1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote products 15 * derived from this software without specific prior written permission. 16 * 17 * Alternatively, this software may be distributed under the terms of the 18 * GNU General Public License ("GPL") version 2 as published by the Free 19 * Software Foundation. 20 * 21 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 22 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 23 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 24 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 26 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 27 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 28 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 29 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 30 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 31 */ 32 33 #include <sys/cdefs.h> 34 __FBSDID("$FreeBSD$"); 35 36 #include "opt_inet.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/mbuf.h> 41 #include <sys/kernel.h> 42 #include <sys/endian.h> 43 44 #include <sys/socket.h> 45 46 #include <net/bpf.h> 47 #include <net/ethernet.h> 48 #include <net/if.h> 49 #include <net/if_llc.h> 50 #include <net/if_media.h> 51 #include <net/if_vlan_var.h> 52 53 #include <net80211/ieee80211_var.h> 54 55 #ifdef INET 56 #include <netinet/in.h> 57 #include <netinet/if_ether.h> 58 #include <netinet/in_systm.h> 59 #include <netinet/ip.h> 60 #endif 61 62 #ifdef IEEE80211_DEBUG 63 /* 64 * Decide if an outbound management frame should be 65 * printed when debugging is enabled. This filters some 66 * of the less interesting frames that come frequently 67 * (e.g. beacons). 68 */ 69 static __inline int 70 doprint(struct ieee80211com *ic, int subtype) 71 { 72 switch (subtype) { 73 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 74 return (ic->ic_opmode == IEEE80211_M_IBSS); 75 } 76 return 1; 77 } 78 #endif 79 80 /* 81 * Set the direction field and address fields of an outgoing 82 * non-QoS frame. Note this should be called early on in 83 * constructing a frame as it sets i_fc[1]; other bits can 84 * then be or'd in. 85 */ 86 static void 87 ieee80211_send_setup(struct ieee80211com *ic, 88 struct ieee80211_node *ni, 89 struct ieee80211_frame *wh, 90 int type, 91 const u_int8_t sa[IEEE80211_ADDR_LEN], 92 const u_int8_t da[IEEE80211_ADDR_LEN], 93 const u_int8_t bssid[IEEE80211_ADDR_LEN]) 94 { 95 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 96 97 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 98 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 99 switch (ic->ic_opmode) { 100 case IEEE80211_M_STA: 101 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 102 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 103 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 104 IEEE80211_ADDR_COPY(wh->i_addr3, da); 105 break; 106 case IEEE80211_M_IBSS: 107 case IEEE80211_M_AHDEMO: 108 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 109 IEEE80211_ADDR_COPY(wh->i_addr1, da); 110 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 111 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 112 break; 113 case IEEE80211_M_HOSTAP: 114 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 115 IEEE80211_ADDR_COPY(wh->i_addr1, da); 116 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 117 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 118 break; 119 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 120 break; 121 } 122 } else { 123 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 124 IEEE80211_ADDR_COPY(wh->i_addr1, da); 125 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 126 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 127 } 128 *(u_int16_t *)&wh->i_dur[0] = 0; 129 /* NB: use non-QoS tid */ 130 *(u_int16_t *)&wh->i_seq[0] = 131 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 132 ni->ni_txseqs[0]++; 133 #undef WH4 134 } 135 136 /* 137 * Send a management frame to the specified node. The node pointer 138 * must have a reference as the pointer will be passed to the driver 139 * and potentially held for a long time. If the frame is successfully 140 * dispatched to the driver, then it is responsible for freeing the 141 * reference (and potentially free'ing up any associated storage). 142 */ 143 static int 144 ieee80211_mgmt_output(struct ieee80211com *ic, struct ieee80211_node *ni, 145 struct mbuf *m, int type, int timer) 146 { 147 struct ifnet *ifp = ic->ic_ifp; 148 struct ieee80211_frame *wh; 149 150 KASSERT(ni != NULL, ("null node")); 151 152 /* 153 * Yech, hack alert! We want to pass the node down to the 154 * driver's start routine. If we don't do so then the start 155 * routine must immediately look it up again and that can 156 * cause a lock order reversal if, for example, this frame 157 * is being sent because the station is being timedout and 158 * the frame being sent is a DEAUTH message. We could stick 159 * this in an m_tag and tack that on to the mbuf. However 160 * that's rather expensive to do for every frame so instead 161 * we stuff it in the rcvif field since outbound frames do 162 * not (presently) use this. 163 */ 164 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 165 if (m == NULL) 166 return ENOMEM; 167 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 168 m->m_pkthdr.rcvif = (void *)ni; 169 170 wh = mtod(m, struct ieee80211_frame *); 171 ieee80211_send_setup(ic, ni, wh, 172 IEEE80211_FC0_TYPE_MGT | type, 173 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 174 if ((m->m_flags & M_LINK0) != 0 && ni->ni_challenge != NULL) { 175 m->m_flags &= ~M_LINK0; 176 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 177 "[%s] encrypting frame (%s)\n", 178 ether_sprintf(wh->i_addr1), __func__); 179 wh->i_fc[1] |= IEEE80211_FC1_WEP; 180 } 181 #ifdef IEEE80211_DEBUG 182 /* avoid printing too many frames */ 183 if ((ieee80211_msg_debug(ic) && doprint(ic, type)) || 184 ieee80211_msg_dumppkts(ic)) { 185 printf("[%s] send %s on channel %u\n", 186 ether_sprintf(wh->i_addr1), 187 ieee80211_mgt_subtype_name[ 188 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 189 IEEE80211_FC0_SUBTYPE_SHIFT], 190 ieee80211_chan2ieee(ic, ic->ic_curchan)); 191 } 192 #endif 193 IEEE80211_NODE_STAT(ni, tx_mgmt); 194 IF_ENQUEUE(&ic->ic_mgtq, m); 195 if (timer) { 196 /* 197 * Set the mgt frame timeout. 198 */ 199 ic->ic_mgt_timer = timer; 200 ifp->if_timer = 1; 201 } 202 if_start(ifp); 203 return 0; 204 } 205 206 /* 207 * Send a null data frame to the specified node. 208 * 209 * NB: the caller is assumed to have setup a node reference 210 * for use; this is necessary to deal with a race condition 211 * when probing for inactive stations. 