xref: /freebsd/sys/net80211/ieee80211_output.c (revision bdafb02fcb88389fd1ab684cfe734cb429d35618)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_vlan_var.h>
52 
53 #include <net80211/ieee80211_var.h>
54 #include <net80211/ieee80211_regdomain.h>
55 #ifdef IEEE80211_SUPPORT_SUPERG
56 #include <net80211/ieee80211_superg.h>
57 #endif
58 #ifdef IEEE80211_SUPPORT_TDMA
59 #include <net80211/ieee80211_tdma.h>
60 #endif
61 #include <net80211/ieee80211_wds.h>
62 #include <net80211/ieee80211_mesh.h>
63 #include <net80211/ieee80211_vht.h>
64 
65 #if defined(INET) || defined(INET6)
66 #include <netinet/in.h>
67 #endif
68 
69 #ifdef INET
70 #include <netinet/if_ether.h>
71 #include <netinet/in_systm.h>
72 #include <netinet/ip.h>
73 #endif
74 #ifdef INET6
75 #include <netinet/ip6.h>
76 #endif
77 
78 #include <security/mac/mac_framework.h>
79 
80 #define	ETHER_HEADER_COPY(dst, src) \
81 	memcpy(dst, src, sizeof(struct ether_header))
82 
83 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
84 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
85 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
86 
87 #ifdef IEEE80211_DEBUG
88 /*
89  * Decide if an outbound management frame should be
90  * printed when debugging is enabled.  This filters some
91  * of the less interesting frames that come frequently
92  * (e.g. beacons).
93  */
94 static __inline int
95 doprint(struct ieee80211vap *vap, int subtype)
96 {
97 	switch (subtype) {
98 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
99 		return (vap->iv_opmode == IEEE80211_M_IBSS);
100 	}
101 	return 1;
102 }
103 #endif
104 
105 /*
106  * Transmit a frame to the given destination on the given VAP.
107  *
108  * It's up to the caller to figure out the details of who this
109  * is going to and resolving the node.
110  *
111  * This routine takes care of queuing it for power save,
112  * A-MPDU state stuff, fast-frames state stuff, encapsulation
113  * if required, then passing it up to the driver layer.
114  *
115  * This routine (for now) consumes the mbuf and frees the node
116  * reference; it ideally will return a TX status which reflects
117  * whether the mbuf was consumed or not, so the caller can
118  * free the mbuf (if appropriate) and the node reference (again,
119  * if appropriate.)
120  */
121 int
122 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
123     struct ieee80211_node *ni)
124 {
125 	struct ieee80211com *ic = vap->iv_ic;
126 	struct ifnet *ifp = vap->iv_ifp;
127 	int mcast;
128 
129 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
130 	    (m->m_flags & M_PWR_SAV) == 0) {
131 		/*
132 		 * Station in power save mode; pass the frame
133 		 * to the 802.11 layer and continue.  We'll get
134 		 * the frame back when the time is right.
135 		 * XXX lose WDS vap linkage?
136 		 */
137 		if (ieee80211_pwrsave(ni, m) != 0)
138 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
139 		ieee80211_free_node(ni);
140 
141 		/*
142 		 * We queued it fine, so tell the upper layer
143 		 * that we consumed it.
144 		 */
145 		return (0);
146 	}
147 	/* calculate priority so drivers can find the tx queue */
148 	if (ieee80211_classify(ni, m)) {
149 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
150 		    ni->ni_macaddr, NULL,
151 		    "%s", "classification failure");
152 		vap->iv_stats.is_tx_classify++;
153 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
154 		m_freem(m);
155 		ieee80211_free_node(ni);
156 
157 		/* XXX better status? */
158 		return (0);
159 	}
160 	/*
161 	 * Stash the node pointer.  Note that we do this after
162 	 * any call to ieee80211_dwds_mcast because that code
163 	 * uses any existing value for rcvif to identify the
164 	 * interface it (might have been) received on.
165 	 */
166 	m->m_pkthdr.rcvif = (void *)ni;
167 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
168 
169 	BPF_MTAP(ifp, m);		/* 802.3 tx */
170 
171 	/*
172 	 * Check if A-MPDU tx aggregation is setup or if we
173 	 * should try to enable it.  The sta must be associated
174 	 * with HT and A-MPDU enabled for use.  When the policy
175 	 * routine decides we should enable A-MPDU we issue an
176 	 * ADDBA request and wait for a reply.  The frame being
177 	 * encapsulated will go out w/o using A-MPDU, or possibly
178 	 * it might be collected by the driver and held/retransmit.
179 	 * The default ic_ampdu_enable routine handles staggering
180 	 * ADDBA requests in case the receiver NAK's us or we are
181 	 * otherwise unable to establish a BA stream.
182 	 *
183 	 * Don't treat group-addressed frames as candidates for aggregation;
184 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
185 	 * frames will always have sequence numbers allocated from the NON_QOS
186 	 * TID.
187 	 */
188 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
189 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX)) {
190 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
191 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
192 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
193 
194 			ieee80211_txampdu_count_packet(tap);
195 			if (IEEE80211_AMPDU_RUNNING(tap)) {
196 				/*
197 				 * Operational, mark frame for aggregation.
198 				 *
199 				 * XXX do tx aggregation here
200 				 */
201 				m->m_flags |= M_AMPDU_MPDU;
202 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
203 			    ic->ic_ampdu_enable(ni, tap)) {
204 				/*
205 				 * Not negotiated yet, request service.
206 				 */
207 				ieee80211_ampdu_request(ni, tap);
208 				/* XXX hold frame for reply? */
209 			}
210 		}
211 	}
212 
213 #ifdef IEEE80211_SUPPORT_SUPERG
214 	/*
215 	 * Check for AMSDU/FF; queue for aggregation
216 	 *
217 	 * Note: we don't bother trying to do fast frames or
218 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
219 	 * likely could do it for FF (because it's a magic
220 	 * atheros tunnel LLC type) but I don't think we're going
221 	 * to really need to.  For A-MSDU we'd have to set the
222 	 * A-MSDU QoS bit in the wifi header, so we just plain
223 	 * can't do it.
224 	 *
225 	 * Strictly speaking, we could actually /do/ A-MSDU / FF
226 	 * with A-MPDU together which for certain circumstances
227 	 * is beneficial (eg A-MSDU of TCK ACKs.)  However,
228 	 * I'll ignore that for now so existing behaviour is maintained.
229 	 * Later on it would be good to make "amsdu + ampdu" configurable.
230 	 */
231 	else if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
232 		if ((! mcast) && ieee80211_amsdu_tx_ok(ni)) {
233 			m = ieee80211_amsdu_check(ni, m);
234 			if (m == NULL) {
235 				/* NB: any ni ref held on stageq */
236 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
237 				    "%s: amsdu_check queued frame\n",
238 				    __func__);
239 				return (0);
240 			}
241 		} else if ((! mcast) && IEEE80211_ATH_CAP(vap, ni,
242 		    IEEE80211_NODE_FF)) {
243 			m = ieee80211_ff_check(ni, m);
244 			if (m == NULL) {
245 				/* NB: any ni ref held on stageq */
246 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
247 				    "%s: ff_check queued frame\n",
248 				    __func__);
249 				return (0);
250 			}
251 		}
252 	}
253 #endif /* IEEE80211_SUPPORT_SUPERG */
254 
255 	/*
256 	 * Grab the TX lock - serialise the TX process from this
257 	 * point (where TX state is being checked/modified)
258 	 * through to driver queue.
259 	 */
260 	IEEE80211_TX_LOCK(ic);
261 
262 	/*
263 	 * XXX make the encap and transmit code a separate function
264 	 * so things like the FF (and later A-MSDU) path can just call
265 	 * it for flushed frames.
266 	 */
267 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
268 		/*
269 		 * Encapsulate the packet in prep for transmission.
270 		 */
271 		m = ieee80211_encap(vap, ni, m);
272 		if (m == NULL) {
273 			/* NB: stat+msg handled in ieee80211_encap */
274 			IEEE80211_TX_UNLOCK(ic);
275 			ieee80211_free_node(ni);
276 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
277 			return (ENOBUFS);
278 		}
279 	}
280 	(void) ieee80211_parent_xmitpkt(ic, m);
281 
282 	/*
283 	 * Unlock at this point - no need to hold it across
284 	 * ieee80211_free_node() (ie, the comlock)
285 	 */
286 	IEEE80211_TX_UNLOCK(ic);
287 	ic->ic_lastdata = ticks;
288 
289 	return (0);
290 }
291 
292 
293 
294 /*
295  * Send the given mbuf through the given vap.
296  *
297  * This consumes the mbuf regardless of whether the transmit
298  * was successful or not.
299  *
300  * This does none of the initial checks that ieee80211_start()
301  * does (eg CAC timeout, interface wakeup) - the caller must
302  * do this first.
303  */
304 static int
305 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
306 {
307 #define	IS_DWDS(vap) \
308 	(vap->iv_opmode == IEEE80211_M_WDS && \
309 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
310 	struct ieee80211com *ic = vap->iv_ic;
311 	struct ifnet *ifp = vap->iv_ifp;
312 	struct ieee80211_node *ni;
313 	struct ether_header *eh;
314 
315 	/*
316 	 * Cancel any background scan.
317 	 */
318 	if (ic->ic_flags & IEEE80211_F_SCAN)
319 		ieee80211_cancel_anyscan(vap);
320 	/*
321 	 * Find the node for the destination so we can do
322 	 * things like power save and fast frames aggregation.
323 	 *
324 	 * NB: past this point various code assumes the first
325 	 *     mbuf has the 802.3 header present (and contiguous).
326 	 */
327 	ni = NULL;
328 	if (m->m_len < sizeof(struct ether_header) &&
329 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
330 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
331 		    "discard frame, %s\n", "m_pullup failed");
332 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
333 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
334 		return (ENOBUFS);
335 	}
336 	eh = mtod(m, struct ether_header *);
337 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
338 		if (IS_DWDS(vap)) {
339 			/*
340 			 * Only unicast frames from the above go out
341 			 * DWDS vaps; multicast frames are handled by
342 			 * dispatching the frame as it comes through
343 			 * the AP vap (see below).
344 			 */
345 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
346 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
347 			vap->iv_stats.is_dwds_mcast++;
348 			m_freem(m);
349 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
350 			/* XXX better status? */
351 			return (ENOBUFS);
352 		}
353 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
354 			/*
355 			 * Spam DWDS vap's w/ multicast traffic.
356 			 */
357 			/* XXX only if dwds in use? */
358 			ieee80211_dwds_mcast(vap, m);
359 		}
360 	}
361 #ifdef IEEE80211_SUPPORT_MESH
362 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
363 #endif
364 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
365 		if (ni == NULL) {
366 			/* NB: ieee80211_find_txnode does stat+msg */
367 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
368 			m_freem(m);
369 			/* XXX better status? */
370 			return (ENOBUFS);
371 		}
372 		if (ni->ni_associd == 0 &&
373 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
374 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
375 			    eh->ether_dhost, NULL,
376 			    "sta not associated (type 0x%04x)",
377 			    htons(eh->ether_type));
378 			vap->iv_stats.is_tx_notassoc++;
379 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
380 			m_freem(m);
381 			ieee80211_free_node(ni);
382 			/* XXX better status? */
383 			return (ENOBUFS);
384 		}
385 #ifdef IEEE80211_SUPPORT_MESH
386 	} else {
387 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
388 			/*
389 			 * Proxy station only if configured.
390 			 */
391 			if (!ieee80211_mesh_isproxyena(vap)) {
392 				IEEE80211_DISCARD_MAC(vap,
393 				    IEEE80211_MSG_OUTPUT |
394 				    IEEE80211_MSG_MESH,
395 				    eh->ether_dhost, NULL,
396 				    "%s", "proxy not enabled");
397 				vap->iv_stats.is_mesh_notproxy++;
398 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
399 				m_freem(m);
400 				/* XXX better status? */
401 				return (ENOBUFS);
402 			}
403 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
404 			    "forward frame from DS SA(%6D), DA(%6D)\n",
405 			    eh->ether_shost, ":",
406 			    eh->ether_dhost, ":");
407 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
408 		}
409 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
410 		if (ni == NULL) {
411 			/*
412 			 * NB: ieee80211_mesh_discover holds/disposes
413 			 * frame (e.g. queueing on path discovery).
414 			 */
415 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
416 			/* XXX better status? */
417 			return (ENOBUFS);
418 		}
419 	}
420 #endif
421 
422 	/*
423 	 * We've resolved the sender, so attempt to transmit it.
424 	 */
425 
426 	if (vap->iv_state == IEEE80211_S_SLEEP) {
427 		/*
428 		 * In power save; queue frame and then  wakeup device
429 		 * for transmit.
430 		 */
431 		ic->ic_lastdata = ticks;
432 		if (ieee80211_pwrsave(ni, m) != 0)
433 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
434 		ieee80211_free_node(ni);
435 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
436 		return (0);
437 	}
438 
439 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
440 		return (ENOBUFS);
441 	return (0);
442 #undef	IS_DWDS
443 }
444 
445 /*
446  * Start method for vap's.  All packets from the stack come
447  * through here.  We handle common processing of the packets
448  * before dispatching them to the underlying device.
449  *
450  * if_transmit() requires that the mbuf be consumed by this call
451  * regardless of the return condition.
452  */
453 int
454 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
455 {
456 	struct ieee80211vap *vap = ifp->if_softc;
457 	struct ieee80211com *ic = vap->iv_ic;
458 
459 	/*
460 	 * No data frames go out unless we're running.
461 	 * Note in particular this covers CAC and CSA
462 	 * states (though maybe we should check muting
463 	 * for CSA).
464 	 */
465 	if (vap->iv_state != IEEE80211_S_RUN &&
466 	    vap->iv_state != IEEE80211_S_SLEEP) {
467 		IEEE80211_LOCK(ic);
468 		/* re-check under the com lock to avoid races */
469 		if (vap->iv_state != IEEE80211_S_RUN &&
470 		    vap->iv_state != IEEE80211_S_SLEEP) {
471 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
472 			    "%s: ignore queue, in %s state\n",
473 			    __func__, ieee80211_state_name[vap->iv_state]);
474 			vap->iv_stats.is_tx_badstate++;
475 			IEEE80211_UNLOCK(ic);
476 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
477 			m_freem(m);
478 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
479 			return (ENETDOWN);
480 		}
481 		IEEE80211_UNLOCK(ic);
482 	}
483 
484 	/*
485 	 * Sanitize mbuf flags for net80211 use.  We cannot
486 	 * clear M_PWR_SAV or M_MORE_DATA because these may
487 	 * be set for frames that are re-submitted from the
488 	 * power save queue.
489 	 *
490 	 * NB: This must be done before ieee80211_classify as
491 	 *     it marks EAPOL in frames with M_EAPOL.
492 	 */
493 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
494 
495 	/*
496 	 * Bump to the packet transmission path.
497 	 * The mbuf will be consumed here.
498 	 */
499 	return (ieee80211_start_pkt(vap, m));
500 }
501 
502 void
503 ieee80211_vap_qflush(struct ifnet *ifp)
504 {
505 
506 	/* Empty for now */
507 }
508 
509 /*
510  * 802.11 raw output routine.
511  *
512  * XXX TODO: this (and other send routines) should correctly
513  * XXX keep the pwr mgmt bit set if it decides to call into the
514  * XXX driver to send a frame whilst the state is SLEEP.
515  *
516  * Otherwise the peer may decide that we're awake and flood us
517  * with traffic we are still too asleep to receive!
518  */
519 int
520 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
521     struct mbuf *m, const struct ieee80211_bpf_params *params)
522 {
523 	struct ieee80211com *ic = vap->iv_ic;
524 	int error;
525 
526 	/*
527 	 * Set node - the caller has taken a reference, so ensure
528 	 * that the mbuf has the same node value that
529 	 * it would if it were going via the normal path.
