xref: /freebsd/sys/net80211/ieee80211_output.c (revision c6ec7d31830ab1c80edae95ad5e4b9dba10c47ac)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_llc.h>
46 #include <net/if_media.h>
47 #include <net/if_vlan_var.h>
48 
49 #include <net80211/ieee80211_var.h>
50 #include <net80211/ieee80211_regdomain.h>
51 #ifdef IEEE80211_SUPPORT_SUPERG
52 #include <net80211/ieee80211_superg.h>
53 #endif
54 #ifdef IEEE80211_SUPPORT_TDMA
55 #include <net80211/ieee80211_tdma.h>
56 #endif
57 #include <net80211/ieee80211_wds.h>
58 #include <net80211/ieee80211_mesh.h>
59 
60 #if defined(INET) || defined(INET6)
61 #include <netinet/in.h>
62 #endif
63 
64 #ifdef INET
65 #include <netinet/if_ether.h>
66 #include <netinet/in_systm.h>
67 #include <netinet/ip.h>
68 #endif
69 #ifdef INET6
70 #include <netinet/ip6.h>
71 #endif
72 
73 #include <security/mac/mac_framework.h>
74 
75 #define	ETHER_HEADER_COPY(dst, src) \
76 	memcpy(dst, src, sizeof(struct ether_header))
77 
78 /* unalligned little endian access */
79 #define LE_WRITE_2(p, v) do {				\
80 	((uint8_t *)(p))[0] = (v) & 0xff;		\
81 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
82 } while (0)
83 #define LE_WRITE_4(p, v) do {				\
84 	((uint8_t *)(p))[0] = (v) & 0xff;		\
85 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
86 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
87 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
88 } while (0)
89 
90 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
91 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
92 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
93 
94 #ifdef IEEE80211_DEBUG
95 /*
96  * Decide if an outbound management frame should be
97  * printed when debugging is enabled.  This filters some
98  * of the less interesting frames that come frequently
99  * (e.g. beacons).
100  */
101 static __inline int
102 doprint(struct ieee80211vap *vap, int subtype)
103 {
104 	switch (subtype) {
105 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
106 		return (vap->iv_opmode == IEEE80211_M_IBSS);
107 	}
108 	return 1;
109 }
110 #endif
111 
112 /*
113  * Start method for vap's.  All packets from the stack come
114  * through here.  We handle common processing of the packets
115  * before dispatching them to the underlying device.
116  */
117 void
118 ieee80211_start(struct ifnet *ifp)
119 {
120 #define	IS_DWDS(vap) \
121 	(vap->iv_opmode == IEEE80211_M_WDS && \
122 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
123 	struct ieee80211vap *vap = ifp->if_softc;
124 	struct ieee80211com *ic = vap->iv_ic;
125 	struct ifnet *parent = ic->ic_ifp;
126 	struct ieee80211_node *ni;
127 	struct mbuf *m;
128 	struct ether_header *eh;
129 	int error;
130 
131 	/* NB: parent must be up and running */
132 	if (!IFNET_IS_UP_RUNNING(parent)) {
133 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
134 		    "%s: ignore queue, parent %s not up+running\n",
135 		    __func__, parent->if_xname);
136 		/* XXX stat */
137 		return;
138 	}
139 	if (vap->iv_state == IEEE80211_S_SLEEP) {
140 		/*
141 		 * In power save, wakeup device for transmit.
142 		 */
143 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
144 		return;
145 	}
146 	/*
147 	 * No data frames go out unless we're running.
148 	 * Note in particular this covers CAC and CSA
149 	 * states (though maybe we should check muting
150 	 * for CSA).
151 	 */
152 	if (vap->iv_state != IEEE80211_S_RUN) {
153 		IEEE80211_LOCK(ic);
154 		/* re-check under the com lock to avoid races */
155 		if (vap->iv_state != IEEE80211_S_RUN) {
156 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
157 			    "%s: ignore queue, in %s state\n",
158 			    __func__, ieee80211_state_name[vap->iv_state]);
159 			vap->iv_stats.is_tx_badstate++;
160 			IEEE80211_UNLOCK(ic);
161 			IFQ_LOCK(&ifp->if_snd);
162 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
163 			IFQ_UNLOCK(&ifp->if_snd);
164 			return;
165 		}
166 		IEEE80211_UNLOCK(ic);
167 	}
168 	for (;;) {
169 		IFQ_DEQUEUE(&ifp->if_snd, m);
170 		if (m == NULL)
171 			break;
172 		/*
173 		 * Sanitize mbuf flags for net80211 use.  We cannot
174 		 * clear M_PWR_SAV or M_MORE_DATA because these may
175 		 * be set for frames that are re-submitted from the
176 		 * power save queue.
177 		 *
178 		 * NB: This must be done before ieee80211_classify as
179 		 *     it marks EAPOL in frames with M_EAPOL.
180 		 */
181 		m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
182 		/*
183 		 * Cancel any background scan.
184 		 */
185 		if (ic->ic_flags & IEEE80211_F_SCAN)
186 			ieee80211_cancel_anyscan(vap);
187 		/*
188 		 * Find the node for the destination so we can do
189 		 * things like power save and fast frames aggregation.
190 		 *
191 		 * NB: past this point various code assumes the first
192 		 *     mbuf has the 802.3 header present (and contiguous).
193 		 */
194 		ni = NULL;
195 		if (m->m_len < sizeof(struct ether_header) &&
196 		   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
197 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
198 			    "discard frame, %s\n", "m_pullup failed");
199 			vap->iv_stats.is_tx_nobuf++;	/* XXX */
200 			ifp->if_oerrors++;
201 			continue;
202 		}
203 		eh = mtod(m, struct ether_header *);
204 		if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
205 			if (IS_DWDS(vap)) {
206 				/*
207 				 * Only unicast frames from the above go out
208 				 * DWDS vaps; multicast frames are handled by
209 				 * dispatching the frame as it comes through
210 				 * the AP vap (see below).
211 				 */
212 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
213 				    eh->ether_dhost, "mcast", "%s", "on DWDS");
214 				vap->iv_stats.is_dwds_mcast++;
215 				m_freem(m);
216 				continue;
217 			}
218 			if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
219 				/*
220 				 * Spam DWDS vap's w/ multicast traffic.
221 				 */
222 				/* XXX only if dwds in use? */
223 				ieee80211_dwds_mcast(vap, m);
224 			}
225 		}
226 #ifdef IEEE80211_SUPPORT_MESH
227 		if (vap->iv_opmode != IEEE80211_M_MBSS) {
228 #endif
229 			ni = ieee80211_find_txnode(vap, eh->ether_dhost);
230 			if (ni == NULL) {
231 				/* NB: ieee80211_find_txnode does stat+msg */
232 				ifp->if_oerrors++;
233 				m_freem(m);
234 				continue;
235 			}
236 			if (ni->ni_associd == 0 &&
237 			    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
238 				IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
239 				    eh->ether_dhost, NULL,
240 				    "sta not associated (type 0x%04x)",
241 				    htons(eh->ether_type));
242 				vap->iv_stats.is_tx_notassoc++;
243 				ifp->if_oerrors++;
244 				m_freem(m);
245 				ieee80211_free_node(ni);
246 				continue;
247 			}
248 #ifdef IEEE80211_SUPPORT_MESH
249 		} else {
250 			if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
251 				/*
252 				 * Proxy station only if configured.
253 				 */
254 				if (!ieee80211_mesh_isproxyena(vap)) {
255 					IEEE80211_DISCARD_MAC(vap,
256 					    IEEE80211_MSG_OUTPUT |
257 					    IEEE80211_MSG_MESH,
258 					    eh->ether_dhost, NULL,
259 					    "%s", "proxy not enabled");
260 					vap->iv_stats.is_mesh_notproxy++;
261 					ifp->if_oerrors++;
262 					m_freem(m);
263 					continue;
264 				}
265 				ieee80211_mesh_proxy_check(vap, eh->ether_shost);
266 			}
267 			ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
268 			if (ni == NULL) {
269 				/*
270 				 * NB: ieee80211_mesh_discover holds/disposes
271 				 * frame (e.g. queueing on path discovery).
272 				 */
273 				ifp->if_oerrors++;
274 				continue;
275 			}
276 		}
277 #endif
278 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
279 		    (m->m_flags & M_PWR_SAV) == 0) {
280 			/*
281 			 * Station in power save mode; pass the frame
282 			 * to the 802.11 layer and continue.  We'll get
283 			 * the frame back when the time is right.
284 			 * XXX lose WDS vap linkage?
285 			 */
286 			(void) ieee80211_pwrsave(ni, m);
287 			ieee80211_free_node(ni);
288 			continue;
289 		}
290 		/* calculate priority so drivers can find the tx queue */
291 		if (ieee80211_classify(ni, m)) {
292 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
293 			    eh->ether_dhost, NULL,
294 			    "%s", "classification failure");
295 			vap->iv_stats.is_tx_classify++;
296 			ifp->if_oerrors++;
297 			m_freem(m);
298 			ieee80211_free_node(ni);
299 			continue;
300 		}
301 		/*
302 		 * Stash the node pointer.  Note that we do this after
303 		 * any call to ieee80211_dwds_mcast because that code
304 		 * uses any existing value for rcvif to identify the
305 		 * interface it (might have been) received on.
306 		 */
307 		m->m_pkthdr.rcvif = (void *)ni;
308 
309 		BPF_MTAP(ifp, m);		/* 802.3 tx */
310 
311 		/*
312 		 * Check if A-MPDU tx aggregation is setup or if we
313 		 * should try to enable it.  The sta must be associated
314 		 * with HT and A-MPDU enabled for use.  When the policy
315 		 * routine decides we should enable A-MPDU we issue an
316 		 * ADDBA request and wait for a reply.  The frame being
317 		 * encapsulated will go out w/o using A-MPDU, or possibly
318 		 * it might be collected by the driver and held/retransmit.
319 		 * The default ic_ampdu_enable routine handles staggering
320 		 * ADDBA requests in case the receiver NAK's us or we are
321 		 * otherwise unable to establish a BA stream.
322 		 */
323 		if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
324 		    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
325 		    (m->m_flags & M_EAPOL) == 0) {
326 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
327 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
328 
329 			ieee80211_txampdu_count_packet(tap);
330 			if (IEEE80211_AMPDU_RUNNING(tap)) {
331 				/*
332 				 * Operational, mark frame for aggregation.
333 				 *
334 				 * XXX do tx aggregation here
335 				 */
336 				m->m_flags |= M_AMPDU_MPDU;
337 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
338 			    ic->ic_ampdu_enable(ni, tap)) {
339 				/*
340 				 * Not negotiated yet, request service.
341 				 */
342 				ieee80211_ampdu_request(ni, tap);
343 				/* XXX hold frame for reply? */
344 			}
345 		}
346 #ifdef IEEE80211_SUPPORT_SUPERG
347 		else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
348 			m = ieee80211_ff_check(ni, m);
349 			if (m == NULL) {
350 				/* NB: any ni ref held on stageq */
351 				continue;
352 			}
353 		}
354 #endif /* IEEE80211_SUPPORT_SUPERG */
355 		if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
356 			/*
357 			 * Encapsulate the packet in prep for transmission.
358 			 */
359 			m = ieee80211_encap(vap, ni, m);
360 			if (m == NULL) {
361 				/* NB: stat+msg handled in ieee80211_encap */
362 				ieee80211_free_node(ni);
363 				continue;
364 			}
365 		}
366 		error = parent->if_transmit(parent, m);
367 		if (error != 0) {
368 			/* NB: IFQ_HANDOFF reclaims mbuf */
369 			ieee80211_free_node(ni);
370 		} else {
371 			ifp->if_opackets++;
372 		}
373 		ic->ic_lastdata = ticks;
374 	}
375 #undef IS_DWDS
376 }
377 
378 /*
379  * 802.11 output routine. This is (currently) used only to
380  * connect bpf write calls to the 802.11 layer for injecting
381  * raw 802.11 frames.
382  */
383 int
384 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
385 	struct sockaddr *dst, struct route *ro)
386 {
387 #define senderr(e) do { error = (e); goto bad;} while (0)
388 	struct ieee80211_node *ni = NULL;
389 	struct ieee80211vap *vap;
390 	struct ieee80211_frame *wh;
391 	int error;
392 
393 	IFQ_LOCK(&ifp->if_snd);
394 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
395 		IFQ_UNLOCK(&ifp->if_snd);
396 		/*
397 		 * Short-circuit requests if the vap is marked OACTIVE
398 		 * as this can happen because a packet came down through
399 		 * ieee80211_start before the vap entered RUN state in
400 		 * which case it's ok to just drop the frame.  This
401 		 * should not be necessary but callers of if_output don't
402 		 * check OACTIVE.
403 		 */
404 		senderr(ENETDOWN);
405 	}
406 	IFQ_UNLOCK(&ifp->if_snd);
407 	vap = ifp->if_softc;
408 	/*
409 	 * Hand to the 802.3 code if not tagged as
410 	 * a raw 802.11 frame.
