame *);
3221 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3222 	*(uint16_t *)&wh->i_seq[0] =
3223 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3224 	M_SEQNO_SET(m, seqno);
3225 
3226 	/* XXX faster to recalculate entirely or just changes? */
3227 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3228 	*bo->bo_caps = htole16(capinfo);
3229 
3230 	if (vap->iv_flags & IEEE80211_F_WME) {
3231 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3232 
3233 		/*
3234 		 * Check for aggressive mode change.  When there is
3235 		 * significant high priority traffic in the BSS
3236 		 * throttle back BE traffic by using conservative
3237 		 * parameters.  Otherwise BE uses aggressive params
3238 		 * to optimize performance of legacy/non-QoS traffic.
3239 		 */
3240 		if (wme->wme_flags & WME_F_AGGRMODE) {
3241 			if (wme->wme_hipri_traffic >
3242 			    wme->wme_hipri_switch_thresh) {
3243 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3244 				    "%s: traffic %u, disable aggressive mode\n",
3245 				    __func__, wme->wme_hipri_traffic);
3246 				wme->wme_flags &= ~WME_F_AGGRMODE;
3247 				ieee80211_wme_updateparams_locked(vap);
3248 				wme->wme_hipri_traffic =
3249 					wme->wme_hipri_switch_hysteresis;
3250 			} else
3251 				wme->wme_hipri_traffic = 0;
3252 		} else {
3253 			if (wme->wme_hipri_traffic <=
3254 			    wme->wme_hipri_switch_thresh) {
3255 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3256 				    "%s: traffic %u, enable aggressive mode\n",
3257 				    __func__, wme->wme_hipri_traffic);
3258 				wme->wme_flags |= WME_F_AGGRMODE;
3259 				ieee80211_wme_updateparams_locked(vap);
3260 				wme->wme_hipri_traffic = 0;
3261 			} else
3262 				wme->wme_hipri_traffic =
3263 					wme->wme_hipri_switch_hysteresis;
3264 		}
3265 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3266 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3267 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3268 		}
3269 	}
3270 
3271 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3272 		ieee80211_ht_update_beacon(vap, bo);
3273 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3274 	}
3275 #ifdef IEEE80211_SUPPORT_TDMA
3276 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3277 		/*
3278 		 * NB: the beacon is potentially updated every TBTT.
3279 		 */
3280 		ieee80211_tdma_update_beacon(vap, bo);
3281 	}
3282 #endif
3283 #ifdef IEEE80211_SUPPORT_MESH
3284 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3285 		ieee80211_mesh_update_beacon(vap, bo);
3286 #endif
3287 
3288 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3289 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3290 		struct ieee80211_tim_ie *tie =
3291 			(struct ieee80211_tim_ie *) bo->bo_tim;
3292 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3293 			u_int timlen, timoff, i;
3294 			/*
3295 			 * ATIM/DTIM needs updating.  If it fits in the
3296 			 * current space allocated then just copy in the
3297 			 * new bits.  Otherwise we need to move any trailing
3298 			 * data to make room.  Note that we know there is
3299 			 * contiguous space because ieee80211_beacon_allocate
3300 			 * insures there is space in the mbuf to write a
3301 			 * maximal-size virtual bitmap (based on iv_max_aid).
3302 			 */
3303 			/*
3304 			 * Calculate the bitmap size and offset, copy any
3305 			 * trailer out of the way, and then copy in the
3306 			 * new bitmap and update the information element.
3307 			 * Note that the tim bitmap must contain at least
3308 			 * one byte and any offset must be even.