530 	 */
531 	m->m_pkthdr.rcvif = (void *)ni;
532 
533 	/*
534 	 * Attempt to add bpf transmit parameters.
535 	 *
536 	 * For now it's ok to fail; the raw_xmit api still takes
537 	 * them as an option.
538 	 *
539 	 * Later on when ic_raw_xmit() has params removed,
540 	 * they'll have to be added - so fail the transmit if
541 	 * they can't be.
542 	 */
543 	if (params)
544 		(void) ieee80211_add_xmit_params(m, params);
545 
546 	error = ic->ic_raw_xmit(ni, m, params);
547 	if (error) {
548 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
549 		ieee80211_free_node(ni);
550 	}
551 	return (error);
552 }
553 
554 static int
555 ieee80211_validate_frame(struct mbuf *m,
556     const struct ieee80211_bpf_params *params)
557 {
558 	struct ieee80211_frame *wh;
559 	int type;
560 
561 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
562 		return (EINVAL);
563 
564 	wh = mtod(m, struct ieee80211_frame *);
565 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
566 	    IEEE80211_FC0_VERSION_0)
567 		return (EINVAL);
568 
569 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
570 	if (type != IEEE80211_FC0_TYPE_DATA) {
571 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
572 		    IEEE80211_FC1_DIR_NODS)
573 			return (EINVAL);
574 
575 		if (type != IEEE80211_FC0_TYPE_MGT &&
576 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
577 			return (EINVAL);
578 
579 		/* XXX skip other field checks? */
580 	}
581 
582 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
583 	    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) != 0) {
584 		int subtype;
585 
586 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
587 
588 		/*
589 		 * See IEEE Std 802.11-2012,
590 		 * 8.2.4.1.9 'Protected Frame field'
591 		 */
592 		/* XXX no support for robust management frames yet. */
593 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
594 		    (type == IEEE80211_FC0_TYPE_MGT &&
595 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
596 			return (EINVAL);
597 
598 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
599 	}
600 
601 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
602 		return (EINVAL);
603 
604 	return (0);
605 }
606 
607 /*
608  * 802.11 output routine. This is (currently) used only to
609  * connect bpf write calls to the 802.11 layer for injecting
610  * raw 802.11 frames.
611  */
612 int
613 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
614 	const struct sockaddr *dst, struct route *ro)
615 {
616 #define senderr(e) do { error = (e); goto bad;} while (0)
617 	const struct ieee80211_bpf_params *params = NULL;
618 	struct ieee80211_node *ni = NULL;
619 	struct ieee80211vap *vap;
620 	struct ieee80211_frame *wh;
621 	struct ieee80211com *ic = NULL;
622 	int error;
623 	int ret;
624 
625 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
626 		/*
627 		 * Short-circuit requests if the vap is marked OACTIVE
628 		 * as this can happen because a packet came down through
629 		 * ieee80211_start before the vap entered RUN state in
630 		 * which case it's ok to just drop the frame.  This
631 		 * should not be necessary but callers of if_output don't
632 		 * check OACTIVE.
633 		 */
634 		senderr(ENETDOWN);
635 	}
636 	vap = ifp->if_softc;
637 	ic = vap->iv_ic;
638 	/*
639 	 * Hand to the 802.3 code if not tagged as
640 	 * a raw 802.11 frame.
641 	 */
642 	if (dst->sa_family != AF_IEEE80211)
643 		return vap->iv_output(ifp, m, dst, ro);
644 #ifdef MAC
645 	error = mac_ifnet_check_transmit(ifp, m);
646 	if (error)
647 		senderr(error);
648 #endif
649 	if (ifp->if_flags & IFF_MONITOR)
650 		senderr(ENETDOWN);
651 	if (!IFNET_IS_UP_RUNNING(ifp))
652 		senderr(ENETDOWN);
653 	if (vap->iv_state == IEEE80211_S_CAC) {
654 		IEEE80211_DPRINTF(vap,
655 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
656 		    "block %s frame in CAC state\n", "raw data");
657 		vap->iv_stats.is_tx_badstate++;
658 		senderr(EIO);		/* XXX */
659 	} else if (vap->iv_state == IEEE80211_S_SCAN)
660 		senderr(EIO);
661 	/* XXX bypass bridge, pfil, carp, etc. */
662 
663 	/*
664 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
665 	 * present by setting the sa_len field of the sockaddr (yes,
666 	 * this is a hack).
667 	 * NB: we assume sa_data is suitably aligned to cast.
668 	 */
669 	if (dst->sa_len != 0)
670 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
671 
672 	error = ieee80211_validate_frame(m, params);
673 	if (error != 0)
674 		senderr(error);
675 
676 	wh = mtod(m, struct ieee80211_frame *);
677 
678 	/* locate destination node */
679 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
680 	case IEEE80211_FC1_DIR_NODS:
681 	case IEEE80211_FC1_DIR_FROMDS:
682 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
683 		break;
684 	case IEEE80211_FC1_DIR_TODS:
685 	case IEEE80211_FC1_DIR_DSTODS:
686 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
687 		break;
688 	default:
689 		senderr(EDOOFUS);
690 	}
691 	if (ni == NULL) {
692 		/*
693 		 * Permit packets w/ bpf params through regardless
694 		 * (see below about sa_len).
695 		 */
696 		if (dst->sa_len == 0)
697 			senderr(EHOSTUNREACH);
698 		ni = ieee80211_ref_node(vap->iv_bss);
699 	}
700 
701 	/*
702 	 * Sanitize mbuf for net80211 flags leaked from above.
703 	 *
704 	 * NB: This must be done before ieee80211_classify as
705 	 *     it marks EAPOL in frames with M_EAPOL.
706 	 */
707 	m->m_flags &= ~M_80211_TX;
708 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
709 
710 	if (IEEE80211_IS_DATA(wh)) {
711 		/* calculate priority so drivers can find the tx queue */
712 		if (ieee80211_classify(ni, m))
713 			senderr(EIO);		/* XXX */
714 
715 		/* NB: ieee80211_encap does not include 802.11 header */
716 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
717 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
718 	} else
719 		M_WME_SETAC(m, WME_AC_BE);
720 
721 	IEEE80211_NODE_STAT(ni, tx_data);
722 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
723 		IEEE80211_NODE_STAT(ni, tx_mcast);
724 		m->m_flags |= M_MCAST;
725 	} else
726 		IEEE80211_NODE_STAT(ni, tx_ucast);
727 
728 	IEEE80211_TX_LOCK(ic);
729 	ret = ieee80211_raw_output(vap, ni, m, params);
730 	IEEE80211_TX_UNLOCK(ic);
731 	return (ret);
732 bad:
733 	if (m != NULL)
734 		m_freem(m);
735 	if (ni != NULL)
736 		ieee80211_free_node(ni);
737 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
738 	return error;
739 #undef senderr
740 }
741 
742 /*
743  * Set the direction field and address fields of an outgoing
744  * frame.  Note this should be called early on in constructing
745  * a frame as it sets i_fc[1]; other bits can then be or'd in.
746  */
747 void
748 ieee80211_send_setup(
749 	struct ieee80211_node *ni,
750 	struct mbuf *m,
751 	int type, int tid,
752 	const uint8_t sa[IEEE80211_ADDR_LEN],
753 	const uint8_t da[IEEE80211_ADDR_LEN],
754 	const uint8_t bssid[IEEE80211_ADDR_LEN])
755 {
756 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
757 	struct ieee80211vap *vap = ni->ni_vap;
758 	struct ieee80211_tx_ampdu *tap;
759 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
760 	ieee80211_seq seqno;
761 
762 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
763 
764 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
765 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
766 		switch (vap->iv_opmode) {
767 		case IEEE80211_M_STA:
768 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
769 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
770 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
771 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
772 			break;
773 		case IEEE80211_M_IBSS:
774 		case IEEE80211_M_AHDEMO:
775 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
776 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
777 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
778 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
779 			break;
780 		case IEEE80211_M_HOSTAP:
781 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
782 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
783 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
784 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
785 			break;
786 		case IEEE80211_M_WDS:
787 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
788 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
789 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
790 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
791 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
792 			break;
793 		case IEEE80211_M_MBSS:
794 #ifdef IEEE80211_SUPPORT_MESH
795 			if (IEEE80211_IS_MULTICAST(da)) {
796 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
797 				/* XXX next hop */
798 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
799 				IEEE80211_ADDR_COPY(wh->i_addr2,
800 				    vap->iv_myaddr);
801 			} else {
802 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
803 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
804 				IEEE80211_ADDR_COPY(wh->i_addr2,
805 				    vap->iv_myaddr);
806 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
807 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
808 			}
809 #endif
810 			break;
811 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
812 			break;
813 		}
814 	} else {
815 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
816 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
817 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
818 #ifdef IEEE80211_SUPPORT_MESH
819 		if (vap->iv_opmode == IEEE80211_M_MBSS)
820 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
821 		else
822 #endif
823 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
824 	}
825 	*(uint16_t *)&wh->i_dur[0] = 0;
826 
827 	/*
828 	 * XXX TODO: this is what the TX lock is for.
829 	 * Here we're incrementing sequence numbers, and they
830 	 * need to be in lock-step with what the driver is doing
831 	 * both in TX ordering and crypto encap (IV increment.)
832 	 *
833 	 * If the driver does seqno itself, then we can skip
834 	 * assigning sequence numbers here, and we can avoid
835 	 * requiring the TX lock.
836 	 */
837 	tap = &ni->ni_tx_ampdu[tid];
838 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
839 		m->m_flags |= M_AMPDU_MPDU;
840 
841 		/* NB: zero out i_seq field (for s/w encryption etc) */
842 		*(uint16_t *)&wh->i_seq[0] = 0;
843 	} else {
844 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
845 				      type & IEEE80211_FC0_SUBTYPE_MASK))
846 			/*
847 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
848 			 * come out of a different seqno space.
849 			 */
850 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
851 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
852 			} else {
853 				seqno = ni->ni_txseqs[tid]++;
854 			}
855 		else
856 			seqno = 0;
857 
858 		*(uint16_t *)&wh->i_seq[0] =
859 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
860 		M_SEQNO_SET(m, seqno);
861 	}
862 
863 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
864 		m->m_flags |= M_MCAST;
865 #undef WH4
866 }
867 
868 /*
869  * Send a management frame to the specified node.  The node pointer
870  * must have a reference as the pointer will be passed to the driver
871  * and potentially held for a long time.  If the frame is successfully
872  * dispatched to the driver, then it is responsible for freeing the
873  * reference (and potentially free'ing up any associated storage);
874  * otherwise deal with reclaiming any reference (on error).
875  */
876 int
877 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
878 	struct ieee80211_bpf_params *params)
879 {
880 	struct ieee80211vap *vap = ni->ni_vap;
881 	struct ieee80211com *ic = ni->ni_ic;
882 	struct ieee80211_frame *wh;
883 	int ret;
884 
885 	KASSERT(ni != NULL, ("null node"));
886 
887 	if (vap->iv_state == IEEE80211_S_CAC) {
888 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
889 		    ni, "block %s frame in CAC state",
890 			ieee80211_mgt_subtype_name(type));
891 		vap->iv_stats.is_tx_badstate++;
892 		ieee80211_free_node(ni);
893 		m_freem(m);
894 		return EIO;		/* XXX */
895 	}
896 
897 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
898 	if (m == NULL) {
899 		ieee80211_free_node(ni);
900 		return ENOMEM;
901 	}
902 
903 	IEEE80211_TX_LOCK(ic);
904 
905 	wh = mtod(m, struct ieee80211_frame *);
906 	ieee80211_send_setup(ni, m,
907 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
908 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
909 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
910 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
911 		    "encrypting frame (%s)", __func__);
912 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
913 	}
914 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
915 
916 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
917 	M_WME_SETAC(m, params->ibp_pri);
918 
919 #ifdef IEEE80211_DEBUG
920 	/* avoid printing too many frames */
921 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
922 	    ieee80211_msg_dumppkts(vap)) {
923 		printf("[%s] send %s on channel %u\n",
924 		    ether_sprintf(wh->i_addr1),
925 		    ieee80211_mgt_subtype_name(type),
926 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
927 	}
928 #endif
929 	IEEE80211_NODE_STAT(ni, tx_mgmt);
930 
931 	ret = ieee80211_raw_output(vap, ni, m, params);
932 	IEEE80211_TX_UNLOCK(ic);
933 	return (ret);
934 }
935 
936 static void
937 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
938     int status)
939 {
940 	struct ieee80211vap *vap = ni->ni_vap;
941 
942 	wakeup(vap);
943 }
944 
945 /*
946  * Send a null data frame to the specified node.  If the station
947  * is setup for QoS then a QoS Null Data frame is constructed.
948  * If this is a WDS station then a 4-address frame is constructed.
949  *
950  * NB: the caller is assumed to have setup a node reference
951  *     for use; this is necessary to deal with a race condition
952  *     when probing for inactive stations.  Like ieee80211_mgmt_output
953  *     we must cleanup any node reference on error;  however we
954  *     can safely just unref it as we know it will never be the
955  *     last reference to the node.
956  */
957 int
958 ieee80211_send_nulldata(struct ieee80211_node *ni)
959 {
960 	struct ieee80211vap *vap = ni->ni_vap;
961 	struct ieee80211com *ic = ni->ni_ic;
962 	struct mbuf *m;
963 	struct ieee80211_frame *wh;
964 	int hdrlen;
965 	uint8_t *frm;
966 	int ret;
967 
968 	if (vap->iv_state == IEEE80211_S_CAC) {
969 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
970 		    ni, "block %s frame in CAC state", "null data");
971 		ieee80211_unref_node(&ni);
972 		vap->iv_stats.is_tx_badstate++;
973 		return EIO;		/* XXX */
974 	}
975 
976 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
977 		hdrlen = sizeof(struct ieee80211_qosframe);
978 	else
979 		hdrlen = sizeof(struct ieee80211_frame);
980 	/* NB: only WDS vap's get 4-address frames */
981 	if (vap->iv_opmode == IEEE80211_M_WDS)
982 		hdrlen += IEEE80211_ADDR_LEN;
983 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
984 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
985 
986 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
987 	if (m == NULL) {
988 		/* XXX debug msg */
989 		ieee80211_unref_node(&ni);
990 		vap->iv_stats.is_tx_nobuf++;
991 		return ENOMEM;
992 	}
993 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
994 	    ("leading space %zd", M_LEADINGSPACE(m)));
995 	M_PREPEND(m, hdrlen, M_NOWAIT);
996 	if (m == NULL) {
997 		/* NB: cannot happen */
998 		ieee80211_free_node(ni);
999 		return ENOMEM;
1000 	}
1001 
1002 	IEEE80211_TX_LOCK(ic);
1003 
1004 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1005 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1006 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1007 		uint8_t *qos;
1008 
1009 		ieee80211_send_setup(ni, m,
1010 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1011 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1012 
1013 		if (vap->iv_opmode == IEEE80211_M_WDS)
1014 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1015 		else
1016 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1017 		qos[0] = tid & IEEE80211_QOS_TID;
1018 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1019 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1020 		qos[1] = 0;
1021 	} else {
1022 		ieee80211_send_setup(ni, m,
1023 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1024 		    IEEE80211_NONQOS_TID,
1025 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1026 	}
1027 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1028 		/* NB: power management bit is never sent by an AP */
1029 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1030 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1031 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1032 	}
1033 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1034 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1035 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1036 		    NULL);
1037 	}
1038 	m->m_len = m->m_pkthdr.len = hdrlen;
1039 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1040 
1041 	M_WME_SETAC(m, WME_AC_BE);
1042 
1043 	IEEE80211_NODE_STAT(ni, tx_data);
1044 
1045 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1046 	    "send %snull data frame on channel %u, pwr mgt %s",
1047 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1048 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1049 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1050 
1051 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1052 	IEEE80211_TX_UNLOCK(ic);
1053 	return (ret);
1054 }
1055 
1056 /*
1057  * Assign priority to a frame based on any vlan tag assigned
1058  * to the station and/or any Diffserv setting in an IP header.