212 */ 213 int 214 ieee80211_send_nulldata(struct ieee80211_node *ni) 215 { 216 struct ieee80211com *ic = ni->ni_ic; 217 struct ifnet *ifp = ic->ic_ifp; 218 struct mbuf *m; 219 struct ieee80211_frame *wh; 220 221 MGETHDR(m, M_NOWAIT, MT_DATA); 222 if (m == NULL) { 223 /* XXX debug msg */ 224 ic->ic_stats.is_tx_nobuf++; 225 ieee80211_unref_node(&ni); 226 return ENOMEM; 227 } 228 m->m_pkthdr.rcvif = (void *) ni; 229 230 wh = mtod(m, struct ieee80211_frame *); 231 ieee80211_send_setup(ic, ni, wh, 232 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 233 ic->ic_myaddr, ni->ni_macaddr, ni->ni_bssid); 234 /* NB: power management bit is never sent by an AP */ 235 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 236 ic->ic_opmode != IEEE80211_M_HOSTAP) 237 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 238 m->m_len = m->m_pkthdr.len = sizeof(struct ieee80211_frame); 239 240 IEEE80211_NODE_STAT(ni, tx_data); 241 242 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 243 "[%s] send null data frame on channel %u, pwr mgt %s\n", 244 ether_sprintf(ni->ni_macaddr), 245 ieee80211_chan2ieee(ic, ic->ic_curchan), 246 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 247 248 IF_ENQUEUE(&ic->ic_mgtq, m); /* cheat */ 249 if_start(ifp); 250 251 return 0; 252 } 253 254 /* 255 * Assign priority to a frame based on any vlan tag assigned 256 * to the station and/or any Diffserv setting in an IP header. 257 * Finally, if an ACM policy is setup (in station mode) it's 258 * applied. 259 */ 260 int 261 ieee80211_classify(struct ieee80211com *ic, struct mbuf *m, struct ieee80211_node *ni) 262 { 263 int v_wme_ac, d_wme_ac, ac; 264 #ifdef INET 265 struct ether_header *eh; 266 #endif 267 268 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 269 ac = WME_AC_BE; 270 goto done; 271 } 272 273 /* 274 * If node has a vlan tag then all traffic 275 * to it must have a matching tag. 276 */ 277 v_wme_ac = 0; 278 if (ni->ni_vlan != 0) { 279 struct m_tag *mtag = VLAN_OUTPUT_TAG(ic->ic_ifp, m); 280 if (mtag == NULL) { 281 IEEE80211_NODE_STAT(ni, tx_novlantag); 282 return 1; 283 } 284 if (EVL_VLANOFTAG(VLAN_TAG_VALUE(mtag)) != 285 EVL_VLANOFTAG(ni->ni_vlan)) { 286 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 287 return 1; 288 } 289 /* map vlan priority to AC */ 290 switch (EVL_PRIOFTAG(ni->ni_vlan)) { 291 case 1: 292 case 2: 293 v_wme_ac = WME_AC_BK; 294 break; 295 case 0: 296 case 3: 297 v_wme_ac = WME_AC_BE; 298 break; 299 case 4: 300 case 5: 301 v_wme_ac = WME_AC_VI; 302 break; 303 case 6: 304 case 7: 305 v_wme_ac = WME_AC_VO; 306 break; 307 } 308 } 309 310 #ifdef INET 311 eh = mtod(m, struct ether_header *); 312 if (eh->ether_type == htons(ETHERTYPE_IP)) { 313 const struct ip *ip = (struct ip *) 314 (mtod(m, u_int8_t *) + sizeof (*eh)); 315 /* 316 * IP frame, map the TOS field. 317 */ 318 switch (ip->ip_tos) { 319 case 0x08: 320 case 0x20: 321 d_wme_ac = WME_AC_BK; /* background */ 322 break; 323 case 0x28: 324 case 0xa0: 325 d_wme_ac = WME_AC_VI; /* video */ 326 break; 327 case 0x30: /* voice */ 328 case 0xe0: 329 case 0x88: /* XXX UPSD */ 330 case 0xb8: 331 d_wme_ac = WME_AC_VO; 332 break; 333 default: 334 d_wme_ac = WME_AC_BE; 335 break; 336 } 337 } else { 338 #endif /* INET */ 339 d_wme_ac = WME_AC_BE; 340 #ifdef INET 341 } 342 #endif 343 /* 344 * Use highest priority AC. 345 */ 346 if (v_wme_ac > d_wme_ac) 347 ac = v_wme_ac; 348 else 349 ac = d_wme_ac; 350 351 /* 352 * Apply ACM policy. 353 */ 354 if (ic->ic_opmode == IEEE80211_M_STA) { 355 static const int acmap[4] = { 356 WME_AC_BK, /* WME_AC_BE */ 357 WME_AC_BK, /* WME_AC_BK */ 358 WME_AC_BE, /* WME_AC_VI */ 359 WME_AC_VI, /* WME_AC_VO */ 360 }; 361 while (ac != WME_AC_BK && 362 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 363 ac = acmap[ac]; 364 } 365 done: 366 M_WME_SETAC(m, ac); 367 return 0; 368 } 369 370 /* 371 * Insure there is sufficient contiguous space to encapsulate the 372 * 802.11 data frame. If room isn't already there, arrange for it. 373 * Drivers and cipher modules assume we have done the necessary work 374 * and fail rudely if they don't find the space they need. 375 */ 376 static struct mbuf * 377 ieee80211_mbuf_adjust(struct ieee80211com *ic, int hdrsize, 378 struct ieee80211_key *key, struct mbuf *m) 379 { 380 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 381 int needed_space = hdrsize; 382 383 if (key != NULL) { 384 /* XXX belongs in crypto code? */ 385 needed_space += key->wk_cipher->ic_header; 386 /* XXX frags */ 387 /* 388 * When crypto is being done in the host we must insure 389 * the data are writable for the cipher routines; clone 390 * a writable mbuf chain. 391 * XXX handle SWMIC specially 392 */ 393 if (key->wk_flags & (IEEE80211_KEY_SWCRYPT|IEEE80211_KEY_SWMIC)) { 394 m = m_unshare(m, M_NOWAIT); 395 if (m == NULL) { 396 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 397 "%s: cannot get writable mbuf\n", __func__); 398 ic->ic_stats.is_tx_nobuf++; /* XXX new stat */ 399 return NULL; 400 } 401 } 402 } 403 /* 404 * We know we are called just before stripping an Ethernet 405 * header and prepending an LLC header. This means we know 406 * there will be 407 * sizeof(struct ether_header) - sizeof(struct llc) 408 * bytes recovered to which we need additional space for the 409 * 802.11 header and any crypto header. 410 */ 411 /* XXX check trailing space and copy instead? */ 412 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 413 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 414 if (n == NULL) { 415 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 416 "%s: cannot expand storage\n", __func__); 417 ic->ic_stats.is_tx_nobuf++; 418 m_freem(m); 419 return NULL; 420 } 421 KASSERT(needed_space <= MHLEN, 422 ("not enough room, need %u got %zu\n", needed_space, MHLEN)); 423 /* 424 * Setup new mbuf to have leading space to prepend the 425 * 802.11 header and any crypto header bits that are 426 * required (the latter are added when the driver calls 427 * back to ieee80211_crypto_encap to do crypto encapsulation). 428 */ 429 /* NB: must be first 'cuz it clobbers m_data */ 430 m_move_pkthdr(n, m); 431 n->m_len = 0; /* NB: m_gethdr does not set */ 432 n->m_data += needed_space; 433 /* 434 * Pull up Ethernet header to create the expected layout. 435 * We could use m_pullup but that's overkill (i.e. we don't 436 * need the actual data) and it cannot fail so do it inline 437 * for speed. 438 */ 439 /* NB: struct ether_header is known to be contiguous */ 440 n->m_len += sizeof(struct ether_header); 441 m->m_len -= sizeof(struct ether_header); 442 m->m_data += sizeof(struct ether_header); 443 /* 444 * Replace the head of the chain. 445 */ 446 n->m_next = m; 447 m = n; 448 } 449 return m; 450 #undef TO_BE_RECLAIMED 451 } 452 453 #define KEY_UNDEFINED(k) ((k).wk_cipher == &ieee80211_cipher_none) 454 /* 455 * Return the transmit key to use in sending a unicast frame. 