411 	 */
412 	if (dst->sa_family != AF_IEEE80211)
413 		return vap->iv_output(ifp, m, dst, ro);
414 #ifdef MAC
415 	error = mac_ifnet_check_transmit(ifp, m);
416 	if (error)
417 		senderr(error);
418 #endif
419 	if (ifp->if_flags & IFF_MONITOR)
420 		senderr(ENETDOWN);
421 	if (!IFNET_IS_UP_RUNNING(ifp))
422 		senderr(ENETDOWN);
423 	if (vap->iv_state == IEEE80211_S_CAC) {
424 		IEEE80211_DPRINTF(vap,
425 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
426 		    "block %s frame in CAC state\n", "raw data");
427 		vap->iv_stats.is_tx_badstate++;
428 		senderr(EIO);		/* XXX */
429 	} else if (vap->iv_state == IEEE80211_S_SCAN)
430 		senderr(EIO);
431 	/* XXX bypass bridge, pfil, carp, etc. */
432 
433 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
434 		senderr(EIO);	/* XXX */
435 	wh = mtod(m, struct ieee80211_frame *);
436 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
437 	    IEEE80211_FC0_VERSION_0)
438 		senderr(EIO);	/* XXX */
439 
440 	/* locate destination node */
441 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
442 	case IEEE80211_FC1_DIR_NODS:
443 	case IEEE80211_FC1_DIR_FROMDS:
444 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
445 		break;
446 	case IEEE80211_FC1_DIR_TODS:
447 	case IEEE80211_FC1_DIR_DSTODS:
448 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
449 			senderr(EIO);	/* XXX */
450 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
451 		break;
452 	default:
453 		senderr(EIO);	/* XXX */
454 	}
455 	if (ni == NULL) {
456 		/*
457 		 * Permit packets w/ bpf params through regardless
458 		 * (see below about sa_len).
459 		 */
460 		if (dst->sa_len == 0)
461 			senderr(EHOSTUNREACH);
462 		ni = ieee80211_ref_node(vap->iv_bss);
463 	}
464 
465 	/*
466 	 * Sanitize mbuf for net80211 flags leaked from above.
467 	 *
468 	 * NB: This must be done before ieee80211_classify as
469 	 *     it marks EAPOL in frames with M_EAPOL.
470 	 */
471 	m->m_flags &= ~M_80211_TX;
472 
473 	/* calculate priority so drivers can find the tx queue */
474 	/* XXX assumes an 802.3 frame */
475 	if (ieee80211_classify(ni, m))
476 		senderr(EIO);		/* XXX */
477 
478 	ifp->if_opackets++;
479 	IEEE80211_NODE_STAT(ni, tx_data);
480 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
481 		IEEE80211_NODE_STAT(ni, tx_mcast);
482 		m->m_flags |= M_MCAST;
483 	} else
484 		IEEE80211_NODE_STAT(ni, tx_ucast);
485 	/* NB: ieee80211_encap does not include 802.11 header */
486 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
487 
488 	/*
489 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
490 	 * present by setting the sa_len field of the sockaddr (yes,
491 	 * this is a hack).
492 	 * NB: we assume sa_data is suitably aligned to cast.
493 	 */
494 	return vap->iv_ic->ic_raw_xmit(ni, m,
495 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
496 		dst->sa_data : NULL));
497 bad:
498 	if (m != NULL)
499 		m_freem(m);
500 	if (ni != NULL)
501 		ieee80211_free_node(ni);
502 	ifp->if_oerrors++;
503 	return error;
504 #undef senderr
505 }
506 
507 /*
508  * Set the direction field and address fields of an outgoing
509  * frame.  Note this should be called early on in constructing
510  * a frame as it sets i_fc[1]; other bits can then be or'd in.
511  */
512 void
513 ieee80211_send_setup(
514 	struct ieee80211_node *ni,
515 	struct mbuf *m,
516 	int type, int tid,
517 	const uint8_t sa[IEEE80211_ADDR_LEN],
518 	const uint8_t da[IEEE80211_ADDR_LEN],
519 	const uint8_t bssid[IEEE80211_ADDR_LEN])
520 {
521 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
522 	struct ieee80211vap *vap = ni->ni_vap;
523 	struct ieee80211_tx_ampdu *tap;
524 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
525 	ieee80211_seq seqno;
526 
527 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
528 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
529 		switch (vap->iv_opmode) {
530 		case IEEE80211_M_STA:
531 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
532 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
533 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
534 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
535 			break;
536 		case IEEE80211_M_IBSS:
537 		case IEEE80211_M_AHDEMO:
538 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
539 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
540 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
541 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
542 			break;
543 		case IEEE80211_M_HOSTAP:
544 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
545 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
546 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
547 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
548 			break;
549 		case IEEE80211_M_WDS:
550 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
551 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
552 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
553 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
554 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
555 			break;
556 		case IEEE80211_M_MBSS:
557 #ifdef IEEE80211_SUPPORT_MESH
558 			if (IEEE80211_IS_MULTICAST(da)) {
559 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
560 				/* XXX next hop */
561 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
562 				IEEE80211_ADDR_COPY(wh->i_addr2,
563 				    vap->iv_myaddr);
564 			} else {
565 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
566 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
567 				IEEE80211_ADDR_COPY(wh->i_addr2,
568 				    vap->iv_myaddr);
569 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
570 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
571 			}
572 #endif
573 			break;
574 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
575 			break;
576 		}
577 	} else {
578 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
579 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
580 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
581 #ifdef IEEE80211_SUPPORT_MESH
582 		if (vap->iv_opmode == IEEE80211_M_MBSS)
583 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
584 		else
585 #endif
586 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
587 	}
588 	*(uint16_t *)&wh->i_dur[0] = 0;
589 
590 	tap = &ni->ni_tx_ampdu[tid];
591 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
592 		m->m_flags |= M_AMPDU_MPDU;
593 	else {
594 		seqno = ni->ni_txseqs[tid]++;
595 		*(uint16_t *)&wh->i_seq[0] =
596 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
597 		M_SEQNO_SET(m, seqno);
598 	}
599 
600 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
601 		m->m_flags |= M_MCAST;
602 #undef WH4
603 }
604 
605 /*
606  * Send a management frame to the specified node.  The node pointer
607  * must have a reference as the pointer will be passed to the driver
608  * and potentially held for a long time.  If the frame is successfully
609  * dispatched to the driver, then it is responsible for freeing the
610  * reference (and potentially free'ing up any associated storage);
611  * otherwise deal with reclaiming any reference (on error).
612  */
613 int
614 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
615 	struct ieee80211_bpf_params *params)
616 {
617 	struct ieee80211vap *vap = ni->ni_vap;
618 	struct ieee80211com *ic = ni->ni_ic;
619 	struct ieee80211_frame *wh;
620 
621 	KASSERT(ni != NULL, ("null node"));
622 
623 	if (vap->iv_state == IEEE80211_S_CAC) {
624 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
625 		    ni, "block %s frame in CAC state",
626 			ieee80211_mgt_subtype_name[
627 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
628 				IEEE80211_FC0_SUBTYPE_SHIFT]);
629 		vap->iv_stats.is_tx_badstate++;
630 		ieee80211_free_node(ni);
631 		m_freem(m);
632 		return EIO;		/* XXX */
633 	}
634 
635 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
636 	if (m == NULL) {
637 		ieee80211_free_node(ni);
638 		return ENOMEM;
639 	}
640 
641 	wh = mtod(m, struct ieee80211_frame *);
642 	ieee80211_send_setup(ni, m,
643 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
644 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
645 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
646 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
647 		    "encrypting frame (%s)", __func__);
648 		wh->i_fc[1] |= IEEE80211_FC1_WEP;
649 	}
650 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
651 
652 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
653 	M_WME_SETAC(m, params->ibp_pri);
654 
655 #ifdef IEEE80211_DEBUG
656 	/* avoid printing too many frames */
657 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
658 	    ieee80211_msg_dumppkts(vap)) {
659 		printf("[%s] send %s on channel %u\n",
660 		    ether_sprintf(wh->i_addr1),
661 		    ieee80211_mgt_subtype_name[
662 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
663 				IEEE80211_FC0_SUBTYPE_SHIFT],
664 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
665 	}
666 #endif
667 	IEEE80211_NODE_STAT(ni, tx_mgmt);
668 
669 	return ic->ic_raw_xmit(ni, m, params);
670 }
671 
672 /*
673  * Send a null data frame to the specified node.  If the station
674  * is setup for QoS then a QoS Null Data frame is constructed.
675  * If this is a WDS station then a 4-address frame is constructed.
676  *
677  * NB: the caller is assumed to have setup a node reference
678  *     for use; this is necessary to deal with a race condition
679  *     when probing for inactive stations.  Like ieee80211_mgmt_output
680  *     we must cleanup any node reference on error;  however we
681  *     can safely just unref it as we know it will never be the
682  *     last reference to the node.
683  */
684 int
685 ieee80211_send_nulldata(struct ieee80211_node *ni)
686 {
687 	struct ieee80211vap *vap = ni->ni_vap;
688 	struct ieee80211com *ic = ni->ni_ic;
689 	struct mbuf *m;
690 	struct ieee80211_frame *wh;
691 	int hdrlen;
692 	uint8_t *frm;
693 
694 	if (vap->iv_state == IEEE80211_S_CAC) {
695 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
696 		    ni, "block %s frame in CAC state", "null data");
697 		ieee80211_unref_node(&ni);
698 		vap->iv_stats.is_tx_badstate++;
699 		return EIO;		/* XXX */
700 	}
701 
702 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
703 		hdrlen = sizeof(struct ieee80211_qosframe);
704 	else
705 		hdrlen = sizeof(struct ieee80211_frame);
706 	/* NB: only WDS vap's get 4-address frames */
707 	if (vap->iv_opmode == IEEE80211_M_WDS)
708 		hdrlen += IEEE80211_ADDR_LEN;
709 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
710 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
711 
712 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
713 	if (m == NULL) {
714 		/* XXX debug msg */
715 		ieee80211_unref_node(&ni);
716 		vap->iv_stats.is_tx_nobuf++;
717 		return ENOMEM;
718 	}
719 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
720 	    ("leading space %zd", M_LEADINGSPACE(m)));
721 	M_PREPEND(m, hdrlen, M_NOWAIT);
722 	if (m == NULL) {
723 		/* NB: cannot happen */
724 		ieee80211_free_node(ni);
725 		return ENOMEM;
726 	}
727 
728 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
729 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
730 		const int tid = WME_AC_TO_TID(WME_AC_BE);
731 		uint8_t *qos;
732 
733 		ieee80211_send_setup(ni, m,
734 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
735 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
736 
737 		if (vap->iv_opmode == IEEE80211_M_WDS)
738 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
739 		else
740 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
741 		qos[0] = tid & IEEE80211_QOS_TID;
742 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
743 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
744 		qos[1] = 0;
745 	} else {
746 		ieee80211_send_setup(ni, m,
747 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
748 		    IEEE80211_NONQOS_TID,
749 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
750 	}
751 	if (vap->iv_opmode != IEEE80211_M_WDS) {
752 		/* NB: power management bit is never sent by an AP */
753 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
754 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
755 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
756 	}
757 	m->m_len = m->m_pkthdr.len = hdrlen;
758 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
759 
760 	M_WME_SETAC(m, WME_AC_BE);
761 
762 	IEEE80211_NODE_STAT(ni, tx_data);
763 
764 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
765 	    "send %snull data frame on channel %u, pwr mgt %s",
766 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
767 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
768 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
769 
770 	return ic->ic_raw_xmit(ni, m, NULL);
771 }
772 
773 /*
774  * Assign priority to a frame based on any vlan tag assigned
775  * to the station and/or any Diffserv setting in an IP header.
776  * Finally, if an ACM policy is setup (in station mode) it's
777  * applied.
778  */
779 int
780 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
781 {
782 	const struct ether_header *eh = mtod(m, struct ether_header *);
783 	int v_wme_ac, d_wme_ac, ac;
784 
785 	/*
786 	 * Always promote PAE/EAPOL frames to high priority.
787 	 */
788 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
789 		/* NB: mark so others don't need to check header */
790 		m->m_flags |= M_EAPOL;
791 		ac = WME_AC_VO;
792 		goto done;
793 	}
794 	/*
795 	 * Non-qos traffic goes to BE.
796 	 */
797 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
798 		ac = WME_AC_BE;
799 		goto done;
800 	}
801 
802 	/*
803 	 * If node has a vlan tag then all traffic
804 	 * to it must have a matching tag.
805 	 */
806 	v_wme_ac = 0;
807 	if (ni->ni_vlan != 0) {
808 		 if ((m->m_flags & M_VLANTAG) == 0) {
809 			IEEE80211_NODE_STAT(ni, tx_novlantag);
810 			return 1;
811 		}
812 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
813 		    EVL_VLANOFTAG(ni->ni_vlan)) {
814 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
815 			return 1;
816 		}
817 		/* map vlan priority to AC */
818 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
819 	}
820 
821 	/* XXX m_copydata may be too slow for fast path */
822 #ifdef INET
823 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
824 		uint8_t tos;
825 		/*
826 		 * IP frame, map the DSCP bits from the TOS field.
827 		 */
828 		/* NB: ip header may not be in first mbuf */
829 		m_copydata(m, sizeof(struct ether_header) +
830 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
831 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
832 		d_wme_ac = TID_TO_WME_AC(tos);
833 	} else {
834 #endif /* INET */
835 #ifdef INET6
836 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
837 		uint32_t flow;
838 		uint8_t tos;
839 		/*
840 		 * IPv6 frame, map the DSCP bits from the traffic class field.
