xref: /freebsd/sys/net80211/ieee80211_output.c (revision ba3c1f5972d7b90feb6e6da47905ff2757e0fe57)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2001 Atsushi Onoe
5  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31 
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_wlan.h"
35 
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/endian.h>
42 
43 #include <sys/socket.h>
44 
45 #include <net/bpf.h>
46 #include <net/ethernet.h>
47 #include <net/if.h>
48 #include <net/if_var.h>
49 #include <net/if_llc.h>
50 #include <net/if_media.h>
51 #include <net/if_private.h>
52 #include <net/if_vlan_var.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_regdomain.h>
56 #ifdef IEEE80211_SUPPORT_SUPERG
57 #include <net80211/ieee80211_superg.h>
58 #endif
59 #ifdef IEEE80211_SUPPORT_TDMA
60 #include <net80211/ieee80211_tdma.h>
61 #endif
62 #include <net80211/ieee80211_wds.h>
63 #include <net80211/ieee80211_mesh.h>
64 #include <net80211/ieee80211_vht.h>
65 
66 #if defined(INET) || defined(INET6)
67 #include <netinet/in.h>
68 #endif
69 
70 #ifdef INET
71 #include <netinet/if_ether.h>
72 #include <netinet/in_systm.h>
73 #include <netinet/ip.h>
74 #endif
75 #ifdef INET6
76 #include <netinet/ip6.h>
77 #endif
78 
79 #include <security/mac/mac_framework.h>
80 
81 #define	ETHER_HEADER_COPY(dst, src) \
82 	memcpy(dst, src, sizeof(struct ether_header))
83 
84 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
85 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
86 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
87 
88 #ifdef IEEE80211_DEBUG
89 /*
90  * Decide if an outbound management frame should be
91  * printed when debugging is enabled.  This filters some
92  * of the less interesting frames that come frequently
93  * (e.g. beacons).
94  */
95 static __inline int
96 doprint(struct ieee80211vap *vap, int subtype)
97 {
98 	switch (subtype) {
99 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
100 		return (vap->iv_opmode == IEEE80211_M_IBSS);
101 	}
102 	return 1;
103 }
104 #endif
105 
106 /*
107  * Transmit a frame to the given destination on the given VAP.
108  *
109  * It's up to the caller to figure out the details of who this
110  * is going to and resolving the node.
111  *
112  * This routine takes care of queuing it for power save,
113  * A-MPDU state stuff, fast-frames state stuff, encapsulation
114  * if required, then passing it up to the driver layer.
115  *
116  * This routine (for now) consumes the mbuf and frees the node
117  * reference; it ideally will return a TX status which reflects
118  * whether the mbuf was consumed or not, so the caller can
119  * free the mbuf (if appropriate) and the node reference (again,
120  * if appropriate.)
121  */
122 int
123 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
124     struct ieee80211_node *ni)
125 {
126 	struct ieee80211com *ic = vap->iv_ic;
127 	struct ifnet *ifp = vap->iv_ifp;
128 	int mcast;
129 	int do_ampdu = 0;
130 #ifdef IEEE80211_SUPPORT_SUPERG
131 	int do_amsdu = 0;
132 	int do_ampdu_amsdu = 0;
133 	int no_ampdu = 1; /* Will be set to 0 if ampdu is active */
134 	int do_ff = 0;
135 #endif
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		if (ieee80211_pwrsave(ni, m) != 0)
146 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147 		ieee80211_free_node(ni);
148 
149 		/*
150 		 * We queued it fine, so tell the upper layer
151 		 * that we consumed it.
152 		 */
153 		return (0);
154 	}
155 	/* calculate priority so drivers can find the tx queue */
156 	if (ieee80211_classify(ni, m)) {
157 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158 		    ni->ni_macaddr, NULL,
159 		    "%s", "classification failure");
160 		vap->iv_stats.is_tx_classify++;
161 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162 		m_freem(m);
163 		ieee80211_free_node(ni);
164 
165 		/* XXX better status? */
166 		return (0);
167 	}
168 	/*
169 	 * Stash the node pointer.  Note that we do this after
170 	 * any call to ieee80211_dwds_mcast because that code
171 	 * uses any existing value for rcvif to identify the
172 	 * interface it (might have been) received on.
173 	 */
174 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
175 	m->m_pkthdr.rcvif = (void *)ni;
176 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
177 
178 	BPF_MTAP(ifp, m);		/* 802.3 tx */
179 
180 	/*
181 	 * Figure out if we can do A-MPDU, A-MSDU or FF.
182 	 *
183 	 * A-MPDU depends upon vap/node config.
184 	 * A-MSDU depends upon vap/node config.
185 	 * FF depends upon vap config, IE and whether
186 	 *  it's 11abg (and not 11n/11ac/etc.)
187 	 *
188 	 * Note that these flags indiciate whether we can do
189 	 * it at all, rather than the situation (eg traffic type.)
190 	 */
191 	do_ampdu = ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
192 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX));
193 #ifdef IEEE80211_SUPPORT_SUPERG
194 	do_amsdu = ((ni->ni_flags & IEEE80211_NODE_AMSDU_TX) &&
195 	    (vap->iv_flags_ht & IEEE80211_FHT_AMSDU_TX));
196 	do_ff =
197 	    ((ni->ni_flags & IEEE80211_NODE_HT) == 0) &&
198 	    ((ni->ni_flags & IEEE80211_NODE_VHT) == 0) &&
199 	    (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF));
200 #endif
201 
202 	/*
203 	 * Check if A-MPDU tx aggregation is setup or if we
204 	 * should try to enable it.  The sta must be associated
205 	 * with HT and A-MPDU enabled for use.  When the policy
206 	 * routine decides we should enable A-MPDU we issue an
207 	 * ADDBA request and wait for a reply.  The frame being
208 	 * encapsulated will go out w/o using A-MPDU, or possibly
209 	 * it might be collected by the driver and held/retransmit.
210 	 * The default ic_ampdu_enable routine handles staggering
211 	 * ADDBA requests in case the receiver NAK's us or we are
212 	 * otherwise unable to establish a BA stream.
