1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/mbuf.h> 39 #include <sys/endian.h> 40 41 #include <sys/socket.h> 42 43 #include <net/bpf.h> 44 #include <net/ethernet.h> 45 #include <net/if.h> 46 #include <net/if_var.h> 47 #include <net/if_llc.h> 48 #include <net/if_media.h> 49 #include <net/if_vlan_var.h> 50 51 #include <net80211/ieee80211_var.h> 52 #include <net80211/ieee80211_regdomain.h> 53 #ifdef IEEE80211_SUPPORT_SUPERG 54 #include <net80211/ieee80211_superg.h> 55 #endif 56 #ifdef IEEE80211_SUPPORT_TDMA 57 #include <net80211/ieee80211_tdma.h> 58 #endif 59 #include <net80211/ieee80211_wds.h> 60 #include <net80211/ieee80211_mesh.h> 61 62 #if defined(INET) || defined(INET6) 63 #include <netinet/in.h> 64 #endif 65 66 #ifdef INET 67 #include <netinet/if_ether.h> 68 #include <netinet/in_systm.h> 69 #include <netinet/ip.h> 70 #endif 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #endif 74 75 #include <security/mac/mac_framework.h> 76 77 #define ETHER_HEADER_COPY(dst, src) \ 78 memcpy(dst, src, sizeof(struct ether_header)) 79 80 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 81 u_int hdrsize, u_int ciphdrsize, u_int mtu); 82 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 83 84 #ifdef IEEE80211_DEBUG 85 /* 86 * Decide if an outbound management frame should be 87 * printed when debugging is enabled. This filters some 88 * of the less interesting frames that come frequently 89 * (e.g. beacons). 90 */ 91 static __inline int 92 doprint(struct ieee80211vap *vap, int subtype) 93 { 94 switch (subtype) { 95 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 96 return (vap->iv_opmode == IEEE80211_M_IBSS); 97 } 98 return 1; 99 } 100 #endif 101 102 /* 103 * Transmit a frame to the given destination on the given VAP. 104 * 105 * It's up to the caller to figure out the details of who this 106 * is going to and resolving the node. 107 * 108 * This routine takes care of queuing it for power save, 109 * A-MPDU state stuff, fast-frames state stuff, encapsulation 110 * if required, then passing it up to the driver layer. 111 * 112 * This routine (for now) consumes the mbuf and frees the node 113 * reference; it ideally will return a TX status which reflects 114 * whether the mbuf was consumed or not, so the caller can 115 * free the mbuf (if appropriate) and the node reference (again, 116 * if appropriate.) 117 */ 118 int 119 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 120 struct ieee80211_node *ni) 121 { 122 struct ieee80211com *ic = vap->iv_ic; 123 struct ifnet *ifp = vap->iv_ifp; 124 int len, mcast; 125 126 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 127 (m->m_flags & M_PWR_SAV) == 0) { 128 /* 129 * Station in power save mode; pass the frame 130 * to the 802.11 layer and continue. We'll get 131 * the frame back when the time is right. 132 * XXX lose WDS vap linkage? 133 */ 134 if (ieee80211_pwrsave(ni, m) != 0) 135 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 136 ieee80211_free_node(ni); 137 138 /* 139 * We queued it fine, so tell the upper layer 140 * that we consumed it. 141 */ 142 return (0); 143 } 144 /* calculate priority so drivers can find the tx queue */ 145 if (ieee80211_classify(ni, m)) { 146 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 147 ni->ni_macaddr, NULL, 148 "%s", "classification failure"); 149 vap->iv_stats.is_tx_classify++; 150 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 151 m_freem(m); 152 ieee80211_free_node(ni); 153 154 /* XXX better status? */ 155 return (0); 156 } 157 /* 158 * Stash the node pointer. Note that we do this after 159 * any call to ieee80211_dwds_mcast because that code 160 * uses any existing value for rcvif to identify the 161 * interface it (might have been) received on. 162 */ 163 m->m_pkthdr.rcvif = (void *)ni; 164 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 165 len = m->m_pkthdr.len; 166 167 BPF_MTAP(ifp, m); /* 802.3 tx */ 168 169 /* 170 * Check if A-MPDU tx aggregation is setup or if we 171 * should try to enable it. The sta must be associated 172 * with HT and A-MPDU enabled for use. When the policy 173 * routine decides we should enable A-MPDU we issue an 174 * ADDBA request and wait for a reply. The frame being 175 * encapsulated will go out w/o using A-MPDU, or possibly 176 * it might be collected by the driver and held/retransmit. 177 * The default ic_ampdu_enable routine handles staggering 178 * ADDBA requests in case the receiver NAK's us or we are 179 * otherwise unable to establish a BA stream. 180 */ 181 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 182 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) { 183 if ((m->m_flags & M_EAPOL) == 0) { 184 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 185 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 186 187 ieee80211_txampdu_count_packet(tap); 188 if (IEEE80211_AMPDU_RUNNING(tap)) { 189 /* 190 * Operational, mark frame for aggregation. 191 * 192 * XXX do tx aggregation here 193 */ 194 m->m_flags |= M_AMPDU_MPDU; 195 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 196 ic->ic_ampdu_enable(ni, tap)) { 197 /* 198 * Not negotiated yet, request service. 199 */ 200 ieee80211_ampdu_request(ni, tap); 201 /* XXX hold frame for reply? */ 202 } 203 } 204 } 205 206 #ifdef IEEE80211_SUPPORT_SUPERG 207 /* 208 * Check for AMSDU/FF; queue for aggregation 209 * 210 * Note: we don't bother trying to do fast frames or 211 * A-MSDU encapsulation for 802.3 drivers. Now, we 212 * likely could do it for FF (because it's a magic 213 * atheros tunnel LLC type) but I don't think we're going 214 * to really need to. For A-MSDU we'd have to set the 215 * A-MSDU QoS bit in the wifi header, so we just plain 216 * can't do it. 217 * 218 * Strictly speaking, we could actually /do/ A-MSDU / FF 219 * with A-MPDU together which for certain circumstances 220 * is beneficial (eg A-MSDU of TCK ACKs.) However, 221 * I'll ignore that for now so existing behaviour is maintained. 222 * Later on it would be good to make "amsdu + ampdu" configurable. 223 */ 224 else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 225 if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) { 226 m = ieee80211_amsdu_check(ni, m); 227 if (m == NULL) { 228 /* NB: any ni ref held on stageq */ 229 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 230 "%s: amsdu_check queued frame\n", 231 __func__); 232 return (0); 233 } 234 } else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni, 235 IEEE80211_NODE_FF)) { 236 m = ieee80211_ff_check(ni, m); 237 if (m == NULL) { 238 /* NB: any ni ref held on stageq */ 239 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 240 "%s: ff_check queued frame\n", 241 __func__); 242 return (0); 243 } 244 } 245 } 246 #endif /* IEEE80211_SUPPORT_SUPERG */ 247 248 /* 249 * Grab the TX lock - serialise the TX process from this 250 * point (where TX state is being checked/modified) 251 * through to driver queue. 252 */ 253 IEEE80211_TX_LOCK(ic); 254 255 /* 256 * XXX make the encap and transmit code a separate function 257 * so things like the FF (and later A-MSDU) path can just call 258 * it for flushed frames. 259 */ 260 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 261 /* 262 * Encapsulate the packet in prep for transmission. 263 */ 264 m = ieee80211_encap(vap, ni, m); 265 if (m == NULL) { 266 /* NB: stat+msg handled in ieee80211_encap */ 267 IEEE80211_TX_UNLOCK(ic); 268 ieee80211_free_node(ni); 269 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 270 return (ENOBUFS); 271 } 272 } 273 (void) ieee80211_parent_xmitpkt(ic, m); 274 275 /* 276 * Unlock at this point - no need to hold it across 277 * ieee80211_free_node() (ie, the comlock) 278 */ 279 IEEE80211_TX_UNLOCK(ic); 280 ic->ic_lastdata = ticks; 281 282 return (0); 283 } 284 285 286 287 /* 288 * Send the given mbuf through the given vap. 289 * 290 * This consumes the mbuf regardless of whether the transmit 291 * was successful or not. 292 * 293 * This does none of the initial checks that ieee80211_start() 294 * does (eg CAC timeout, interface wakeup) - the caller must 295 * do this first. 296 */ 297 static int 298 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 299 { 300 #define IS_DWDS(vap) \ 301 (vap->iv_opmode == IEEE80211_M_WDS && \ 302 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 303 struct ieee80211com *ic = vap->iv_ic; 304 struct ifnet *ifp = vap->iv_ifp; 305 struct ieee80211_node *ni; 306 struct ether_header *eh; 307 308 /* 309 * Cancel any background scan. 310 */ 311 if (ic->ic_flags & IEEE80211_F_SCAN) 312 ieee80211_cancel_anyscan(vap); 313 /* 314 * Find the node for the destination so we can do 315 * things like power save and fast frames aggregation. 316 * 317 * NB: past this point various code assumes the first 318 * mbuf has the 802.3 header present (and contiguous). 319 */ 320 ni = NULL; 321 if (m->m_len < sizeof(struct ether_header) && 322 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 323 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 324 "discard frame, %s\n", "m_pullup failed"); 325 vap->iv_stats.is_tx_nobuf++; /* XXX */ 326 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 327 return (ENOBUFS); 328 } 329 eh = mtod(m, struct ether_header *); 330 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 331 if (IS_DWDS(vap)) { 332 /* 333 * Only unicast frames from the above go out 334 * DWDS vaps; multicast frames are handled by 335 * dispatching the frame as it comes through 336 * the AP vap (see below). 337 */ 338 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 339 eh->ether_dhost, "mcast", "%s", "on DWDS"); 340 vap->iv_stats.is_dwds_mcast++; 341 m_freem(m); 342 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 343 /* XXX better status? */ 344 return (ENOBUFS); 345 } 346 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 347 /* 348 * Spam DWDS vap's w/ multicast traffic. 349 */ 350 /* XXX only if dwds in use? */ 351 ieee80211_dwds_mcast(vap, m); 352 } 353 } 354 #ifdef IEEE80211_SUPPORT_MESH 355 if (vap->iv_opmode != IEEE80211_M_MBSS) { 356 #endif 357 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 358 if (ni == NULL) { 359 /* NB: ieee80211_find_txnode does stat+msg */ 360 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 361 m_freem(m); 362 /* XXX better status? */ 363 return (ENOBUFS); 364 } 365 if (ni->ni_associd == 0 && 366 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 367 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 368 eh->ether_dhost, NULL, 369 "sta not associated (type 0x%04x)", 370 htons(eh->ether_type)); 371 vap->iv_stats.is_tx_notassoc++; 372 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 373 m_freem(m); 374 ieee80211_free_node(ni); 375 /* XXX better status? */ 376 return (ENOBUFS); 377 } 378 #ifdef IEEE80211_SUPPORT_MESH 379 } else { 380 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 381 /* 382 * Proxy station only if configured. 383 */ 384 if (!ieee80211_mesh_isproxyena(vap)) { 385 IEEE80211_DISCARD_MAC(vap, 386 IEEE80211_MSG_OUTPUT | 387 IEEE80211_MSG_MESH, 388 eh->ether_dhost, NULL, 389 "%s", "proxy not enabled"); 390 vap->iv_stats.is_mesh_notproxy++; 391 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 392 m_freem(m); 393 /* XXX better status? */ 394 return (ENOBUFS); 395 } 396 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 397 "forward frame from DS SA(%6D), DA(%6D)\n", 398 eh->ether_shost, ":", 399 eh->ether_dhost, ":"); 400 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 401 } 402 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 403 if (ni == NULL) { 404 /* 405 * NB: ieee80211_mesh_discover holds/disposes 406 * frame (e.g. queueing on path discovery). 407 */ 408 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 409 /* XXX better status? */ 410 return (ENOBUFS); 411 } 412 } 413 #endif 414 415 /* 416 * We've resolved the sender, so attempt to transmit it. 417 */ 418 419 if (vap->iv_state == IEEE80211_S_SLEEP) { 420 /* 421 * In power save; queue frame and then wakeup device 422 * for transmit. 423 */ 424 ic->ic_lastdata = ticks; 425 if (ieee80211_pwrsave(ni, m) != 0) 426 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 427 ieee80211_free_node(ni); 428 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 429 return (0); 430 } 431 432 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 433 return (ENOBUFS); 434 return (0); 435 #undef IS_DWDS 436 } 437 438 /* 439 * Start method for vap's. All packets from the stack come 440 * through here. We handle common processing of the packets 441 * before dispatching them to the underlying device. 442 * 443 * if_transmit() requires that the mbuf be consumed by this call 444 * regardless of the return condition. 445 */ 446 int 447 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 448 { 449 struct ieee80211vap *vap = ifp->if_softc; 450 struct ieee80211com *ic = vap->iv_ic; 451 452 /* 453 * No data frames go out unless we're running. 454 * Note in particular this covers CAC and CSA 455 * states (though maybe we should check muting 456 * for CSA). 457 */ 458 if (vap->iv_state != IEEE80211_S_RUN && 459 vap->iv_state != IEEE80211_S_SLEEP) { 460 IEEE80211_LOCK(ic); 461 /* re-check under the com lock to avoid races */ 462 if (vap->iv_state != IEEE80211_S_RUN && 463 vap->iv_state != IEEE80211_S_SLEEP) { 464 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 465 "%s: ignore queue, in %s state\n", 466 __func__, ieee80211_state_name[vap->iv_state]); 467 vap->iv_stats.is_tx_badstate++; 468 IEEE80211_UNLOCK(ic); 469 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 470 m_freem(m); 471 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 472 return (ENETDOWN); 473 } 474 IEEE80211_UNLOCK(ic); 475 } 476 477 /* 478 * Sanitize mbuf flags for net80211 use. We cannot 479 * clear M_PWR_SAV or M_MORE_DATA because these may 480 * be set for frames that are re-submitted from the 481 * power save queue. 482 * 483 * NB: This must be done before ieee80211_classify as 484 * it marks EAPOL in frames with M_EAPOL. 485 */ 486 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 487 488 /* 489 * Bump to the packet transmission path. 490 * The mbuf will be consumed here. 491 */ 492 return (ieee80211_start_pkt(vap, m)); 493 } 494 495 void 496 ieee80211_vap_qflush(struct ifnet *ifp) 497 { 498 499 /* Empty for now */ 500 } 501 502 /* 503 * 802.11 raw output routine. 504 * 505 * XXX TODO: this (and other send routines) should correctly 506 * XXX keep the pwr mgmt bit set if it decides to call into the 507 * XXX driver to send a frame whilst the state is SLEEP. 