xref: /freebsd/sys/net80211/ieee80211_output.c (revision c93b6e5fa24ba172ab271432c6692f9cc604e15a)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 
129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
130 	    (m->m_flags & M_PWR_SAV) == 0) {
131 		/*
132 		 * Station in power save mode; pass the frame
133 		 * to the 802.11 layer and continue.  We'll get
134 		 * the frame back when the time is right.
135 		 * XXX lose WDS vap linkage?
136 		 */
137 		if (ieee80211_pwrsave(ni, m) != 0)
138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
139 		ieee80211_free_node(ni);
140 
141 		/*
142 		 * We queued it fine, so tell the upper layer
143 		 * that we consumed it.
144 		 */
145 		return (0);
146 	}
147 	/* calculate priority so drivers can find the tx queue */
148 	if (ieee80211_classify(ni, m)) {
149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
150 		    ni->ni_macaddr, NULL,
151 		    "%s", "classification failure");
152 		vap->iv_stats.is_tx_classify++;
153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
154 		m_freem(m);
155 		ieee80211_free_node(ni);
156 
157 		/* XXX better status? */
158 		return (0);
159 	}
160 	/*
161 	 * Stash the node pointer.  Note that we do this after
162 	 * any call to ieee80211_dwds_mcast because that code
163 	 * uses any existing value for rcvif to identify the
164 	 * interface it (might have been) received on.
165 	 */
166 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
167 	m->m_pkthdr.rcvif = (void *)ni;
168 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
169 
170 	BPF_MTAP(ifp, m);		/* 802.3 tx */
171 
172 	/*
173 	 * Check if A-MPDU tx aggregation is setup or if we
174 	 * should try to enable it.  The sta must be associated
175 	 * with HT and A-MPDU enabled for use.  When the policy
176 	 * routine decides we should enable A-MPDU we issue an
177 	 * ADDBA request and wait for a reply.  The frame being
178 	 * encapsulated will go out w/o using A-MPDU, or possibly
179 	 * it might be collected by the driver and held/retransmit.
180 	 * The default ic_ampdu_enable routine handles staggering
181 	 * ADDBA requests in case the receiver NAK's us or we are
182 	 * otherwise unable to establish a BA stream.
183 	 *
184 	 * Don't treat group-addressed frames as candidates for aggregation;
185 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
186 	 * frames will always have sequence numbers allocated from the NON_QOS
187 	 * TID.
188 	 */
189 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
190 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
191 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
192 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
193 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
194 
195 			ieee80211_txampdu_count_packet(tap);
196 			if (IEEE80211_AMPDU_RUNNING(tap)) {
197 				/*
198 				 * Operational, mark frame for aggregation.
199 				 *
200 				 * XXX do tx aggregation here
201 				 */
202 				m->m_flags |= M_AMPDU_MPDU;
203 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
204 			    ic->ic_ampdu_enable(ni, tap)) {
205 				/*
206 				 * Not negotiated yet, request service.
207 				 */
208 				ieee80211_ampdu_request(ni, tap);
209 				/* XXX hold frame for reply? */
210 			}
211 		}
212 	}
213 
214 #ifdef IEEE80211_SUPPORT_SUPERG
215 	/*
216 	 * Check for AMSDU/FF; queue for aggregation
217 	 *
218 	 * Note: we don't bother trying to do fast frames or
219 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
220 	 * likely could do it for FF (because it's a magic
221 	 * atheros tunnel LLC type) but I don't think we're going
222 	 * to really need to.  For A-MSDU we'd have to set the
223 	 * A-MSDU QoS bit in the wifi header, so we just plain
224 	 * can't do it.
225 	 *
226 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
227 	 * with A-MPDU together which for certain circumstances
228 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
229 	 * I'll ignore that for now so existing behaviour is maintained.
230 	 * Later on it would be good to make "amsdu + ampdu" configurable.
231 	 */
232 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
233 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
234 			m = ieee80211_amsdu_check(ni, m);
235 			if (m == NULL) {
236 				/* NB: any ni ref held on stageq */
237 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
238 				    "%s: amsdu_check queued frame\n",
239 				    __func__);
240 				return (0);
241 			}
242 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
243 		    IEEE80211_NODE_FF)) {
244 			m = ieee80211_ff_check(ni, m);
245 			if (m == NULL) {
246 				/* NB: any ni ref held on stageq */
247 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
248 				    "%s: ff_check queued frame\n",
249 				    __func__);
250 				return (0);
251 			}
252 		}
253 	}
254 #endif /* IEEE80211_SUPPORT_SUPERG */
255 
256 	/*
257 	 * Grab the TX lock - serialise the TX process from this
258 	 * point (where TX state is being checked/modified)
259 	 * through to driver queue.
260 	 */
261 	IEEE80211_TX_LOCK(ic);
262 
263 	/*
264 	 * XXX make the encap and transmit code a separate function
265 	 * so things like the FF (and later A-MSDU) path can just call
266 	 * it for flushed frames.
267 	 */
268 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
269 		/*
270 		 * Encapsulate the packet in prep for transmission.
271 		 */
272 		m = ieee80211_encap(vap, ni, m);
273 		if (m == NULL) {
274 			/* NB: stat+msg handled in ieee80211_encap */
275 			IEEE80211_TX_UNLOCK(ic);
276 			ieee80211_free_node(ni);
277 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
278 			return (ENOBUFS);
279 		}
280 	}
281 	(void) ieee80211_parent_xmitpkt(ic, m);
282 
283 	/*
284 	 * Unlock at this point - no need to hold it across
285 	 * ieee80211_free_node() (ie, the comlock)
286 	 */
287 	IEEE80211_TX_UNLOCK(ic);
288 	ic->ic_lastdata = ticks;
289 
290 	return (0);
291 }
292 
293 
294 
295 /*
296  * Send the given mbuf through the given vap.
297  *
298  * This consumes the mbuf regardless of whether the transmit
299  * was successful or not.
300  *
301  * This does none of the initial checks that ieee80211_start()
302  * does (eg CAC timeout, interface wakeup) - the caller must
303  * do this first.
304  */
305 static int
306 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
307 {
308 #define	IS_DWDS(vap) \
309 	(vap->iv_opmode == IEEE80211_M_WDS && \
310 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
311 	struct ieee80211com *ic = vap->iv_ic;
312 	struct ifnet *ifp = vap->iv_ifp;
313 	struct ieee80211_node *ni;
314 	struct ether_header *eh;
315 
316 	/*
317 	 * Cancel any background scan.
318 	 */
319 	if (ic->ic_flags & IEEE80211_F_SCAN)
320 		ieee80211_cancel_anyscan(vap);
321 	/*
322 	 * Find the node for the destination so we can do
323 	 * things like power save and fast frames aggregation.
324 	 *
325 	 * NB: past this point various code assumes the first
326 	 *     mbuf has the 802.3 header present (and contiguous).
327 	 */
328 	ni = NULL;
329 	if (m->m_len < sizeof(struct ether_header) &&
330 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
331 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
332 		    "discard frame, %s\n", "m_pullup failed");
333 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
334 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
335 		return (ENOBUFS);
336 	}
337 	eh = mtod(m, struct ether_header *);
338 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
339 		if (IS_DWDS(vap)) {
340 			/*
341 			 * Only unicast frames from the above go out
342 			 * DWDS vaps; multicast frames are handled by
343 			 * dispatching the frame as it comes through
344 			 * the AP vap (see below).
345 			 */
346 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
347 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
348 			vap->iv_stats.is_dwds_mcast++;
349 			m_freem(m);
350 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
351 			/* XXX better status? */
352 			return (ENOBUFS);
353 		}
354 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
355 			/*
356 			 * Spam DWDS vap's w/ multicast traffic.
357 			 */
358 			/* XXX only if dwds in use? */
359 			ieee80211_dwds_mcast(vap, m);
360 		}
361 	}
362 #ifdef IEEE80211_SUPPORT_MESH
363 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
364 #endif
365 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
366 		if (ni == NULL) {
367 			/* NB: ieee80211_find_txnode does stat+msg */
368 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
369 			m_freem(m);
370 			/* XXX better status? */
371 			return (ENOBUFS);
372 		}
373 		if (ni->ni_associd == 0 &&
374 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
375 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
376 			    eh->ether_dhost, NULL,
377 			    "sta not associated (type 0x%04x)",
378 			    htons(eh->ether_type));
379 			vap->iv_stats.is_tx_notassoc++;
380 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
381 			m_freem(m);
382 			ieee80211_free_node(ni);
383 			/* XXX better status? */
384 			return (ENOBUFS);
385 		}
386 #ifdef IEEE80211_SUPPORT_MESH
387 	} else {
388 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
389 			/*
390 			 * Proxy station only if configured.
391 			 */
392 			if (!ieee80211_mesh_isproxyena(vap)) {
393 				IEEE80211_DISCARD_MAC(vap,
394 				    IEEE80211_MSG_OUTPUT |
395 				    IEEE80211_MSG_MESH,
396 				    eh->ether_dhost, NULL,
397 				    "%s", "proxy not enabled");
398 				vap->iv_stats.is_mesh_notproxy++;
399 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
400 				m_freem(m);
401 				/* XXX better status? */
402 				return (ENOBUFS);
403 			}
404 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
405 			    "forward frame from DS SA(%6D), DA(%6D)\n",
406 			    eh->ether_shost, ":",
407 			    eh->ether_dhost, ":");
408 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
409 		}
410 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
411 		if (ni == NULL) {
412 			/*
413 			 * NB: ieee80211_mesh_discover holds/disposes
414 			 * frame (e.g. queueing on path discovery).
415 			 */
416 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
417 			/* XXX better status? */
418 			return (ENOBUFS);
419 		}
420 	}
421 #endif
422 
423 	/*
424 	 * We've resolved the sender, so attempt to transmit it.
425 	 */
426 
427 	if (vap->iv_state == IEEE80211_S_SLEEP) {
428 		/*
429 		 * In power save; queue frame and then  wakeup device
430 		 * for transmit.
431 		 */
432 		ic->ic_lastdata = ticks;
433 		if (ieee80211_pwrsave(ni, m) != 0)
434 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
435 		ieee80211_free_node(ni);
436 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
437 		return (0);
438 	}
439 
440 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
441 		return (ENOBUFS);
442 	return (0);
443 #undef	IS_DWDS
444 }
445 
446 /*
447  * Start method for vap's.  All packets from the stack come
448  * through here.  We handle common processing of the packets
449  * before dispatching them to the underlying device.
450  *
451  * if_transmit() requires that the mbuf be consumed by this call
452  * regardless of the return condition.
453  */
454 int
455 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
456 {
457 	struct ieee80211vap *vap = ifp->if_softc;
458 	struct ieee80211com *ic = vap->iv_ic;
459 
460 	/*
461 	 * No data frames go out unless we're running.
462 	 * Note in particular this covers CAC and CSA
463 	 * states (though maybe we should check muting
464 	 * for CSA).
465 	 */
466 	if (vap->iv_state != IEEE80211_S_RUN &&
467 	    vap->iv_state != IEEE80211_S_SLEEP) {
468 		IEEE80211_LOCK(ic);
469 		/* re-check under the com lock to avoid races */
470 		if (vap->iv_state != IEEE80211_S_RUN &&
471 		    vap->iv_state != IEEE80211_S_SLEEP) {
472 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
473 			    "%s: ignore queue, in %s state\n",
474 			    __func__, ieee80211_state_name[vap->iv_state]);
475 			vap->iv_stats.is_tx_badstate++;
476 			IEEE80211_UNLOCK(ic);
477 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
478 			m_freem(m);
479 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
480 			return (ENETDOWN);
481 		}
482 		IEEE80211_UNLOCK(ic);
483 	}
484 
485 	/*
486 	 * Sanitize mbuf flags for net80211 use.  We cannot
487 	 * clear M_PWR_SAV or M_MORE_DATA because these may
488 	 * be set for frames that are re-submitted from the
489 	 * power save queue.
490 	 *
491 	 * NB: This must be done before ieee80211_classify as
492 	 *     it marks EAPOL in frames with M_EAPOL.
493 	 */
494 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
495 
496 	/*
497 	 * Bump to the packet transmission path.
498 	 * The mbuf will be consumed here.
499 	 */
500 	return (ieee80211_start_pkt(vap, m));
501 }
502 
503 void
504 ieee80211_vap_qflush(struct ifnet *ifp)
505 {
506 
507 	/* Empty for now */
508 }
509 
510 /*
511  * 802.11 raw output routine.
512  *
513  * XXX TODO: this (and other send routines) should correctly
514  * XXX keep the pwr mgmt bit set if it decides to call into the
515  * XXX driver to send a frame whilst the state is SLEEP.
516  *
517  * Otherwise the peer may decide that we're awake and flood us
518  * with traffic we are still too asleep to receive!
519  */
520 int
521 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
522     struct mbuf *m, const struct ieee80211_bpf_params *params)
523 {
524 	struct ieee80211com *ic = vap->iv_ic;
525 	int error;
526 
527 	/*
528 	 * Set node - the caller has taken a reference, so ensure
529 	 * that the mbuf has the same node value that
530 	 * it would if it were going via the normal path.
531 	 */
532 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
533 	m->m_pkthdr.rcvif = (void *)ni;
534 
535 	/*
536 	 * Attempt to add bpf transmit parameters.
537 	 *
538 	 * For now it's ok to fail; the raw_xmit api still takes
539 	 * them as an option.
540 	 *
541 	 * Later on when ic_raw_xmit() has params removed,
542 	 * they'll have to be added - so fail the transmit if
543 	 * they can't be.
544 	 */
545 	if (params)
546 		(void) ieee80211_add_xmit_params(m, params);
547 
548 	error = ic->ic_raw_xmit(ni, m, params);
549 	if (error) {
550 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
551 		ieee80211_free_node(ni);
552 	}
553 	return (error);
554 }
555 
556 static int
557 ieee80211_validate_frame(struct mbuf *m,
558     const struct ieee80211_bpf_params *params)
559 {
560 	struct ieee80211_frame *wh;
561 	int type;
562 
563 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
564 		return (EINVAL);
565 
566 	wh = mtod(m, struct ieee80211_frame *);
567 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
568 	    IEEE80211_FC0_VERSION_0)
569 		return (EINVAL);
570 
571 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
572 	if (type != IEEE80211_FC0_TYPE_DATA) {
573 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
574 		    IEEE80211_FC1_DIR_NODS)
575 			return (EINVAL);
576 
577 		if (type != IEEE80211_FC0_TYPE_MGT &&
578 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
579 			return (EINVAL);
580 
581 		/* XXX skip other field checks? */
582 	}
583 
584 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
585 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
586 		int subtype;
587 
588 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
589 
590 		/*
591 		 * See IEEE Std 802.11-2012,
592 		 * 8.2.4.1.9 'Protected Frame field'
593 		 */
594 		/* XXX no support for robust management frames yet. */
595 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
596 		    (type == IEEE80211_FC0_TYPE_MGT &&
597 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
598 			return (EINVAL);
599 
600 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
601 	}
602 
603 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
604 		return (EINVAL);
605 
606 	return (0);
607 }
608 
609 static int
610 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
611 {
612 	struct ieee80211com *ic = ni->ni_ic;
613 
614 	if (IEEE80211_IS_HT_RATE(rate)) {
615 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
616 			return (EINVAL);
617 
618 		rate = IEEE80211_RV(rate);
619 		if (rate <= 31) {
620 			if (rate > ic->ic_txstream * 8 - 1)
621 				return (EINVAL);
622 
623 			return (0);
624 		}
625 
626 		if (rate == 32) {
627 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
628 				return (EINVAL);
629 
630 			return (0);
631 		}
632 
633 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
634 			return (EINVAL);
635 
636 		switch (ic->ic_txstream) {
637 		case 0:
638 		case 1:
639 			return (EINVAL);
640 		case 2:
641 			if (rate > 38)
642 				return (EINVAL);
643 
644 			return (0);
645 		case 3:
646 			if (rate > 52)
647 				return (EINVAL);
648 
649 			return (0);
650 		case 4:
651 		default:
652 			if (rate > 76)
653 				return (EINVAL);
654 
655 			return (0);
656 		}
657 	}
658 
659 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
660 		return (EINVAL);
661 
662 	return (0);
663 }
664 
665 static int
666 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
667     const struct ieee80211_bpf_params *params)
668 {
669 	int error;
670 
671 	if (!params)
672 		return (0);	/* nothing to do */
673 
674 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
675 	if (params->ibp_rate0 != 0) {
676 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
677 		if (error != 0)
678 			return (error);
679 	} else {
680 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
681 		/* XXX __DECONST? */
682 		(void) m;
683 	}
684 
685 	if (params->ibp_rate1 != 0 &&
686 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
687 		return (error);
688 
689 	if (params->ibp_rate2 != 0 &&
690 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
691 		return (error);
692 
693 	if (params->ibp_rate3 != 0 &&
694 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
695 		return (error);
696 
697 	return (0);
698 }
699 
700 /*
701  * 802.11 output routine. This is (currently) used only to
702  * connect bpf write calls to the 802.11 layer for injecting
703  * raw 802.11 frames.