841 		 */
842 		m_copydata(m, sizeof(struct ether_header) +
843 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
844 		    (caddr_t) &flow);
845 		tos = (uint8_t)(ntohl(flow) >> 20);
846 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
847 		d_wme_ac = TID_TO_WME_AC(tos);
848 	} else {
849 #endif /* INET6 */
850 		d_wme_ac = WME_AC_BE;
851 #ifdef INET6
852 	}
853 #endif
854 #ifdef INET
855 	}
856 #endif
857 	/*
858 	 * Use highest priority AC.
859 	 */
860 	if (v_wme_ac > d_wme_ac)
861 		ac = v_wme_ac;
862 	else
863 		ac = d_wme_ac;
864 
865 	/*
866 	 * Apply ACM policy.
867 	 */
868 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
869 		static const int acmap[4] = {
870 			WME_AC_BK,	/* WME_AC_BE */
871 			WME_AC_BK,	/* WME_AC_BK */
872 			WME_AC_BE,	/* WME_AC_VI */
873 			WME_AC_VI,	/* WME_AC_VO */
874 		};
875 		struct ieee80211com *ic = ni->ni_ic;
876 
877 		while (ac != WME_AC_BK &&
878 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
879 			ac = acmap[ac];
880 	}
881 done:
882 	M_WME_SETAC(m, ac);
883 	return 0;
884 }
885 
886 /*
887  * Insure there is sufficient contiguous space to encapsulate the
888  * 802.11 data frame.  If room isn't already there, arrange for it.
889  * Drivers and cipher modules assume we have done the necessary work
890  * and fail rudely if they don't find the space they need.
891  */
892 struct mbuf *
893 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
894 	struct ieee80211_key *key, struct mbuf *m)
895 {
896 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
897 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
898 
899 	if (key != NULL) {
900 		/* XXX belongs in crypto code? */
901 		needed_space += key->wk_cipher->ic_header;
902 		/* XXX frags */
903 		/*
904 		 * When crypto is being done in the host we must insure
905 		 * the data are writable for the cipher routines; clone
906 		 * a writable mbuf chain.
907 		 * XXX handle SWMIC specially
908 		 */
909 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
910 			m = m_unshare(m, M_NOWAIT);
911 			if (m == NULL) {
912 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
913 				    "%s: cannot get writable mbuf\n", __func__);
914 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
915 				return NULL;
916 			}
917 		}
918 	}
919 	/*
920 	 * We know we are called just before stripping an Ethernet
921 	 * header and prepending an LLC header.  This means we know
922 	 * there will be
923 	 *	sizeof(struct ether_header) - sizeof(struct llc)
924 	 * bytes recovered to which we need additional space for the
925 	 * 802.11 header and any crypto header.
926 	 */
927 	/* XXX check trailing space and copy instead? */
928 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
929 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
930 		if (n == NULL) {
931 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
932 			    "%s: cannot expand storage\n", __func__);
933 			vap->iv_stats.is_tx_nobuf++;
934 			m_freem(m);
935 			return NULL;
936 		}
937 		KASSERT(needed_space <= MHLEN,
938 		    ("not enough room, need %u got %zu\n", needed_space, MHLEN));
939 		/*
940 		 * Setup new mbuf to have leading space to prepend the
941 		 * 802.11 header and any crypto header bits that are
942 		 * required (the latter are added when the driver calls
943 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
944 		 */
945 		/* NB: must be first 'cuz it clobbers m_data */
946 		m_move_pkthdr(n, m);
947 		n->m_len = 0;			/* NB: m_gethdr does not set */
948 		n->m_data += needed_space;
949 		/*
950 		 * Pull up Ethernet header to create the expected layout.
951 		 * We could use m_pullup but that's overkill (i.e. we don't
952 		 * need the actual data) and it cannot fail so do it inline
953 		 * for speed.
954 		 */
955 		/* NB: struct ether_header is known to be contiguous */
956 		n->m_len += sizeof(struct ether_header);
957 		m->m_len -= sizeof(struct ether_header);
958 		m->m_data += sizeof(struct ether_header);
959 		/*
960 		 * Replace the head of the chain.
961 		 */
962 		n->m_next = m;
963 		m = n;
964 	}
965 	return m;
966 #undef TO_BE_RECLAIMED
967 }
968 
969 /*
970  * Return the transmit key to use in sending a unicast frame.
971  * If a unicast key is set we use that.  When no unicast key is set
972  * we fall back to the default transmit key.
973  */
974 static __inline struct ieee80211_key *
975 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
976 	struct ieee80211_node *ni)
977 {
978 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
979 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
980 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
981 			return NULL;
982 		return &vap->iv_nw_keys[vap->iv_def_txkey];
983 	} else {
984 		return &ni->ni_ucastkey;
985 	}
986 }
987 
988 /*
989  * Return the transmit key to use in sending a multicast frame.
990  * Multicast traffic always uses the group key which is installed as
991  * the default tx key.
992  */
993 static __inline struct ieee80211_key *
994 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
995 	struct ieee80211_node *ni)
996 {
997 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
998 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
999 		return NULL;
1000 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1001 }
1002 
1003 /*
1004  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1005  * If an error is encountered NULL is returned.  The caller is required
1006  * to provide a node reference and pullup the ethernet header in the
1007  * first mbuf.
1008  *
1009  * NB: Packet is assumed to be processed by ieee80211_classify which
1010  *     marked EAPOL frames w/ M_EAPOL.
1011  */
1012 struct mbuf *
1013 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1014     struct mbuf *m)
1015 {
1016 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1017 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1018 	struct ieee80211com *ic = ni->ni_ic;
1019 #ifdef IEEE80211_SUPPORT_MESH
1020 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1021 	struct ieee80211_meshcntl_ae10 *mc;
1022 	struct ieee80211_mesh_route *rt = NULL;
1023 	int dir = -1;
1024 #endif
1025 	struct ether_header eh;
1026 	struct ieee80211_frame *wh;
1027 	struct ieee80211_key *key;
1028 	struct llc *llc;
1029 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1030 	ieee80211_seq seqno;
1031 	int meshhdrsize, meshae;
1032 	uint8_t *qos;
1033 
1034 	/*
1035 	 * Copy existing Ethernet header to a safe place.  The
1036 	 * rest of the code assumes it's ok to strip it when
1037 	 * reorganizing state for the final encapsulation.
1038 	 */
1039 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1040 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1041 
1042 	/*
1043 	 * Insure space for additional headers.  First identify
1044 	 * transmit key to use in calculating any buffer adjustments
1045 	 * required.  This is also used below to do privacy
1046 	 * encapsulation work.  Then calculate the 802.11 header
1047 	 * size and any padding required by the driver.
1048 	 *
1049 	 * Note key may be NULL if we fall back to the default
1050 	 * transmit key and that is not set.  In that case the
1051 	 * buffer may not be expanded as needed by the cipher
1052 	 * routines, but they will/should discard it.
1053 	 */
1054 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1055 		if (vap->iv_opmode == IEEE80211_M_STA ||
1056 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1057 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1058 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1059 			key = ieee80211_crypto_getucastkey(vap, ni);
1060 		else
1061 			key = ieee80211_crypto_getmcastkey(vap, ni);
1062 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1063 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1064 			    eh.ether_dhost,
1065 			    "no default transmit key (%s) deftxkey %u",
1066 			    __func__, vap->iv_def_txkey);
1067 			vap->iv_stats.is_tx_nodefkey++;
1068 			goto bad;
1069 		}
1070 	} else
1071 		key = NULL;
1072 	/*
1073 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1074 	 * frames so suppress use.  This may be an issue if other
1075 	 * ap's require all data frames to be QoS-encapsulated
1076 	 * once negotiated in which case we'll need to make this
1077 	 * configurable.
1078 	 * NB: mesh data frames are QoS.
1079 	 */
1080 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1081 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1082 	    (m->m_flags & M_EAPOL) == 0;
1083 	if (addqos)
1084 		hdrsize = sizeof(struct ieee80211_qosframe);
1085 	else
1086 		hdrsize = sizeof(struct ieee80211_frame);
1087 #ifdef IEEE80211_SUPPORT_MESH
1088 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1089 		/*
1090 		 * Mesh data frames are encapsulated according to the
1091 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1092 		 * o Group Addressed data (aka multicast) originating
1093 		 *   at the local sta are sent w/ 3-address format and
1094 		 *   address extension mode 00
1095 		 * o Individually Addressed data (aka unicast) originating
1096 		 *   at the local sta are sent w/ 4-address format and
1097 		 *   address extension mode 00
1098 		 * o Group Addressed data forwarded from a non-mesh sta are
1099 		 *   sent w/ 3-address format and address extension mode 01
1100 		 * o Individually Address data from another sta are sent
1101 		 *   w/ 4-address format and address extension mode 10
1102 		 */
1103 		is4addr = 0;		/* NB: don't use, disable */
1104 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1105 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1106 			KASSERT(rt != NULL, ("route is NULL"));
1107 			dir = IEEE80211_FC1_DIR_DSTODS;
1108 			hdrsize += IEEE80211_ADDR_LEN;
1109 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1110 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1111 				    vap->iv_myaddr)) {
1112 					IEEE80211_NOTE_MAC(vap,
1113 					    IEEE80211_MSG_MESH,
1114 					    eh.ether_dhost,
1115 					    "%s", "trying to send to ourself");
1116 					goto bad;
1117 				}
1118 				meshae = IEEE80211_MESH_AE_10;
1119 				meshhdrsize =
1120 				    sizeof(struct ieee80211_meshcntl_ae10);
1121 			} else {
1122 				meshae = IEEE80211_MESH_AE_00;
1123 				meshhdrsize =
1124 				    sizeof(struct ieee80211_meshcntl);
1125 			}
1126 		} else {
1127 			dir = IEEE80211_FC1_DIR_FROMDS;
1128 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1129 				/* proxy group */
1130 				meshae = IEEE80211_MESH_AE_01;
1131 				meshhdrsize =
1132 				    sizeof(struct ieee80211_meshcntl_ae01);
1133 			} else {
1134 				/* group */
1135 				meshae = IEEE80211_MESH_AE_00;
1136 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1137 			}
1138 		}
1139 	} else {
1140 #endif
1141 		/*
1142 		 * 4-address frames need to be generated for:
1143 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1144 		 * o packets sent through a vap marked for relaying
1145 		 *   (e.g. a station operating with dynamic WDS)
1146 		 */
1147 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1148 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1149 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1150 		if (is4addr)
1151 			hdrsize += IEEE80211_ADDR_LEN;
1152 		meshhdrsize = meshae = 0;
1153 #ifdef IEEE80211_SUPPORT_MESH
1154 	}
1155 #endif
1156 	/*
1157 	 * Honor driver DATAPAD requirement.
1158 	 */
1159 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1160 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1161 	else
1162 		hdrspace = hdrsize;
1163 
1164 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1165 		/*
1166 		 * Normal frame.
1167 		 */
1168 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1169 		if (m == NULL) {
1170 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1171 			goto bad;
1172 		}
1173 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1174 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1175 		llc = mtod(m, struct llc *);
1176 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1177 		llc->llc_control = LLC_UI;
1178 		llc->llc_snap.org_code[0] = 0;
1179 		llc->llc_snap.org_code[1] = 0;
1180 		llc->llc_snap.org_code[2] = 0;
1181 		llc->llc_snap.ether_type = eh.ether_type;
1182 	} else {
1183 #ifdef IEEE80211_SUPPORT_SUPERG
1184 		/*
1185 		 * Aggregated frame.