213 	 *
214 	 * Don't treat group-addressed frames as candidates for aggregation;
215 	 * net80211 doesn't support 802.11aa-2012 and so group addressed
216 	 * frames will always have sequence numbers allocated from the NON_QOS
217 	 * TID.
218 	 */
219 	if (do_ampdu) {
220 		if ((m->m_flags & M_EAPOL) == 0 && (! mcast)) {
221 			int tid = WME_AC_TO_TID(M_WME_GETAC(m));
222 			struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
223 
224 			ieee80211_txampdu_count_packet(tap);
225 			if (IEEE80211_AMPDU_RUNNING(tap)) {
226 				/*
227 				 * Operational, mark frame for aggregation.
228 				 *
229 				 * XXX do tx aggregation here
230 				 */
231 				m->m_flags |= M_AMPDU_MPDU;
232 			} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
233 			    ic->ic_ampdu_enable(ni, tap)) {
234 				/*
235 				 * Not negotiated yet, request service.
236 				 */
237 				ieee80211_ampdu_request(ni, tap);
238 				/* XXX hold frame for reply? */
239 			}
240 			/*
241 			 * Now update the no-ampdu flag.  A-MPDU may have been
242 			 * started or administratively disabled above; so now we
243 			 * know whether we're running yet or not.
244 			 *
245 			 * This will let us know whether we should be doing A-MSDU
246 			 * at this point.  We only do A-MSDU if we're either not
247 			 * doing A-MPDU, or A-MPDU is NACKed, or A-MPDU + A-MSDU
248 			 * is available.
249 			 *
250 			 * Whilst here, update the amsdu-ampdu flag.  The above may
251 			 * have also set or cleared the amsdu-in-ampdu txa_flags
252 			 * combination so we can correctly do A-MPDU + A-MSDU.
253 			 */
254 #ifdef IEEE80211_SUPPORT_SUPERG
255 			no_ampdu = (! IEEE80211_AMPDU_RUNNING(tap)
256 			    || (IEEE80211_AMPDU_NACKED(tap)));
257 			do_ampdu_amsdu = IEEE80211_AMPDU_RUNNING_AMSDU(tap);
258 #endif
259 		}
260 	}
261 
262 #ifdef IEEE80211_SUPPORT_SUPERG
263 	/*
264 	 * Check for AMSDU/FF; queue for aggregation
265 	 *
266 	 * Note: we don't bother trying to do fast frames or
267 	 * A-MSDU encapsulation for 802.3 drivers.  Now, we
268 	 * likely could do it for FF (because it's a magic
269 	 * atheros tunnel LLC type) but I don't think we're going
270 	 * to really need to.  For A-MSDU we'd have to set the
271 	 * A-MSDU QoS bit in the wifi header, so we just plain
272 	 * can't do it.
273 	 */
274 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
275 		if ((! mcast) &&
276 		    (do_ampdu_amsdu || (no_ampdu && do_amsdu)) &&
277 		    ieee80211_amsdu_tx_ok(ni)) {
278 			m = ieee80211_amsdu_check(ni, m);
279 			if (m == NULL) {
280 				/* NB: any ni ref held on stageq */
281 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
282 				    "%s: amsdu_check queued frame\n",
283 				    __func__);
284 				return (0);
285 			}
286 		} else if ((! mcast) && do_ff) {
287 			m = ieee80211_ff_check(ni, m);
288 			if (m == NULL) {
289 				/* NB: any ni ref held on stageq */
290 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
291 				    "%s: ff_check queued frame\n",
292 				    __func__);
293 				return (0);
294 			}
295 		}
296 	}
297 #endif /* IEEE80211_SUPPORT_SUPERG */
298 
299 	/*
300 	 * Grab the TX lock - serialise the TX process from this
301 	 * point (where TX state is being checked/modified)
302 	 * through to driver queue.
303 	 */
304 	IEEE80211_TX_LOCK(ic);
305 
306 	/*
307 	 * XXX make the encap and transmit code a separate function
308 	 * so things like the FF (and later A-MSDU) path can just call
309 	 * it for flushed frames.
310 	 */
311 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
312 		/*
313 		 * Encapsulate the packet in prep for transmission.
314 		 */
315 		m = ieee80211_encap(vap, ni, m);
316 		if (m == NULL) {
317 			/* NB: stat+msg handled in ieee80211_encap */
318 			IEEE80211_TX_UNLOCK(ic);
319 			ieee80211_free_node(ni);
320 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
321 			return (ENOBUFS);
322 		}
323 	}
324 	(void) ieee80211_parent_xmitpkt(ic, m);
325 
326 	/*
327 	 * Unlock at this point - no need to hold it across
328 	 * ieee80211_free_node() (ie, the comlock)
329 	 */
330 	IEEE80211_TX_UNLOCK(ic);
331 	ic->ic_lastdata = ticks;
332 
333 	return (0);
334 }
335 
336 /*
337  * Send the given mbuf through the given vap.
338  *
339  * This consumes the mbuf regardless of whether the transmit
340  * was successful or not.
341  *
342  * This does none of the initial checks that ieee80211_start()
343  * does (eg CAC timeout, interface wakeup) - the caller must
344  * do this first.
345  */
346 static int
347 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
348 {
349 #define	IS_DWDS(vap) \
350 	(vap->iv_opmode == IEEE80211_M_WDS && \
351 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
352 	struct ieee80211com *ic = vap->iv_ic;
353 	struct ifnet *ifp = vap->iv_ifp;
354 	struct ieee80211_node *ni;
355 	struct ether_header *eh;
356 
357 	/*
358 	 * Cancel any background scan.
359 	 */
360 	if (ic->ic_flags & IEEE80211_F_SCAN)
361 		ieee80211_cancel_anyscan(vap);
362 	/*
363 	 * Find the node for the destination so we can do
364 	 * things like power save and fast frames aggregation.
365 	 *
366 	 * NB: past this point various code assumes the first
367 	 *     mbuf has the 802.3 header present (and contiguous).