704  */
705 int
706 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
707 	const struct sockaddr *dst, struct route *ro)
708 {
709 #define senderr(e) do { error = (e); goto bad;} while (0)
710 	const struct ieee80211_bpf_params *params = NULL;
711 	struct ieee80211_node *ni = NULL;
712 	struct ieee80211vap *vap;
713 	struct ieee80211_frame *wh;
714 	struct ieee80211com *ic = NULL;
715 	int error;
716 	int ret;
717 
718 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
719 		/*
720 		 * Short-circuit requests if the vap is marked OACTIVE
721 		 * as this can happen because a packet came down through
722 		 * ieee80211_start before the vap entered RUN state in
723 		 * which case it's ok to just drop the frame.  This
724 		 * should not be necessary but callers of if_output don't
725 		 * check OACTIVE.
726 		 */
727 		senderr(ENETDOWN);
728 	}
729 	vap = ifp->if_softc;
730 	ic = vap->iv_ic;
731 	/*
732 	 * Hand to the 802.3 code if not tagged as
733 	 * a raw 802.11 frame.
734 	 */
735 	if (dst->sa_family != AF_IEEE80211)
736 		return vap->iv_output(ifp, m, dst, ro);
737 #ifdef MAC
738 	error = mac_ifnet_check_transmit(ifp, m);
739 	if (error)
740 		senderr(error);
741 #endif
742 	if (ifp->if_flags & IFF_MONITOR)
743 		senderr(ENETDOWN);
744 	if (!IFNET_IS_UP_RUNNING(ifp))
745 		senderr(ENETDOWN);
746 	if (vap->iv_state == IEEE80211_S_CAC) {
747 		IEEE80211_DPRINTF(vap,
748 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
749 		    "block %s frame in CAC state\n", "raw data");
750 		vap->iv_stats.is_tx_badstate++;
751 		senderr(EIO);		/* XXX */
752 	} else if (vap->iv_state == IEEE80211_S_SCAN)
753 		senderr(EIO);
754 	/* XXX bypass bridge, pfil, carp, etc. */
755 
756 	/*
757 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
758 	 * present by setting the sa_len field of the sockaddr (yes,
759 	 * this is a hack).
760 	 * NB: we assume sa_data is suitably aligned to cast.
761 	 */
762 	if (dst->sa_len != 0)
763 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
764 
765 	error = ieee80211_validate_frame(m, params);
766 	if (error != 0)
767 		senderr(error);
768 
769 	wh = mtod(m, struct ieee80211_frame *);
770 
771 	/* locate destination node */
772 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
773 	case IEEE80211_FC1_DIR_NODS:
774 	case IEEE80211_FC1_DIR_FROMDS:
775 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
776 		break;
777 	case IEEE80211_FC1_DIR_TODS:
778 	case IEEE80211_FC1_DIR_DSTODS:
779 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
780 		break;
781 	default:
782 		senderr(EDOOFUS);
783 	}
784 	if (ni == NULL) {
785 		/*
786 		 * Permit packets w/ bpf params through regardless
787 		 * (see below about sa_len).
788 		 */
789 		if (dst->sa_len == 0)
790 			senderr(EHOSTUNREACH);
791 		ni = ieee80211_ref_node(vap->iv_bss);
792 	}
793 
794 	/*
795 	 * Sanitize mbuf for net80211 flags leaked from above.
796 	 *
797 	 * NB: This must be done before ieee80211_classify as
798 	 *     it marks EAPOL in frames with M_EAPOL.
799 	 */
800 	m->m_flags &= ~M_80211_TX;
801 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
802 
803 	if (IEEE80211_IS_DATA(wh)) {
804 		/* calculate priority so drivers can find the tx queue */
805 		if (ieee80211_classify(ni, m))
806 			senderr(EIO);		/* XXX */
807 
808 		/* NB: ieee80211_encap does not include 802.11 header */
809 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
810 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
811 	} else
812 		M_WME_SETAC(m, WME_AC_BE);
813 
814 	error = ieee80211_sanitize_rates(ni, m, params);
815 	if (error != 0)
816 		senderr(error);
817 
818 	IEEE80211_NODE_STAT(ni, tx_data);
819 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
820 		IEEE80211_NODE_STAT(ni, tx_mcast);
821 		m->m_flags |= M_MCAST;
822 	} else
823 		IEEE80211_NODE_STAT(ni, tx_ucast);
824 
825 	IEEE80211_TX_LOCK(ic);
826 	ret = ieee80211_raw_output(vap, ni, m, params);
827 	IEEE80211_TX_UNLOCK(ic);
828 	return (ret);
829 bad:
830 	if (m != NULL)
831 		m_freem(m);
832 	if (ni != NULL)
833 		ieee80211_free_node(ni);
834 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
835 	return error;
836 #undef senderr
837 }
838 
839 /*
840  * Set the direction field and address fields of an outgoing
841  * frame.  Note this should be called early on in constructing
842  * a frame as it sets i_fc[1]; other bits can then be or'd in.
843  */
844 void
845 ieee80211_send_setup(
846 	struct ieee80211_node *ni,
847 	struct mbuf *m,
848 	int type, int tid,
849 	const uint8_t sa[IEEE80211_ADDR_LEN],
850 	const uint8_t da[IEEE80211_ADDR_LEN],
851 	const uint8_t bssid[IEEE80211_ADDR_LEN])
852 {
853 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
854 	struct ieee80211vap *vap = ni->ni_vap;
855 	struct ieee80211_tx_ampdu *tap;
856 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
857 	ieee80211_seq seqno;
858 
859 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
860 
861 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
862 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
863 		switch (vap->iv_opmode) {
864 		case IEEE80211_M_STA:
865 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
866 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
867 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
868 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
869 			break;
870 		case IEEE80211_M_IBSS:
871 		case IEEE80211_M_AHDEMO:
872 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
873 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
874 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
875 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
876 			break;
877 		case IEEE80211_M_HOSTAP:
878 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
879 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
880 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
881 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
882 			break;
883 		case IEEE80211_M_WDS:
884 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
885 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
886 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
887 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
888 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
889 			break;
890 		case IEEE80211_M_MBSS:
891 #ifdef IEEE80211_SUPPORT_MESH
892 			if (IEEE80211_IS_MULTICAST(da)) {
893 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
894 				/* XXX next hop */
895 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
896 				IEEE80211_ADDR_COPY(wh->i_addr2,
897 				    vap->iv_myaddr);
898 			} else {
899 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
900 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
901 				IEEE80211_ADDR_COPY(wh->i_addr2,
902 				    vap->iv_myaddr);
903 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
904 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
905 			}
906 #endif
907 			break;
908 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
909 			break;
910 		}
911 	} else {
912 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
913 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
914 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
915 #ifdef IEEE80211_SUPPORT_MESH
916 		if (vap->iv_opmode == IEEE80211_M_MBSS)
917 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
918 		else
919 #endif
920 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
921 	}
922 	*(uint16_t *)&wh->i_dur[0] = 0;
923 
924 	/*
925 	 * XXX TODO: this is what the TX lock is for.
926 	 * Here we're incrementing sequence numbers, and they
927 	 * need to be in lock-step with what the driver is doing
928 	 * both in TX ordering and crypto encap (IV increment.)
929 	 *
930 	 * If the driver does seqno itself, then we can skip
931 	 * assigning sequence numbers here, and we can avoid
932 	 * requiring the TX lock.
933 	 */
934 	tap = &ni->ni_tx_ampdu[tid];
935 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
936 		m->m_flags |= M_AMPDU_MPDU;
937 
938 		/* NB: zero out i_seq field (for s/w encryption etc) */
939 		*(uint16_t *)&wh->i_seq[0] = 0;
940 	} else {
941 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
942 				      type & IEEE80211_FC0_SUBTYPE_MASK))
943 			/*
944 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
945 			 * come out of a different seqno space.
946 			 */
947 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
948 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
949 			} else {
950 				seqno = ni->ni_txseqs[tid]++;
951 			}
952 		else
953 			seqno = 0;
954 
955 		*(uint16_t *)&wh->i_seq[0] =
956 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
957 		M_SEQNO_SET(m, seqno);
958 	}
959 
960 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
961 		m->m_flags |= M_MCAST;
962 #undef WH4
963 }
964 
965 /*
966  * Send a management frame to the specified node.  The node pointer
967  * must have a reference as the pointer will be passed to the driver
968  * and potentially held for a long time.  If the frame is successfully
969  * dispatched to the driver, then it is responsible for freeing the
970  * reference (and potentially free'ing up any associated storage);
971  * otherwise deal with reclaiming any reference (on error).
972  */
973 int
974 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
975 	struct ieee80211_bpf_params *params)
976 {
977 	struct ieee80211vap *vap = ni->ni_vap;
978 	struct ieee80211com *ic = ni->ni_ic;
979 	struct ieee80211_frame *wh;
980 	int ret;
981 
982 	KASSERT(ni != NULL, ("null node"));
983 
984 	if (vap->iv_state == IEEE80211_S_CAC) {
985 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
986 		    ni, "block %s frame in CAC state",
987 			ieee80211_mgt_subtype_name(type));
988 		vap->iv_stats.is_tx_badstate++;
989 		ieee80211_free_node(ni);
990 		m_freem(m);
991 		return EIO;		/* XXX */
992 	}
993 
994 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
995 	if (m == NULL) {
996 		ieee80211_free_node(ni);
997 		return ENOMEM;
998 	}
999 
1000 	IEEE80211_TX_LOCK(ic);
1001 
1002 	wh = mtod(m, struct ieee80211_frame *);
1003 	ieee80211_send_setup(ni, m,
1004 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1005 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1006 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1007 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1008 		    "encrypting frame (%s)", __func__);
1009 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1010 	}
1011 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1012 
1013 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1014 	M_WME_SETAC(m, params->ibp_pri);
1015 
1016 #ifdef IEEE80211_DEBUG
1017 	/* avoid printing too many frames */
1018 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1019 	    ieee80211_msg_dumppkts(vap)) {
1020 		printf("[%s] send %s on channel %u\n",
1021 		    ether_sprintf(wh->i_addr1),
1022 		    ieee80211_mgt_subtype_name(type),
1023 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1024 	}
1025 #endif
1026 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1027 
1028 	ret = ieee80211_raw_output(vap, ni, m, params);
1029 	IEEE80211_TX_UNLOCK(ic);
1030 	return (ret);
1031 }
1032 
1033 static void
1034 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1035     int status)
1036 {
1037 	struct ieee80211vap *vap = ni->ni_vap;
1038 
1039 	wakeup(vap);
1040 }
1041 
1042 /*
1043  * Send a null data frame to the specified node.  If the station
1044  * is setup for QoS then a QoS Null Data frame is constructed.
1045  * If this is a WDS station then a 4-address frame is constructed.
1046  *
1047  * NB: the caller is assumed to have setup a node reference
1048  *     for use; this is necessary to deal with a race condition
1049  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1050  *     we must cleanup any node reference on error;  however we
1051  *     can safely just unref it as we know it will never be the
1052  *     last reference to the node.
1053  */
1054 int
1055 ieee80211_send_nulldata(struct ieee80211_node *ni)
1056 {
1057 	struct ieee80211vap *vap = ni->ni_vap;
1058 	struct ieee80211com *ic = ni->ni_ic;
1059 	struct mbuf *m;
1060 	struct ieee80211_frame *wh;
1061 	int hdrlen;
1062 	uint8_t *frm;
1063 	int ret;
1064 
1065 	if (vap->iv_state == IEEE80211_S_CAC) {
1066 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1067 		    ni, "block %s frame in CAC state", "null data");
1068 		ieee80211_unref_node(&ni);
1069 		vap->iv_stats.is_tx_badstate++;
1070 		return EIO;		/* XXX */
1071 	}
1072 
1073 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1074 		hdrlen = sizeof(struct ieee80211_qosframe);
1075 	else
1076 		hdrlen = sizeof(struct ieee80211_frame);
1077 	/* NB: only WDS vap's get 4-address frames */
1078 	if (vap->iv_opmode == IEEE80211_M_WDS)
1079 		hdrlen += IEEE80211_ADDR_LEN;
1080 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1081 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1082 
1083 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1084 	if (m == NULL) {
1085 		/* XXX debug msg */
1086 		ieee80211_unref_node(&ni);
1087 		vap->iv_stats.is_tx_nobuf++;
1088 		return ENOMEM;
1089 	}
1090 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1091 	    ("leading space %zd", M_LEADINGSPACE(m)));
1092 	M_PREPEND(m, hdrlen, M_NOWAIT);
1093 	if (m == NULL) {
1094 		/* NB: cannot happen */
1095 		ieee80211_free_node(ni);
1096 		return ENOMEM;
1097 	}
1098 
1099 	IEEE80211_TX_LOCK(ic);
1100 
1101 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1102 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1103 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1104 		uint8_t *qos;
1105 
1106 		ieee80211_send_setup(ni, m,
1107 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1108 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1109 
1110 		if (vap->iv_opmode == IEEE80211_M_WDS)
1111 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1112 		else
1113 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1114 		qos[0] = tid & IEEE80211_QOS_TID;
1115 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1116 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1117 		qos[1] = 0;
1118 	} else {
1119 		ieee80211_send_setup(ni, m,
1120 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1121 		    IEEE80211_NONQOS_TID,
1122 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1123 	}
1124 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1125 		/* NB: power management bit is never sent by an AP */
1126 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1127 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1128 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1129 	}
1130 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1131 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1132 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1133 		    NULL);
1134 	}
1135 	m->m_len = m->m_pkthdr.len = hdrlen;
1136 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1137 
1138 	M_WME_SETAC(m, WME_AC_BE);
1139 
1140 	IEEE80211_NODE_STAT(ni, tx_data);
1141 
1142 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1143 	    "send %snull data frame on channel %u, pwr mgt %s",
1144 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1145 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1146 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1147 
1148 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1149 	IEEE80211_TX_UNLOCK(ic);
1150 	return (ret);
1151 }
1152 
1153 /*
1154  * Assign priority to a frame based on any vlan tag assigned
1155  * to the station and/or any Diffserv setting in an IP header.
1156  * Finally, if an ACM policy is setup (in station mode) it's
1157  * applied.
