1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_llc.h> 46 #include <net/if_media.h> 47 #include <net/if_vlan_var.h> 48 49 #include <net80211/ieee80211_var.h> 50 #include <net80211/ieee80211_regdomain.h> 51 #ifdef IEEE80211_SUPPORT_SUPERG 52 #include <net80211/ieee80211_superg.h> 53 #endif 54 #ifdef IEEE80211_SUPPORT_TDMA 55 #include <net80211/ieee80211_tdma.h> 56 #endif 57 #include <net80211/ieee80211_wds.h> 58 #include <net80211/ieee80211_mesh.h> 59 60 #if defined(INET) || defined(INET6) 61 #include <netinet/in.h> 62 #endif 63 64 #ifdef INET 65 #include <netinet/if_ether.h> 66 #include <netinet/in_systm.h> 67 #include <netinet/ip.h> 68 #endif 69 #ifdef INET6 70 #include <netinet/ip6.h> 71 #endif 72 73 #include <security/mac/mac_framework.h> 74 75 #define ETHER_HEADER_COPY(dst, src) \ 76 memcpy(dst, src, sizeof(struct ether_header)) 77 78 /* unalligned little endian access */ 79 #define LE_WRITE_2(p, v) do { \ 80 ((uint8_t *)(p))[0] = (v) & 0xff; \ 81 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 82 } while (0) 83 #define LE_WRITE_4(p, v) do { \ 84 ((uint8_t *)(p))[0] = (v) & 0xff; \ 85 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 86 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 87 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 88 } while (0) 89 90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 91 u_int hdrsize, u_int ciphdrsize, u_int mtu); 92 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 93 94 #ifdef IEEE80211_DEBUG 95 /* 96 * Decide if an outbound management frame should be 97 * printed when debugging is enabled. This filters some 98 * of the less interesting frames that come frequently 99 * (e.g. beacons). 100 */ 101 static __inline int 102 doprint(struct ieee80211vap *vap, int subtype) 103 { 104 switch (subtype) { 105 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 106 return (vap->iv_opmode == IEEE80211_M_IBSS); 107 } 108 return 1; 109 } 110 #endif 111 112 /* 113 * Send the given mbuf through the given vap. 114 * 115 * This consumes the mbuf regardless of whether the transmit 116 * was successful or not. 117 * 118 * This does none of the initial checks that ieee80211_start() 119 * does (eg CAC timeout, interface wakeup) - the caller must 120 * do this first. 121 */ 122 static int 123 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 124 { 125 #define IS_DWDS(vap) \ 126 (vap->iv_opmode == IEEE80211_M_WDS && \ 127 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 128 struct ieee80211com *ic = vap->iv_ic; 129 struct ifnet *ifp = vap->iv_ifp; 130 struct ieee80211_node *ni; 131 struct ether_header *eh; 132 int error; 133 134 /* 135 * Cancel any background scan. 136 */ 137 if (ic->ic_flags & IEEE80211_F_SCAN) 138 ieee80211_cancel_anyscan(vap); 139 /* 140 * Find the node for the destination so we can do 141 * things like power save and fast frames aggregation. 142 * 143 * NB: past this point various code assumes the first 144 * mbuf has the 802.3 header present (and contiguous). 145 */ 146 ni = NULL; 147 if (m->m_len < sizeof(struct ether_header) && 148 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 149 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 150 "discard frame, %s\n", "m_pullup failed"); 151 vap->iv_stats.is_tx_nobuf++; /* XXX */ 152 ifp->if_oerrors++; 153 return (ENOBUFS); 154 } 155 eh = mtod(m, struct ether_header *); 156 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 157 if (IS_DWDS(vap)) { 158 /* 159 * Only unicast frames from the above go out 160 * DWDS vaps; multicast frames are handled by 161 * dispatching the frame as it comes through 162 * the AP vap (see below). 163 */ 164 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 165 eh->ether_dhost, "mcast", "%s", "on DWDS"); 166 vap->iv_stats.is_dwds_mcast++; 167 m_freem(m); 168 /* XXX better status? */ 169 return (ENOBUFS); 170 } 171 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 172 /* 173 * Spam DWDS vap's w/ multicast traffic. 174 */ 175 /* XXX only if dwds in use? */ 176 ieee80211_dwds_mcast(vap, m); 177 } 178 } 179 #ifdef IEEE80211_SUPPORT_MESH 180 if (vap->iv_opmode != IEEE80211_M_MBSS) { 181 #endif 182 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 183 if (ni == NULL) { 184 /* NB: ieee80211_find_txnode does stat+msg */ 185 ifp->if_oerrors++; 186 m_freem(m); 187 /* XXX better status? */ 188 return (ENOBUFS); 189 } 190 if (ni->ni_associd == 0 && 191 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 192 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 193 eh->ether_dhost, NULL, 194 "sta not associated (type 0x%04x)", 195 htons(eh->ether_type)); 196 vap->iv_stats.is_tx_notassoc++; 197 ifp->if_oerrors++; 198 m_freem(m); 199 ieee80211_free_node(ni); 200 /* XXX better status? */ 201 return (ENOBUFS); 202 } 203 #ifdef IEEE80211_SUPPORT_MESH 204 } else { 205 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 206 /* 207 * Proxy station only if configured. 208 */ 209 if (!ieee80211_mesh_isproxyena(vap)) { 210 IEEE80211_DISCARD_MAC(vap, 211 IEEE80211_MSG_OUTPUT | 212 IEEE80211_MSG_MESH, 213 eh->ether_dhost, NULL, 214 "%s", "proxy not enabled"); 215 vap->iv_stats.is_mesh_notproxy++; 216 ifp->if_oerrors++; 217 m_freem(m); 218 /* XXX better status? */ 219 return (ENOBUFS); 220 } 221 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 222 "forward frame from DS SA(%6D), DA(%6D)\n", 223 eh->ether_shost, ":", 224 eh->ether_dhost, ":"); 225 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 226 } 227 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 228 if (ni == NULL) { 229 /* 230 * NB: ieee80211_mesh_discover holds/disposes 231 * frame (e.g. queueing on path discovery). 232 */ 233 ifp->if_oerrors++; 234 /* XXX better status? */ 235 return (ENOBUFS); 236 } 237 } 238 #endif 239 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 240 (m->m_flags & M_PWR_SAV) == 0) { 241 /* 242 * Station in power save mode; pass the frame 243 * to the 802.11 layer and continue. We'll get 244 * the frame back when the time is right. 245 * XXX lose WDS vap linkage? 246 */ 247 (void) ieee80211_pwrsave(ni, m); 248 ieee80211_free_node(ni); 249 /* XXX better status? */ 250 return (ENOBUFS); 251 } 252 /* calculate priority so drivers can find the tx queue */ 253 if (ieee80211_classify(ni, m)) { 254 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 255 eh->ether_dhost, NULL, 256 "%s", "classification failure"); 257 vap->iv_stats.is_tx_classify++; 258 ifp->if_oerrors++; 259 m_freem(m); 260 ieee80211_free_node(ni); 261 /* XXX better status? */ 262 return (ENOBUFS); 263 } 264 /* 265 * Stash the node pointer. Note that we do this after 266 * any call to ieee80211_dwds_mcast because that code 267 * uses any existing value for rcvif to identify the 268 * interface it (might have been) received on. 269 */ 270 m->m_pkthdr.rcvif = (void *)ni; 271 272 BPF_MTAP(ifp, m); /* 802.3 tx */ 273 274 275 /* 276 * Check if A-MPDU tx aggregation is setup or if we 277 * should try to enable it. The sta must be associated 278 * with HT and A-MPDU enabled for use. When the policy 279 * routine decides we should enable A-MPDU we issue an 280 * ADDBA request and wait for a reply. The frame being 281 * encapsulated will go out w/o using A-MPDU, or possibly 282 * it might be collected by the driver and held/retransmit. 283 * The default ic_ampdu_enable routine handles staggering 284 * ADDBA requests in case the receiver NAK's us or we are 285 * otherwise unable to establish a BA stream. 286 */ 287 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 288 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 289 (m->m_flags & M_EAPOL) == 0) { 290 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 291 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 292 293 ieee80211_txampdu_count_packet(tap); 294 if (IEEE80211_AMPDU_RUNNING(tap)) { 295 /* 296 * Operational, mark frame for aggregation. 297 * 298 * XXX do tx aggregation here 299 */ 300 m->m_flags |= M_AMPDU_MPDU; 301 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 302 ic->ic_ampdu_enable(ni, tap)) { 303 /* 304 * Not negotiated yet, request service. 305 */ 306 ieee80211_ampdu_request(ni, tap); 307 /* XXX hold frame for reply? */ 308 } 309 } 310 311 #ifdef IEEE80211_SUPPORT_SUPERG 312 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 313 m = ieee80211_ff_check(ni, m); 314 if (m == NULL) { 315 /* NB: any ni ref held on stageq */ 316 /* XXX better status? */ 317 return (ENOBUFS); 318 } 319 } 320 #endif /* IEEE80211_SUPPORT_SUPERG */ 321 322 /* 323 * Grab the TX lock - serialise the TX process from this 324 * point (where TX state is being checked/modified) 325 * through to driver queue. 326 */ 327 IEEE80211_TX_LOCK(ic); 328 329 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 330 /* 331 * Encapsulate the packet in prep for transmission. 332 */ 333 m = ieee80211_encap(vap, ni, m); 334 if (m == NULL) { 335 /* NB: stat+msg handled in ieee80211_encap */ 336 IEEE80211_TX_UNLOCK(ic); 337 ieee80211_free_node(ni); 338 /* XXX better status? */ 339 return (ENOBUFS); 340 } 341 } 342 error = ieee80211_parent_transmit(ic, m); 343 344 /* 345 * Unlock at this point - no need to hold it across 346 * ieee80211_free_node() (ie, the comlock) 347 */ 348 IEEE80211_TX_UNLOCK(ic); 349 if (error != 0) { 350 /* NB: IFQ_HANDOFF reclaims mbuf */ 351 ieee80211_free_node(ni); 352 } else { 353 ifp->if_opackets++; 354 } 355 ic->ic_lastdata = ticks; 356 357 return (0); 358 #undef IS_DWDS 359 } 360 361 /* 362 * Start method for vap's. All packets from the stack come 363 * through here. We handle common processing of the packets 364 * before dispatching them to the underlying device. 365 */ 366 void 367 ieee80211_start(struct ifnet *ifp) 368 { 369 struct ieee80211vap *vap = ifp->if_softc; 370 struct ieee80211com *ic = vap->iv_ic; 371 struct ifnet *parent = ic->ic_ifp; 372 struct mbuf *m; 373 374 /* NB: parent must be up and running */ 375 if (!IFNET_IS_UP_RUNNING(parent)) { 376 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 377 "%s: ignore queue, parent %s not up+running\n", 378 __func__, parent->if_xname); 379 /* XXX stat */ 380 return; 381 } 382 if (vap->iv_state == IEEE80211_S_SLEEP) { 383 /* 384 * In power save, wakeup device for transmit. 385 */ 386 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 387 return; 388 } 389 /* 390 * No data frames go out unless we're running. 391 * Note in particular this covers CAC and CSA 392 * states (though maybe we should check muting 393 * for CSA). 394 */ 395 if (vap->iv_state != IEEE80211_S_RUN) { 396 IEEE80211_LOCK(ic); 397 /* re-check under the com lock to avoid races */ 398 if (vap->iv_state != IEEE80211_S_RUN) { 399 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 400 "%s: ignore queue, in %s state\n", 401 __func__, ieee80211_state_name[vap->iv_state]); 402 vap->iv_stats.is_tx_badstate++; 403 IEEE80211_UNLOCK(ic); 404 IFQ_LOCK(&ifp->if_snd); 405 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 406 IFQ_UNLOCK(&ifp->if_snd); 407 return; 408 } 409 IEEE80211_UNLOCK(ic); 410 } 411 412 for (;;) { 413 IFQ_DEQUEUE(&ifp->if_snd, m); 414 if (m == NULL) 415 break; 416 /* 417 * Sanitize mbuf flags for net80211 use. We cannot 418 * clear M_PWR_SAV or M_MORE_DATA because these may 419 * be set for frames that are re-submitted from the 420 * power save queue. 421 * 422 * NB: This must be done before ieee80211_classify as 423 * it marks EAPOL in frames with M_EAPOL. 424 */ 425 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 426 /* 427 * Bump to the packet transmission path. 428 */ 429 (void) ieee80211_start_pkt(vap, m); 430 /* mbuf is consumed here */ 431 } 432 } 433 434 /* 435 * 802.11 raw output routine. 436 */ 437 int 438 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 439 struct mbuf *m, const struct ieee80211_bpf_params *params) 440 { 441 struct ieee80211com *ic = vap->iv_ic; 442 443 return (ic->ic_raw_xmit(ni, m, params)); 444 } 445 446 /* 447 * 802.11 output routine. This is (currently) used only to 448 * connect bpf write calls to the 802.11 layer for injecting 449 * raw 802.11 frames. 450 */ 451 int 452 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 453 struct sockaddr *dst, struct route *ro) 454 { 455 #define senderr(e) do { error = (e); goto bad;} while (0) 456 struct ieee80211_node *ni = NULL; 457 struct ieee80211vap *vap; 458 struct ieee80211_frame *wh; 459 struct ieee80211com *ic = NULL; 460 int error; 461 int ret; 462 463 IFQ_LOCK(&ifp->if_snd); 464 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 465 IFQ_UNLOCK(&ifp->if_snd); 466 /* 467 * Short-circuit requests if the vap is marked OACTIVE 468 * as this can happen because a packet came down through 469 * ieee80211_start before the vap entered RUN state in 470 * which case it's ok to just drop the frame. This 471 * should not be necessary but callers of if_output don't 472 * check OACTIVE. 473 */ 474 senderr(ENETDOWN); 475 } 476 IFQ_UNLOCK(&ifp->if_snd); 477 vap = ifp->if_softc; 478 ic = vap->iv_ic; 479 /* 480 * Hand to the 802.3 code if not tagged as 481 * a raw 802.11 frame. 