368 	 */
369 	ni = NULL;
370 	if (m->m_len < sizeof(struct ether_header) &&
371 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
372 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
373 		    "discard frame, %s\n", "m_pullup failed");
374 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
375 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
376 		return (ENOBUFS);
377 	}
378 	eh = mtod(m, struct ether_header *);
379 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
380 		if (IS_DWDS(vap)) {
381 			/*
382 			 * Only unicast frames from the above go out
383 			 * DWDS vaps; multicast frames are handled by
384 			 * dispatching the frame as it comes through
385 			 * the AP vap (see below).
386 			 */
387 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
388 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
389 			vap->iv_stats.is_dwds_mcast++;
390 			m_freem(m);
391 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
392 			/* XXX better status? */
393 			return (ENOBUFS);
394 		}
395 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
396 			/*
397 			 * Spam DWDS vap's w/ multicast traffic.
398 			 */
399 			/* XXX only if dwds in use? */
400 			ieee80211_dwds_mcast(vap, m);
401 		}
402 	}
403 #ifdef IEEE80211_SUPPORT_MESH
404 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
405 #endif
406 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
407 		if (ni == NULL) {
408 			/* NB: ieee80211_find_txnode does stat+msg */
409 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
410 			m_freem(m);
411 			/* XXX better status? */
412 			return (ENOBUFS);
413 		}
414 		if (ni->ni_associd == 0 &&
415 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
416 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
417 			    eh->ether_dhost, NULL,
418 			    "sta not associated (type 0x%04x)",
419 			    htons(eh->ether_type));
420 			vap->iv_stats.is_tx_notassoc++;
421 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
422 			m_freem(m);
423 			ieee80211_free_node(ni);
424 			/* XXX better status? */
425 			return (ENOBUFS);
426 		}
427 #ifdef IEEE80211_SUPPORT_MESH
428 	} else {
429 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
430 			/*
431 			 * Proxy station only if configured.
432 			 */
433 			if (!ieee80211_mesh_isproxyena(vap)) {
434 				IEEE80211_DISCARD_MAC(vap,
435 				    IEEE80211_MSG_OUTPUT |
436 				    IEEE80211_MSG_MESH,
437 				    eh->ether_dhost, NULL,
438 				    "%s", "proxy not enabled");
439 				vap->iv_stats.is_mesh_notproxy++;
440 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
441 				m_freem(m);
442 				/* XXX better status? */
443 				return (ENOBUFS);
444 			}
445 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
446 			    "forward frame from DS SA(%6D), DA(%6D)\n",
447 			    eh->ether_shost, ":",
448 			    eh->ether_dhost, ":");
449 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
450 		}
451 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
452 		if (ni == NULL) {
453 			/*
454 			 * NB: ieee80211_mesh_discover holds/disposes
455 			 * frame (e.g. queueing on path discovery).
456 			 */
457 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
458 			/* XXX better status? */
459 			return (ENOBUFS);
460 		}
461 	}
462 #endif
463 
464 	/*
465 	 * We've resolved the sender, so attempt to transmit it.
466 	 */
467 
468 	if (vap->iv_state == IEEE80211_S_SLEEP) {
469 		/*
470 		 * In power save; queue frame and then  wakeup device
471 		 * for transmit.
472 		 */
473 		ic->ic_lastdata = ticks;
474 		if (ieee80211_pwrsave(ni, m) != 0)
475 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
476 		ieee80211_free_node(ni);
477 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
478 		return (0);
479 	}
480 
481 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
482 		return (ENOBUFS);
483 	return (0);
484 #undef	IS_DWDS
485 }
486 
487 /*
488  * Start method for vap's.  All packets from the stack come
489  * through here.  We handle common processing of the packets
490  * before dispatching them to the underlying device.
491  *
492  * if_transmit() requires that the mbuf be consumed by this call
493  * regardless of the return condition.
494  */
495 int
496 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
497 {
498 	struct ieee80211vap *vap = ifp->if_softc;
499 	struct ieee80211com *ic = vap->iv_ic;
500 
501 	/*
502 	 * No data frames go out unless we're running.
503 	 * Note in particular this covers CAC and CSA
504 	 * states (though maybe we should check muting
505 	 * for CSA).
506 	 */
507 	if (vap->iv_state != IEEE80211_S_RUN &&
508 	    vap->iv_state != IEEE80211_S_SLEEP) {
509 		IEEE80211_LOCK(ic);
510 		/* re-check under the com lock to avoid races */
511 		if (vap->iv_state != IEEE80211_S_RUN &&
512 		    vap->iv_state != IEEE80211_S_SLEEP) {
513 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
514 			    "%s: ignore queue, in %s state\n",
515 			    __func__, ieee80211_state_name[vap->iv_state]);
516 			vap->iv_stats.is_tx_badstate++;
517 			IEEE80211_UNLOCK(ic);
518 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
519 			m_freem(m);
520 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
521 			return (ENETDOWN);
522 		}
523 		IEEE80211_UNLOCK(ic);
524 	}
525 
526 	/*
527 	 * Sanitize mbuf flags for net80211 use.  We cannot
528 	 * clear M_PWR_SAV or M_MORE_DATA because these may
529 	 * be set for frames that are re-submitted from the
530 	 * power save queue.
531 	 *
532 	 * NB: This must be done before ieee80211_classify as
533 	 *     it marks EAPOL in frames with M_EAPOL.
534 	 */
535 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
536 
537 	/*
538 	 * Bump to the packet transmission path.
539 	 * The mbuf will be consumed here.
540 	 */
541 	return (ieee80211_start_pkt(vap, m));
542 }
543 
544 void
545 ieee80211_vap_qflush(struct ifnet *ifp)
546 {
547 
548 	/* Empty for now */
549 }
550 
551 /*
552  * 802.11 raw output routine.
553  *
554  * XXX TODO: this (and other send routines) should correctly
555  * XXX keep the pwr mgmt bit set if it decides to call into the
556  * XXX driver to send a frame whilst the state is SLEEP.