1186 		 */
1187 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1188 		if (m == NULL)
1189 #endif
1190 			goto bad;
1191 	}
1192 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1193 
1194 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1195 	if (m == NULL) {
1196 		vap->iv_stats.is_tx_nobuf++;
1197 		goto bad;
1198 	}
1199 	wh = mtod(m, struct ieee80211_frame *);
1200 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1201 	*(uint16_t *)wh->i_dur = 0;
1202 	qos = NULL;	/* NB: quiet compiler */
1203 	if (is4addr) {
1204 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1205 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1206 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1207 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1208 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1209 	} else switch (vap->iv_opmode) {
1210 	case IEEE80211_M_STA:
1211 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1212 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1213 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1214 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1215 		break;
1216 	case IEEE80211_M_IBSS:
1217 	case IEEE80211_M_AHDEMO:
1218 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1219 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1220 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1221 		/*
1222 		 * NB: always use the bssid from iv_bss as the
1223 		 *     neighbor's may be stale after an ibss merge
1224 		 */
1225 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1226 		break;
1227 	case IEEE80211_M_HOSTAP:
1228 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1229 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1230 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1231 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1232 		break;
1233 #ifdef IEEE80211_SUPPORT_MESH
1234 	case IEEE80211_M_MBSS:
1235 		/* NB: offset by hdrspace to deal with DATAPAD */
1236 		mc = (struct ieee80211_meshcntl_ae10 *)
1237 		     (mtod(m, uint8_t *) + hdrspace);
1238 		wh->i_fc[1] = dir;
1239 		switch (meshae) {
1240 		case IEEE80211_MESH_AE_00:	/* no proxy */
1241 			mc->mc_flags = 0;
1242 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1243 				IEEE80211_ADDR_COPY(wh->i_addr1,
1244 				    ni->ni_macaddr);
1245 				IEEE80211_ADDR_COPY(wh->i_addr2,
1246 				    vap->iv_myaddr);
1247 				IEEE80211_ADDR_COPY(wh->i_addr3,
1248 				    eh.ether_dhost);
1249 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1250 				    eh.ether_shost);
1251 				qos =((struct ieee80211_qosframe_addr4 *)
1252 				    wh)->i_qos;
1253 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1254 				 /* mcast */
1255 				IEEE80211_ADDR_COPY(wh->i_addr1,
1256 				    eh.ether_dhost);
1257 				IEEE80211_ADDR_COPY(wh->i_addr2,
1258 				    vap->iv_myaddr);
1259 				IEEE80211_ADDR_COPY(wh->i_addr3,
1260 				    eh.ether_shost);
1261 				qos = ((struct ieee80211_qosframe *)
1262 				    wh)->i_qos;
1263 			}
1264 			break;
1265 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1266 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1267 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1268 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1269 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1270 			mc->mc_flags = 1;
1271 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1272 			    eh.ether_shost);
1273 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1274 			break;
1275 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1276 			KASSERT(rt != NULL, ("route is NULL"));
1277 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1278 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1279 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1280 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1281 			mc->mc_flags = IEEE80211_MESH_AE_10;
1282 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1283 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1284 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1285 			break;
1286 		default:
1287 			KASSERT(0, ("meshae %d", meshae));
1288 			break;
1289 		}
1290 		mc->mc_ttl = ms->ms_ttl;
1291 		ms->ms_seq++;
1292 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1293 		break;
1294 #endif
1295 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1296 	default:
1297 		goto bad;
1298 	}
1299 	if (m->m_flags & M_MORE_DATA)
1300 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1301 	if (addqos) {
1302 		int ac, tid;
1303 
1304 		if (is4addr) {
1305 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1306 		/* NB: mesh case handled earlier */
1307 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1308 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1309 		ac = M_WME_GETAC(m);
1310 		/* map from access class/queue to 11e header priorty value */
1311 		tid = WME_AC_TO_TID(ac);
1312 		qos[0] = tid & IEEE80211_QOS_TID;
1313 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1314 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1315 #ifdef IEEE80211_SUPPORT_MESH
1316 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1317 			qos[1] = IEEE80211_QOS_MC;
1318 		else
1319 #endif
1320 			qos[1] = 0;
1321 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1322 
1323 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1324 			/*
1325 			 * NB: don't assign a sequence # to potential
1326 			 * aggregates; we expect this happens at the
1327 			 * point the frame comes off any aggregation q
1328 			 * as otherwise we may introduce holes in the
1329 			 * BA sequence space and/or make window accouting
1330 			 * more difficult.
1331 			 *
1332 			 * XXX may want to control this with a driver
1333 			 * capability; this may also change when we pull
1334 			 * aggregation up into net80211
1335 			 */
1336 			seqno = ni->ni_txseqs[tid]++;
1337 			*(uint16_t *)wh->i_seq =
1338 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1339 			M_SEQNO_SET(m, seqno);
1340 		}
1341 	} else {
1342 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1343 		*(uint16_t *)wh->i_seq =
1344 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1345 		M_SEQNO_SET(m, seqno);
1346 	}
1347 
1348 
1349 	/* check if xmit fragmentation is required */
1350 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1351 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1352 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1353 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1354 	if (key != NULL) {
1355 		/*
1356 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1357 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1358 		 */
1359 		if ((m->m_flags & M_EAPOL) == 0 ||
1360 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1361 		     (vap->iv_opmode == IEEE80211_M_STA ?
1362 		      !IEEE80211_KEY_UNDEFINED(key) :
1363 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1364 			wh->i_fc[1] |= IEEE80211_FC1_WEP;
1365 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1366 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1367 				    eh.ether_dhost,
1368 				    "%s", "enmic failed, discard frame");
1369 				vap->iv_stats.is_crypto_enmicfail++;
1370 				goto bad;
1371 			}
1372 		}
1373 	}
1374 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1375 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1376 		goto bad;
1377 
1378 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1379 
1380 	IEEE80211_NODE_STAT(ni, tx_data);
1381 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1382 		IEEE80211_NODE_STAT(ni, tx_mcast);
1383 		m->m_flags |= M_MCAST;
1384 	} else
1385 		IEEE80211_NODE_STAT(ni, tx_ucast);
1386 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1387 
1388 	return m;
1389 bad:
1390 	if (m != NULL)
1391 		m_freem(m);
1392 	return NULL;
1393 #undef WH4
1394 #undef MC01
1395 }
1396 
1397 /*
1398  * Fragment the frame according to the specified mtu.
1399  * The size of the 802.11 header (w/o padding) is provided
1400  * so we don't need to recalculate it.  We create a new
1401  * mbuf for each fragment and chain it through m_nextpkt;
1402  * we might be able to optimize this by reusing the original
1403  * packet's mbufs but that is significantly more complicated.
1404  */
1405 static int
1406 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1407 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1408 {
1409 	struct ieee80211_frame *wh, *whf;
1410 	struct mbuf *m, *prev, *next;
1411 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1412 
1413 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1414 	KASSERT(m0->m_pkthdr.len > mtu,
1415 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1416 
1417 	wh = mtod(m0, struct ieee80211_frame *);
1418 	/* NB: mark the first frag; it will be propagated below */
1419 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1420 	totalhdrsize = hdrsize + ciphdrsize;
1421 	fragno = 1;
1422 	off = mtu - ciphdrsize;
1423 	remainder = m0->m_pkthdr.len - off;
1424 	prev = m0;
1425 	do {
1426 		fragsize = totalhdrsize + remainder;
1427 		if (fragsize > mtu)
1428 			fragsize = mtu;
1429 		/* XXX fragsize can be >2048! */
1430 		KASSERT(fragsize < MCLBYTES,
1431 			("fragment size %u too big!", fragsize));
1432 		if (fragsize > MHLEN)
1433 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1434 		else
1435 			m = m_gethdr(M_NOWAIT, MT_DATA);
1436 		if (m == NULL)
1437 			goto bad;
1438 		/* leave room to prepend any cipher header */
1439 		m_align(m, fragsize - ciphdrsize);
1440 
1441 		/*
1442 		 * Form the header in the fragment.  Note that since
1443 		 * we mark the first fragment with the MORE_FRAG bit
1444 		 * it automatically is propagated to each fragment; we
1445 		 * need only clear it on the last fragment (done below).
1446 		 * NB: frag 1+ dont have Mesh Control field present.
1447 		 */
1448 		whf = mtod(m, struct ieee80211_frame *);
1449 		memcpy(whf, wh, hdrsize);
1450 #ifdef IEEE80211_SUPPORT_MESH
1451 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1452 			if (IEEE80211_IS_DSTODS(wh))
1453 				((struct ieee80211_qosframe_addr4 *)
1454 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1455 			else
1456 				((struct ieee80211_qosframe *)
1457 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1458 		}
1459 #endif
1460 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1461 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1462 				IEEE80211_SEQ_FRAG_SHIFT);
1463 		fragno++;
1464 
1465 		payload = fragsize - totalhdrsize;
1466 		/* NB: destination is known to be contiguous */
1467 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrsize);
1468 		m->m_len = hdrsize + payload;
1469 		m->m_pkthdr.len = hdrsize + payload;
1470 		m->m_flags |= M_FRAG;
1471 
1472 		/* chain up the fragment */
1473 		prev->m_nextpkt = m;
1474 		prev = m;
1475 
1476 		/* deduct fragment just formed */
1477 		remainder -= payload;
1478 		off += payload;
1479 	} while (remainder != 0);
1480 
1481 	/* set the last fragment */
1482 	m->m_flags |= M_LASTFRAG;
1483 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1484 
1485 	/* strip first mbuf now that everything has been copied */
1486 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1487 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1488 
1489 	vap->iv_stats.is_tx_fragframes++;
1490 	vap->iv_stats.is_tx_frags += fragno-1;
1491 
1492 	return 1;
1493 bad:
1494 	/* reclaim fragments but leave original frame for caller to free */
1495 	for (m = m0->m_nextpkt; m != NULL; m = next) {
1496 		next = m->m_nextpkt;
1497 		m->m_nextpkt = NULL;		/* XXX paranoid */
1498 		m_freem(m);
1499 	}
1500 	m0->m_nextpkt = NULL;
1501 	return 0;
1502 }
1503 
1504 /*
1505  * Add a supported rates element id to a frame.
1506  */
1507 uint8_t *
1508 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1509 {
1510 	int nrates;
1511 
1512 	*frm++ = IEEE80211_ELEMID_RATES;
1513 	nrates = rs->rs_nrates;
1514 	if (nrates > IEEE80211_RATE_SIZE)
1515 		nrates = IEEE80211_RATE_SIZE;
1516 	*frm++ = nrates;
1517 	memcpy(frm, rs->rs_rates, nrates);
1518 	return frm + nrates;
1519 }
1520 
1521 /*
1522  * Add an extended supported rates element id to a frame.
1523  */
1524 uint8_t *
1525 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1526 {
1527 	/*
1528 	 * Add an extended supported rates element if operating in 11g mode.
1529 	 */
1530 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1531 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1532 		*frm++ = IEEE80211_ELEMID_XRATES;
1533 		*frm++ = nrates;
1534 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1535 		frm += nrates;
1536 	}
1537 	return frm;
1538 }
1539 
1540 /*
1541  * Add an ssid element to a frame.
1542  */
1543 static uint8_t *
1544 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1545 {
1546 	*frm++ = IEEE80211_ELEMID_SSID;
1547 	*frm++ = len;
1548 	memcpy(frm, ssid, len);
1549 	return frm + len;
1550 }
1551 
1552 /*
1553  * Add an erp element to a frame.
1554  */
1555 static uint8_t *
1556 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1557 {
1558 	uint8_t erp;
1559 
1560 	*frm++ = IEEE80211_ELEMID_ERP;
1561 	*frm++ = 1;
1562 	erp = 0;
1563 	if (ic->ic_nonerpsta != 0)
1564 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1565 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1566 		erp |= IEEE80211_ERP_USE_PROTECTION;
1567 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1568 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1569 	*frm++ = erp;
1570 	return frm;
1571 }
1572 
1573 /*
1574  * Add a CFParams element to a frame.
1575  */
1576 static uint8_t *
1577 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1578 {
1579 #define	ADDSHORT(frm, v) do {	\
1580 	LE_WRITE_2(frm, v);	\
1581 	frm += 2;		\
1582 } while (0)
1583 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1584 	*frm++ = 6;
1585 	*frm++ = 0;		/* CFP count */
1586 	*frm++ = 2;		/* CFP period */
1587 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1588 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1589 	return frm;
1590 #undef ADDSHORT
1591 }
1592 
1593 static __inline uint8_t *
1594 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1595 {
1596 	memcpy(frm, ie->ie_data, ie->ie_len);
1597 	return frm + ie->ie_len;
1598 }
1599 
1600 static __inline uint8_t *
1601 add_ie(uint8_t *frm, const uint8_t *ie)
1602 {
1603 	memcpy(frm, ie, 2 + ie[1]);
1604 	return frm + 2 + ie[1];
1605 }
1606 
1607 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1608 /*
1609  * Add a WME information element to a frame.
1610  */
1611 static uint8_t *
1612 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1613 {
1614 	static const struct ieee80211_wme_info info = {
1615 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1616 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1617 		.wme_oui	= { WME_OUI_BYTES },
1618 		.wme_type	= WME_OUI_TYPE,
1619 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1620 		.wme_version	= WME_VERSION,
1621 		.wme_info	= 0,
1622 	};
1623 	memcpy(frm, &info, sizeof(info));
1624 	return frm + sizeof(info);
1625 }
1626 
1627 /*
1628  * Add a WME parameters element to a frame.
1629  */
1630 static uint8_t *
1631 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1632 {
1633 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1634 #define	ADDSHORT(frm, v) do {	\
1635 	LE_WRITE_2(frm, v);	\
1636 	frm += 2;		\
1637 } while (0)
1638 	/* NB: this works 'cuz a param has an info at the front */
1639 	static const struct ieee80211_wme_info param = {
1640 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1641 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1642 		.wme_oui	= { WME_OUI_BYTES },
1643 		.wme_type	= WME_OUI_TYPE,
1644 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1645 		.wme_version	= WME_VERSION,
1646 	};
1647 	int i;
1648 
1649 	memcpy(frm, &param, sizeof(param));
1650 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1651 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1652 	*frm++ = 0;					/* reserved field */
1653 	for (i = 0; i < WME_NUM_AC; i++) {
1654 		const struct wmeParams *ac =
1655 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1656 		*frm++ = SM(i, WME_PARAM_ACI)
1657 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1658 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1659 		       ;
1660 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1661 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1662 		       ;
1663 		ADDSHORT(frm, ac->wmep_txopLimit);
1664 	}
1665 	return frm;
1666 #undef SM
1667 #undef ADDSHORT
1668 }
1669 #undef WME_OUI_BYTES
1670 
1671 /*
1672  * Add an 11h Power Constraint element to a frame.
1673  */
1674 static uint8_t *
1675 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1676 {
1677 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1678 	/* XXX per-vap tx power limit? */
1679 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1680 
1681 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1682 	frm[1] = 1;
1683 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1684 	return frm + 3;
1685 }
1686 
1687 /*
1688  * Add an 11h Power Capability element to a frame.