508 * 509 * Otherwise the peer may decide that we're awake and flood us 510 * with traffic we are still too asleep to receive! 511 */ 512 int 513 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 514 struct mbuf *m, const struct ieee80211_bpf_params *params) 515 { 516 struct ieee80211com *ic = vap->iv_ic; 517 int error; 518 519 /* 520 * Set node - the caller has taken a reference, so ensure 521 * that the mbuf has the same node value that 522 * it would if it were going via the normal path. 523 */ 524 m->m_pkthdr.rcvif = (void *)ni; 525 526 /* 527 * Attempt to add bpf transmit parameters. 528 * 529 * For now it's ok to fail; the raw_xmit api still takes 530 * them as an option. 531 * 532 * Later on when ic_raw_xmit() has params removed, 533 * they'll have to be added - so fail the transmit if 534 * they can't be. 535 */ 536 if (params) 537 (void) ieee80211_add_xmit_params(m, params); 538 539 error = ic->ic_raw_xmit(ni, m, params); 540 if (error) { 541 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 542 ieee80211_free_node(ni); 543 } 544 return (error); 545 } 546 547 /* 548 * 802.11 output routine. This is (currently) used only to 549 * connect bpf write calls to the 802.11 layer for injecting 550 * raw 802.11 frames. 551 */ 552 int 553 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 554 const struct sockaddr *dst, struct route *ro) 555 { 556 #define senderr(e) do { error = (e); goto bad;} while (0) 557 struct ieee80211_node *ni = NULL; 558 struct ieee80211vap *vap; 559 struct ieee80211_frame *wh; 560 struct ieee80211com *ic = NULL; 561 int error; 562 int ret; 563 564 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 565 /* 566 * Short-circuit requests if the vap is marked OACTIVE 567 * as this can happen because a packet came down through 568 * ieee80211_start before the vap entered RUN state in 569 * which case it's ok to just drop the frame. This 570 * should not be necessary but callers of if_output don't 571 * check OACTIVE. 572 */ 573 senderr(ENETDOWN); 574 } 575 vap = ifp->if_softc; 576 ic = vap->iv_ic; 577 /* 578 * Hand to the 802.3 code if not tagged as 579 * a raw 802.11 frame. 580 */ 581 if (dst->sa_family != AF_IEEE80211) 582 return vap->iv_output(ifp, m, dst, ro); 583 #ifdef MAC 584 error = mac_ifnet_check_transmit(ifp, m); 585 if (error) 586 senderr(error); 587 #endif 588 if (ifp->if_flags & IFF_MONITOR) 589 senderr(ENETDOWN); 590 if (!IFNET_IS_UP_RUNNING(ifp)) 591 senderr(ENETDOWN); 592 if (vap->iv_state == IEEE80211_S_CAC) { 593 IEEE80211_DPRINTF(vap, 594 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 595 "block %s frame in CAC state\n", "raw data"); 596 vap->iv_stats.is_tx_badstate++; 597 senderr(EIO); /* XXX */ 598 } else if (vap->iv_state == IEEE80211_S_SCAN) 599 senderr(EIO); 600 /* XXX bypass bridge, pfil, carp, etc. */ 601 602 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 603 senderr(EIO); /* XXX */ 604 wh = mtod(m, struct ieee80211_frame *); 605 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 606 IEEE80211_FC0_VERSION_0) 607 senderr(EIO); /* XXX */ 608 609 /* locate destination node */ 610 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 611 case IEEE80211_FC1_DIR_NODS: 612 case IEEE80211_FC1_DIR_FROMDS: 613 ni = ieee80211_find_txnode(vap, wh->i_addr1); 614 break; 615 case IEEE80211_FC1_DIR_TODS: 616 case IEEE80211_FC1_DIR_DSTODS: 617 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 618 senderr(EIO); /* XXX */ 619 ni = ieee80211_find_txnode(vap, wh->i_addr3); 620 break; 621 default: 622 senderr(EIO); /* XXX */ 623 } 624 if (ni == NULL) { 625 /* 626 * Permit packets w/ bpf params through regardless 627 * (see below about sa_len). 628 */ 629 if (dst->sa_len == 0) 630 senderr(EHOSTUNREACH); 631 ni = ieee80211_ref_node(vap->iv_bss); 632 } 633 634 /* 635 * Sanitize mbuf for net80211 flags leaked from above. 636 * 637 * NB: This must be done before ieee80211_classify as 638 * it marks EAPOL in frames with M_EAPOL. 639 */ 640 m->m_flags &= ~M_80211_TX; 641 642 /* calculate priority so drivers can find the tx queue */ 643 /* XXX assumes an 802.3 frame */ 644 if (ieee80211_classify(ni, m)) 645 senderr(EIO); /* XXX */ 646 647 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 648 IEEE80211_NODE_STAT(ni, tx_data); 649 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 650 IEEE80211_NODE_STAT(ni, tx_mcast); 651 m->m_flags |= M_MCAST; 652 } else 653 IEEE80211_NODE_STAT(ni, tx_ucast); 654 /* NB: ieee80211_encap does not include 802.11 header */ 655 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 656 657 IEEE80211_TX_LOCK(ic); 658 659 /* 660 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 661 * present by setting the sa_len field of the sockaddr (yes, 662 * this is a hack). 663 * NB: we assume sa_data is suitably aligned to cast. 664 */ 665 ret = ieee80211_raw_output(vap, ni, m, 666 (const struct ieee80211_bpf_params *)(dst->sa_len ? 667 dst->sa_data : NULL)); 668 IEEE80211_TX_UNLOCK(ic); 669 return (ret); 670 bad: 671 if (m != NULL) 672 m_freem(m); 673 if (ni != NULL) 674 ieee80211_free_node(ni); 675 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 676 return error; 677 #undef senderr 678 } 679 680 /* 681 * Set the direction field and address fields of an outgoing 682 * frame. Note this should be called early on in constructing 683 * a frame as it sets i_fc[1]; other bits can then be or'd in. 684 */ 685 void 686 ieee80211_send_setup( 687 struct ieee80211_node *ni, 688 struct mbuf *m, 689 int type, int tid, 690 const uint8_t sa[IEEE80211_ADDR_LEN], 691 const uint8_t da[IEEE80211_ADDR_LEN], 692 const uint8_t bssid[IEEE80211_ADDR_LEN]) 693 { 694 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 695 struct ieee80211vap *vap = ni->ni_vap; 696 struct ieee80211_tx_ampdu *tap; 697 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 698 ieee80211_seq seqno; 699 700 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 701 702 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 703 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 704 switch (vap->iv_opmode) { 705 case IEEE80211_M_STA: 706 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 707 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 708 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 709 IEEE80211_ADDR_COPY(wh->i_addr3, da); 710 break; 711 case IEEE80211_M_IBSS: 712 case IEEE80211_M_AHDEMO: 713 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 714 IEEE80211_ADDR_COPY(wh->i_addr1, da); 715 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 716 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 717 break; 718 case IEEE80211_M_HOSTAP: 719 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 720 IEEE80211_ADDR_COPY(wh->i_addr1, da); 721 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 722 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 723 break; 724 case IEEE80211_M_WDS: 725 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 726 IEEE80211_ADDR_COPY(wh->i_addr1, da); 727 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 728 IEEE80211_ADDR_COPY(wh->i_addr3, da); 729 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 730 break; 731 case IEEE80211_M_MBSS: 732 #ifdef IEEE80211_SUPPORT_MESH 733 if (IEEE80211_IS_MULTICAST(da)) { 734 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 735 /* XXX next hop */ 736 IEEE80211_ADDR_COPY(wh->i_addr1, da); 737 IEEE80211_ADDR_COPY(wh->i_addr2, 738 vap->iv_myaddr); 739 } else { 740 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 741 IEEE80211_ADDR_COPY(wh->i_addr1, da); 742 IEEE80211_ADDR_COPY(wh->i_addr2, 743 vap->iv_myaddr); 744 IEEE80211_ADDR_COPY(wh->i_addr3, da); 745 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 746 } 747 #endif 748 break; 749 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 750 break; 751 } 752 } else { 753 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 754 IEEE80211_ADDR_COPY(wh->i_addr1, da); 755 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 756 #ifdef IEEE80211_SUPPORT_MESH 757 if (vap->iv_opmode == IEEE80211_M_MBSS) 758 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 759 else 760 #endif 761 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 762 } 763 *(uint16_t *)&wh->i_dur[0] = 0; 764 765 tap = &ni->ni_tx_ampdu[tid]; 766 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 767 m->m_flags |= M_AMPDU_MPDU; 768 else { 769 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 770 type & IEEE80211_FC0_SUBTYPE_MASK)) 771 seqno = ni->ni_txseqs[tid]++; 772 else 773 seqno = 0; 774 775 *(uint16_t *)&wh->i_seq[0] = 776 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 777 M_SEQNO_SET(m, seqno); 778 } 779 780 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 781 m->m_flags |= M_MCAST; 782 #undef WH4 783 } 784 785 /* 786 * Send a management frame to the specified node. The node pointer 787 * must have a reference as the pointer will be passed to the driver 788 * and potentially held for a long time. If the frame is successfully 789 * dispatched to the driver, then it is responsible for freeing the 790 * reference (and potentially free'ing up any associated storage); 791 * otherwise deal with reclaiming any reference (on error). 792 */ 793 int 794 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 795 struct ieee80211_bpf_params *params) 796 { 797 struct ieee80211vap *vap = ni->ni_vap; 798 struct ieee80211com *ic = ni->ni_ic; 799 struct ieee80211_frame *wh; 800 int ret; 801 802 KASSERT(ni != NULL, ("null node")); 803 804 if (vap->iv_state == IEEE80211_S_CAC) { 805 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 806 ni, "block %s frame in CAC state", 807 ieee80211_mgt_subtype_name(type)); 808 vap->iv_stats.is_tx_badstate++; 809 ieee80211_free_node(ni); 810 m_freem(m); 811 return EIO; /* XXX */ 812 } 813 814 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 815 if (m == NULL) { 816 ieee80211_free_node(ni); 817 return ENOMEM; 818 } 819 820 IEEE80211_TX_LOCK(ic); 821 822 wh = mtod(m, struct ieee80211_frame *); 823 ieee80211_send_setup(ni, m, 824 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 825 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 826 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 827 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 828 "encrypting frame (%s)", __func__); 829 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 830 } 831 m->m_flags |= M_ENCAP; /* mark encapsulated */ 832 833 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 834 M_WME_SETAC(m, params->ibp_pri); 835 836 #ifdef IEEE80211_DEBUG 837 /* avoid printing too many frames */ 838 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 839 ieee80211_msg_dumppkts(vap)) { 840 printf("[%s] send %s on channel %u\n", 841 ether_sprintf(wh->i_addr1), 842 ieee80211_mgt_subtype_name(type), 843 ieee80211_chan2ieee(ic, ic->ic_curchan)); 844 } 845 #endif 846 IEEE80211_NODE_STAT(ni, tx_mgmt); 847 848 ret = ieee80211_raw_output(vap, ni, m, params); 849 IEEE80211_TX_UNLOCK(ic); 850 return (ret); 851 } 852 853 static void 854 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg, 855 int status) 856 { 857 struct ieee80211vap *vap = ni->ni_vap; 858 859 wakeup(vap); 860 } 861 862 /* 863 * Send a null data frame to the specified node. If the station 864 * is setup for QoS then a QoS Null Data frame is constructed. 865 * If this is a WDS station then a 4-address frame is constructed. 866 * 867 * NB: the caller is assumed to have setup a node reference 868 * for use; this is necessary to deal with a race condition 869 * when probing for inactive stations. Like ieee80211_mgmt_output 870 * we must cleanup any node reference on error; however we 871 * can safely just unref it as we know it will never be the 872 * last reference to the node. 873 */ 874 int 875 ieee80211_send_nulldata(struct ieee80211_node *ni) 876 { 877 struct ieee80211vap *vap = ni->ni_vap; 878 struct ieee80211com *ic = ni->ni_ic; 879 struct mbuf *m; 880 struct ieee80211_frame *wh; 881 int hdrlen; 882 uint8_t *frm; 883 int ret; 884 885 if (vap->iv_state == IEEE80211_S_CAC) { 886 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 887 ni, "block %s frame in CAC state", "null data"); 888 ieee80211_unref_node(&ni); 889 vap->iv_stats.is_tx_badstate++; 890 return EIO; /* XXX */ 891 } 892 893 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 894 hdrlen = sizeof(struct ieee80211_qosframe); 895 else 896 hdrlen = sizeof(struct ieee80211_frame); 897 /* NB: only WDS vap's get 4-address frames */ 898 if (vap->iv_opmode == IEEE80211_M_WDS) 899 hdrlen += IEEE80211_ADDR_LEN; 900 if (ic->ic_flags & IEEE80211_F_DATAPAD) 901 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 902 903 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 904 if (m == NULL) { 905 /* XXX debug msg */ 906 ieee80211_unref_node(&ni); 907 vap->iv_stats.is_tx_nobuf++; 908 return ENOMEM; 909 } 910 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 911 ("leading space %zd", M_LEADINGSPACE(m))); 912 M_PREPEND(m, hdrlen, M_NOWAIT); 913 if (m == NULL) { 914 /* NB: cannot happen */ 915 ieee80211_free_node(ni); 916 return ENOMEM; 917 } 918 919 IEEE80211_TX_LOCK(ic); 920 921 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 922 if (ni->ni_flags & IEEE80211_NODE_QOS) { 923 const int tid = WME_AC_TO_TID(WME_AC_BE); 924 uint8_t *qos; 925 926 ieee80211_send_setup(ni, m, 927 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 928 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 929 930 if (vap->iv_opmode == IEEE80211_M_WDS) 931 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 932 else 933 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 934 qos[0] = tid & IEEE80211_QOS_TID; 935 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 936 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 937 qos[1] = 0; 938 } else { 939 ieee80211_send_setup(ni, m, 940 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 941 IEEE80211_NONQOS_TID, 942 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 943 } 944 if (vap->iv_opmode != IEEE80211_M_WDS) { 945 /* NB: power management bit is never sent by an AP */ 946 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 947 vap->iv_opmode != IEEE80211_M_HOSTAP) 948 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 949 } 950 if ((ic->ic_flags & IEEE80211_F_SCAN) && 951 (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) { 952 ieee80211_add_callback(m, ieee80211_nulldata_transmitted, 953 NULL); 954 } 955 m->m_len = m->m_pkthdr.len = hdrlen; 956 m->m_flags |= M_ENCAP; /* mark encapsulated */ 957 958 M_WME_SETAC(m, WME_AC_BE); 959 960 IEEE80211_NODE_STAT(ni, tx_data); 961 962 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 963 "send %snull data frame on channel %u, pwr mgt %s", 964 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 965 ieee80211_chan2ieee(ic, ic->ic_curchan), 966 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 967 968 ret = ieee80211_raw_output(vap, ni, m, NULL); 969 IEEE80211_TX_UNLOCK(ic); 970 return (ret); 971 } 972 973 /* 974 * Assign priority to a frame based on any vlan tag assigned 975 * to the station and/or any Diffserv setting in an IP header. 