1059  * Finally, if an ACM policy is setup (in station mode) it's
1060  * applied.
1061  */
1062 int
1063 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1064 {
1065 	const struct ether_header *eh = NULL;
1066 	uint16_t ether_type;
1067 	int v_wme_ac, d_wme_ac, ac;
1068 
1069 	if (__predict_false(m->m_flags & M_ENCAP)) {
1070 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1071 		struct llc *llc;
1072 		int hdrlen, subtype;
1073 
1074 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1075 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1076 			ac = WME_AC_BE;
1077 			goto done;
1078 		}
1079 
1080 		hdrlen = ieee80211_hdrsize(wh);
1081 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1082 			return 1;
1083 
1084 		llc = (struct llc *)mtodo(m, hdrlen);
1085 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1086 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1087 		    llc->llc_control != LLC_UI ||
1088 		    llc->llc_snap.org_code[0] != 0 ||
1089 		    llc->llc_snap.org_code[1] != 0 ||
1090 		    llc->llc_snap.org_code[2] != 0)
1091 			return 1;
1092 
1093 		ether_type = llc->llc_snap.ether_type;
1094 	} else {
1095 		eh = mtod(m, struct ether_header *);
1096 		ether_type = eh->ether_type;
1097 	}
1098 
1099 	/*
1100 	 * Always promote PAE/EAPOL frames to high priority.
1101 	 */
1102 	if (ether_type == htons(ETHERTYPE_PAE)) {
1103 		/* NB: mark so others don't need to check header */
1104 		m->m_flags |= M_EAPOL;
1105 		ac = WME_AC_VO;
1106 		goto done;
1107 	}
1108 	/*
1109 	 * Non-qos traffic goes to BE.
1110 	 */
1111 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1112 		ac = WME_AC_BE;
1113 		goto done;
1114 	}
1115 
1116 	/*
1117 	 * If node has a vlan tag then all traffic
1118 	 * to it must have a matching tag.
1119 	 */
1120 	v_wme_ac = 0;
1121 	if (ni->ni_vlan != 0) {
1122 		 if ((m->m_flags & M_VLANTAG) == 0) {
1123 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1124 			return 1;
1125 		}
1126 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1127 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1128 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1129 			return 1;
1130 		}
1131 		/* map vlan priority to AC */
1132 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1133 	}
1134 
1135 	/* XXX m_copydata may be too slow for fast path */
1136 #ifdef INET
1137 	if (eh && eh->ether_type == htons(ETHERTYPE_IP)) {
1138 		uint8_t tos;
1139 		/*
1140 		 * IP frame, map the DSCP bits from the TOS field.
1141 		 */
1142 		/* NB: ip header may not be in first mbuf */
1143 		m_copydata(m, sizeof(struct ether_header) +
1144 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1145 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1146 		d_wme_ac = TID_TO_WME_AC(tos);
1147 	} else {
1148 #endif /* INET */
1149 #ifdef INET6
1150 	if (eh && eh->ether_type == htons(ETHERTYPE_IPV6)) {
1151 		uint32_t flow;
1152 		uint8_t tos;
1153 		/*
1154 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1155 		 */
1156 		m_copydata(m, sizeof(struct ether_header) +
1157 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1158 		    (caddr_t) &flow);
1159 		tos = (uint8_t)(ntohl(flow) >> 20);
1160 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1161 		d_wme_ac = TID_TO_WME_AC(tos);
1162 	} else {
1163 #endif /* INET6 */
1164 		d_wme_ac = WME_AC_BE;
1165 #ifdef INET6
1166 	}
1167 #endif
1168 #ifdef INET
1169 	}
1170 #endif
1171 	/*
1172 	 * Use highest priority AC.
1173 	 */
1174 	if (v_wme_ac > d_wme_ac)
1175 		ac = v_wme_ac;
1176 	else
1177 		ac = d_wme_ac;
1178 
1179 	/*
1180 	 * Apply ACM policy.
1181 	 */
1182 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1183 		static const int acmap[4] = {
1184 			WME_AC_BK,	/* WME_AC_BE */
1185 			WME_AC_BK,	/* WME_AC_BK */
1186 			WME_AC_BE,	/* WME_AC_VI */
1187 			WME_AC_VI,	/* WME_AC_VO */
1188 		};
1189 		struct ieee80211com *ic = ni->ni_ic;
1190 
1191 		while (ac != WME_AC_BK &&
1192 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1193 			ac = acmap[ac];
1194 	}
1195 done:
1196 	M_WME_SETAC(m, ac);
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Insure there is sufficient contiguous space to encapsulate the
1202  * 802.11 data frame.  If room isn't already there, arrange for it.
1203  * Drivers and cipher modules assume we have done the necessary work
1204  * and fail rudely if they don't find the space they need.
1205  */
1206 struct mbuf *
1207 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1208 	struct ieee80211_key *key, struct mbuf *m)
1209 {
1210 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1211 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1212 
1213 	if (key != NULL) {
1214 		/* XXX belongs in crypto code? */
1215 		needed_space += key->wk_cipher->ic_header;
1216 		/* XXX frags */
1217 		/*
1218 		 * When crypto is being done in the host we must insure
1219 		 * the data are writable for the cipher routines; clone
1220 		 * a writable mbuf chain.
1221 		 * XXX handle SWMIC specially
1222 		 */
1223 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1224 			m = m_unshare(m, M_NOWAIT);
1225 			if (m == NULL) {
1226 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1227 				    "%s: cannot get writable mbuf\n", __func__);
1228 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1229 				return NULL;
1230 			}
1231 		}
1232 	}
1233 	/*
1234 	 * We know we are called just before stripping an Ethernet
1235 	 * header and prepending an LLC header.  This means we know
1236 	 * there will be
1237 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1238 	 * bytes recovered to which we need additional space for the
1239 	 * 802.11 header and any crypto header.
1240 	 */
1241 	/* XXX check trailing space and copy instead? */
1242 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1243 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1244 		if (n == NULL) {
1245 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1246 			    "%s: cannot expand storage\n", __func__);
1247 			vap->iv_stats.is_tx_nobuf++;
1248 			m_freem(m);
1249 			return NULL;
1250 		}
1251 		KASSERT(needed_space <= MHLEN,
1252 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1253 		/*
1254 		 * Setup new mbuf to have leading space to prepend the
1255 		 * 802.11 header and any crypto header bits that are
1256 		 * required (the latter are added when the driver calls
1257 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1258 		 */
1259 		/* NB: must be first 'cuz it clobbers m_data */
1260 		m_move_pkthdr(n, m);
1261 		n->m_len = 0;			/* NB: m_gethdr does not set */
1262 		n->m_data += needed_space;
1263 		/*
1264 		 * Pull up Ethernet header to create the expected layout.
1265 		 * We could use m_pullup but that's overkill (i.e. we don't
1266 		 * need the actual data) and it cannot fail so do it inline
1267 		 * for speed.
1268 		 */
1269 		/* NB: struct ether_header is known to be contiguous */
1270 		n->m_len += sizeof(struct ether_header);
1271 		m->m_len -= sizeof(struct ether_header);
1272 		m->m_data += sizeof(struct ether_header);
1273 		/*
1274 		 * Replace the head of the chain.
1275 		 */
1276 		n->m_next = m;
1277 		m = n;
1278 	}
1279 	return m;
1280 #undef TO_BE_RECLAIMED
1281 }
1282 
1283 /*
1284  * Return the transmit key to use in sending a unicast frame.
1285  * If a unicast key is set we use that.  When no unicast key is set
1286  * we fall back to the default transmit key.
1287  */
1288 static __inline struct ieee80211_key *
1289 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1290 	struct ieee80211_node *ni)
1291 {
1292 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1293 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1294 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1295 			return NULL;
1296 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1297 	} else {
1298 		return &ni->ni_ucastkey;
1299 	}
1300 }
1301 
1302 /*
1303  * Return the transmit key to use in sending a multicast frame.
1304  * Multicast traffic always uses the group key which is installed as
1305  * the default tx key.
1306  */
1307 static __inline struct ieee80211_key *
1308 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1309 	struct ieee80211_node *ni)
1310 {
1311 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1312 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1313 		return NULL;
1314 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1315 }
1316 
1317 /*
1318  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1319  * If an error is encountered NULL is returned.  The caller is required
1320  * to provide a node reference and pullup the ethernet header in the
1321  * first mbuf.
1322  *
1323  * NB: Packet is assumed to be processed by ieee80211_classify which
1324  *     marked EAPOL frames w/ M_EAPOL.
1325  */
1326 struct mbuf *
1327 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1328     struct mbuf *m)
1329 {
1330 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1331 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1332 	struct ieee80211com *ic = ni->ni_ic;
1333 #ifdef IEEE80211_SUPPORT_MESH
1334 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1335 	struct ieee80211_meshcntl_ae10 *mc;
1336 	struct ieee80211_mesh_route *rt = NULL;
1337 	int dir = -1;
1338 #endif
1339 	struct ether_header eh;
1340 	struct ieee80211_frame *wh;
1341 	struct ieee80211_key *key;
1342 	struct llc *llc;
1343 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1344 	ieee80211_seq seqno;
1345 	int meshhdrsize, meshae;
1346 	uint8_t *qos;
1347 	int is_amsdu = 0;
1348 
1349 	IEEE80211_TX_LOCK_ASSERT(ic);
1350 
1351 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1352 
1353 	/*
1354 	 * Copy existing Ethernet header to a safe place.  The
1355 	 * rest of the code assumes it's ok to strip it when
1356 	 * reorganizing state for the final encapsulation.
1357 	 */
1358 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1359 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1360 
1361 	/*
1362 	 * Insure space for additional headers.  First identify
1363 	 * transmit key to use in calculating any buffer adjustments
1364 	 * required.  This is also used below to do privacy
1365 	 * encapsulation work.  Then calculate the 802.11 header
1366 	 * size and any padding required by the driver.
1367 	 *
1368 	 * Note key may be NULL if we fall back to the default
1369 	 * transmit key and that is not set.  In that case the
1370 	 * buffer may not be expanded as needed by the cipher
1371 	 * routines, but they will/should discard it.
1372 	 */
1373 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1374 		if (vap->iv_opmode == IEEE80211_M_STA ||
1375 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1376 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1377 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1378 			key = ieee80211_crypto_getucastkey(vap, ni);
1379 		else
1380 			key = ieee80211_crypto_getmcastkey(vap, ni);
1381 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1382 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1383 			    eh.ether_dhost,
1384 			    "no default transmit key (%s) deftxkey %u",
1385 			    __func__, vap->iv_def_txkey);
1386 			vap->iv_stats.is_tx_nodefkey++;
1387 			goto bad;
1388 		}
1389 	} else
1390 		key = NULL;
1391 	/*
1392 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1393 	 * frames so suppress use.  This may be an issue if other
1394 	 * ap's require all data frames to be QoS-encapsulated
1395 	 * once negotiated in which case we'll need to make this
1396 	 * configurable.
1397 	 *
1398 	 * Don't send multicast QoS frames.
1399 	 * Technically multicast frames can be QoS if all stations in the
1400 	 * BSS are also QoS.
1401 	 *
1402 	 * NB: mesh data frames are QoS, including multicast frames.
1403 	 */
1404 	addqos =
1405 	    (((is_mcast == 0) && (ni->ni_flags &
1406 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1407 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1408 	    (m->m_flags & M_EAPOL) == 0;
1409 
1410 	if (addqos)
1411 		hdrsize = sizeof(struct ieee80211_qosframe);
1412 	else
1413 		hdrsize = sizeof(struct ieee80211_frame);
1414 #ifdef IEEE80211_SUPPORT_MESH
1415 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1416 		/*
1417 		 * Mesh data frames are encapsulated according to the
1418 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1419 		 * o Group Addressed data (aka multicast) originating
1420 		 *   at the local sta are sent w/ 3-address format and
1421 		 *   address extension mode 00
1422 		 * o Individually Addressed data (aka unicast) originating
1423 		 *   at the local sta are sent w/ 4-address format and
1424 		 *   address extension mode 00
1425 		 * o Group Addressed data forwarded from a non-mesh sta are
1426 		 *   sent w/ 3-address format and address extension mode 01
1427 		 * o Individually Address data from another sta are sent
1428 		 *   w/ 4-address format and address extension mode 10
1429 		 */
1430 		is4addr = 0;		/* NB: don't use, disable */
1431 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1432 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1433 			KASSERT(rt != NULL, ("route is NULL"));
1434 			dir = IEEE80211_FC1_DIR_DSTODS;
1435 			hdrsize += IEEE80211_ADDR_LEN;
1436 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1437 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1438 				    vap->iv_myaddr)) {
1439 					IEEE80211_NOTE_MAC(vap,
1440 					    IEEE80211_MSG_MESH,
1441 					    eh.ether_dhost,
1442 					    "%s", "trying to send to ourself");
1443 					goto bad;
1444 				}
1445 				meshae = IEEE80211_MESH_AE_10;
1446 				meshhdrsize =
1447 				    sizeof(struct ieee80211_meshcntl_ae10);
1448 			} else {
1449 				meshae = IEEE80211_MESH_AE_00;
1450 				meshhdrsize =
1451 				    sizeof(struct ieee80211_meshcntl);
1452 			}
1453 		} else {
1454 			dir = IEEE80211_FC1_DIR_FROMDS;
1455 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1456 				/* proxy group */
1457 				meshae = IEEE80211_MESH_AE_01;
1458 				meshhdrsize =
1459 				    sizeof(struct ieee80211_meshcntl_ae01);
1460 			} else {
1461 				/* group */
1462 				meshae = IEEE80211_MESH_AE_00;
1463 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1464 			}
1465 		}
1466 	} else {
1467 #endif
1468 		/*
1469 		 * 4-address frames need to be generated for:
1470 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1471 		 * o packets sent through a vap marked for relaying
1472 		 *   (e.g. a station operating with dynamic WDS)
1473 		 */
1474 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1475 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1476 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1477 		if (is4addr)
1478 			hdrsize += IEEE80211_ADDR_LEN;
1479 		meshhdrsize = meshae = 0;
1480 #ifdef IEEE80211_SUPPORT_MESH
1481 	}
1482 #endif
1483 	/*
1484 	 * Honor driver DATAPAD requirement.
1485 	 */
1486 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1487 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1488 	else
1489 		hdrspace = hdrsize;
1490 
1491 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1492 		/*
1493 		 * Normal frame.