1158  */
1159 int
1160 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1161 {
1162 	const struct ether_header *eh = NULL;
1163 	uint16_t ether_type;
1164 	int v_wme_ac, d_wme_ac, ac;
1165 
1166 	if (__predict_false(m->m_flags & M_ENCAP)) {
1167 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1168 		struct llc *llc;
1169 		int hdrlen, subtype;
1170 
1171 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1172 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1173 			ac = WME_AC_BE;
1174 			goto done;
1175 		}
1176 
1177 		hdrlen = ieee80211_hdrsize(wh);
1178 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1179 			return 1;
1180 
1181 		llc = (struct llc *)mtodo(m, hdrlen);
1182 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1183 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1184 		    llc->llc_control != LLC_UI ||
1185 		    llc->llc_snap.org_code[0] != 0 ||
1186 		    llc->llc_snap.org_code[1] != 0 ||
1187 		    llc->llc_snap.org_code[2] != 0)
1188 			return 1;
1189 
1190 		ether_type = llc->llc_snap.ether_type;
1191 	} else {
1192 		eh = mtod(m, struct ether_header *);
1193 		ether_type = eh->ether_type;
1194 	}
1195 
1196 	/*
1197 	 * Always promote PAE/EAPOL frames to high priority.
1198 	 */
1199 	if (ether_type == htons(ETHERTYPE_PAE)) {
1200 		/* NB: mark so others don't need to check header */
1201 		m->m_flags |= M_EAPOL;
1202 		ac = WME_AC_VO;
1203 		goto done;
1204 	}
1205 	/*
1206 	 * Non-qos traffic goes to BE.
1207 	 */
1208 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1209 		ac = WME_AC_BE;
1210 		goto done;
1211 	}
1212 
1213 	/*
1214 	 * If node has a vlan tag then all traffic
1215 	 * to it must have a matching tag.
1216 	 */
1217 	v_wme_ac = 0;
1218 	if (ni->ni_vlan != 0) {
1219 		 if ((m->m_flags & M_VLANTAG) == 0) {
1220 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1221 			return 1;
1222 		}
1223 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1224 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1225 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1226 			return 1;
1227 		}
1228 		/* map vlan priority to AC */
1229 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1230 	}
1231 
1232 	/* XXX m_copydata may be too slow for fast path */
1233 #ifdef INET
1234 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1235 		uint8_t tos;
1236 		/*
1237 		 * IP frame, map the DSCP bits from the TOS field.
1238 		 */
1239 		/* NB: ip header may not be in first mbuf */
1240 		m_copydata(m, sizeof(struct ether_header) +
1241 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1242 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1243 		d_wme_ac = TID_TO_WME_AC(tos);
1244 	} else {
1245 #endif /* INET */
1246 #ifdef INET6
1247 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1248 		uint32_t flow;
1249 		uint8_t tos;
1250 		/*
1251 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1252 		 */
1253 		m_copydata(m, sizeof(struct ether_header) +
1254 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1255 		    (caddr_t) &flow);
1256 		tos = (uint8_t)(ntohl(flow) >> 20);
1257 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1258 		d_wme_ac = TID_TO_WME_AC(tos);
1259 	} else {
1260 #endif /* INET6 */
1261 		d_wme_ac = WME_AC_BE;
1262 #ifdef INET6
1263 	}
1264 #endif
1265 #ifdef INET
1266 	}
1267 #endif
1268 	/*
1269 	 * Use highest priority AC.
1270 	 */
1271 	if (v_wme_ac > d_wme_ac)
1272 		ac = v_wme_ac;
1273 	else
1274 		ac = d_wme_ac;
1275 
1276 	/*
1277 	 * Apply ACM policy.
1278 	 */
1279 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1280 		static const int acmap[4] = {
1281 			WME_AC_BK,	/* WME_AC_BE */
1282 			WME_AC_BK,	/* WME_AC_BK */
1283 			WME_AC_BE,	/* WME_AC_VI */
1284 			WME_AC_VI,	/* WME_AC_VO */
1285 		};
1286 		struct ieee80211com *ic = ni->ni_ic;
1287 
1288 		while (ac != WME_AC_BK &&
1289 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1290 			ac = acmap[ac];
1291 	}
1292 done:
1293 	M_WME_SETAC(m, ac);
1294 	return 0;
1295 }
1296 
1297 /*
1298  * Insure there is sufficient contiguous space to encapsulate the
1299  * 802.11 data frame.  If room isn't already there, arrange for it.
1300  * Drivers and cipher modules assume we have done the necessary work
1301  * and fail rudely if they don't find the space they need.
1302  */
1303 struct mbuf *
1304 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1305 	struct ieee80211_key *key, struct mbuf *m)
1306 {
1307 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1308 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1309 
1310 	if (key != NULL) {
1311 		/* XXX belongs in crypto code? */
1312 		needed_space += key->wk_cipher->ic_header;
1313 		/* XXX frags */
1314 		/*
1315 		 * When crypto is being done in the host we must insure
1316 		 * the data are writable for the cipher routines; clone
1317 		 * a writable mbuf chain.
1318 		 * XXX handle SWMIC specially
1319 		 */
1320 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1321 			m = m_unshare(m, M_NOWAIT);
1322 			if (m == NULL) {
1323 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1324 				    "%s: cannot get writable mbuf\n", __func__);
1325 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1326 				return NULL;
1327 			}
1328 		}
1329 	}
1330 	/*
1331 	 * We know we are called just before stripping an Ethernet
1332 	 * header and prepending an LLC header.  This means we know
1333 	 * there will be
1334 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1335 	 * bytes recovered to which we need additional space for the
1336 	 * 802.11 header and any crypto header.
1337 	 */
1338 	/* XXX check trailing space and copy instead? */
1339 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1340 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1341 		if (n == NULL) {
1342 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1343 			    "%s: cannot expand storage\n", __func__);
1344 			vap->iv_stats.is_tx_nobuf++;
1345 			m_freem(m);
1346 			return NULL;
1347 		}
1348 		KASSERT(needed_space <= MHLEN,
1349 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1350 		/*
1351 		 * Setup new mbuf to have leading space to prepend the
1352 		 * 802.11 header and any crypto header bits that are
1353 		 * required (the latter are added when the driver calls
1354 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1355 		 */
1356 		/* NB: must be first 'cuz it clobbers m_data */
1357 		m_move_pkthdr(n, m);
1358 		n->m_len = 0;			/* NB: m_gethdr does not set */
1359 		n->m_data += needed_space;
1360 		/*
1361 		 * Pull up Ethernet header to create the expected layout.
1362 		 * We could use m_pullup but that's overkill (i.e. we don't
1363 		 * need the actual data) and it cannot fail so do it inline
1364 		 * for speed.
1365 		 */
1366 		/* NB: struct ether_header is known to be contiguous */
1367 		n->m_len += sizeof(struct ether_header);
1368 		m->m_len -= sizeof(struct ether_header);
1369 		m->m_data += sizeof(struct ether_header);
1370 		/*
1371 		 * Replace the head of the chain.
1372 		 */
1373 		n->m_next = m;
1374 		m = n;
1375 	}
1376 	return m;
1377 #undef TO_BE_RECLAIMED
1378 }
1379 
1380 /*
1381  * Return the transmit key to use in sending a unicast frame.
1382  * If a unicast key is set we use that.  When no unicast key is set
1383  * we fall back to the default transmit key.
1384  */
1385 static __inline struct ieee80211_key *
1386 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1387 	struct ieee80211_node *ni)
1388 {
1389 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1390 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1391 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1392 			return NULL;
1393 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1394 	} else {
1395 		return &ni->ni_ucastkey;
1396 	}
1397 }
1398 
1399 /*
1400  * Return the transmit key to use in sending a multicast frame.
1401  * Multicast traffic always uses the group key which is installed as
1402  * the default tx key.
1403  */
1404 static __inline struct ieee80211_key *
1405 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1406 	struct ieee80211_node *ni)
1407 {
1408 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1409 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1410 		return NULL;
1411 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1412 }
1413 
1414 /*
1415  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1416  * If an error is encountered NULL is returned.  The caller is required
1417  * to provide a node reference and pullup the ethernet header in the
1418  * first mbuf.
1419  *
1420  * NB: Packet is assumed to be processed by ieee80211_classify which
1421  *     marked EAPOL frames w/ M_EAPOL.
1422  */
1423 struct mbuf *
1424 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1425     struct mbuf *m)
1426 {
1427 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1428 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1429 	struct ieee80211com *ic = ni->ni_ic;
1430 #ifdef IEEE80211_SUPPORT_MESH
1431 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1432 	struct ieee80211_meshcntl_ae10 *mc;
1433 	struct ieee80211_mesh_route *rt = NULL;
1434 	int dir = -1;
1435 #endif
1436 	struct ether_header eh;
1437 	struct ieee80211_frame *wh;
1438 	struct ieee80211_key *key;
1439 	struct llc *llc;
1440 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1441 	ieee80211_seq seqno;
1442 	int meshhdrsize, meshae;
1443 	uint8_t *qos;
1444 	int is_amsdu = 0;
1445 
1446 	IEEE80211_TX_LOCK_ASSERT(ic);
1447 
1448 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1449 
1450 	/*
1451 	 * Copy existing Ethernet header to a safe place.  The
1452 	 * rest of the code assumes it's ok to strip it when
1453 	 * reorganizing state for the final encapsulation.
1454 	 */
1455 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1456 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1457 
1458 	/*
1459 	 * Insure space for additional headers.  First identify
1460 	 * transmit key to use in calculating any buffer adjustments
1461 	 * required.  This is also used below to do privacy
1462 	 * encapsulation work.  Then calculate the 802.11 header
1463 	 * size and any padding required by the driver.
1464 	 *
1465 	 * Note key may be NULL if we fall back to the default
1466 	 * transmit key and that is not set.  In that case the
1467 	 * buffer may not be expanded as needed by the cipher
1468 	 * routines, but they will/should discard it.
1469 	 */
1470 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1471 		if (vap->iv_opmode == IEEE80211_M_STA ||
1472 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1473 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1474 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1475 			key = ieee80211_crypto_getucastkey(vap, ni);
1476 		else
1477 			key = ieee80211_crypto_getmcastkey(vap, ni);
1478 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1479 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1480 			    eh.ether_dhost,
1481 			    "no default transmit key (%s) deftxkey %u",
1482 			    __func__, vap->iv_def_txkey);
1483 			vap->iv_stats.is_tx_nodefkey++;
1484 			goto bad;
1485 		}
1486 	} else
1487 		key = NULL;
1488 	/*
1489 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1490 	 * frames so suppress use.  This may be an issue if other
1491 	 * ap's require all data frames to be QoS-encapsulated
1492 	 * once negotiated in which case we'll need to make this
1493 	 * configurable.
1494 	 *
1495 	 * Don't send multicast QoS frames.
1496 	 * Technically multicast frames can be QoS if all stations in the
1497 	 * BSS are also QoS.
1498 	 *
1499 	 * NB: mesh data frames are QoS, including multicast frames.
1500 	 */
1501 	addqos =
1502 	    (((is_mcast == 0) && (ni->ni_flags &
1503 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1504 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1505 	    (m->m_flags & M_EAPOL) == 0;
1506 
1507 	if (addqos)
1508 		hdrsize = sizeof(struct ieee80211_qosframe);
1509 	else
1510 		hdrsize = sizeof(struct ieee80211_frame);
1511 #ifdef IEEE80211_SUPPORT_MESH
1512 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1513 		/*
1514 		 * Mesh data frames are encapsulated according to the
1515 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1516 		 * o Group Addressed data (aka multicast) originating
1517 		 *   at the local sta are sent w/ 3-address format and
1518 		 *   address extension mode 00
1519 		 * o Individually Addressed data (aka unicast) originating
1520 		 *   at the local sta are sent w/ 4-address format and
1521 		 *   address extension mode 00
1522 		 * o Group Addressed data forwarded from a non-mesh sta are
1523 		 *   sent w/ 3-address format and address extension mode 01
1524 		 * o Individually Address data from another sta are sent
1525 		 *   w/ 4-address format and address extension mode 10
1526 		 */
1527 		is4addr = 0;		/* NB: don't use, disable */
1528 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1529 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1530 			KASSERT(rt != NULL, ("route is NULL"));
1531 			dir = IEEE80211_FC1_DIR_DSTODS;
1532 			hdrsize += IEEE80211_ADDR_LEN;
1533 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1534 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1535 				    vap->iv_myaddr)) {
1536 					IEEE80211_NOTE_MAC(vap,
1537 					    IEEE80211_MSG_MESH,
1538 					    eh.ether_dhost,
1539 					    "%s", "trying to send to ourself");
1540 					goto bad;
1541 				}
1542 				meshae = IEEE80211_MESH_AE_10;
1543 				meshhdrsize =
1544 				    sizeof(struct ieee80211_meshcntl_ae10);
1545 			} else {
1546 				meshae = IEEE80211_MESH_AE_00;
1547 				meshhdrsize =
1548 				    sizeof(struct ieee80211_meshcntl);
1549 			}
1550 		} else {
1551 			dir = IEEE80211_FC1_DIR_FROMDS;
1552 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1553 				/* proxy group */
1554 				meshae = IEEE80211_MESH_AE_01;
1555 				meshhdrsize =
1556 				    sizeof(struct ieee80211_meshcntl_ae01);
1557 			} else {
1558 				/* group */
1559 				meshae = IEEE80211_MESH_AE_00;
1560 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1561 			}
1562 		}
1563 	} else {
1564 #endif
1565 		/*
1566 		 * 4-address frames need to be generated for:
1567 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1568 		 * o packets sent through a vap marked for relaying
1569 		 *   (e.g. a station operating with dynamic WDS)
1570 		 */
1571 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1572 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1573 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1574 		if (is4addr)
1575 			hdrsize += IEEE80211_ADDR_LEN;
1576 		meshhdrsize = meshae = 0;
1577 #ifdef IEEE80211_SUPPORT_MESH
1578 	}
1579 #endif
1580 	/*
1581 	 * Honor driver DATAPAD requirement.
1582 	 */
1583 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1584 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1585 	else
1586 		hdrspace = hdrsize;
1587 
1588 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1589 		/*
1590 		 * Normal frame.