557  *
558  * Otherwise the peer may decide that we're awake and flood us
559  * with traffic we are still too asleep to receive!
560  */
561 int
562 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
563     struct mbuf *m, const struct ieee80211_bpf_params *params)
564 {
565 	struct ieee80211com *ic = vap->iv_ic;
566 	int error;
567 
568 	/*
569 	 * Set node - the caller has taken a reference, so ensure
570 	 * that the mbuf has the same node value that
571 	 * it would if it were going via the normal path.
572 	 */
573 	MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0);
574 	m->m_pkthdr.rcvif = (void *)ni;
575 
576 	/*
577 	 * Attempt to add bpf transmit parameters.
578 	 *
579 	 * For now it's ok to fail; the raw_xmit api still takes
580 	 * them as an option.
581 	 *
582 	 * Later on when ic_raw_xmit() has params removed,
583 	 * they'll have to be added - so fail the transmit if
584 	 * they can't be.
585 	 */
586 	if (params)
587 		(void) ieee80211_add_xmit_params(m, params);
588 
589 	error = ic->ic_raw_xmit(ni, m, params);
590 	if (error) {
591 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
592 		ieee80211_free_node(ni);
593 	}
594 	return (error);
595 }
596 
597 static int
598 ieee80211_validate_frame(struct mbuf *m,
599     const struct ieee80211_bpf_params *params)
600 {
601 	struct ieee80211_frame *wh;
602 	int type;
603 
604 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
605 		return (EINVAL);
606 
607 	wh = mtod(m, struct ieee80211_frame *);
608 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
609 	    IEEE80211_FC0_VERSION_0)
610 		return (EINVAL);
611 
612 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
613 	if (type != IEEE80211_FC0_TYPE_DATA) {
614 		if ((wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) !=
615 		    IEEE80211_FC1_DIR_NODS)
616 			return (EINVAL);
617 
618 		if (type != IEEE80211_FC0_TYPE_MGT &&
619 		    (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) != 0)
620 			return (EINVAL);
621 
622 		/* XXX skip other field checks? */
623 	}
624 
625 	if ((params && (params->ibp_flags & IEEE80211_BPF_CRYPTO) != 0) ||
626 	    (IEEE80211_IS_PROTECTED(wh))) {
627 		int subtype;
628 
629 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
630 
631 		/*
632 		 * See IEEE Std 802.11-2012,
633 		 * 8.2.4.1.9 'Protected Frame field'
634 		 */
635 		/* XXX no support for robust management frames yet. */
636 		if (!(type == IEEE80211_FC0_TYPE_DATA ||
637 		    (type == IEEE80211_FC0_TYPE_MGT &&
638 		     subtype == IEEE80211_FC0_SUBTYPE_AUTH)))
639 			return (EINVAL);
640 
641 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
642 	}
643 
644 	if (m->m_pkthdr.len < ieee80211_anyhdrsize(wh))
645 		return (EINVAL);
646 
647 	return (0);
648 }
649 
650 static int
651 ieee80211_validate_rate(struct ieee80211_node *ni, uint8_t rate)
652 {
653 	struct ieee80211com *ic = ni->ni_ic;
654 
655 	if (IEEE80211_IS_HT_RATE(rate)) {
656 		if ((ic->ic_htcaps & IEEE80211_HTC_HT) == 0)
657 			return (EINVAL);
658 
659 		rate = IEEE80211_RV(rate);
660 		if (rate <= 31) {
661 			if (rate > ic->ic_txstream * 8 - 1)
662 				return (EINVAL);
663 
664 			return (0);
665 		}
666 
667 		if (rate == 32) {
668 			if ((ic->ic_htcaps & IEEE80211_HTC_TXMCS32) == 0)
669 				return (EINVAL);
670 
671 			return (0);
672 		}
673 
674 		if ((ic->ic_htcaps & IEEE80211_HTC_TXUNEQUAL) == 0)
675 			return (EINVAL);
676 
677 		switch (ic->ic_txstream) {
678 		case 0:
679 		case 1:
680 			return (EINVAL);
681 		case 2:
682 			if (rate > 38)
683 				return (EINVAL);
684 
685 			return (0);
686 		case 3:
687 			if (rate > 52)
688 				return (EINVAL);
689 
690 			return (0);
691 		case 4:
692 		default:
693 			if (rate > 76)
694 				return (EINVAL);
695 
696 			return (0);
697 		}
698 	}
699 
700 	if (!ieee80211_isratevalid(ic->ic_rt, rate))
701 		return (EINVAL);
702 
703 	return (0);
704 }
705 
706 static int
707 ieee80211_sanitize_rates(struct ieee80211_node *ni, struct mbuf *m,
708     const struct ieee80211_bpf_params *params)
709 {
710 	int error;
711 
712 	if (!params)
713 		return (0);	/* nothing to do */
714 
715 	/* NB: most drivers assume that ibp_rate0 is set (!= 0). */
716 	if (params->ibp_rate0 != 0) {
717 		error = ieee80211_validate_rate(ni, params->ibp_rate0);
718 		if (error != 0)
719 			return (error);
720 	} else {
721 		/* XXX pre-setup some default (e.g., mgmt / mcast) rate */
722 		/* XXX __DECONST? */
723 		(void) m;
724 	}
725 
726 	if (params->ibp_rate1 != 0 &&
727 	    (error = ieee80211_validate_rate(ni, params->ibp_rate1)) != 0)
728 		return (error);
729 
730 	if (params->ibp_rate2 != 0 &&
731 	    (error = ieee80211_validate_rate(ni, params->ibp_rate2)) != 0)
732 		return (error);
733 
734 	if (params->ibp_rate3 != 0 &&
735 	    (error = ieee80211_validate_rate(ni, params->ibp_rate3)) != 0)
736 		return (error);
737 
738 	return (0);
739 }
740 
741 /*
742  * 802.11 output routine. This is (currently) used only to
743  * connect bpf write calls to the 802.11 layer for injecting
744  * raw 802.11 frames.