976 * Finally, if an ACM policy is setup (in station mode) it's 977 * applied. 978 */ 979 int 980 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 981 { 982 const struct ether_header *eh = mtod(m, struct ether_header *); 983 int v_wme_ac, d_wme_ac, ac; 984 985 /* 986 * Always promote PAE/EAPOL frames to high priority. 987 */ 988 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 989 /* NB: mark so others don't need to check header */ 990 m->m_flags |= M_EAPOL; 991 ac = WME_AC_VO; 992 goto done; 993 } 994 /* 995 * Non-qos traffic goes to BE. 996 */ 997 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 998 ac = WME_AC_BE; 999 goto done; 1000 } 1001 1002 /* 1003 * If node has a vlan tag then all traffic 1004 * to it must have a matching tag. 1005 */ 1006 v_wme_ac = 0; 1007 if (ni->ni_vlan != 0) { 1008 if ((m->m_flags & M_VLANTAG) == 0) { 1009 IEEE80211_NODE_STAT(ni, tx_novlantag); 1010 return 1; 1011 } 1012 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 1013 EVL_VLANOFTAG(ni->ni_vlan)) { 1014 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 1015 return 1; 1016 } 1017 /* map vlan priority to AC */ 1018 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1019 } 1020 1021 /* XXX m_copydata may be too slow for fast path */ 1022 #ifdef INET 1023 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1024 uint8_t tos; 1025 /* 1026 * IP frame, map the DSCP bits from the TOS field. 1027 */ 1028 /* NB: ip header may not be in first mbuf */ 1029 m_copydata(m, sizeof(struct ether_header) + 1030 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1031 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1032 d_wme_ac = TID_TO_WME_AC(tos); 1033 } else { 1034 #endif /* INET */ 1035 #ifdef INET6 1036 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1037 uint32_t flow; 1038 uint8_t tos; 1039 /* 1040 * IPv6 frame, map the DSCP bits from the traffic class field. 1041 */ 1042 m_copydata(m, sizeof(struct ether_header) + 1043 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1044 (caddr_t) &flow); 1045 tos = (uint8_t)(ntohl(flow) >> 20); 1046 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1047 d_wme_ac = TID_TO_WME_AC(tos); 1048 } else { 1049 #endif /* INET6 */ 1050 d_wme_ac = WME_AC_BE; 1051 #ifdef INET6 1052 } 1053 #endif 1054 #ifdef INET 1055 } 1056 #endif 1057 /* 1058 * Use highest priority AC. 1059 */ 1060 if (v_wme_ac > d_wme_ac) 1061 ac = v_wme_ac; 1062 else 1063 ac = d_wme_ac; 1064 1065 /* 1066 * Apply ACM policy. 1067 */ 1068 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1069 static const int acmap[4] = { 1070 WME_AC_BK, /* WME_AC_BE */ 1071 WME_AC_BK, /* WME_AC_BK */ 1072 WME_AC_BE, /* WME_AC_VI */ 1073 WME_AC_VI, /* WME_AC_VO */ 1074 }; 1075 struct ieee80211com *ic = ni->ni_ic; 1076 1077 while (ac != WME_AC_BK && 1078 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1079 ac = acmap[ac]; 1080 } 1081 done: 1082 M_WME_SETAC(m, ac); 1083 return 0; 1084 } 1085 1086 /* 1087 * Insure there is sufficient contiguous space to encapsulate the 1088 * 802.11 data frame. If room isn't already there, arrange for it. 1089 * Drivers and cipher modules assume we have done the necessary work 1090 * and fail rudely if they don't find the space they need. 1091 */ 1092 struct mbuf * 1093 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1094 struct ieee80211_key *key, struct mbuf *m) 1095 { 1096 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1097 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1098 1099 if (key != NULL) { 1100 /* XXX belongs in crypto code? */ 1101 needed_space += key->wk_cipher->ic_header; 1102 /* XXX frags */ 1103 /* 1104 * When crypto is being done in the host we must insure 1105 * the data are writable for the cipher routines; clone 1106 * a writable mbuf chain. 1107 * XXX handle SWMIC specially 1108 */ 1109 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1110 m = m_unshare(m, M_NOWAIT); 1111 if (m == NULL) { 1112 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1113 "%s: cannot get writable mbuf\n", __func__); 1114 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1115 return NULL; 1116 } 1117 } 1118 } 1119 /* 1120 * We know we are called just before stripping an Ethernet 1121 * header and prepending an LLC header. This means we know 1122 * there will be 1123 * sizeof(struct ether_header) - sizeof(struct llc) 1124 * bytes recovered to which we need additional space for the 1125 * 802.11 header and any crypto header. 1126 */ 1127 /* XXX check trailing space and copy instead? */ 1128 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1129 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1130 if (n == NULL) { 1131 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1132 "%s: cannot expand storage\n", __func__); 1133 vap->iv_stats.is_tx_nobuf++; 1134 m_freem(m); 1135 return NULL; 1136 } 1137 KASSERT(needed_space <= MHLEN, 1138 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1139 /* 1140 * Setup new mbuf to have leading space to prepend the 1141 * 802.11 header and any crypto header bits that are 1142 * required (the latter are added when the driver calls 1143 * back to ieee80211_crypto_encap to do crypto encapsulation). 1144 */ 1145 /* NB: must be first 'cuz it clobbers m_data */ 1146 m_move_pkthdr(n, m); 1147 n->m_len = 0; /* NB: m_gethdr does not set */ 1148 n->m_data += needed_space; 1149 /* 1150 * Pull up Ethernet header to create the expected layout. 1151 * We could use m_pullup but that's overkill (i.e. we don't 1152 * need the actual data) and it cannot fail so do it inline 1153 * for speed. 1154 */ 1155 /* NB: struct ether_header is known to be contiguous */ 1156 n->m_len += sizeof(struct ether_header); 1157 m->m_len -= sizeof(struct ether_header); 1158 m->m_data += sizeof(struct ether_header); 1159 /* 1160 * Replace the head of the chain. 1161 */ 1162 n->m_next = m; 1163 m = n; 1164 } 1165 return m; 1166 #undef TO_BE_RECLAIMED 1167 } 1168 1169 /* 1170 * Return the transmit key to use in sending a unicast frame. 1171 * If a unicast key is set we use that. When no unicast key is set 1172 * we fall back to the default transmit key. 1173 */ 1174 static __inline struct ieee80211_key * 1175 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1176 struct ieee80211_node *ni) 1177 { 1178 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1179 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1180 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1181 return NULL; 1182 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1183 } else { 1184 return &ni->ni_ucastkey; 1185 } 1186 } 1187 1188 /* 1189 * Return the transmit key to use in sending a multicast frame. 1190 * Multicast traffic always uses the group key which is installed as 1191 * the default tx key. 1192 */ 1193 static __inline struct ieee80211_key * 1194 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1195 struct ieee80211_node *ni) 1196 { 1197 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1198 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1199 return NULL; 1200 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1201 } 1202 1203 /* 1204 * Encapsulate an outbound data frame. The mbuf chain is updated. 1205 * If an error is encountered NULL is returned. The caller is required 1206 * to provide a node reference and pullup the ethernet header in the 1207 * first mbuf. 1208 * 1209 * NB: Packet is assumed to be processed by ieee80211_classify which 1210 * marked EAPOL frames w/ M_EAPOL. 1211 */ 1212 struct mbuf * 1213 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1214 struct mbuf *m) 1215 { 1216 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1217 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1218 struct ieee80211com *ic = ni->ni_ic; 1219 #ifdef IEEE80211_SUPPORT_MESH 1220 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1221 struct ieee80211_meshcntl_ae10 *mc; 1222 struct ieee80211_mesh_route *rt = NULL; 1223 int dir = -1; 1224 #endif 1225 struct ether_header eh; 1226 struct ieee80211_frame *wh; 1227 struct ieee80211_key *key; 1228 struct llc *llc; 1229 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1230 ieee80211_seq seqno; 1231 int meshhdrsize, meshae; 1232 uint8_t *qos; 1233 int is_amsdu = 0; 1234 1235 IEEE80211_TX_LOCK_ASSERT(ic); 1236 1237 /* 1238 * Copy existing Ethernet header to a safe place. The 1239 * rest of the code assumes it's ok to strip it when 1240 * reorganizing state for the final encapsulation. 1241 */ 1242 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1243 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1244 1245 /* 1246 * Insure space for additional headers. First identify 1247 * transmit key to use in calculating any buffer adjustments 1248 * required. This is also used below to do privacy 1249 * encapsulation work. Then calculate the 802.11 header 1250 * size and any padding required by the driver. 1251 * 1252 * Note key may be NULL if we fall back to the default 1253 * transmit key and that is not set. In that case the 1254 * buffer may not be expanded as needed by the cipher 1255 * routines, but they will/should discard it. 1256 */ 1257 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1258 if (vap->iv_opmode == IEEE80211_M_STA || 1259 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1260 (vap->iv_opmode == IEEE80211_M_WDS && 1261 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1262 key = ieee80211_crypto_getucastkey(vap, ni); 1263 else 1264 key = ieee80211_crypto_getmcastkey(vap, ni); 1265 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1266 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1267 eh.ether_dhost, 1268 "no default transmit key (%s) deftxkey %u", 1269 __func__, vap->iv_def_txkey); 1270 vap->iv_stats.is_tx_nodefkey++; 1271 goto bad; 1272 } 1273 } else 1274 key = NULL; 1275 /* 1276 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1277 * frames so suppress use. This may be an issue if other 1278 * ap's require all data frames to be QoS-encapsulated 1279 * once negotiated in which case we'll need to make this 1280 * configurable. 1281 * NB: mesh data frames are QoS. 1282 */ 1283 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1284 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1285 (m->m_flags & M_EAPOL) == 0; 1286 if (addqos) 1287 hdrsize = sizeof(struct ieee80211_qosframe); 1288 else 1289 hdrsize = sizeof(struct ieee80211_frame); 1290 #ifdef IEEE80211_SUPPORT_MESH 1291 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1292 /* 1293 * Mesh data frames are encapsulated according to the 1294 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1295 * o Group Addressed data (aka multicast) originating 1296 * at the local sta are sent w/ 3-address format and 1297 * address extension mode 00 1298 * o Individually Addressed data (aka unicast) originating 1299 * at the local sta are sent w/ 4-address format and 1300 * address extension mode 00 1301 * o Group Addressed data forwarded from a non-mesh sta are 1302 * sent w/ 3-address format and address extension mode 01 1303 * o Individually Address data from another sta are sent 1304 * w/ 4-address format and address extension mode 10 1305 */ 1306 is4addr = 0; /* NB: don't use, disable */ 1307 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1308 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1309 KASSERT(rt != NULL, ("route is NULL")); 1310 dir = IEEE80211_FC1_DIR_DSTODS; 1311 hdrsize += IEEE80211_ADDR_LEN; 1312 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1313 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1314 vap->iv_myaddr)) { 1315 IEEE80211_NOTE_MAC(vap, 1316 IEEE80211_MSG_MESH, 1317 eh.ether_dhost, 1318 "%s", "trying to send to ourself"); 1319 goto bad; 1320 } 1321 meshae = IEEE80211_MESH_AE_10; 1322 meshhdrsize = 1323 sizeof(struct ieee80211_meshcntl_ae10); 1324 } else { 1325 meshae = IEEE80211_MESH_AE_00; 1326 meshhdrsize = 1327 sizeof(struct ieee80211_meshcntl); 1328 } 1329 } else { 1330 dir = IEEE80211_FC1_DIR_FROMDS; 1331 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1332 /* proxy group */ 1333 meshae = IEEE80211_MESH_AE_01; 1334 meshhdrsize = 1335 sizeof(struct ieee80211_meshcntl_ae01); 1336 } else { 1337 /* group */ 1338 meshae = IEEE80211_MESH_AE_00; 1339 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1340 } 1341 } 1342 } else { 1343 #endif 1344 /* 1345 * 4-address frames need to be generated for: 1346 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1347 * o packets sent through a vap marked for relaying 1348 * (e.g. a station operating with dynamic WDS) 1349 */ 1350 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1351 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1352 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1353 if (is4addr) 1354 hdrsize += IEEE80211_ADDR_LEN; 1355 meshhdrsize = meshae = 0; 1356 #ifdef IEEE80211_SUPPORT_MESH 1357 } 1358 #endif 1359 /* 1360 * Honor driver DATAPAD requirement. 1361 */ 1362 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1363 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1364 else 1365 hdrspace = hdrsize; 1366 1367 if (__predict_true((m->m_flags & M_FF) == 0)) { 1368 /* 1369 * Normal frame. 1370 */ 1371 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1372 if (m == NULL) { 1373 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1374 goto bad; 1375 } 1376 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1377 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1378 llc = mtod(m, struct llc *); 1379 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1380 llc->llc_control = LLC_UI; 1381 llc->llc_snap.org_code[0] = 0; 1382 llc->llc_snap.org_code[1] = 0; 1383 llc->llc_snap.org_code[2] = 0; 1384 llc->llc_snap.ether_type = eh.ether_type; 1385 } else { 1386 #ifdef IEEE80211_SUPPORT_SUPERG 1387 /* 1388 * Aggregated frame. Check if it's for AMSDU or FF. 1389 * 1390 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented 1391 * anywhere for some reason. But, since 11n requires 1392 * AMSDU RX, we can just assume "11n" == "AMSDU". 