1494 		 */
1495 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1496 		if (m == NULL) {
1497 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1498 			goto bad;
1499 		}
1500 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1501 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1502 		llc = mtod(m, struct llc *);
1503 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1504 		llc->llc_control = LLC_UI;
1505 		llc->llc_snap.org_code[0] = 0;
1506 		llc->llc_snap.org_code[1] = 0;
1507 		llc->llc_snap.org_code[2] = 0;
1508 		llc->llc_snap.ether_type = eh.ether_type;
1509 	} else {
1510 #ifdef IEEE80211_SUPPORT_SUPERG
1511 		/*
1512 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1513 		 *
1514 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1515 		 * anywhere for some reason.  But, since 11n requires
1516 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1517 		 */
1518 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1519 		if (ieee80211_amsdu_tx_ok(ni)) {
1520 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1521 			is_amsdu = 1;
1522 		} else {
1523 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1524 		}
1525 		if (m == NULL)
1526 #endif
1527 			goto bad;
1528 	}
1529 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1530 
1531 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1532 	if (m == NULL) {
1533 		vap->iv_stats.is_tx_nobuf++;
1534 		goto bad;
1535 	}
1536 	wh = mtod(m, struct ieee80211_frame *);
1537 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1538 	*(uint16_t *)wh->i_dur = 0;
1539 	qos = NULL;	/* NB: quiet compiler */
1540 	if (is4addr) {
1541 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1542 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1543 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1544 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1545 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1546 	} else switch (vap->iv_opmode) {
1547 	case IEEE80211_M_STA:
1548 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1549 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1550 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1551 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1552 		break;
1553 	case IEEE80211_M_IBSS:
1554 	case IEEE80211_M_AHDEMO:
1555 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1556 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1557 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1558 		/*
1559 		 * NB: always use the bssid from iv_bss as the
1560 		 *     neighbor's may be stale after an ibss merge
1561 		 */
1562 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1563 		break;
1564 	case IEEE80211_M_HOSTAP:
1565 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1566 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1567 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1568 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1569 		break;
1570 #ifdef IEEE80211_SUPPORT_MESH
1571 	case IEEE80211_M_MBSS:
1572 		/* NB: offset by hdrspace to deal with DATAPAD */
1573 		mc = (struct ieee80211_meshcntl_ae10 *)
1574 		     (mtod(m, uint8_t *) + hdrspace);
1575 		wh->i_fc[1] = dir;
1576 		switch (meshae) {
1577 		case IEEE80211_MESH_AE_00:	/* no proxy */
1578 			mc->mc_flags = 0;
1579 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1580 				IEEE80211_ADDR_COPY(wh->i_addr1,
1581 				    ni->ni_macaddr);
1582 				IEEE80211_ADDR_COPY(wh->i_addr2,
1583 				    vap->iv_myaddr);
1584 				IEEE80211_ADDR_COPY(wh->i_addr3,
1585 				    eh.ether_dhost);
1586 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1587 				    eh.ether_shost);
1588 				qos =((struct ieee80211_qosframe_addr4 *)
1589 				    wh)->i_qos;
1590 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1591 				 /* mcast */
1592 				IEEE80211_ADDR_COPY(wh->i_addr1,
1593 				    eh.ether_dhost);
1594 				IEEE80211_ADDR_COPY(wh->i_addr2,
1595 				    vap->iv_myaddr);
1596 				IEEE80211_ADDR_COPY(wh->i_addr3,
1597 				    eh.ether_shost);
1598 				qos = ((struct ieee80211_qosframe *)
1599 				    wh)->i_qos;
1600 			}
1601 			break;
1602 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1603 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1604 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1605 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1606 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1607 			mc->mc_flags = 1;
1608 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1609 			    eh.ether_shost);
1610 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1611 			break;
1612 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1613 			KASSERT(rt != NULL, ("route is NULL"));
1614 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1615 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1616 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1617 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1618 			mc->mc_flags = IEEE80211_MESH_AE_10;
1619 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1620 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1621 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1622 			break;
1623 		default:
1624 			KASSERT(0, ("meshae %d", meshae));
1625 			break;
1626 		}
1627 		mc->mc_ttl = ms->ms_ttl;
1628 		ms->ms_seq++;
1629 		le32enc(mc->mc_seq, ms->ms_seq);
1630 		break;
1631 #endif
1632 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1633 	default:
1634 		goto bad;
1635 	}
1636 	if (m->m_flags & M_MORE_DATA)
1637 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1638 	if (addqos) {
1639 		int ac, tid;
1640 
1641 		if (is4addr) {
1642 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1643 		/* NB: mesh case handled earlier */
1644 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1645 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1646 		ac = M_WME_GETAC(m);
1647 		/* map from access class/queue to 11e header priorty value */
1648 		tid = WME_AC_TO_TID(ac);
1649 		qos[0] = tid & IEEE80211_QOS_TID;
1650 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1651 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1652 #ifdef IEEE80211_SUPPORT_MESH
1653 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1654 			qos[1] = IEEE80211_QOS_MC;
1655 		else
1656 #endif
1657 			qos[1] = 0;
1658 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1659 
1660 		/*
1661 		 * If this is an A-MSDU then ensure we set the
1662 		 * relevant field.
1663 		 */
1664 		if (is_amsdu)
1665 			qos[0] |= IEEE80211_QOS_AMSDU;
1666 
1667 		/*
1668 		 * XXX TODO TX lock is needed for atomic updates of sequence
1669 		 * numbers.  If the driver does it, then don't do it here;
1670 		 * and we don't need the TX lock held.
1671 		 */
1672 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1673 			/*
1674 			 * 802.11-2012 9.3.2.10 -
1675 			 *
1676 			 * If this is a multicast frame then we need
1677 			 * to ensure that the sequence number comes from
1678 			 * a separate seqno space and not the TID space.
1679 			 *
1680 			 * Otherwise multicast frames may actually cause
1681 			 * holes in the TX blockack window space and
1682 			 * upset various things.
1683 			 */
1684 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1685 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1686 			else
1687 				seqno = ni->ni_txseqs[tid]++;
1688 
1689 			/*
1690 			 * NB: don't assign a sequence # to potential
1691 			 * aggregates; we expect this happens at the
1692 			 * point the frame comes off any aggregation q
1693 			 * as otherwise we may introduce holes in the
1694 			 * BA sequence space and/or make window accouting
1695 			 * more difficult.
1696 			 *
1697 			 * XXX may want to control this with a driver
1698 			 * capability; this may also change when we pull
1699 			 * aggregation up into net80211
1700 			 */
1701 			seqno = ni->ni_txseqs[tid]++;
1702 			*(uint16_t *)wh->i_seq =
1703 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1704 			M_SEQNO_SET(m, seqno);
1705 		} else {
1706 			/* NB: zero out i_seq field (for s/w encryption etc) */
1707 			*(uint16_t *)wh->i_seq = 0;
1708 		}
1709 	} else {
1710 		/*
1711 		 * XXX TODO TX lock is needed for atomic updates of sequence
1712 		 * numbers.  If the driver does it, then don't do it here;
1713 		 * and we don't need the TX lock held.
1714 		 */
1715 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1716 		*(uint16_t *)wh->i_seq =
1717 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1718 		M_SEQNO_SET(m, seqno);
1719 
1720 		/*
1721 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1722 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1723 		 */
1724 		if (is_amsdu)
1725 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1726 			    __func__);
1727 	}
1728 
1729 	/*
1730 	 * Check if xmit fragmentation is required.
1731 	 *
1732 	 * If the hardware does fragmentation offload, then don't bother
1733 	 * doing it here.
1734 	 */
1735 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1736 		txfrag = 0;
1737 	else
1738 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1739 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1740 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1741 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1742 
1743 	if (key != NULL) {
1744 		/*
1745 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1746 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1747 		 */
1748 		if ((m->m_flags & M_EAPOL) == 0 ||
1749 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1750 		     (vap->iv_opmode == IEEE80211_M_STA ?
1751 		      !IEEE80211_KEY_UNDEFINED(key) :
1752 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1753 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1754 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1755 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1756 				    eh.ether_dhost,
1757 				    "%s", "enmic failed, discard frame");
1758 				vap->iv_stats.is_crypto_enmicfail++;
1759 				goto bad;
1760 			}
1761 		}
1762 	}
1763 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1764 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1765 		goto bad;
1766 
1767 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1768 
1769 	IEEE80211_NODE_STAT(ni, tx_data);
1770 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1771 		IEEE80211_NODE_STAT(ni, tx_mcast);
1772 		m->m_flags |= M_MCAST;
1773 	} else
1774 		IEEE80211_NODE_STAT(ni, tx_ucast);
1775 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1776 
1777 	return m;
1778 bad:
1779 	if (m != NULL)
1780 		m_freem(m);
1781 	return NULL;
1782 #undef WH4
1783 #undef MC01
1784 }
1785 
1786 void
1787 ieee80211_free_mbuf(struct mbuf *m)
1788 {
1789 	struct mbuf *next;
1790 
1791 	if (m == NULL)
1792 		return;
1793 
1794 	do {
1795 		next = m->m_nextpkt;
1796 		m->m_nextpkt = NULL;
1797 		m_freem(m);
1798 	} while ((m = next) != NULL);
1799 }
1800 
1801 /*
1802  * Fragment the frame according to the specified mtu.
1803  * The size of the 802.11 header (w/o padding) is provided
1804  * so we don't need to recalculate it.  We create a new
1805  * mbuf for each fragment and chain it through m_nextpkt;
1806  * we might be able to optimize this by reusing the original
1807  * packet's mbufs but that is significantly more complicated.
1808  */
1809 static int
1810 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1811 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1812 {
1813 	struct ieee80211com *ic = vap->iv_ic;
1814 	struct ieee80211_frame *wh, *whf;
1815 	struct mbuf *m, *prev;
1816 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1817 	u_int hdrspace;
1818 
1819 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1820 	KASSERT(m0->m_pkthdr.len > mtu,
1821 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1822 
1823 	/*
1824 	 * Honor driver DATAPAD requirement.
1825 	 */
1826 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1827 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1828 	else
1829 		hdrspace = hdrsize;
1830 
1831 	wh = mtod(m0, struct ieee80211_frame *);
1832 	/* NB: mark the first frag; it will be propagated below */
1833 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1834 	totalhdrsize = hdrspace + ciphdrsize;
1835 	fragno = 1;
1836 	off = mtu - ciphdrsize;
1837 	remainder = m0->m_pkthdr.len - off;
1838 	prev = m0;
1839 	do {
1840 		fragsize = MIN(totalhdrsize + remainder, mtu);
1841 		m = m_get2(fragsize, M_NOWAIT, MT_DATA, M_PKTHDR);
1842 		if (m == NULL)
1843 			goto bad;
1844 		/* leave room to prepend any cipher header */
1845 		m_align(m, fragsize - ciphdrsize);
1846 
1847 		/*
1848 		 * Form the header in the fragment.  Note that since
1849 		 * we mark the first fragment with the MORE_FRAG bit
1850 		 * it automatically is propagated to each fragment; we
1851 		 * need only clear it on the last fragment (done below).
1852 		 * NB: frag 1+ dont have Mesh Control field present.
1853 		 */
1854 		whf = mtod(m, struct ieee80211_frame *);
1855 		memcpy(whf, wh, hdrsize);
1856 #ifdef IEEE80211_SUPPORT_MESH
1857 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1858 			if (IEEE80211_IS_DSTODS(wh))
1859 				((struct ieee80211_qosframe_addr4 *)
1860 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1861 			else
1862 				((struct ieee80211_qosframe *)
1863 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1864 		}
1865 #endif
1866 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1867 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1868 				IEEE80211_SEQ_FRAG_SHIFT);
1869 		fragno++;
1870 
1871 		payload = fragsize - totalhdrsize;
1872 		/* NB: destination is known to be contiguous */
1873 
1874 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1875 		m->m_len = hdrspace + payload;
1876 		m->m_pkthdr.len = hdrspace + payload;
1877 		m->m_flags |= M_FRAG;
1878 
1879 		/* chain up the fragment */
1880 		prev->m_nextpkt = m;
1881 		prev = m;
1882 
1883 		/* deduct fragment just formed */
1884 		remainder -= payload;
1885 		off += payload;
1886 	} while (remainder != 0);
1887 
1888 	/* set the last fragment */
1889 	m->m_flags |= M_LASTFRAG;
1890 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1891 
1892 	/* strip first mbuf now that everything has been copied */
1893 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1894 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1895 
1896 	vap->iv_stats.is_tx_fragframes++;
1897 	vap->iv_stats.is_tx_frags += fragno-1;
1898 
1899 	return 1;
1900 bad:
1901 	/* reclaim fragments but leave original frame for caller to free */
1902 	ieee80211_free_mbuf(m0->m_nextpkt);
1903 	m0->m_nextpkt = NULL;
1904 	return 0;
1905 }
1906 
1907 /*
1908  * Add a supported rates element id to a frame.
1909  */
1910 uint8_t *
1911 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1912 {
1913 	int nrates;
1914 
1915 	*frm++ = IEEE80211_ELEMID_RATES;
1916 	nrates = rs->rs_nrates;
1917 	if (nrates > IEEE80211_RATE_SIZE)
1918 		nrates = IEEE80211_RATE_SIZE;
1919 	*frm++ = nrates;
1920 	memcpy(frm, rs->rs_rates, nrates);
1921 	return frm + nrates;
1922 }
1923 
1924 /*
1925  * Add an extended supported rates element id to a frame.
1926  */
1927 uint8_t *
1928 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1929 {
1930 	/*
1931 	 * Add an extended supported rates element if operating in 11g mode.
1932 	 */
1933 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1934 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1935 		*frm++ = IEEE80211_ELEMID_XRATES;
1936 		*frm++ = nrates;
1937 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1938 		frm += nrates;
1939 	}
1940 	return frm;
1941 }
1942 
1943 /*
1944  * Add an ssid element to a frame.
1945  */
1946 uint8_t *
1947 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1948 {
1949 	*frm++ = IEEE80211_ELEMID_SSID;
1950 	*frm++ = len;
1951 	memcpy(frm, ssid, len);
1952 	return frm + len;
1953 }
1954 
1955 /*
1956  * Add an erp element to a frame.
1957  */
1958 static uint8_t *
1959 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1960 {
1961 	uint8_t erp;
1962 
1963 	*frm++ = IEEE80211_ELEMID_ERP;
1964 	*frm++ = 1;
1965 	erp = 0;
1966 	if (ic->ic_nonerpsta != 0)
1967 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1968 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1969 		erp |= IEEE80211_ERP_USE_PROTECTION;
1970 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1971 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1972 	*frm++ = erp;
1973 	return frm;
1974 }
1975 
1976 /*
1977  * Add a CFParams element to a frame.
1978  */
1979 static uint8_t *
1980 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1981 {
1982 #define	ADDSHORT(frm, v) do {	\
1983 	le16enc(frm, v);	\
1984 	frm += 2;		\
1985 } while (0)
1986 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1987 	*frm++ = 6;
1988 	*frm++ = 0;		/* CFP count */
1989 	*frm++ = 2;		/* CFP period */
1990 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1991 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1992 	return frm;
1993 #undef ADDSHORT
1994 }
1995 
1996 static __inline uint8_t *
1997 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1998 {
1999 	memcpy(frm, ie->ie_data, ie->ie_len);
2000 	return frm + ie->ie_len;
2001 }
2002 
2003 static __inline uint8_t *
2004 add_ie(uint8_t *frm, const uint8_t *ie)
2005 {
2006 	memcpy(frm, ie, 2 + ie[1]);
2007 	return frm + 2 + ie[1];
2008 }
2009 
2010 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2011 /*
2012  * Add a WME information element to a frame.
2013  */
2014 uint8_t *
2015 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
2016 {
2017 	static const struct ieee80211_wme_info info = {
2018 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2019 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
2020 		.wme_oui	= { WME_OUI_BYTES },
2021 		.wme_type	= WME_OUI_TYPE,
2022 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
2023 		.wme_version	= WME_VERSION,
2024 		.wme_info	= 0,
2025 	};
2026 	memcpy(frm, &info, sizeof(info));
2027 	return frm + sizeof(info);
2028 }
2029 
2030 /*
2031  * Add a WME parameters element to a frame.
2032  */
2033 static uint8_t *
2034 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
2035 {
2036 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
2037 #define	ADDSHORT(frm, v) do {	\
2038 	le16enc(frm, v);	\
2039 	frm += 2;		\
2040 } while (0)
2041 	/* NB: this works 'cuz a param has an info at the front */
2042 	static const struct ieee80211_wme_info param = {
2043 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2044 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2045 		.wme_oui	= { WME_OUI_BYTES },
2046 		.wme_type	= WME_OUI_TYPE,
2047 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2048 		.wme_version	= WME_VERSION,
2049 	};
2050 	int i;
2051 
2052 	memcpy(frm, &param, sizeof(param));
2053 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2054 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
2055 	*frm++ = 0;					/* reserved field */
2056 	for (i = 0; i < WME_NUM_AC; i++) {
2057 		const struct wmeParams *ac =
2058 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2059 		*frm++ = SM(i, WME_PARAM_ACI)
2060 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
2061 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
2062 		       ;
2063 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
2064 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
2065 		       ;
2066 		ADDSHORT(frm, ac->wmep_txopLimit);
2067 	}
2068 	return frm;
2069 #undef SM
2070 #undef ADDSHORT
2071 }
2072 #undef WME_OUI_BYTES
2073 
2074 /*
2075  * Add an 11h Power Constraint element to a frame.