456 * If a unicast key is set we use that. When no unicast key is set 457 * we fall back to the default transmit key. 458 */ 459 static __inline struct ieee80211_key * 460 ieee80211_crypto_getucastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 461 { 462 if (KEY_UNDEFINED(ni->ni_ucastkey)) { 463 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 464 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 465 return NULL; 466 return &ic->ic_nw_keys[ic->ic_def_txkey]; 467 } else { 468 return &ni->ni_ucastkey; 469 } 470 } 471 472 /* 473 * Return the transmit key to use in sending a multicast frame. 474 * Multicast traffic always uses the group key which is installed as 475 * the default tx key. 476 */ 477 static __inline struct ieee80211_key * 478 ieee80211_crypto_getmcastkey(struct ieee80211com *ic, struct ieee80211_node *ni) 479 { 480 if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || 481 KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) 482 return NULL; 483 return &ic->ic_nw_keys[ic->ic_def_txkey]; 484 } 485 486 /* 487 * Encapsulate an outbound data frame. The mbuf chain is updated. 488 * If an error is encountered NULL is returned. The caller is required 489 * to provide a node reference and pullup the ethernet header in the 490 * first mbuf. 491 */ 492 struct mbuf * 493 ieee80211_encap(struct ieee80211com *ic, struct mbuf *m, 494 struct ieee80211_node *ni) 495 { 496 struct ether_header eh; 497 struct ieee80211_frame *wh; 498 struct ieee80211_key *key; 499 struct llc *llc; 500 int hdrsize, datalen, addqos; 501 502 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 503 memcpy(&eh, mtod(m, caddr_t), sizeof(struct ether_header)); 504 505 /* 506 * Insure space for additional headers. First identify 507 * transmit key to use in calculating any buffer adjustments 508 * required. This is also used below to do privacy 509 * encapsulation work. Then calculate the 802.11 header 510 * size and any padding required by the driver. 511 * 512 * Note key may be NULL if we fall back to the default 513 * transmit key and that is not set. In that case the 514 * buffer may not be expanded as needed by the cipher 515 * routines, but they will/should discard it. 516 */ 517 if (ic->ic_flags & IEEE80211_F_PRIVACY) { 518 if (ic->ic_opmode == IEEE80211_M_STA || 519 !IEEE80211_IS_MULTICAST(eh.ether_dhost)) 520 key = ieee80211_crypto_getucastkey(ic, ni); 521 else 522 key = ieee80211_crypto_getmcastkey(ic, ni); 523 if (key == NULL && eh.ether_type != htons(ETHERTYPE_PAE)) { 524 IEEE80211_DPRINTF(ic, IEEE80211_MSG_CRYPTO, 525 "[%s] no default transmit key (%s) deftxkey %u\n", 526 ether_sprintf(eh.ether_dhost), __func__, 527 ic->ic_def_txkey); 528 ic->ic_stats.is_tx_nodefkey++; 529 } 530 } else 531 key = NULL; 532 /* XXX 4-address format */ 533 /* 534 * XXX Some ap's don't handle QoS-encapsulated EAPOL 535 * frames so suppress use. This may be an issue if other 536 * ap's require all data frames to be QoS-encapsulated 537 * once negotiated in which case we'll need to make this 538 * configurable. 539 */ 540 addqos = (ni->ni_flags & IEEE80211_NODE_QOS) && 541 eh.ether_type != htons(ETHERTYPE_PAE); 542 if (addqos) 543 hdrsize = sizeof(struct ieee80211_qosframe); 544 else 545 hdrsize = sizeof(struct ieee80211_frame); 546 if (ic->ic_flags & IEEE80211_F_DATAPAD) 547 hdrsize = roundup(hdrsize, sizeof(u_int32_t)); 548 m = ieee80211_mbuf_adjust(ic, hdrsize, key, m); 549 if (m == NULL) { 550 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 551 goto bad; 552 } 553 554 /* NB: this could be optimized because of ieee80211_mbuf_adjust */ 555 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 556 llc = mtod(m, struct llc *); 557 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 558 llc->llc_control = LLC_UI; 559 llc->llc_snap.org_code[0] = 0; 560 llc->llc_snap.org_code[1] = 0; 561 llc->llc_snap.org_code[2] = 0; 562 llc->llc_snap.ether_type = eh.ether_type; 563 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 564 565 M_PREPEND(m, hdrsize, M_DONTWAIT); 566 if (m == NULL) { 567 ic->ic_stats.is_tx_nobuf++; 568 goto bad; 569 } 570 wh = mtod(m, struct ieee80211_frame *); 571 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 572 *(u_int16_t *)wh->i_dur = 0; 573 switch (ic->ic_opmode) { 574 case IEEE80211_M_STA: 575 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 576 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 577 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 578 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 579 break; 580 case IEEE80211_M_IBSS: 581 case IEEE80211_M_AHDEMO: 582 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 583 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 584 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 585 /* 586 * NB: always use the bssid from ic_bss as the 587 * neighbor's may be stale after an ibss merge 588 */ 589 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_bss->ni_bssid); 590 break; 591 case IEEE80211_M_HOSTAP: 592 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 593 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 594 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 595 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 596 break; 597 case IEEE80211_M_MONITOR: 598 goto bad; 599 } 600 if (m->m_flags & M_MORE_DATA) 601 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 602 if (addqos) { 603 struct ieee80211_qosframe *qwh = 604 (struct ieee80211_qosframe *) wh; 605 int ac, tid; 606 607 ac = M_WME_GETAC(m); 608 /* map from access class/queue to 11e header priorty value */ 609 tid = WME_AC_TO_TID(ac); 610 qwh->i_qos[0] = tid & IEEE80211_QOS_TID; 611 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 612 qwh->i_qos[0] |= 1 << IEEE80211_QOS_ACKPOLICY_S; 613 qwh->i_qos[1] = 0; 614 qwh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 615 616 *(u_int16_t *)wh->i_seq = 617 htole16(ni->ni_txseqs[tid] << IEEE80211_SEQ_SEQ_SHIFT); 618 ni->ni_txseqs[tid]++; 619 } else { 620 *(u_int16_t *)wh->i_seq = 621 htole16(ni->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT); 622 ni->ni_txseqs[0]++; 623 } 624 if (key != NULL) { 625 /* 626 * IEEE 802.1X: send EAPOL frames always in the clear. 627 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 628 */ 629 if (eh.ether_type != htons(ETHERTYPE_PAE) || 630 ((ic->ic_flags & IEEE80211_F_WPA) && 631 (ic->ic_opmode == IEEE80211_M_STA ? 632 !KEY_UNDEFINED(*key) : !KEY_UNDEFINED(ni->ni_ucastkey)))) { 633 wh->i_fc[1] |= IEEE80211_FC1_WEP; 634 /* XXX do fragmentation */ 635 if (!ieee80211_crypto_enmic(ic, key, m, 0)) { 636 IEEE80211_DPRINTF(ic, IEEE80211_MSG_OUTPUT, 637 "[%s] enmic failed, discard frame\n", 638 ether_sprintf(eh.ether_dhost)); 639 ic->ic_stats.is_crypto_enmicfail++; 640 goto bad; 641 } 642 } 643 } 644 645 IEEE80211_NODE_STAT(ni, tx_data); 646 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 647 648 return m; 649 bad: 650 if (m != NULL) 651 m_freem(m); 652 return NULL; 653 } 654 655 /* 656 * Add a supported rates element id to a frame. 