1393 */ 1394 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__); 1395 if (ieee80211_amsdu_tx_ok(ni)) { 1396 m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key); 1397 is_amsdu = 1; 1398 } else { 1399 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1400 } 1401 if (m == NULL) 1402 #endif 1403 goto bad; 1404 } 1405 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1406 1407 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1408 if (m == NULL) { 1409 vap->iv_stats.is_tx_nobuf++; 1410 goto bad; 1411 } 1412 wh = mtod(m, struct ieee80211_frame *); 1413 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1414 *(uint16_t *)wh->i_dur = 0; 1415 qos = NULL; /* NB: quiet compiler */ 1416 if (is4addr) { 1417 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1418 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1419 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1420 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1421 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1422 } else switch (vap->iv_opmode) { 1423 case IEEE80211_M_STA: 1424 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1425 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1426 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1427 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1428 break; 1429 case IEEE80211_M_IBSS: 1430 case IEEE80211_M_AHDEMO: 1431 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1432 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1433 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1434 /* 1435 * NB: always use the bssid from iv_bss as the 1436 * neighbor's may be stale after an ibss merge 1437 */ 1438 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1439 break; 1440 case IEEE80211_M_HOSTAP: 1441 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1442 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1443 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1444 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1445 break; 1446 #ifdef IEEE80211_SUPPORT_MESH 1447 case IEEE80211_M_MBSS: 1448 /* NB: offset by hdrspace to deal with DATAPAD */ 1449 mc = (struct ieee80211_meshcntl_ae10 *) 1450 (mtod(m, uint8_t *) + hdrspace); 1451 wh->i_fc[1] = dir; 1452 switch (meshae) { 1453 case IEEE80211_MESH_AE_00: /* no proxy */ 1454 mc->mc_flags = 0; 1455 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1456 IEEE80211_ADDR_COPY(wh->i_addr1, 1457 ni->ni_macaddr); 1458 IEEE80211_ADDR_COPY(wh->i_addr2, 1459 vap->iv_myaddr); 1460 IEEE80211_ADDR_COPY(wh->i_addr3, 1461 eh.ether_dhost); 1462 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1463 eh.ether_shost); 1464 qos =((struct ieee80211_qosframe_addr4 *) 1465 wh)->i_qos; 1466 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1467 /* mcast */ 1468 IEEE80211_ADDR_COPY(wh->i_addr1, 1469 eh.ether_dhost); 1470 IEEE80211_ADDR_COPY(wh->i_addr2, 1471 vap->iv_myaddr); 1472 IEEE80211_ADDR_COPY(wh->i_addr3, 1473 eh.ether_shost); 1474 qos = ((struct ieee80211_qosframe *) 1475 wh)->i_qos; 1476 } 1477 break; 1478 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1479 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1480 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1481 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1482 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1483 mc->mc_flags = 1; 1484 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1485 eh.ether_shost); 1486 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1487 break; 1488 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1489 KASSERT(rt != NULL, ("route is NULL")); 1490 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1491 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1492 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1493 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1494 mc->mc_flags = IEEE80211_MESH_AE_10; 1495 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1496 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1497 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1498 break; 1499 default: 1500 KASSERT(0, ("meshae %d", meshae)); 1501 break; 1502 } 1503 mc->mc_ttl = ms->ms_ttl; 1504 ms->ms_seq++; 1505 le32enc(mc->mc_seq, ms->ms_seq); 1506 break; 1507 #endif 1508 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1509 default: 1510 goto bad; 1511 } 1512 if (m->m_flags & M_MORE_DATA) 1513 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1514 if (addqos) { 1515 int ac, tid; 1516 1517 if (is4addr) { 1518 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1519 /* NB: mesh case handled earlier */ 1520 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1521 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1522 ac = M_WME_GETAC(m); 1523 /* map from access class/queue to 11e header priorty value */ 1524 tid = WME_AC_TO_TID(ac); 1525 qos[0] = tid & IEEE80211_QOS_TID; 1526 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1527 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1528 #ifdef IEEE80211_SUPPORT_MESH 1529 if (vap->iv_opmode == IEEE80211_M_MBSS) 1530 qos[1] = IEEE80211_QOS_MC; 1531 else 1532 #endif 1533 qos[1] = 0; 1534 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1535 1536 /* 1537 * If this is an A-MSDU then ensure we set the 1538 * relevant field. 1539 */ 1540 if (is_amsdu) 1541 qos[0] |= IEEE80211_QOS_AMSDU; 1542 1543 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1544 /* 1545 * NB: don't assign a sequence # to potential 1546 * aggregates; we expect this happens at the 1547 * point the frame comes off any aggregation q 1548 * as otherwise we may introduce holes in the 1549 * BA sequence space and/or make window accouting 1550 * more difficult. 1551 * 1552 * XXX may want to control this with a driver 1553 * capability; this may also change when we pull 1554 * aggregation up into net80211 1555 */ 1556 seqno = ni->ni_txseqs[tid]++; 1557 *(uint16_t *)wh->i_seq = 1558 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1559 M_SEQNO_SET(m, seqno); 1560 } 1561 } else { 1562 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1563 *(uint16_t *)wh->i_seq = 1564 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1565 M_SEQNO_SET(m, seqno); 1566 1567 /* 1568 * XXX TODO: we shouldn't allow EAPOL, etc that would 1569 * be forced to be non-QoS traffic to be A-MSDU encapsulated. 1570 */ 1571 if (is_amsdu) 1572 printf("%s: XXX ERROR: is_amsdu set; not QoS!\n", 1573 __func__); 1574 } 1575 1576 1577 /* check if xmit fragmentation is required */ 1578 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1579 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1580 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1581 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1582 if (key != NULL) { 1583 /* 1584 * IEEE 802.1X: send EAPOL frames always in the clear. 1585 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1586 */ 1587 if ((m->m_flags & M_EAPOL) == 0 || 1588 ((vap->iv_flags & IEEE80211_F_WPA) && 1589 (vap->iv_opmode == IEEE80211_M_STA ? 1590 !IEEE80211_KEY_UNDEFINED(key) : 1591 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1592 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1593 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1594 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1595 eh.ether_dhost, 1596 "%s", "enmic failed, discard frame"); 1597 vap->iv_stats.is_crypto_enmicfail++; 1598 goto bad; 1599 } 1600 } 1601 } 1602 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1603 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1604 goto bad; 1605 1606 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1607 1608 IEEE80211_NODE_STAT(ni, tx_data); 1609 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1610 IEEE80211_NODE_STAT(ni, tx_mcast); 1611 m->m_flags |= M_MCAST; 1612 } else 1613 IEEE80211_NODE_STAT(ni, tx_ucast); 1614 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1615 1616 return m; 1617 bad: 1618 if (m != NULL) 1619 m_freem(m); 1620 return NULL; 1621 #undef WH4 1622 #undef MC01 1623 } 1624 1625 void 1626 ieee80211_free_mbuf(struct mbuf *m) 1627 { 1628 struct mbuf *next; 1629 1630 if (m == NULL) 1631 return; 1632 1633 do { 1634 next = m->m_nextpkt; 1635 m->m_nextpkt = NULL; 1636 m_freem(m); 1637 } while ((m = next) != NULL); 1638 } 1639 1640 /* 1641 * Fragment the frame according to the specified mtu. 1642 * The size of the 802.11 header (w/o padding) is provided 1643 * so we don't need to recalculate it. We create a new 1644 * mbuf for each fragment and chain it through m_nextpkt; 1645 * we might be able to optimize this by reusing the original 1646 * packet's mbufs but that is significantly more complicated. 1647 */ 1648 static int 1649 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1650 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1651 { 1652 struct ieee80211com *ic = vap->iv_ic; 1653 struct ieee80211_frame *wh, *whf; 1654 struct mbuf *m, *prev; 1655 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1656 u_int hdrspace; 1657 1658 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1659 KASSERT(m0->m_pkthdr.len > mtu, 1660 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1661 1662 /* 1663 * Honor driver DATAPAD requirement. 1664 */ 1665 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1666 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1667 else 1668 hdrspace = hdrsize; 1669 1670 wh = mtod(m0, struct ieee80211_frame *); 1671 /* NB: mark the first frag; it will be propagated below */ 1672 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1673 totalhdrsize = hdrspace + ciphdrsize; 1674 fragno = 1; 1675 off = mtu - ciphdrsize; 1676 remainder = m0->m_pkthdr.len - off; 1677 prev = m0; 1678 do { 1679 fragsize = totalhdrsize + remainder; 1680 if (fragsize > mtu) 1681 fragsize = mtu; 1682 /* XXX fragsize can be >2048! */ 1683 KASSERT(fragsize < MCLBYTES, 1684 ("fragment size %u too big!", fragsize)); 1685 if (fragsize > MHLEN) 1686 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1687 else 1688 m = m_gethdr(M_NOWAIT, MT_DATA); 1689 if (m == NULL) 1690 goto bad; 1691 /* leave room to prepend any cipher header */ 1692 m_align(m, fragsize - ciphdrsize); 1693 1694 /* 1695 * Form the header in the fragment. Note that since 1696 * we mark the first fragment with the MORE_FRAG bit 1697 * it automatically is propagated to each fragment; we 1698 * need only clear it on the last fragment (done below). 1699 * NB: frag 1+ dont have Mesh Control field present. 1700 */ 1701 whf = mtod(m, struct ieee80211_frame *); 1702 memcpy(whf, wh, hdrsize); 1703 #ifdef IEEE80211_SUPPORT_MESH 1704 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1705 if (IEEE80211_IS_DSTODS(wh)) 1706 ((struct ieee80211_qosframe_addr4 *) 1707 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1708 else 1709 ((struct ieee80211_qosframe *) 1710 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1711 } 1712 #endif 1713 *(uint16_t *)&whf->i_seq[0] |= htole16( 1714 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1715 IEEE80211_SEQ_FRAG_SHIFT); 1716 fragno++; 1717 1718 payload = fragsize - totalhdrsize; 1719 /* NB: destination is known to be contiguous */ 1720 1721 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1722 m->m_len = hdrspace + payload; 1723 m->m_pkthdr.len = hdrspace + payload; 1724 m->m_flags |= M_FRAG; 1725 1726 /* chain up the fragment */ 1727 prev->m_nextpkt = m; 1728 prev = m; 1729 1730 /* deduct fragment just formed */ 1731 remainder -= payload; 1732 off += payload; 1733 } while (remainder != 0); 1734 1735 /* set the last fragment */ 1736 m->m_flags |= M_LASTFRAG; 1737 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1738 1739 /* strip first mbuf now that everything has been copied */ 1740 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1741 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1742 1743 vap->iv_stats.is_tx_fragframes++; 1744 vap->iv_stats.is_tx_frags += fragno-1; 1745 1746 return 1; 1747 bad: 1748 /* reclaim fragments but leave original frame for caller to free */ 1749 ieee80211_free_mbuf(m0->m_nextpkt); 1750 m0->m_nextpkt = NULL; 1751 return 0; 1752 } 1753 1754 /* 1755 * Add a supported rates element id to a frame. 1756 */ 1757 uint8_t * 1758 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1759 { 1760 int nrates; 1761 1762 *frm++ = IEEE80211_ELEMID_RATES; 1763 nrates = rs->rs_nrates; 1764 if (nrates > IEEE80211_RATE_SIZE) 1765 nrates = IEEE80211_RATE_SIZE; 1766 *frm++ = nrates; 1767 memcpy(frm, rs->rs_rates, nrates); 1768 return frm + nrates; 1769 } 1770 1771 /* 1772 * Add an extended supported rates element id to a frame. 1773 */ 1774 uint8_t * 1775 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1776 { 1777 /* 1778 * Add an extended supported rates element if operating in 11g mode. 1779 */ 1780 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1781 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1782 *frm++ = IEEE80211_ELEMID_XRATES; 1783 *frm++ = nrates; 1784 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1785 frm += nrates; 1786 } 1787 return frm; 1788 } 1789 1790 /* 1791 * Add an ssid element to a frame. 1792 */ 1793 uint8_t * 1794 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1795 { 1796 *frm++ = IEEE80211_ELEMID_SSID; 1797 *frm++ = len; 1798 memcpy(frm, ssid, len); 1799 return frm + len; 1800 } 1801 1802 /* 1803 * Add an erp element to a frame. 1804 */ 1805 static uint8_t * 1806 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1807 { 1808 uint8_t erp; 1809 1810 *frm++ = IEEE80211_ELEMID_ERP; 1811 *frm++ = 1; 1812 erp = 0; 1813 if (ic->ic_nonerpsta != 0) 1814 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1815 if (ic->ic_flags & IEEE80211_F_USEPROT) 1816 erp |= IEEE80211_ERP_USE_PROTECTION; 1817 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1818 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1819 *frm++ = erp; 1820 return frm; 1821 } 1822 1823 /* 1824 * Add a CFParams element to a frame. 