2076  */
2077 static uint8_t *
2078 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2079 {
2080 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2081 	/* XXX per-vap tx power limit? */
2082 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2083 
2084 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2085 	frm[1] = 1;
2086 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2087 	return frm + 3;
2088 }
2089 
2090 /*
2091  * Add an 11h Power Capability element to a frame.
2092  */
2093 static uint8_t *
2094 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2095 {
2096 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2097 	frm[1] = 2;
2098 	frm[2] = c->ic_minpower;
2099 	frm[3] = c->ic_maxpower;
2100 	return frm + 4;
2101 }
2102 
2103 /*
2104  * Add an 11h Supported Channels element to a frame.
2105  */
2106 static uint8_t *
2107 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2108 {
2109 	static const int ielen = 26;
2110 
2111 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2112 	frm[1] = ielen;
2113 	/* XXX not correct */
2114 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2115 	return frm + 2 + ielen;
2116 }
2117 
2118 /*
2119  * Add an 11h Quiet time element to a frame.
2120  */
2121 static uint8_t *
2122 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2123 {
2124 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2125 
2126 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2127 	quiet->len = 6;
2128 
2129 	/*
2130 	 * Only update every beacon interval - otherwise probe responses
2131 	 * would update the quiet count value.
2132 	 */
2133 	if (update) {
2134 		if (vap->iv_quiet_count_value == 1)
2135 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2136 		else if (vap->iv_quiet_count_value > 1)
2137 			vap->iv_quiet_count_value--;
2138 	}
2139 
2140 	if (vap->iv_quiet_count_value == 0) {
2141 		/* value 0 is reserved as per 802.11h standerd */
2142 		vap->iv_quiet_count_value = 1;
2143 	}
2144 
2145 	quiet->tbttcount = vap->iv_quiet_count_value;
2146 	quiet->period = vap->iv_quiet_period;
2147 	quiet->duration = htole16(vap->iv_quiet_duration);
2148 	quiet->offset = htole16(vap->iv_quiet_offset);
2149 	return frm + sizeof(*quiet);
2150 }
2151 
2152 /*
2153  * Add an 11h Channel Switch Announcement element to a frame.
2154  * Note that we use the per-vap CSA count to adjust the global
2155  * counter so we can use this routine to form probe response
2156  * frames and get the current count.
2157  */
2158 static uint8_t *
2159 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2160 {
2161 	struct ieee80211com *ic = vap->iv_ic;
2162 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2163 
2164 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2165 	csa->csa_len = 3;
2166 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2167 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2168 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2169 	return frm + sizeof(*csa);
2170 }
2171 
2172 /*
2173  * Add an 11h country information element to a frame.
2174  */
2175 static uint8_t *
2176 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2177 {
2178 
2179 	if (ic->ic_countryie == NULL ||
2180 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2181 		/*
2182 		 * Handle lazy construction of ie.  This is done on
2183 		 * first use and after a channel change that requires
2184 		 * re-calculation.
2185 		 */
2186 		if (ic->ic_countryie != NULL)
2187 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2188 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2189 		if (ic->ic_countryie == NULL)
2190 			return frm;
2191 		ic->ic_countryie_chan = ic->ic_bsschan;
2192 	}
2193 	return add_appie(frm, ic->ic_countryie);
2194 }
2195 
2196 uint8_t *
2197 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2198 {
2199 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2200 		return (add_ie(frm, vap->iv_wpa_ie));
2201 	else {
2202 		/* XXX else complain? */
2203 		return (frm);
2204 	}
2205 }
2206 
2207 uint8_t *
2208 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2209 {
2210 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2211 		return (add_ie(frm, vap->iv_rsn_ie));
2212 	else {
2213 		/* XXX else complain? */
2214 		return (frm);
2215 	}
2216 }
2217 
2218 uint8_t *
2219 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2220 {
2221 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2222 		*frm++ = IEEE80211_ELEMID_QOS;
2223 		*frm++ = 1;
2224 		*frm++ = 0;
2225 	}
2226 
2227 	return (frm);
2228 }
2229 
2230 /*
2231  * Send a probe request frame with the specified ssid
2232  * and any optional information element data.
2233  */
2234 int
2235 ieee80211_send_probereq(struct ieee80211_node *ni,
2236 	const uint8_t sa[IEEE80211_ADDR_LEN],
2237 	const uint8_t da[IEEE80211_ADDR_LEN],
2238 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2239 	const uint8_t *ssid, size_t ssidlen)
2240 {
2241 	struct ieee80211vap *vap = ni->ni_vap;
2242 	struct ieee80211com *ic = ni->ni_ic;
2243 	struct ieee80211_node *bss;
2244 	const struct ieee80211_txparam *tp;
2245 	struct ieee80211_bpf_params params;
2246 	const struct ieee80211_rateset *rs;
2247 	struct mbuf *m;
2248 	uint8_t *frm;
2249 	int ret;
2250 
2251 	bss = ieee80211_ref_node(vap->iv_bss);
2252 
2253 	if (vap->iv_state == IEEE80211_S_CAC) {
2254 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2255 		    "block %s frame in CAC state", "probe request");
2256 		vap->iv_stats.is_tx_badstate++;
2257 		ieee80211_free_node(bss);
2258 		return EIO;		/* XXX */
2259 	}
2260 
2261 	/*
2262 	 * Hold a reference on the node so it doesn't go away until after
2263 	 * the xmit is complete all the way in the driver.  On error we
2264 	 * will remove our reference.
2265 	 */
2266 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2267 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2268 		__func__, __LINE__,
2269 		ni, ether_sprintf(ni->ni_macaddr),
2270 		ieee80211_node_refcnt(ni)+1);
2271 	ieee80211_ref_node(ni);
2272 
2273 	/*
2274 	 * prreq frame format
2275 	 *	[tlv] ssid
2276 	 *	[tlv] supported rates
2277 	 *	[tlv] RSN (optional)
2278 	 *	[tlv] extended supported rates
2279 	 *	[tlv] HT cap (optional)
2280 	 *	[tlv] VHT cap (optional)
2281 	 *	[tlv] WPA (optional)
2282 	 *	[tlv] user-specified ie's
2283 	 */
2284 	m = ieee80211_getmgtframe(&frm,
2285 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2286 	       	 2 + IEEE80211_NWID_LEN
2287 	       + 2 + IEEE80211_RATE_SIZE
2288 	       + sizeof(struct ieee80211_ie_htcap)
2289 	       + sizeof(struct ieee80211_ie_vhtcap)
2290 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2291 	       + sizeof(struct ieee80211_ie_wpa)
2292 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2293 	       + sizeof(struct ieee80211_ie_wpa)
2294 	       + (vap->iv_appie_probereq != NULL ?
2295 		   vap->iv_appie_probereq->ie_len : 0)
2296 	);
2297 	if (m == NULL) {
2298 		vap->iv_stats.is_tx_nobuf++;
2299 		ieee80211_free_node(ni);
2300 		ieee80211_free_node(bss);
2301 		return ENOMEM;
2302 	}
2303 
2304 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2305 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2306 	frm = ieee80211_add_rates(frm, rs);
2307 	frm = ieee80211_add_rsn(frm, vap);
2308 	frm = ieee80211_add_xrates(frm, rs);
2309 
2310 	/*
2311 	 * Note: we can't use bss; we don't have one yet.
2312 	 *
2313 	 * So, we should announce our capabilities
2314 	 * in this channel mode (2g/5g), not the
2315 	 * channel details itself.
2316 	 */
2317 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2318 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2319 		struct ieee80211_channel *c;
2320 
2321 		/*
2322 		 * Get the HT channel that we should try upgrading to.
2323 		 * If we can do 40MHz then this'll upgrade it appropriately.
2324 		 */
2325 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2326 		    vap->iv_flags_ht);
2327 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2328 	}
2329 
2330 	/*
2331 	 * XXX TODO: need to figure out what/how to update the
2332 	 * VHT channel.
2333 	 */
2334 #if 0
2335 	(vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2336 		struct ieee80211_channel *c;
2337 
2338 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2339 		    vap->iv_flags_ht);
2340 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2341 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2342 	}
2343 #endif
2344 
2345 	frm = ieee80211_add_wpa(frm, vap);
2346 	if (vap->iv_appie_probereq != NULL)
2347 		frm = add_appie(frm, vap->iv_appie_probereq);
2348 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2349 
2350 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2351 	    ("leading space %zd", M_LEADINGSPACE(m)));
2352 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2353 	if (m == NULL) {
2354 		/* NB: cannot happen */
2355 		ieee80211_free_node(ni);
2356 		ieee80211_free_node(bss);
2357 		return ENOMEM;
2358 	}
2359 
2360 	IEEE80211_TX_LOCK(ic);
2361 	ieee80211_send_setup(ni, m,
2362 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2363 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2364 	/* XXX power management? */
2365 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2366 
2367 	M_WME_SETAC(m, WME_AC_BE);
2368 
2369 	IEEE80211_NODE_STAT(ni, tx_probereq);
2370 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2371 
2372 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2373 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2374 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2375 	    ether_sprintf(bssid),
2376 	    sa, ":",
2377 	    da, ":",
2378 	    ssidlen, ssid);
2379 
2380 	memset(&params, 0, sizeof(params));
2381 	params.ibp_pri = M_WME_GETAC(m);
2382 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2383 	params.ibp_rate0 = tp->mgmtrate;
2384 	if (IEEE80211_IS_MULTICAST(da)) {
2385 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2386 		params.ibp_try0 = 1;
2387 	} else
2388 		params.ibp_try0 = tp->maxretry;
2389 	params.ibp_power = ni->ni_txpower;
2390 	ret = ieee80211_raw_output(vap, ni, m, &params);
2391 	IEEE80211_TX_UNLOCK(ic);
2392 	ieee80211_free_node(bss);
2393 	return (ret);
2394 }
2395 
2396 /*
2397  * Calculate capability information for mgt frames.
2398  */
2399 uint16_t
2400 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2401 {
2402 	struct ieee80211com *ic = vap->iv_ic;
2403 	uint16_t capinfo;
2404 
2405 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2406 
2407 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2408 		capinfo = IEEE80211_CAPINFO_ESS;
2409 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2410 		capinfo = IEEE80211_CAPINFO_IBSS;
2411 	else
2412 		capinfo = 0;
2413 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2414 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2415 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2416 	    IEEE80211_IS_CHAN_2GHZ(chan))
2417 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2418 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2419 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2420 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2421 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2422 	return capinfo;
2423 }
2424 
2425 /*
2426  * Send a management frame.  The node is for the destination (or ic_bss
2427  * when in station mode).  Nodes other than ic_bss have their reference
2428  * count bumped to reflect our use for an indeterminant time.
2429  */
2430 int
2431 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2432 {
2433 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2434 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2435 	struct ieee80211vap *vap = ni->ni_vap;
2436 	struct ieee80211com *ic = ni->ni_ic;
2437 	struct ieee80211_node *bss = vap->iv_bss;
2438 	struct ieee80211_bpf_params params;
2439 	struct mbuf *m;
2440 	uint8_t *frm;
2441 	uint16_t capinfo;
2442 	int has_challenge, is_shared_key, ret, status;
2443 
2444 	KASSERT(ni != NULL, ("null node"));
2445 
2446 	/*
2447 	 * Hold a reference on the node so it doesn't go away until after
2448 	 * the xmit is complete all the way in the driver.  On error we
2449 	 * will remove our reference.
2450 	 */
2451 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2452 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2453 		__func__, __LINE__,
2454 		ni, ether_sprintf(ni->ni_macaddr),
2455 		ieee80211_node_refcnt(ni)+1);
2456 	ieee80211_ref_node(ni);
2457 
2458 	memset(&params, 0, sizeof(params));
2459 	switch (type) {
2460 
2461 	case IEEE80211_FC0_SUBTYPE_AUTH:
2462 		status = arg >> 16;
2463 		arg &= 0xffff;
2464 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2465 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2466 		    ni->ni_challenge != NULL);
2467 
2468 		/*
2469 		 * Deduce whether we're doing open authentication or
2470 		 * shared key authentication.  We do the latter if
2471 		 * we're in the middle of a shared key authentication
2472 		 * handshake or if we're initiating an authentication
2473 		 * request and configured to use shared key.
2474 		 */
2475 		is_shared_key = has_challenge ||
2476 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2477 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2478 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2479 
2480 		m = ieee80211_getmgtframe(&frm,
2481 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2482 			  3 * sizeof(uint16_t)
2483 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2484 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2485 		);
2486 		if (m == NULL)
2487 			senderr(ENOMEM, is_tx_nobuf);
2488 
2489 		((uint16_t *)frm)[0] =
2490 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2491 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2492 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2493 		((uint16_t *)frm)[2] = htole16(status);/* status */
2494 
2495 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2496 			((uint16_t *)frm)[3] =
2497 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2498 			    IEEE80211_ELEMID_CHALLENGE);
2499 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2500 			    IEEE80211_CHALLENGE_LEN);
2501 			m->m_pkthdr.len = m->m_len =
2502 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2503 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2504 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2505 				    "request encrypt frame (%s)", __func__);
2506 				/* mark frame for encryption */
2507 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2508 			}
2509 		} else
2510 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2511 
2512 		/* XXX not right for shared key */
2513 		if (status == IEEE80211_STATUS_SUCCESS)
2514 			IEEE80211_NODE_STAT(ni, tx_auth);
2515 		else
2516 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2517 
2518 		if (vap->iv_opmode == IEEE80211_M_STA)
2519 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2520 				(void *) vap->iv_state);
2521 		break;
2522 
2523 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2524 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2525 		    "send station deauthenticate (reason: %d (%s))", arg,
2526 		    ieee80211_reason_to_string(arg));
2527 		m = ieee80211_getmgtframe(&frm,
2528 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2529 			sizeof(uint16_t));
2530 		if (m == NULL)
2531 			senderr(ENOMEM, is_tx_nobuf);
2532 		*(uint16_t *)frm = htole16(arg);	/* reason */
2533 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2534 
2535 		IEEE80211_NODE_STAT(ni, tx_deauth);
2536 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2537 
2538 		ieee80211_node_unauthorize(ni);		/* port closed */
2539 		break;
2540 
2541 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2542 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2543 		/*
2544 		 * asreq frame format
2545 		 *	[2] capability information
2546 		 *	[2] listen interval
2547 		 *	[6*] current AP address (reassoc only)
2548 		 *	[tlv] ssid
2549 		 *	[tlv] supported rates
2550 		 *	[tlv] extended supported rates
2551 		 *	[4] power capability (optional)
2552 		 *	[28] supported channels (optional)
2553 		 *	[tlv] HT capabilities
2554 		 *	[tlv] VHT capabilities
2555 		 *	[tlv] WME (optional)
2556 		 *	[tlv] Vendor OUI HT capabilities (optional)
2557 		 *	[tlv] Atheros capabilities (if negotiated)
2558 		 *	[tlv] AppIE's (optional)
2559 		 */
2560 		m = ieee80211_getmgtframe(&frm,
2561 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2562 			 sizeof(uint16_t)
2563 		       + sizeof(uint16_t)
2564 		       + IEEE80211_ADDR_LEN
2565 		       + 2 + IEEE80211_NWID_LEN
2566 		       + 2 + IEEE80211_RATE_SIZE
2567 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2568 		       + 4
2569 		       + 2 + 26
2570 		       + sizeof(struct ieee80211_wme_info)
2571 		       + sizeof(struct ieee80211_ie_htcap)
2572 		       + sizeof(struct ieee80211_ie_vhtcap)
2573 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2574 #ifdef IEEE80211_SUPPORT_SUPERG
2575 		       + sizeof(struct ieee80211_ath_ie)
2576 #endif
2577 		       + (vap->iv_appie_wpa != NULL ?