657 */ 658 static u_int8_t * 659 ieee80211_add_rates(u_int8_t *frm, const struct ieee80211_rateset *rs) 660 { 661 int nrates; 662 663 *frm++ = IEEE80211_ELEMID_RATES; 664 nrates = rs->rs_nrates; 665 if (nrates > IEEE80211_RATE_SIZE) 666 nrates = IEEE80211_RATE_SIZE; 667 *frm++ = nrates; 668 memcpy(frm, rs->rs_rates, nrates); 669 return frm + nrates; 670 } 671 672 /* 673 * Add an extended supported rates element id to a frame. 674 */ 675 static u_int8_t * 676 ieee80211_add_xrates(u_int8_t *frm, const struct ieee80211_rateset *rs) 677 { 678 /* 679 * Add an extended supported rates element if operating in 11g mode. 680 */ 681 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 682 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 683 *frm++ = IEEE80211_ELEMID_XRATES; 684 *frm++ = nrates; 685 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 686 frm += nrates; 687 } 688 return frm; 689 } 690 691 /* 692 * Add an ssid elemet to a frame. 693 */ 694 static u_int8_t * 695 ieee80211_add_ssid(u_int8_t *frm, const u_int8_t *ssid, u_int len) 696 { 697 *frm++ = IEEE80211_ELEMID_SSID; 698 *frm++ = len; 699 memcpy(frm, ssid, len); 700 return frm + len; 701 } 702 703 /* 704 * Add an erp element to a frame. 705 */ 706 static u_int8_t * 707 ieee80211_add_erp(u_int8_t *frm, struct ieee80211com *ic) 708 { 709 u_int8_t erp; 710 711 *frm++ = IEEE80211_ELEMID_ERP; 712 *frm++ = 1; 713 erp = 0; 714 if (ic->ic_nonerpsta != 0) 715 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 716 if (ic->ic_flags & IEEE80211_F_USEPROT) 717 erp |= IEEE80211_ERP_USE_PROTECTION; 718 if (ic->ic_flags & IEEE80211_F_USEBARKER) 719 erp |= IEEE80211_ERP_LONG_PREAMBLE; 720 *frm++ = erp; 721 return frm; 722 } 723 724 static u_int8_t * 725 ieee80211_setup_wpa_ie(struct ieee80211com *ic, u_int8_t *ie) 726 { 727 #define WPA_OUI_BYTES 0x00, 0x50, 0xf2 728 #define ADDSHORT(frm, v) do { \ 729 frm[0] = (v) & 0xff; \ 730 frm[1] = (v) >> 8; \ 731 frm += 2; \ 732 } while (0) 733 #define ADDSELECTOR(frm, sel) do { \ 734 memcpy(frm, sel, 4); \ 735 frm += 4; \ 736 } while (0) 737 static const u_int8_t oui[4] = { WPA_OUI_BYTES, WPA_OUI_TYPE }; 738 static const u_int8_t cipher_suite[][4] = { 739 { WPA_OUI_BYTES, WPA_CSE_WEP40 }, /* NB: 40-bit */ 740 { WPA_OUI_BYTES, WPA_CSE_TKIP }, 741 { 0x00, 0x00, 0x00, 0x00 }, /* XXX WRAP */ 742 { WPA_OUI_BYTES, WPA_CSE_CCMP }, 743 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 744 { WPA_OUI_BYTES, WPA_CSE_NULL }, 745 }; 746 static const u_int8_t wep104_suite[4] = 747 { WPA_OUI_BYTES, WPA_CSE_WEP104 }; 748 static const u_int8_t key_mgt_unspec[4] = 749 { WPA_OUI_BYTES, WPA_ASE_8021X_UNSPEC }; 750 static const u_int8_t key_mgt_psk[4] = 751 { WPA_OUI_BYTES, WPA_ASE_8021X_PSK }; 752 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 753 u_int8_t *frm = ie; 754 u_int8_t *selcnt; 755 756 *frm++ = IEEE80211_ELEMID_VENDOR; 757 *frm++ = 0; /* length filled in below */ 758 memcpy(frm, oui, sizeof(oui)); /* WPA OUI */ 759 frm += sizeof(oui); 760 ADDSHORT(frm, WPA_VERSION); 761 762 /* XXX filter out CKIP */ 763 764 /* multicast cipher */ 765 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 766 rsn->rsn_mcastkeylen >= 13) 767 ADDSELECTOR(frm, wep104_suite); 768 else 769 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 770 771 /* unicast cipher list */ 772 selcnt = frm; 773 ADDSHORT(frm, 0); /* selector count */ 774 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 775 selcnt[0]++; 776 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 777 } 778 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 779 selcnt[0]++; 780 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 781 } 782 783 /* authenticator selector list */ 784 selcnt = frm; 785 ADDSHORT(frm, 0); /* selector count */ 786 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 787 selcnt[0]++; 788 ADDSELECTOR(frm, key_mgt_unspec); 789 } 790 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 791 selcnt[0]++; 792 ADDSELECTOR(frm, key_mgt_psk); 793 } 794 795 /* optional capabilities */ 796 if (rsn->rsn_caps != 0 && rsn->rsn_caps != RSN_CAP_PREAUTH) 797 ADDSHORT(frm, rsn->rsn_caps); 798 799 /* calculate element length */ 800 ie[1] = frm - ie - 2; 801 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 802 ("WPA IE too big, %u > %zu", 803 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 804 return frm; 805 #undef ADDSHORT 806 #undef ADDSELECTOR 807 #undef WPA_OUI_BYTES 808 } 809 810 static u_int8_t * 811 ieee80211_setup_rsn_ie(struct ieee80211com *ic, u_int8_t *ie) 812 { 813 #define RSN_OUI_BYTES 0x00, 0x0f, 0xac 814 #define ADDSHORT(frm, v) do { \ 815 frm[0] = (v) & 0xff; \ 816 frm[1] = (v) >> 8; \ 817 frm += 2; \ 818 } while (0) 819 #define ADDSELECTOR(frm, sel) do { \ 820 memcpy(frm, sel, 4); \ 821 frm += 4; \ 822 } while (0) 823 static const u_int8_t cipher_suite[][4] = { 824 { RSN_OUI_BYTES, RSN_CSE_WEP40 }, /* NB: 40-bit */ 825 { RSN_OUI_BYTES, RSN_CSE_TKIP }, 826 { RSN_OUI_BYTES, RSN_CSE_WRAP }, 827 { RSN_OUI_BYTES, RSN_CSE_CCMP }, 828 { 0x00, 0x00, 0x00, 0x00 }, /* XXX CKIP */ 829 { RSN_OUI_BYTES, RSN_CSE_NULL }, 830 }; 831 static const u_int8_t wep104_suite[4] = 832 { RSN_OUI_BYTES, RSN_CSE_WEP104 }; 833 static const u_int8_t key_mgt_unspec[4] = 834 { RSN_OUI_BYTES, RSN_ASE_8021X_UNSPEC }; 835 static const u_int8_t key_mgt_psk[4] = 836 { RSN_OUI_BYTES, RSN_ASE_8021X_PSK }; 837 const struct ieee80211_rsnparms *rsn = &ic->ic_bss->ni_rsn; 838 u_int8_t *frm = ie; 839 u_int8_t *selcnt; 840 841 *frm++ = IEEE80211_ELEMID_RSN; 842 *frm++ = 0; /* length filled in below */ 843 ADDSHORT(frm, RSN_VERSION); 844 845 /* XXX filter out CKIP */ 846 847 /* multicast cipher */ 848 if (rsn->rsn_mcastcipher == IEEE80211_CIPHER_WEP && 849 rsn->rsn_mcastkeylen >= 13) 850 ADDSELECTOR(frm, wep104_suite); 851 else 852 ADDSELECTOR(frm, cipher_suite[rsn->rsn_mcastcipher]); 853 854 /* unicast cipher list */ 855 selcnt = frm; 856 ADDSHORT(frm, 0); /* selector count */ 857 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_AES_CCM)) { 858 selcnt[0]++; 859 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_AES_CCM]); 860 } 861 if (rsn->rsn_ucastcipherset & (1<<IEEE80211_CIPHER_TKIP)) { 862 selcnt[0]++; 863 ADDSELECTOR(frm, cipher_suite[IEEE80211_CIPHER_TKIP]); 864 } 865 866 /* authenticator selector list */ 867 selcnt = frm; 868 ADDSHORT(frm, 0); /* selector count */ 869 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_UNSPEC) { 870 selcnt[0]++; 871 ADDSELECTOR(frm, key_mgt_unspec); 872 } 873 if (rsn->rsn_keymgmtset & WPA_ASE_8021X_PSK) { 874 selcnt[0]++; 875 ADDSELECTOR(frm, key_mgt_psk); 876 } 877 878 /* optional capabilities */ 879 ADDSHORT(frm, rsn->rsn_caps); 880 /* XXX PMKID */ 881 882 /* calculate element length */ 883 ie[1] = frm - ie - 2; 884 KASSERT(ie[1]+2 <= sizeof(struct ieee80211_ie_wpa), 885 ("RSN IE too big, %u > %zu", 886 ie[1]+2, sizeof(struct ieee80211_ie_wpa))); 887 return frm; 888 #undef ADDSELECTOR 889 #undef ADDSHORT 890 #undef RSN_OUI_BYTES 891 } 892 893 /* 894 * Add a WPA/RSN element to a frame. 