482 */ 483 if (dst->sa_family != AF_IEEE80211) 484 return vap->iv_output(ifp, m, dst, ro); 485 #ifdef MAC 486 error = mac_ifnet_check_transmit(ifp, m); 487 if (error) 488 senderr(error); 489 #endif 490 if (ifp->if_flags & IFF_MONITOR) 491 senderr(ENETDOWN); 492 if (!IFNET_IS_UP_RUNNING(ifp)) 493 senderr(ENETDOWN); 494 if (vap->iv_state == IEEE80211_S_CAC) { 495 IEEE80211_DPRINTF(vap, 496 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 497 "block %s frame in CAC state\n", "raw data"); 498 vap->iv_stats.is_tx_badstate++; 499 senderr(EIO); /* XXX */ 500 } else if (vap->iv_state == IEEE80211_S_SCAN) 501 senderr(EIO); 502 /* XXX bypass bridge, pfil, carp, etc. */ 503 504 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 505 senderr(EIO); /* XXX */ 506 wh = mtod(m, struct ieee80211_frame *); 507 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 508 IEEE80211_FC0_VERSION_0) 509 senderr(EIO); /* XXX */ 510 511 /* locate destination node */ 512 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 513 case IEEE80211_FC1_DIR_NODS: 514 case IEEE80211_FC1_DIR_FROMDS: 515 ni = ieee80211_find_txnode(vap, wh->i_addr1); 516 break; 517 case IEEE80211_FC1_DIR_TODS: 518 case IEEE80211_FC1_DIR_DSTODS: 519 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 520 senderr(EIO); /* XXX */ 521 ni = ieee80211_find_txnode(vap, wh->i_addr3); 522 break; 523 default: 524 senderr(EIO); /* XXX */ 525 } 526 if (ni == NULL) { 527 /* 528 * Permit packets w/ bpf params through regardless 529 * (see below about sa_len). 530 */ 531 if (dst->sa_len == 0) 532 senderr(EHOSTUNREACH); 533 ni = ieee80211_ref_node(vap->iv_bss); 534 } 535 536 /* 537 * Sanitize mbuf for net80211 flags leaked from above. 538 * 539 * NB: This must be done before ieee80211_classify as 540 * it marks EAPOL in frames with M_EAPOL. 541 */ 542 m->m_flags &= ~M_80211_TX; 543 544 /* calculate priority so drivers can find the tx queue */ 545 /* XXX assumes an 802.3 frame */ 546 if (ieee80211_classify(ni, m)) 547 senderr(EIO); /* XXX */ 548 549 ifp->if_opackets++; 550 IEEE80211_NODE_STAT(ni, tx_data); 551 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 552 IEEE80211_NODE_STAT(ni, tx_mcast); 553 m->m_flags |= M_MCAST; 554 } else 555 IEEE80211_NODE_STAT(ni, tx_ucast); 556 /* NB: ieee80211_encap does not include 802.11 header */ 557 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 558 559 IEEE80211_TX_LOCK(ic); 560 561 /* 562 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 563 * present by setting the sa_len field of the sockaddr (yes, 564 * this is a hack). 565 * NB: we assume sa_data is suitably aligned to cast. 566 */ 567 ret = ieee80211_raw_output(vap, ni, m, 568 (const struct ieee80211_bpf_params *)(dst->sa_len ? 569 dst->sa_data : NULL)); 570 IEEE80211_TX_UNLOCK(ic); 571 return (ret); 572 bad: 573 if (m != NULL) 574 m_freem(m); 575 if (ni != NULL) 576 ieee80211_free_node(ni); 577 ifp->if_oerrors++; 578 return error; 579 #undef senderr 580 } 581 582 /* 583 * Set the direction field and address fields of an outgoing 584 * frame. Note this should be called early on in constructing 585 * a frame as it sets i_fc[1]; other bits can then be or'd in. 586 */ 587 void 588 ieee80211_send_setup( 589 struct ieee80211_node *ni, 590 struct mbuf *m, 591 int type, int tid, 592 const uint8_t sa[IEEE80211_ADDR_LEN], 593 const uint8_t da[IEEE80211_ADDR_LEN], 594 const uint8_t bssid[IEEE80211_ADDR_LEN]) 595 { 596 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 597 struct ieee80211vap *vap = ni->ni_vap; 598 struct ieee80211_tx_ampdu *tap; 599 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 600 ieee80211_seq seqno; 601 602 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 603 604 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 605 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 606 switch (vap->iv_opmode) { 607 case IEEE80211_M_STA: 608 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 609 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 610 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 611 IEEE80211_ADDR_COPY(wh->i_addr3, da); 612 break; 613 case IEEE80211_M_IBSS: 614 case IEEE80211_M_AHDEMO: 615 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 616 IEEE80211_ADDR_COPY(wh->i_addr1, da); 617 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 618 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 619 break; 620 case IEEE80211_M_HOSTAP: 621 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 622 IEEE80211_ADDR_COPY(wh->i_addr1, da); 623 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 624 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 625 break; 626 case IEEE80211_M_WDS: 627 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 628 IEEE80211_ADDR_COPY(wh->i_addr1, da); 629 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 630 IEEE80211_ADDR_COPY(wh->i_addr3, da); 631 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 632 break; 633 case IEEE80211_M_MBSS: 634 #ifdef IEEE80211_SUPPORT_MESH 635 if (IEEE80211_IS_MULTICAST(da)) { 636 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 637 /* XXX next hop */ 638 IEEE80211_ADDR_COPY(wh->i_addr1, da); 639 IEEE80211_ADDR_COPY(wh->i_addr2, 640 vap->iv_myaddr); 641 } else { 642 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 643 IEEE80211_ADDR_COPY(wh->i_addr1, da); 644 IEEE80211_ADDR_COPY(wh->i_addr2, 645 vap->iv_myaddr); 646 IEEE80211_ADDR_COPY(wh->i_addr3, da); 647 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 648 } 649 #endif 650 break; 651 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 652 break; 653 } 654 } else { 655 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 656 IEEE80211_ADDR_COPY(wh->i_addr1, da); 657 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 658 #ifdef IEEE80211_SUPPORT_MESH 659 if (vap->iv_opmode == IEEE80211_M_MBSS) 660 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 661 else 662 #endif 663 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 664 } 665 *(uint16_t *)&wh->i_dur[0] = 0; 666 667 tap = &ni->ni_tx_ampdu[tid]; 668 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 669 m->m_flags |= M_AMPDU_MPDU; 670 else { 671 seqno = ni->ni_txseqs[tid]++; 672 *(uint16_t *)&wh->i_seq[0] = 673 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 674 M_SEQNO_SET(m, seqno); 675 } 676 677 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 678 m->m_flags |= M_MCAST; 679 #undef WH4 680 } 681 682 /* 683 * Send a management frame to the specified node. The node pointer 684 * must have a reference as the pointer will be passed to the driver 685 * and potentially held for a long time. If the frame is successfully 686 * dispatched to the driver, then it is responsible for freeing the 687 * reference (and potentially free'ing up any associated storage); 688 * otherwise deal with reclaiming any reference (on error). 689 */ 690 int 691 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 692 struct ieee80211_bpf_params *params) 693 { 694 struct ieee80211vap *vap = ni->ni_vap; 695 struct ieee80211com *ic = ni->ni_ic; 696 struct ieee80211_frame *wh; 697 int ret; 698 699 KASSERT(ni != NULL, ("null node")); 700 701 if (vap->iv_state == IEEE80211_S_CAC) { 702 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 703 ni, "block %s frame in CAC state", 704 ieee80211_mgt_subtype_name[ 705 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 706 IEEE80211_FC0_SUBTYPE_SHIFT]); 707 vap->iv_stats.is_tx_badstate++; 708 ieee80211_free_node(ni); 709 m_freem(m); 710 return EIO; /* XXX */ 711 } 712 713 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 714 if (m == NULL) { 715 ieee80211_free_node(ni); 716 return ENOMEM; 717 } 718 719 IEEE80211_TX_LOCK(ic); 720 721 wh = mtod(m, struct ieee80211_frame *); 722 ieee80211_send_setup(ni, m, 723 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 724 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 725 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 726 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 727 "encrypting frame (%s)", __func__); 728 wh->i_fc[1] |= IEEE80211_FC1_WEP; 729 } 730 m->m_flags |= M_ENCAP; /* mark encapsulated */ 731 732 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 733 M_WME_SETAC(m, params->ibp_pri); 734 735 #ifdef IEEE80211_DEBUG 736 /* avoid printing too many frames */ 737 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 738 ieee80211_msg_dumppkts(vap)) { 739 printf("[%s] send %s on channel %u\n", 740 ether_sprintf(wh->i_addr1), 741 ieee80211_mgt_subtype_name[ 742 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 743 IEEE80211_FC0_SUBTYPE_SHIFT], 744 ieee80211_chan2ieee(ic, ic->ic_curchan)); 745 } 746 #endif 747 IEEE80211_NODE_STAT(ni, tx_mgmt); 748 749 ret = ieee80211_raw_output(vap, ni, m, params); 750 IEEE80211_TX_UNLOCK(ic); 751 return (ret); 752 } 753 754 /* 755 * Send a null data frame to the specified node. If the station 756 * is setup for QoS then a QoS Null Data frame is constructed. 757 * If this is a WDS station then a 4-address frame is constructed. 758 * 759 * NB: the caller is assumed to have setup a node reference 760 * for use; this is necessary to deal with a race condition 761 * when probing for inactive stations. Like ieee80211_mgmt_output 762 * we must cleanup any node reference on error; however we 763 * can safely just unref it as we know it will never be the 764 * last reference to the node. 765 */ 766 int 767 ieee80211_send_nulldata(struct ieee80211_node *ni) 768 { 769 struct ieee80211vap *vap = ni->ni_vap; 770 struct ieee80211com *ic = ni->ni_ic; 771 struct mbuf *m; 772 struct ieee80211_frame *wh; 773 int hdrlen; 774 uint8_t *frm; 775 int ret; 776 777 if (vap->iv_state == IEEE80211_S_CAC) { 778 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 779 ni, "block %s frame in CAC state", "null data"); 780 ieee80211_unref_node(&ni); 781 vap->iv_stats.is_tx_badstate++; 782 return EIO; /* XXX */ 783 } 784 785 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 786 hdrlen = sizeof(struct ieee80211_qosframe); 787 else 788 hdrlen = sizeof(struct ieee80211_frame); 789 /* NB: only WDS vap's get 4-address frames */ 790 if (vap->iv_opmode == IEEE80211_M_WDS) 791 hdrlen += IEEE80211_ADDR_LEN; 792 if (ic->ic_flags & IEEE80211_F_DATAPAD) 793 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 794 795 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 796 if (m == NULL) { 797 /* XXX debug msg */ 798 ieee80211_unref_node(&ni); 799 vap->iv_stats.is_tx_nobuf++; 800 return ENOMEM; 801 } 802 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 803 ("leading space %zd", M_LEADINGSPACE(m))); 804 M_PREPEND(m, hdrlen, M_NOWAIT); 805 if (m == NULL) { 806 /* NB: cannot happen */ 807 ieee80211_free_node(ni); 808 return ENOMEM; 809 } 810 811 IEEE80211_TX_LOCK(ic); 812 813 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 814 if (ni->ni_flags & IEEE80211_NODE_QOS) { 815 const int tid = WME_AC_TO_TID(WME_AC_BE); 816 uint8_t *qos; 817 818 ieee80211_send_setup(ni, m, 819 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 820 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 821 822 if (vap->iv_opmode == IEEE80211_M_WDS) 823 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 824 else 825 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 826 qos[0] = tid & IEEE80211_QOS_TID; 827 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 828 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 829 qos[1] = 0; 830 } else { 831 ieee80211_send_setup(ni, m, 832 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 833 IEEE80211_NONQOS_TID, 834 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 835 } 836 if (vap->iv_opmode != IEEE80211_M_WDS) { 837 /* NB: power management bit is never sent by an AP */ 838 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 839 vap->iv_opmode != IEEE80211_M_HOSTAP) 840 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 841 } 842 m->m_len = m->m_pkthdr.len = hdrlen; 843 m->m_flags |= M_ENCAP; /* mark encapsulated */ 844 845 M_WME_SETAC(m, WME_AC_BE); 846 847 IEEE80211_NODE_STAT(ni, tx_data); 848 849 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 850 "send %snull data frame on channel %u, pwr mgt %s", 851 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 852 ieee80211_chan2ieee(ic, ic->ic_curchan), 853 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 854 855 ret = ieee80211_raw_output(vap, ni, m, NULL); 856 IEEE80211_TX_UNLOCK(ic); 857 return (ret); 858 } 859 860 /* 861 * Assign priority to a frame based on any vlan tag assigned 862 * to the station and/or any Diffserv setting in an IP header. 863 * Finally, if an ACM policy is setup (in station mode) it's 864 * applied. 865 */ 866 int 867 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 868 { 869 const struct ether_header *eh = mtod(m, struct ether_header *); 870 int v_wme_ac, d_wme_ac, ac; 871 872 /* 873 * Always promote PAE/EAPOL frames to high priority. 874 */ 875 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 876 /* NB: mark so others don't need to check header */ 877 m->m_flags |= M_EAPOL; 878 ac = WME_AC_VO; 879 goto done; 880 } 881 /* 882 * Non-qos traffic goes to BE. 883 */ 884 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 885 ac = WME_AC_BE; 886 goto done; 887 } 888 889 /* 890 * If node has a vlan tag then all traffic 891 * to it must have a matching tag. 892 */ 893 v_wme_ac = 0; 894 if (ni->ni_vlan != 0) { 895 if ((m->m_flags & M_VLANTAG) == 0) { 896 IEEE80211_NODE_STAT(ni, tx_novlantag); 897 return 1; 898 } 899 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 900 EVL_VLANOFTAG(ni->ni_vlan)) { 901 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 902 return 1; 903 } 904 /* map vlan priority to AC */ 905 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 906 } 907 908 /* XXX m_copydata may be too slow for fast path */ 909 #ifdef INET 910 if (eh->ether_type == htons(ETHERTYPE_IP)) { 911 uint8_t tos; 912 /* 913 * IP frame, map the DSCP bits from the TOS field. 