1689  */
1690 static uint8_t *
1691 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1692 {
1693 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1694 	frm[1] = 2;
1695 	frm[2] = c->ic_minpower;
1696 	frm[3] = c->ic_maxpower;
1697 	return frm + 4;
1698 }
1699 
1700 /*
1701  * Add an 11h Supported Channels element to a frame.
1702  */
1703 static uint8_t *
1704 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1705 {
1706 	static const int ielen = 26;
1707 
1708 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1709 	frm[1] = ielen;
1710 	/* XXX not correct */
1711 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1712 	return frm + 2 + ielen;
1713 }
1714 
1715 /*
1716  * Add an 11h Quiet time element to a frame.
1717  */
1718 static uint8_t *
1719 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1720 {
1721 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1722 
1723 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1724 	quiet->len = 6;
1725 	if (vap->iv_quiet_count_value == 1)
1726 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1727 	else if (vap->iv_quiet_count_value > 1)
1728 		vap->iv_quiet_count_value--;
1729 
1730 	if (vap->iv_quiet_count_value == 0) {
1731 		/* value 0 is reserved as per 802.11h standerd */
1732 		vap->iv_quiet_count_value = 1;
1733 	}
1734 
1735 	quiet->tbttcount = vap->iv_quiet_count_value;
1736 	quiet->period = vap->iv_quiet_period;
1737 	quiet->duration = htole16(vap->iv_quiet_duration);
1738 	quiet->offset = htole16(vap->iv_quiet_offset);
1739 	return frm + sizeof(*quiet);
1740 }
1741 
1742 /*
1743  * Add an 11h Channel Switch Announcement element to a frame.
1744  * Note that we use the per-vap CSA count to adjust the global
1745  * counter so we can use this routine to form probe response
1746  * frames and get the current count.
1747  */
1748 static uint8_t *
1749 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1750 {
1751 	struct ieee80211com *ic = vap->iv_ic;
1752 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1753 
1754 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1755 	csa->csa_len = 3;
1756 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1757 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1758 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1759 	return frm + sizeof(*csa);
1760 }
1761 
1762 /*
1763  * Add an 11h country information element to a frame.
1764  */
1765 static uint8_t *
1766 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1767 {
1768 
1769 	if (ic->ic_countryie == NULL ||
1770 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1771 		/*
1772 		 * Handle lazy construction of ie.  This is done on
1773 		 * first use and after a channel change that requires
1774 		 * re-calculation.
1775 		 */
1776 		if (ic->ic_countryie != NULL)
1777 			free(ic->ic_countryie, M_80211_NODE_IE);
1778 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1779 		if (ic->ic_countryie == NULL)
1780 			return frm;
1781 		ic->ic_countryie_chan = ic->ic_bsschan;
1782 	}
1783 	return add_appie(frm, ic->ic_countryie);
1784 }
1785 
1786 /*
1787  * Send a probe request frame with the specified ssid
1788  * and any optional information element data.
1789  */
1790 int
1791 ieee80211_send_probereq(struct ieee80211_node *ni,
1792 	const uint8_t sa[IEEE80211_ADDR_LEN],
1793 	const uint8_t da[IEEE80211_ADDR_LEN],
1794 	const uint8_t bssid[IEEE80211_ADDR_LEN],
1795 	const uint8_t *ssid, size_t ssidlen)
1796 {
1797 	struct ieee80211vap *vap = ni->ni_vap;
1798 	struct ieee80211com *ic = ni->ni_ic;
1799 	const struct ieee80211_txparam *tp;
1800 	struct ieee80211_bpf_params params;
1801 	struct ieee80211_frame *wh;
1802 	const struct ieee80211_rateset *rs;
1803 	struct mbuf *m;
1804 	uint8_t *frm;
1805 
1806 	if (vap->iv_state == IEEE80211_S_CAC) {
1807 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
1808 		    "block %s frame in CAC state", "probe request");
1809 		vap->iv_stats.is_tx_badstate++;
1810 		return EIO;		/* XXX */
1811 	}
1812 
1813 	/*
1814 	 * Hold a reference on the node so it doesn't go away until after
1815 	 * the xmit is complete all the way in the driver.  On error we
1816 	 * will remove our reference.
1817 	 */
1818 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1819 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1820 		__func__, __LINE__,
1821 		ni, ether_sprintf(ni->ni_macaddr),
1822 		ieee80211_node_refcnt(ni)+1);
1823 	ieee80211_ref_node(ni);
1824 
1825 	/*
1826 	 * prreq frame format
1827 	 *	[tlv] ssid
1828 	 *	[tlv] supported rates
1829 	 *	[tlv] RSN (optional)
1830 	 *	[tlv] extended supported rates
1831 	 *	[tlv] WPA (optional)
1832 	 *	[tlv] user-specified ie's
1833 	 */
1834 	m = ieee80211_getmgtframe(&frm,
1835 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
1836 	       	 2 + IEEE80211_NWID_LEN
1837 	       + 2 + IEEE80211_RATE_SIZE
1838 	       + sizeof(struct ieee80211_ie_wpa)
1839 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
1840 	       + sizeof(struct ieee80211_ie_wpa)
1841 	       + (vap->iv_appie_probereq != NULL ?
1842 		   vap->iv_appie_probereq->ie_len : 0)
1843 	);
1844 	if (m == NULL) {
1845 		vap->iv_stats.is_tx_nobuf++;
1846 		ieee80211_free_node(ni);
1847 		return ENOMEM;
1848 	}
1849 
1850 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
1851 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
1852 	frm = ieee80211_add_rates(frm, rs);
1853 	if (vap->iv_flags & IEEE80211_F_WPA2) {
1854 		if (vap->iv_rsn_ie != NULL)
1855 			frm = add_ie(frm, vap->iv_rsn_ie);
1856 		/* XXX else complain? */
1857 	}
1858 	frm = ieee80211_add_xrates(frm, rs);
1859 	if (vap->iv_flags & IEEE80211_F_WPA1) {
1860 		if (vap->iv_wpa_ie != NULL)
1861 			frm = add_ie(frm, vap->iv_wpa_ie);
1862 		/* XXX else complain? */
1863 	}
1864 	if (vap->iv_appie_probereq != NULL)
1865 		frm = add_appie(frm, vap->iv_appie_probereq);
1866 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
1867 
1868 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
1869 	    ("leading space %zd", M_LEADINGSPACE(m)));
1870 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
1871 	if (m == NULL) {
1872 		/* NB: cannot happen */
1873 		ieee80211_free_node(ni);
1874 		return ENOMEM;
1875 	}
1876 
1877 	wh = mtod(m, struct ieee80211_frame *);
1878 	ieee80211_send_setup(ni, m,
1879 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
1880 	     IEEE80211_NONQOS_TID, sa, da, bssid);
1881 	/* XXX power management? */
1882 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1883 
1884 	M_WME_SETAC(m, WME_AC_BE);
1885 
1886 	IEEE80211_NODE_STAT(ni, tx_probereq);
1887 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1888 
1889 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
1890 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
1891 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
1892 	    ssidlen, ssid);
1893 
1894 	memset(&params, 0, sizeof(params));
1895 	params.ibp_pri = M_WME_GETAC(m);
1896 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
1897 	params.ibp_rate0 = tp->mgmtrate;
1898 	if (IEEE80211_IS_MULTICAST(da)) {
1899 		params.ibp_flags |= IEEE80211_BPF_NOACK;
1900 		params.ibp_try0 = 1;
1901 	} else
1902 		params.ibp_try0 = tp->maxretry;
1903 	params.ibp_power = ni->ni_txpower;
1904 	return ic->ic_raw_xmit(ni, m, &params);
1905 }
1906 
1907 /*
1908  * Calculate capability information for mgt frames.
1909  */
1910 uint16_t
1911 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
1912 {
1913 	struct ieee80211com *ic = vap->iv_ic;
1914 	uint16_t capinfo;
1915 
1916 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
1917 
1918 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
1919 		capinfo = IEEE80211_CAPINFO_ESS;
1920 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
1921 		capinfo = IEEE80211_CAPINFO_IBSS;
1922 	else
1923 		capinfo = 0;
1924 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
1925 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1926 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1927 	    IEEE80211_IS_CHAN_2GHZ(chan))
1928 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1929 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1930 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1931 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
1932 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
1933 	return capinfo;
1934 }
1935 
1936 /*
1937  * Send a management frame.  The node is for the destination (or ic_bss
1938  * when in station mode).  Nodes other than ic_bss have their reference
1939  * count bumped to reflect our use for an indeterminant time.
1940  */
1941 int
1942 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
1943 {
1944 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
1945 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
1946 	struct ieee80211vap *vap = ni->ni_vap;
1947 	struct ieee80211com *ic = ni->ni_ic;
1948 	struct ieee80211_node *bss = vap->iv_bss;
1949 	struct ieee80211_bpf_params params;
1950 	struct mbuf *m;
1951 	uint8_t *frm;
1952 	uint16_t capinfo;
1953 	int has_challenge, is_shared_key, ret, status;
1954 
1955 	KASSERT(ni != NULL, ("null node"));
1956 
1957 	/*
1958 	 * Hold a reference on the node so it doesn't go away until after
1959 	 * the xmit is complete all the way in the driver.  On error we
1960 	 * will remove our reference.
1961 	 */
1962 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
1963 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
1964 		__func__, __LINE__,
1965 		ni, ether_sprintf(ni->ni_macaddr),
1966 		ieee80211_node_refcnt(ni)+1);
1967 	ieee80211_ref_node(ni);
1968 
1969 	memset(&params, 0, sizeof(params));
1970 	switch (type) {
1971 
1972 	case IEEE80211_FC0_SUBTYPE_AUTH:
1973 		status = arg >> 16;
1974 		arg &= 0xffff;
1975 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
1976 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
1977 		    ni->ni_challenge != NULL);
1978 
1979 		/*
1980 		 * Deduce whether we're doing open authentication or
1981 		 * shared key authentication.  We do the latter if
1982 		 * we're in the middle of a shared key authentication
1983 		 * handshake or if we're initiating an authentication
1984 		 * request and configured to use shared key.
1985 		 */
1986 		is_shared_key = has_challenge ||
1987 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
1988 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
1989 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
1990 
1991 		m = ieee80211_getmgtframe(&frm,
1992 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
1993 			  3 * sizeof(uint16_t)
1994 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
1995 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
1996 		);
1997 		if (m == NULL)
1998 			senderr(ENOMEM, is_tx_nobuf);
1999 
2000 		((uint16_t *)frm)[0] =
2001 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2002 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2003 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2004 		((uint16_t *)frm)[2] = htole16(status);/* status */
2005 
2006 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2007 			((uint16_t *)frm)[3] =
2008 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2009 			    IEEE80211_ELEMID_CHALLENGE);
2010 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2011 			    IEEE80211_CHALLENGE_LEN);
2012 			m->m_pkthdr.len = m->m_len =
2013 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2014 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2015 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2016 				    "request encrypt frame (%s)", __func__);
2017 				/* mark frame for encryption */
2018 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2019 			}
2020 		} else
2021 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2022 
2023 		/* XXX not right for shared key */
2024 		if (status == IEEE80211_STATUS_SUCCESS)
2025 			IEEE80211_NODE_STAT(ni, tx_auth);
2026 		else
2027 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2028 
2029 		if (vap->iv_opmode == IEEE80211_M_STA)
2030 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2031 				(void *) vap->iv_state);
2032 		break;
2033 
2034 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2035 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2036 		    "send station deauthenticate (reason %d)", arg);
2037 		m = ieee80211_getmgtframe(&frm,
2038 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2039 			sizeof(uint16_t));
2040 		if (m == NULL)
2041 			senderr(ENOMEM, is_tx_nobuf);
2042 		*(uint16_t *)frm = htole16(arg);	/* reason */
2043 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2044 
2045 		IEEE80211_NODE_STAT(ni, tx_deauth);
2046 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2047 
2048 		ieee80211_node_unauthorize(ni);		/* port closed */
2049 		break;
2050 
2051 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2052 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2053 		/*
2054 		 * asreq frame format
2055 		 *	[2] capability information
2056 		 *	[2] listen interval
2057 		 *	[6*] current AP address (reassoc only)
2058 		 *	[tlv] ssid
2059 		 *	[tlv] supported rates
2060 		 *	[tlv] extended supported rates
2061 		 *	[4] power capability (optional)
2062 		 *	[28] supported channels (optional)
2063 		 *	[tlv] HT capabilities
2064 		 *	[tlv] WME (optional)
2065 		 *	[tlv] Vendor OUI HT capabilities (optional)
2066 		 *	[tlv] Atheros capabilities (if negotiated)
2067 		 *	[tlv] AppIE's (optional)
2068 		 */
2069 		m = ieee80211_getmgtframe(&frm,
2070 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2071 			 sizeof(uint16_t)
2072 		       + sizeof(uint16_t)
2073 		       + IEEE80211_ADDR_LEN
2074 		       + 2 + IEEE80211_NWID_LEN
2075 		       + 2 + IEEE80211_RATE_SIZE
2076 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2077 		       + 4
2078 		       + 2 + 26
2079 		       + sizeof(struct ieee80211_wme_info)
2080 		       + sizeof(struct ieee80211_ie_htcap)
2081 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2082 #ifdef IEEE80211_SUPPORT_SUPERG
2083 		       + sizeof(struct ieee80211_ath_ie)
2084 #endif
2085 		       + (vap->iv_appie_wpa != NULL ?