895 */ 896 static u_int8_t * 897 ieee80211_add_wpa(u_int8_t *frm, struct ieee80211com *ic) 898 { 899 900 KASSERT(ic->ic_flags & IEEE80211_F_WPA, ("no WPA/RSN!")); 901 if (ic->ic_flags & IEEE80211_F_WPA2) 902 frm = ieee80211_setup_rsn_ie(ic, frm); 903 if (ic->ic_flags & IEEE80211_F_WPA1) 904 frm = ieee80211_setup_wpa_ie(ic, frm); 905 return frm; 906 } 907 908 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 909 /* 910 * Add a WME information element to a frame. 911 */ 912 static u_int8_t * 913 ieee80211_add_wme_info(u_int8_t *frm, struct ieee80211_wme_state *wme) 914 { 915 static const struct ieee80211_wme_info info = { 916 .wme_id = IEEE80211_ELEMID_VENDOR, 917 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 918 .wme_oui = { WME_OUI_BYTES }, 919 .wme_type = WME_OUI_TYPE, 920 .wme_subtype = WME_INFO_OUI_SUBTYPE, 921 .wme_version = WME_VERSION, 922 .wme_info = 0, 923 }; 924 memcpy(frm, &info, sizeof(info)); 925 return frm + sizeof(info); 926 } 927 928 /* 929 * Add a WME parameters element to a frame. 930 */ 931 static u_int8_t * 932 ieee80211_add_wme_param(u_int8_t *frm, struct ieee80211_wme_state *wme) 933 { 934 #define SM(_v, _f) (((_v) << _f##_S) & _f) 935 #define ADDSHORT(frm, v) do { \ 936 frm[0] = (v) & 0xff; \ 937 frm[1] = (v) >> 8; \ 938 frm += 2; \ 939 } while (0) 940 /* NB: this works 'cuz a param has an info at the front */ 941 static const struct ieee80211_wme_info param = { 942 .wme_id = IEEE80211_ELEMID_VENDOR, 943 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 944 .wme_oui = { WME_OUI_BYTES }, 945 .wme_type = WME_OUI_TYPE, 946 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 947 .wme_version = WME_VERSION, 948 }; 949 int i; 950 951 memcpy(frm, ¶m, sizeof(param)); 952 frm += __offsetof(struct ieee80211_wme_info, wme_info); 953 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 954 *frm++ = 0; /* reserved field */ 955 for (i = 0; i < WME_NUM_AC; i++) { 956 const struct wmeParams *ac = 957 &wme->wme_bssChanParams.cap_wmeParams[i]; 958 *frm++ = SM(i, WME_PARAM_ACI) 959 | SM(ac->wmep_acm, WME_PARAM_ACM) 960 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 961 ; 962 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 963 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 964 ; 965 ADDSHORT(frm, ac->wmep_txopLimit); 966 } 967 return frm; 968 #undef SM 969 #undef ADDSHORT 970 } 971 #undef WME_OUI_BYTES 972 973 /* 974 * Send a probe request frame with the specified ssid 975 * and any optional information element data. 976 */ 977 int 978 ieee80211_send_probereq(struct ieee80211_node *ni, 979 const u_int8_t sa[IEEE80211_ADDR_LEN], 980 const u_int8_t da[IEEE80211_ADDR_LEN], 981 const u_int8_t bssid[IEEE80211_ADDR_LEN], 982 const u_int8_t *ssid, size_t ssidlen, 983 const void *optie, size_t optielen) 984 { 985 struct ieee80211com *ic = ni->ni_ic; 986 enum ieee80211_phymode mode; 987 struct ieee80211_frame *wh; 988 struct mbuf *m; 989 u_int8_t *frm; 990 991 /* 992 * Hold a reference on the node so it doesn't go away until after 993 * the xmit is complete all the way in the driver. On error we 994 * will remove our reference. 995 */ 996 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 997 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 998 __func__, __LINE__, 999 ni, ether_sprintf(ni->ni_macaddr), 1000 ieee80211_node_refcnt(ni)+1); 1001 ieee80211_ref_node(ni); 1002 1003 /* 1004 * prreq frame format 1005 * [tlv] ssid 1006 * [tlv] supported rates 1007 * [tlv] extended supported rates 1008 * [tlv] user-specified ie's 1009 */ 1010 m = ieee80211_getmgtframe(&frm, 1011 2 + IEEE80211_NWID_LEN 1012 + 2 + IEEE80211_RATE_SIZE 1013 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1014 + (optie != NULL ? optielen : 0) 1015 ); 1016 if (m == NULL) { 1017 ic->ic_stats.is_tx_nobuf++; 1018 ieee80211_free_node(ni); 1019 return ENOMEM; 1020 } 1021 1022 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 1023 mode = ieee80211_chan2mode(ic, ic->ic_curchan); 1024 frm = ieee80211_add_rates(frm, &ic->ic_sup_rates[mode]); 1025 frm = ieee80211_add_xrates(frm, &ic->ic_sup_rates[mode]); 1026 1027 if (optie != NULL) { 1028 memcpy(frm, optie, optielen); 1029 frm += optielen; 1030 } 1031 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1032 1033 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1034 if (m == NULL) 1035 return ENOMEM; 1036 KASSERT(m->m_pkthdr.rcvif == NULL, ("rcvif not null")); 1037 m->m_pkthdr.rcvif = (void *)ni; 1038 1039 wh = mtod(m, struct ieee80211_frame *); 1040 ieee80211_send_setup(ic, ni, wh, 1041 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 1042 sa, da, bssid); 1043 /* XXX power management? */ 1044 1045 IEEE80211_NODE_STAT(ni, tx_probereq); 1046 IEEE80211_NODE_STAT(ni, tx_mgmt); 1047 1048 IEEE80211_DPRINTF(ic, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 1049 "[%s] send probe req on channel %u\n", 1050 ether_sprintf(wh->i_addr1), 1051 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1052 1053 IF_ENQUEUE(&ic->ic_mgtq, m); 1054 if_start(ic->ic_ifp); 1055 return 0; 1056 } 1057 1058 /* 1059 * Calculate capability information for mgt frames. 1060 */ 1061 static u_int16_t 1062 getcapinfo(struct ieee80211com *ic, struct ieee80211_channel *chan) 1063 { 1064 u_int16_t capinfo; 1065 1066 KASSERT(ic->ic_opmode != IEEE80211_M_STA, ("station mode")); 1067 1068 if (ic->ic_opmode == IEEE80211_M_HOSTAP) 1069 capinfo = IEEE80211_CAPINFO_ESS; 1070 else if (ic->ic_opmode == IEEE80211_M_IBSS) 1071 capinfo = IEEE80211_CAPINFO_IBSS; 1072 else 1073 capinfo = 0; 1074 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1075 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1076 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1077 IEEE80211_IS_CHAN_2GHZ(chan)) 1078 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1079 if (ic->ic_flags & IEEE80211_F_SHSLOT) 1080 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1081 return capinfo; 1082 } 1083 1084 /* 1085 * Send a management frame. The node is for the destination (or ic_bss 1086 * when in station mode). Nodes other than ic_bss have their reference 1087 * count bumped to reflect our use for an indeterminant time. 1088 */ 1089 int 1090 ieee80211_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni, 1091 int type, int arg) 1092 { 1093 #define senderr(_x, _v) do { ic->ic_stats._v++; ret = _x; goto bad; } while (0) 1094 struct mbuf *m; 1095 u_int8_t *frm; 1096 u_int16_t capinfo; 1097 int has_challenge, is_shared_key, ret, timer, status; 1098 1099 KASSERT(ni != NULL, ("null node")); 1100 1101 /* 1102 * Hold a reference on the node so it doesn't go away until after 1103 * the xmit is complete all the way in the driver. On error we 1104 * will remove our reference. 