914 */ 915 /* NB: ip header may not be in first mbuf */ 916 m_copydata(m, sizeof(struct ether_header) + 917 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 918 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 919 d_wme_ac = TID_TO_WME_AC(tos); 920 } else { 921 #endif /* INET */ 922 #ifdef INET6 923 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 924 uint32_t flow; 925 uint8_t tos; 926 /* 927 * IPv6 frame, map the DSCP bits from the traffic class field. 928 */ 929 m_copydata(m, sizeof(struct ether_header) + 930 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 931 (caddr_t) &flow); 932 tos = (uint8_t)(ntohl(flow) >> 20); 933 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 934 d_wme_ac = TID_TO_WME_AC(tos); 935 } else { 936 #endif /* INET6 */ 937 d_wme_ac = WME_AC_BE; 938 #ifdef INET6 939 } 940 #endif 941 #ifdef INET 942 } 943 #endif 944 /* 945 * Use highest priority AC. 946 */ 947 if (v_wme_ac > d_wme_ac) 948 ac = v_wme_ac; 949 else 950 ac = d_wme_ac; 951 952 /* 953 * Apply ACM policy. 954 */ 955 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 956 static const int acmap[4] = { 957 WME_AC_BK, /* WME_AC_BE */ 958 WME_AC_BK, /* WME_AC_BK */ 959 WME_AC_BE, /* WME_AC_VI */ 960 WME_AC_VI, /* WME_AC_VO */ 961 }; 962 struct ieee80211com *ic = ni->ni_ic; 963 964 while (ac != WME_AC_BK && 965 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 966 ac = acmap[ac]; 967 } 968 done: 969 M_WME_SETAC(m, ac); 970 return 0; 971 } 972 973 /* 974 * Insure there is sufficient contiguous space to encapsulate the 975 * 802.11 data frame. If room isn't already there, arrange for it. 976 * Drivers and cipher modules assume we have done the necessary work 977 * and fail rudely if they don't find the space they need. 978 */ 979 struct mbuf * 980 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 981 struct ieee80211_key *key, struct mbuf *m) 982 { 983 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 984 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 985 986 if (key != NULL) { 987 /* XXX belongs in crypto code? */ 988 needed_space += key->wk_cipher->ic_header; 989 /* XXX frags */ 990 /* 991 * When crypto is being done in the host we must insure 992 * the data are writable for the cipher routines; clone 993 * a writable mbuf chain. 994 * XXX handle SWMIC specially 995 */ 996 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 997 m = m_unshare(m, M_NOWAIT); 998 if (m == NULL) { 999 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1000 "%s: cannot get writable mbuf\n", __func__); 1001 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1002 return NULL; 1003 } 1004 } 1005 } 1006 /* 1007 * We know we are called just before stripping an Ethernet 1008 * header and prepending an LLC header. This means we know 1009 * there will be 1010 * sizeof(struct ether_header) - sizeof(struct llc) 1011 * bytes recovered to which we need additional space for the 1012 * 802.11 header and any crypto header. 1013 */ 1014 /* XXX check trailing space and copy instead? */ 1015 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1016 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1017 if (n == NULL) { 1018 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1019 "%s: cannot expand storage\n", __func__); 1020 vap->iv_stats.is_tx_nobuf++; 1021 m_freem(m); 1022 return NULL; 1023 } 1024 KASSERT(needed_space <= MHLEN, 1025 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 1026 /* 1027 * Setup new mbuf to have leading space to prepend the 1028 * 802.11 header and any crypto header bits that are 1029 * required (the latter are added when the driver calls 1030 * back to ieee80211_crypto_encap to do crypto encapsulation). 1031 */ 1032 /* NB: must be first 'cuz it clobbers m_data */ 1033 m_move_pkthdr(n, m); 1034 n->m_len = 0; /* NB: m_gethdr does not set */ 1035 n->m_data += needed_space; 1036 /* 1037 * Pull up Ethernet header to create the expected layout. 1038 * We could use m_pullup but that's overkill (i.e. we don't 1039 * need the actual data) and it cannot fail so do it inline 1040 * for speed. 1041 */ 1042 /* NB: struct ether_header is known to be contiguous */ 1043 n->m_len += sizeof(struct ether_header); 1044 m->m_len -= sizeof(struct ether_header); 1045 m->m_data += sizeof(struct ether_header); 1046 /* 1047 * Replace the head of the chain. 1048 */ 1049 n->m_next = m; 1050 m = n; 1051 } 1052 return m; 1053 #undef TO_BE_RECLAIMED 1054 } 1055 1056 /* 1057 * Return the transmit key to use in sending a unicast frame. 1058 * If a unicast key is set we use that. When no unicast key is set 1059 * we fall back to the default transmit key. 1060 */ 1061 static __inline struct ieee80211_key * 1062 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1063 struct ieee80211_node *ni) 1064 { 1065 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1066 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1067 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1068 return NULL; 1069 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1070 } else { 1071 return &ni->ni_ucastkey; 1072 } 1073 } 1074 1075 /* 1076 * Return the transmit key to use in sending a multicast frame. 1077 * Multicast traffic always uses the group key which is installed as 1078 * the default tx key. 1079 */ 1080 static __inline struct ieee80211_key * 1081 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1082 struct ieee80211_node *ni) 1083 { 1084 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1085 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1086 return NULL; 1087 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1088 } 1089 1090 /* 1091 * Encapsulate an outbound data frame. The mbuf chain is updated. 1092 * If an error is encountered NULL is returned. The caller is required 1093 * to provide a node reference and pullup the ethernet header in the 1094 * first mbuf. 1095 * 1096 * NB: Packet is assumed to be processed by ieee80211_classify which 1097 * marked EAPOL frames w/ M_EAPOL. 1098 */ 1099 struct mbuf * 1100 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1101 struct mbuf *m) 1102 { 1103 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1104 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1105 struct ieee80211com *ic = ni->ni_ic; 1106 #ifdef IEEE80211_SUPPORT_MESH 1107 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1108 struct ieee80211_meshcntl_ae10 *mc; 1109 struct ieee80211_mesh_route *rt = NULL; 1110 int dir = -1; 1111 #endif 1112 struct ether_header eh; 1113 struct ieee80211_frame *wh; 1114 struct ieee80211_key *key; 1115 struct llc *llc; 1116 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1117 ieee80211_seq seqno; 1118 int meshhdrsize, meshae; 1119 uint8_t *qos; 1120 1121 IEEE80211_TX_LOCK_ASSERT(ic); 1122 1123 /* 1124 * Copy existing Ethernet header to a safe place. The 1125 * rest of the code assumes it's ok to strip it when 1126 * reorganizing state for the final encapsulation. 1127 */ 1128 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1129 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1130 1131 /* 1132 * Insure space for additional headers. First identify 1133 * transmit key to use in calculating any buffer adjustments 1134 * required. This is also used below to do privacy 1135 * encapsulation work. Then calculate the 802.11 header 1136 * size and any padding required by the driver. 1137 * 1138 * Note key may be NULL if we fall back to the default 1139 * transmit key and that is not set. In that case the 1140 * buffer may not be expanded as needed by the cipher 1141 * routines, but they will/should discard it. 1142 */ 1143 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1144 if (vap->iv_opmode == IEEE80211_M_STA || 1145 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1146 (vap->iv_opmode == IEEE80211_M_WDS && 1147 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1148 key = ieee80211_crypto_getucastkey(vap, ni); 1149 else 1150 key = ieee80211_crypto_getmcastkey(vap, ni); 1151 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1152 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1153 eh.ether_dhost, 1154 "no default transmit key (%s) deftxkey %u", 1155 __func__, vap->iv_def_txkey); 1156 vap->iv_stats.is_tx_nodefkey++; 1157 goto bad; 1158 } 1159 } else 1160 key = NULL; 1161 /* 1162 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1163 * frames so suppress use. This may be an issue if other 1164 * ap's require all data frames to be QoS-encapsulated 1165 * once negotiated in which case we'll need to make this 1166 * configurable. 1167 * NB: mesh data frames are QoS. 1168 */ 1169 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1170 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1171 (m->m_flags & M_EAPOL) == 0; 1172 if (addqos) 1173 hdrsize = sizeof(struct ieee80211_qosframe); 1174 else 1175 hdrsize = sizeof(struct ieee80211_frame); 1176 #ifdef IEEE80211_SUPPORT_MESH 1177 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1178 /* 1179 * Mesh data frames are encapsulated according to the 1180 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1181 * o Group Addressed data (aka multicast) originating 1182 * at the local sta are sent w/ 3-address format and 1183 * address extension mode 00 1184 * o Individually Addressed data (aka unicast) originating 1185 * at the local sta are sent w/ 4-address format and 1186 * address extension mode 00 1187 * o Group Addressed data forwarded from a non-mesh sta are 1188 * sent w/ 3-address format and address extension mode 01 1189 * o Individually Address data from another sta are sent 1190 * w/ 4-address format and address extension mode 10 1191 */ 1192 is4addr = 0; /* NB: don't use, disable */ 1193 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1194 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1195 KASSERT(rt != NULL, ("route is NULL")); 1196 dir = IEEE80211_FC1_DIR_DSTODS; 1197 hdrsize += IEEE80211_ADDR_LEN; 1198 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1199 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1200 vap->iv_myaddr)) { 1201 IEEE80211_NOTE_MAC(vap, 1202 IEEE80211_MSG_MESH, 1203 eh.ether_dhost, 1204 "%s", "trying to send to ourself"); 1205 goto bad; 1206 } 1207 meshae = IEEE80211_MESH_AE_10; 1208 meshhdrsize = 1209 sizeof(struct ieee80211_meshcntl_ae10); 1210 } else { 1211 meshae = IEEE80211_MESH_AE_00; 1212 meshhdrsize = 1213 sizeof(struct ieee80211_meshcntl); 1214 } 1215 } else { 1216 dir = IEEE80211_FC1_DIR_FROMDS; 1217 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1218 /* proxy group */ 1219 meshae = IEEE80211_MESH_AE_01; 1220 meshhdrsize = 1221 sizeof(struct ieee80211_meshcntl_ae01); 1222 } else { 1223 /* group */ 1224 meshae = IEEE80211_MESH_AE_00; 1225 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1226 } 1227 } 1228 } else { 1229 #endif 1230 /* 1231 * 4-address frames need to be generated for: 1232 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1233 * o packets sent through a vap marked for relaying 1234 * (e.g. a station operating with dynamic WDS) 1235 */ 1236 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1237 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1238 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1239 if (is4addr) 1240 hdrsize += IEEE80211_ADDR_LEN; 1241 meshhdrsize = meshae = 0; 1242 #ifdef IEEE80211_SUPPORT_MESH 1243 } 1244 #endif 1245 /* 1246 * Honor driver DATAPAD requirement. 1247 */ 1248 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1249 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1250 else 1251 hdrspace = hdrsize; 1252 1253 if (__predict_true((m->m_flags & M_FF) == 0)) { 1254 /* 1255 * Normal frame. 1256 */ 1257 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1258 if (m == NULL) { 1259 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1260 goto bad; 1261 } 1262 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1263 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1264 llc = mtod(m, struct llc *); 1265 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1266 llc->llc_control = LLC_UI; 1267 llc->llc_snap.org_code[0] = 0; 1268 llc->llc_snap.org_code[1] = 0; 1269 llc->llc_snap.org_code[2] = 0; 1270 llc->llc_snap.ether_type = eh.ether_type; 1271 } else { 1272 #ifdef IEEE80211_SUPPORT_SUPERG 1273 /* 1274 * Aggregated frame. 