2086 				vap->iv_appie_wpa->ie_len : 0)
2087 		       + (vap->iv_appie_assocreq != NULL ?
2088 				vap->iv_appie_assocreq->ie_len : 0)
2089 		);
2090 		if (m == NULL)
2091 			senderr(ENOMEM, is_tx_nobuf);
2092 
2093 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2094 		    ("wrong mode %u", vap->iv_opmode));
2095 		capinfo = IEEE80211_CAPINFO_ESS;
2096 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2097 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2098 		/*
2099 		 * NB: Some 11a AP's reject the request when
2100 		 *     short premable is set.
2101 		 */
2102 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2103 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2104 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2105 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2106 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2107 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2108 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2109 		    (vap->iv_flags & IEEE80211_F_DOTH))
2110 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2111 		*(uint16_t *)frm = htole16(capinfo);
2112 		frm += 2;
2113 
2114 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2115 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2116 						    bss->ni_intval));
2117 		frm += 2;
2118 
2119 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2120 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2121 			frm += IEEE80211_ADDR_LEN;
2122 		}
2123 
2124 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2125 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2126 		if (vap->iv_flags & IEEE80211_F_WPA2) {
2127 			if (vap->iv_rsn_ie != NULL)
2128 				frm = add_ie(frm, vap->iv_rsn_ie);
2129 			/* XXX else complain? */
2130 		}
2131 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2132 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2133 			frm = ieee80211_add_powercapability(frm,
2134 			    ic->ic_curchan);
2135 			frm = ieee80211_add_supportedchannels(frm, ic);
2136 		}
2137 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2138 		    ni->ni_ies.htcap_ie != NULL &&
2139 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP)
2140 			frm = ieee80211_add_htcap(frm, ni);
2141 		if (vap->iv_flags & IEEE80211_F_WPA1) {
2142 			if (vap->iv_wpa_ie != NULL)
2143 				frm = add_ie(frm, vap->iv_wpa_ie);
2144 			/* XXX else complain */
2145 		}
2146 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2147 		    ni->ni_ies.wme_ie != NULL)
2148 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2149 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2150 		    ni->ni_ies.htcap_ie != NULL &&
2151 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR)
2152 			frm = ieee80211_add_htcap_vendor(frm, ni);
2153 #ifdef IEEE80211_SUPPORT_SUPERG
2154 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2155 			frm = ieee80211_add_ath(frm,
2156 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2157 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2158 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2159 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2160 		}
2161 #endif /* IEEE80211_SUPPORT_SUPERG */
2162 		if (vap->iv_appie_assocreq != NULL)
2163 			frm = add_appie(frm, vap->iv_appie_assocreq);
2164 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2165 
2166 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2167 			(void *) vap->iv_state);
2168 		break;
2169 
2170 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2171 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2172 		/*
2173 		 * asresp frame format
2174 		 *	[2] capability information
2175 		 *	[2] status
2176 		 *	[2] association ID
2177 		 *	[tlv] supported rates
2178 		 *	[tlv] extended supported rates
2179 		 *	[tlv] HT capabilities (standard, if STA enabled)
2180 		 *	[tlv] HT information (standard, if STA enabled)
2181 		 *	[tlv] WME (if configured and STA enabled)
2182 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2183 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2184 		 *	[tlv] Atheros capabilities (if STA enabled)
2185 		 *	[tlv] AppIE's (optional)
2186 		 */
2187 		m = ieee80211_getmgtframe(&frm,
2188 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2189 			 sizeof(uint16_t)
2190 		       + sizeof(uint16_t)
2191 		       + sizeof(uint16_t)
2192 		       + 2 + IEEE80211_RATE_SIZE
2193 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2194 		       + sizeof(struct ieee80211_ie_htcap) + 4
2195 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2196 		       + sizeof(struct ieee80211_wme_param)
2197 #ifdef IEEE80211_SUPPORT_SUPERG
2198 		       + sizeof(struct ieee80211_ath_ie)
2199 #endif
2200 		       + (vap->iv_appie_assocresp != NULL ?
2201 				vap->iv_appie_assocresp->ie_len : 0)
2202 		);
2203 		if (m == NULL)
2204 			senderr(ENOMEM, is_tx_nobuf);
2205 
2206 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2207 		*(uint16_t *)frm = htole16(capinfo);
2208 		frm += 2;
2209 
2210 		*(uint16_t *)frm = htole16(arg);	/* status */
2211 		frm += 2;
2212 
2213 		if (arg == IEEE80211_STATUS_SUCCESS) {
2214 			*(uint16_t *)frm = htole16(ni->ni_associd);
2215 			IEEE80211_NODE_STAT(ni, tx_assoc);
2216 		} else
2217 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2218 		frm += 2;
2219 
2220 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2221 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2222 		/* NB: respond according to what we received */
2223 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2224 			frm = ieee80211_add_htcap(frm, ni);
2225 			frm = ieee80211_add_htinfo(frm, ni);
2226 		}
2227 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2228 		    ni->ni_ies.wme_ie != NULL)
2229 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2230 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2231 			frm = ieee80211_add_htcap_vendor(frm, ni);
2232 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2233 		}
2234 #ifdef IEEE80211_SUPPORT_SUPERG
2235 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2236 			frm = ieee80211_add_ath(frm,
2237 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2238 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2239 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2240 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2241 #endif /* IEEE80211_SUPPORT_SUPERG */
2242 		if (vap->iv_appie_assocresp != NULL)
2243 			frm = add_appie(frm, vap->iv_appie_assocresp);
2244 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2245 		break;
2246 
2247 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2248 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2249 		    "send station disassociate (reason %d)", arg);
2250 		m = ieee80211_getmgtframe(&frm,
2251 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2252 			sizeof(uint16_t));
2253 		if (m == NULL)
2254 			senderr(ENOMEM, is_tx_nobuf);
2255 		*(uint16_t *)frm = htole16(arg);	/* reason */
2256 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2257 
2258 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2259 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2260 		break;
2261 
2262 	default:
2263 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2264 		    "invalid mgmt frame type %u", type);
2265 		senderr(EINVAL, is_tx_unknownmgt);
2266 		/* NOTREACHED */
2267 	}
2268 
2269 	/* NB: force non-ProbeResp frames to the highest queue */
2270 	params.ibp_pri = WME_AC_VO;
2271 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2272 	/* NB: we know all frames are unicast */
2273 	params.ibp_try0 = bss->ni_txparms->maxretry;
2274 	params.ibp_power = bss->ni_txpower;
2275 	return ieee80211_mgmt_output(ni, m, type, &params);
2276 bad:
2277 	ieee80211_free_node(ni);
2278 	return ret;
2279 #undef senderr
2280 #undef HTFLAGS
2281 }
2282 
2283 /*
2284  * Return an mbuf with a probe response frame in it.
2285  * Space is left to prepend and 802.11 header at the
2286  * front but it's left to the caller to fill in.
2287  */
2288 struct mbuf *
2289 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2290 {
2291 	struct ieee80211vap *vap = bss->ni_vap;
2292 	struct ieee80211com *ic = bss->ni_ic;
2293 	const struct ieee80211_rateset *rs;
2294 	struct mbuf *m;
2295 	uint16_t capinfo;
2296 	uint8_t *frm;
2297 
2298 	/*
2299 	 * probe response frame format
2300 	 *	[8] time stamp
2301 	 *	[2] beacon interval
2302 	 *	[2] cabability information
2303 	 *	[tlv] ssid
2304 	 *	[tlv] supported rates
2305 	 *	[tlv] parameter set (FH/DS)
2306 	 *	[tlv] parameter set (IBSS)
2307 	 *	[tlv] country (optional)
2308 	 *	[3] power control (optional)
2309 	 *	[5] channel switch announcement (CSA) (optional)
2310 	 *	[tlv] extended rate phy (ERP)
2311 	 *	[tlv] extended supported rates
2312 	 *	[tlv] RSN (optional)
2313 	 *	[tlv] HT capabilities
2314 	 *	[tlv] HT information
2315 	 *	[tlv] WPA (optional)
2316 	 *	[tlv] WME (optional)
2317 	 *	[tlv] Vendor OUI HT capabilities (optional)
2318 	 *	[tlv] Vendor OUI HT information (optional)
2319 	 *	[tlv] Atheros capabilities
2320 	 *	[tlv] AppIE's (optional)
2321 	 *	[tlv] Mesh ID (MBSS)
2322 	 *	[tlv] Mesh Conf (MBSS)
2323 	 */
2324 	m = ieee80211_getmgtframe(&frm,
2325 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2326 		 8
2327 	       + sizeof(uint16_t)
2328 	       + sizeof(uint16_t)
2329 	       + 2 + IEEE80211_NWID_LEN
2330 	       + 2 + IEEE80211_RATE_SIZE
2331 	       + 7	/* max(7,3) */
2332 	       + IEEE80211_COUNTRY_MAX_SIZE
2333 	       + 3
2334 	       + sizeof(struct ieee80211_csa_ie)
2335 	       + sizeof(struct ieee80211_quiet_ie)
2336 	       + 3
2337 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2338 	       + sizeof(struct ieee80211_ie_wpa)
2339 	       + sizeof(struct ieee80211_ie_htcap)
2340 	       + sizeof(struct ieee80211_ie_htinfo)
2341 	       + sizeof(struct ieee80211_ie_wpa)
2342 	       + sizeof(struct ieee80211_wme_param)
2343 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2344 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2345 #ifdef IEEE80211_SUPPORT_SUPERG
2346 	       + sizeof(struct ieee80211_ath_ie)
2347 #endif
2348 #ifdef IEEE80211_SUPPORT_MESH
2349 	       + 2 + IEEE80211_MESHID_LEN
2350 	       + sizeof(struct ieee80211_meshconf_ie)
2351 #endif
2352 	       + (vap->iv_appie_proberesp != NULL ?
2353 			vap->iv_appie_proberesp->ie_len : 0)
2354 	);
2355 	if (m == NULL) {
2356 		vap->iv_stats.is_tx_nobuf++;
2357 		return NULL;
2358 	}
2359 
2360 	memset(frm, 0, 8);	/* timestamp should be filled later */
2361 	frm += 8;
2362 	*(uint16_t *)frm = htole16(bss->ni_intval);
2363 	frm += 2;
2364 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2365 	*(uint16_t *)frm = htole16(capinfo);
2366 	frm += 2;
2367 
2368 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2369 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2370 	frm = ieee80211_add_rates(frm, rs);
2371 
2372 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2373 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2374 		*frm++ = 5;
2375 		*frm++ = bss->ni_fhdwell & 0x00ff;
2376 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2377 		*frm++ = IEEE80211_FH_CHANSET(
2378 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2379 		*frm++ = IEEE80211_FH_CHANPAT(
2380 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2381 		*frm++ = bss->ni_fhindex;
2382 	} else {
2383 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2384 		*frm++ = 1;
2385 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2386 	}
2387 
2388 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2389 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2390 		*frm++ = 2;
2391 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2392 	}
2393 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2394 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2395 		frm = ieee80211_add_countryie(frm, ic);
2396 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2397 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2398 			frm = ieee80211_add_powerconstraint(frm, vap);
2399 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2400 			frm = ieee80211_add_csa(frm, vap);
2401 	}
2402 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2403 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2404 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2405 			if (vap->iv_quiet)
2406 				frm = ieee80211_add_quiet(frm, vap);
2407 		}
2408 	}
2409 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2410 		frm = ieee80211_add_erp(frm, ic);
2411 	frm = ieee80211_add_xrates(frm, rs);
2412 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2413 		if (vap->iv_rsn_ie != NULL)
2414 			frm = add_ie(frm, vap->iv_rsn_ie);
2415 		/* XXX else complain? */
2416 	}
2417 	/*
2418 	 * NB: legacy 11b clients do not get certain ie's.
2419 	 *     The caller identifies such clients by passing
2420 	 *     a token in legacy to us.  Could expand this to be
2421 	 *     any legacy client for stuff like HT ie's.
2422 	 */
2423 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2424 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2425 		frm = ieee80211_add_htcap(frm, bss);
2426 		frm = ieee80211_add_htinfo(frm, bss);
2427 	}
2428 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2429 		if (vap->iv_wpa_ie != NULL)
2430 			frm = add_ie(frm, vap->iv_wpa_ie);
2431 		/* XXX else complain? */
2432 	}
2433 	if (vap->iv_flags & IEEE80211_F_WME)
2434 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2435 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2436 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2437 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2438 		frm = ieee80211_add_htcap_vendor(frm, bss);
2439 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2440 	}
2441 #ifdef IEEE80211_SUPPORT_SUPERG
2442 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2443 	    legacy != IEEE80211_SEND_LEGACY_11B)
2444 		frm = ieee80211_add_athcaps(frm, bss);
2445 #endif
2446 	if (vap->iv_appie_proberesp != NULL)
2447 		frm = add_appie(frm, vap->iv_appie_proberesp);
2448 #ifdef IEEE80211_SUPPORT_MESH
2449 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2450 		frm = ieee80211_add_meshid(frm, vap);
2451 		frm = ieee80211_add_meshconf(frm, vap);
2452 	}
2453 #endif
2454 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2455 
2456 	return m;
2457 }
2458 
2459 /*
2460  * Send a probe response frame to the specified mac address.