1825 */ 1826 static uint8_t * 1827 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1828 { 1829 #define ADDSHORT(frm, v) do { \ 1830 le16enc(frm, v); \ 1831 frm += 2; \ 1832 } while (0) 1833 *frm++ = IEEE80211_ELEMID_CFPARMS; 1834 *frm++ = 6; 1835 *frm++ = 0; /* CFP count */ 1836 *frm++ = 2; /* CFP period */ 1837 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1838 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1839 return frm; 1840 #undef ADDSHORT 1841 } 1842 1843 static __inline uint8_t * 1844 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1845 { 1846 memcpy(frm, ie->ie_data, ie->ie_len); 1847 return frm + ie->ie_len; 1848 } 1849 1850 static __inline uint8_t * 1851 add_ie(uint8_t *frm, const uint8_t *ie) 1852 { 1853 memcpy(frm, ie, 2 + ie[1]); 1854 return frm + 2 + ie[1]; 1855 } 1856 1857 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1858 /* 1859 * Add a WME information element to a frame. 1860 */ 1861 uint8_t * 1862 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1863 { 1864 static const struct ieee80211_wme_info info = { 1865 .wme_id = IEEE80211_ELEMID_VENDOR, 1866 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1867 .wme_oui = { WME_OUI_BYTES }, 1868 .wme_type = WME_OUI_TYPE, 1869 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1870 .wme_version = WME_VERSION, 1871 .wme_info = 0, 1872 }; 1873 memcpy(frm, &info, sizeof(info)); 1874 return frm + sizeof(info); 1875 } 1876 1877 /* 1878 * Add a WME parameters element to a frame. 1879 */ 1880 static uint8_t * 1881 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1882 { 1883 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1884 #define ADDSHORT(frm, v) do { \ 1885 le16enc(frm, v); \ 1886 frm += 2; \ 1887 } while (0) 1888 /* NB: this works 'cuz a param has an info at the front */ 1889 static const struct ieee80211_wme_info param = { 1890 .wme_id = IEEE80211_ELEMID_VENDOR, 1891 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1892 .wme_oui = { WME_OUI_BYTES }, 1893 .wme_type = WME_OUI_TYPE, 1894 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1895 .wme_version = WME_VERSION, 1896 }; 1897 int i; 1898 1899 memcpy(frm, ¶m, sizeof(param)); 1900 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1901 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1902 *frm++ = 0; /* reserved field */ 1903 for (i = 0; i < WME_NUM_AC; i++) { 1904 const struct wmeParams *ac = 1905 &wme->wme_bssChanParams.cap_wmeParams[i]; 1906 *frm++ = SM(i, WME_PARAM_ACI) 1907 | SM(ac->wmep_acm, WME_PARAM_ACM) 1908 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1909 ; 1910 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1911 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1912 ; 1913 ADDSHORT(frm, ac->wmep_txopLimit); 1914 } 1915 return frm; 1916 #undef SM 1917 #undef ADDSHORT 1918 } 1919 #undef WME_OUI_BYTES 1920 1921 /* 1922 * Add an 11h Power Constraint element to a frame. 1923 */ 1924 static uint8_t * 1925 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1926 { 1927 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1928 /* XXX per-vap tx power limit? */ 1929 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1930 1931 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1932 frm[1] = 1; 1933 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1934 return frm + 3; 1935 } 1936 1937 /* 1938 * Add an 11h Power Capability element to a frame. 1939 */ 1940 static uint8_t * 1941 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1942 { 1943 frm[0] = IEEE80211_ELEMID_PWRCAP; 1944 frm[1] = 2; 1945 frm[2] = c->ic_minpower; 1946 frm[3] = c->ic_maxpower; 1947 return frm + 4; 1948 } 1949 1950 /* 1951 * Add an 11h Supported Channels element to a frame. 1952 */ 1953 static uint8_t * 1954 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1955 { 1956 static const int ielen = 26; 1957 1958 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1959 frm[1] = ielen; 1960 /* XXX not correct */ 1961 memcpy(frm+2, ic->ic_chan_avail, ielen); 1962 return frm + 2 + ielen; 1963 } 1964 1965 /* 1966 * Add an 11h Quiet time element to a frame. 1967 */ 1968 static uint8_t * 1969 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1970 { 1971 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1972 1973 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1974 quiet->len = 6; 1975 if (vap->iv_quiet_count_value == 1) 1976 vap->iv_quiet_count_value = vap->iv_quiet_count; 1977 else if (vap->iv_quiet_count_value > 1) 1978 vap->iv_quiet_count_value--; 1979 1980 if (vap->iv_quiet_count_value == 0) { 1981 /* value 0 is reserved as per 802.11h standerd */ 1982 vap->iv_quiet_count_value = 1; 1983 } 1984 1985 quiet->tbttcount = vap->iv_quiet_count_value; 1986 quiet->period = vap->iv_quiet_period; 1987 quiet->duration = htole16(vap->iv_quiet_duration); 1988 quiet->offset = htole16(vap->iv_quiet_offset); 1989 return frm + sizeof(*quiet); 1990 } 1991 1992 /* 1993 * Add an 11h Channel Switch Announcement element to a frame. 1994 * Note that we use the per-vap CSA count to adjust the global 1995 * counter so we can use this routine to form probe response 1996 * frames and get the current count. 1997 */ 1998 static uint8_t * 1999 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 2000 { 2001 struct ieee80211com *ic = vap->iv_ic; 2002 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 2003 2004 csa->csa_ie = IEEE80211_ELEMID_CSA; 2005 csa->csa_len = 3; 2006 csa->csa_mode = 1; /* XXX force quiet on channel */ 2007 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 2008 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 2009 return frm + sizeof(*csa); 2010 } 2011 2012 /* 2013 * Add an 11h country information element to a frame. 2014 */ 2015 static uint8_t * 2016 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 2017 { 2018 2019 if (ic->ic_countryie == NULL || 2020 ic->ic_countryie_chan != ic->ic_bsschan) { 2021 /* 2022 * Handle lazy construction of ie. This is done on 2023 * first use and after a channel change that requires 2024 * re-calculation. 2025 */ 2026 if (ic->ic_countryie != NULL) 2027 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 2028 ic->ic_countryie = ieee80211_alloc_countryie(ic); 2029 if (ic->ic_countryie == NULL) 2030 return frm; 2031 ic->ic_countryie_chan = ic->ic_bsschan; 2032 } 2033 return add_appie(frm, ic->ic_countryie); 2034 } 2035 2036 uint8_t * 2037 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 2038 { 2039 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 2040 return (add_ie(frm, vap->iv_wpa_ie)); 2041 else { 2042 /* XXX else complain? */ 2043 return (frm); 2044 } 2045 } 2046 2047 uint8_t * 2048 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2049 { 2050 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2051 return (add_ie(frm, vap->iv_rsn_ie)); 2052 else { 2053 /* XXX else complain? */ 2054 return (frm); 2055 } 2056 } 2057 2058 uint8_t * 2059 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2060 { 2061 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2062 *frm++ = IEEE80211_ELEMID_QOS; 2063 *frm++ = 1; 2064 *frm++ = 0; 2065 } 2066 2067 return (frm); 2068 } 2069 2070 /* 2071 * Send a probe request frame with the specified ssid 2072 * and any optional information element data. 2073 */ 2074 int 2075 ieee80211_send_probereq(struct ieee80211_node *ni, 2076 const uint8_t sa[IEEE80211_ADDR_LEN], 2077 const uint8_t da[IEEE80211_ADDR_LEN], 2078 const uint8_t bssid[IEEE80211_ADDR_LEN], 2079 const uint8_t *ssid, size_t ssidlen) 2080 { 2081 struct ieee80211vap *vap = ni->ni_vap; 2082 struct ieee80211com *ic = ni->ni_ic; 2083 const struct ieee80211_txparam *tp; 2084 struct ieee80211_bpf_params params; 2085 struct ieee80211_frame *wh; 2086 const struct ieee80211_rateset *rs; 2087 struct mbuf *m; 2088 uint8_t *frm; 2089 int ret; 2090 2091 if (vap->iv_state == IEEE80211_S_CAC) { 2092 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2093 "block %s frame in CAC state", "probe request"); 2094 vap->iv_stats.is_tx_badstate++; 2095 return EIO; /* XXX */ 2096 } 2097 2098 /* 2099 * Hold a reference on the node so it doesn't go away until after 2100 * the xmit is complete all the way in the driver. On error we 2101 * will remove our reference. 2102 */ 2103 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2104 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2105 __func__, __LINE__, 2106 ni, ether_sprintf(ni->ni_macaddr), 2107 ieee80211_node_refcnt(ni)+1); 2108 ieee80211_ref_node(ni); 2109 2110 /* 2111 * prreq frame format 2112 * [tlv] ssid 2113 * [tlv] supported rates 2114 * [tlv] RSN (optional) 2115 * [tlv] extended supported rates 2116 * [tlv] WPA (optional) 2117 * [tlv] user-specified ie's 2118 */ 2119 m = ieee80211_getmgtframe(&frm, 2120 ic->ic_headroom + sizeof(struct ieee80211_frame), 2121 2 + IEEE80211_NWID_LEN 2122 + 2 + IEEE80211_RATE_SIZE 2123 + sizeof(struct ieee80211_ie_wpa) 2124 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2125 + sizeof(struct ieee80211_ie_wpa) 2126 + (vap->iv_appie_probereq != NULL ? 2127 vap->iv_appie_probereq->ie_len : 0) 2128 ); 2129 if (m == NULL) { 2130 vap->iv_stats.is_tx_nobuf++; 2131 ieee80211_free_node(ni); 2132 return ENOMEM; 2133 } 2134 2135 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2136 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2137 frm = ieee80211_add_rates(frm, rs); 2138 frm = ieee80211_add_rsn(frm, vap); 2139 frm = ieee80211_add_xrates(frm, rs); 2140 frm = ieee80211_add_wpa(frm, vap); 2141 if (vap->iv_appie_probereq != NULL) 2142 frm = add_appie(frm, vap->iv_appie_probereq); 2143 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2144 2145 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2146 ("leading space %zd", M_LEADINGSPACE(m))); 2147 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2148 if (m == NULL) { 2149 /* NB: cannot happen */ 2150 ieee80211_free_node(ni); 2151 return ENOMEM; 2152 } 2153 2154 IEEE80211_TX_LOCK(ic); 2155 wh = mtod(m, struct ieee80211_frame *); 2156 ieee80211_send_setup(ni, m, 2157 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2158 IEEE80211_NONQOS_TID, sa, da, bssid); 2159 /* XXX power management? */ 2160 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2161 2162 M_WME_SETAC(m, WME_AC_BE); 2163 2164 IEEE80211_NODE_STAT(ni, tx_probereq); 2165 IEEE80211_NODE_STAT(ni, tx_mgmt); 2166 2167 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2168 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2169 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2170 ssidlen, ssid); 2171 2172 memset(¶ms, 0, sizeof(params)); 2173 params.ibp_pri = M_WME_GETAC(m); 2174 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2175 params.ibp_rate0 = tp->mgmtrate; 2176 if (IEEE80211_IS_MULTICAST(da)) { 2177 params.ibp_flags |= IEEE80211_BPF_NOACK; 2178 params.ibp_try0 = 1; 2179 } else 2180 params.ibp_try0 = tp->maxretry; 2181 params.ibp_power = ni->ni_txpower; 2182 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2183 IEEE80211_TX_UNLOCK(ic); 2184 return (ret); 2185 } 2186 2187 /* 2188 * Calculate capability information for mgt frames. 2189 */ 2190 uint16_t 2191 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2192 { 2193 struct ieee80211com *ic = vap->iv_ic; 2194 uint16_t capinfo; 2195 2196 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2197 2198 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2199 capinfo = IEEE80211_CAPINFO_ESS; 2200 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2201 capinfo = IEEE80211_CAPINFO_IBSS; 2202 else 2203 capinfo = 0; 2204 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2205 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2206 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2207 IEEE80211_IS_CHAN_2GHZ(chan)) 2208 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2209 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2210 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2211 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2212 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2213 return capinfo; 2214 } 2215 2216 /* 2217 * Send a management frame. The node is for the destination (or ic_bss 2218 * when in station mode). Nodes other than ic_bss have their reference 2219 * count bumped to reflect our use for an indeterminant time. 2220 */ 2221 int 2222 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2223 { 2224 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2225 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2226 struct ieee80211vap *vap = ni->ni_vap; 2227 struct ieee80211com *ic = ni->ni_ic; 2228 struct ieee80211_node *bss = vap->iv_bss; 2229 struct ieee80211_bpf_params params; 2230 struct mbuf *m; 2231 uint8_t *frm; 2232 uint16_t capinfo; 2233 int has_challenge, is_shared_key, ret, status; 2234 2235 KASSERT(ni != NULL, ("null node")); 2236 2237 /* 2238 * Hold a reference on the node so it doesn't go away until after 2239 * the xmit is complete all the way in the driver. On error we 2240 * will remove our reference. 