1591 		 */
1592 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1593 		if (m == NULL) {
1594 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1595 			goto bad;
1596 		}
1597 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1598 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1599 		llc = mtod(m, struct llc *);
1600 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1601 		llc->llc_control = LLC_UI;
1602 		llc->llc_snap.org_code[0] = 0;
1603 		llc->llc_snap.org_code[1] = 0;
1604 		llc->llc_snap.org_code[2] = 0;
1605 		llc->llc_snap.ether_type = eh.ether_type;
1606 	} else {
1607 #ifdef IEEE80211_SUPPORT_SUPERG
1608 		/*
1609 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1610 		 *
1611 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1612 		 * anywhere for some reason.  But, since 11n requires
1613 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1614 		 */
1615 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1616 		if (ieee80211_amsdu_tx_ok(ni)) {
1617 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1618 			is_amsdu = 1;
1619 		} else {
1620 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1621 		}
1622 		if (m == NULL)
1623 #endif
1624 			goto bad;
1625 	}
1626 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1627 
1628 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1629 	if (m == NULL) {
1630 		vap->iv_stats.is_tx_nobuf++;
1631 		goto bad;
1632 	}
1633 	wh = mtod(m, struct ieee80211_frame *);
1634 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1635 	*(uint16_t *)wh->i_dur = 0;
1636 	qos = NULL;	/* NB: quiet compiler */
1637 	if (is4addr) {
1638 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1639 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1640 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1641 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1642 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1643 	} else switch (vap->iv_opmode) {
1644 	case IEEE80211_M_STA:
1645 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1646 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1647 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1648 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1649 		break;
1650 	case IEEE80211_M_IBSS:
1651 	case IEEE80211_M_AHDEMO:
1652 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1653 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1654 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1655 		/*
1656 		 * NB: always use the bssid from iv_bss as the
1657 		 *     neighbor's may be stale after an ibss merge
1658 		 */
1659 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1660 		break;
1661 	case IEEE80211_M_HOSTAP:
1662 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1663 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1664 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1665 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1666 		break;
1667 #ifdef IEEE80211_SUPPORT_MESH
1668 	case IEEE80211_M_MBSS:
1669 		/* NB: offset by hdrspace to deal with DATAPAD */
1670 		mc = (struct ieee80211_meshcntl_ae10 *)
1671 		     (mtod(m, uint8_t *) + hdrspace);
1672 		wh->i_fc[1] = dir;
1673 		switch (meshae) {
1674 		case IEEE80211_MESH_AE_00:	/* no proxy */
1675 			mc->mc_flags = 0;
1676 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1677 				IEEE80211_ADDR_COPY(wh->i_addr1,
1678 				    ni->ni_macaddr);
1679 				IEEE80211_ADDR_COPY(wh->i_addr2,
1680 				    vap->iv_myaddr);
1681 				IEEE80211_ADDR_COPY(wh->i_addr3,
1682 				    eh.ether_dhost);
1683 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1684 				    eh.ether_shost);
1685 				qos =((struct ieee80211_qosframe_addr4 *)
1686 				    wh)->i_qos;
1687 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1688 				 /* mcast */
1689 				IEEE80211_ADDR_COPY(wh->i_addr1,
1690 				    eh.ether_dhost);
1691 				IEEE80211_ADDR_COPY(wh->i_addr2,
1692 				    vap->iv_myaddr);
1693 				IEEE80211_ADDR_COPY(wh->i_addr3,
1694 				    eh.ether_shost);
1695 				qos = ((struct ieee80211_qosframe *)
1696 				    wh)->i_qos;
1697 			}
1698 			break;
1699 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1700 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1701 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1702 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1703 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1704 			mc->mc_flags = 1;
1705 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1706 			    eh.ether_shost);
1707 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1708 			break;
1709 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1710 			KASSERT(rt != NULL, ("route is NULL"));
1711 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1712 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1713 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1714 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1715 			mc->mc_flags = IEEE80211_MESH_AE_10;
1716 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1717 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1718 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1719 			break;
1720 		default:
1721 			KASSERT(0, ("meshae %d", meshae));
1722 			break;
1723 		}
1724 		mc->mc_ttl = ms->ms_ttl;
1725 		ms->ms_seq++;
1726 		le32enc(mc->mc_seq, ms->ms_seq);
1727 		break;
1728 #endif
1729 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1730 	default:
1731 		goto bad;
1732 	}
1733 	if (m->m_flags & M_MORE_DATA)
1734 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1735 	if (addqos) {
1736 		int ac, tid;
1737 
1738 		if (is4addr) {
1739 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1740 		/* NB: mesh case handled earlier */
1741 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1742 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1743 		ac = M_WME_GETAC(m);
1744 		/* map from access class/queue to 11e header priorty value */
1745 		tid = WME_AC_TO_TID(ac);
1746 		qos[0] = tid & IEEE80211_QOS_TID;
1747 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1748 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1749 #ifdef IEEE80211_SUPPORT_MESH
1750 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1751 			qos[1] = IEEE80211_QOS_MC;
1752 		else
1753 #endif
1754 			qos[1] = 0;
1755 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1756 
1757 		/*
1758 		 * If this is an A-MSDU then ensure we set the
1759 		 * relevant field.
1760 		 */
1761 		if (is_amsdu)
1762 			qos[0] |= IEEE80211_QOS_AMSDU;
1763 
1764 		/*
1765 		 * XXX TODO TX lock is needed for atomic updates of sequence
1766 		 * numbers.  If the driver does it, then don't do it here;
1767 		 * and we don't need the TX lock held.
1768 		 */
1769 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1770 			/*
1771 			 * 802.11-2012 9.3.2.10 -
1772 			 *
1773 			 * If this is a multicast frame then we need
1774 			 * to ensure that the sequence number comes from
1775 			 * a separate seqno space and not the TID space.
1776 			 *
1777 			 * Otherwise multicast frames may actually cause
1778 			 * holes in the TX blockack window space and
1779 			 * upset various things.
1780 			 */
1781 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1782 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1783 			else
1784 				seqno = ni->ni_txseqs[tid]++;
1785 
1786 			/*
1787 			 * NB: don't assign a sequence # to potential
1788 			 * aggregates; we expect this happens at the
1789 			 * point the frame comes off any aggregation q
1790 			 * as otherwise we may introduce holes in the
1791 			 * BA sequence space and/or make window accouting
1792 			 * more difficult.
1793 			 *
1794 			 * XXX may want to control this with a driver
1795 			 * capability; this may also change when we pull
1796 			 * aggregation up into net80211
1797 			 */
1798 			*(uint16_t *)wh->i_seq =
1799 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1800 			M_SEQNO_SET(m, seqno);
1801 		} else {
1802 			/* NB: zero out i_seq field (for s/w encryption etc) */
1803 			*(uint16_t *)wh->i_seq = 0;
1804 		}
1805 	} else {
1806 		/*
1807 		 * XXX TODO TX lock is needed for atomic updates of sequence
1808 		 * numbers.  If the driver does it, then don't do it here;
1809 		 * and we don't need the TX lock held.
1810 		 */
1811 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1812 		*(uint16_t *)wh->i_seq =
1813 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1814 		M_SEQNO_SET(m, seqno);
1815 
1816 		/*
1817 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1818 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1819 		 */
1820 		if (is_amsdu)
1821 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1822 			    __func__);
1823 	}
1824 
1825 	/*
1826 	 * Check if xmit fragmentation is required.
1827 	 *
1828 	 * If the hardware does fragmentation offload, then don't bother
1829 	 * doing it here.
1830 	 */
1831 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1832 		txfrag = 0;
1833 	else
1834 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1835 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1836 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1837 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1838 
1839 	if (key != NULL) {
1840 		/*
1841 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1842 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1843 		 */
1844 		if ((m->m_flags & M_EAPOL) == 0 ||
1845 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1846 		     (vap->iv_opmode == IEEE80211_M_STA ?
1847 		      !IEEE80211_KEY_UNDEFINED(key) :
1848 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1849 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1850 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1851 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1852 				    eh.ether_dhost,
1853 				    "%s", "enmic failed, discard frame");
1854 				vap->iv_stats.is_crypto_enmicfail++;
1855 				goto bad;
1856 			}
1857 		}
1858 	}
1859 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1860 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1861 		goto bad;
1862 
1863 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1864 
1865 	IEEE80211_NODE_STAT(ni, tx_data);
1866 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1867 		IEEE80211_NODE_STAT(ni, tx_mcast);
1868 		m->m_flags |= M_MCAST;
1869 	} else
1870 		IEEE80211_NODE_STAT(ni, tx_ucast);
1871 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1872 
1873 	return m;
1874 bad:
1875 	if (m != NULL)
1876 		m_freem(m);
1877 	return NULL;
1878 #undef WH4
1879 #undef MC01
1880 }
1881 
1882 void
1883 ieee80211_free_mbuf(struct mbuf *m)
1884 {
1885 	struct mbuf *next;
1886 
1887 	if (m == NULL)
1888 		return;
1889 
1890 	do {
1891 		next = m->m_nextpkt;
1892 		m->m_nextpkt = NULL;
1893 		m_freem(m);
1894 	} while ((m = next) != NULL);
1895 }
1896 
1897 /*
1898  * Fragment the frame according to the specified mtu.
1899  * The size of the 802.11 header (w/o padding) is provided
1900  * so we don't need to recalculate it.  We create a new
1901  * mbuf for each fragment and chain it through m_nextpkt;
1902  * we might be able to optimize this by reusing the original
1903  * packet's mbufs but that is significantly more complicated.
1904  */
1905 static int
1906 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1907 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1908 {
1909 	struct ieee80211com *ic = vap->iv_ic;
1910 	struct ieee80211_frame *wh, *whf;
1911 	struct mbuf *m, *prev;
1912 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1913 	u_int hdrspace;
1914 
1915 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1916 	KASSERT(m0->m_pkthdr.len > mtu,
1917 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1918 
1919 	/*
1920 	 * Honor driver DATAPAD requirement.
1921 	 */
1922 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1923 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1924 	else
1925 		hdrspace = hdrsize;
1926 
1927 	wh = mtod(m0, struct ieee80211_frame *);
1928 	/* NB: mark the first frag; it will be propagated below */
1929 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1930 	totalhdrsize = hdrspace + ciphdrsize;
1931 	fragno = 1;
1932 	off = mtu - ciphdrsize;
1933 	remainder = m0->m_pkthdr.len - off;
1934 	prev = m0;
1935 	do {
1936 		fragsize = MIN(totalhdrsize + remainder, mtu);
1937 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1938 		if (m == NULL)
1939 			goto bad;
1940 		/* leave room to prepend any cipher header */
1941 		m_align(m, fragsize - ciphdrsize);
1942 
1943 		/*
1944 		 * Form the header in the fragment.  Note that since
1945 		 * we mark the first fragment with the MORE_FRAG bit
1946 		 * it automatically is propagated to each fragment; we
1947 		 * need only clear it on the last fragment (done below).
1948 		 * NB: frag 1+ dont have Mesh Control field present.
1949 		 */
1950 		whf = mtod(m, struct ieee80211_frame *);
1951 		memcpy(whf, wh, hdrsize);
1952 #ifdef IEEE80211_SUPPORT_MESH
1953 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1954 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
1955 #endif
1956 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1957 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1958 				IEEE80211_SEQ_FRAG_SHIFT);
1959 		fragno++;
1960 
1961 		payload = fragsize - totalhdrsize;
1962 		/* NB: destination is known to be contiguous */
1963 
1964 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1965 		m->m_len = hdrspace + payload;
1966 		m->m_pkthdr.len = hdrspace + payload;
1967 		m->m_flags |= M_FRAG;
1968 
1969 		/* chain up the fragment */
1970 		prev->m_nextpkt = m;
1971 		prev = m;
1972 
1973 		/* deduct fragment just formed */
1974 		remainder -= payload;
1975 		off += payload;
1976 	} while (remainder != 0);
1977 
1978 	/* set the last fragment */
1979 	m->m_flags |= M_LASTFRAG;
1980 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1981 
1982 	/* strip first mbuf now that everything has been copied */
1983 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1984 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1985 
1986 	vap->iv_stats.is_tx_fragframes++;
1987 	vap->iv_stats.is_tx_frags += fragno-1;
1988 
1989 	return 1;
1990 bad:
1991 	/* reclaim fragments but leave original frame for caller to free */
1992 	ieee80211_free_mbuf(m0->m_nextpkt);
1993 	m0->m_nextpkt = NULL;
1994 	return 0;
1995 }
1996 
1997 /*
1998  * Add a supported rates element id to a frame.
1999  */
2000 uint8_t *
2001 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2002 {
2003 	int nrates;
2004 
2005 	*frm++ = IEEE80211_ELEMID_RATES;
2006 	nrates = rs->rs_nrates;
2007 	if (nrates > IEEE80211_RATE_SIZE)
2008 		nrates = IEEE80211_RATE_SIZE;
2009 	*frm++ = nrates;
2010 	memcpy(frm, rs->rs_rates, nrates);
2011 	return frm + nrates;
2012 }
2013 
2014 /*
2015  * Add an extended supported rates element id to a frame.
2016  */
2017 uint8_t *
2018 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2019 {
2020 	/*
2021 	 * Add an extended supported rates element if operating in 11g mode.
2022 	 */
2023 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2024 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2025 		*frm++ = IEEE80211_ELEMID_XRATES;
2026 		*frm++ = nrates;
2027 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2028 		frm += nrates;
2029 	}
2030 	return frm;
2031 }
2032 
2033 /*
2034  * Add an ssid element to a frame.
2035  */
2036 uint8_t *
2037 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2038 {
2039 	*frm++ = IEEE80211_ELEMID_SSID;
2040 	*frm++ = len;
2041 	memcpy(frm, ssid, len);
2042 	return frm + len;
2043 }
2044 
2045 /*
2046  * Add an erp element to a frame.
2047  */
2048 static uint8_t *
2049 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
2050 {
2051 	uint8_t erp;
2052 
2053 	*frm++ = IEEE80211_ELEMID_ERP;
2054 	*frm++ = 1;
2055 	erp = 0;
2056 	if (ic->ic_nonerpsta != 0)
2057 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2058 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2059 		erp |= IEEE80211_ERP_USE_PROTECTION;
2060 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2061 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2062 	*frm++ = erp;
2063 	return frm;
2064 }
2065 
2066 /*
2067  * Add a CFParams element to a frame.
2068  */
2069 static uint8_t *
2070 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2071 {
2072 #define	ADDSHORT(frm, v) do {	\
2073 	le16enc(frm, v);	\
2074 	frm += 2;		\
2075 } while (0)
2076 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2077 	*frm++ = 6;
2078 	*frm++ = 0;		/* CFP count */
2079 	*frm++ = 2;		/* CFP period */
2080 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2081 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2082 	return frm;
2083 #undef ADDSHORT
2084 }
2085 
2086 static __inline uint8_t *
2087 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2088 {
2089 	memcpy(frm, ie->ie_data, ie->ie_len);
2090 	return frm + ie->ie_len;
2091 }
2092 
2093 static __inline uint8_t *
2094 add_ie(uint8_t *frm, const uint8_t *ie)
2095 {
2096 	memcpy(frm, ie, 2 + ie[1]);
2097 	return frm + 2 + ie[1];
2098 }
2099 
2100 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2101 /*
2102  * Add a WME information element to a frame.
2103  */
2104 uint8_t *
2105 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
2106 {
2107 	static const struct ieee80211_wme_info info = {
2108 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2109 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
2110 		.wme_oui	= { WME_OUI_BYTES },
2111 		.wme_type	= WME_OUI_TYPE,
2112 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
2113 		.wme_version	= WME_VERSION,
2114 		.wme_info	= 0,
2115 	};
2116 	memcpy(frm, &info, sizeof(info));
2117 	return frm + sizeof(info);
2118 }
2119 
2120 /*
2121  * Add a WME parameters element to a frame.
2122  */
2123 static uint8_t *
2124 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2125 {
2126 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
2127 #define	ADDSHORT(frm, v) do {	\
2128 	le16enc(frm, v);	\
2129 	frm += 2;		\
2130 } while (0)
2131 	/* NB: this works 'cuz a param has an info at the front */
2132 	static const struct ieee80211_wme_info param = {
2133 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2134 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2135 		.wme_oui	= { WME_OUI_BYTES },
2136 		.wme_type	= WME_OUI_TYPE,
2137 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2138 		.wme_version	= WME_VERSION,
2139 	};
2140 	int i;
2141 
2142 	memcpy(frm, &param, sizeof(param));
2143 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2144 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
2145 	*frm++ = 0;					/* reserved field */
2146 	for (i = 0; i < WME_NUM_AC; i++) {
2147 		const struct wmeParams *ac =
2148 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2149 		*frm++ = SM(i, WME_PARAM_ACI)
2150 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
2151 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2152 		       ;
2153 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2154 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2155 		       ;
2156 		ADDSHORT(frm, ac->wmep_txopLimit);
2157 	}
2158 	return frm;
2159 #undef SM
2160 #undef ADDSHORT
2161 }
2162 #undef WME_OUI_BYTES
2163 
2164 /*
2165  * Add an 11h Power Constraint element to a frame.