2578 				vap->iv_appie_wpa->ie_len : 0)
2579 		       + (vap->iv_appie_assocreq != NULL ?
2580 				vap->iv_appie_assocreq->ie_len : 0)
2581 		);
2582 		if (m == NULL)
2583 			senderr(ENOMEM, is_tx_nobuf);
2584 
2585 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2586 		    ("wrong mode %u", vap->iv_opmode));
2587 		capinfo = IEEE80211_CAPINFO_ESS;
2588 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2589 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2590 		/*
2591 		 * NB: Some 11a AP's reject the request when
2592 		 *     short preamble is set.
2593 		 */
2594 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2595 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2596 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2597 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2598 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2599 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2600 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2601 		    (vap->iv_flags & IEEE80211_F_DOTH))
2602 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2603 		*(uint16_t *)frm = htole16(capinfo);
2604 		frm += 2;
2605 
2606 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2607 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2608 						    bss->ni_intval));
2609 		frm += 2;
2610 
2611 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2612 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2613 			frm += IEEE80211_ADDR_LEN;
2614 		}
2615 
2616 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2617 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2618 		frm = ieee80211_add_rsn(frm, vap);
2619 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2620 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2621 			frm = ieee80211_add_powercapability(frm,
2622 			    ic->ic_curchan);
2623 			frm = ieee80211_add_supportedchannels(frm, ic);
2624 		}
2625 
2626 		/*
2627 		 * Check the channel - we may be using an 11n NIC with an
2628 		 * 11n capable station, but we're configured to be an 11b
2629 		 * channel.
2630 		 */
2631 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2632 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2633 		    ni->ni_ies.htcap_ie != NULL &&
2634 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2635 			frm = ieee80211_add_htcap(frm, ni);
2636 		}
2637 
2638 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2639 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2640 		    ni->ni_ies.vhtcap_ie != NULL &&
2641 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2642 			frm = ieee80211_add_vhtcap(frm, ni);
2643 		}
2644 
2645 		frm = ieee80211_add_wpa(frm, vap);
2646 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2647 		    ni->ni_ies.wme_ie != NULL)
2648 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2649 
2650 		/*
2651 		 * Same deal - only send HT info if we're on an 11n
2652 		 * capable channel.
2653 		 */
2654 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2655 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2656 		    ni->ni_ies.htcap_ie != NULL &&
2657 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2658 			frm = ieee80211_add_htcap_vendor(frm, ni);
2659 		}
2660 #ifdef IEEE80211_SUPPORT_SUPERG
2661 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2662 			frm = ieee80211_add_ath(frm,
2663 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2664 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2665 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2666 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2667 		}
2668 #endif /* IEEE80211_SUPPORT_SUPERG */
2669 		if (vap->iv_appie_assocreq != NULL)
2670 			frm = add_appie(frm, vap->iv_appie_assocreq);
2671 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2672 
2673 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2674 			(void *) vap->iv_state);
2675 		break;
2676 
2677 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2678 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2679 		/*
2680 		 * asresp frame format
2681 		 *	[2] capability information
2682 		 *	[2] status
2683 		 *	[2] association ID
2684 		 *	[tlv] supported rates
2685 		 *	[tlv] extended supported rates
2686 		 *	[tlv] HT capabilities (standard, if STA enabled)
2687 		 *	[tlv] HT information (standard, if STA enabled)
2688 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2689 		 *	[tlv] VHT information (standard, if STA enabled)
2690 		 *	[tlv] WME (if configured and STA enabled)
2691 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2692 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2693 		 *	[tlv] Atheros capabilities (if STA enabled)
2694 		 *	[tlv] AppIE's (optional)
2695 		 */
2696 		m = ieee80211_getmgtframe(&frm,
2697 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2698 			 sizeof(uint16_t)
2699 		       + sizeof(uint16_t)
2700 		       + sizeof(uint16_t)
2701 		       + 2 + IEEE80211_RATE_SIZE
2702 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2703 		       + sizeof(struct ieee80211_ie_htcap) + 4
2704 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2705 		       + sizeof(struct ieee80211_ie_vhtcap)
2706 		       + sizeof(struct ieee80211_ie_vht_operation)
2707 		       + sizeof(struct ieee80211_wme_param)
2708 #ifdef IEEE80211_SUPPORT_SUPERG
2709 		       + sizeof(struct ieee80211_ath_ie)
2710 #endif
2711 		       + (vap->iv_appie_assocresp != NULL ?
2712 				vap->iv_appie_assocresp->ie_len : 0)
2713 		);
2714 		if (m == NULL)
2715 			senderr(ENOMEM, is_tx_nobuf);
2716 
2717 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2718 		*(uint16_t *)frm = htole16(capinfo);
2719 		frm += 2;
2720 
2721 		*(uint16_t *)frm = htole16(arg);	/* status */
2722 		frm += 2;
2723 
2724 		if (arg == IEEE80211_STATUS_SUCCESS) {
2725 			*(uint16_t *)frm = htole16(ni->ni_associd);
2726 			IEEE80211_NODE_STAT(ni, tx_assoc);
2727 		} else
2728 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2729 		frm += 2;
2730 
2731 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2732 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2733 		/* NB: respond according to what we received */
2734 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2735 			frm = ieee80211_add_htcap(frm, ni);
2736 			frm = ieee80211_add_htinfo(frm, ni);
2737 		}
2738 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2739 		    ni->ni_ies.wme_ie != NULL)
2740 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2741 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2742 			frm = ieee80211_add_htcap_vendor(frm, ni);
2743 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2744 		}
2745 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
2746 			frm = ieee80211_add_vhtcap(frm, ni);
2747 			frm = ieee80211_add_vhtinfo(frm, ni);
2748 		}
2749 #ifdef IEEE80211_SUPPORT_SUPERG
2750 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2751 			frm = ieee80211_add_ath(frm,
2752 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2753 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2754 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2755 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2756 #endif /* IEEE80211_SUPPORT_SUPERG */
2757 		if (vap->iv_appie_assocresp != NULL)
2758 			frm = add_appie(frm, vap->iv_appie_assocresp);
2759 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2760 		break;
2761 
2762 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2763 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2764 		    "send station disassociate (reason: %d (%s))", arg,
2765 		    ieee80211_reason_to_string(arg));
2766 		m = ieee80211_getmgtframe(&frm,
2767 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2768 			sizeof(uint16_t));
2769 		if (m == NULL)
2770 			senderr(ENOMEM, is_tx_nobuf);
2771 		*(uint16_t *)frm = htole16(arg);	/* reason */
2772 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2773 
2774 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2775 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2776 		break;
2777 
2778 	default:
2779 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2780 		    "invalid mgmt frame type %u", type);
2781 		senderr(EINVAL, is_tx_unknownmgt);
2782 		/* NOTREACHED */
2783 	}
2784 
2785 	/* NB: force non-ProbeResp frames to the highest queue */
2786 	params.ibp_pri = WME_AC_VO;
2787 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2788 	/* NB: we know all frames are unicast */
2789 	params.ibp_try0 = bss->ni_txparms->maxretry;
2790 	params.ibp_power = bss->ni_txpower;
2791 	return ieee80211_mgmt_output(ni, m, type, &params);
2792 bad:
2793 	ieee80211_free_node(ni);
2794 	return ret;
2795 #undef senderr
2796 #undef HTFLAGS
2797 }
2798 
2799 /*
2800  * Return an mbuf with a probe response frame in it.
2801  * Space is left to prepend and 802.11 header at the
2802  * front but it's left to the caller to fill in.
2803  */
2804 struct mbuf *
2805 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2806 {
2807 	struct ieee80211vap *vap = bss->ni_vap;
2808 	struct ieee80211com *ic = bss->ni_ic;
2809 	const struct ieee80211_rateset *rs;
2810 	struct mbuf *m;
2811 	uint16_t capinfo;
2812 	uint8_t *frm;
2813 
2814 	/*
2815 	 * probe response frame format
2816 	 *	[8] time stamp
2817 	 *	[2] beacon interval
2818 	 *	[2] cabability information
2819 	 *	[tlv] ssid
2820 	 *	[tlv] supported rates
2821 	 *	[tlv] parameter set (FH/DS)
2822 	 *	[tlv] parameter set (IBSS)
2823 	 *	[tlv] country (optional)
2824 	 *	[3] power control (optional)
2825 	 *	[5] channel switch announcement (CSA) (optional)
2826 	 *	[tlv] extended rate phy (ERP)
2827 	 *	[tlv] extended supported rates
2828 	 *	[tlv] RSN (optional)
2829 	 *	[tlv] HT capabilities
2830 	 *	[tlv] HT information
2831 	 *	[tlv] VHT capabilities
2832 	 *	[tlv] VHT information
2833 	 *	[tlv] WPA (optional)
2834 	 *	[tlv] WME (optional)
2835 	 *	[tlv] Vendor OUI HT capabilities (optional)
2836 	 *	[tlv] Vendor OUI HT information (optional)
2837 	 *	[tlv] Atheros capabilities
2838 	 *	[tlv] AppIE's (optional)
2839 	 *	[tlv] Mesh ID (MBSS)
2840 	 *	[tlv] Mesh Conf (MBSS)
2841 	 */
2842 	m = ieee80211_getmgtframe(&frm,
2843 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2844 		 8
2845 	       + sizeof(uint16_t)
2846 	       + sizeof(uint16_t)
2847 	       + 2 + IEEE80211_NWID_LEN
2848 	       + 2 + IEEE80211_RATE_SIZE
2849 	       + 7	/* max(7,3) */
2850 	       + IEEE80211_COUNTRY_MAX_SIZE
2851 	       + 3
2852 	       + sizeof(struct ieee80211_csa_ie)
2853 	       + sizeof(struct ieee80211_quiet_ie)
2854 	       + 3
2855 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2856 	       + sizeof(struct ieee80211_ie_wpa)
2857 	       + sizeof(struct ieee80211_ie_htcap)
2858 	       + sizeof(struct ieee80211_ie_htinfo)
2859 	       + sizeof(struct ieee80211_ie_wpa)
2860 	       + sizeof(struct ieee80211_wme_param)
2861 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2862 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2863 	       +  sizeof(struct ieee80211_ie_vhtcap)
2864 	       +  sizeof(struct ieee80211_ie_vht_operation)
2865 #ifdef IEEE80211_SUPPORT_SUPERG
2866 	       + sizeof(struct ieee80211_ath_ie)
2867 #endif
2868 #ifdef IEEE80211_SUPPORT_MESH
2869 	       + 2 + IEEE80211_MESHID_LEN
2870 	       + sizeof(struct ieee80211_meshconf_ie)
2871 #endif
2872 	       + (vap->iv_appie_proberesp != NULL ?
2873 			vap->iv_appie_proberesp->ie_len : 0)
2874 	);
2875 	if (m == NULL) {
2876 		vap->iv_stats.is_tx_nobuf++;
2877 		return NULL;
2878 	}
2879 
2880 	memset(frm, 0, 8);	/* timestamp should be filled later */
2881 	frm += 8;
2882 	*(uint16_t *)frm = htole16(bss->ni_intval);
2883 	frm += 2;
2884 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2885 	*(uint16_t *)frm = htole16(capinfo);
2886 	frm += 2;
2887 
2888 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2889 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2890 	frm = ieee80211_add_rates(frm, rs);
2891 
2892 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2893 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2894 		*frm++ = 5;
2895 		*frm++ = bss->ni_fhdwell & 0x00ff;
2896 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2897 		*frm++ = IEEE80211_FH_CHANSET(
2898 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2899 		*frm++ = IEEE80211_FH_CHANPAT(
2900 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2901 		*frm++ = bss->ni_fhindex;
2902 	} else {
2903 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2904 		*frm++ = 1;
2905 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2906 	}
2907 
2908 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2909 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2910 		*frm++ = 2;
2911 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2912 	}
2913 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2914 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2915 		frm = ieee80211_add_countryie(frm, ic);
2916 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2917 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2918 			frm = ieee80211_add_powerconstraint(frm, vap);
2919 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2920 			frm = ieee80211_add_csa(frm, vap);
2921 	}
2922 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2923 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2924 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2925 			if (vap->iv_quiet)
2926 				frm = ieee80211_add_quiet(frm, vap, 0);
2927 		}
2928 	}
2929 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2930 		frm = ieee80211_add_erp(frm, ic);
2931 	frm = ieee80211_add_xrates(frm, rs);
2932 	frm = ieee80211_add_rsn(frm, vap);
2933 	/*
2934 	 * NB: legacy 11b clients do not get certain ie's.
2935 	 *     The caller identifies such clients by passing
2936 	 *     a token in legacy to us.  Could expand this to be
2937 	 *     any legacy client for stuff like HT ie's.
2938 	 */
2939 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2940 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2941 		frm = ieee80211_add_htcap(frm, bss);
2942 		frm = ieee80211_add_htinfo(frm, bss);
2943 	}
2944 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
2945 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2946 		frm = ieee80211_add_vhtcap(frm, bss);
2947 		frm = ieee80211_add_vhtinfo(frm, bss);
2948 	}
2949 	frm = ieee80211_add_wpa(frm, vap);
2950 	if (vap->iv_flags & IEEE80211_F_WME)
2951 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2952 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2953 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2954 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2955 		frm = ieee80211_add_htcap_vendor(frm, bss);
2956 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2957 	}
2958 #ifdef IEEE80211_SUPPORT_SUPERG
2959 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2960 	    legacy != IEEE80211_SEND_LEGACY_11B)
2961 		frm = ieee80211_add_athcaps(frm, bss);
2962 #endif
2963 	if (vap->iv_appie_proberesp != NULL)
2964 		frm = add_appie(frm, vap->iv_appie_proberesp);
2965 #ifdef IEEE80211_SUPPORT_MESH
2966 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2967 		frm = ieee80211_add_meshid(frm, vap);
2968 		frm = ieee80211_add_meshconf(frm, vap);
2969 	}
2970 #endif
2971 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2972 
2973 	return m;
2974 }
2975 
2976 /*
2977  * Send a probe response frame to the specified mac address.
2978  * This does not go through the normal mgt frame api so we
2979  * can specify the destination address and re-use the bss node
2980  * for the sta reference.
2981  */
2982 int
2983 ieee80211_send_proberesp(struct ieee80211vap *vap,
2984 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2985 {
2986 	struct ieee80211_node *bss = vap->iv_bss;
2987 	struct ieee80211com *ic = vap->iv_ic;
2988 	struct mbuf *m;
2989 	int ret;
2990 
2991 	if (vap->iv_state == IEEE80211_S_CAC) {
2992 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2993 		    "block %s frame in CAC state", "probe response");
2994 		vap->iv_stats.is_tx_badstate++;
2995 		return EIO;		/* XXX */
2996 	}
2997 
2998 	/*
2999 	 * Hold a reference on the node so it doesn't go away until after
3000 	 * the xmit is complete all the way in the driver.  On error we
3001 	 * will remove our reference.
3002 	 */
3003 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3004 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3005 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3006 	    ieee80211_node_refcnt(bss)+1);
3007 	ieee80211_ref_node(bss);
3008 
3009 	m = ieee80211_alloc_proberesp(bss, legacy);
3010 	if (m == NULL) {
3011 		ieee80211_free_node(bss);
3012 		return ENOMEM;
3013 	}
3014 
3015 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3016 	KASSERT(m != NULL, ("no room for header"));
3017 
3018 	IEEE80211_TX_LOCK(ic);
3019 	ieee80211_send_setup(bss, m,
3020 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3021 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3022 	/* XXX power management? */
3023 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3024 
3025 	M_WME_SETAC(m, WME_AC_BE);
3026 
3027 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3028 	    "send probe resp on channel %u to %s%s\n",
3029 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3030 	    legacy ? " <legacy>" : "");
3031 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3032 
3033 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3034 	IEEE80211_TX_UNLOCK(ic);
3035 	return (ret);
3036 }
3037 
3038 /*
3039  * Allocate and build a RTS (Request To Send) control frame.