3309 			 */
3310 			if (vap->iv_ps_pending != 0) {
3311 				timoff = 128;		/* impossibly large */
3312 				for (i = 0; i < vap->iv_tim_len; i++)
3313 					if (vap->iv_tim_bitmap[i]) {
3314 						timoff = i &~ 1;
3315 						break;
3316 					}
3317 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3318 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3319 					if (vap->iv_tim_bitmap[i])
3320 						break;
3321 				timlen = 1 + (i - timoff);
3322 			} else {
3323 				timoff = 0;
3324 				timlen = 1;
3325 			}
3326 			if (timlen != bo->bo_tim_len) {
3327 				/* copy up/down trailer */
3328 				int adjust = tie->tim_bitmap+timlen
3329 					   - bo->bo_tim_trailer;
3330 				ovbcopy(bo->bo_tim_trailer,
3331 				    bo->bo_tim_trailer+adjust,
3332 				    bo->bo_tim_trailer_len);
3333 				bo->bo_tim_trailer += adjust;
3334 				bo->bo_erp += adjust;
3335 				bo->bo_htinfo += adjust;
3336 #ifdef IEEE80211_SUPPORT_SUPERG
3337 				bo->bo_ath += adjust;
3338 #endif
3339 #ifdef IEEE80211_SUPPORT_TDMA
3340 				bo->bo_tdma += adjust;
3341 #endif
3342 #ifdef IEEE80211_SUPPORT_MESH
3343 				bo->bo_meshconf += adjust;
3344 #endif
3345 				bo->bo_appie += adjust;
3346 				bo->bo_wme += adjust;
3347 				bo->bo_csa += adjust;
3348 				bo->bo_quiet += adjust;
3349 				bo->bo_tim_len = timlen;
3350 
3351 				/* update information element */
3352 				tie->tim_len = 3 + timlen;
3353 				tie->tim_bitctl = timoff;
3354 				len_changed = 1;
3355 			}
3356 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3357 				bo->bo_tim_len);
3358 
3359 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3360 
3361 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3362 				"%s: TIM updated, pending %u, off %u, len %u\n",
3363 				__func__, vap->iv_ps_pending, timoff, timlen);
3364 		}
3365 		/* count down DTIM period */
3366 		if (tie->tim_count == 0)
3367 			tie->tim_count = tie->tim_period - 1;
3368 		else
3369 			tie->tim_count--;
3370 		/* update state for buffered multicast frames on DTIM */
3371 		if (mcast && tie->tim_count == 0)
3372 			tie->tim_bitctl |= 1;
3373 		else
3374 			tie->tim_bitctl &= ~1;
3375 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3376 			struct ieee80211_csa_ie *csa =
3377 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3378 
3379 			/*
3380 			 * Insert or update CSA ie.  If we're just starting
3381 			 * to count down to the channel switch then we need
3382 			 * to insert the CSA ie.  Otherwise we just need to
3383 			 * drop the count.  The actual change happens above
3384 			 * when the vap's count reaches the target count.
3385 			 */
3386 			if (vap->iv_csa_count == 0) {
3387 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3388 				bo->bo_erp += sizeof(*csa);
3389 				bo->bo_htinfo += sizeof(*csa);
3390 				bo->bo_wme += sizeof(*csa);
3391 #ifdef IEEE80211_SUPPORT_SUPERG
3392 				bo->bo_ath += sizeof(*csa);
3393 #endif
3394 #ifdef IEEE80211_SUPPORT_TDMA
3395 				bo->bo_tdma += sizeof(*csa);
3396 #endif
3397 #ifdef IEEE80211_SUPPORT_MESH
3398 				bo->bo_meshconf += sizeof(*csa);
3399 #endif
3400 				bo->bo_appie += sizeof(*csa);
3401 				bo->bo_csa_trailer_len += sizeof(*csa);
3402 				bo->bo_quiet += sizeof(*csa);
3403 				bo->bo_tim_trailer_len += sizeof(*csa);
3404 				m->m_len += sizeof(*csa);
3405 				m->m_pkthdr.len += sizeof(*csa);
3406 
3407 				ieee80211_add_csa(bo->bo_csa, vap);
3408 			} else
3409 				csa->csa_count--;
3410 			vap->iv_csa_count++;
3411 			/* NB: don't clear IEEE80211_BEACON_CSA */
3412 		}
3413 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3414 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3415 			if (vap->iv_quiet)
3416 				ieee80211_add_quiet(bo->bo_quiet, vap);
3417 		}
3418 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3419 			/*
3420 			 * ERP element needs updating.