2166  */
2167 static uint8_t *
2168 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2169 {
2170 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2171 	/* XXX per-vap tx power limit? */
2172 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2173 
2174 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2175 	frm[1] = 1;
2176 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2177 	return frm + 3;
2178 }
2179 
2180 /*
2181  * Add an 11h Power Capability element to a frame.
2182  */
2183 static uint8_t *
2184 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2185 {
2186 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2187 	frm[1] = 2;
2188 	frm[2] = c->ic_minpower;
2189 	frm[3] = c->ic_maxpower;
2190 	return frm + 4;
2191 }
2192 
2193 /*
2194  * Add an 11h Supported Channels element to a frame.
2195  */
2196 static uint8_t *
2197 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2198 {
2199 	static const int ielen = 26;
2200 
2201 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2202 	frm[1] = ielen;
2203 	/* XXX not correct */
2204 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2205 	return frm + 2 + ielen;
2206 }
2207 
2208 /*
2209  * Add an 11h Quiet time element to a frame.
2210  */
2211 static uint8_t *
2212 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2213 {
2214 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2215 
2216 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2217 	quiet->len = 6;
2218 
2219 	/*
2220 	 * Only update every beacon interval - otherwise probe responses
2221 	 * would update the quiet count value.
2222 	 */
2223 	if (update) {
2224 		if (vap->iv_quiet_count_value == 1)
2225 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2226 		else if (vap->iv_quiet_count_value > 1)
2227 			vap->iv_quiet_count_value--;
2228 	}
2229 
2230 	if (vap->iv_quiet_count_value == 0) {
2231 		/* value 0 is reserved as per 802.11h standerd */
2232 		vap->iv_quiet_count_value = 1;
2233 	}
2234 
2235 	quiet->tbttcount = vap->iv_quiet_count_value;
2236 	quiet->period = vap->iv_quiet_period;
2237 	quiet->duration = htole16(vap->iv_quiet_duration);
2238 	quiet->offset = htole16(vap->iv_quiet_offset);
2239 	return frm + sizeof(*quiet);
2240 }
2241 
2242 /*
2243  * Add an 11h Channel Switch Announcement element to a frame.
2244  * Note that we use the per-vap CSA count to adjust the global
2245  * counter so we can use this routine to form probe response
2246  * frames and get the current count.
2247  */
2248 static uint8_t *
2249 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2250 {
2251 	struct ieee80211com *ic = vap->iv_ic;
2252 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2253 
2254 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2255 	csa->csa_len = 3;
2256 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2257 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2258 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2259 	return frm + sizeof(*csa);
2260 }
2261 
2262 /*
2263  * Add an 11h country information element to a frame.
2264  */
2265 static uint8_t *
2266 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2267 {
2268 
2269 	if (ic->ic_countryie == NULL ||
2270 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2271 		/*
2272 		 * Handle lazy construction of ie.  This is done on
2273 		 * first use and after a channel change that requires
2274 		 * re-calculation.
2275 		 */
2276 		if (ic->ic_countryie != NULL)
2277 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2278 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2279 		if (ic->ic_countryie == NULL)
2280 			return frm;
2281 		ic->ic_countryie_chan = ic->ic_bsschan;
2282 	}
2283 	return add_appie(frm, ic->ic_countryie);
2284 }
2285 
2286 uint8_t *
2287 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2288 {
2289 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2290 		return (add_ie(frm, vap->iv_wpa_ie));
2291 	else {
2292 		/* XXX else complain? */
2293 		return (frm);
2294 	}
2295 }
2296 
2297 uint8_t *
2298 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2299 {
2300 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2301 		return (add_ie(frm, vap->iv_rsn_ie));
2302 	else {
2303 		/* XXX else complain? */
2304 		return (frm);
2305 	}
2306 }
2307 
2308 uint8_t *
2309 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2310 {
2311 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2312 		*frm++ = IEEE80211_ELEMID_QOS;
2313 		*frm++ = 1;
2314 		*frm++ = 0;
2315 	}
2316 
2317 	return (frm);
2318 }
2319 
2320 /*
2321  * Send a probe request frame with the specified ssid
2322  * and any optional information element data.
2323  */
2324 int
2325 ieee80211_send_probereq(struct ieee80211_node *ni,
2326 	const uint8_t sa[IEEE80211_ADDR_LEN],
2327 	const uint8_t da[IEEE80211_ADDR_LEN],
2328 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2329 	const uint8_t *ssid, size_t ssidlen)
2330 {
2331 	struct ieee80211vap *vap = ni->ni_vap;
2332 	struct ieee80211com *ic = ni->ni_ic;
2333 	struct ieee80211_node *bss;
2334 	const struct ieee80211_txparam *tp;
2335 	struct ieee80211_bpf_params params;
2336 	const struct ieee80211_rateset *rs;
2337 	struct mbuf *m;
2338 	uint8_t *frm;
2339 	int ret;
2340 
2341 	bss = ieee80211_ref_node(vap->iv_bss);
2342 
2343 	if (vap->iv_state == IEEE80211_S_CAC) {
2344 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2345 		    "block %s frame in CAC state", "probe request");
2346 		vap->iv_stats.is_tx_badstate++;
2347 		ieee80211_free_node(bss);
2348 		return EIO;		/* XXX */
2349 	}
2350 
2351 	/*
2352 	 * Hold a reference on the node so it doesn't go away until after
2353 	 * the xmit is complete all the way in the driver.  On error we
2354 	 * will remove our reference.
2355 	 */
2356 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2357 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2358 		__func__, __LINE__,
2359 		ni, ether_sprintf(ni->ni_macaddr),
2360 		ieee80211_node_refcnt(ni)+1);
2361 	ieee80211_ref_node(ni);
2362 
2363 	/*
2364 	 * prreq frame format
2365 	 *	[tlv] ssid
2366 	 *	[tlv] supported rates
2367 	 *	[tlv] RSN (optional)
2368 	 *	[tlv] extended supported rates
2369 	 *	[tlv] HT cap (optional)
2370 	 *	[tlv] VHT cap (optional)
2371 	 *	[tlv] WPA (optional)
2372 	 *	[tlv] user-specified ie's
2373 	 */
2374 	m = ieee80211_getmgtframe(&frm,
2375 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2376 	       	 2 + IEEE80211_NWID_LEN
2377 	       + 2 + IEEE80211_RATE_SIZE
2378 	       + sizeof(struct ieee80211_ie_htcap)
2379 	       + sizeof(struct ieee80211_ie_vhtcap)
2380 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2381 	       + sizeof(struct ieee80211_ie_wpa)
2382 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2383 	       + sizeof(struct ieee80211_ie_wpa)
2384 	       + (vap->iv_appie_probereq != NULL ?
2385 		   vap->iv_appie_probereq->ie_len : 0)
2386 	);
2387 	if (m == NULL) {
2388 		vap->iv_stats.is_tx_nobuf++;
2389 		ieee80211_free_node(ni);
2390 		ieee80211_free_node(bss);
2391 		return ENOMEM;
2392 	}
2393 
2394 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2395 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2396 	frm = ieee80211_add_rates(frm, rs);
2397 	frm = ieee80211_add_rsn(frm, vap);
2398 	frm = ieee80211_add_xrates(frm, rs);
2399 
2400 	/*
2401 	 * Note: we can't use bss; we don't have one yet.
2402 	 *
2403 	 * So, we should announce our capabilities
2404 	 * in this channel mode (2g/5g), not the
2405 	 * channel details itself.
2406 	 */
2407 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2408 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2409 		struct ieee80211_channel *c;
2410 
2411 		/*
2412 		 * Get the HT channel that we should try upgrading to.
2413 		 * If we can do 40MHz then this'll upgrade it appropriately.
2414 		 */
2415 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2416 		    vap->iv_flags_ht);
2417 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2418 	}
2419 
2420 	/*
2421 	 * XXX TODO: need to figure out what/how to update the
2422 	 * VHT channel.
2423 	 */
2424 #if 0
2425 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2426 		struct ieee80211_channel *c;
2427 
2428 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2429 		    vap->iv_flags_ht);
2430 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2431 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2432 	}
2433 #endif
2434 
2435 	frm = ieee80211_add_wpa(frm, vap);
2436 	if (vap->iv_appie_probereq != NULL)
2437 		frm = add_appie(frm, vap->iv_appie_probereq);
2438 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2439 
2440 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2441 	    ("leading space %zd", M_LEADINGSPACE(m)));
2442 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2443 	if (m == NULL) {
2444 		/* NB: cannot happen */
2445 		ieee80211_free_node(ni);
2446 		ieee80211_free_node(bss);
2447 		return ENOMEM;
2448 	}
2449 
2450 	IEEE80211_TX_LOCK(ic);
2451 	ieee80211_send_setup(ni, m,
2452 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2453 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2454 	/* XXX power management? */
2455 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2456 
2457 	M_WME_SETAC(m, WME_AC_BE);
2458 
2459 	IEEE80211_NODE_STAT(ni, tx_probereq);
2460 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2461 
2462 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2463 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2464 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2465 	    ether_sprintf(bssid),
2466 	    sa, ":",
2467 	    da, ":",
2468 	    ssidlen, ssid);
2469 
2470 	memset(&params, 0, sizeof(params));
2471 	params.ibp_pri = M_WME_GETAC(m);
2472 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2473 	params.ibp_rate0 = tp->mgmtrate;
2474 	if (IEEE80211_IS_MULTICAST(da)) {
2475 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2476 		params.ibp_try0 = 1;
2477 	} else
2478 		params.ibp_try0 = tp->maxretry;
2479 	params.ibp_power = ni->ni_txpower;
2480 	ret = ieee80211_raw_output(vap, ni, m, &params);
2481 	IEEE80211_TX_UNLOCK(ic);
2482 	ieee80211_free_node(bss);
2483 	return (ret);
2484 }
2485 
2486 /*
2487  * Calculate capability information for mgt frames.
2488  */
2489 uint16_t
2490 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2491 {
2492 	struct ieee80211com *ic = vap->iv_ic;
2493 	uint16_t capinfo;
2494 
2495 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2496 
2497 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2498 		capinfo = IEEE80211_CAPINFO_ESS;
2499 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2500 		capinfo = IEEE80211_CAPINFO_IBSS;
2501 	else
2502 		capinfo = 0;
2503 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2504 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2505 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2506 	    IEEE80211_IS_CHAN_2GHZ(chan))
2507 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2508 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2509 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2510 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2511 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2512 	return capinfo;
2513 }
2514 
2515 /*
2516  * Send a management frame.  The node is for the destination (or ic_bss
2517  * when in station mode).  Nodes other than ic_bss have their reference
2518  * count bumped to reflect our use for an indeterminant time.
2519  */
2520 int
2521 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2522 {
2523 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2524 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2525 	struct ieee80211vap *vap = ni->ni_vap;
2526 	struct ieee80211com *ic = ni->ni_ic;
2527 	struct ieee80211_node *bss = vap->iv_bss;
2528 	struct ieee80211_bpf_params params;
2529 	struct mbuf *m;
2530 	uint8_t *frm;
2531 	uint16_t capinfo;
2532 	int has_challenge, is_shared_key, ret, status;
2533 
2534 	KASSERT(ni != NULL, ("null node"));
2535 
2536 	/*
2537 	 * Hold a reference on the node so it doesn't go away until after
2538 	 * the xmit is complete all the way in the driver.  On error we
2539 	 * will remove our reference.
2540 	 */
2541 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2542 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2543 		__func__, __LINE__,
2544 		ni, ether_sprintf(ni->ni_macaddr),
2545 		ieee80211_node_refcnt(ni)+1);
2546 	ieee80211_ref_node(ni);
2547 
2548 	memset(&params, 0, sizeof(params));
2549 	switch (type) {
2550 
2551 	case IEEE80211_FC0_SUBTYPE_AUTH:
2552 		status = arg >> 16;
2553 		arg &= 0xffff;
2554 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2555 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2556 		    ni->ni_challenge != NULL);
2557 
2558 		/*
2559 		 * Deduce whether we're doing open authentication or
2560 		 * shared key authentication.  We do the latter if
2561 		 * we're in the middle of a shared key authentication
2562 		 * handshake or if we're initiating an authentication
2563 		 * request and configured to use shared key.
2564 		 */
2565 		is_shared_key = has_challenge ||
2566 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2567 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2568 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2569 
2570 		m = ieee80211_getmgtframe(&frm,
2571 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2572 			  3 * sizeof(uint16_t)
2573 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2574 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2575 		);
2576 		if (m == NULL)
2577 			senderr(ENOMEM, is_tx_nobuf);
2578 
2579 		((uint16_t *)frm)[0] =
2580 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2581 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2582 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2583 		((uint16_t *)frm)[2] = htole16(status);/* status */
2584 
2585 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2586 			((uint16_t *)frm)[3] =
2587 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2588 			    IEEE80211_ELEMID_CHALLENGE);
2589 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2590 			    IEEE80211_CHALLENGE_LEN);
2591 			m->m_pkthdr.len = m->m_len =
2592 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2593 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2594 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2595 				    "request encrypt frame (%s)", __func__);
2596 				/* mark frame for encryption */
2597 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2598 			}
2599 		} else
2600 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2601 
2602 		/* XXX not right for shared key */
2603 		if (status == IEEE80211_STATUS_SUCCESS)
2604 			IEEE80211_NODE_STAT(ni, tx_auth);
2605 		else
2606 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2607 
2608 		if (vap->iv_opmode == IEEE80211_M_STA)
2609 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2610 				(void *) vap->iv_state);
2611 		break;
2612 
2613 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2614 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2615 		    "send station deauthenticate (reason: %d (%s))", arg,
2616 		    ieee80211_reason_to_string(arg));
2617 		m = ieee80211_getmgtframe(&frm,
2618 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2619 			sizeof(uint16_t));
2620 		if (m == NULL)
2621 			senderr(ENOMEM, is_tx_nobuf);
2622 		*(uint16_t *)frm = htole16(arg);	/* reason */
2623 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2624 
2625 		IEEE80211_NODE_STAT(ni, tx_deauth);
2626 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2627 
2628 		ieee80211_node_unauthorize(ni);		/* port closed */
2629 		break;
2630 
2631 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2632 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2633 		/*
2634 		 * asreq frame format
2635 		 *	[2] capability information
2636 		 *	[2] listen interval
2637 		 *	[6*] current AP address (reassoc only)
2638 		 *	[tlv] ssid
2639 		 *	[tlv] supported rates
2640 		 *	[tlv] extended supported rates
2641 		 *	[4] power capability (optional)
2642 		 *	[28] supported channels (optional)
2643 		 *	[tlv] HT capabilities
2644 		 *	[tlv] VHT capabilities
2645 		 *	[tlv] WME (optional)
2646 		 *	[tlv] Vendor OUI HT capabilities (optional)
2647 		 *	[tlv] Atheros capabilities (if negotiated)
2648 		 *	[tlv] AppIE's (optional)
2649 		 */
2650 		m = ieee80211_getmgtframe(&frm,
2651 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2652 			 sizeof(uint16_t)
2653 		       + sizeof(uint16_t)
2654 		       + IEEE80211_ADDR_LEN
2655 		       + 2 + IEEE80211_NWID_LEN
2656 		       + 2 + IEEE80211_RATE_SIZE
2657 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2658 		       + 4
2659 		       + 2 + 26
2660 		       + sizeof(struct ieee80211_wme_info)
2661 		       + sizeof(struct ieee80211_ie_htcap)
2662 		       + sizeof(struct ieee80211_ie_vhtcap)
2663 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2664 #ifdef IEEE80211_SUPPORT_SUPERG
2665 		       + sizeof(struct ieee80211_ath_ie)
2666 #endif
2667 		       + (vap->iv_appie_wpa != NULL ?