2241 */ 2242 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2243 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2244 __func__, __LINE__, 2245 ni, ether_sprintf(ni->ni_macaddr), 2246 ieee80211_node_refcnt(ni)+1); 2247 ieee80211_ref_node(ni); 2248 2249 memset(¶ms, 0, sizeof(params)); 2250 switch (type) { 2251 2252 case IEEE80211_FC0_SUBTYPE_AUTH: 2253 status = arg >> 16; 2254 arg &= 0xffff; 2255 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2256 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2257 ni->ni_challenge != NULL); 2258 2259 /* 2260 * Deduce whether we're doing open authentication or 2261 * shared key authentication. We do the latter if 2262 * we're in the middle of a shared key authentication 2263 * handshake or if we're initiating an authentication 2264 * request and configured to use shared key. 2265 */ 2266 is_shared_key = has_challenge || 2267 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2268 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2269 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2270 2271 m = ieee80211_getmgtframe(&frm, 2272 ic->ic_headroom + sizeof(struct ieee80211_frame), 2273 3 * sizeof(uint16_t) 2274 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2275 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2276 ); 2277 if (m == NULL) 2278 senderr(ENOMEM, is_tx_nobuf); 2279 2280 ((uint16_t *)frm)[0] = 2281 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2282 : htole16(IEEE80211_AUTH_ALG_OPEN); 2283 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2284 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2285 2286 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2287 ((uint16_t *)frm)[3] = 2288 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2289 IEEE80211_ELEMID_CHALLENGE); 2290 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2291 IEEE80211_CHALLENGE_LEN); 2292 m->m_pkthdr.len = m->m_len = 2293 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2294 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2295 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2296 "request encrypt frame (%s)", __func__); 2297 /* mark frame for encryption */ 2298 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2299 } 2300 } else 2301 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2302 2303 /* XXX not right for shared key */ 2304 if (status == IEEE80211_STATUS_SUCCESS) 2305 IEEE80211_NODE_STAT(ni, tx_auth); 2306 else 2307 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2308 2309 if (vap->iv_opmode == IEEE80211_M_STA) 2310 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2311 (void *) vap->iv_state); 2312 break; 2313 2314 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2315 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2316 "send station deauthenticate (reason: %d (%s))", arg, 2317 ieee80211_reason_to_string(arg)); 2318 m = ieee80211_getmgtframe(&frm, 2319 ic->ic_headroom + sizeof(struct ieee80211_frame), 2320 sizeof(uint16_t)); 2321 if (m == NULL) 2322 senderr(ENOMEM, is_tx_nobuf); 2323 *(uint16_t *)frm = htole16(arg); /* reason */ 2324 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2325 2326 IEEE80211_NODE_STAT(ni, tx_deauth); 2327 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2328 2329 ieee80211_node_unauthorize(ni); /* port closed */ 2330 break; 2331 2332 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2333 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2334 /* 2335 * asreq frame format 2336 * [2] capability information 2337 * [2] listen interval 2338 * [6*] current AP address (reassoc only) 2339 * [tlv] ssid 2340 * [tlv] supported rates 2341 * [tlv] extended supported rates 2342 * [4] power capability (optional) 2343 * [28] supported channels (optional) 2344 * [tlv] HT capabilities 2345 * [tlv] WME (optional) 2346 * [tlv] Vendor OUI HT capabilities (optional) 2347 * [tlv] Atheros capabilities (if negotiated) 2348 * [tlv] AppIE's (optional) 2349 */ 2350 m = ieee80211_getmgtframe(&frm, 2351 ic->ic_headroom + sizeof(struct ieee80211_frame), 2352 sizeof(uint16_t) 2353 + sizeof(uint16_t) 2354 + IEEE80211_ADDR_LEN 2355 + 2 + IEEE80211_NWID_LEN 2356 + 2 + IEEE80211_RATE_SIZE 2357 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2358 + 4 2359 + 2 + 26 2360 + sizeof(struct ieee80211_wme_info) 2361 + sizeof(struct ieee80211_ie_htcap) 2362 + 4 + sizeof(struct ieee80211_ie_htcap) 2363 #ifdef IEEE80211_SUPPORT_SUPERG 2364 + sizeof(struct ieee80211_ath_ie) 2365 #endif 2366 + (vap->iv_appie_wpa != NULL ? 2367 vap->iv_appie_wpa->ie_len : 0) 2368 + (vap->iv_appie_assocreq != NULL ? 2369 vap->iv_appie_assocreq->ie_len : 0) 2370 ); 2371 if (m == NULL) 2372 senderr(ENOMEM, is_tx_nobuf); 2373 2374 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2375 ("wrong mode %u", vap->iv_opmode)); 2376 capinfo = IEEE80211_CAPINFO_ESS; 2377 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2378 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2379 /* 2380 * NB: Some 11a AP's reject the request when 2381 * short premable is set. 2382 */ 2383 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2384 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2385 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2386 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2387 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2388 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2389 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2390 (vap->iv_flags & IEEE80211_F_DOTH)) 2391 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2392 *(uint16_t *)frm = htole16(capinfo); 2393 frm += 2; 2394 2395 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2396 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2397 bss->ni_intval)); 2398 frm += 2; 2399 2400 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2401 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2402 frm += IEEE80211_ADDR_LEN; 2403 } 2404 2405 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2406 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2407 frm = ieee80211_add_rsn(frm, vap); 2408 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2409 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2410 frm = ieee80211_add_powercapability(frm, 2411 ic->ic_curchan); 2412 frm = ieee80211_add_supportedchannels(frm, ic); 2413 } 2414 2415 /* 2416 * Check the channel - we may be using an 11n NIC with an 2417 * 11n capable station, but we're configured to be an 11b 2418 * channel. 2419 */ 2420 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2421 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2422 ni->ni_ies.htcap_ie != NULL && 2423 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2424 frm = ieee80211_add_htcap(frm, ni); 2425 } 2426 frm = ieee80211_add_wpa(frm, vap); 2427 if ((ic->ic_flags & IEEE80211_F_WME) && 2428 ni->ni_ies.wme_ie != NULL) 2429 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2430 2431 /* 2432 * Same deal - only send HT info if we're on an 11n 2433 * capable channel. 2434 */ 2435 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2436 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2437 ni->ni_ies.htcap_ie != NULL && 2438 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2439 frm = ieee80211_add_htcap_vendor(frm, ni); 2440 } 2441 #ifdef IEEE80211_SUPPORT_SUPERG 2442 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2443 frm = ieee80211_add_ath(frm, 2444 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2445 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2446 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2447 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2448 } 2449 #endif /* IEEE80211_SUPPORT_SUPERG */ 2450 if (vap->iv_appie_assocreq != NULL) 2451 frm = add_appie(frm, vap->iv_appie_assocreq); 2452 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2453 2454 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2455 (void *) vap->iv_state); 2456 break; 2457 2458 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2459 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2460 /* 2461 * asresp frame format 2462 * [2] capability information 2463 * [2] status 2464 * [2] association ID 2465 * [tlv] supported rates 2466 * [tlv] extended supported rates 2467 * [tlv] HT capabilities (standard, if STA enabled) 2468 * [tlv] HT information (standard, if STA enabled) 2469 * [tlv] WME (if configured and STA enabled) 2470 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2471 * [tlv] HT information (vendor OUI, if STA enabled) 2472 * [tlv] Atheros capabilities (if STA enabled) 2473 * [tlv] AppIE's (optional) 2474 */ 2475 m = ieee80211_getmgtframe(&frm, 2476 ic->ic_headroom + sizeof(struct ieee80211_frame), 2477 sizeof(uint16_t) 2478 + sizeof(uint16_t) 2479 + sizeof(uint16_t) 2480 + 2 + IEEE80211_RATE_SIZE 2481 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2482 + sizeof(struct ieee80211_ie_htcap) + 4 2483 + sizeof(struct ieee80211_ie_htinfo) + 4 2484 + sizeof(struct ieee80211_wme_param) 2485 #ifdef IEEE80211_SUPPORT_SUPERG 2486 + sizeof(struct ieee80211_ath_ie) 2487 #endif 2488 + (vap->iv_appie_assocresp != NULL ? 2489 vap->iv_appie_assocresp->ie_len : 0) 2490 ); 2491 if (m == NULL) 2492 senderr(ENOMEM, is_tx_nobuf); 2493 2494 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2495 *(uint16_t *)frm = htole16(capinfo); 2496 frm += 2; 2497 2498 *(uint16_t *)frm = htole16(arg); /* status */ 2499 frm += 2; 2500 2501 if (arg == IEEE80211_STATUS_SUCCESS) { 2502 *(uint16_t *)frm = htole16(ni->ni_associd); 2503 IEEE80211_NODE_STAT(ni, tx_assoc); 2504 } else 2505 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2506 frm += 2; 2507 2508 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2509 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2510 /* NB: respond according to what we received */ 2511 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2512 frm = ieee80211_add_htcap(frm, ni); 2513 frm = ieee80211_add_htinfo(frm, ni); 2514 } 2515 if ((vap->iv_flags & IEEE80211_F_WME) && 2516 ni->ni_ies.wme_ie != NULL) 2517 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2518 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2519 frm = ieee80211_add_htcap_vendor(frm, ni); 2520 frm = ieee80211_add_htinfo_vendor(frm, ni); 2521 } 2522 #ifdef IEEE80211_SUPPORT_SUPERG 2523 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2524 frm = ieee80211_add_ath(frm, 2525 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2526 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2527 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2528 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2529 #endif /* IEEE80211_SUPPORT_SUPERG */ 2530 if (vap->iv_appie_assocresp != NULL) 2531 frm = add_appie(frm, vap->iv_appie_assocresp); 2532 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2533 break; 2534 2535 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2536 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2537 "send station disassociate (reason: %d (%s))", arg, 2538 ieee80211_reason_to_string(arg)); 2539 m = ieee80211_getmgtframe(&frm, 2540 ic->ic_headroom + sizeof(struct ieee80211_frame), 2541 sizeof(uint16_t)); 2542 if (m == NULL) 2543 senderr(ENOMEM, is_tx_nobuf); 2544 *(uint16_t *)frm = htole16(arg); /* reason */ 2545 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2546 2547 IEEE80211_NODE_STAT(ni, tx_disassoc); 2548 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2549 break; 2550 2551 default: 2552 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2553 "invalid mgmt frame type %u", type); 2554 senderr(EINVAL, is_tx_unknownmgt); 2555 /* NOTREACHED */ 2556 } 2557 2558 /* NB: force non-ProbeResp frames to the highest queue */ 2559 params.ibp_pri = WME_AC_VO; 2560 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2561 /* NB: we know all frames are unicast */ 2562 params.ibp_try0 = bss->ni_txparms->maxretry; 2563 params.ibp_power = bss->ni_txpower; 2564 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2565 bad: 2566 ieee80211_free_node(ni); 2567 return ret; 2568 #undef senderr 2569 #undef HTFLAGS 2570 } 2571 2572 /* 2573 * Return an mbuf with a probe response frame in it. 2574 * Space is left to prepend and 802.11 header at the 2575 * front but it's left to the caller to fill in. 2576 */ 2577 struct mbuf * 2578 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2579 { 2580 struct ieee80211vap *vap = bss->ni_vap; 2581 struct ieee80211com *ic = bss->ni_ic; 2582 const struct ieee80211_rateset *rs; 2583 struct mbuf *m; 2584 uint16_t capinfo; 2585 uint8_t *frm; 2586 2587 /* 2588 * probe response frame format 2589 * [8] time stamp 2590 * [2] beacon interval 2591 * [2] cabability information 2592 * [tlv] ssid 2593 * [tlv] supported rates 2594 * [tlv] parameter set (FH/DS) 2595 * [tlv] parameter set (IBSS) 2596 * [tlv] country (optional) 2597 * [3] power control (optional) 2598 * [5] channel switch announcement (CSA) (optional) 2599 * [tlv] extended rate phy (ERP) 2600 * [tlv] extended supported rates 2601 * [tlv] RSN (optional) 2602 * [tlv] HT capabilities 2603 * [tlv] HT information 2604 * [tlv] WPA (optional) 2605 * [tlv] WME (optional) 2606 * [tlv] Vendor OUI HT capabilities (optional) 2607 * [tlv] Vendor OUI HT information (optional) 2608 * [tlv] Atheros capabilities 2609 * [tlv] AppIE's (optional) 2610 * [tlv] Mesh ID (MBSS) 2611 * [tlv] Mesh Conf (MBSS) 2612 */ 2613 m = ieee80211_getmgtframe(&frm, 2614 ic->ic_headroom + sizeof(struct ieee80211_frame), 2615 8 2616 + sizeof(uint16_t) 2617 + sizeof(uint16_t) 2618 + 2 + IEEE80211_NWID_LEN 2619 + 2 + IEEE80211_RATE_SIZE 2620 + 7 /* max(7,3) */ 2621 + IEEE80211_COUNTRY_MAX_SIZE 2622 + 3 2623 + sizeof(struct ieee80211_csa_ie) 2624 + sizeof(struct ieee80211_quiet_ie) 2625 + 3 2626 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2627 + sizeof(struct ieee80211_ie_wpa) 2628 + sizeof(struct ieee80211_ie_htcap) 2629 + sizeof(struct ieee80211_ie_htinfo) 2630 + sizeof(struct ieee80211_ie_wpa) 2631 + sizeof(struct ieee80211_wme_param) 2632 + 4 + sizeof(struct ieee80211_ie_htcap) 2633 + 4 + sizeof(struct ieee80211_ie_htinfo) 2634 #ifdef IEEE80211_SUPPORT_SUPERG 2635 + sizeof(struct ieee80211_ath_ie) 2636 #endif 2637 #ifdef IEEE80211_SUPPORT_MESH 2638 + 2 + IEEE80211_MESHID_LEN 2639 + sizeof(struct ieee80211_meshconf_ie) 2640 #endif 2641 + (vap->iv_appie_proberesp != NULL ? 2642 vap->iv_appie_proberesp->ie_len : 0) 2643 ); 2644 if (m == NULL) { 2645 vap->iv_stats.is_tx_nobuf++; 2646 return NULL; 2647 } 2648 2649 memset(frm, 0, 8); /* timestamp should be filled later */ 2650 frm += 8; 2651 *(uint16_t *)frm = htole16(bss->ni_intval); 2652 frm += 2; 2653 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2654 *(uint16_t *)frm = htole16(capinfo); 2655 frm += 2; 2656 2657 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2658 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2659 frm = ieee80211_add_rates(frm, rs); 2660 2661 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2662 *frm++ = IEEE80211_ELEMID_FHPARMS; 2663 *frm++ = 5; 2664 *frm++ = bss->ni_fhdwell & 0x00ff; 2665 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2666 *frm++ = IEEE80211_FH_CHANSET( 2667 ieee80211_chan2ieee(ic, bss->ni_chan)); 2668 *frm++ = IEEE80211_FH_CHANPAT( 2669 ieee80211_chan2ieee(ic, bss->ni_chan)); 2670 *frm++ = bss->ni_fhindex; 2671 } else { 2672 *frm++ = IEEE80211_ELEMID_DSPARMS; 2673 *frm++ = 1; 2674 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2675 } 2676 2677 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2678 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2679 *frm++ = 2; 2680 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2681 } 2682 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2683 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2684 frm = ieee80211_add_countryie(frm, ic); 2685 if (vap->iv_flags & IEEE80211_F_DOTH) { 2686 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2687 frm = ieee80211_add_powerconstraint(frm, vap); 2688 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2689 frm = ieee80211_add_csa(frm, vap); 2690 } 2691 if (vap->iv_flags & IEEE80211_F_DOTH) { 2692 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2693 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2694 if (vap->iv_quiet) 2695 frm = ieee80211_add_quiet(frm, vap); 2696 } 2697 } 2698 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2699 frm = ieee80211_add_erp(frm, ic); 2700 frm = ieee80211_add_xrates(frm, rs); 2701 frm = ieee80211_add_rsn(frm, vap); 2702 /* 2703 * NB: legacy 11b clients do not get certain ie's. 2704 * The caller identifies such clients by passing 2705 * a token in legacy to us. Could expand this to be 2706 * any legacy client for stuff like HT ie's. 2707 */ 2708 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2709 legacy != IEEE80211_SEND_LEGACY_11B) { 2710 frm = ieee80211_add_htcap(frm, bss); 2711 frm = ieee80211_add_htinfo(frm, bss); 2712 } 2713 frm = ieee80211_add_wpa(frm, vap); 2714 if (vap->iv_flags & IEEE80211_F_WME) 2715 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2716 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2717 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2718 legacy != IEEE80211_SEND_LEGACY_11B) { 2719 frm = ieee80211_add_htcap_vendor(frm, bss); 2720 frm = ieee80211_add_htinfo_vendor(frm, bss); 2721 } 2722 #ifdef IEEE80211_SUPPORT_SUPERG 2723 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2724 legacy != IEEE80211_SEND_LEGACY_11B) 2725 frm = ieee80211_add_athcaps(frm, bss); 2726 #endif 2727 if (vap->iv_appie_proberesp != NULL) 2728 frm = add_appie(frm, vap->iv_appie_proberesp); 2729 #ifdef IEEE80211_SUPPORT_MESH 2730 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2731 frm = ieee80211_add_meshid(frm, vap); 2732 frm = ieee80211_add_meshconf(frm, vap); 2733 } 2734 #endif 2735 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2736 2737 return m; 2738 } 2739 2740 /* 2741 * Send a probe response frame to the specified mac address. 