1275 */ 1276 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1277 if (m == NULL) 1278 #endif 1279 goto bad; 1280 } 1281 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1282 1283 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1284 if (m == NULL) { 1285 vap->iv_stats.is_tx_nobuf++; 1286 goto bad; 1287 } 1288 wh = mtod(m, struct ieee80211_frame *); 1289 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1290 *(uint16_t *)wh->i_dur = 0; 1291 qos = NULL; /* NB: quiet compiler */ 1292 if (is4addr) { 1293 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1294 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1295 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1296 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1297 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1298 } else switch (vap->iv_opmode) { 1299 case IEEE80211_M_STA: 1300 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1301 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1302 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1303 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1304 break; 1305 case IEEE80211_M_IBSS: 1306 case IEEE80211_M_AHDEMO: 1307 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1308 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1309 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1310 /* 1311 * NB: always use the bssid from iv_bss as the 1312 * neighbor's may be stale after an ibss merge 1313 */ 1314 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1315 break; 1316 case IEEE80211_M_HOSTAP: 1317 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1318 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1319 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1320 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1321 break; 1322 #ifdef IEEE80211_SUPPORT_MESH 1323 case IEEE80211_M_MBSS: 1324 /* NB: offset by hdrspace to deal with DATAPAD */ 1325 mc = (struct ieee80211_meshcntl_ae10 *) 1326 (mtod(m, uint8_t *) + hdrspace); 1327 wh->i_fc[1] = dir; 1328 switch (meshae) { 1329 case IEEE80211_MESH_AE_00: /* no proxy */ 1330 mc->mc_flags = 0; 1331 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1332 IEEE80211_ADDR_COPY(wh->i_addr1, 1333 ni->ni_macaddr); 1334 IEEE80211_ADDR_COPY(wh->i_addr2, 1335 vap->iv_myaddr); 1336 IEEE80211_ADDR_COPY(wh->i_addr3, 1337 eh.ether_dhost); 1338 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1339 eh.ether_shost); 1340 qos =((struct ieee80211_qosframe_addr4 *) 1341 wh)->i_qos; 1342 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1343 /* mcast */ 1344 IEEE80211_ADDR_COPY(wh->i_addr1, 1345 eh.ether_dhost); 1346 IEEE80211_ADDR_COPY(wh->i_addr2, 1347 vap->iv_myaddr); 1348 IEEE80211_ADDR_COPY(wh->i_addr3, 1349 eh.ether_shost); 1350 qos = ((struct ieee80211_qosframe *) 1351 wh)->i_qos; 1352 } 1353 break; 1354 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1355 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1356 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1357 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1358 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1359 mc->mc_flags = 1; 1360 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1361 eh.ether_shost); 1362 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1363 break; 1364 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1365 KASSERT(rt != NULL, ("route is NULL")); 1366 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1367 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1368 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1369 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1370 mc->mc_flags = IEEE80211_MESH_AE_10; 1371 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1372 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1373 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1374 break; 1375 default: 1376 KASSERT(0, ("meshae %d", meshae)); 1377 break; 1378 } 1379 mc->mc_ttl = ms->ms_ttl; 1380 ms->ms_seq++; 1381 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1382 break; 1383 #endif 1384 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1385 default: 1386 goto bad; 1387 } 1388 if (m->m_flags & M_MORE_DATA) 1389 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1390 if (addqos) { 1391 int ac, tid; 1392 1393 if (is4addr) { 1394 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1395 /* NB: mesh case handled earlier */ 1396 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1397 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1398 ac = M_WME_GETAC(m); 1399 /* map from access class/queue to 11e header priorty value */ 1400 tid = WME_AC_TO_TID(ac); 1401 qos[0] = tid & IEEE80211_QOS_TID; 1402 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1403 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1404 #ifdef IEEE80211_SUPPORT_MESH 1405 if (vap->iv_opmode == IEEE80211_M_MBSS) 1406 qos[1] = IEEE80211_QOS_MC; 1407 else 1408 #endif 1409 qos[1] = 0; 1410 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1411 1412 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1413 /* 1414 * NB: don't assign a sequence # to potential 1415 * aggregates; we expect this happens at the 1416 * point the frame comes off any aggregation q 1417 * as otherwise we may introduce holes in the 1418 * BA sequence space and/or make window accouting 1419 * more difficult. 1420 * 1421 * XXX may want to control this with a driver 1422 * capability; this may also change when we pull 1423 * aggregation up into net80211 1424 */ 1425 seqno = ni->ni_txseqs[tid]++; 1426 *(uint16_t *)wh->i_seq = 1427 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1428 M_SEQNO_SET(m, seqno); 1429 } 1430 } else { 1431 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1432 *(uint16_t *)wh->i_seq = 1433 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1434 M_SEQNO_SET(m, seqno); 1435 } 1436 1437 1438 /* check if xmit fragmentation is required */ 1439 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1440 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1441 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1442 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1443 if (key != NULL) { 1444 /* 1445 * IEEE 802.1X: send EAPOL frames always in the clear. 1446 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1447 */ 1448 if ((m->m_flags & M_EAPOL) == 0 || 1449 ((vap->iv_flags & IEEE80211_F_WPA) && 1450 (vap->iv_opmode == IEEE80211_M_STA ? 1451 !IEEE80211_KEY_UNDEFINED(key) : 1452 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1453 wh->i_fc[1] |= IEEE80211_FC1_WEP; 1454 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1455 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1456 eh.ether_dhost, 1457 "%s", "enmic failed, discard frame"); 1458 vap->iv_stats.is_crypto_enmicfail++; 1459 goto bad; 1460 } 1461 } 1462 } 1463 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1464 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1465 goto bad; 1466 1467 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1468 1469 IEEE80211_NODE_STAT(ni, tx_data); 1470 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1471 IEEE80211_NODE_STAT(ni, tx_mcast); 1472 m->m_flags |= M_MCAST; 1473 } else 1474 IEEE80211_NODE_STAT(ni, tx_ucast); 1475 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1476 1477 return m; 1478 bad: 1479 if (m != NULL) 1480 m_freem(m); 1481 return NULL; 1482 #undef WH4 1483 #undef MC01 1484 } 1485 1486 /* 1487 * Fragment the frame according to the specified mtu. 1488 * The size of the 802.11 header (w/o padding) is provided 1489 * so we don't need to recalculate it. We create a new 1490 * mbuf for each fragment and chain it through m_nextpkt; 1491 * we might be able to optimize this by reusing the original 1492 * packet's mbufs but that is significantly more complicated. 1493 */ 1494 static int 1495 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1496 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1497 { 1498 struct ieee80211_frame *wh, *whf; 1499 struct mbuf *m, *prev, *next; 1500 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1501 1502 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1503 KASSERT(m0->m_pkthdr.len > mtu, 1504 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1505 1506 wh = mtod(m0, struct ieee80211_frame *); 1507 /* NB: mark the first frag; it will be propagated below */ 1508 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1509 totalhdrsize = hdrsize + ciphdrsize; 1510 fragno = 1; 1511 off = mtu - ciphdrsize; 1512 remainder = m0->m_pkthdr.len - off; 1513 prev = m0; 1514 do { 1515 fragsize = totalhdrsize + remainder; 1516 if (fragsize > mtu) 1517 fragsize = mtu; 1518 /* XXX fragsize can be >2048! */ 1519 KASSERT(fragsize < MCLBYTES, 1520 ("fragment size %u too big!", fragsize)); 1521 if (fragsize > MHLEN) 1522 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1523 else 1524 m = m_gethdr(M_NOWAIT, MT_DATA); 1525 if (m == NULL) 1526 goto bad; 1527 /* leave room to prepend any cipher header */ 1528 m_align(m, fragsize - ciphdrsize); 1529 1530 /* 1531 * Form the header in the fragment. Note that since 1532 * we mark the first fragment with the MORE_FRAG bit 1533 * it automatically is propagated to each fragment; we 1534 * need only clear it on the last fragment (done below). 1535 * NB: frag 1+ dont have Mesh Control field present. 1536 */ 1537 whf = mtod(m, struct ieee80211_frame *); 1538 memcpy(whf, wh, hdrsize); 1539 #ifdef IEEE80211_SUPPORT_MESH 1540 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1541 if (IEEE80211_IS_DSTODS(wh)) 1542 ((struct ieee80211_qosframe_addr4 *) 1543 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1544 else 1545 ((struct ieee80211_qosframe *) 1546 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1547 } 1548 #endif 1549 *(uint16_t *)&whf->i_seq[0] |= htole16( 1550 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1551 IEEE80211_SEQ_FRAG_SHIFT); 1552 fragno++; 1553 1554 payload = fragsize - totalhdrsize; 1555 /* NB: destination is known to be contiguous */ 1556 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize); 1557 m->m_len = hdrsize + payload; 1558 m->m_pkthdr.len = hdrsize + payload; 1559 m->m_flags |= M_FRAG; 1560 1561 /* chain up the fragment */ 1562 prev->m_nextpkt = m; 1563 prev = m; 1564 1565 /* deduct fragment just formed */ 1566 remainder -= payload; 1567 off += payload; 1568 } while (remainder != 0); 1569 1570 /* set the last fragment */ 1571 m->m_flags |= M_LASTFRAG; 1572 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1573 1574 /* strip first mbuf now that everything has been copied */ 1575 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1576 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1577 1578 vap->iv_stats.is_tx_fragframes++; 1579 vap->iv_stats.is_tx_frags += fragno-1; 1580 1581 return 1; 1582 bad: 1583 /* reclaim fragments but leave original frame for caller to free */ 1584 for (m = m0->m_nextpkt; m != NULL; m = next) { 1585 next = m->m_nextpkt; 1586 m->m_nextpkt = NULL; /* XXX paranoid */ 1587 m_freem(m); 1588 } 1589 m0->m_nextpkt = NULL; 1590 return 0; 1591 } 1592 1593 /* 1594 * Add a supported rates element id to a frame. 1595 */ 1596 uint8_t * 1597 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1598 { 1599 int nrates; 1600 1601 *frm++ = IEEE80211_ELEMID_RATES; 1602 nrates = rs->rs_nrates; 1603 if (nrates > IEEE80211_RATE_SIZE) 1604 nrates = IEEE80211_RATE_SIZE; 1605 *frm++ = nrates; 1606 memcpy(frm, rs->rs_rates, nrates); 1607 return frm + nrates; 1608 } 1609 1610 /* 1611 * Add an extended supported rates element id to a frame. 1612 */ 1613 uint8_t * 1614 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1615 { 1616 /* 1617 * Add an extended supported rates element if operating in 11g mode. 1618 */ 1619 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1620 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1621 *frm++ = IEEE80211_ELEMID_XRATES; 1622 *frm++ = nrates; 1623 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1624 frm += nrates; 1625 } 1626 return frm; 1627 } 1628 1629 /* 1630 * Add an ssid element to a frame. 1631 */ 1632 static uint8_t * 1633 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1634 { 1635 *frm++ = IEEE80211_ELEMID_SSID; 1636 *frm++ = len; 1637 memcpy(frm, ssid, len); 1638 return frm + len; 1639 } 1640 1641 /* 1642 * Add an erp element to a frame. 1643 */ 1644 static uint8_t * 1645 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1646 { 1647 uint8_t erp; 1648 1649 *frm++ = IEEE80211_ELEMID_ERP; 1650 *frm++ = 1; 1651 erp = 0; 1652 if (ic->ic_nonerpsta != 0) 1653 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1654 if (ic->ic_flags & IEEE80211_F_USEPROT) 1655 erp |= IEEE80211_ERP_USE_PROTECTION; 1656 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1657 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1658 *frm++ = erp; 1659 return frm; 1660 } 1661 1662 /* 1663 * Add a CFParams element to a frame. 1664 */ 1665 static uint8_t * 1666 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1667 { 1668 #define ADDSHORT(frm, v) do { \ 1669 LE_WRITE_2(frm, v); \ 1670 frm += 2; \ 1671 } while (0) 1672 *frm++ = IEEE80211_ELEMID_CFPARMS; 1673 *frm++ = 6; 1674 *frm++ = 0; /* CFP count */ 1675 *frm++ = 2; /* CFP period */ 1676 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1677 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1678 return frm; 1679 #undef ADDSHORT 1680 } 1681 1682 static __inline uint8_t * 1683 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1684 { 1685 memcpy(frm, ie->ie_data, ie->ie_len); 1686 return frm + ie->ie_len; 1687 } 1688 1689 static __inline uint8_t * 1690 add_ie(uint8_t *frm, const uint8_t *ie) 1691 { 1692 memcpy(frm, ie, 2 + ie[1]); 1693 return frm + 2 + ie[1]; 1694 } 1695 1696 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1697 /* 1698 * Add a WME information element to a frame. 