1105 */ 1106 IEEE80211_DPRINTF(ic, IEEE80211_MSG_NODE, 1107 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 1108 __func__, __LINE__, 1109 ni, ether_sprintf(ni->ni_macaddr), 1110 ieee80211_node_refcnt(ni)+1); 1111 ieee80211_ref_node(ni); 1112 1113 timer = 0; 1114 switch (type) { 1115 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 1116 /* 1117 * probe response frame format 1118 * [8] time stamp 1119 * [2] beacon interval 1120 * [2] cabability information 1121 * [tlv] ssid 1122 * [tlv] supported rates 1123 * [tlv] parameter set (FH/DS) 1124 * [tlv] parameter set (IBSS) 1125 * [tlv] extended rate phy (ERP) 1126 * [tlv] extended supported rates 1127 * [tlv] WPA 1128 * [tlv] WME (optional) 1129 */ 1130 m = ieee80211_getmgtframe(&frm, 1131 8 1132 + sizeof(u_int16_t) 1133 + sizeof(u_int16_t) 1134 + 2 + IEEE80211_NWID_LEN 1135 + 2 + IEEE80211_RATE_SIZE 1136 + 7 /* max(7,3) */ 1137 + 6 1138 + 3 1139 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1140 /* XXX !WPA1+WPA2 fits w/o a cluster */ 1141 + (ic->ic_flags & IEEE80211_F_WPA ? 1142 2*sizeof(struct ieee80211_ie_wpa) : 0) 1143 + sizeof(struct ieee80211_wme_param) 1144 ); 1145 if (m == NULL) 1146 senderr(ENOMEM, is_tx_nobuf); 1147 1148 memset(frm, 0, 8); /* timestamp should be filled later */ 1149 frm += 8; 1150 *(u_int16_t *)frm = htole16(ic->ic_bss->ni_intval); 1151 frm += 2; 1152 capinfo = getcapinfo(ic, ic->ic_curchan); 1153 *(u_int16_t *)frm = htole16(capinfo); 1154 frm += 2; 1155 1156 frm = ieee80211_add_ssid(frm, ic->ic_bss->ni_essid, 1157 ic->ic_bss->ni_esslen); 1158 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1159 1160 if (ic->ic_phytype == IEEE80211_T_FH) { 1161 *frm++ = IEEE80211_ELEMID_FHPARMS; 1162 *frm++ = 5; 1163 *frm++ = ni->ni_fhdwell & 0x00ff; 1164 *frm++ = (ni->ni_fhdwell >> 8) & 0x00ff; 1165 *frm++ = IEEE80211_FH_CHANSET( 1166 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1167 *frm++ = IEEE80211_FH_CHANPAT( 1168 ieee80211_chan2ieee(ic, ic->ic_curchan)); 1169 *frm++ = ni->ni_fhindex; 1170 } else { 1171 *frm++ = IEEE80211_ELEMID_DSPARMS; 1172 *frm++ = 1; 1173 *frm++ = ieee80211_chan2ieee(ic, ic->ic_curchan); 1174 } 1175 1176 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1177 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1178 *frm++ = 2; 1179 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1180 } 1181 if (ic->ic_flags & IEEE80211_F_WPA) 1182 frm = ieee80211_add_wpa(frm, ic); 1183 if (ic->ic_curmode == IEEE80211_MODE_11G) 1184 frm = ieee80211_add_erp(frm, ic); 1185 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1186 if (ic->ic_flags & IEEE80211_F_WME) 1187 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1188 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1189 break; 1190 1191 case IEEE80211_FC0_SUBTYPE_AUTH: 1192 status = arg >> 16; 1193 arg &= 0xffff; 1194 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 1195 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 1196 ni->ni_challenge != NULL); 1197 1198 /* 1199 * Deduce whether we're doing open authentication or 1200 * shared key authentication. We do the latter if 1201 * we're in the middle of a shared key authentication 1202 * handshake or if we're initiating an authentication 1203 * request and configured to use shared key. 1204 */ 1205 is_shared_key = has_challenge || 1206 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 1207 (arg == IEEE80211_AUTH_SHARED_REQUEST && 1208 ic->ic_bss->ni_authmode == IEEE80211_AUTH_SHARED); 1209 1210 m = ieee80211_getmgtframe(&frm, 1211 3 * sizeof(u_int16_t) 1212 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 1213 sizeof(u_int16_t)+IEEE80211_CHALLENGE_LEN : 0) 1214 ); 1215 if (m == NULL) 1216 senderr(ENOMEM, is_tx_nobuf); 1217 1218 ((u_int16_t *)frm)[0] = 1219 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 1220 : htole16(IEEE80211_AUTH_ALG_OPEN); 1221 ((u_int16_t *)frm)[1] = htole16(arg); /* sequence number */ 1222 ((u_int16_t *)frm)[2] = htole16(status);/* status */ 1223 1224 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 1225 ((u_int16_t *)frm)[3] = 1226 htole16((IEEE80211_CHALLENGE_LEN << 8) | 1227 IEEE80211_ELEMID_CHALLENGE); 1228 memcpy(&((u_int16_t *)frm)[4], ni->ni_challenge, 1229 IEEE80211_CHALLENGE_LEN); 1230 m->m_pkthdr.len = m->m_len = 1231 4 * sizeof(u_int16_t) + IEEE80211_CHALLENGE_LEN; 1232 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 1233 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1234 "[%s] request encrypt frame (%s)\n", 1235 ether_sprintf(ni->ni_macaddr), __func__); 1236 m->m_flags |= M_LINK0; /* WEP-encrypt, please */ 1237 } 1238 } else 1239 m->m_pkthdr.len = m->m_len = 3 * sizeof(u_int16_t); 1240 1241 /* XXX not right for shared key */ 1242 if (status == IEEE80211_STATUS_SUCCESS) 1243 IEEE80211_NODE_STAT(ni, tx_auth); 1244 else 1245 IEEE80211_NODE_STAT(ni, tx_auth_fail); 1246 1247 if (ic->ic_opmode == IEEE80211_M_STA) 1248 timer = IEEE80211_TRANS_WAIT; 1249 break; 1250 1251 case IEEE80211_FC0_SUBTYPE_DEAUTH: 1252 IEEE80211_DPRINTF(ic, IEEE80211_MSG_AUTH, 1253 "[%s] send station deauthenticate (reason %d)\n", 1254 ether_sprintf(ni->ni_macaddr), arg); 1255 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1256 if (m == NULL) 1257 senderr(ENOMEM, is_tx_nobuf); 1258 *(u_int16_t *)frm = htole16(arg); /* reason */ 1259 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1260 1261 IEEE80211_NODE_STAT(ni, tx_deauth); 1262 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 1263 1264 ieee80211_node_unauthorize(ni); /* port closed */ 1265 break; 1266 1267 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 1268 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 1269 /* 1270 * asreq frame format 1271 * [2] capability information 1272 * [2] listen interval 1273 * [6*] current AP address (reassoc only) 1274 * [tlv] ssid 1275 * [tlv] supported rates 1276 * [tlv] extended supported rates 1277 * [tlv] WME 1278 * [tlv] user-specified ie's 1279 */ 1280 m = ieee80211_getmgtframe(&frm, 1281 sizeof(u_int16_t) 1282 + sizeof(u_int16_t) 1283 + IEEE80211_ADDR_LEN 1284 + 2 + IEEE80211_NWID_LEN 1285 + 2 + IEEE80211_RATE_SIZE 1286 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1287 + sizeof(struct ieee80211_wme_info) 1288 + (ic->ic_opt_ie != NULL ? ic->ic_opt_ie_len : 0) 1289 ); 1290 if (m == NULL) 1291 senderr(ENOMEM, is_tx_nobuf); 1292 1293 KASSERT(ic->ic_opmode == IEEE80211_M_STA, 1294 ("wrong mode %u", ic->ic_opmode)); 1295 capinfo = IEEE80211_CAPINFO_ESS; 1296 if (ic->ic_flags & IEEE80211_F_PRIVACY) 1297 capinfo |= IEEE80211_CAPINFO_PRIVACY; 1298 /* 1299 * NB: Some 11a AP's reject the request when 1300 * short premable is set. 1301 */ 1302 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 1303 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 1304 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 1305 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_SLOTTIME) && 1306 (ic->ic_caps & IEEE80211_C_SHSLOT)) 1307 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 