2742 * This does not go through the normal mgt frame api so we 2743 * can specify the destination address and re-use the bss node 2744 * for the sta reference. 2745 */ 2746 int 2747 ieee80211_send_proberesp(struct ieee80211vap *vap, 2748 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2749 { 2750 struct ieee80211_node *bss = vap->iv_bss; 2751 struct ieee80211com *ic = vap->iv_ic; 2752 struct ieee80211_frame *wh; 2753 struct mbuf *m; 2754 int ret; 2755 2756 if (vap->iv_state == IEEE80211_S_CAC) { 2757 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2758 "block %s frame in CAC state", "probe response"); 2759 vap->iv_stats.is_tx_badstate++; 2760 return EIO; /* XXX */ 2761 } 2762 2763 /* 2764 * Hold a reference on the node so it doesn't go away until after 2765 * the xmit is complete all the way in the driver. On error we 2766 * will remove our reference. 2767 */ 2768 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2769 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2770 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2771 ieee80211_node_refcnt(bss)+1); 2772 ieee80211_ref_node(bss); 2773 2774 m = ieee80211_alloc_proberesp(bss, legacy); 2775 if (m == NULL) { 2776 ieee80211_free_node(bss); 2777 return ENOMEM; 2778 } 2779 2780 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2781 KASSERT(m != NULL, ("no room for header")); 2782 2783 IEEE80211_TX_LOCK(ic); 2784 wh = mtod(m, struct ieee80211_frame *); 2785 ieee80211_send_setup(bss, m, 2786 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2787 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2788 /* XXX power management? */ 2789 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2790 2791 M_WME_SETAC(m, WME_AC_BE); 2792 2793 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2794 "send probe resp on channel %u to %s%s\n", 2795 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2796 legacy ? " <legacy>" : ""); 2797 IEEE80211_NODE_STAT(bss, tx_mgmt); 2798 2799 ret = ieee80211_raw_output(vap, bss, m, NULL); 2800 IEEE80211_TX_UNLOCK(ic); 2801 return (ret); 2802 } 2803 2804 /* 2805 * Allocate and build a RTS (Request To Send) control frame. 2806 */ 2807 struct mbuf * 2808 ieee80211_alloc_rts(struct ieee80211com *ic, 2809 const uint8_t ra[IEEE80211_ADDR_LEN], 2810 const uint8_t ta[IEEE80211_ADDR_LEN], 2811 uint16_t dur) 2812 { 2813 struct ieee80211_frame_rts *rts; 2814 struct mbuf *m; 2815 2816 /* XXX honor ic_headroom */ 2817 m = m_gethdr(M_NOWAIT, MT_DATA); 2818 if (m != NULL) { 2819 rts = mtod(m, struct ieee80211_frame_rts *); 2820 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2821 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2822 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2823 *(u_int16_t *)rts->i_dur = htole16(dur); 2824 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2825 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2826 2827 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2828 } 2829 return m; 2830 } 2831 2832 /* 2833 * Allocate and build a CTS (Clear To Send) control frame. 2834 */ 2835 struct mbuf * 2836 ieee80211_alloc_cts(struct ieee80211com *ic, 2837 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2838 { 2839 struct ieee80211_frame_cts *cts; 2840 struct mbuf *m; 2841 2842 /* XXX honor ic_headroom */ 2843 m = m_gethdr(M_NOWAIT, MT_DATA); 2844 if (m != NULL) { 2845 cts = mtod(m, struct ieee80211_frame_cts *); 2846 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2847 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2848 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2849 *(u_int16_t *)cts->i_dur = htole16(dur); 2850 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2851 2852 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2853 } 2854 return m; 2855 } 2856 2857 static void 2858 ieee80211_tx_mgt_timeout(void *arg) 2859 { 2860 struct ieee80211vap *vap = arg; 2861 2862 IEEE80211_LOCK(vap->iv_ic); 2863 if (vap->iv_state != IEEE80211_S_INIT && 2864 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2865 /* 2866 * NB: it's safe to specify a timeout as the reason here; 2867 * it'll only be used in the right state. 2868 */ 2869 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2870 IEEE80211_SCAN_FAIL_TIMEOUT); 2871 } 2872 IEEE80211_UNLOCK(vap->iv_ic); 2873 } 2874 2875 /* 2876 * This is the callback set on net80211-sourced transmitted 2877 * authentication request frames. 2878 * 2879 * This does a couple of things: 2880 * 2881 * + If the frame transmitted was a success, it schedules a future 2882 * event which will transition the interface to scan. 2883 * If a state transition _then_ occurs before that event occurs, 2884 * said state transition will cancel this callout. 2885 * 2886 * + If the frame transmit was a failure, it immediately schedules 2887 * the transition back to scan. 2888 */ 2889 static void 2890 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2891 { 2892 struct ieee80211vap *vap = ni->ni_vap; 2893 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2894 2895 /* 2896 * Frame transmit completed; arrange timer callback. If 2897 * transmit was successfully we wait for response. Otherwise 2898 * we arrange an immediate callback instead of doing the 2899 * callback directly since we don't know what state the driver 2900 * is in (e.g. what locks it is holding). This work should 2901 * not be too time-critical and not happen too often so the 2902 * added overhead is acceptable. 2903 * 2904 * XXX what happens if !acked but response shows up before callback? 2905 */ 2906 if (vap->iv_state == ostate) { 2907 callout_reset(&vap->iv_mgtsend, 2908 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2909 ieee80211_tx_mgt_timeout, vap); 2910 } 2911 } 2912 2913 static void 2914 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2915 struct ieee80211_node *ni) 2916 { 2917 struct ieee80211vap *vap = ni->ni_vap; 2918 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2919 struct ieee80211com *ic = ni->ni_ic; 2920 struct ieee80211_rateset *rs = &ni->ni_rates; 2921 uint16_t capinfo; 2922 2923 /* 2924 * beacon frame format 2925 * [8] time stamp 2926 * [2] beacon interval 2927 * [2] cabability information 2928 * [tlv] ssid 2929 * [tlv] supported rates 2930 * [3] parameter set (DS) 2931 * [8] CF parameter set (optional) 2932 * [tlv] parameter set (IBSS/TIM) 2933 * [tlv] country (optional) 2934 * [3] power control (optional) 2935 * [5] channel switch announcement (CSA) (optional) 2936 * [tlv] extended rate phy (ERP) 2937 * [tlv] extended supported rates 2938 * [tlv] RSN parameters 2939 * [tlv] HT capabilities 2940 * [tlv] HT information 2941 * XXX Vendor-specific OIDs (e.g. Atheros) 2942 * [tlv] WPA parameters 2943 * [tlv] WME parameters 2944 * [tlv] Vendor OUI HT capabilities (optional) 2945 * [tlv] Vendor OUI HT information (optional) 2946 * [tlv] Atheros capabilities (optional) 2947 * [tlv] TDMA parameters (optional) 2948 * [tlv] Mesh ID (MBSS) 2949 * [tlv] Mesh Conf (MBSS) 2950 * [tlv] application data (optional) 2951 */ 2952 2953 memset(bo, 0, sizeof(*bo)); 2954 2955 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2956 frm += 8; 2957 *(uint16_t *)frm = htole16(ni->ni_intval); 2958 frm += 2; 2959 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2960 bo->bo_caps = (uint16_t *)frm; 2961 *(uint16_t *)frm = htole16(capinfo); 2962 frm += 2; 2963 *frm++ = IEEE80211_ELEMID_SSID; 2964 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2965 *frm++ = ni->ni_esslen; 2966 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2967 frm += ni->ni_esslen; 2968 } else 2969 *frm++ = 0; 2970 frm = ieee80211_add_rates(frm, rs); 2971 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2972 *frm++ = IEEE80211_ELEMID_DSPARMS; 2973 *frm++ = 1; 2974 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2975 } 2976 if (ic->ic_flags & IEEE80211_F_PCF) { 2977 bo->bo_cfp = frm; 2978 frm = ieee80211_add_cfparms(frm, ic); 2979 } 2980 bo->bo_tim = frm; 2981 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2982 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2983 *frm++ = 2; 2984 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2985 bo->bo_tim_len = 0; 2986 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2987 vap->iv_opmode == IEEE80211_M_MBSS) { 2988 /* TIM IE is the same for Mesh and Hostap */ 2989 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2990 2991 tie->tim_ie = IEEE80211_ELEMID_TIM; 2992 tie->tim_len = 4; /* length */ 2993 tie->tim_count = 0; /* DTIM count */ 2994 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2995 tie->tim_bitctl = 0; /* bitmap control */ 2996 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2997 frm += sizeof(struct ieee80211_tim_ie); 2998 bo->bo_tim_len = 1; 2999 } 3000 bo->bo_tim_trailer = frm; 3001 if ((vap->iv_flags & IEEE80211_F_DOTH) || 3002 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 3003 frm = ieee80211_add_countryie(frm, ic); 3004 if (vap->iv_flags & IEEE80211_F_DOTH) { 3005 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 3006 frm = ieee80211_add_powerconstraint(frm, vap); 3007 bo->bo_csa = frm; 3008 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 3009 frm = ieee80211_add_csa(frm, vap); 3010 } else 3011 bo->bo_csa = frm; 3012 3013 if (vap->iv_flags & IEEE80211_F_DOTH) { 3014 bo->bo_quiet = frm; 3015 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3016 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 3017 if (vap->iv_quiet) 3018 frm = ieee80211_add_quiet(frm,vap); 3019 } 3020 } else 3021 bo->bo_quiet = frm; 3022 3023 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 3024 bo->bo_erp = frm; 3025 frm = ieee80211_add_erp(frm, ic); 3026 } 3027 frm = ieee80211_add_xrates(frm, rs); 3028 frm = ieee80211_add_rsn(frm, vap); 3029 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 3030 frm = ieee80211_add_htcap(frm, ni); 3031 bo->bo_htinfo = frm; 3032 frm = ieee80211_add_htinfo(frm, ni); 3033 } 3034 frm = ieee80211_add_wpa(frm, vap); 3035 if (vap->iv_flags & IEEE80211_F_WME) { 3036 bo->bo_wme = frm; 3037 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 3038 } 3039 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 3040 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 3041 frm = ieee80211_add_htcap_vendor(frm, ni); 3042 frm = ieee80211_add_htinfo_vendor(frm, ni); 3043 } 3044 #ifdef IEEE80211_SUPPORT_SUPERG 3045 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3046 bo->bo_ath = frm; 3047 frm = ieee80211_add_athcaps(frm, ni); 3048 } 3049 #endif 3050 #ifdef IEEE80211_SUPPORT_TDMA 3051 if (vap->iv_caps & IEEE80211_C_TDMA) { 3052 bo->bo_tdma = frm; 3053 frm = ieee80211_add_tdma(frm, vap); 3054 } 3055 #endif 3056 if (vap->iv_appie_beacon != NULL) { 3057 bo->bo_appie = frm; 3058 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3059 frm = add_appie(frm, vap->iv_appie_beacon); 3060 } 3061 #ifdef IEEE80211_SUPPORT_MESH 3062 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3063 frm = ieee80211_add_meshid(frm, vap); 3064 bo->bo_meshconf = frm; 3065 frm = ieee80211_add_meshconf(frm, vap); 3066 } 3067 #endif 3068 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3069 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3070 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3071 } 3072 3073 /* 3074 * Allocate a beacon frame and fillin the appropriate bits. 3075 */ 3076 struct mbuf * 3077 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3078 { 3079 struct ieee80211vap *vap = ni->ni_vap; 3080 struct ieee80211com *ic = ni->ni_ic; 3081 struct ifnet *ifp = vap->iv_ifp; 3082 struct ieee80211_frame *wh; 3083 struct mbuf *m; 3084 int pktlen; 3085 uint8_t *frm; 3086 3087 /* 3088 * beacon frame format 3089 * [8] time stamp 3090 * [2] beacon interval 3091 * [2] cabability information 3092 * [tlv] ssid 3093 * [tlv] supported rates 3094 * [3] parameter set (DS) 3095 * [8] CF parameter set (optional) 3096 * [tlv] parameter set (IBSS/TIM) 3097 * [tlv] country (optional) 3098 * [3] power control (optional) 3099 * [5] channel switch announcement (CSA) (optional) 3100 * [tlv] extended rate phy (ERP) 3101 * [tlv] extended supported rates 3102 * [tlv] RSN parameters 3103 * [tlv] HT capabilities 3104 * [tlv] HT information 3105 * [tlv] Vendor OUI HT capabilities (optional) 3106 * [tlv] Vendor OUI HT information (optional) 3107 * XXX Vendor-specific OIDs (e.g. Atheros) 3108 * [tlv] WPA parameters 3109 * [tlv] WME parameters 3110 * [tlv] TDMA parameters (optional) 3111 * [tlv] Mesh ID (MBSS) 3112 * [tlv] Mesh Conf (MBSS) 3113 * [tlv] application data (optional) 3114 * NB: we allocate the max space required for the TIM bitmap. 