2668 				vap->iv_appie_wpa->ie_len : 0)
2669 		       + (vap->iv_appie_assocreq != NULL ?
2670 				vap->iv_appie_assocreq->ie_len : 0)
2671 		);
2672 		if (m == NULL)
2673 			senderr(ENOMEM, is_tx_nobuf);
2674 
2675 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2676 		    ("wrong mode %u", vap->iv_opmode));
2677 		capinfo = IEEE80211_CAPINFO_ESS;
2678 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2679 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2680 		/*
2681 		 * NB: Some 11a AP's reject the request when
2682 		 *     short preamble is set.
2683 		 */
2684 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2685 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2686 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2687 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2688 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2689 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2690 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2691 		    (vap->iv_flags & IEEE80211_F_DOTH))
2692 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2693 		*(uint16_t *)frm = htole16(capinfo);
2694 		frm += 2;
2695 
2696 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2697 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2698 						    bss->ni_intval));
2699 		frm += 2;
2700 
2701 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2702 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2703 			frm += IEEE80211_ADDR_LEN;
2704 		}
2705 
2706 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2707 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2708 		frm = ieee80211_add_rsn(frm, vap);
2709 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2710 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2711 			frm = ieee80211_add_powercapability(frm,
2712 			    ic->ic_curchan);
2713 			frm = ieee80211_add_supportedchannels(frm, ic);
2714 		}
2715 
2716 		/*
2717 		 * Check the channel - we may be using an 11n NIC with an
2718 		 * 11n capable station, but we're configured to be an 11b
2719 		 * channel.
2720 		 */
2721 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2722 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2723 		    ni->ni_ies.htcap_ie != NULL &&
2724 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2725 			frm = ieee80211_add_htcap(frm, ni);
2726 		}
2727 
2728 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2729 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2730 		    ni->ni_ies.vhtcap_ie != NULL &&
2731 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2732 			frm = ieee80211_add_vhtcap(frm, ni);
2733 		}
2734 
2735 		frm = ieee80211_add_wpa(frm, vap);
2736 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2737 		    ni->ni_ies.wme_ie != NULL)
2738 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2739 
2740 		/*
2741 		 * Same deal - only send HT info if we're on an 11n
2742 		 * capable channel.
2743 		 */
2744 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2745 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2746 		    ni->ni_ies.htcap_ie != NULL &&
2747 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2748 			frm = ieee80211_add_htcap_vendor(frm, ni);
2749 		}
2750 #ifdef IEEE80211_SUPPORT_SUPERG
2751 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2752 			frm = ieee80211_add_ath(frm,
2753 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2754 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2755 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2756 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2757 		}
2758 #endif /* IEEE80211_SUPPORT_SUPERG */
2759 		if (vap->iv_appie_assocreq != NULL)
2760 			frm = add_appie(frm, vap->iv_appie_assocreq);
2761 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2762 
2763 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2764 			(void *) vap->iv_state);
2765 		break;
2766 
2767 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2768 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2769 		/*
2770 		 * asresp frame format
2771 		 *	[2] capability information
2772 		 *	[2] status
2773 		 *	[2] association ID
2774 		 *	[tlv] supported rates
2775 		 *	[tlv] extended supported rates
2776 		 *	[tlv] HT capabilities (standard, if STA enabled)
2777 		 *	[tlv] HT information (standard, if STA enabled)
2778 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2779 		 *	[tlv] VHT information (standard, if STA enabled)
2780 		 *	[tlv] WME (if configured and STA enabled)
2781 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2782 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2783 		 *	[tlv] Atheros capabilities (if STA enabled)
2784 		 *	[tlv] AppIE's (optional)
2785 		 */
2786 		m = ieee80211_getmgtframe(&frm,
2787 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2788 			 sizeof(uint16_t)
2789 		       + sizeof(uint16_t)
2790 		       + sizeof(uint16_t)
2791 		       + 2 + IEEE80211_RATE_SIZE
2792 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2793 		       + sizeof(struct ieee80211_ie_htcap) + 4
2794 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2795 		       + sizeof(struct ieee80211_ie_vhtcap)
2796 		       + sizeof(struct ieee80211_ie_vht_operation)
2797 		       + sizeof(struct ieee80211_wme_param)
2798 #ifdef IEEE80211_SUPPORT_SUPERG
2799 		       + sizeof(struct ieee80211_ath_ie)
2800 #endif
2801 		       + (vap->iv_appie_assocresp != NULL ?
2802 				vap->iv_appie_assocresp->ie_len : 0)
2803 		);
2804 		if (m == NULL)
2805 			senderr(ENOMEM, is_tx_nobuf);
2806 
2807 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2808 		*(uint16_t *)frm = htole16(capinfo);
2809 		frm += 2;
2810 
2811 		*(uint16_t *)frm = htole16(arg);	/* status */
2812 		frm += 2;
2813 
2814 		if (arg == IEEE80211_STATUS_SUCCESS) {
2815 			*(uint16_t *)frm = htole16(ni->ni_associd);
2816 			IEEE80211_NODE_STAT(ni, tx_assoc);
2817 		} else
2818 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2819 		frm += 2;
2820 
2821 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2822 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2823 		/* NB: respond according to what we received */
2824 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2825 			frm = ieee80211_add_htcap(frm, ni);
2826 			frm = ieee80211_add_htinfo(frm, ni);
2827 		}
2828 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2829 		    ni->ni_ies.wme_ie != NULL)
2830 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2831 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2832 			frm = ieee80211_add_htcap_vendor(frm, ni);
2833 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2834 		}
2835 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2836 			frm = ieee80211_add_vhtcap(frm, ni);
2837 			frm = ieee80211_add_vhtinfo(frm, ni);
2838 		}
2839 #ifdef IEEE80211_SUPPORT_SUPERG
2840 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2841 			frm = ieee80211_add_ath(frm,
2842 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2843 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2844 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2845 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2846 #endif /* IEEE80211_SUPPORT_SUPERG */
2847 		if (vap->iv_appie_assocresp != NULL)
2848 			frm = add_appie(frm, vap->iv_appie_assocresp);
2849 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2850 		break;
2851 
2852 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2853 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2854 		    "send station disassociate (reason: %d (%s))", arg,
2855 		    ieee80211_reason_to_string(arg));
2856 		m = ieee80211_getmgtframe(&frm,
2857 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2858 			sizeof(uint16_t));
2859 		if (m == NULL)
2860 			senderr(ENOMEM, is_tx_nobuf);
2861 		*(uint16_t *)frm = htole16(arg);	/* reason */
2862 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2863 
2864 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2865 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2866 		break;
2867 
2868 	default:
2869 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2870 		    "invalid mgmt frame type %u", type);
2871 		senderr(EINVAL, is_tx_unknownmgt);
2872 		/* NOTREACHED */
2873 	}
2874 
2875 	/* NB: force non-ProbeResp frames to the highest queue */
2876 	params.ibp_pri = WME_AC_VO;
2877 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2878 	/* NB: we know all frames are unicast */
2879 	params.ibp_try0 = bss->ni_txparms->maxretry;
2880 	params.ibp_power = bss->ni_txpower;
2881 	return ieee80211_mgmt_output(ni, m, type, &params);
2882 bad:
2883 	ieee80211_free_node(ni);
2884 	return ret;
2885 #undef senderr
2886 #undef HTFLAGS
2887 }
2888 
2889 /*
2890  * Return an mbuf with a probe response frame in it.
2891  * Space is left to prepend and 802.11 header at the
2892  * front but it's left to the caller to fill in.
2893  */
2894 struct mbuf *
2895 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2896 {
2897 	struct ieee80211vap *vap = bss->ni_vap;
2898 	struct ieee80211com *ic = bss->ni_ic;
2899 	const struct ieee80211_rateset *rs;
2900 	struct mbuf *m;
2901 	uint16_t capinfo;
2902 	uint8_t *frm;
2903 
2904 	/*
2905 	 * probe response frame format
2906 	 *	[8] time stamp
2907 	 *	[2] beacon interval
2908 	 *	[2] cabability information
2909 	 *	[tlv] ssid
2910 	 *	[tlv] supported rates
2911 	 *	[tlv] parameter set (FH/DS)
2912 	 *	[tlv] parameter set (IBSS)
2913 	 *	[tlv] country (optional)
2914 	 *	[3] power control (optional)
2915 	 *	[5] channel switch announcement (CSA) (optional)
2916 	 *	[tlv] extended rate phy (ERP)
2917 	 *	[tlv] extended supported rates
2918 	 *	[tlv] RSN (optional)
2919 	 *	[tlv] HT capabilities
2920 	 *	[tlv] HT information
2921 	 *	[tlv] VHT capabilities
2922 	 *	[tlv] VHT information
2923 	 *	[tlv] WPA (optional)
2924 	 *	[tlv] WME (optional)
2925 	 *	[tlv] Vendor OUI HT capabilities (optional)
2926 	 *	[tlv] Vendor OUI HT information (optional)
2927 	 *	[tlv] Atheros capabilities
2928 	 *	[tlv] AppIE's (optional)
2929 	 *	[tlv] Mesh ID (MBSS)
2930 	 *	[tlv] Mesh Conf (MBSS)
2931 	 */
2932 	m = ieee80211_getmgtframe(&frm,
2933 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2934 		 8
2935 	       + sizeof(uint16_t)
2936 	       + sizeof(uint16_t)
2937 	       + 2 + IEEE80211_NWID_LEN
2938 	       + 2 + IEEE80211_RATE_SIZE
2939 	       + 7	/* max(7,3) */
2940 	       + IEEE80211_COUNTRY_MAX_SIZE
2941 	       + 3
2942 	       + sizeof(struct ieee80211_csa_ie)
2943 	       + sizeof(struct ieee80211_quiet_ie)
2944 	       + 3
2945 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2946 	       + sizeof(struct ieee80211_ie_wpa)
2947 	       + sizeof(struct ieee80211_ie_htcap)
2948 	       + sizeof(struct ieee80211_ie_htinfo)
2949 	       + sizeof(struct ieee80211_ie_wpa)
2950 	       + sizeof(struct ieee80211_wme_param)
2951 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2952 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2953 	       +  sizeof(struct ieee80211_ie_vhtcap)
2954 	       +  sizeof(struct ieee80211_ie_vht_operation)
2955 #ifdef IEEE80211_SUPPORT_SUPERG
2956 	       + sizeof(struct ieee80211_ath_ie)
2957 #endif
2958 #ifdef IEEE80211_SUPPORT_MESH
2959 	       + 2 + IEEE80211_MESHID_LEN
2960 	       + sizeof(struct ieee80211_meshconf_ie)
2961 #endif
2962 	       + (vap->iv_appie_proberesp != NULL ?
2963 			vap->iv_appie_proberesp->ie_len : 0)
2964 	);
2965 	if (m == NULL) {
2966 		vap->iv_stats.is_tx_nobuf++;
2967 		return NULL;
2968 	}
2969 
2970 	memset(frm, 0, 8);	/* timestamp should be filled later */
2971 	frm += 8;
2972 	*(uint16_t *)frm = htole16(bss->ni_intval);
2973 	frm += 2;
2974 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2975 	*(uint16_t *)frm = htole16(capinfo);
2976 	frm += 2;
2977 
2978 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2979 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2980 	frm = ieee80211_add_rates(frm, rs);
2981 
2982 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2983 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2984 		*frm++ = 5;
2985 		*frm++ = bss->ni_fhdwell & 0x00ff;
2986 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2987 		*frm++ = IEEE80211_FH_CHANSET(
2988 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2989 		*frm++ = IEEE80211_FH_CHANPAT(
2990 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2991 		*frm++ = bss->ni_fhindex;
2992 	} else {
2993 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2994 		*frm++ = 1;
2995 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2996 	}
2997 
2998 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2999 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3000 		*frm++ = 2;
3001 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3002 	}
3003 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3004 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3005 		frm = ieee80211_add_countryie(frm, ic);
3006 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3007 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3008 			frm = ieee80211_add_powerconstraint(frm, vap);
3009 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3010 			frm = ieee80211_add_csa(frm, vap);
3011 	}
3012 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3013 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3014 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3015 			if (vap->iv_quiet)
3016 				frm = ieee80211_add_quiet(frm, vap, 0);
3017 		}
3018 	}
3019 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3020 		frm = ieee80211_add_erp(frm, ic);
3021 	frm = ieee80211_add_xrates(frm, rs);
3022 	frm = ieee80211_add_rsn(frm, vap);
3023 	/*
3024 	 * NB: legacy 11b clients do not get certain ie's.
3025 	 *     The caller identifies such clients by passing
3026 	 *     a token in legacy to us.  Could expand this to be
3027 	 *     any legacy client for stuff like HT ie's.
3028 	 */
3029 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3030 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3031 		frm = ieee80211_add_htcap(frm, bss);
3032 		frm = ieee80211_add_htinfo(frm, bss);
3033 	}
3034 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3035 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3036 		frm = ieee80211_add_vhtcap(frm, bss);
3037 		frm = ieee80211_add_vhtinfo(frm, bss);
3038 	}
3039 	frm = ieee80211_add_wpa(frm, vap);
3040 	if (vap->iv_flags & IEEE80211_F_WME)
3041 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3042 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3043 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3044 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3045 		frm = ieee80211_add_htcap_vendor(frm, bss);
3046 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3047 	}
3048 #ifdef IEEE80211_SUPPORT_SUPERG
3049 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3050 	    legacy != IEEE80211_SEND_LEGACY_11B)
3051 		frm = ieee80211_add_athcaps(frm, bss);
3052 #endif
3053 	if (vap->iv_appie_proberesp != NULL)
3054 		frm = add_appie(frm, vap->iv_appie_proberesp);
3055 #ifdef IEEE80211_SUPPORT_MESH
3056 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3057 		frm = ieee80211_add_meshid(frm, vap);
3058 		frm = ieee80211_add_meshconf(frm, vap);
3059 	}
3060 #endif
3061 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3062 
3063 	return m;
3064 }
3065 
3066 /*
3067  * Send a probe response frame to the specified mac address.
3068  * This does not go through the normal mgt frame api so we
3069  * can specify the destination address and re-use the bss node
3070  * for the sta reference.
3071  */
3072 int
3073 ieee80211_send_proberesp(struct ieee80211vap *vap,
3074 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3075 {
3076 	struct ieee80211_node *bss = vap->iv_bss;
3077 	struct ieee80211com *ic = vap->iv_ic;
3078 	struct mbuf *m;
3079 	int ret;
3080 
3081 	if (vap->iv_state == IEEE80211_S_CAC) {
3082 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3083 		    "block %s frame in CAC state", "probe response");
3084 		vap->iv_stats.is_tx_badstate++;
3085 		return EIO;		/* XXX */
3086 	}
3087 
3088 	/*
3089 	 * Hold a reference on the node so it doesn't go away until after
3090 	 * the xmit is complete all the way in the driver.  On error we
3091 	 * will remove our reference.
3092 	 */
3093 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3094 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3095 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3096 	    ieee80211_node_refcnt(bss)+1);
3097 	ieee80211_ref_node(bss);
3098 
3099 	m = ieee80211_alloc_proberesp(bss, legacy);
3100 	if (m == NULL) {
3101 		ieee80211_free_node(bss);
3102 		return ENOMEM;
3103 	}
3104 
3105 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3106 	KASSERT(m != NULL, ("no room for header"));
3107 
3108 	IEEE80211_TX_LOCK(ic);
3109 	ieee80211_send_setup(bss, m,
3110 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3111 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3112 	/* XXX power management? */
3113 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3114 
3115 	M_WME_SETAC(m, WME_AC_BE);
3116 
3117 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3118 	    "send probe resp on channel %u to %s%s\n",
3119 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3120 	    legacy ? " <legacy>" : "");
3121 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3122 
3123 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3124 	IEEE80211_TX_UNLOCK(ic);
3125 	return (ret);
3126 }
3127 
3128 /*
3129  * Allocate and build a RTS (Request To Send) control frame.