1699 */ 1700 static uint8_t * 1701 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1702 { 1703 static const struct ieee80211_wme_info info = { 1704 .wme_id = IEEE80211_ELEMID_VENDOR, 1705 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1706 .wme_oui = { WME_OUI_BYTES }, 1707 .wme_type = WME_OUI_TYPE, 1708 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1709 .wme_version = WME_VERSION, 1710 .wme_info = 0, 1711 }; 1712 memcpy(frm, &info, sizeof(info)); 1713 return frm + sizeof(info); 1714 } 1715 1716 /* 1717 * Add a WME parameters element to a frame. 1718 */ 1719 static uint8_t * 1720 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1721 { 1722 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1723 #define ADDSHORT(frm, v) do { \ 1724 LE_WRITE_2(frm, v); \ 1725 frm += 2; \ 1726 } while (0) 1727 /* NB: this works 'cuz a param has an info at the front */ 1728 static const struct ieee80211_wme_info param = { 1729 .wme_id = IEEE80211_ELEMID_VENDOR, 1730 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1731 .wme_oui = { WME_OUI_BYTES }, 1732 .wme_type = WME_OUI_TYPE, 1733 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1734 .wme_version = WME_VERSION, 1735 }; 1736 int i; 1737 1738 memcpy(frm, ¶m, sizeof(param)); 1739 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1740 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1741 *frm++ = 0; /* reserved field */ 1742 for (i = 0; i < WME_NUM_AC; i++) { 1743 const struct wmeParams *ac = 1744 &wme->wme_bssChanParams.cap_wmeParams[i]; 1745 *frm++ = SM(i, WME_PARAM_ACI) 1746 | SM(ac->wmep_acm, WME_PARAM_ACM) 1747 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1748 ; 1749 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1750 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1751 ; 1752 ADDSHORT(frm, ac->wmep_txopLimit); 1753 } 1754 return frm; 1755 #undef SM 1756 #undef ADDSHORT 1757 } 1758 #undef WME_OUI_BYTES 1759 1760 /* 1761 * Add an 11h Power Constraint element to a frame. 1762 */ 1763 static uint8_t * 1764 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1765 { 1766 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1767 /* XXX per-vap tx power limit? */ 1768 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1769 1770 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1771 frm[1] = 1; 1772 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1773 return frm + 3; 1774 } 1775 1776 /* 1777 * Add an 11h Power Capability element to a frame. 1778 */ 1779 static uint8_t * 1780 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1781 { 1782 frm[0] = IEEE80211_ELEMID_PWRCAP; 1783 frm[1] = 2; 1784 frm[2] = c->ic_minpower; 1785 frm[3] = c->ic_maxpower; 1786 return frm + 4; 1787 } 1788 1789 /* 1790 * Add an 11h Supported Channels element to a frame. 1791 */ 1792 static uint8_t * 1793 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1794 { 1795 static const int ielen = 26; 1796 1797 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1798 frm[1] = ielen; 1799 /* XXX not correct */ 1800 memcpy(frm+2, ic->ic_chan_avail, ielen); 1801 return frm + 2 + ielen; 1802 } 1803 1804 /* 1805 * Add an 11h Quiet time element to a frame. 1806 */ 1807 static uint8_t * 1808 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1809 { 1810 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1811 1812 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1813 quiet->len = 6; 1814 if (vap->iv_quiet_count_value == 1) 1815 vap->iv_quiet_count_value = vap->iv_quiet_count; 1816 else if (vap->iv_quiet_count_value > 1) 1817 vap->iv_quiet_count_value--; 1818 1819 if (vap->iv_quiet_count_value == 0) { 1820 /* value 0 is reserved as per 802.11h standerd */ 1821 vap->iv_quiet_count_value = 1; 1822 } 1823 1824 quiet->tbttcount = vap->iv_quiet_count_value; 1825 quiet->period = vap->iv_quiet_period; 1826 quiet->duration = htole16(vap->iv_quiet_duration); 1827 quiet->offset = htole16(vap->iv_quiet_offset); 1828 return frm + sizeof(*quiet); 1829 } 1830 1831 /* 1832 * Add an 11h Channel Switch Announcement element to a frame. 1833 * Note that we use the per-vap CSA count to adjust the global 1834 * counter so we can use this routine to form probe response 1835 * frames and get the current count. 1836 */ 1837 static uint8_t * 1838 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1839 { 1840 struct ieee80211com *ic = vap->iv_ic; 1841 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1842 1843 csa->csa_ie = IEEE80211_ELEMID_CSA; 1844 csa->csa_len = 3; 1845 csa->csa_mode = 1; /* XXX force quiet on channel */ 1846 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1847 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1848 return frm + sizeof(*csa); 1849 } 1850 1851 /* 1852 * Add an 11h country information element to a frame. 1853 */ 1854 static uint8_t * 1855 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1856 { 1857 1858 if (ic->ic_countryie == NULL || 1859 ic->ic_countryie_chan != ic->ic_bsschan) { 1860 /* 1861 * Handle lazy construction of ie. This is done on 1862 * first use and after a channel change that requires 1863 * re-calculation. 1864 */ 1865 if (ic->ic_countryie != NULL) 1866 free(ic->ic_countryie, M_80211_NODE_IE); 1867 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1868 if (ic->ic_countryie == NULL) 1869 return frm; 1870 ic->ic_countryie_chan = ic->ic_bsschan; 1871 } 1872 return add_appie(frm, ic->ic_countryie); 1873 } 1874 1875 /* 1876 * Send a probe request frame with the specified ssid 1877 * and any optional information element data. 1878 */ 1879 int 1880 ieee80211_send_probereq(struct ieee80211_node *ni, 1881 const uint8_t sa[IEEE80211_ADDR_LEN], 1882 const uint8_t da[IEEE80211_ADDR_LEN], 1883 const uint8_t bssid[IEEE80211_ADDR_LEN], 1884 const uint8_t *ssid, size_t ssidlen) 1885 { 1886 struct ieee80211vap *vap = ni->ni_vap; 1887 struct ieee80211com *ic = ni->ni_ic; 1888 const struct ieee80211_txparam *tp; 1889 struct ieee80211_bpf_params params; 1890 struct ieee80211_frame *wh; 1891 const struct ieee80211_rateset *rs; 1892 struct mbuf *m; 1893 uint8_t *frm; 1894 int ret; 1895 1896 if (vap->iv_state == IEEE80211_S_CAC) { 1897 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 1898 "block %s frame in CAC state", "probe request"); 1899 vap->iv_stats.is_tx_badstate++; 1900 return EIO; /* XXX */ 1901 } 1902 1903 /* 1904 * Hold a reference on the node so it doesn't go away until after 1905 * the xmit is complete all the way in the driver. On error we 1906 * will remove our reference. 1907 */ 1908 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 1909 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1910 __func__, __LINE__, 1911 ni, ether_sprintf(ni->ni_macaddr), 1912 ieee80211_node_refcnt(ni)+1); 1913 ieee80211_ref_node(ni); 1914 1915 /* 1916 * prreq frame format 1917 * [tlv] ssid 1918 * [tlv] supported rates 1919 * [tlv] RSN (optional) 1920 * [tlv] extended supported rates 1921 * [tlv] WPA (optional) 1922 * [tlv] user-specified ie's 1923 */ 1924 m = ieee80211_getmgtframe(&frm, 1925 ic->ic_headroom + sizeof(struct ieee80211_frame), 1926 2 + IEEE80211_NWID_LEN 1927 + 2 + IEEE80211_RATE_SIZE 1928 + sizeof(struct ieee80211_ie_wpa) 1929 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1930 + sizeof(struct ieee80211_ie_wpa) 1931 + (vap->iv_appie_probereq != NULL ? 1932 vap->iv_appie_probereq->ie_len : 0) 1933 ); 1934 if (m == NULL) { 1935 vap->iv_stats.is_tx_nobuf++; 1936 ieee80211_free_node(ni); 1937 return ENOMEM; 1938 } 1939 1940 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1941 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 1942 frm = ieee80211_add_rates(frm, rs); 1943 if (vap->iv_flags & IEEE80211_F_WPA2) { 1944 if (vap->iv_rsn_ie != NULL) 1945 frm = add_ie(frm, vap->iv_rsn_ie); 1946 /* XXX else complain? */ 1947 } 1948 frm = ieee80211_add_xrates(frm, rs); 1949 if (vap->iv_flags & IEEE80211_F_WPA1) { 1950 if (vap->iv_wpa_ie != NULL) 1951 frm = add_ie(frm, vap->iv_wpa_ie); 1952 /* XXX else complain? */ 1953 } 1954 if (vap->iv_appie_probereq != NULL) 1955 frm = add_appie(frm, vap->iv_appie_probereq); 1956 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 1957 1958 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 1959 ("leading space %zd", M_LEADINGSPACE(m))); 1960 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 1961 if (m == NULL) { 1962 /* NB: cannot happen */ 1963 ieee80211_free_node(ni); 1964 return ENOMEM; 1965 } 1966 1967 IEEE80211_TX_LOCK(ic); 1968 wh = mtod(m, struct ieee80211_frame *); 1969 ieee80211_send_setup(ni, m, 1970 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1971 IEEE80211_NONQOS_TID, sa, da, bssid); 1972 /* XXX power management? */ 1973 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1974 1975 M_WME_SETAC(m, WME_AC_BE); 1976 1977 IEEE80211_NODE_STAT(ni, tx_probereq); 1978 IEEE80211_NODE_STAT(ni, tx_mgmt); 1979 1980 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1981 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 1982 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 1983 ssidlen, ssid); 1984 1985 memset(¶ms, 0, sizeof(params)); 1986 params.ibp_pri = M_WME_GETAC(m); 1987 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 1988 params.ibp_rate0 = tp->mgmtrate; 1989 if (IEEE80211_IS_MULTICAST(da)) { 1990 params.ibp_flags |= IEEE80211_BPF_NOACK; 1991 params.ibp_try0 = 1; 1992 } else 1993 params.ibp_try0 = tp->maxretry; 1994 params.ibp_power = ni->ni_txpower; 1995 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 1996 IEEE80211_TX_UNLOCK(ic); 1997 return (ret); 1998 } 1999 2000 /* 2001 * Calculate capability information for mgt frames. 2002 */ 2003 uint16_t 2004 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2005 { 2006 struct ieee80211com *ic = vap->iv_ic; 2007 uint16_t capinfo; 2008 2009 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2010 2011 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2012 capinfo = IEEE80211_CAPINFO_ESS; 2013 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2014 capinfo = IEEE80211_CAPINFO_IBSS; 2015 else 2016 capinfo = 0; 2017 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2018 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2019 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2020 IEEE80211_IS_CHAN_2GHZ(chan)) 2021 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2022 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2023 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2024 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2025 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2026 return capinfo; 2027 } 2028 2029 /* 2030 * Send a management frame. The node is for the destination (or ic_bss 2031 * when in station mode). Nodes other than ic_bss have their reference 2032 * count bumped to reflect our use for an indeterminant time. 2033 */ 2034 int 2035 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2036 { 2037 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2038 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2039 struct ieee80211vap *vap = ni->ni_vap; 2040 struct ieee80211com *ic = ni->ni_ic; 2041 struct ieee80211_node *bss = vap->iv_bss; 2042 struct ieee80211_bpf_params params; 2043 struct mbuf *m; 2044 uint8_t *frm; 2045 uint16_t capinfo; 2046 int has_challenge, is_shared_key, ret, status; 2047 2048 KASSERT(ni != NULL, ("null node")); 2049 2050 /* 2051 * Hold a reference on the node so it doesn't go away until after 2052 * the xmit is complete all the way in the driver. On error we 2053 * will remove our reference. 