3115 * XXX how big is this? 3116 */ 3117 pktlen = 8 /* time stamp */ 3118 + sizeof(uint16_t) /* beacon interval */ 3119 + sizeof(uint16_t) /* capabilities */ 3120 + 2 + ni->ni_esslen /* ssid */ 3121 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3122 + 2 + 1 /* DS parameters */ 3123 + 2 + 6 /* CF parameters */ 3124 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3125 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3126 + 2 + 1 /* power control */ 3127 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3128 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3129 + 2 + 1 /* ERP */ 3130 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3131 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3132 2*sizeof(struct ieee80211_ie_wpa) : 0) 3133 /* XXX conditional? */ 3134 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3135 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3136 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3137 sizeof(struct ieee80211_wme_param) : 0) 3138 #ifdef IEEE80211_SUPPORT_SUPERG 3139 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3140 #endif 3141 #ifdef IEEE80211_SUPPORT_TDMA 3142 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3143 sizeof(struct ieee80211_tdma_param) : 0) 3144 #endif 3145 #ifdef IEEE80211_SUPPORT_MESH 3146 + 2 + ni->ni_meshidlen 3147 + sizeof(struct ieee80211_meshconf_ie) 3148 #endif 3149 + IEEE80211_MAX_APPIE 3150 ; 3151 m = ieee80211_getmgtframe(&frm, 3152 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3153 if (m == NULL) { 3154 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3155 "%s: cannot get buf; size %u\n", __func__, pktlen); 3156 vap->iv_stats.is_tx_nobuf++; 3157 return NULL; 3158 } 3159 ieee80211_beacon_construct(m, frm, ni); 3160 3161 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3162 KASSERT(m != NULL, ("no space for 802.11 header?")); 3163 wh = mtod(m, struct ieee80211_frame *); 3164 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3165 IEEE80211_FC0_SUBTYPE_BEACON; 3166 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3167 *(uint16_t *)wh->i_dur = 0; 3168 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3169 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3170 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3171 *(uint16_t *)wh->i_seq = 0; 3172 3173 return m; 3174 } 3175 3176 /* 3177 * Update the dynamic parts of a beacon frame based on the current state. 3178 */ 3179 int 3180 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3181 { 3182 struct ieee80211vap *vap = ni->ni_vap; 3183 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3184 struct ieee80211com *ic = ni->ni_ic; 3185 int len_changed = 0; 3186 uint16_t capinfo; 3187 struct ieee80211_frame *wh; 3188 ieee80211_seq seqno; 3189 3190 IEEE80211_LOCK(ic); 3191 /* 3192 * Handle 11h channel change when we've reached the count. 3193 * We must recalculate the beacon frame contents to account 3194 * for the new channel. Note we do this only for the first 3195 * vap that reaches this point; subsequent vaps just update 3196 * their beacon state to reflect the recalculated channel. 3197 */ 3198 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3199 vap->iv_csa_count == ic->ic_csa_count) { 3200 vap->iv_csa_count = 0; 3201 /* 3202 * Effect channel change before reconstructing the beacon 3203 * frame contents as many places reference ni_chan. 3204 */ 3205 if (ic->ic_csa_newchan != NULL) 3206 ieee80211_csa_completeswitch(ic); 3207 /* 3208 * NB: ieee80211_beacon_construct clears all pending 3209 * updates in bo_flags so we don't need to explicitly 3210 * clear IEEE80211_BEACON_CSA. 3211 */ 3212 ieee80211_beacon_construct(m, 3213 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3214 3215 /* XXX do WME aggressive mode processing? */ 3216 IEEE80211_UNLOCK(ic); 3217 return 1; /* just assume length changed */ 3218 } 3219 3220 wh = mtod(m, struct ieee80211_frame *); 3221 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3222 *(uint16_t *)&wh->i_seq[0] = 3223 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3224 M_SEQNO_SET(m, seqno); 3225 3226 /* XXX faster to recalculate entirely or just changes? */ 3227 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3228 *bo->bo_caps = htole16(capinfo); 3229 3230 if (vap->iv_flags & IEEE80211_F_WME) { 3231 struct ieee80211_wme_state *wme = &ic->ic_wme; 3232 3233 /* 3234 * Check for aggressive mode change. When there is 3235 * significant high priority traffic in the BSS 3236 * throttle back BE traffic by using conservative 3237 * parameters. Otherwise BE uses aggressive params 3238 * to optimize performance of legacy/non-QoS traffic. 3239 */ 3240 if (wme->wme_flags & WME_F_AGGRMODE) { 3241 if (wme->wme_hipri_traffic > 3242 wme->wme_hipri_switch_thresh) { 3243 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3244 "%s: traffic %u, disable aggressive mode\n", 3245 __func__, wme->wme_hipri_traffic); 3246 wme->wme_flags &= ~WME_F_AGGRMODE; 3247 ieee80211_wme_updateparams_locked(vap); 3248 wme->wme_hipri_traffic = 3249 wme->wme_hipri_switch_hysteresis; 3250 } else 3251 wme->wme_hipri_traffic = 0; 3252 } else { 3253 if (wme->wme_hipri_traffic <= 3254 wme->wme_hipri_switch_thresh) { 3255 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3256 "%s: traffic %u, enable aggressive mode\n", 3257 __func__, wme->wme_hipri_traffic); 3258 wme->wme_flags |= WME_F_AGGRMODE; 3259 ieee80211_wme_updateparams_locked(vap); 3260 wme->wme_hipri_traffic = 0; 3261 } else 3262 wme->wme_hipri_traffic = 3263 wme->wme_hipri_switch_hysteresis; 3264 } 3265 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3266 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3267 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3268 } 3269 } 3270 3271 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3272 ieee80211_ht_update_beacon(vap, bo); 3273 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3274 } 3275 #ifdef IEEE80211_SUPPORT_TDMA 3276 if (vap->iv_caps & IEEE80211_C_TDMA) { 3277 /* 3278 * NB: the beacon is potentially updated every TBTT. 3279 */ 3280 ieee80211_tdma_update_beacon(vap, bo); 3281 } 3282 #endif 3283 #ifdef IEEE80211_SUPPORT_MESH 3284 if (vap->iv_opmode == IEEE80211_M_MBSS) 3285 ieee80211_mesh_update_beacon(vap, bo); 3286 #endif 3287 3288 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3289 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3290 struct ieee80211_tim_ie *tie = 3291 (struct ieee80211_tim_ie *) bo->bo_tim; 3292 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3293 u_int timlen, timoff, i; 3294 /* 3295 * ATIM/DTIM needs updating. If it fits in the 3296 * current space allocated then just copy in the 3297 * new bits. Otherwise we need to move any trailing 3298 * data to make room. Note that we know there is 3299 * contiguous space because ieee80211_beacon_allocate 3300 * insures there is space in the mbuf to write a 3301 * maximal-size virtual bitmap (based on iv_max_aid). 3302 */ 3303 /* 3304 * Calculate the bitmap size and offset, copy any 3305 * trailer out of the way, and then copy in the 3306 * new bitmap and update the information element. 3307 * Note that the tim bitmap must contain at least 3308 * one byte and any offset must be even. 3309 */ 3310 if (vap->iv_ps_pending != 0) { 3311 timoff = 128; /* impossibly large */ 3312 for (i = 0; i < vap->iv_tim_len; i++) 3313 if (vap->iv_tim_bitmap[i]) { 3314 timoff = i &~ 1; 3315 break; 3316 } 3317 KASSERT(timoff != 128, ("tim bitmap empty!")); 3318 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3319 if (vap->iv_tim_bitmap[i]) 3320 break; 3321 timlen = 1 + (i - timoff); 3322 } else { 3323 timoff = 0; 3324 timlen = 1; 3325 } 3326 if (timlen != bo->bo_tim_len) { 3327 /* copy up/down trailer */ 3328 int adjust = tie->tim_bitmap+timlen 3329 - bo->bo_tim_trailer; 3330 ovbcopy(bo->bo_tim_trailer, 3331 bo->bo_tim_trailer+adjust, 3332 bo->bo_tim_trailer_len); 3333 bo->bo_tim_trailer += adjust; 3334 bo->bo_erp += adjust; 3335 bo->bo_htinfo += adjust; 3336 #ifdef IEEE80211_SUPPORT_SUPERG 3337 bo->bo_ath += adjust; 3338 #endif 3339 #ifdef IEEE80211_SUPPORT_TDMA 3340 bo->bo_tdma += adjust; 3341 #endif 3342 #ifdef IEEE80211_SUPPORT_MESH 3343 bo->bo_meshconf += adjust; 3344 #endif 3345 bo->bo_appie += adjust; 3346 bo->bo_wme += adjust; 3347 bo->bo_csa += adjust; 3348 bo->bo_quiet += adjust; 3349 bo->bo_tim_len = timlen; 3350 3351 /* update information element */ 3352 tie->tim_len = 3 + timlen; 3353 tie->tim_bitctl = timoff; 3354 len_changed = 1; 3355 } 3356 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3357 bo->bo_tim_len); 3358 3359 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3360 3361 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3362 "%s: TIM updated, pending %u, off %u, len %u\n", 3363 __func__, vap->iv_ps_pending, timoff, timlen); 3364 } 3365 /* count down DTIM period */ 3366 if (tie->tim_count == 0) 3367 tie->tim_count = tie->tim_period - 1; 3368 else 3369 tie->tim_count--; 3370 /* update state for buffered multicast frames on DTIM */ 3371 if (mcast && tie->tim_count == 0) 3372 tie->tim_bitctl |= 1; 3373 else 3374 tie->tim_bitctl &= ~1; 3375 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3376 struct ieee80211_csa_ie *csa = 3377 (struct ieee80211_csa_ie *) bo->bo_csa; 3378 3379 /* 3380 * Insert or update CSA ie. If we're just starting 3381 * to count down to the channel switch then we need 3382 * to insert the CSA ie. Otherwise we just need to 3383 * drop the count. The actual change happens above 3384 * when the vap's count reaches the target count. 3385 */ 3386 if (vap->iv_csa_count == 0) { 3387 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3388 bo->bo_erp += sizeof(*csa); 3389 bo->bo_htinfo += sizeof(*csa); 3390 bo->bo_wme += sizeof(*csa); 3391 #ifdef IEEE80211_SUPPORT_SUPERG 3392 bo->bo_ath += sizeof(*csa); 3393 #endif 3394 #ifdef IEEE80211_SUPPORT_TDMA 3395 bo->bo_tdma += sizeof(*csa); 3396 #endif 3397 #ifdef IEEE80211_SUPPORT_MESH 3398 bo->bo_meshconf += sizeof(*csa); 3399 #endif 3400 bo->bo_appie += sizeof(*csa); 3401 bo->bo_csa_trailer_len += sizeof(*csa); 3402 bo->bo_quiet += sizeof(*csa); 3403 bo->bo_tim_trailer_len += sizeof(*csa); 3404 m->m_len += sizeof(*csa); 3405 m->m_pkthdr.len += sizeof(*csa); 3406 3407 ieee80211_add_csa(bo->bo_csa, vap); 3408 } else 3409 csa->csa_count--; 3410 vap->iv_csa_count++; 3411 /* NB: don't clear IEEE80211_BEACON_CSA */ 3412 } 3413 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3414 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3415 if (vap->iv_quiet) 3416 ieee80211_add_quiet(bo->bo_quiet, vap); 3417 } 3418 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3419 /* 3420 * ERP element needs updating. 3421 */ 3422 (void) ieee80211_add_erp(bo->bo_erp, ic); 3423 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3424 } 3425 #ifdef IEEE80211_SUPPORT_SUPERG 3426 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3427 ieee80211_add_athcaps(bo->bo_ath, ni); 3428 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3429 } 3430 #endif 3431 } 3432 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3433 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3434 int aielen; 3435 uint8_t *frm; 3436 3437 aielen = 0; 3438 if (aie != NULL) 3439 aielen += aie->ie_len; 3440 if (aielen != bo->bo_appie_len) { 3441 /* copy up/down trailer */ 3442 int adjust = aielen - bo->bo_appie_len; 3443 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3444 bo->bo_tim_trailer_len); 3445 bo->bo_tim_trailer += adjust; 3446 bo->bo_appie += adjust; 3447 bo->bo_appie_len = aielen; 3448 3449 len_changed = 1; 3450 } 3451 frm = bo->bo_appie; 3452 if (aie != NULL) 3453 frm = add_appie(frm, aie); 3454 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3455 } 3456 IEEE80211_UNLOCK(ic); 3457 3458 return len_changed; 3459 } 3460 3461 /* 3462 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3463 * tunnel encapsulation. The frame is assumed to have an Ethernet 3464 * header at the front that must be stripped before prepending the 3465 * LLC followed by the Ethernet header passed in (with an Ethernet 3466 * type that specifies the payload size). 3467 */ 3468 struct mbuf * 3469 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3470 const struct ether_header *eh) 3471 { 3472 struct llc *llc; 3473 uint16_t payload; 3474 3475 /* XXX optimize by combining m_adj+M_PREPEND */ 3476 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3477 llc = mtod(m, struct llc *); 3478 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3479 llc->llc_control = LLC_UI; 3480 llc->llc_snap.org_code[0] = 0; 3481 llc->llc_snap.org_code[1] = 0; 3482 llc->llc_snap.org_code[2] = 0; 3483 llc->llc_snap.ether_type = eh->ether_type; 3484 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3485 3486 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3487 if (m == NULL) { /* XXX cannot happen */ 3488 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3489 "%s: no space for ether_header\n", __func__); 3490 vap->iv_stats.is_tx_nobuf++; 3491 return NULL; 3492 } 3493 ETHER_HEADER_COPY(mtod(m, void *), eh); 3494 mtod(m, struct ether_header *)->ether_type = htons(payload); 3495 return m; 3496 } 3497 3498 /* 3499 * Complete an mbuf transmission. 3500 * 3501 * For now, this simply processes a completed frame after the 3502 * driver has completed it's transmission and/or retransmission. 3503 * It assumes the frame is an 802.11 encapsulated frame. 3504 * 3505 * Later on it will grow to become the exit path for a given frame 3506 * from the driver and, depending upon how it's been encapsulated 3507 * and already transmitted, it may end up doing A-MPDU retransmission, 3508 * power save requeuing, etc. 3509 * 3510 * In order for the above to work, the driver entry point to this 3511 * must not hold any driver locks. Thus, the driver needs to delay 3512 * any actual mbuf completion until it can release said locks. 3513 * 3514 * This frees the mbuf and if the mbuf has a node reference, 3515 * the node reference will be freed. 3516 */ 3517 void 3518 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3519 { 3520 3521 if (ni != NULL) { 3522 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3523 3524 if (status == 0) { 3525 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3526 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3527 if (m->m_flags & M_MCAST) 3528 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3529 } else 3530 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3531 if (m->m_flags & M_TXCB) 3532 ieee80211_process_callback(ni, m, status); 3533 ieee80211_free_node(ni); 3534 } 3535 m_freem(m); 3536 } 3537