3421 			 */
3422 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3423 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3424 		}
3425 #ifdef IEEE80211_SUPPORT_SUPERG
3426 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3427 			ieee80211_add_athcaps(bo->bo_ath, ni);
3428 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3429 		}
3430 #endif
3431 	}
3432 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3433 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3434 		int aielen;
3435 		uint8_t *frm;
3436 
3437 		aielen = 0;
3438 		if (aie != NULL)
3439 			aielen += aie->ie_len;
3440 		if (aielen != bo->bo_appie_len) {
3441 			/* copy up/down trailer */
3442 			int adjust = aielen - bo->bo_appie_len;
3443 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3444 				bo->bo_tim_trailer_len);
3445 			bo->bo_tim_trailer += adjust;
3446 			bo->bo_appie += adjust;
3447 			bo->bo_appie_len = aielen;
3448 
3449 			len_changed = 1;
3450 		}
3451 		frm = bo->bo_appie;
3452 		if (aie != NULL)
3453 			frm  = add_appie(frm, aie);
3454 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3455 	}
3456 	IEEE80211_UNLOCK(ic);
3457 
3458 	return len_changed;
3459 }
3460 
3461 /*
3462  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3463  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3464  * header at the front that must be stripped before prepending the
3465  * LLC followed by the Ethernet header passed in (with an Ethernet
3466  * type that specifies the payload size).
3467  */
3468 struct mbuf *
3469 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3470 	const struct ether_header *eh)
3471 {
3472 	struct llc *llc;
3473 	uint16_t payload;
3474 
3475 	/* XXX optimize by combining m_adj+M_PREPEND */
3476 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3477 	llc = mtod(m, struct llc *);
3478 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3479 	llc->llc_control = LLC_UI;
3480 	llc->llc_snap.org_code[0] = 0;
3481 	llc->llc_snap.org_code[1] = 0;
3482 	llc->llc_snap.org_code[2] = 0;
3483 	llc->llc_snap.ether_type = eh->ether_type;
3484 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3485 
3486 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3487 	if (m == NULL) {		/* XXX cannot happen */
3488 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3489 			"%s: no space for ether_header\n", __func__);
3490 		vap->iv_stats.is_tx_nobuf++;
3491 		return NULL;
3492 	}
3493 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3494 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3495 	return m;
3496 }
3497 
3498 /*
3499  * Complete an mbuf transmission.
3500  *
3501  * For now, this simply processes a completed frame after the
3502  * driver has completed it's transmission and/or retransmission.
3503  * It assumes the frame is an 802.11 encapsulated frame.
3504  *
3505  * Later on it will grow to become the exit path for a given frame
3506  * from the driver and, depending upon how it's been encapsulated
3507  * and already transmitted, it may end up doing A-MPDU retransmission,
3508  * power save requeuing, etc.
3509  *
3510  * In order for the above to work, the driver entry point to this
3511  * must not hold any driver locks.  Thus, the driver needs to delay
3512  * any actual mbuf completion until it can release said locks.
3513  *
3514  * This frees the mbuf and if the mbuf has a node reference,
3515  * the node reference will be freed.
3516  */
3517 void
3518 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3519 {
3520 
3521 	if (ni != NULL) {
3522 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3523 
3524 		if (status == 0) {
3525 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3526 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3527 			if (m->m_flags & M_MCAST)
3528 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3529 		} else
3530 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3531 		if (m->m_flags & M_TXCB)
3532 			ieee80211_process_callback(ni, m, status);
3533 		ieee80211_free_node(ni);
3534 	}
3535 	m_freem(m);
3536 }
3537