2054 */ 2055 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2056 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2057 __func__, __LINE__, 2058 ni, ether_sprintf(ni->ni_macaddr), 2059 ieee80211_node_refcnt(ni)+1); 2060 ieee80211_ref_node(ni); 2061 2062 memset(¶ms, 0, sizeof(params)); 2063 switch (type) { 2064 2065 case IEEE80211_FC0_SUBTYPE_AUTH: 2066 status = arg >> 16; 2067 arg &= 0xffff; 2068 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2069 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2070 ni->ni_challenge != NULL); 2071 2072 /* 2073 * Deduce whether we're doing open authentication or 2074 * shared key authentication. We do the latter if 2075 * we're in the middle of a shared key authentication 2076 * handshake or if we're initiating an authentication 2077 * request and configured to use shared key. 2078 */ 2079 is_shared_key = has_challenge || 2080 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2081 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2082 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2083 2084 m = ieee80211_getmgtframe(&frm, 2085 ic->ic_headroom + sizeof(struct ieee80211_frame), 2086 3 * sizeof(uint16_t) 2087 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2088 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2089 ); 2090 if (m == NULL) 2091 senderr(ENOMEM, is_tx_nobuf); 2092 2093 ((uint16_t *)frm)[0] = 2094 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2095 : htole16(IEEE80211_AUTH_ALG_OPEN); 2096 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2097 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2098 2099 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2100 ((uint16_t *)frm)[3] = 2101 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2102 IEEE80211_ELEMID_CHALLENGE); 2103 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2104 IEEE80211_CHALLENGE_LEN); 2105 m->m_pkthdr.len = m->m_len = 2106 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2107 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2108 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2109 "request encrypt frame (%s)", __func__); 2110 /* mark frame for encryption */ 2111 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2112 } 2113 } else 2114 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2115 2116 /* XXX not right for shared key */ 2117 if (status == IEEE80211_STATUS_SUCCESS) 2118 IEEE80211_NODE_STAT(ni, tx_auth); 2119 else 2120 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2121 2122 if (vap->iv_opmode == IEEE80211_M_STA) 2123 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2124 (void *) vap->iv_state); 2125 break; 2126 2127 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2128 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2129 "send station deauthenticate (reason %d)", arg); 2130 m = ieee80211_getmgtframe(&frm, 2131 ic->ic_headroom + sizeof(struct ieee80211_frame), 2132 sizeof(uint16_t)); 2133 if (m == NULL) 2134 senderr(ENOMEM, is_tx_nobuf); 2135 *(uint16_t *)frm = htole16(arg); /* reason */ 2136 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2137 2138 IEEE80211_NODE_STAT(ni, tx_deauth); 2139 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2140 2141 ieee80211_node_unauthorize(ni); /* port closed */ 2142 break; 2143 2144 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2145 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2146 /* 2147 * asreq frame format 2148 * [2] capability information 2149 * [2] listen interval 2150 * [6*] current AP address (reassoc only) 2151 * [tlv] ssid 2152 * [tlv] supported rates 2153 * [tlv] extended supported rates 2154 * [4] power capability (optional) 2155 * [28] supported channels (optional) 2156 * [tlv] HT capabilities 2157 * [tlv] WME (optional) 2158 * [tlv] Vendor OUI HT capabilities (optional) 2159 * [tlv] Atheros capabilities (if negotiated) 2160 * [tlv] AppIE's (optional) 2161 */ 2162 m = ieee80211_getmgtframe(&frm, 2163 ic->ic_headroom + sizeof(struct ieee80211_frame), 2164 sizeof(uint16_t) 2165 + sizeof(uint16_t) 2166 + IEEE80211_ADDR_LEN 2167 + 2 + IEEE80211_NWID_LEN 2168 + 2 + IEEE80211_RATE_SIZE 2169 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2170 + 4 2171 + 2 + 26 2172 + sizeof(struct ieee80211_wme_info) 2173 + sizeof(struct ieee80211_ie_htcap) 2174 + 4 + sizeof(struct ieee80211_ie_htcap) 2175 #ifdef IEEE80211_SUPPORT_SUPERG 2176 + sizeof(struct ieee80211_ath_ie) 2177 #endif 2178 + (vap->iv_appie_wpa != NULL ? 2179 vap->iv_appie_wpa->ie_len : 0) 2180 + (vap->iv_appie_assocreq != NULL ? 2181 vap->iv_appie_assocreq->ie_len : 0) 2182 ); 2183 if (m == NULL) 2184 senderr(ENOMEM, is_tx_nobuf); 2185 2186 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2187 ("wrong mode %u", vap->iv_opmode)); 2188 capinfo = IEEE80211_CAPINFO_ESS; 2189 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2190 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2191 /* 2192 * NB: Some 11a AP's reject the request when 2193 * short premable is set. 2194 */ 2195 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2196 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2197 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2198 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2199 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2200 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2201 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2202 (vap->iv_flags & IEEE80211_F_DOTH)) 2203 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2204 *(uint16_t *)frm = htole16(capinfo); 2205 frm += 2; 2206 2207 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2208 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2209 bss->ni_intval)); 2210 frm += 2; 2211 2212 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2213 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2214 frm += IEEE80211_ADDR_LEN; 2215 } 2216 2217 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2218 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2219 if (vap->iv_flags & IEEE80211_F_WPA2) { 2220 if (vap->iv_rsn_ie != NULL) 2221 frm = add_ie(frm, vap->iv_rsn_ie); 2222 /* XXX else complain? */ 2223 } 2224 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2225 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2226 frm = ieee80211_add_powercapability(frm, 2227 ic->ic_curchan); 2228 frm = ieee80211_add_supportedchannels(frm, ic); 2229 } 2230 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2231 ni->ni_ies.htcap_ie != NULL && 2232 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) 2233 frm = ieee80211_add_htcap(frm, ni); 2234 if (vap->iv_flags & IEEE80211_F_WPA1) { 2235 if (vap->iv_wpa_ie != NULL) 2236 frm = add_ie(frm, vap->iv_wpa_ie); 2237 /* XXX else complain */ 2238 } 2239 if ((ic->ic_flags & IEEE80211_F_WME) && 2240 ni->ni_ies.wme_ie != NULL) 2241 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2242 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2243 ni->ni_ies.htcap_ie != NULL && 2244 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) 2245 frm = ieee80211_add_htcap_vendor(frm, ni); 2246 #ifdef IEEE80211_SUPPORT_SUPERG 2247 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2248 frm = ieee80211_add_ath(frm, 2249 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2250 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2251 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2252 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2253 } 2254 #endif /* IEEE80211_SUPPORT_SUPERG */ 2255 if (vap->iv_appie_assocreq != NULL) 2256 frm = add_appie(frm, vap->iv_appie_assocreq); 2257 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2258 2259 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2260 (void *) vap->iv_state); 2261 break; 2262 2263 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2264 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2265 /* 2266 * asresp frame format 2267 * [2] capability information 2268 * [2] status 2269 * [2] association ID 2270 * [tlv] supported rates 2271 * [tlv] extended supported rates 2272 * [tlv] HT capabilities (standard, if STA enabled) 2273 * [tlv] HT information (standard, if STA enabled) 2274 * [tlv] WME (if configured and STA enabled) 2275 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2276 * [tlv] HT information (vendor OUI, if STA enabled) 2277 * [tlv] Atheros capabilities (if STA enabled) 2278 * [tlv] AppIE's (optional) 2279 */ 2280 m = ieee80211_getmgtframe(&frm, 2281 ic->ic_headroom + sizeof(struct ieee80211_frame), 2282 sizeof(uint16_t) 2283 + sizeof(uint16_t) 2284 + sizeof(uint16_t) 2285 + 2 + IEEE80211_RATE_SIZE 2286 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2287 + sizeof(struct ieee80211_ie_htcap) + 4 2288 + sizeof(struct ieee80211_ie_htinfo) + 4 2289 + sizeof(struct ieee80211_wme_param) 2290 #ifdef IEEE80211_SUPPORT_SUPERG 2291 + sizeof(struct ieee80211_ath_ie) 2292 #endif 2293 + (vap->iv_appie_assocresp != NULL ? 2294 vap->iv_appie_assocresp->ie_len : 0) 2295 ); 2296 if (m == NULL) 2297 senderr(ENOMEM, is_tx_nobuf); 2298 2299 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2300 *(uint16_t *)frm = htole16(capinfo); 2301 frm += 2; 2302 2303 *(uint16_t *)frm = htole16(arg); /* status */ 2304 frm += 2; 2305 2306 if (arg == IEEE80211_STATUS_SUCCESS) { 2307 *(uint16_t *)frm = htole16(ni->ni_associd); 2308 IEEE80211_NODE_STAT(ni, tx_assoc); 2309 } else 2310 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2311 frm += 2; 2312 2313 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2314 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2315 /* NB: respond according to what we received */ 2316 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2317 frm = ieee80211_add_htcap(frm, ni); 2318 frm = ieee80211_add_htinfo(frm, ni); 2319 } 2320 if ((vap->iv_flags & IEEE80211_F_WME) && 2321 ni->ni_ies.wme_ie != NULL) 2322 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2323 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2324 frm = ieee80211_add_htcap_vendor(frm, ni); 2325 frm = ieee80211_add_htinfo_vendor(frm, ni); 2326 } 2327 #ifdef IEEE80211_SUPPORT_SUPERG 2328 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2329 frm = ieee80211_add_ath(frm, 2330 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2331 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2332 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2333 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2334 #endif /* IEEE80211_SUPPORT_SUPERG */ 2335 if (vap->iv_appie_assocresp != NULL) 2336 frm = add_appie(frm, vap->iv_appie_assocresp); 2337 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2338 break; 2339 2340 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2341 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2342 "send station disassociate (reason %d)", arg); 2343 m = ieee80211_getmgtframe(&frm, 2344 ic->ic_headroom + sizeof(struct ieee80211_frame), 2345 sizeof(uint16_t)); 2346 if (m == NULL) 2347 senderr(ENOMEM, is_tx_nobuf); 2348 *(uint16_t *)frm = htole16(arg); /* reason */ 2349 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2350 2351 IEEE80211_NODE_STAT(ni, tx_disassoc); 2352 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2353 break; 2354 2355 default: 2356 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2357 "invalid mgmt frame type %u", type); 2358 senderr(EINVAL, is_tx_unknownmgt); 2359 /* NOTREACHED */ 2360 } 2361 2362 /* NB: force non-ProbeResp frames to the highest queue */ 2363 params.ibp_pri = WME_AC_VO; 2364 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2365 /* NB: we know all frames are unicast */ 2366 params.ibp_try0 = bss->ni_txparms->maxretry; 2367 params.ibp_power = bss->ni_txpower; 2368 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2369 bad: 2370 ieee80211_free_node(ni); 2371 return ret; 2372 #undef senderr 2373 #undef HTFLAGS 2374 } 2375 2376 /* 2377 * Return an mbuf with a probe response frame in it. 2378 * Space is left to prepend and 802.11 header at the 2379 * front but it's left to the caller to fill in. 2380 */ 2381 struct mbuf * 2382 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2383 { 2384 struct ieee80211vap *vap = bss->ni_vap; 2385 struct ieee80211com *ic = bss->ni_ic; 2386 const struct ieee80211_rateset *rs; 2387 struct mbuf *m; 2388 uint16_t capinfo; 2389 uint8_t *frm; 2390 2391 /* 2392 * probe response frame format 2393 * [8] time stamp 2394 * [2] beacon interval 2395 * [2] cabability information 2396 * [tlv] ssid 2397 * [tlv] supported rates 2398 * [tlv] parameter set (FH/DS) 2399 * [tlv] parameter set (IBSS) 2400 * [tlv] country (optional) 2401 * [3] power control (optional) 2402 * [5] channel switch announcement (CSA) (optional) 2403 * [tlv] extended rate phy (ERP) 2404 * [tlv] extended supported rates 2405 * [tlv] RSN (optional) 2406 * [tlv] HT capabilities 2407 * [tlv] HT information 2408 * [tlv] WPA (optional) 2409 * [tlv] WME (optional) 2410 * [tlv] Vendor OUI HT capabilities (optional) 2411 * [tlv] Vendor OUI HT information (optional) 2412 * [tlv] Atheros capabilities 2413 * [tlv] AppIE's (optional) 2414 * [tlv] Mesh ID (MBSS) 2415 * [tlv] Mesh Conf (MBSS) 2416 */ 2417 m = ieee80211_getmgtframe(&frm, 2418 ic->ic_headroom + sizeof(struct ieee80211_frame), 2419 8 2420 + sizeof(uint16_t) 2421 + sizeof(uint16_t) 2422 + 2 + IEEE80211_NWID_LEN 2423 + 2 + IEEE80211_RATE_SIZE 2424 + 7 /* max(7,3) */ 2425 + IEEE80211_COUNTRY_MAX_SIZE 2426 + 3 2427 + sizeof(struct ieee80211_csa_ie) 2428 + sizeof(struct ieee80211_quiet_ie) 2429 + 3 2430 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2431 + sizeof(struct ieee80211_ie_wpa) 2432 + sizeof(struct ieee80211_ie_htcap) 2433 + sizeof(struct ieee80211_ie_htinfo) 2434 + sizeof(struct ieee80211_ie_wpa) 2435 + sizeof(struct ieee80211_wme_param) 2436 + 4 + sizeof(struct ieee80211_ie_htcap) 2437 + 4 + sizeof(struct ieee80211_ie_htinfo) 2438 #ifdef IEEE80211_SUPPORT_SUPERG 2439 + sizeof(struct ieee80211_ath_ie) 2440 #endif 2441 #ifdef IEEE80211_SUPPORT_MESH 2442 + 2 + IEEE80211_MESHID_LEN 2443 + sizeof(struct ieee80211_meshconf_ie) 2444 #endif 2445 + (vap->iv_appie_proberesp != NULL ? 