3130  */
3131 struct mbuf *
3132 ieee80211_alloc_rts(struct ieee80211com *ic,
3133 	const uint8_t ra[IEEE80211_ADDR_LEN],
3134 	const uint8_t ta[IEEE80211_ADDR_LEN],
3135 	uint16_t dur)
3136 {
3137 	struct ieee80211_frame_rts *rts;
3138 	struct mbuf *m;
3139 
3140 	/* XXX honor ic_headroom */
3141 	m = m_gethdr(M_NOWAIT, MT_DATA);
3142 	if (m != NULL) {
3143 		rts = mtod(m, struct ieee80211_frame_rts *);
3144 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3145 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3146 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3147 		*(u_int16_t *)rts->i_dur = htole16(dur);
3148 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3149 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3150 
3151 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3152 	}
3153 	return m;
3154 }
3155 
3156 /*
3157  * Allocate and build a CTS (Clear To Send) control frame.
3158  */
3159 struct mbuf *
3160 ieee80211_alloc_cts(struct ieee80211com *ic,
3161 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3162 {
3163 	struct ieee80211_frame_cts *cts;
3164 	struct mbuf *m;
3165 
3166 	/* XXX honor ic_headroom */
3167 	m = m_gethdr(M_NOWAIT, MT_DATA);
3168 	if (m != NULL) {
3169 		cts = mtod(m, struct ieee80211_frame_cts *);
3170 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3171 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3172 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3173 		*(u_int16_t *)cts->i_dur = htole16(dur);
3174 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3175 
3176 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3177 	}
3178 	return m;
3179 }
3180 
3181 /*
3182  * Wrapper for CTS/RTS frame allocation.
3183  */
3184 struct mbuf *
3185 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3186     uint8_t rate, int prot)
3187 {
3188 	struct ieee80211com *ic = ni->ni_ic;
3189 	const struct ieee80211_frame *wh;
3190 	struct mbuf *mprot;
3191 	uint16_t dur;
3192 	int pktlen, isshort;
3193 
3194 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3195 	    prot == IEEE80211_PROT_CTSONLY,
3196 	    ("wrong protection type %d", prot));
3197 
3198 	wh = mtod(m, const struct ieee80211_frame *);
3199 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3200 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3201 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3202 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3203 
3204 	if (prot == IEEE80211_PROT_RTSCTS) {
3205 		/* NB: CTS is the same size as an ACK */
3206 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3207 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3208 	} else
3209 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3210 
3211 	return (mprot);
3212 }
3213 
3214 static void
3215 ieee80211_tx_mgt_timeout(void *arg)
3216 {
3217 	struct ieee80211vap *vap = arg;
3218 
3219 	IEEE80211_LOCK(vap->iv_ic);
3220 	if (vap->iv_state != IEEE80211_S_INIT &&
3221 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3222 		/*
3223 		 * NB: it's safe to specify a timeout as the reason here;
3224 		 *     it'll only be used in the right state.
3225 		 */
3226 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3227 			IEEE80211_SCAN_FAIL_TIMEOUT);
3228 	}
3229 	IEEE80211_UNLOCK(vap->iv_ic);
3230 }
3231 
3232 /*
3233  * This is the callback set on net80211-sourced transmitted
3234  * authentication request frames.
3235  *
3236  * This does a couple of things:
3237  *
3238  * + If the frame transmitted was a success, it schedules a future
3239  *   event which will transition the interface to scan.
3240  *   If a state transition _then_ occurs before that event occurs,
3241  *   said state transition will cancel this callout.
3242  *
3243  * + If the frame transmit was a failure, it immediately schedules
3244  *   the transition back to scan.
3245  */
3246 static void
3247 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3248 {
3249 	struct ieee80211vap *vap = ni->ni_vap;
3250 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3251 
3252 	/*
3253 	 * Frame transmit completed; arrange timer callback.  If
3254 	 * transmit was successfully we wait for response.  Otherwise
3255 	 * we arrange an immediate callback instead of doing the
3256 	 * callback directly since we don't know what state the driver
3257 	 * is in (e.g. what locks it is holding).  This work should
3258 	 * not be too time-critical and not happen too often so the
3259 	 * added overhead is acceptable.
3260 	 *
3261 	 * XXX what happens if !acked but response shows up before callback?
3262 	 */
3263 	if (vap->iv_state == ostate) {
3264 		callout_reset(&vap->iv_mgtsend,
3265 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3266 			ieee80211_tx_mgt_timeout, vap);
3267 	}
3268 }
3269 
3270 static void
3271 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3272 	struct ieee80211_node *ni)
3273 {
3274 	struct ieee80211vap *vap = ni->ni_vap;
3275 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3276 	struct ieee80211com *ic = ni->ni_ic;
3277 	struct ieee80211_rateset *rs = &ni->ni_rates;
3278 	uint16_t capinfo;
3279 
3280 	/*
3281 	 * beacon frame format
3282 	 *
3283 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3284 	 * vendor extensions should be at the end, etc.
3285 	 *
3286 	 *	[8] time stamp
3287 	 *	[2] beacon interval
3288 	 *	[2] cabability information
3289 	 *	[tlv] ssid
3290 	 *	[tlv] supported rates
3291 	 *	[3] parameter set (DS)
3292 	 *	[8] CF parameter set (optional)
3293 	 *	[tlv] parameter set (IBSS/TIM)
3294 	 *	[tlv] country (optional)
3295 	 *	[3] power control (optional)
3296 	 *	[5] channel switch announcement (CSA) (optional)
3297 	 * XXX TODO: Quiet
3298 	 * XXX TODO: IBSS DFS
3299 	 * XXX TODO: TPC report
3300 	 *	[tlv] extended rate phy (ERP)
3301 	 *	[tlv] extended supported rates
3302 	 *	[tlv] RSN parameters
3303 	 * XXX TODO: BSSLOAD
3304 	 * (XXX EDCA parameter set, QoS capability?)
3305 	 * XXX TODO: AP channel report
3306 	 *
3307 	 *	[tlv] HT capabilities
3308 	 *	[tlv] HT information
3309 	 *	XXX TODO: 20/40 BSS coexistence
3310 	 * Mesh:
3311 	 * XXX TODO: Meshid
3312 	 * XXX TODO: mesh config
3313 	 * XXX TODO: mesh awake window
3314 	 * XXX TODO: beacon timing (mesh, etc)
3315 	 * XXX TODO: MCCAOP Advertisement Overview
3316 	 * XXX TODO: MCCAOP Advertisement
3317 	 * XXX TODO: Mesh channel switch parameters
3318 	 * VHT:
3319 	 * XXX TODO: VHT capabilities
3320 	 * XXX TODO: VHT operation
3321 	 * XXX TODO: VHT transmit power envelope
3322 	 * XXX TODO: channel switch wrapper element
3323 	 * XXX TODO: extended BSS load element
3324 	 *
3325 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3326 	 *	[tlv] WPA parameters
3327 	 *	[tlv] WME parameters
3328 	 *	[tlv] Vendor OUI HT capabilities (optional)
3329 	 *	[tlv] Vendor OUI HT information (optional)
3330 	 *	[tlv] Atheros capabilities (optional)
3331 	 *	[tlv] TDMA parameters (optional)
3332 	 *	[tlv] Mesh ID (MBSS)
3333 	 *	[tlv] Mesh Conf (MBSS)
3334 	 *	[tlv] application data (optional)
3335 	 */
3336 
3337 	memset(bo, 0, sizeof(*bo));
3338 
3339 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3340 	frm += 8;
3341 	*(uint16_t *)frm = htole16(ni->ni_intval);
3342 	frm += 2;
3343 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3344 	bo->bo_caps = (uint16_t *)frm;
3345 	*(uint16_t *)frm = htole16(capinfo);
3346 	frm += 2;
3347 	*frm++ = IEEE80211_ELEMID_SSID;
3348 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3349 		*frm++ = ni->ni_esslen;
3350 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3351 		frm += ni->ni_esslen;
3352 	} else
3353 		*frm++ = 0;
3354 	frm = ieee80211_add_rates(frm, rs);
3355 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3356 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3357 		*frm++ = 1;
3358 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3359 	}
3360 	if (ic->ic_flags & IEEE80211_F_PCF) {
3361 		bo->bo_cfp = frm;
3362 		frm = ieee80211_add_cfparms(frm, ic);
3363 	}
3364 	bo->bo_tim = frm;
3365 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3366 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3367 		*frm++ = 2;
3368 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3369 		bo->bo_tim_len = 0;
3370 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3371 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3372 		/* TIM IE is the same for Mesh and Hostap */
3373 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3374 
3375 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3376 		tie->tim_len = 4;	/* length */
3377 		tie->tim_count = 0;	/* DTIM count */
3378 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3379 		tie->tim_bitctl = 0;	/* bitmap control */
3380 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3381 		frm += sizeof(struct ieee80211_tim_ie);
3382 		bo->bo_tim_len = 1;
3383 	}
3384 	bo->bo_tim_trailer = frm;
3385 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3386 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3387 		frm = ieee80211_add_countryie(frm, ic);
3388 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3389 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3390 			frm = ieee80211_add_powerconstraint(frm, vap);
3391 		bo->bo_csa = frm;
3392 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3393 			frm = ieee80211_add_csa(frm, vap);
3394 	} else
3395 		bo->bo_csa = frm;
3396 
3397 	bo->bo_quiet = NULL;
3398 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3399 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3400 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3401 		    (vap->iv_quiet == 1)) {
3402 			/*
3403 			 * We only insert the quiet IE offset if
3404 			 * the quiet IE is enabled.  Otherwise don't
3405 			 * put it here or we'll just overwrite
3406 			 * some other beacon contents.
3407 			 */
3408 			if (vap->iv_quiet) {
3409 				bo->bo_quiet = frm;
3410 				frm = ieee80211_add_quiet(frm,vap, 0);
3411 			}
3412 		}
3413 	}
3414 
3415 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3416 		bo->bo_erp = frm;
3417 		frm = ieee80211_add_erp(frm, ic);
3418 	}
3419 	frm = ieee80211_add_xrates(frm, rs);
3420 	frm = ieee80211_add_rsn(frm, vap);
3421 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3422 		frm = ieee80211_add_htcap(frm, ni);
3423 		bo->bo_htinfo = frm;
3424 		frm = ieee80211_add_htinfo(frm, ni);
3425 	}
3426 
3427 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3428 		frm = ieee80211_add_vhtcap(frm, ni);
3429 		bo->bo_vhtinfo = frm;
3430 		frm = ieee80211_add_vhtinfo(frm, ni);
3431 		/* Transmit power envelope */
3432 		/* Channel switch wrapper element */
3433 		/* Extended bss load element */
3434 	}
3435 
3436 	frm = ieee80211_add_wpa(frm, vap);
3437 	if (vap->iv_flags & IEEE80211_F_WME) {
3438 		bo->bo_wme = frm;
3439 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3440 	}
3441 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3442 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3443 		frm = ieee80211_add_htcap_vendor(frm, ni);
3444 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3445 	}
3446 
3447 #ifdef IEEE80211_SUPPORT_SUPERG
3448 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3449 		bo->bo_ath = frm;
3450 		frm = ieee80211_add_athcaps(frm, ni);
3451 	}
3452 #endif
3453 #ifdef IEEE80211_SUPPORT_TDMA
3454 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3455 		bo->bo_tdma = frm;
3456 		frm = ieee80211_add_tdma(frm, vap);
3457 	}
3458 #endif
3459 	if (vap->iv_appie_beacon != NULL) {
3460 		bo->bo_appie = frm;
3461 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3462 		frm = add_appie(frm, vap->iv_appie_beacon);
3463 	}
3464 
3465 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3466 #ifdef IEEE80211_SUPPORT_MESH
3467 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3468 		frm = ieee80211_add_meshid(frm, vap);
3469 		bo->bo_meshconf = frm;
3470 		frm = ieee80211_add_meshconf(frm, vap);
3471 	}
3472 #endif
3473 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3474 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3475 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3476 }
3477 
3478 /*
3479  * Allocate a beacon frame and fillin the appropriate bits.
3480  */
3481 struct mbuf *
3482 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3483 {
3484 	struct ieee80211vap *vap = ni->ni_vap;
3485 	struct ieee80211com *ic = ni->ni_ic;
3486 	struct ifnet *ifp = vap->iv_ifp;
3487 	struct ieee80211_frame *wh;
3488 	struct mbuf *m;
3489 	int pktlen;
3490 	uint8_t *frm;
3491 
3492 	/*
3493 	 * Update the "We're putting the quiet IE in the beacon" state.
3494 	 */
3495 	if (vap->iv_quiet == 1)
3496 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3497 	else if (vap->iv_quiet == 0)
3498 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3499 
3500 	/*
3501 	 * beacon frame format
3502 	 *
3503 	 * Note: This needs updating for 802.11-2012.
3504 	 *
3505 	 *	[8] time stamp
3506 	 *	[2] beacon interval
3507 	 *	[2] cabability information
3508 	 *	[tlv] ssid
3509 	 *	[tlv] supported rates
3510 	 *	[3] parameter set (DS)
3511 	 *	[8] CF parameter set (optional)
3512 	 *	[tlv] parameter set (IBSS/TIM)
3513 	 *	[tlv] country (optional)
3514 	 *	[3] power control (optional)
3515 	 *	[5] channel switch announcement (CSA) (optional)
3516 	 *	[tlv] extended rate phy (ERP)
3517 	 *	[tlv] extended supported rates
3518 	 *	[tlv] RSN parameters
3519 	 *	[tlv] HT capabilities
3520 	 *	[tlv] HT information
3521 	 *	[tlv] VHT capabilities
3522 	 *	[tlv] VHT operation
3523 	 *	[tlv] Vendor OUI HT capabilities (optional)
3524 	 *	[tlv] Vendor OUI HT information (optional)
3525 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3526 	 *	[tlv] WPA parameters
3527 	 *	[tlv] WME parameters
3528 	 *	[tlv] TDMA parameters (optional)
3529 	 *	[tlv] Mesh ID (MBSS)
3530 	 *	[tlv] Mesh Conf (MBSS)
3531 	 *	[tlv] application data (optional)
3532 	 * NB: we allocate the max space required for the TIM bitmap.
3533 	 * XXX how big is this?
3534 	 */
3535 	pktlen =   8					/* time stamp */
3536 		 + sizeof(uint16_t)			/* beacon interval */
3537 		 + sizeof(uint16_t)			/* capabilities */
3538 		 + 2 + ni->ni_esslen			/* ssid */
3539 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3540 	         + 2 + 1				/* DS parameters */
3541 		 + 2 + 6				/* CF parameters */
3542 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3543 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3544 		 + 2 + 1				/* power control */
3545 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3546 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3547 		 + 2 + 1				/* ERP */
3548 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3549 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3550 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3551 		 /* XXX conditional? */
3552 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3553 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3554 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3555 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3556 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3557 			sizeof(struct ieee80211_wme_param) : 0)
3558 #ifdef IEEE80211_SUPPORT_SUPERG
3559 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3560 #endif
3561 #ifdef IEEE80211_SUPPORT_TDMA
3562 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3563 			sizeof(struct ieee80211_tdma_param) : 0)
3564 #endif
3565 #ifdef IEEE80211_SUPPORT_MESH
3566 		 + 2 + ni->ni_meshidlen
3567 		 + sizeof(struct ieee80211_meshconf_ie)
3568 #endif
3569 		 + IEEE80211_MAX_APPIE
3570 		 ;
3571 	m = ieee80211_getmgtframe(&frm,
3572 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3573 	if (m == NULL) {
3574 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3575 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3576 		vap->iv_stats.is_tx_nobuf++;
3577 		return NULL;
3578 	}
3579 	ieee80211_beacon_construct(m, frm, ni);
3580 
3581 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3582 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3583 	wh = mtod(m, struct ieee80211_frame *);
3584 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3585 	    IEEE80211_FC0_SUBTYPE_BEACON;
3586 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3587 	*(uint16_t *)wh->i_dur = 0;
3588 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3589 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3590 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3591 	*(uint16_t *)wh->i_seq = 0;
3592 
3593 	return m;
3594 }
3595 
3596 /*
3597  * Update the dynamic parts of a beacon frame based on the current state.