1308 *(u_int16_t *)frm = htole16(capinfo); 1309 frm += 2; 1310 1311 *(u_int16_t *)frm = htole16(ic->ic_lintval); 1312 frm += 2; 1313 1314 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 1315 IEEE80211_ADDR_COPY(frm, ic->ic_bss->ni_bssid); 1316 frm += IEEE80211_ADDR_LEN; 1317 } 1318 1319 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 1320 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1321 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1322 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1323 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 1324 if (ic->ic_opt_ie != NULL) { 1325 memcpy(frm, ic->ic_opt_ie, ic->ic_opt_ie_len); 1326 frm += ic->ic_opt_ie_len; 1327 } 1328 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1329 1330 timer = IEEE80211_TRANS_WAIT; 1331 break; 1332 1333 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 1334 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 1335 /* 1336 * asreq frame format 1337 * [2] capability information 1338 * [2] status 1339 * [2] association ID 1340 * [tlv] supported rates 1341 * [tlv] extended supported rates 1342 * [tlv] WME (if enabled and STA enabled) 1343 */ 1344 m = ieee80211_getmgtframe(&frm, 1345 sizeof(u_int16_t) 1346 + sizeof(u_int16_t) 1347 + sizeof(u_int16_t) 1348 + 2 + IEEE80211_RATE_SIZE 1349 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1350 + sizeof(struct ieee80211_wme_param) 1351 ); 1352 if (m == NULL) 1353 senderr(ENOMEM, is_tx_nobuf); 1354 1355 capinfo = getcapinfo(ic, ic->ic_curchan); 1356 *(u_int16_t *)frm = htole16(capinfo); 1357 frm += 2; 1358 1359 *(u_int16_t *)frm = htole16(arg); /* status */ 1360 frm += 2; 1361 1362 if (arg == IEEE80211_STATUS_SUCCESS) { 1363 *(u_int16_t *)frm = htole16(ni->ni_associd); 1364 IEEE80211_NODE_STAT(ni, tx_assoc); 1365 } else 1366 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 1367 frm += 2; 1368 1369 frm = ieee80211_add_rates(frm, &ni->ni_rates); 1370 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 1371 if ((ic->ic_flags & IEEE80211_F_WME) && ni->ni_wme_ie != NULL) 1372 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1373 m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *); 1374 break; 1375 1376 case IEEE80211_FC0_SUBTYPE_DISASSOC: 1377 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ASSOC, 1378 "[%s] send station disassociate (reason %d)\n", 1379 ether_sprintf(ni->ni_macaddr), arg); 1380 m = ieee80211_getmgtframe(&frm, sizeof(u_int16_t)); 1381 if (m == NULL) 1382 senderr(ENOMEM, is_tx_nobuf); 1383 *(u_int16_t *)frm = htole16(arg); /* reason */ 1384 m->m_pkthdr.len = m->m_len = sizeof(u_int16_t); 1385 1386 IEEE80211_NODE_STAT(ni, tx_disassoc); 1387 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 1388 break; 1389 1390 default: 1391 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1392 "[%s] invalid mgmt frame type %u\n", 1393 ether_sprintf(ni->ni_macaddr), type); 1394 senderr(EINVAL, is_tx_unknownmgt); 1395 /* NOTREACHED */ 1396 } 1397 ret = ieee80211_mgmt_output(ic, ni, m, type, timer); 1398 if (ret != 0) { 1399 bad: 1400 ieee80211_free_node(ni); 1401 } 1402 return ret; 1403 #undef senderr 1404 } 1405 1406 /* 1407 * Allocate a beacon frame and fillin the appropriate bits. 1408 */ 1409 struct mbuf * 1410 ieee80211_beacon_alloc(struct ieee80211com *ic, struct ieee80211_node *ni, 1411 struct ieee80211_beacon_offsets *bo) 1412 { 1413 struct ifnet *ifp = ic->ic_ifp; 1414 struct ieee80211_frame *wh; 1415 struct mbuf *m; 1416 int pktlen; 1417 u_int8_t *frm, *efrm; 1418 u_int16_t capinfo; 1419 struct ieee80211_rateset *rs; 1420 1421 /* 1422 * beacon frame format 1423 * [8] time stamp 1424 * [2] beacon interval 1425 * [2] cabability information 1426 * [tlv] ssid 1427 * [tlv] supported rates 1428 * [3] parameter set (DS) 1429 * [tlv] parameter set (IBSS/TIM) 1430 * [tlv] extended rate phy (ERP) 1431 * [tlv] extended supported rates 1432 * [tlv] WME parameters 1433 * [tlv] WPA/RSN parameters 1434 * XXX Vendor-specific OIDs (e.g. Atheros) 1435 * NB: we allocate the max space required for the TIM bitmap. 1436 */ 1437 rs = &ni->ni_rates; 1438 pktlen = 8 /* time stamp */ 1439 + sizeof(u_int16_t) /* beacon interval */ 1440 + sizeof(u_int16_t) /* capabilities */ 1441 + 2 + ni->ni_esslen /* ssid */ 1442 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 1443 + 2 + 1 /* DS parameters */ 1444 + 2 + 4 + ic->ic_tim_len /* DTIM/IBSSPARMS */ 1445 + 2 + 1 /* ERP */ 1446 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 1447 + (ic->ic_caps & IEEE80211_C_WME ? /* WME */ 1448 sizeof(struct ieee80211_wme_param) : 0) 1449 + (ic->ic_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 1450 2*sizeof(struct ieee80211_ie_wpa) : 0) 1451 ; 1452 m = ieee80211_getmgtframe(&frm, pktlen); 1453 if (m == NULL) { 1454 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1455 "%s: cannot get buf; size %u\n", __func__, pktlen); 1456 ic->ic_stats.is_tx_nobuf++; 1457 return NULL; 1458 } 1459 1460 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 1461 frm += 8; 1462 *(u_int16_t *)frm = htole16(ni->ni_intval); 1463 frm += 2; 1464 capinfo = getcapinfo(ic, ni->ni_chan); 1465 bo->bo_caps = (u_int16_t *)frm; 1466 *(u_int16_t *)frm = htole16(capinfo); 1467 frm += 2; 1468 *frm++ = IEEE80211_ELEMID_SSID; 1469 if ((ic->ic_flags & IEEE80211_F_HIDESSID) == 0) { 1470 *frm++ = ni->ni_esslen; 1471 memcpy(frm, ni->ni_essid, ni->ni_esslen); 1472 frm += ni->ni_esslen; 1473 } else 1474 *frm++ = 0; 1475 frm = ieee80211_add_rates(frm, rs); 1476 if (ic->ic_curmode != IEEE80211_MODE_FH) { 1477 *frm++ = IEEE80211_ELEMID_DSPARMS; 1478 *frm++ = 1; 1479 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 1480 } 1481 bo->bo_tim = frm; 1482 if (ic->ic_opmode == IEEE80211_M_IBSS) { 1483 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 1484 *frm++ = 2; 1485 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 1486 bo->bo_tim_len = 0; 1487 } else if (ic->ic_opmode == IEEE80211_M_HOSTAP) { 1488 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 1489 1490 tie->tim_ie = IEEE80211_ELEMID_TIM; 1491 tie->tim_len = 4; /* length */ 1492 tie->tim_count = 0; /* DTIM count */ 1493 tie->tim_period = ic->ic_dtim_period; /* DTIM period */ 1494 tie->tim_bitctl = 0; /* bitmap control */ 1495 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 1496 frm += sizeof(struct ieee80211_tim_ie); 1497 bo->bo_tim_len = 1; 1498 } 1499 bo->bo_trailer = frm; 1500 if (ic->ic_flags & IEEE80211_F_WME) { 1501 bo->bo_wme = frm; 1502 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 1503 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1504 } 1505 if (ic->ic_flags & IEEE80211_F_WPA) 1506 frm = ieee80211_add_wpa(frm, ic); 1507 if (ic->ic_curmode == IEEE80211_MODE_11G) { 1508 bo->bo_erp = frm; 1509 frm = ieee80211_add_erp(frm, ic); 1510 } 1511 efrm = ieee80211_add_xrates(frm, rs); 1512 bo->bo_trailer_len = efrm - bo->bo_trailer; 1513 m->m_pkthdr.len = m->m_len = efrm - mtod(m, u_int8_t *); 1514 1515 M_PREPEND(m, sizeof(struct ieee80211_frame), M_DONTWAIT); 1516 KASSERT(m != NULL, ("no space for 802.11 header?")); 1517 wh = mtod(m, struct ieee80211_frame *); 1518 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 1519 IEEE80211_FC0_SUBTYPE_BEACON; 1520 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1521 *(u_int16_t *)wh->i_dur = 0; 1522 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 1523 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); 1524 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 1525 *(u_int16_t *)wh->i_seq = 0; 1526 1527 return m; 1528 } 1529 1530 /* 1531 * Update the dynamic parts of a beacon frame based on the current state. 