3040  */
3041 struct mbuf *
3042 ieee80211_alloc_rts(struct ieee80211com *ic,
3043 	const uint8_t ra[IEEE80211_ADDR_LEN],
3044 	const uint8_t ta[IEEE80211_ADDR_LEN],
3045 	uint16_t dur)
3046 {
3047 	struct ieee80211_frame_rts *rts;
3048 	struct mbuf *m;
3049 
3050 	/* XXX honor ic_headroom */
3051 	m = m_gethdr(M_NOWAIT, MT_DATA);
3052 	if (m != NULL) {
3053 		rts = mtod(m, struct ieee80211_frame_rts *);
3054 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3055 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3056 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3057 		*(u_int16_t *)rts->i_dur = htole16(dur);
3058 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3059 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3060 
3061 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3062 	}
3063 	return m;
3064 }
3065 
3066 /*
3067  * Allocate and build a CTS (Clear To Send) control frame.
3068  */
3069 struct mbuf *
3070 ieee80211_alloc_cts(struct ieee80211com *ic,
3071 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3072 {
3073 	struct ieee80211_frame_cts *cts;
3074 	struct mbuf *m;
3075 
3076 	/* XXX honor ic_headroom */
3077 	m = m_gethdr(M_NOWAIT, MT_DATA);
3078 	if (m != NULL) {
3079 		cts = mtod(m, struct ieee80211_frame_cts *);
3080 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3081 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3082 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3083 		*(u_int16_t *)cts->i_dur = htole16(dur);
3084 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3085 
3086 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3087 	}
3088 	return m;
3089 }
3090 
3091 /*
3092  * Wrapper for CTS/RTS frame allocation.
3093  */
3094 struct mbuf *
3095 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3096     uint8_t rate, int prot)
3097 {
3098 	struct ieee80211com *ic = ni->ni_ic;
3099 	const struct ieee80211_frame *wh;
3100 	struct mbuf *mprot;
3101 	uint16_t dur;
3102 	int pktlen, isshort;
3103 
3104 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3105 	    prot == IEEE80211_PROT_CTSONLY,
3106 	    ("wrong protection type %d", prot));
3107 
3108 	wh = mtod(m, const struct ieee80211_frame *);
3109 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3110 	isshort = (ic->ic_flags & IEEE80211_F_SHPREAMBLE) != 0;
3111 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3112 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3113 
3114 	if (prot == IEEE80211_PROT_RTSCTS) {
3115 		/* NB: CTS is the same size as an ACK */
3116 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3117 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3118 	} else
3119 		mprot = ieee80211_alloc_cts(ic, ni->ni_vap->iv_myaddr, dur);
3120 
3121 	return (mprot);
3122 }
3123 
3124 static void
3125 ieee80211_tx_mgt_timeout(void *arg)
3126 {
3127 	struct ieee80211vap *vap = arg;
3128 
3129 	IEEE80211_LOCK(vap->iv_ic);
3130 	if (vap->iv_state != IEEE80211_S_INIT &&
3131 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3132 		/*
3133 		 * NB: it's safe to specify a timeout as the reason here;
3134 		 *     it'll only be used in the right state.
3135 		 */
3136 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3137 			IEEE80211_SCAN_FAIL_TIMEOUT);
3138 	}
3139 	IEEE80211_UNLOCK(vap->iv_ic);
3140 }
3141 
3142 /*
3143  * This is the callback set on net80211-sourced transmitted
3144  * authentication request frames.
3145  *
3146  * This does a couple of things:
3147  *
3148  * + If the frame transmitted was a success, it schedules a future
3149  *   event which will transition the interface to scan.
3150  *   If a state transition _then_ occurs before that event occurs,
3151  *   said state transition will cancel this callout.
3152  *
3153  * + If the frame transmit was a failure, it immediately schedules
3154  *   the transition back to scan.
3155  */
3156 static void
3157 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3158 {
3159 	struct ieee80211vap *vap = ni->ni_vap;
3160 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
3161 
3162 	/*
3163 	 * Frame transmit completed; arrange timer callback.  If
3164 	 * transmit was successfully we wait for response.  Otherwise
3165 	 * we arrange an immediate callback instead of doing the
3166 	 * callback directly since we don't know what state the driver
3167 	 * is in (e.g. what locks it is holding).  This work should
3168 	 * not be too time-critical and not happen too often so the
3169 	 * added overhead is acceptable.
3170 	 *
3171 	 * XXX what happens if !acked but response shows up before callback?
3172 	 */
3173 	if (vap->iv_state == ostate) {
3174 		callout_reset(&vap->iv_mgtsend,
3175 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3176 			ieee80211_tx_mgt_timeout, vap);
3177 	}
3178 }
3179 
3180 static void
3181 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3182 	struct ieee80211_node *ni)
3183 {
3184 	struct ieee80211vap *vap = ni->ni_vap;
3185 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3186 	struct ieee80211com *ic = ni->ni_ic;
3187 	struct ieee80211_rateset *rs = &ni->ni_rates;
3188 	uint16_t capinfo;
3189 
3190 	/*
3191 	 * beacon frame format
3192 	 *
3193 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3194 	 * vendor extensions should be at the end, etc.
3195 	 *
3196 	 *	[8] time stamp
3197 	 *	[2] beacon interval
3198 	 *	[2] cabability information
3199 	 *	[tlv] ssid
3200 	 *	[tlv] supported rates
3201 	 *	[3] parameter set (DS)
3202 	 *	[8] CF parameter set (optional)
3203 	 *	[tlv] parameter set (IBSS/TIM)
3204 	 *	[tlv] country (optional)
3205 	 *	[3] power control (optional)
3206 	 *	[5] channel switch announcement (CSA) (optional)
3207 	 * XXX TODO: Quiet
3208 	 * XXX TODO: IBSS DFS
3209 	 * XXX TODO: TPC report
3210 	 *	[tlv] extended rate phy (ERP)
3211 	 *	[tlv] extended supported rates
3212 	 *	[tlv] RSN parameters
3213 	 * XXX TODO: BSSLOAD
3214 	 * (XXX EDCA parameter set, QoS capability?)
3215 	 * XXX TODO: AP channel report
3216 	 *
3217 	 *	[tlv] HT capabilities
3218 	 *	[tlv] HT information
3219 	 *	XXX TODO: 20/40 BSS coexistence
3220 	 * Mesh:
3221 	 * XXX TODO: Meshid
3222 	 * XXX TODO: mesh config
3223 	 * XXX TODO: mesh awake window
3224 	 * XXX TODO: beacon timing (mesh, etc)
3225 	 * XXX TODO: MCCAOP Advertisement Overview
3226 	 * XXX TODO: MCCAOP Advertisement
3227 	 * XXX TODO: Mesh channel switch parameters
3228 	 * VHT:
3229 	 * XXX TODO: VHT capabilities
3230 	 * XXX TODO: VHT operation
3231 	 * XXX TODO: VHT transmit power envelope
3232 	 * XXX TODO: channel switch wrapper element
3233 	 * XXX TODO: extended BSS load element
3234 	 *
3235 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3236 	 *	[tlv] WPA parameters
3237 	 *	[tlv] WME parameters
3238 	 *	[tlv] Vendor OUI HT capabilities (optional)
3239 	 *	[tlv] Vendor OUI HT information (optional)
3240 	 *	[tlv] Atheros capabilities (optional)
3241 	 *	[tlv] TDMA parameters (optional)
3242 	 *	[tlv] Mesh ID (MBSS)
3243 	 *	[tlv] Mesh Conf (MBSS)
3244 	 *	[tlv] application data (optional)
3245 	 */
3246 
3247 	memset(bo, 0, sizeof(*bo));
3248 
3249 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3250 	frm += 8;
3251 	*(uint16_t *)frm = htole16(ni->ni_intval);
3252 	frm += 2;
3253 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3254 	bo->bo_caps = (uint16_t *)frm;
3255 	*(uint16_t *)frm = htole16(capinfo);
3256 	frm += 2;
3257 	*frm++ = IEEE80211_ELEMID_SSID;
3258 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3259 		*frm++ = ni->ni_esslen;
3260 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3261 		frm += ni->ni_esslen;
3262 	} else
3263 		*frm++ = 0;
3264 	frm = ieee80211_add_rates(frm, rs);
3265 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3266 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3267 		*frm++ = 1;
3268 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3269 	}
3270 	if (ic->ic_flags & IEEE80211_F_PCF) {
3271 		bo->bo_cfp = frm;
3272 		frm = ieee80211_add_cfparms(frm, ic);
3273 	}
3274 	bo->bo_tim = frm;
3275 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3276 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3277 		*frm++ = 2;
3278 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3279 		bo->bo_tim_len = 0;
3280 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3281 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3282 		/* TIM IE is the same for Mesh and Hostap */
3283 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3284 
3285 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3286 		tie->tim_len = 4;	/* length */
3287 		tie->tim_count = 0;	/* DTIM count */
3288 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3289 		tie->tim_bitctl = 0;	/* bitmap control */
3290 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3291 		frm += sizeof(struct ieee80211_tim_ie);
3292 		bo->bo_tim_len = 1;
3293 	}
3294 	bo->bo_tim_trailer = frm;
3295 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3296 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3297 		frm = ieee80211_add_countryie(frm, ic);
3298 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3299 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3300 			frm = ieee80211_add_powerconstraint(frm, vap);
3301 		bo->bo_csa = frm;
3302 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3303 			frm = ieee80211_add_csa(frm, vap);
3304 	} else
3305 		bo->bo_csa = frm;
3306 
3307 	bo->bo_quiet = NULL;
3308 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3309 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3310 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3311 		    (vap->iv_quiet == 1)) {
3312 			/*
3313 			 * We only insert the quiet IE offset if
3314 			 * the quiet IE is enabled.  Otherwise don't
3315 			 * put it here or we'll just overwrite
3316 			 * some other beacon contents.
3317 			 */
3318 			if (vap->iv_quiet) {
3319 				bo->bo_quiet = frm;
3320 				frm = ieee80211_add_quiet(frm,vap, 0);
3321 			}
3322 		}
3323 	}
3324 
3325 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3326 		bo->bo_erp = frm;
3327 		frm = ieee80211_add_erp(frm, ic);
3328 	}
3329 	frm = ieee80211_add_xrates(frm, rs);
3330 	frm = ieee80211_add_rsn(frm, vap);
3331 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3332 		frm = ieee80211_add_htcap(frm, ni);
3333 		bo->bo_htinfo = frm;
3334 		frm = ieee80211_add_htinfo(frm, ni);
3335 	}
3336 
3337 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3338 		frm = ieee80211_add_vhtcap(frm, ni);
3339 		bo->bo_vhtinfo = frm;
3340 		frm = ieee80211_add_vhtinfo(frm, ni);
3341 		/* Transmit power envelope */
3342 		/* Channel switch wrapper element */
3343 		/* Extended bss load element */
3344 	}
3345 
3346 	frm = ieee80211_add_wpa(frm, vap);
3347 	if (vap->iv_flags & IEEE80211_F_WME) {
3348 		bo->bo_wme = frm;
3349 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
3350 	}
3351 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3352 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3353 		frm = ieee80211_add_htcap_vendor(frm, ni);
3354 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3355 	}
3356 
3357 #ifdef IEEE80211_SUPPORT_SUPERG
3358 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3359 		bo->bo_ath = frm;
3360 		frm = ieee80211_add_athcaps(frm, ni);
3361 	}
3362 #endif
3363 #ifdef IEEE80211_SUPPORT_TDMA
3364 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3365 		bo->bo_tdma = frm;
3366 		frm = ieee80211_add_tdma(frm, vap);
3367 	}
3368 #endif
3369 	if (vap->iv_appie_beacon != NULL) {
3370 		bo->bo_appie = frm;
3371 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3372 		frm = add_appie(frm, vap->iv_appie_beacon);
3373 	}
3374 
3375 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3376 #ifdef IEEE80211_SUPPORT_MESH
3377 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3378 		frm = ieee80211_add_meshid(frm, vap);
3379 		bo->bo_meshconf = frm;
3380 		frm = ieee80211_add_meshconf(frm, vap);
3381 	}
3382 #endif
3383 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3384 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3385 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3386 }
3387 
3388 /*
3389  * Allocate a beacon frame and fillin the appropriate bits.
3390  */
3391 struct mbuf *
3392 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3393 {
3394 	struct ieee80211vap *vap = ni->ni_vap;
3395 	struct ieee80211com *ic = ni->ni_ic;
3396 	struct ifnet *ifp = vap->iv_ifp;
3397 	struct ieee80211_frame *wh;
3398 	struct mbuf *m;
3399 	int pktlen;
3400 	uint8_t *frm;
3401 
3402 	/*
3403 	 * Update the "We're putting the quiet IE in the beacon" state.
3404 	 */
3405 	if (vap->iv_quiet == 1)
3406 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3407 	else if (vap->iv_quiet == 0)
3408 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3409 
3410 	/*
3411 	 * beacon frame format
3412 	 *
3413 	 * Note: This needs updating for 802.11-2012.
3414 	 *
3415 	 *	[8] time stamp
3416 	 *	[2] beacon interval
3417 	 *	[2] cabability information
3418 	 *	[tlv] ssid
3419 	 *	[tlv] supported rates
3420 	 *	[3] parameter set (DS)
3421 	 *	[8] CF parameter set (optional)
3422 	 *	[tlv] parameter set (IBSS/TIM)
3423 	 *	[tlv] country (optional)
3424 	 *	[3] power control (optional)
3425 	 *	[5] channel switch announcement (CSA) (optional)
3426 	 *	[tlv] extended rate phy (ERP)
3427 	 *	[tlv] extended supported rates
3428 	 *	[tlv] RSN parameters
3429 	 *	[tlv] HT capabilities
3430 	 *	[tlv] HT information
3431 	 *	[tlv] VHT capabilities
3432 	 *	[tlv] VHT operation
3433 	 *	[tlv] Vendor OUI HT capabilities (optional)
3434 	 *	[tlv] Vendor OUI HT information (optional)
3435 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3436 	 *	[tlv] WPA parameters
3437 	 *	[tlv] WME parameters
3438 	 *	[tlv] TDMA parameters (optional)
3439 	 *	[tlv] Mesh ID (MBSS)
3440 	 *	[tlv] Mesh Conf (MBSS)
3441 	 *	[tlv] application data (optional)
3442 	 * NB: we allocate the max space required for the TIM bitmap.
3443 	 * XXX how big is this?
3444 	 */
3445 	pktlen =   8					/* time stamp */
3446 		 + sizeof(uint16_t)			/* beacon interval */
3447 		 + sizeof(uint16_t)			/* capabilities */
3448 		 + 2 + ni->ni_esslen			/* ssid */
3449 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3450 	         + 2 + 1				/* DS parameters */
3451 		 + 2 + 6				/* CF parameters */
3452 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3453 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3454 		 + 2 + 1				/* power control */
3455 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3456 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3457 		 + 2 + 1				/* ERP */
3458 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3459 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3460 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3461 		 /* XXX conditional? */
3462 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3463 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3464 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3465 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3466 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3467 			sizeof(struct ieee80211_wme_param) : 0)
3468 #ifdef IEEE80211_SUPPORT_SUPERG
3469 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3470 #endif
3471 #ifdef IEEE80211_SUPPORT_TDMA
3472 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3473 			sizeof(struct ieee80211_tdma_param) : 0)
3474 #endif
3475 #ifdef IEEE80211_SUPPORT_MESH
3476 		 + 2 + ni->ni_meshidlen
3477 		 + sizeof(struct ieee80211_meshconf_ie)
3478 #endif
3479 		 + IEEE80211_MAX_APPIE
3480 		 ;
3481 	m = ieee80211_getmgtframe(&frm,
3482 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3483 	if (m == NULL) {
3484 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3485 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3486 		vap->iv_stats.is_tx_nobuf++;
3487 		return NULL;
3488 	}
3489 	ieee80211_beacon_construct(m, frm, ni);
3490 
3491 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3492 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3493 	wh = mtod(m, struct ieee80211_frame *);
3494 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3495 	    IEEE80211_FC0_SUBTYPE_BEACON;
3496 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3497 	*(uint16_t *)wh->i_dur = 0;
3498 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3499 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3500 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3501 	*(uint16_t *)wh->i_seq = 0;
3502 
3503 	return m;
3504 }
3505 
3506 /*
3507  * Update the dynamic parts of a beacon frame based on the current state.