2461  * This does not go through the normal mgt frame api so we
2462  * can specify the destination address and re-use the bss node
2463  * for the sta reference.
2464  */
2465 int
2466 ieee80211_send_proberesp(struct ieee80211vap *vap,
2467 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2468 {
2469 	struct ieee80211_node *bss = vap->iv_bss;
2470 	struct ieee80211com *ic = vap->iv_ic;
2471 	struct ieee80211_frame *wh;
2472 	struct mbuf *m;
2473 
2474 	if (vap->iv_state == IEEE80211_S_CAC) {
2475 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2476 		    "block %s frame in CAC state", "probe response");
2477 		vap->iv_stats.is_tx_badstate++;
2478 		return EIO;		/* XXX */
2479 	}
2480 
2481 	/*
2482 	 * Hold a reference on the node so it doesn't go away until after
2483 	 * the xmit is complete all the way in the driver.  On error we
2484 	 * will remove our reference.
2485 	 */
2486 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2487 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2488 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2489 	    ieee80211_node_refcnt(bss)+1);
2490 	ieee80211_ref_node(bss);
2491 
2492 	m = ieee80211_alloc_proberesp(bss, legacy);
2493 	if (m == NULL) {
2494 		ieee80211_free_node(bss);
2495 		return ENOMEM;
2496 	}
2497 
2498 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2499 	KASSERT(m != NULL, ("no room for header"));
2500 
2501 	wh = mtod(m, struct ieee80211_frame *);
2502 	ieee80211_send_setup(bss, m,
2503 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2504 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2505 	/* XXX power management? */
2506 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2507 
2508 	M_WME_SETAC(m, WME_AC_BE);
2509 
2510 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2511 	    "send probe resp on channel %u to %s%s\n",
2512 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2513 	    legacy ? " <legacy>" : "");
2514 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2515 
2516 	return ic->ic_raw_xmit(bss, m, NULL);
2517 }
2518 
2519 /*
2520  * Allocate and build a RTS (Request To Send) control frame.
2521  */
2522 struct mbuf *
2523 ieee80211_alloc_rts(struct ieee80211com *ic,
2524 	const uint8_t ra[IEEE80211_ADDR_LEN],
2525 	const uint8_t ta[IEEE80211_ADDR_LEN],
2526 	uint16_t dur)
2527 {
2528 	struct ieee80211_frame_rts *rts;
2529 	struct mbuf *m;
2530 
2531 	/* XXX honor ic_headroom */
2532 	m = m_gethdr(M_NOWAIT, MT_DATA);
2533 	if (m != NULL) {
2534 		rts = mtod(m, struct ieee80211_frame_rts *);
2535 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2536 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2537 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2538 		*(u_int16_t *)rts->i_dur = htole16(dur);
2539 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2540 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2541 
2542 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2543 	}
2544 	return m;
2545 }
2546 
2547 /*
2548  * Allocate and build a CTS (Clear To Send) control frame.
2549  */
2550 struct mbuf *
2551 ieee80211_alloc_cts(struct ieee80211com *ic,
2552 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2553 {
2554 	struct ieee80211_frame_cts *cts;
2555 	struct mbuf *m;
2556 
2557 	/* XXX honor ic_headroom */
2558 	m = m_gethdr(M_NOWAIT, MT_DATA);
2559 	if (m != NULL) {
2560 		cts = mtod(m, struct ieee80211_frame_cts *);
2561 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2562 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2563 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2564 		*(u_int16_t *)cts->i_dur = htole16(dur);
2565 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2566 
2567 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2568 	}
2569 	return m;
2570 }
2571 
2572 static void
2573 ieee80211_tx_mgt_timeout(void *arg)
2574 {
2575 	struct ieee80211_node *ni = arg;
2576 	struct ieee80211vap *vap = ni->ni_vap;
2577 
2578 	if (vap->iv_state != IEEE80211_S_INIT &&
2579 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2580 		/*
2581 		 * NB: it's safe to specify a timeout as the reason here;
2582 		 *     it'll only be used in the right state.
2583 		 */
2584 		ieee80211_new_state(vap, IEEE80211_S_SCAN,
2585 			IEEE80211_SCAN_FAIL_TIMEOUT);
2586 	}
2587 }
2588 
2589 static void
2590 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2591 {
2592 	struct ieee80211vap *vap = ni->ni_vap;
2593 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2594 
2595 	/*
2596 	 * Frame transmit completed; arrange timer callback.  If
2597 	 * transmit was successfuly we wait for response.  Otherwise
2598 	 * we arrange an immediate callback instead of doing the
2599 	 * callback directly since we don't know what state the driver
2600 	 * is in (e.g. what locks it is holding).  This work should
2601 	 * not be too time-critical and not happen too often so the
2602 	 * added overhead is acceptable.
2603 	 *
2604 	 * XXX what happens if !acked but response shows up before callback?
2605 	 */
2606 	if (vap->iv_state == ostate)
2607 		callout_reset(&vap->iv_mgtsend,
2608 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2609 			ieee80211_tx_mgt_timeout, ni);
2610 }
2611 
2612 static void
2613 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2614 	struct ieee80211_beacon_offsets *bo, struct ieee80211_node *ni)
2615 {
2616 	struct ieee80211vap *vap = ni->ni_vap;
2617 	struct ieee80211com *ic = ni->ni_ic;
2618 	struct ieee80211_rateset *rs = &ni->ni_rates;
2619 	uint16_t capinfo;
2620 
2621 	/*
2622 	 * beacon frame format
2623 	 *	[8] time stamp
2624 	 *	[2] beacon interval
2625 	 *	[2] cabability information
2626 	 *	[tlv] ssid
2627 	 *	[tlv] supported rates
2628 	 *	[3] parameter set (DS)
2629 	 *	[8] CF parameter set (optional)
2630 	 *	[tlv] parameter set (IBSS/TIM)
2631 	 *	[tlv] country (optional)
2632 	 *	[3] power control (optional)
2633 	 *	[5] channel switch announcement (CSA) (optional)
2634 	 *	[tlv] extended rate phy (ERP)
2635 	 *	[tlv] extended supported rates
2636 	 *	[tlv] RSN parameters
2637 	 *	[tlv] HT capabilities
2638 	 *	[tlv] HT information
2639 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2640 	 *	[tlv] WPA parameters
2641 	 *	[tlv] WME parameters
2642 	 *	[tlv] Vendor OUI HT capabilities (optional)
2643 	 *	[tlv] Vendor OUI HT information (optional)
2644 	 *	[tlv] Atheros capabilities (optional)
2645 	 *	[tlv] TDMA parameters (optional)
2646 	 *	[tlv] Mesh ID (MBSS)
2647 	 *	[tlv] Mesh Conf (MBSS)
2648 	 *	[tlv] application data (optional)
2649 	 */
2650 
2651 	memset(bo, 0, sizeof(*bo));
2652 
2653 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2654 	frm += 8;
2655 	*(uint16_t *)frm = htole16(ni->ni_intval);
2656 	frm += 2;
2657 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2658 	bo->bo_caps = (uint16_t *)frm;
2659 	*(uint16_t *)frm = htole16(capinfo);
2660 	frm += 2;
2661 	*frm++ = IEEE80211_ELEMID_SSID;
2662 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2663 		*frm++ = ni->ni_esslen;
2664 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2665 		frm += ni->ni_esslen;
2666 	} else
2667 		*frm++ = 0;
2668 	frm = ieee80211_add_rates(frm, rs);
2669 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2670 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2671 		*frm++ = 1;
2672 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2673 	}
2674 	if (ic->ic_flags & IEEE80211_F_PCF) {
2675 		bo->bo_cfp = frm;
2676 		frm = ieee80211_add_cfparms(frm, ic);
2677 	}
2678 	bo->bo_tim = frm;
2679 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2680 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2681 		*frm++ = 2;
2682 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2683 		bo->bo_tim_len = 0;
2684 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2685 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2686 		/* TIM IE is the same for Mesh and Hostap */
2687 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2688 
2689 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2690 		tie->tim_len = 4;	/* length */
2691 		tie->tim_count = 0;	/* DTIM count */
2692 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2693 		tie->tim_bitctl = 0;	/* bitmap control */
2694 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2695 		frm += sizeof(struct ieee80211_tim_ie);
2696 		bo->bo_tim_len = 1;
2697 	}
2698 	bo->bo_tim_trailer = frm;
2699 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2700 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2701 		frm = ieee80211_add_countryie(frm, ic);
2702 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2703 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2704 			frm = ieee80211_add_powerconstraint(frm, vap);
2705 		bo->bo_csa = frm;
2706 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2707 			frm = ieee80211_add_csa(frm, vap);
2708 	} else
2709 		bo->bo_csa = frm;
2710 
2711 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2712 		bo->bo_quiet = frm;
2713 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2714 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2715 			if (vap->iv_quiet)
2716 				frm = ieee80211_add_quiet(frm,vap);
2717 		}
2718 	} else
2719 		bo->bo_quiet = frm;
2720 
2721 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2722 		bo->bo_erp = frm;
2723 		frm = ieee80211_add_erp(frm, ic);
2724 	}
2725 	frm = ieee80211_add_xrates(frm, rs);
2726 	if (vap->iv_flags & IEEE80211_F_WPA2) {
2727 		if (vap->iv_rsn_ie != NULL)
2728 			frm = add_ie(frm, vap->iv_rsn_ie);
2729 		/* XXX else complain */
2730 	}
2731 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2732 		frm = ieee80211_add_htcap(frm, ni);
2733 		bo->bo_htinfo = frm;
2734 		frm = ieee80211_add_htinfo(frm, ni);
2735 	}
2736 	if (vap->iv_flags & IEEE80211_F_WPA1) {
2737 		if (vap->iv_wpa_ie != NULL)
2738 			frm = add_ie(frm, vap->iv_wpa_ie);
2739 		/* XXX else complain */
2740 	}
2741 	if (vap->iv_flags & IEEE80211_F_WME) {
2742 		bo->bo_wme = frm;
2743 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2744 	}
2745 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2746 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2747 		frm = ieee80211_add_htcap_vendor(frm, ni);
2748 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2749 	}
2750 #ifdef IEEE80211_SUPPORT_SUPERG
2751 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
2752 		bo->bo_ath = frm;
2753 		frm = ieee80211_add_athcaps(frm, ni);
2754 	}
2755 #endif
2756 #ifdef IEEE80211_SUPPORT_TDMA
2757 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2758 		bo->bo_tdma = frm;
2759 		frm = ieee80211_add_tdma(frm, vap);
2760 	}
2761 #endif
2762 	if (vap->iv_appie_beacon != NULL) {
2763 		bo->bo_appie = frm;
2764 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
2765 		frm = add_appie(frm, vap->iv_appie_beacon);
2766 	}
2767 #ifdef IEEE80211_SUPPORT_MESH
2768 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2769 		frm = ieee80211_add_meshid(frm, vap);
2770 		bo->bo_meshconf = frm;
2771 		frm = ieee80211_add_meshconf(frm, vap);
2772 	}
2773 #endif
2774 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
2775 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
2776 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2777 }
2778 
2779 /*
2780  * Allocate a beacon frame and fillin the appropriate bits.
2781  */
2782 struct mbuf *
2783 ieee80211_beacon_alloc(struct ieee80211_node *ni,
2784 	struct ieee80211_beacon_offsets *bo)
2785 {
2786 	struct ieee80211vap *vap = ni->ni_vap;
2787 	struct ieee80211com *ic = ni->ni_ic;
2788 	struct ifnet *ifp = vap->iv_ifp;
2789 	struct ieee80211_frame *wh;
2790 	struct mbuf *m;
2791 	int pktlen;
2792 	uint8_t *frm;
2793 
2794 	/*
2795 	 * beacon frame format
2796 	 *	[8] time stamp
2797 	 *	[2] beacon interval
2798 	 *	[2] cabability information
2799 	 *	[tlv] ssid
2800 	 *	[tlv] supported rates
2801 	 *	[3] parameter set (DS)
2802 	 *	[8] CF parameter set (optional)
2803 	 *	[tlv] parameter set (IBSS/TIM)
2804 	 *	[tlv] country (optional)
2805 	 *	[3] power control (optional)
2806 	 *	[5] channel switch announcement (CSA) (optional)
2807 	 *	[tlv] extended rate phy (ERP)
2808 	 *	[tlv] extended supported rates
2809 	 *	[tlv] RSN parameters
2810 	 *	[tlv] HT capabilities
2811 	 *	[tlv] HT information
2812 	 *	[tlv] Vendor OUI HT capabilities (optional)
2813 	 *	[tlv] Vendor OUI HT information (optional)
2814 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2815 	 *	[tlv] WPA parameters
2816 	 *	[tlv] WME parameters
2817 	 *	[tlv] TDMA parameters (optional)
2818 	 *	[tlv] Mesh ID (MBSS)
2819 	 *	[tlv] Mesh Conf (MBSS)
2820 	 *	[tlv] application data (optional)
2821 	 * NB: we allocate the max space required for the TIM bitmap.
2822 	 * XXX how big is this?