745  */
746 int
747 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
748 	const struct sockaddr *dst, struct route *ro)
749 {
750 #define senderr(e) do { error = (e); goto bad;} while (0)
751 	const struct ieee80211_bpf_params *params = NULL;
752 	struct ieee80211_node *ni = NULL;
753 	struct ieee80211vap *vap;
754 	struct ieee80211_frame *wh;
755 	struct ieee80211com *ic = NULL;
756 	int error;
757 	int ret;
758 
759 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
760 		/*
761 		 * Short-circuit requests if the vap is marked OACTIVE
762 		 * as this can happen because a packet came down through
763 		 * ieee80211_start before the vap entered RUN state in
764 		 * which case it's ok to just drop the frame.  This
765 		 * should not be necessary but callers of if_output don't
766 		 * check OACTIVE.
767 		 */
768 		senderr(ENETDOWN);
769 	}
770 	vap = ifp->if_softc;
771 	ic = vap->iv_ic;
772 	/*
773 	 * Hand to the 802.3 code if not tagged as
774 	 * a raw 802.11 frame.
775 	 */
776 	if (dst->sa_family != AF_IEEE80211)
777 		return vap->iv_output(ifp, m, dst, ro);
778 #ifdef MAC
779 	error = mac_ifnet_check_transmit(ifp, m);
780 	if (error)
781 		senderr(error);
782 #endif
783 	if (ifp->if_flags & IFF_MONITOR)
784 		senderr(ENETDOWN);
785 	if (!IFNET_IS_UP_RUNNING(ifp))
786 		senderr(ENETDOWN);
787 	if (vap->iv_state == IEEE80211_S_CAC) {
788 		IEEE80211_DPRINTF(vap,
789 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
790 		    "block %s frame in CAC state\n", "raw data");
791 		vap->iv_stats.is_tx_badstate++;
792 		senderr(EIO);		/* XXX */
793 	} else if (vap->iv_state == IEEE80211_S_SCAN)
794 		senderr(EIO);
795 	/* XXX bypass bridge, pfil, carp, etc. */
796 
797 	/*
798 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
799 	 * present by setting the sa_len field of the sockaddr (yes,
800 	 * this is a hack).
801 	 * NB: we assume sa_data is suitably aligned to cast.
802 	 */
803 	if (dst->sa_len != 0)
804 		params = (const struct ieee80211_bpf_params *)dst->sa_data;
805 
806 	error = ieee80211_validate_frame(m, params);
807 	if (error != 0)
808 		senderr(error);
809 
810 	wh = mtod(m, struct ieee80211_frame *);
811 
812 	/* locate destination node */
813 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
814 	case IEEE80211_FC1_DIR_NODS:
815 	case IEEE80211_FC1_DIR_FROMDS:
816 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
817 		break;
818 	case IEEE80211_FC1_DIR_TODS:
819 	case IEEE80211_FC1_DIR_DSTODS:
820 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
821 		break;
822 	default:
823 		senderr(EDOOFUS);
824 	}
825 	if (ni == NULL) {
826 		/*
827 		 * Permit packets w/ bpf params through regardless
828 		 * (see below about sa_len).
829 		 */
830 		if (dst->sa_len == 0)
831 			senderr(EHOSTUNREACH);
832 		ni = ieee80211_ref_node(vap->iv_bss);
833 	}
834 
835 	/*
836 	 * Sanitize mbuf for net80211 flags leaked from above.
837 	 *
838 	 * NB: This must be done before ieee80211_classify as
839 	 *     it marks EAPOL in frames with M_EAPOL.
840 	 */
841 	m->m_flags &= ~M_80211_TX;
842 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
843 
844 	if (IEEE80211_IS_DATA(wh)) {
845 		/* calculate priority so drivers can find the tx queue */
846 		if (ieee80211_classify(ni, m))
847 			senderr(EIO);		/* XXX */
848 
849 		/* NB: ieee80211_encap does not include 802.11 header */
850 		IEEE80211_NODE_STAT_ADD(ni, tx_bytes,
851 		    m->m_pkthdr.len - ieee80211_hdrsize(wh));
852 	} else
853 		M_WME_SETAC(m, WME_AC_BE);
854 
855 	error = ieee80211_sanitize_rates(ni, m, params);
856 	if (error != 0)
857 		senderr(error);
858 
859 	IEEE80211_NODE_STAT(ni, tx_data);
860 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
861 		IEEE80211_NODE_STAT(ni, tx_mcast);
862 		m->m_flags |= M_MCAST;
863 	} else
864 		IEEE80211_NODE_STAT(ni, tx_ucast);
865 
866 	IEEE80211_TX_LOCK(ic);
867 	ret = ieee80211_raw_output(vap, ni, m, params);
868 	IEEE80211_TX_UNLOCK(ic);
869 	return (ret);
870 bad:
871 	if (m != NULL)
872 		m_freem(m);
873 	if (ni != NULL)
874 		ieee80211_free_node(ni);
875 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
876 	return error;
877 #undef senderr
878 }
879 
880 /*
881  * Set the direction field and address fields of an outgoing
882  * frame.  Note this should be called early on in constructing
883  * a frame as it sets i_fc[1]; other bits can then be or'd in.