3508  */
3509 int
3510 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3511 {
3512 	struct ieee80211vap *vap = ni->ni_vap;
3513 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3514 	struct ieee80211com *ic = ni->ni_ic;
3515 	int len_changed = 0;
3516 	uint16_t capinfo;
3517 	struct ieee80211_frame *wh;
3518 	ieee80211_seq seqno;
3519 
3520 	IEEE80211_LOCK(ic);
3521 	/*
3522 	 * Handle 11h channel change when we've reached the count.
3523 	 * We must recalculate the beacon frame contents to account
3524 	 * for the new channel.  Note we do this only for the first
3525 	 * vap that reaches this point; subsequent vaps just update
3526 	 * their beacon state to reflect the recalculated channel.
3527 	 */
3528 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3529 	    vap->iv_csa_count == ic->ic_csa_count) {
3530 		vap->iv_csa_count = 0;
3531 		/*
3532 		 * Effect channel change before reconstructing the beacon
3533 		 * frame contents as many places reference ni_chan.
3534 		 */
3535 		if (ic->ic_csa_newchan != NULL)
3536 			ieee80211_csa_completeswitch(ic);
3537 		/*
3538 		 * NB: ieee80211_beacon_construct clears all pending
3539 		 * updates in bo_flags so we don't need to explicitly
3540 		 * clear IEEE80211_BEACON_CSA.
3541 		 */
3542 		ieee80211_beacon_construct(m,
3543 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3544 
3545 		/* XXX do WME aggressive mode processing? */
3546 		IEEE80211_UNLOCK(ic);
3547 		return 1;		/* just assume length changed */
3548 	}
3549 
3550 	/*
3551 	 * Handle the quiet time element being added and removed.
3552 	 * Again, for now we just cheat and reconstruct the whole
3553 	 * beacon - that way the gap is provided as appropriate.
3554 	 *
3555 	 * So, track whether we have already added the IE versus
3556 	 * whether we want to be adding the IE.
3557 	 */
3558 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3559 	    (vap->iv_quiet == 0)) {
3560 		/*
3561 		 * Quiet time beacon IE enabled, but it's disabled;
3562 		 * recalc
3563 		 */
3564 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3565 		ieee80211_beacon_construct(m,
3566 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3567 		/* XXX do WME aggressive mode processing? */
3568 		IEEE80211_UNLOCK(ic);
3569 		return 1;		/* just assume length changed */
3570 	}
3571 
3572 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3573 	    (vap->iv_quiet == 1)) {
3574 		/*
3575 		 * Quiet time beacon IE disabled, but it's now enabled;
3576 		 * recalc
3577 		 */
3578 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3579 		ieee80211_beacon_construct(m,
3580 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3581 		/* XXX do WME aggressive mode processing? */
3582 		IEEE80211_UNLOCK(ic);
3583 		return 1;		/* just assume length changed */
3584 	}
3585 
3586 	wh = mtod(m, struct ieee80211_frame *);
3587 
3588 	/*
3589 	 * XXX TODO Strictly speaking this should be incremented with the TX
3590 	 * lock held so as to serialise access to the non-qos TID sequence
3591 	 * number space.
3592 	 *
3593 	 * If the driver identifies it does its own TX seqno management then
3594 	 * we can skip this (and still not do the TX seqno.)
3595 	 */
3596 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3597 	*(uint16_t *)&wh->i_seq[0] =
3598 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3599 	M_SEQNO_SET(m, seqno);
3600 
3601 	/* XXX faster to recalculate entirely or just changes? */
3602 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3603 	*bo->bo_caps = htole16(capinfo);
3604 
3605 	if (vap->iv_flags & IEEE80211_F_WME) {
3606 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3607 
3608 		/*
3609 		 * Check for aggressive mode change.  When there is
3610 		 * significant high priority traffic in the BSS
3611 		 * throttle back BE traffic by using conservative
3612 		 * parameters.  Otherwise BE uses aggressive params
3613 		 * to optimize performance of legacy/non-QoS traffic.
3614 		 */
3615 		if (wme->wme_flags & WME_F_AGGRMODE) {
3616 			if (wme->wme_hipri_traffic >
3617 			    wme->wme_hipri_switch_thresh) {
3618 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3619 				    "%s: traffic %u, disable aggressive mode\n",
3620 				    __func__, wme->wme_hipri_traffic);
3621 				wme->wme_flags &= ~WME_F_AGGRMODE;
3622 				ieee80211_wme_updateparams_locked(vap);
3623 				wme->wme_hipri_traffic =
3624 					wme->wme_hipri_switch_hysteresis;
3625 			} else
3626 				wme->wme_hipri_traffic = 0;
3627 		} else {
3628 			if (wme->wme_hipri_traffic <=
3629 			    wme->wme_hipri_switch_thresh) {
3630 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3631 				    "%s: traffic %u, enable aggressive mode\n",
3632 				    __func__, wme->wme_hipri_traffic);
3633 				wme->wme_flags |= WME_F_AGGRMODE;
3634 				ieee80211_wme_updateparams_locked(vap);
3635 				wme->wme_hipri_traffic = 0;
3636 			} else
3637 				wme->wme_hipri_traffic =
3638 					wme->wme_hipri_switch_hysteresis;
3639 		}
3640 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3641 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3642 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3643 		}
3644 	}
3645 
3646 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3647 		ieee80211_ht_update_beacon(vap, bo);
3648 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3649 	}
3650 #ifdef IEEE80211_SUPPORT_TDMA
3651 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3652 		/*
3653 		 * NB: the beacon is potentially updated every TBTT.
3654 		 */
3655 		ieee80211_tdma_update_beacon(vap, bo);
3656 	}
3657 #endif
3658 #ifdef IEEE80211_SUPPORT_MESH
3659 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3660 		ieee80211_mesh_update_beacon(vap, bo);
3661 #endif
3662 
3663 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3664 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3665 		struct ieee80211_tim_ie *tie =
3666 			(struct ieee80211_tim_ie *) bo->bo_tim;
3667 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3668 			u_int timlen, timoff, i;
3669 			/*
3670 			 * ATIM/DTIM needs updating.  If it fits in the
3671 			 * current space allocated then just copy in the
3672 			 * new bits.  Otherwise we need to move any trailing
3673 			 * data to make room.  Note that we know there is
3674 			 * contiguous space because ieee80211_beacon_allocate
3675 			 * insures there is space in the mbuf to write a
3676 			 * maximal-size virtual bitmap (based on iv_max_aid).
3677 			 */
3678 			/*
3679 			 * Calculate the bitmap size and offset, copy any
3680 			 * trailer out of the way, and then copy in the
3681 			 * new bitmap and update the information element.
3682 			 * Note that the tim bitmap must contain at least
3683 			 * one byte and any offset must be even.
3684 			 */
3685 			if (vap->iv_ps_pending != 0) {
3686 				timoff = 128;		/* impossibly large */
3687 				for (i = 0; i < vap->iv_tim_len; i++)
3688 					if (vap->iv_tim_bitmap[i]) {
3689 						timoff = i &~ 1;
3690 						break;
3691 					}
3692 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3693 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3694 					if (vap->iv_tim_bitmap[i])
3695 						break;
3696 				timlen = 1 + (i - timoff);
3697 			} else {
3698 				timoff = 0;
3699 				timlen = 1;
3700 			}
3701 
3702 			/*
3703 			 * TODO: validate this!
3704 			 */
3705 			if (timlen != bo->bo_tim_len) {
3706 				/* copy up/down trailer */
3707 				int adjust = tie->tim_bitmap+timlen
3708 					   - bo->bo_tim_trailer;
3709 				ovbcopy(bo->bo_tim_trailer,
3710 				    bo->bo_tim_trailer+adjust,
3711 				    bo->bo_tim_trailer_len);
3712 				bo->bo_tim_trailer += adjust;
3713 				bo->bo_erp += adjust;
3714 				bo->bo_htinfo += adjust;
3715 				bo->bo_vhtinfo += adjust;
3716 #ifdef IEEE80211_SUPPORT_SUPERG
3717 				bo->bo_ath += adjust;
3718 #endif
3719 #ifdef IEEE80211_SUPPORT_TDMA
3720 				bo->bo_tdma += adjust;
3721 #endif
3722 #ifdef IEEE80211_SUPPORT_MESH
3723 				bo->bo_meshconf += adjust;
3724 #endif
3725 				bo->bo_appie += adjust;
3726 				bo->bo_wme += adjust;
3727 				bo->bo_csa += adjust;
3728 				bo->bo_quiet += adjust;
3729 				bo->bo_tim_len = timlen;
3730 
3731 				/* update information element */
3732 				tie->tim_len = 3 + timlen;
3733 				tie->tim_bitctl = timoff;
3734 				len_changed = 1;
3735 			}
3736 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3737 				bo->bo_tim_len);
3738 
3739 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3740 
3741 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3742 				"%s: TIM updated, pending %u, off %u, len %u\n",
3743 				__func__, vap->iv_ps_pending, timoff, timlen);
3744 		}
3745 		/* count down DTIM period */
3746 		if (tie->tim_count == 0)
3747 			tie->tim_count = tie->tim_period - 1;
3748 		else
3749 			tie->tim_count--;
3750 		/* update state for buffered multicast frames on DTIM */
3751 		if (mcast && tie->tim_count == 0)
3752 			tie->tim_bitctl |= 1;
3753 		else
3754 			tie->tim_bitctl &= ~1;
3755 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3756 			struct ieee80211_csa_ie *csa =
3757 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3758 
3759 			/*
3760 			 * Insert or update CSA ie.  If we're just starting
3761 			 * to count down to the channel switch then we need
3762 			 * to insert the CSA ie.  Otherwise we just need to
3763 			 * drop the count.  The actual change happens above
3764 			 * when the vap's count reaches the target count.
3765 			 */
3766 			if (vap->iv_csa_count == 0) {
3767 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3768 				bo->bo_erp += sizeof(*csa);
3769 				bo->bo_htinfo += sizeof(*csa);
3770 				bo->bo_vhtinfo += sizeof(*csa);
3771 				bo->bo_wme += sizeof(*csa);
3772 #ifdef IEEE80211_SUPPORT_SUPERG
3773 				bo->bo_ath += sizeof(*csa);
3774 #endif
3775 #ifdef IEEE80211_SUPPORT_TDMA
3776 				bo->bo_tdma += sizeof(*csa);
3777 #endif
3778 #ifdef IEEE80211_SUPPORT_MESH
3779 				bo->bo_meshconf += sizeof(*csa);
3780 #endif
3781 				bo->bo_appie += sizeof(*csa);
3782 				bo->bo_csa_trailer_len += sizeof(*csa);
3783 				bo->bo_quiet += sizeof(*csa);
3784 				bo->bo_tim_trailer_len += sizeof(*csa);
3785 				m->m_len += sizeof(*csa);
3786 				m->m_pkthdr.len += sizeof(*csa);
3787 
3788 				ieee80211_add_csa(bo->bo_csa, vap);
3789 			} else
3790 				csa->csa_count--;
3791 			vap->iv_csa_count++;
3792 			/* NB: don't clear IEEE80211_BEACON_CSA */
3793 		}
3794 
3795 		/*
3796 		 * Only add the quiet time IE if we've enabled it
3797 		 * as appropriate.
3798 		 */
3799 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3800 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3801 			if (vap->iv_quiet &&
3802 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
3803 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
3804 			}
3805 		}
3806 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3807 			/*
3808 			 * ERP element needs updating.
3809 			 */
3810 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3811 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3812 		}
3813 #ifdef IEEE80211_SUPPORT_SUPERG
3814 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3815 			ieee80211_add_athcaps(bo->bo_ath, ni);
3816 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3817 		}
3818 #endif
3819 	}
3820 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3821 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3822 		int aielen;
3823 		uint8_t *frm;
3824 
3825 		aielen = 0;
3826 		if (aie != NULL)
3827 			aielen += aie->ie_len;
3828 		if (aielen != bo->bo_appie_len) {
3829 			/* copy up/down trailer */
3830 			int adjust = aielen - bo->bo_appie_len;
3831 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3832 				bo->bo_tim_trailer_len);
3833 			bo->bo_tim_trailer += adjust;
3834 			bo->bo_appie += adjust;
3835 			bo->bo_appie_len = aielen;
3836 
3837 			len_changed = 1;
3838 		}
3839 		frm = bo->bo_appie;
3840 		if (aie != NULL)
3841 			frm  = add_appie(frm, aie);
3842 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3843 	}
3844 	IEEE80211_UNLOCK(ic);
3845 
3846 	return len_changed;
3847 }
3848 
3849 /*
3850  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3851  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3852  * header at the front that must be stripped before prepending the
3853  * LLC followed by the Ethernet header passed in (with an Ethernet
3854  * type that specifies the payload size).
3855  */
3856 struct mbuf *
3857 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3858 	const struct ether_header *eh)
3859 {
3860 	struct llc *llc;
3861 	uint16_t payload;
3862 
3863 	/* XXX optimize by combining m_adj+M_PREPEND */
3864 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3865 	llc = mtod(m, struct llc *);
3866 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3867 	llc->llc_control = LLC_UI;
3868 	llc->llc_snap.org_code[0] = 0;
3869 	llc->llc_snap.org_code[1] = 0;
3870 	llc->llc_snap.org_code[2] = 0;
3871 	llc->llc_snap.ether_type = eh->ether_type;
3872 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3873 
3874 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3875 	if (m == NULL) {		/* XXX cannot happen */
3876 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3877 			"%s: no space for ether_header\n", __func__);
3878 		vap->iv_stats.is_tx_nobuf++;
3879 		return NULL;
3880 	}
3881 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3882 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3883 	return m;
3884 }
3885 
3886 /*
3887  * Complete an mbuf transmission.
3888  *
3889  * For now, this simply processes a completed frame after the
3890  * driver has completed it's transmission and/or retransmission.
3891  * It assumes the frame is an 802.11 encapsulated frame.
3892  *
3893  * Later on it will grow to become the exit path for a given frame
3894  * from the driver and, depending upon how it's been encapsulated
3895  * and already transmitted, it may end up doing A-MPDU retransmission,
3896  * power save requeuing, etc.
3897  *
3898  * In order for the above to work, the driver entry point to this
3899  * must not hold any driver locks.  Thus, the driver needs to delay
3900  * any actual mbuf completion until it can release said locks.
3901  *
3902  * This frees the mbuf and if the mbuf has a node reference,
3903  * the node reference will be freed.
3904  */
3905 void
3906 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3907 {
3908 
3909 	if (ni != NULL) {
3910 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3911 
3912 		if (status == 0) {
3913 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3914 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3915 			if (m->m_flags & M_MCAST)
3916 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3917 		} else
3918 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3919 		if (m->m_flags & M_TXCB)
3920 			ieee80211_process_callback(ni, m, status);
3921 		ieee80211_free_node(ni);
3922 	}
3923 	m_freem(m);
3924 }
3925