3598  */
3599 int
3600 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3601 {
3602 	struct ieee80211vap *vap = ni->ni_vap;
3603 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3604 	struct ieee80211com *ic = ni->ni_ic;
3605 	int len_changed = 0;
3606 	uint16_t capinfo;
3607 	struct ieee80211_frame *wh;
3608 	ieee80211_seq seqno;
3609 
3610 	IEEE80211_LOCK(ic);
3611 	/*
3612 	 * Handle 11h channel change when we've reached the count.
3613 	 * We must recalculate the beacon frame contents to account
3614 	 * for the new channel.  Note we do this only for the first
3615 	 * vap that reaches this point; subsequent vaps just update
3616 	 * their beacon state to reflect the recalculated channel.
3617 	 */
3618 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3619 	    vap->iv_csa_count == ic->ic_csa_count) {
3620 		vap->iv_csa_count = 0;
3621 		/*
3622 		 * Effect channel change before reconstructing the beacon
3623 		 * frame contents as many places reference ni_chan.
3624 		 */
3625 		if (ic->ic_csa_newchan != NULL)
3626 			ieee80211_csa_completeswitch(ic);
3627 		/*
3628 		 * NB: ieee80211_beacon_construct clears all pending
3629 		 * updates in bo_flags so we don't need to explicitly
3630 		 * clear IEEE80211_BEACON_CSA.
3631 		 */
3632 		ieee80211_beacon_construct(m,
3633 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3634 
3635 		/* XXX do WME aggressive mode processing? */
3636 		IEEE80211_UNLOCK(ic);
3637 		return 1;		/* just assume length changed */
3638 	}
3639 
3640 	/*
3641 	 * Handle the quiet time element being added and removed.
3642 	 * Again, for now we just cheat and reconstruct the whole
3643 	 * beacon - that way the gap is provided as appropriate.
3644 	 *
3645 	 * So, track whether we have already added the IE versus
3646 	 * whether we want to be adding the IE.
3647 	 */
3648 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3649 	    (vap->iv_quiet == 0)) {
3650 		/*
3651 		 * Quiet time beacon IE enabled, but it's disabled;
3652 		 * recalc
3653 		 */
3654 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3655 		ieee80211_beacon_construct(m,
3656 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3657 		/* XXX do WME aggressive mode processing? */
3658 		IEEE80211_UNLOCK(ic);
3659 		return 1;		/* just assume length changed */
3660 	}
3661 
3662 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3663 	    (vap->iv_quiet == 1)) {
3664 		/*
3665 		 * Quiet time beacon IE disabled, but it's now enabled;
3666 		 * recalc
3667 		 */
3668 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3669 		ieee80211_beacon_construct(m,
3670 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3671 		/* XXX do WME aggressive mode processing? */
3672 		IEEE80211_UNLOCK(ic);
3673 		return 1;		/* just assume length changed */
3674 	}
3675 
3676 	wh = mtod(m, struct ieee80211_frame *);
3677 
3678 	/*
3679 	 * XXX TODO Strictly speaking this should be incremented with the TX
3680 	 * lock held so as to serialise access to the non-qos TID sequence
3681 	 * number space.
3682 	 *
3683 	 * If the driver identifies it does its own TX seqno management then
3684 	 * we can skip this (and still not do the TX seqno.)
3685 	 */
3686 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3687 	*(uint16_t *)&wh->i_seq[0] =
3688 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3689 	M_SEQNO_SET(m, seqno);
3690 
3691 	/* XXX faster to recalculate entirely or just changes? */
3692 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3693 	*bo->bo_caps = htole16(capinfo);
3694 
3695 	if (vap->iv_flags & IEEE80211_F_WME) {
3696 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3697 
3698 		/*
3699 		 * Check for aggressive mode change.  When there is
3700 		 * significant high priority traffic in the BSS
3701 		 * throttle back BE traffic by using conservative
3702 		 * parameters.  Otherwise BE uses aggressive params
3703 		 * to optimize performance of legacy/non-QoS traffic.
3704 		 */
3705 		if (wme->wme_flags & WME_F_AGGRMODE) {
3706 			if (wme->wme_hipri_traffic >
3707 			    wme->wme_hipri_switch_thresh) {
3708 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3709 				    "%s: traffic %u, disable aggressive mode\n",
3710 				    __func__, wme->wme_hipri_traffic);
3711 				wme->wme_flags &= ~WME_F_AGGRMODE;
3712 				ieee80211_wme_updateparams_locked(vap);
3713 				wme->wme_hipri_traffic =
3714 					wme->wme_hipri_switch_hysteresis;
3715 			} else
3716 				wme->wme_hipri_traffic = 0;
3717 		} else {
3718 			if (wme->wme_hipri_traffic <=
3719 			    wme->wme_hipri_switch_thresh) {
3720 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3721 				    "%s: traffic %u, enable aggressive mode\n",
3722 				    __func__, wme->wme_hipri_traffic);
3723 				wme->wme_flags |= WME_F_AGGRMODE;
3724 				ieee80211_wme_updateparams_locked(vap);
3725 				wme->wme_hipri_traffic = 0;
3726 			} else
3727 				wme->wme_hipri_traffic =
3728 					wme->wme_hipri_switch_hysteresis;
3729 		}
3730 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3731 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3732 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3733 		}
3734 	}
3735 
3736 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3737 		ieee80211_ht_update_beacon(vap, bo);
3738 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3739 	}
3740 #ifdef IEEE80211_SUPPORT_TDMA
3741 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3742 		/*
3743 		 * NB: the beacon is potentially updated every TBTT.
3744 		 */
3745 		ieee80211_tdma_update_beacon(vap, bo);
3746 	}
3747 #endif
3748 #ifdef IEEE80211_SUPPORT_MESH
3749 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3750 		ieee80211_mesh_update_beacon(vap, bo);
3751 #endif
3752 
3753 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3754 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3755 		struct ieee80211_tim_ie *tie =
3756 			(struct ieee80211_tim_ie *) bo->bo_tim;
3757 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3758 			u_int timlen, timoff, i;
3759 			/*
3760 			 * ATIM/DTIM needs updating.  If it fits in the
3761 			 * current space allocated then just copy in the
3762 			 * new bits.  Otherwise we need to move any trailing
3763 			 * data to make room.  Note that we know there is
3764 			 * contiguous space because ieee80211_beacon_allocate
3765 			 * insures there is space in the mbuf to write a
3766 			 * maximal-size virtual bitmap (based on iv_max_aid).
3767 			 */
3768 			/*
3769 			 * Calculate the bitmap size and offset, copy any
3770 			 * trailer out of the way, and then copy in the
3771 			 * new bitmap and update the information element.
3772 			 * Note that the tim bitmap must contain at least
3773 			 * one byte and any offset must be even.
3774 			 */
3775 			if (vap->iv_ps_pending != 0) {
3776 				timoff = 128;		/* impossibly large */
3777 				for (i = 0; i < vap->iv_tim_len; i++)
3778 					if (vap->iv_tim_bitmap[i]) {
3779 						timoff = i &~ 1;
3780 						break;
3781 					}
3782 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3783 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3784 					if (vap->iv_tim_bitmap[i])
3785 						break;
3786 				timlen = 1 + (i - timoff);
3787 			} else {
3788 				timoff = 0;
3789 				timlen = 1;
3790 			}
3791 
3792 			/*
3793 			 * TODO: validate this!
3794 			 */
3795 			if (timlen != bo->bo_tim_len) {
3796 				/* copy up/down trailer */
3797 				int adjust = tie->tim_bitmap+timlen
3798 					   - bo->bo_tim_trailer;
3799 				ovbcopy(bo->bo_tim_trailer,
3800 				    bo->bo_tim_trailer+adjust,
3801 				    bo->bo_tim_trailer_len);
3802 				bo->bo_tim_trailer += adjust;
3803 				bo->bo_erp += adjust;
3804 				bo->bo_htinfo += adjust;
3805 				bo->bo_vhtinfo += adjust;
3806 #ifdef IEEE80211_SUPPORT_SUPERG
3807 				bo->bo_ath += adjust;
3808 #endif
3809 #ifdef IEEE80211_SUPPORT_TDMA
3810 				bo->bo_tdma += adjust;
3811 #endif
3812 #ifdef IEEE80211_SUPPORT_MESH
3813 				bo->bo_meshconf += adjust;
3814 #endif
3815 				bo->bo_appie += adjust;
3816 				bo->bo_wme += adjust;
3817 				bo->bo_csa += adjust;
3818 				bo->bo_quiet += adjust;
3819 				bo->bo_tim_len = timlen;
3820 
3821 				/* update information element */
3822 				tie->tim_len = 3 + timlen;
3823 				tie->tim_bitctl = timoff;
3824 				len_changed = 1;
3825 			}
3826 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3827 				bo->bo_tim_len);
3828 
3829 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3830 
3831 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3832 				"%s: TIM updated, pending %u, off %u, len %u\n",
3833 				__func__, vap->iv_ps_pending, timoff, timlen);
3834 		}
3835 		/* count down DTIM period */
3836 		if (tie->tim_count == 0)
3837 			tie->tim_count = tie->tim_period - 1;
3838 		else
3839 			tie->tim_count--;
3840 		/* update state for buffered multicast frames on DTIM */
3841 		if (mcast && tie->tim_count == 0)
3842 			tie->tim_bitctl |= 1;
3843 		else
3844 			tie->tim_bitctl &= ~1;
3845 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3846 			struct ieee80211_csa_ie *csa =
3847 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3848 
3849 			/*
3850 			 * Insert or update CSA ie.  If we're just starting
3851 			 * to count down to the channel switch then we need
3852 			 * to insert the CSA ie.  Otherwise we just need to
3853 			 * drop the count.  The actual change happens above
3854 			 * when the vap's count reaches the target count.
3855 			 */
3856 			if (vap->iv_csa_count == 0) {
3857 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3858 				bo->bo_erp += sizeof(*csa);
3859 				bo->bo_htinfo += sizeof(*csa);
3860 				bo->bo_vhtinfo += sizeof(*csa);
3861 				bo->bo_wme += sizeof(*csa);
3862 #ifdef IEEE80211_SUPPORT_SUPERG
3863 				bo->bo_ath += sizeof(*csa);
3864 #endif
3865 #ifdef IEEE80211_SUPPORT_TDMA
3866 				bo->bo_tdma += sizeof(*csa);
3867 #endif
3868 #ifdef IEEE80211_SUPPORT_MESH
3869 				bo->bo_meshconf += sizeof(*csa);
3870 #endif
3871 				bo->bo_appie += sizeof(*csa);
3872 				bo->bo_csa_trailer_len += sizeof(*csa);
3873 				bo->bo_quiet += sizeof(*csa);
3874 				bo->bo_tim_trailer_len += sizeof(*csa);
3875 				m->m_len += sizeof(*csa);
3876 				m->m_pkthdr.len += sizeof(*csa);
3877 
3878 				ieee80211_add_csa(bo->bo_csa, vap);
3879 			} else
3880 				csa->csa_count--;
3881 			vap->iv_csa_count++;
3882 			/* NB: don't clear IEEE80211_BEACON_CSA */
3883 		}
3884 
3885 		/*
3886 		 * Only add the quiet time IE if we've enabled it
3887 		 * as appropriate.
3888 		 */
3889 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3890 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3891 			if (vap->iv_quiet &&
3892 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3893 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3894 			}
3895 		}
3896 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3897 			/*
3898 			 * ERP element needs updating.
3899 			 */
3900 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3901 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3902 		}
3903 #ifdef IEEE80211_SUPPORT_SUPERG
3904 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3905 			ieee80211_add_athcaps(bo->bo_ath, ni);
3906 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3907 		}
3908 #endif
3909 	}
3910 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3911 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3912 		int aielen;
3913 		uint8_t *frm;
3914 
3915 		aielen = 0;
3916 		if (aie != NULL)
3917 			aielen += aie->ie_len;
3918 		if (aielen != bo->bo_appie_len) {
3919 			/* copy up/down trailer */
3920 			int adjust = aielen - bo->bo_appie_len;
3921 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3922 				bo->bo_tim_trailer_len);
3923 			bo->bo_tim_trailer += adjust;
3924 			bo->bo_appie += adjust;
3925 			bo->bo_appie_len = aielen;
3926 
3927 			len_changed = 1;
3928 		}
3929 		frm = bo->bo_appie;
3930 		if (aie != NULL)
3931 			frm  = add_appie(frm, aie);
3932 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3933 	}
3934 	IEEE80211_UNLOCK(ic);
3935 
3936 	return len_changed;
3937 }
3938 
3939 /*
3940  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3941  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3942  * header at the front that must be stripped before prepending the
3943  * LLC followed by the Ethernet header passed in (with an Ethernet
3944  * type that specifies the payload size).
3945  */
3946 struct mbuf *
3947 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3948 	const struct ether_header *eh)
3949 {
3950 	struct llc *llc;
3951 	uint16_t payload;
3952 
3953 	/* XXX optimize by combining m_adj+M_PREPEND */
3954 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3955 	llc = mtod(m, struct llc *);
3956 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3957 	llc->llc_control = LLC_UI;
3958 	llc->llc_snap.org_code[0] = 0;
3959 	llc->llc_snap.org_code[1] = 0;
3960 	llc->llc_snap.org_code[2] = 0;
3961 	llc->llc_snap.ether_type = eh->ether_type;
3962 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3963 
3964 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3965 	if (m == NULL) {		/* XXX cannot happen */
3966 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3967 			"%s: no space for ether_header\n", __func__);
3968 		vap->iv_stats.is_tx_nobuf++;
3969 		return NULL;
3970 	}
3971 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3972 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3973 	return m;
3974 }
3975 
3976 /*
3977  * Complete an mbuf transmission.
3978  *
3979  * For now, this simply processes a completed frame after the
3980  * driver has completed it's transmission and/or retransmission.
3981  * It assumes the frame is an 802.11 encapsulated frame.
3982  *
3983  * Later on it will grow to become the exit path for a given frame
3984  * from the driver and, depending upon how it's been encapsulated
3985  * and already transmitted, it may end up doing A-MPDU retransmission,
3986  * power save requeuing, etc.
3987  *
3988  * In order for the above to work, the driver entry point to this
3989  * must not hold any driver locks.  Thus, the driver needs to delay
3990  * any actual mbuf completion until it can release said locks.
3991  *
3992  * This frees the mbuf and if the mbuf has a node reference,
3993  * the node reference will be freed.
3994  */
3995 void
3996 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3997 {
3998 
3999 	if (ni != NULL) {
4000 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4001 
4002 		if (status == 0) {
4003 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4004 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4005 			if (m->m_flags & M_MCAST)
4006 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4007 		} else
4008 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4009 		if (m->m_flags & M_TXCB)
4010 			ieee80211_process_callback(ni, m, status);
4011 		ieee80211_free_node(ni);
4012 	}
4013 	m_freem(m);
4014 }
4015