884  */
885 void
886 ieee80211_send_setup(
887 	struct ieee80211_node *ni,
888 	struct mbuf *m,
889 	int type, int tid,
890 	const uint8_t sa[IEEE80211_ADDR_LEN],
891 	const uint8_t da[IEEE80211_ADDR_LEN],
892 	const uint8_t bssid[IEEE80211_ADDR_LEN])
893 {
894 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
895 	struct ieee80211vap *vap = ni->ni_vap;
896 	struct ieee80211_tx_ampdu *tap;
897 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
898 	ieee80211_seq seqno;
899 
900 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
901 
902 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
903 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
904 		switch (vap->iv_opmode) {
905 		case IEEE80211_M_STA:
906 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
907 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
908 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
909 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
910 			break;
911 		case IEEE80211_M_IBSS:
912 		case IEEE80211_M_AHDEMO:
913 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
914 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
915 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
916 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
917 			break;
918 		case IEEE80211_M_HOSTAP:
919 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
920 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
921 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
922 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
923 			break;
924 		case IEEE80211_M_WDS:
925 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
926 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
927 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
928 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
929 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
930 			break;
931 		case IEEE80211_M_MBSS:
932 #ifdef IEEE80211_SUPPORT_MESH
933 			if (IEEE80211_IS_MULTICAST(da)) {
934 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
935 				/* XXX next hop */
936 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
937 				IEEE80211_ADDR_COPY(wh->i_addr2,
938 				    vap->iv_myaddr);
939 			} else {
940 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
941 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
942 				IEEE80211_ADDR_COPY(wh->i_addr2,
943 				    vap->iv_myaddr);
944 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
945 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
946 			}
947 #endif
948 			break;
949 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
950 			break;
951 		}
952 	} else {
953 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
954 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
955 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
956 #ifdef IEEE80211_SUPPORT_MESH
957 		if (vap->iv_opmode == IEEE80211_M_MBSS)
958 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
959 		else
960 #endif
961 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
962 	}
963 	*(uint16_t *)&wh->i_dur[0] = 0;
964 
965 	/*
966 	 * XXX TODO: this is what the TX lock is for.
967 	 * Here we're incrementing sequence numbers, and they
968 	 * need to be in lock-step with what the driver is doing
969 	 * both in TX ordering and crypto encap (IV increment.)
970 	 *
971 	 * If the driver does seqno itself, then we can skip
972 	 * assigning sequence numbers here, and we can avoid
973 	 * requiring the TX lock.
974 	 */
975 	tap = &ni->ni_tx_ampdu[tid];
976 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) {
977 		m->m_flags |= M_AMPDU_MPDU;
978 
979 		/* NB: zero out i_seq field (for s/w encryption etc) */
980 		*(uint16_t *)&wh->i_seq[0] = 0;
981 	} else {
982 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
983 				      type & IEEE80211_FC0_SUBTYPE_MASK))
984 			/*
985 			 * 802.11-2012 9.3.2.10 - QoS multicast frames
986 			 * come out of a different seqno space.
987 			 */
988 			if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
989 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
990 			} else {
991 				seqno = ni->ni_txseqs[tid]++;
992 			}
993 		else
994 			seqno = 0;
995 
996 		*(uint16_t *)&wh->i_seq[0] =
997 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
998 		M_SEQNO_SET(m, seqno);
999 	}
1000 
1001 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1002 		m->m_flags |= M_MCAST;
1003 #undef WH4
1004 }
1005 
1006 /*
1007  * Send a management frame to the specified node.  The node pointer
1008  * must have a reference as the pointer will be passed to the driver
1009  * and potentially held for a long time.  If the frame is successfully
1010  * dispatched to the driver, then it is responsible for freeing the
1011  * reference (and potentially free'ing up any associated storage);
1012  * otherwise deal with reclaiming any reference (on error).
1013  */
1014 int
1015 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
1016 	struct ieee80211_bpf_params *params)
1017 {
1018 	struct ieee80211vap *vap = ni->ni_vap;
1019 	struct ieee80211com *ic = ni->ni_ic;
1020 	struct ieee80211_frame *wh;
1021 	int ret;
1022 
1023 	KASSERT(ni != NULL, ("null node"));
1024 
1025 	if (vap->iv_state == IEEE80211_S_CAC) {
1026 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1027 		    ni, "block %s frame in CAC state",
1028 			ieee80211_mgt_subtype_name(type));
1029 		vap->iv_stats.is_tx_badstate++;
1030 		ieee80211_free_node(ni);
1031 		m_freem(m);
1032 		return EIO;		/* XXX */
1033 	}
1034 
1035 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
1036 	if (m == NULL) {
1037 		ieee80211_free_node(ni);
1038 		return ENOMEM;
1039 	}
1040 
1041 	IEEE80211_TX_LOCK(ic);
1042 
1043 	wh = mtod(m, struct ieee80211_frame *);
1044 	ieee80211_send_setup(ni, m,
1045 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
1046 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1047 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
1048 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
1049 		    "encrypting frame (%s)", __func__);
1050 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1051 	}
1052 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1053 
1054 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
1055 	M_WME_SETAC(m, params->ibp_pri);
1056 
1057 #ifdef IEEE80211_DEBUG
1058 	/* avoid printing too many frames */
1059 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
1060 	    ieee80211_msg_dumppkts(vap)) {
1061 		ieee80211_note(vap, "[%s] send %s on channel %u\n",
1062 		    ether_sprintf(wh->i_addr1),
1063 		    ieee80211_mgt_subtype_name(type),
1064 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
1065 	}
1066 #endif
1067 	IEEE80211_NODE_STAT(ni, tx_mgmt);
1068 
1069 	ret = ieee80211_raw_output(vap, ni, m, params);
1070 	IEEE80211_TX_UNLOCK(ic);
1071 	return (ret);
1072 }
1073 
1074 static void
1075 ieee80211_nulldata_transmitted(struct ieee80211_node *ni, void *arg,
1076     int status)
1077 {
1078 	struct ieee80211vap *vap = ni->ni_vap;
1079 
1080 	wakeup(vap);
1081 }
1082 
1083 /*
1084  * Send a null data frame to the specified node.  If the station
1085  * is setup for QoS then a QoS Null Data frame is constructed.
1086  * If this is a WDS station then a 4-address frame is constructed.
1087  *
1088  * NB: the caller is assumed to have setup a node reference
1089  *     for use; this is necessary to deal with a race condition
1090  *     when probing for inactive stations.  Like ieee80211_mgmt_output
1091  *     we must cleanup any node reference on error;  however we
1092  *     can safely just unref it as we know it will never be the
1093  *     last reference to the node.