2446 vap->iv_appie_proberesp->ie_len : 0) 2447 ); 2448 if (m == NULL) { 2449 vap->iv_stats.is_tx_nobuf++; 2450 return NULL; 2451 } 2452 2453 memset(frm, 0, 8); /* timestamp should be filled later */ 2454 frm += 8; 2455 *(uint16_t *)frm = htole16(bss->ni_intval); 2456 frm += 2; 2457 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2458 *(uint16_t *)frm = htole16(capinfo); 2459 frm += 2; 2460 2461 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2462 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2463 frm = ieee80211_add_rates(frm, rs); 2464 2465 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2466 *frm++ = IEEE80211_ELEMID_FHPARMS; 2467 *frm++ = 5; 2468 *frm++ = bss->ni_fhdwell & 0x00ff; 2469 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2470 *frm++ = IEEE80211_FH_CHANSET( 2471 ieee80211_chan2ieee(ic, bss->ni_chan)); 2472 *frm++ = IEEE80211_FH_CHANPAT( 2473 ieee80211_chan2ieee(ic, bss->ni_chan)); 2474 *frm++ = bss->ni_fhindex; 2475 } else { 2476 *frm++ = IEEE80211_ELEMID_DSPARMS; 2477 *frm++ = 1; 2478 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2479 } 2480 2481 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2482 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2483 *frm++ = 2; 2484 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2485 } 2486 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2487 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2488 frm = ieee80211_add_countryie(frm, ic); 2489 if (vap->iv_flags & IEEE80211_F_DOTH) { 2490 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2491 frm = ieee80211_add_powerconstraint(frm, vap); 2492 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2493 frm = ieee80211_add_csa(frm, vap); 2494 } 2495 if (vap->iv_flags & IEEE80211_F_DOTH) { 2496 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2497 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2498 if (vap->iv_quiet) 2499 frm = ieee80211_add_quiet(frm, vap); 2500 } 2501 } 2502 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2503 frm = ieee80211_add_erp(frm, ic); 2504 frm = ieee80211_add_xrates(frm, rs); 2505 if (vap->iv_flags & IEEE80211_F_WPA2) { 2506 if (vap->iv_rsn_ie != NULL) 2507 frm = add_ie(frm, vap->iv_rsn_ie); 2508 /* XXX else complain? */ 2509 } 2510 /* 2511 * NB: legacy 11b clients do not get certain ie's. 2512 * The caller identifies such clients by passing 2513 * a token in legacy to us. Could expand this to be 2514 * any legacy client for stuff like HT ie's. 2515 */ 2516 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2517 legacy != IEEE80211_SEND_LEGACY_11B) { 2518 frm = ieee80211_add_htcap(frm, bss); 2519 frm = ieee80211_add_htinfo(frm, bss); 2520 } 2521 if (vap->iv_flags & IEEE80211_F_WPA1) { 2522 if (vap->iv_wpa_ie != NULL) 2523 frm = add_ie(frm, vap->iv_wpa_ie); 2524 /* XXX else complain? */ 2525 } 2526 if (vap->iv_flags & IEEE80211_F_WME) 2527 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2528 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2529 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2530 legacy != IEEE80211_SEND_LEGACY_11B) { 2531 frm = ieee80211_add_htcap_vendor(frm, bss); 2532 frm = ieee80211_add_htinfo_vendor(frm, bss); 2533 } 2534 #ifdef IEEE80211_SUPPORT_SUPERG 2535 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2536 legacy != IEEE80211_SEND_LEGACY_11B) 2537 frm = ieee80211_add_athcaps(frm, bss); 2538 #endif 2539 if (vap->iv_appie_proberesp != NULL) 2540 frm = add_appie(frm, vap->iv_appie_proberesp); 2541 #ifdef IEEE80211_SUPPORT_MESH 2542 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2543 frm = ieee80211_add_meshid(frm, vap); 2544 frm = ieee80211_add_meshconf(frm, vap); 2545 } 2546 #endif 2547 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2548 2549 return m; 2550 } 2551 2552 /* 2553 * Send a probe response frame to the specified mac address. 2554 * This does not go through the normal mgt frame api so we 2555 * can specify the destination address and re-use the bss node 2556 * for the sta reference. 2557 */ 2558 int 2559 ieee80211_send_proberesp(struct ieee80211vap *vap, 2560 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2561 { 2562 struct ieee80211_node *bss = vap->iv_bss; 2563 struct ieee80211com *ic = vap->iv_ic; 2564 struct ieee80211_frame *wh; 2565 struct mbuf *m; 2566 int ret; 2567 2568 if (vap->iv_state == IEEE80211_S_CAC) { 2569 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2570 "block %s frame in CAC state", "probe response"); 2571 vap->iv_stats.is_tx_badstate++; 2572 return EIO; /* XXX */ 2573 } 2574 2575 /* 2576 * Hold a reference on the node so it doesn't go away until after 2577 * the xmit is complete all the way in the driver. On error we 2578 * will remove our reference. 2579 */ 2580 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2581 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2582 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2583 ieee80211_node_refcnt(bss)+1); 2584 ieee80211_ref_node(bss); 2585 2586 m = ieee80211_alloc_proberesp(bss, legacy); 2587 if (m == NULL) { 2588 ieee80211_free_node(bss); 2589 return ENOMEM; 2590 } 2591 2592 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2593 KASSERT(m != NULL, ("no room for header")); 2594 2595 IEEE80211_TX_LOCK(ic); 2596 wh = mtod(m, struct ieee80211_frame *); 2597 ieee80211_send_setup(bss, m, 2598 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2599 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2600 /* XXX power management? */ 2601 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2602 2603 M_WME_SETAC(m, WME_AC_BE); 2604 2605 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2606 "send probe resp on channel %u to %s%s\n", 2607 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2608 legacy ? " <legacy>" : ""); 2609 IEEE80211_NODE_STAT(bss, tx_mgmt); 2610 2611 ret = ieee80211_raw_output(vap, bss, m, NULL); 2612 IEEE80211_TX_UNLOCK(ic); 2613 return (ret); 2614 } 2615 2616 /* 2617 * Allocate and build a RTS (Request To Send) control frame. 2618 */ 2619 struct mbuf * 2620 ieee80211_alloc_rts(struct ieee80211com *ic, 2621 const uint8_t ra[IEEE80211_ADDR_LEN], 2622 const uint8_t ta[IEEE80211_ADDR_LEN], 2623 uint16_t dur) 2624 { 2625 struct ieee80211_frame_rts *rts; 2626 struct mbuf *m; 2627 2628 /* XXX honor ic_headroom */ 2629 m = m_gethdr(M_NOWAIT, MT_DATA); 2630 if (m != NULL) { 2631 rts = mtod(m, struct ieee80211_frame_rts *); 2632 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2633 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2634 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2635 *(u_int16_t *)rts->i_dur = htole16(dur); 2636 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2637 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2638 2639 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2640 } 2641 return m; 2642 } 2643 2644 /* 2645 * Allocate and build a CTS (Clear To Send) control frame. 2646 */ 2647 struct mbuf * 2648 ieee80211_alloc_cts(struct ieee80211com *ic, 2649 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2650 { 2651 struct ieee80211_frame_cts *cts; 2652 struct mbuf *m; 2653 2654 /* XXX honor ic_headroom */ 2655 m = m_gethdr(M_NOWAIT, MT_DATA); 2656 if (m != NULL) { 2657 cts = mtod(m, struct ieee80211_frame_cts *); 2658 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2659 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2660 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2661 *(u_int16_t *)cts->i_dur = htole16(dur); 2662 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2663 2664 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2665 } 2666 return m; 2667 } 2668 2669 static void 2670 ieee80211_tx_mgt_timeout(void *arg) 2671 { 2672 struct ieee80211_node *ni = arg; 2673 struct ieee80211vap *vap = ni->ni_vap; 2674 2675 if (vap->iv_state != IEEE80211_S_INIT && 2676 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2677 /* 2678 * NB: it's safe to specify a timeout as the reason here; 2679 * it'll only be used in the right state. 2680 */ 2681 ieee80211_new_state(vap, IEEE80211_S_SCAN, 2682 IEEE80211_SCAN_FAIL_TIMEOUT); 2683 } 2684 } 2685 2686 static void 2687 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2688 { 2689 struct ieee80211vap *vap = ni->ni_vap; 2690 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2691 2692 /* 2693 * Frame transmit completed; arrange timer callback. If 2694 * transmit was successfuly we wait for response. Otherwise 2695 * we arrange an immediate callback instead of doing the 2696 * callback directly since we don't know what state the driver 2697 * is in (e.g. what locks it is holding). This work should 2698 * not be too time-critical and not happen too often so the 2699 * added overhead is acceptable. 2700 * 2701 * XXX what happens if !acked but response shows up before callback? 2702 */ 2703 if (vap->iv_state == ostate) 2704 callout_reset(&vap->iv_mgtsend, 2705 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2706 ieee80211_tx_mgt_timeout, ni); 2707 } 2708 2709 static void 2710 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2711 struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni) 2712 { 2713 struct ieee80211vap *vap = ni->ni_vap; 2714 struct ieee80211com *ic = ni->ni_ic; 2715 struct ieee80211_rateset *rs = &ni->ni_rates; 2716 uint16_t capinfo; 2717 2718 /* 2719 * beacon frame format 2720 * [8] time stamp 2721 * [2] beacon interval 2722 * [2] cabability information 2723 * [tlv] ssid 2724 * [tlv] supported rates 2725 * [3] parameter set (DS) 2726 * [8] CF parameter set (optional) 2727 * [tlv] parameter set (IBSS/TIM) 2728 * [tlv] country (optional) 2729 * [3] power control (optional) 2730 * [5] channel switch announcement (CSA) (optional) 2731 * [tlv] extended rate phy (ERP) 2732 * [tlv] extended supported rates 2733 * [tlv] RSN parameters 2734 * [tlv] HT capabilities 2735 * [tlv] HT information 2736 * XXX Vendor-specific OIDs (e.g. Atheros) 2737 * [tlv] WPA parameters 2738 * [tlv] WME parameters 2739 * [tlv] Vendor OUI HT capabilities (optional) 2740 * [tlv] Vendor OUI HT information (optional) 2741 * [tlv] Atheros capabilities (optional) 2742 * [tlv] TDMA parameters (optional) 2743 * [tlv] Mesh ID (MBSS) 2744 * [tlv] Mesh Conf (MBSS) 2745 * [tlv] application data (optional) 2746 */ 2747 2748 memset(bo, 0, sizeof(*bo)); 2749 2750 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2751 frm += 8; 2752 *(uint16_t *)frm = htole16(ni->ni_intval); 2753 frm += 2; 2754 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2755 bo->bo_caps = (uint16_t *)frm; 2756 *(uint16_t *)frm = htole16(capinfo); 2757 frm += 2; 2758 *frm++ = IEEE80211_ELEMID_SSID; 2759 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2760 *frm++ = ni->ni_esslen; 2761 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2762 frm += ni->ni_esslen; 2763 } else 2764 *frm++ = 0; 2765 frm = ieee80211_add_rates(frm, rs); 2766 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2767 *frm++ = IEEE80211_ELEMID_DSPARMS; 2768 *frm++ = 1; 2769 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2770 } 2771 if (ic->ic_flags & IEEE80211_F_PCF) { 2772 bo->bo_cfp = frm; 2773 frm = ieee80211_add_cfparms(frm, ic); 2774 } 2775 bo->bo_tim = frm; 2776 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2777 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2778 *frm++ = 2; 2779 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2780 bo->bo_tim_len = 0; 2781 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2782 vap->iv_opmode == IEEE80211_M_MBSS) { 2783 /* TIM IE is the same for Mesh and Hostap */ 2784 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2785 2786 tie->tim_ie = IEEE80211_ELEMID_TIM; 2787 tie->tim_len = 4; /* length */ 2788 tie->tim_count = 0; /* DTIM count */ 2789 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2790 tie->tim_bitctl = 0; /* bitmap control */ 2791 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2792 frm += sizeof(struct ieee80211_tim_ie); 2793 bo->bo_tim_len = 1; 2794 } 2795 bo->bo_tim_trailer = frm; 2796 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2797 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2798 frm = ieee80211_add_countryie(frm, ic); 2799 if (vap->iv_flags & IEEE80211_F_DOTH) { 2800 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2801 frm = ieee80211_add_powerconstraint(frm, vap); 2802 bo->bo_csa = frm; 2803 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2804 frm = ieee80211_add_csa(frm, vap); 2805 } else 2806 bo->bo_csa = frm; 2807 2808 if (vap->iv_flags & IEEE80211_F_DOTH) { 2809 bo->bo_quiet = frm; 2810 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2811 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2812 if (vap->iv_quiet) 2813 frm = ieee80211_add_quiet(frm,vap); 2814 } 2815 } else 2816 bo->bo_quiet = frm; 2817 2818 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2819 bo->bo_erp = frm; 2820 frm = ieee80211_add_erp(frm, ic); 2821 } 2822 frm = ieee80211_add_xrates(frm, rs); 2823 if (vap->iv_flags & IEEE80211_F_WPA2) { 2824 if (vap->iv_rsn_ie != NULL) 2825 frm = add_ie(frm, vap->iv_rsn_ie); 2826 /* XXX else complain */ 2827 } 2828 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2829 frm = ieee80211_add_htcap(frm, ni); 2830 bo->bo_htinfo = frm; 2831 frm = ieee80211_add_htinfo(frm, ni); 2832 } 2833 if (vap->iv_flags & IEEE80211_F_WPA1) { 2834 if (vap->iv_wpa_ie != NULL) 2835 frm = add_ie(frm, vap->iv_wpa_ie); 2836 /* XXX else complain */ 2837 } 2838 if (vap->iv_flags & IEEE80211_F_WME) { 2839 bo->bo_wme = frm; 2840 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2841 } 2842 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2843 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2844 frm = ieee80211_add_htcap_vendor(frm, ni); 2845 frm = ieee80211_add_htinfo_vendor(frm, ni); 2846 } 2847 #ifdef IEEE80211_SUPPORT_SUPERG 2848 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 2849 bo->bo_ath = frm; 2850 frm = ieee80211_add_athcaps(frm, ni); 2851 } 2852 #endif 2853 #ifdef IEEE80211_SUPPORT_TDMA 2854 if (vap->iv_caps & IEEE80211_C_TDMA) { 2855 bo->bo_tdma = frm; 2856 frm = ieee80211_add_tdma(frm, vap); 2857 } 2858 #endif 2859 if (vap->iv_appie_beacon != NULL) { 2860 bo->bo_appie = frm; 2861 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 2862 frm = add_appie(frm, vap->iv_appie_beacon); 2863 } 2864 #ifdef IEEE80211_SUPPORT_MESH 2865 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2866 frm = ieee80211_add_meshid(frm, vap); 2867 bo->bo_meshconf = frm; 2868 frm = ieee80211_add_meshconf(frm, vap); 2869 } 2870 #endif 2871 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 2872 bo->bo_csa_trailer_len = frm - bo->bo_csa; 2873 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2874 } 2875 2876 /* 2877 * Allocate a beacon frame and fillin the appropriate bits. 2878 */ 2879 struct mbuf * 2880 ieee80211_beacon_alloc(struct ieee80211_node *ni, 2881 struct ieee80211_beacon_offsets *bo) 2882 { 2883 struct ieee80211vap *vap = ni->ni_vap; 2884 struct ieee80211com *ic = ni->ni_ic; 2885 struct ifnet *ifp = vap->iv_ifp; 2886 struct ieee80211_frame *wh; 2887 struct mbuf *m; 2888 int pktlen; 2889 uint8_t *frm; 2890 2891 /* 2892 * beacon frame format 2893 * [8] time stamp 2894 * [2] beacon interval 2895 * [2] cabability information 2896 * [tlv] ssid 2897 * [tlv] supported rates 2898 * [3] parameter set (DS) 2899 * [8] CF parameter set (optional) 2900 * [tlv] parameter set (IBSS/TIM) 2901 * [tlv] country (optional) 2902 * [3] power control (optional) 2903 * [5] channel switch announcement (CSA) (optional) 2904 * [tlv] extended rate phy (ERP) 2905 * [tlv] extended supported rates 2906 * [tlv] RSN parameters 2907 * [tlv] HT capabilities 2908 * [tlv] HT information 2909 * [tlv] Vendor OUI HT capabilities (optional) 2910 * [tlv] Vendor OUI HT information (optional) 2911 * XXX Vendor-specific OIDs (e.g. Atheros) 2912 * [tlv] WPA parameters 2913 * [tlv] WME parameters 2914 * [tlv] TDMA parameters (optional) 2915 * [tlv] Mesh ID (MBSS) 2916 * [tlv] Mesh Conf (MBSS) 2917 * [tlv] application data (optional) 2918 * NB: we allocate the max space required for the TIM bitmap. 