2823 	 */
2824 	pktlen =   8					/* time stamp */
2825 		 + sizeof(uint16_t)			/* beacon interval */
2826 		 + sizeof(uint16_t)			/* capabilities */
2827 		 + 2 + ni->ni_esslen			/* ssid */
2828 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
2829 	         + 2 + 1				/* DS parameters */
2830 		 + 2 + 6				/* CF parameters */
2831 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
2832 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
2833 		 + 2 + 1				/* power control */
2834 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
2835 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
2836 		 + 2 + 1				/* ERP */
2837 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2838 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
2839 			2*sizeof(struct ieee80211_ie_wpa) : 0)
2840 		 /* XXX conditional? */
2841 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
2842 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
2843 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
2844 			sizeof(struct ieee80211_wme_param) : 0)
2845 #ifdef IEEE80211_SUPPORT_SUPERG
2846 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
2847 #endif
2848 #ifdef IEEE80211_SUPPORT_TDMA
2849 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
2850 			sizeof(struct ieee80211_tdma_param) : 0)
2851 #endif
2852 #ifdef IEEE80211_SUPPORT_MESH
2853 		 + 2 + ni->ni_meshidlen
2854 		 + sizeof(struct ieee80211_meshconf_ie)
2855 #endif
2856 		 + IEEE80211_MAX_APPIE
2857 		 ;
2858 	m = ieee80211_getmgtframe(&frm,
2859 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
2860 	if (m == NULL) {
2861 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
2862 			"%s: cannot get buf; size %u\n", __func__, pktlen);
2863 		vap->iv_stats.is_tx_nobuf++;
2864 		return NULL;
2865 	}
2866 	ieee80211_beacon_construct(m, frm, bo, ni);
2867 
2868 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2869 	KASSERT(m != NULL, ("no space for 802.11 header?"));
2870 	wh = mtod(m, struct ieee80211_frame *);
2871 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
2872 	    IEEE80211_FC0_SUBTYPE_BEACON;
2873 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2874 	*(uint16_t *)wh->i_dur = 0;
2875 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
2876 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
2877 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
2878 	*(uint16_t *)wh->i_seq = 0;
2879 
2880 	return m;
2881 }
2882 
2883 /*
2884  * Update the dynamic parts of a beacon frame based on the current state.
2885  */
2886 int
2887 ieee80211_beacon_update(struct ieee80211_node *ni,
2888 	struct ieee80211_beacon_offsets *bo, struct mbuf *m, int mcast)
2889 {
2890 	struct ieee80211vap *vap = ni->ni_vap;
2891 	struct ieee80211com *ic = ni->ni_ic;
2892 	int len_changed = 0;
2893 	uint16_t capinfo;
2894 	struct ieee80211_frame *wh;
2895 	ieee80211_seq seqno;
2896 
2897 	IEEE80211_LOCK(ic);
2898 	/*
2899 	 * Handle 11h channel change when we've reached the count.
2900 	 * We must recalculate the beacon frame contents to account
2901 	 * for the new channel.  Note we do this only for the first
2902 	 * vap that reaches this point; subsequent vaps just update
2903 	 * their beacon state to reflect the recalculated channel.
2904 	 */
2905 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
2906 	    vap->iv_csa_count == ic->ic_csa_count) {
2907 		vap->iv_csa_count = 0;
2908 		/*
2909 		 * Effect channel change before reconstructing the beacon
2910 		 * frame contents as many places reference ni_chan.
2911 		 */
2912 		if (ic->ic_csa_newchan != NULL)
2913 			ieee80211_csa_completeswitch(ic);
2914 		/*
2915 		 * NB: ieee80211_beacon_construct clears all pending
2916 		 * updates in bo_flags so we don't need to explicitly
2917 		 * clear IEEE80211_BEACON_CSA.
2918 		 */
2919 		ieee80211_beacon_construct(m,
2920 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), bo, ni);
2921 
2922 		/* XXX do WME aggressive mode processing? */
2923 		IEEE80211_UNLOCK(ic);
2924 		return 1;		/* just assume length changed */
2925 	}
2926 
2927 	wh = mtod(m, struct ieee80211_frame *);
2928 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
2929 	*(uint16_t *)&wh->i_seq[0] =
2930 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
2931 	M_SEQNO_SET(m, seqno);
2932 
2933 	/* XXX faster to recalculate entirely or just changes? */
2934 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2935 	*bo->bo_caps = htole16(capinfo);
2936 
2937 	if (vap->iv_flags & IEEE80211_F_WME) {
2938 		struct ieee80211_wme_state *wme = &ic->ic_wme;
2939 
2940 		/*
2941 		 * Check for agressive mode change.  When there is
2942 		 * significant high priority traffic in the BSS
2943 		 * throttle back BE traffic by using conservative
2944 		 * parameters.  Otherwise BE uses agressive params
2945 		 * to optimize performance of legacy/non-QoS traffic.
2946 		 */
2947 		if (wme->wme_flags & WME_F_AGGRMODE) {
2948 			if (wme->wme_hipri_traffic >
2949 			    wme->wme_hipri_switch_thresh) {
2950 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2951 				    "%s: traffic %u, disable aggressive mode\n",
2952 				    __func__, wme->wme_hipri_traffic);
2953 				wme->wme_flags &= ~WME_F_AGGRMODE;
2954 				ieee80211_wme_updateparams_locked(vap);
2955 				wme->wme_hipri_traffic =
2956 					wme->wme_hipri_switch_hysteresis;
2957 			} else
2958 				wme->wme_hipri_traffic = 0;
2959 		} else {
2960 			if (wme->wme_hipri_traffic <=
2961 			    wme->wme_hipri_switch_thresh) {
2962 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
2963 				    "%s: traffic %u, enable aggressive mode\n",
2964 				    __func__, wme->wme_hipri_traffic);
2965 				wme->wme_flags |= WME_F_AGGRMODE;
2966 				ieee80211_wme_updateparams_locked(vap);
2967 				wme->wme_hipri_traffic = 0;
2968 			} else
2969 				wme->wme_hipri_traffic =
2970 					wme->wme_hipri_switch_hysteresis;
2971 		}
2972 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
2973 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
2974 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
2975 		}
2976 	}
2977 
2978 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
2979 		ieee80211_ht_update_beacon(vap, bo);
2980 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
2981 	}
2982 #ifdef IEEE80211_SUPPORT_TDMA
2983 	if (vap->iv_caps & IEEE80211_C_TDMA) {
2984 		/*
2985 		 * NB: the beacon is potentially updated every TBTT.
2986 		 */
2987 		ieee80211_tdma_update_beacon(vap, bo);
2988 	}
2989 #endif
2990 #ifdef IEEE80211_SUPPORT_MESH
2991 	if (vap->iv_opmode == IEEE80211_M_MBSS)
2992 		ieee80211_mesh_update_beacon(vap, bo);
2993 #endif
2994 
2995 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2996 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
2997 		struct ieee80211_tim_ie *tie =
2998 			(struct ieee80211_tim_ie *) bo->bo_tim;
2999 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3000 			u_int timlen, timoff, i;
3001 			/*
3002 			 * ATIM/DTIM needs updating.  If it fits in the
3003 			 * current space allocated then just copy in the
3004 			 * new bits.  Otherwise we need to move any trailing
3005 			 * data to make room.  Note that we know there is
3006 			 * contiguous space because ieee80211_beacon_allocate
3007 			 * insures there is space in the mbuf to write a
3008 			 * maximal-size virtual bitmap (based on iv_max_aid).
3009 			 */
3010 			/*
3011 			 * Calculate the bitmap size and offset, copy any
3012 			 * trailer out of the way, and then copy in the
3013 			 * new bitmap and update the information element.
3014 			 * Note that the tim bitmap must contain at least
3015 			 * one byte and any offset must be even.
3016 			 */
3017 			if (vap->iv_ps_pending != 0) {
3018 				timoff = 128;		/* impossibly large */
3019 				for (i = 0; i < vap->iv_tim_len; i++)
3020 					if (vap->iv_tim_bitmap[i]) {
3021 						timoff = i &~ 1;
3022 						break;
3023 					}
3024 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3025 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3026 					if (vap->iv_tim_bitmap[i])
3027 						break;
3028 				timlen = 1 + (i - timoff);
3029 			} else {
3030 				timoff = 0;
3031 				timlen = 1;
3032 			}
3033 			if (timlen != bo->bo_tim_len) {
3034 				/* copy up/down trailer */
3035 				int adjust = tie->tim_bitmap+timlen
3036 					   - bo->bo_tim_trailer;
3037 				ovbcopy(bo->bo_tim_trailer,
3038 				    bo->bo_tim_trailer+adjust,
3039 				    bo->bo_tim_trailer_len);
3040 				bo->bo_tim_trailer += adjust;
3041 				bo->bo_erp += adjust;
3042 				bo->bo_htinfo += adjust;
3043 #ifdef IEEE80211_SUPPORT_SUPERG
3044 				bo->bo_ath += adjust;
3045 #endif
3046 #ifdef IEEE80211_SUPPORT_TDMA
3047 				bo->bo_tdma += adjust;
3048 #endif
3049 #ifdef IEEE80211_SUPPORT_MESH
3050 				bo->bo_meshconf += adjust;
3051 #endif
3052 				bo->bo_appie += adjust;
3053 				bo->bo_wme += adjust;
3054 				bo->bo_csa += adjust;
3055 				bo->bo_quiet += adjust;
3056 				bo->bo_tim_len = timlen;
3057 
3058 				/* update information element */
3059 				tie->tim_len = 3 + timlen;
3060 				tie->tim_bitctl = timoff;
3061 				len_changed = 1;
3062 			}
3063 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3064 				bo->bo_tim_len);
3065 
3066 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3067 
3068 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3069 				"%s: TIM updated, pending %u, off %u, len %u\n",
3070 				__func__, vap->iv_ps_pending, timoff, timlen);
3071 		}
3072 		/* count down DTIM period */
3073 		if (tie->tim_count == 0)
3074 			tie->tim_count = tie->tim_period - 1;
3075 		else
3076 			tie->tim_count--;
3077 		/* update state for buffered multicast frames on DTIM */
3078 		if (mcast && tie->tim_count == 0)
3079 			tie->tim_bitctl |= 1;
3080 		else
3081 			tie->tim_bitctl &= ~1;
3082 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3083 			struct ieee80211_csa_ie *csa =
3084 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3085 
3086 			/*
3087 			 * Insert or update CSA ie.  If we're just starting
3088 			 * to count down to the channel switch then we need
3089 			 * to insert the CSA ie.  Otherwise we just need to
3090 			 * drop the count.  The actual change happens above
3091 			 * when the vap's count reaches the target count.
3092 			 */
3093 			if (vap->iv_csa_count == 0) {
3094 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3095 				bo->bo_erp += sizeof(*csa);
3096 				bo->bo_htinfo += sizeof(*csa);
3097 				bo->bo_wme += sizeof(*csa);
3098 #ifdef IEEE80211_SUPPORT_SUPERG
3099 				bo->bo_ath += sizeof(*csa);
3100 #endif
3101 #ifdef IEEE80211_SUPPORT_TDMA
3102 				bo->bo_tdma += sizeof(*csa);
3103 #endif
3104 #ifdef IEEE80211_SUPPORT_MESH
3105 				bo->bo_meshconf += sizeof(*csa);
3106 #endif
3107 				bo->bo_appie += sizeof(*csa);
3108 				bo->bo_csa_trailer_len += sizeof(*csa);
3109 				bo->bo_quiet += sizeof(*csa);
3110 				bo->bo_tim_trailer_len += sizeof(*csa);
3111 				m->m_len += sizeof(*csa);
3112 				m->m_pkthdr.len += sizeof(*csa);
3113 
3114 				ieee80211_add_csa(bo->bo_csa, vap);
3115 			} else
3116 				csa->csa_count--;
3117 			vap->iv_csa_count++;
3118 			/* NB: don't clear IEEE80211_BEACON_CSA */
3119 		}
3120 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3121 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3122 			if (vap->iv_quiet)
3123 				ieee80211_add_quiet(bo->bo_quiet, vap);
3124 		}
3125 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3126 			/*
3127 			 * ERP element needs updating.
3128 			 */
3129 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3130 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3131 		}
3132 #ifdef IEEE80211_SUPPORT_SUPERG
3133 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3134 			ieee80211_add_athcaps(bo->bo_ath, ni);
3135 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3136 		}
3137 #endif
3138 	}
3139 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3140 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3141 		int aielen;
3142 		uint8_t *frm;
3143 
3144 		aielen = 0;
3145 		if (aie != NULL)
3146 			aielen += aie->ie_len;
3147 		if (aielen != bo->bo_appie_len) {
3148 			/* copy up/down trailer */
3149 			int adjust = aielen - bo->bo_appie_len;
3150 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3151 				bo->bo_tim_trailer_len);
3152 			bo->bo_tim_trailer += adjust;
3153 			bo->bo_appie += adjust;
3154 			bo->bo_appie_len = aielen;
3155 
3156 			len_changed = 1;
3157 		}
3158 		frm = bo->bo_appie;
3159 		if (aie != NULL)
3160 			frm  = add_appie(frm, aie);
3161 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3162 	}
3163 	IEEE80211_UNLOCK(ic);
3164 
3165 	return len_changed;
3166 }
3167