1094  */
1095 int
1096 ieee80211_send_nulldata(struct ieee80211_node *ni)
1097 {
1098 	struct ieee80211vap *vap = ni->ni_vap;
1099 	struct ieee80211com *ic = ni->ni_ic;
1100 	struct mbuf *m;
1101 	struct ieee80211_frame *wh;
1102 	int hdrlen;
1103 	uint8_t *frm;
1104 	int ret;
1105 
1106 	if (vap->iv_state == IEEE80211_S_CAC) {
1107 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
1108 		    ni, "block %s frame in CAC state", "null data");
1109 		ieee80211_unref_node(&ni);
1110 		vap->iv_stats.is_tx_badstate++;
1111 		return EIO;		/* XXX */
1112 	}
1113 
1114 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
1115 		hdrlen = sizeof(struct ieee80211_qosframe);
1116 	else
1117 		hdrlen = sizeof(struct ieee80211_frame);
1118 	/* NB: only WDS vap's get 4-address frames */
1119 	if (vap->iv_opmode == IEEE80211_M_WDS)
1120 		hdrlen += IEEE80211_ADDR_LEN;
1121 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1122 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
1123 
1124 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
1125 	if (m == NULL) {
1126 		/* XXX debug msg */
1127 		ieee80211_unref_node(&ni);
1128 		vap->iv_stats.is_tx_nobuf++;
1129 		return ENOMEM;
1130 	}
1131 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
1132 	    ("leading space %zd", M_LEADINGSPACE(m)));
1133 	M_PREPEND(m, hdrlen, IEEE80211_M_NOWAIT);
1134 	if (m == NULL) {
1135 		/* NB: cannot happen */
1136 		ieee80211_free_node(ni);
1137 		return ENOMEM;
1138 	}
1139 
1140 	IEEE80211_TX_LOCK(ic);
1141 
1142 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
1143 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
1144 		const int tid = WME_AC_TO_TID(WME_AC_BE);
1145 		uint8_t *qos;
1146 
1147 		ieee80211_send_setup(ni, m,
1148 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
1149 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1150 
1151 		if (vap->iv_opmode == IEEE80211_M_WDS)
1152 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1153 		else
1154 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1155 		qos[0] = tid & IEEE80211_QOS_TID;
1156 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
1157 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1158 		qos[1] = 0;
1159 	} else {
1160 		ieee80211_send_setup(ni, m,
1161 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
1162 		    IEEE80211_NONQOS_TID,
1163 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
1164 	}
1165 	if (vap->iv_opmode != IEEE80211_M_WDS) {
1166 		/* NB: power management bit is never sent by an AP */
1167 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1168 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
1169 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
1170 	}
1171 	if ((ic->ic_flags & IEEE80211_F_SCAN) &&
1172 	    (ni->ni_flags & IEEE80211_NODE_PWR_MGT)) {
1173 		ieee80211_add_callback(m, ieee80211_nulldata_transmitted,
1174 		    NULL);
1175 	}
1176 	m->m_len = m->m_pkthdr.len = hdrlen;
1177 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1178 
1179 	M_WME_SETAC(m, WME_AC_BE);
1180 
1181 	IEEE80211_NODE_STAT(ni, tx_data);
1182 
1183 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
1184 	    "send %snull data frame on channel %u, pwr mgt %s",
1185 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
1186 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
1187 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
1188 
1189 	ret = ieee80211_raw_output(vap, ni, m, NULL);
1190 	IEEE80211_TX_UNLOCK(ic);
1191 	return (ret);
1192 }
1193 
1194 /*
1195  * Assign priority to a frame based on any vlan tag assigned
1196  * to the station and/or any Diffserv setting in an IP header.
1197  * Finally, if an ACM policy is setup (in station mode) it's
1198  * applied.
1199  */
1200 int
1201 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
1202 {
1203 	const struct ether_header *eh = NULL;
1204 	uint16_t ether_type;
1205 	int v_wme_ac, d_wme_ac, ac;
1206 
1207 	if (__predict_false(m->m_flags & M_ENCAP)) {
1208 		struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
1209 		struct llc *llc;
1210 		int hdrlen, subtype;
1211 
1212 		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1213 		if (subtype & IEEE80211_FC0_SUBTYPE_NODATA) {
1214 			ac = WME_AC_BE;
1215 			goto done;
1216 		}
1217 
1218 		hdrlen = ieee80211_hdrsize(wh);
1219 		if (m->m_pkthdr.len < hdrlen + sizeof(*llc))
1220 			return 1;
1221 
1222 		llc = (struct llc *)mtodo(m, hdrlen);
1223 		if (llc->llc_dsap != LLC_SNAP_LSAP ||
1224 		    llc->llc_ssap != LLC_SNAP_LSAP ||
1225 		    llc->llc_control != LLC_UI ||
1226 		    llc->llc_snap.org_code[0] != 0 ||
1227 		    llc->llc_snap.org_code[1] != 0 ||
1228 		    llc->llc_snap.org_code[2] != 0)
1229 			return 1;
1230 
1231 		ether_type = llc->llc_snap.ether_type;
1232 	} else {
1233 		eh = mtod(m, struct ether_header *);
1234 		ether_type = eh->ether_type;
1235 	}
1236 
1237 	/*
1238 	 * Always promote PAE/EAPOL frames to high priority.
1239 	 */
1240 	if (ether_type == htons(ETHERTYPE_PAE)) {
1241 		/* NB: mark so others don't need to check header */
1242 		m->m_flags |= M_EAPOL;
1243 		ac = WME_AC_VO;
1244 		goto done;
1245 	}
1246 	/*
1247 	 * Non-qos traffic goes to BE.
1248 	 */
1249 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
1250 		ac = WME_AC_BE;
1251 		goto done;
1252 	}
1253 
1254 	/*
1255 	 * If node has a vlan tag then all traffic
1256 	 * to it must have a matching tag.