1532 */ 1533 int 1534 ieee80211_beacon_update(struct ieee80211com *ic, struct ieee80211_node *ni, 1535 struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast) 1536 { 1537 int len_changed = 0; 1538 u_int16_t capinfo; 1539 1540 IEEE80211_BEACON_LOCK(ic); 1541 /* XXX faster to recalculate entirely or just changes? */ 1542 capinfo = getcapinfo(ic, ni->ni_chan); 1543 *bo->bo_caps = htole16(capinfo); 1544 1545 if (ic->ic_flags & IEEE80211_F_WME) { 1546 struct ieee80211_wme_state *wme = &ic->ic_wme; 1547 1548 /* 1549 * Check for agressive mode change. When there is 1550 * significant high priority traffic in the BSS 1551 * throttle back BE traffic by using conservative 1552 * parameters. Otherwise BE uses agressive params 1553 * to optimize performance of legacy/non-QoS traffic. 1554 */ 1555 if (wme->wme_flags & WME_F_AGGRMODE) { 1556 if (wme->wme_hipri_traffic > 1557 wme->wme_hipri_switch_thresh) { 1558 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1559 "%s: traffic %u, disable aggressive mode\n", 1560 __func__, wme->wme_hipri_traffic); 1561 wme->wme_flags &= ~WME_F_AGGRMODE; 1562 ieee80211_wme_updateparams_locked(ic); 1563 wme->wme_hipri_traffic = 1564 wme->wme_hipri_switch_hysteresis; 1565 } else 1566 wme->wme_hipri_traffic = 0; 1567 } else { 1568 if (wme->wme_hipri_traffic <= 1569 wme->wme_hipri_switch_thresh) { 1570 IEEE80211_DPRINTF(ic, IEEE80211_MSG_WME, 1571 "%s: traffic %u, enable aggressive mode\n", 1572 __func__, wme->wme_hipri_traffic); 1573 wme->wme_flags |= WME_F_AGGRMODE; 1574 ieee80211_wme_updateparams_locked(ic); 1575 wme->wme_hipri_traffic = 0; 1576 } else 1577 wme->wme_hipri_traffic = 1578 wme->wme_hipri_switch_hysteresis; 1579 } 1580 if (ic->ic_flags & IEEE80211_F_WMEUPDATE) { 1581 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 1582 ic->ic_flags &= ~IEEE80211_F_WMEUPDATE; 1583 } 1584 } 1585 1586 if (ic->ic_opmode == IEEE80211_M_HOSTAP) { /* NB: no IBSS support*/ 1587 struct ieee80211_tim_ie *tie = 1588 (struct ieee80211_tim_ie *) bo->bo_tim; 1589 if (ic->ic_flags & IEEE80211_F_TIMUPDATE) { 1590 u_int timlen, timoff, i; 1591 /* 1592 * ATIM/DTIM needs updating. If it fits in the 1593 * current space allocated then just copy in the 1594 * new bits. Otherwise we need to move any trailing 1595 * data to make room. Note that we know there is 1596 * contiguous space because ieee80211_beacon_allocate 1597 * insures there is space in the mbuf to write a 1598 * maximal-size virtual bitmap (based on ic_max_aid). 1599 */ 1600 /* 1601 * Calculate the bitmap size and offset, copy any 1602 * trailer out of the way, and then copy in the 1603 * new bitmap and update the information element. 1604 * Note that the tim bitmap must contain at least 1605 * one byte and any offset must be even. 1606 */ 1607 if (ic->ic_ps_pending != 0) { 1608 timoff = 128; /* impossibly large */ 1609 for (i = 0; i < ic->ic_tim_len; i++) 1610 if (ic->ic_tim_bitmap[i]) { 1611 timoff = i &~ 1; 1612 break; 1613 } 1614 KASSERT(timoff != 128, ("tim bitmap empty!")); 1615 for (i = ic->ic_tim_len-1; i >= timoff; i--) 1616 if (ic->ic_tim_bitmap[i]) 1617 break; 1618 timlen = 1 + (i - timoff); 1619 } else { 1620 timoff = 0; 1621 timlen = 1; 1622 } 1623 if (timlen != bo->bo_tim_len) { 1624 /* copy up/down trailer */ 1625 int adjust = tie->tim_bitmap+timlen 1626 - bo->bo_trailer; 1627 ovbcopy(bo->bo_trailer, bo->bo_trailer+adjust, 1628 bo->bo_trailer_len); 1629 bo->bo_trailer += adjust; 1630 bo->bo_wme += adjust; 1631 bo->bo_erp += adjust; 1632 bo->bo_tim_len = timlen; 1633 1634 /* update information element */ 1635 tie->tim_len = 3 + timlen; 1636 tie->tim_bitctl = timoff; 1637 len_changed = 1; 1638 } 1639 memcpy(tie->tim_bitmap, ic->ic_tim_bitmap + timoff, 1640 bo->bo_tim_len); 1641 1642 ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; 1643 1644 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1645 "%s: TIM updated, pending %u, off %u, len %u\n", 1646 __func__, ic->ic_ps_pending, timoff, timlen); 1647 } 1648 /* count down DTIM period */ 1649 if (tie->tim_count == 0) 1650 tie->tim_count = tie->tim_period - 1; 1651 else 1652 tie->tim_count--; 1653 /* update state for buffered multicast frames on DTIM */ 1654 if (mcast && tie->tim_count == 0) 1655 tie->tim_bitctl |= 1; 1656 else 1657 tie->tim_bitctl &= ~1; 1658 if (ic->ic_flags_ext & IEEE80211_FEXT_ERPUPDATE) { 1659 /* 1660 * ERP element needs updating. 1661 */ 1662 (void) ieee80211_add_erp(bo->bo_erp, ic); 1663 ic->ic_flags_ext &= ~IEEE80211_FEXT_ERPUPDATE; 1664 } 1665 } 1666 IEEE80211_BEACON_UNLOCK(ic); 1667 1668 return len_changed; 1669 } 1670 1671 /* 1672 * Save an outbound packet for a node in power-save sleep state. 1673 * The new packet is placed on the node's saved queue, and the TIM 1674 * is changed, if necessary. 1675 */ 1676 void 1677 ieee80211_pwrsave(struct ieee80211com *ic, struct ieee80211_node *ni, 1678 struct mbuf *m) 1679 { 1680 int qlen, age; 1681 1682 IEEE80211_NODE_SAVEQ_LOCK(ni); 1683 if (_IF_QFULL(&ni->ni_savedq)) { 1684 _IF_DROP(&ni->ni_savedq); 1685 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1686 IEEE80211_DPRINTF(ic, IEEE80211_MSG_ANY, 1687 "[%s] pwr save q overflow, drops %d (size %d)\n", 1688 ether_sprintf(ni->ni_macaddr), 1689 ni->ni_savedq.ifq_drops, IEEE80211_PS_MAX_QUEUE); 1690 #ifdef IEEE80211_DEBUG 1691 if (ieee80211_msg_dumppkts(ic)) 1692 ieee80211_dump_pkt(mtod(m, caddr_t), m->m_len, -1, -1); 1693 #endif 1694 m_freem(m); 1695 return; 1696 } 1697 /* 1698 * Tag the frame with it's expiry time and insert 1699 * it in the queue. The aging interval is 4 times 1700 * the listen interval specified by the station. 1701 * Frames that sit around too long are reclaimed 1702 * using this information. 1703 */ 1704 /* XXX handle overflow? */ 1705 age = ((ni->ni_intval * ic->ic_bintval) << 2) / 1024; /* TU -> secs */ 1706 _IEEE80211_NODE_SAVEQ_ENQUEUE(ni, m, qlen, age); 1707 IEEE80211_NODE_SAVEQ_UNLOCK(ni); 1708 1709 IEEE80211_DPRINTF(ic, IEEE80211_MSG_POWER, 1710 "[%s] save frame with age %d, %u now queued\n", 1711 ether_sprintf(ni->ni_macaddr), age, qlen); 1712 1713 if (qlen == 1) 1714 ic->ic_set_tim(ni, 1); 1715 } 1716