2919 * XXX how big is this? 2920 */ 2921 pktlen = 8 /* time stamp */ 2922 + sizeof(uint16_t) /* beacon interval */ 2923 + sizeof(uint16_t) /* capabilities */ 2924 + 2 + ni->ni_esslen /* ssid */ 2925 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 2926 + 2 + 1 /* DS parameters */ 2927 + 2 + 6 /* CF parameters */ 2928 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 2929 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 2930 + 2 + 1 /* power control */ 2931 + sizeof(struct ieee80211_csa_ie) /* CSA */ 2932 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 2933 + 2 + 1 /* ERP */ 2934 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2935 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 2936 2*sizeof(struct ieee80211_ie_wpa) : 0) 2937 /* XXX conditional? */ 2938 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 2939 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 2940 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 2941 sizeof(struct ieee80211_wme_param) : 0) 2942 #ifdef IEEE80211_SUPPORT_SUPERG 2943 + sizeof(struct ieee80211_ath_ie) /* ATH */ 2944 #endif 2945 #ifdef IEEE80211_SUPPORT_TDMA 2946 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 2947 sizeof(struct ieee80211_tdma_param) : 0) 2948 #endif 2949 #ifdef IEEE80211_SUPPORT_MESH 2950 + 2 + ni->ni_meshidlen 2951 + sizeof(struct ieee80211_meshconf_ie) 2952 #endif 2953 + IEEE80211_MAX_APPIE 2954 ; 2955 m = ieee80211_getmgtframe(&frm, 2956 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 2957 if (m == NULL) { 2958 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 2959 "%s: cannot get buf; size %u\n", __func__, pktlen); 2960 vap->iv_stats.is_tx_nobuf++; 2961 return NULL; 2962 } 2963 ieee80211_beacon_construct(m, frm, bo, ni); 2964 2965 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2966 KASSERT(m != NULL, ("no space for 802.11 header?")); 2967 wh = mtod(m, struct ieee80211_frame *); 2968 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 2969 IEEE80211_FC0_SUBTYPE_BEACON; 2970 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2971 *(uint16_t *)wh->i_dur = 0; 2972 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 2973 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 2974 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 2975 *(uint16_t *)wh->i_seq = 0; 2976 2977 return m; 2978 } 2979 2980 /* 2981 * Update the dynamic parts of a beacon frame based on the current state. 2982 */ 2983 int 2984 ieee80211_beacon_update(struct ieee80211_node *ni, 2985 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 2986 { 2987 struct ieee80211vap *vap = ni->ni_vap; 2988 struct ieee80211com *ic = ni->ni_ic; 2989 int len_changed = 0; 2990 uint16_t capinfo; 2991 struct ieee80211_frame *wh; 2992 ieee80211_seq seqno; 2993 2994 IEEE80211_LOCK(ic); 2995 /* 2996 * Handle 11h channel change when we've reached the count. 2997 * We must recalculate the beacon frame contents to account 2998 * for the new channel. Note we do this only for the first 2999 * vap that reaches this point; subsequent vaps just update 3000 * their beacon state to reflect the recalculated channel. 3001 */ 3002 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3003 vap->iv_csa_count == ic->ic_csa_count) { 3004 vap->iv_csa_count = 0; 3005 /* 3006 * Effect channel change before reconstructing the beacon 3007 * frame contents as many places reference ni_chan. 3008 */ 3009 if (ic->ic_csa_newchan != NULL) 3010 ieee80211_csa_completeswitch(ic); 3011 /* 3012 * NB: ieee80211_beacon_construct clears all pending 3013 * updates in bo_flags so we don't need to explicitly 3014 * clear IEEE80211_BEACON_CSA. 3015 */ 3016 ieee80211_beacon_construct(m, 3017 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni); 3018 3019 /* XXX do WME aggressive mode processing? */ 3020 IEEE80211_UNLOCK(ic); 3021 return 1; /* just assume length changed */ 3022 } 3023 3024 wh = mtod(m, struct ieee80211_frame *); 3025 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3026 *(uint16_t *)&wh->i_seq[0] = 3027 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3028 M_SEQNO_SET(m, seqno); 3029 3030 /* XXX faster to recalculate entirely or just changes? */ 3031 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3032 *bo->bo_caps = htole16(capinfo); 3033 3034 if (vap->iv_flags & IEEE80211_F_WME) { 3035 struct ieee80211_wme_state *wme = &ic->ic_wme; 3036 3037 /* 3038 * Check for agressive mode change. When there is 3039 * significant high priority traffic in the BSS 3040 * throttle back BE traffic by using conservative 3041 * parameters. Otherwise BE uses agressive params 3042 * to optimize performance of legacy/non-QoS traffic. 3043 */ 3044 if (wme->wme_flags & WME_F_AGGRMODE) { 3045 if (wme->wme_hipri_traffic > 3046 wme->wme_hipri_switch_thresh) { 3047 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3048 "%s: traffic %u, disable aggressive mode\n", 3049 __func__, wme->wme_hipri_traffic); 3050 wme->wme_flags &= ~WME_F_AGGRMODE; 3051 ieee80211_wme_updateparams_locked(vap); 3052 wme->wme_hipri_traffic = 3053 wme->wme_hipri_switch_hysteresis; 3054 } else 3055 wme->wme_hipri_traffic = 0; 3056 } else { 3057 if (wme->wme_hipri_traffic <= 3058 wme->wme_hipri_switch_thresh) { 3059 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3060 "%s: traffic %u, enable aggressive mode\n", 3061 __func__, wme->wme_hipri_traffic); 3062 wme->wme_flags |= WME_F_AGGRMODE; 3063 ieee80211_wme_updateparams_locked(vap); 3064 wme->wme_hipri_traffic = 0; 3065 } else 3066 wme->wme_hipri_traffic = 3067 wme->wme_hipri_switch_hysteresis; 3068 } 3069 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3070 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3071 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3072 } 3073 } 3074 3075 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3076 ieee80211_ht_update_beacon(vap, bo); 3077 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3078 } 3079 #ifdef IEEE80211_SUPPORT_TDMA 3080 if (vap->iv_caps & IEEE80211_C_TDMA) { 3081 /* 3082 * NB: the beacon is potentially updated every TBTT. 3083 */ 3084 ieee80211_tdma_update_beacon(vap, bo); 3085 } 3086 #endif 3087 #ifdef IEEE80211_SUPPORT_MESH 3088 if (vap->iv_opmode == IEEE80211_M_MBSS) 3089 ieee80211_mesh_update_beacon(vap, bo); 3090 #endif 3091 3092 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3093 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3094 struct ieee80211_tim_ie *tie = 3095 (struct ieee80211_tim_ie *) bo->bo_tim; 3096 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3097 u_int timlen, timoff, i; 3098 /* 3099 * ATIM/DTIM needs updating. If it fits in the 3100 * current space allocated then just copy in the 3101 * new bits. Otherwise we need to move any trailing 3102 * data to make room. Note that we know there is 3103 * contiguous space because ieee80211_beacon_allocate 3104 * insures there is space in the mbuf to write a 3105 * maximal-size virtual bitmap (based on iv_max_aid). 3106 */ 3107 /* 3108 * Calculate the bitmap size and offset, copy any 3109 * trailer out of the way, and then copy in the 3110 * new bitmap and update the information element. 3111 * Note that the tim bitmap must contain at least 3112 * one byte and any offset must be even. 3113 */ 3114 if (vap->iv_ps_pending != 0) { 3115 timoff = 128; /* impossibly large */ 3116 for (i = 0; i < vap->iv_tim_len; i++) 3117 if (vap->iv_tim_bitmap[i]) { 3118 timoff = i &~ 1; 3119 break; 3120 } 3121 KASSERT(timoff != 128, ("tim bitmap empty!")); 3122 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3123 if (vap->iv_tim_bitmap[i]) 3124 break; 3125 timlen = 1 + (i - timoff); 3126 } else { 3127 timoff = 0; 3128 timlen = 1; 3129 } 3130 if (timlen != bo->bo_tim_len) { 3131 /* copy up/down trailer */ 3132 int adjust = tie->tim_bitmap+timlen 3133 - bo->bo_tim_trailer; 3134 ovbcopy(bo->bo_tim_trailer, 3135 bo->bo_tim_trailer+adjust, 3136 bo->bo_tim_trailer_len); 3137 bo->bo_tim_trailer += adjust; 3138 bo->bo_erp += adjust; 3139 bo->bo_htinfo += adjust; 3140 #ifdef IEEE80211_SUPPORT_SUPERG 3141 bo->bo_ath += adjust; 3142 #endif 3143 #ifdef IEEE80211_SUPPORT_TDMA 3144 bo->bo_tdma += adjust; 3145 #endif 3146 #ifdef IEEE80211_SUPPORT_MESH 3147 bo->bo_meshconf += adjust; 3148 #endif 3149 bo->bo_appie += adjust; 3150 bo->bo_wme += adjust; 3151 bo->bo_csa += adjust; 3152 bo->bo_quiet += adjust; 3153 bo->bo_tim_len = timlen; 3154 3155 /* update information element */ 3156 tie->tim_len = 3 + timlen; 3157 tie->tim_bitctl = timoff; 3158 len_changed = 1; 3159 } 3160 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3161 bo->bo_tim_len); 3162 3163 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3164 3165 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3166 "%s: TIM updated, pending %u, off %u, len %u\n", 3167 __func__, vap->iv_ps_pending, timoff, timlen); 3168 } 3169 /* count down DTIM period */ 3170 if (tie->tim_count == 0) 3171 tie->tim_count = tie->tim_period - 1; 3172 else 3173 tie->tim_count--; 3174 /* update state for buffered multicast frames on DTIM */ 3175 if (mcast && tie->tim_count == 0) 3176 tie->tim_bitctl |= 1; 3177 else 3178 tie->tim_bitctl &= ~1; 3179 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3180 struct ieee80211_csa_ie *csa = 3181 (struct ieee80211_csa_ie *) bo->bo_csa; 3182 3183 /* 3184 * Insert or update CSA ie. If we're just starting 3185 * to count down to the channel switch then we need 3186 * to insert the CSA ie. Otherwise we just need to 3187 * drop the count. The actual change happens above 3188 * when the vap's count reaches the target count. 3189 */ 3190 if (vap->iv_csa_count == 0) { 3191 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3192 bo->bo_erp += sizeof(*csa); 3193 bo->bo_htinfo += sizeof(*csa); 3194 bo->bo_wme += sizeof(*csa); 3195 #ifdef IEEE80211_SUPPORT_SUPERG 3196 bo->bo_ath += sizeof(*csa); 3197 #endif 3198 #ifdef IEEE80211_SUPPORT_TDMA 3199 bo->bo_tdma += sizeof(*csa); 3200 #endif 3201 #ifdef IEEE80211_SUPPORT_MESH 3202 bo->bo_meshconf += sizeof(*csa); 3203 #endif 3204 bo->bo_appie += sizeof(*csa); 3205 bo->bo_csa_trailer_len += sizeof(*csa); 3206 bo->bo_quiet += sizeof(*csa); 3207 bo->bo_tim_trailer_len += sizeof(*csa); 3208 m->m_len += sizeof(*csa); 3209 m->m_pkthdr.len += sizeof(*csa); 3210 3211 ieee80211_add_csa(bo->bo_csa, vap); 3212 } else 3213 csa->csa_count--; 3214 vap->iv_csa_count++; 3215 /* NB: don't clear IEEE80211_BEACON_CSA */ 3216 } 3217 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3218 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3219 if (vap->iv_quiet) 3220 ieee80211_add_quiet(bo->bo_quiet, vap); 3221 } 3222 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3223 /* 3224 * ERP element needs updating. 3225 */ 3226 (void) ieee80211_add_erp(bo->bo_erp, ic); 3227 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3228 } 3229 #ifdef IEEE80211_SUPPORT_SUPERG 3230 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3231 ieee80211_add_athcaps(bo->bo_ath, ni); 3232 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3233 } 3234 #endif 3235 } 3236 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3237 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3238 int aielen; 3239 uint8_t *frm; 3240 3241 aielen = 0; 3242 if (aie != NULL) 3243 aielen += aie->ie_len; 3244 if (aielen != bo->bo_appie_len) { 3245 /* copy up/down trailer */ 3246 int adjust = aielen - bo->bo_appie_len; 3247 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3248 bo->bo_tim_trailer_len); 3249 bo->bo_tim_trailer += adjust; 3250 bo->bo_appie += adjust; 3251 bo->bo_appie_len = aielen; 3252 3253 len_changed = 1; 3254 } 3255 frm = bo->bo_appie; 3256 if (aie != NULL) 3257 frm = add_appie(frm, aie); 3258 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3259 } 3260 IEEE80211_UNLOCK(ic); 3261 3262 return len_changed; 3263 } 3264