1257 	 */
1258 	v_wme_ac = 0;
1259 	if (ni->ni_vlan != 0) {
1260 		 if ((m->m_flags & M_VLANTAG) == 0) {
1261 			IEEE80211_NODE_STAT(ni, tx_novlantag);
1262 			return 1;
1263 		}
1264 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
1265 		    EVL_VLANOFTAG(ni->ni_vlan)) {
1266 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
1267 			return 1;
1268 		}
1269 		/* map vlan priority to AC */
1270 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1271 	}
1272 
1273 	if (eh == NULL)
1274 		goto no_eh;
1275 
1276 	/* XXX m_copydata may be too slow for fast path */
1277 	switch (ntohs(eh->ether_type)) {
1278 #ifdef INET
1279 	case ETHERTYPE_IP:
1280 	{
1281 		uint8_t tos;
1282 		/*
1283 		 * IP frame, map the DSCP bits from the TOS field.
1284 		 */
1285 		/* NB: ip header may not be in first mbuf */
1286 		m_copydata(m, sizeof(struct ether_header) +
1287 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1288 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1289 		d_wme_ac = TID_TO_WME_AC(tos);
1290 		break;
1291 	}
1292 #endif
1293 #ifdef INET6
1294 	case ETHERTYPE_IPV6:
1295 	{
1296 		uint32_t flow;
1297 		uint8_t tos;
1298 		/*
1299 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1300 		 */
1301 		m_copydata(m, sizeof(struct ether_header) +
1302 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1303 		    (caddr_t) &flow);
1304 		tos = (uint8_t)(ntohl(flow) >> 20);
1305 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1306 		d_wme_ac = TID_TO_WME_AC(tos);
1307 		break;
1308 	}
1309 #endif
1310 	default:
1311 no_eh:
1312 		d_wme_ac = WME_AC_BE;
1313 		break;
1314 	}
1315 
1316 	/*
1317 	 * Use highest priority AC.
1318 	 */
1319 	if (v_wme_ac > d_wme_ac)
1320 		ac = v_wme_ac;
1321 	else
1322 		ac = d_wme_ac;
1323 
1324 	/*
1325 	 * Apply ACM policy.
1326 	 */
1327 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1328 		static const int acmap[4] = {
1329 			WME_AC_BK,	/* WME_AC_BE */
1330 			WME_AC_BK,	/* WME_AC_BK */
1331 			WME_AC_BE,	/* WME_AC_VI */
1332 			WME_AC_VI,	/* WME_AC_VO */
1333 		};
1334 		struct ieee80211com *ic = ni->ni_ic;
1335 
1336 		while (ac != WME_AC_BK &&
1337 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1338 			ac = acmap[ac];
1339 	}
1340 done:
1341 	M_WME_SETAC(m, ac);
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Insure there is sufficient contiguous space to encapsulate the
1347  * 802.11 data frame.  If room isn't already there, arrange for it.
1348  * Drivers and cipher modules assume we have done the necessary work
1349  * and fail rudely if they don't find the space they need.
1350  */
1351 struct mbuf *
1352 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1353 	struct ieee80211_key *key, struct mbuf *m)
1354 {
1355 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1356 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1357 
1358 	if (key != NULL) {
1359 		/* XXX belongs in crypto code? */
1360 		needed_space += key->wk_cipher->ic_header;
1361 		/* XXX frags */
1362 		/*
1363 		 * When crypto is being done in the host we must insure
1364 		 * the data are writable for the cipher routines; clone
1365 		 * a writable mbuf chain.
1366 		 * XXX handle SWMIC specially
1367 		 */
1368 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1369 			m = m_unshare(m, IEEE80211_M_NOWAIT);
1370 			if (m == NULL) {
1371 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1372 				    "%s: cannot get writable mbuf\n", __func__);
1373 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1374 				return NULL;
1375 			}
1376 		}
1377 	}
1378 	/*
1379 	 * We know we are called just before stripping an Ethernet
1380 	 * header and prepending an LLC header.  This means we know
1381 	 * there will be
1382 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1383 	 * bytes recovered to which we need additional space for the
1384 	 * 802.11 header and any crypto header.
1385 	 */
1386 	/* XXX check trailing space and copy instead? */
1387 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1388 		struct mbuf *n = m_gethdr(IEEE80211_M_NOWAIT, m->m_type);
1389 		if (n == NULL) {
1390 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1391 			    "%s: cannot expand storage\n", __func__);
1392 			vap->iv_stats.is_tx_nobuf++;
1393 			m_freem(m);
1394 			return NULL;
1395 		}
1396 		KASSERT(needed_space <= MHLEN,
1397 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1398 		/*
1399 		 * Setup new mbuf to have leading space to prepend the
1400 		 * 802.11 header and any crypto header bits that are
1401 		 * required (the latter are added when the driver calls
1402 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1403 		 */
1404 		/* NB: must be first 'cuz it clobbers m_data */
1405 		m_move_pkthdr(n, m);
1406 		n->m_len = 0;			/* NB: m_gethdr does not set */
1407 		n->m_data += needed_space;
1408 		/*
1409 		 * Pull up Ethernet header to create the expected layout.
1410 		 * We could use m_pullup but that's overkill (i.e. we don't
1411 		 * need the actual data) and it cannot fail so do it inline
1412 		 * for speed.
1413 		 */
1414 		/* NB: struct ether_header is known to be contiguous */
1415 		n->m_len += sizeof(struct ether_header);
1416 		m->m_len -= sizeof(struct ether_header);
1417 		m->m_data += sizeof(struct ether_header);
1418 		/*
1419 		 * Replace the head of the chain.
1420 		 */
1421 		n->m_next = m;
1422 		m = n;
1423 	}
1424 	return m;
1425 #undef TO_BE_RECLAIMED
1426 }
1427 
1428 /*
1429  * Return the transmit key to use in sending a unicast frame.
1430  * If a unicast key is set we use that.  When no unicast key is set
1431  * we fall back to the default transmit key.
1432  */
1433 static __inline struct ieee80211_key *
1434 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1435 	struct ieee80211_node *ni)
1436 {
1437 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1438 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1439 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1440 			return NULL;
1441 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1442 	} else {
1443 		return &ni->ni_ucastkey;
1444 	}
1445 }
1446 
1447 /*
1448  * Return the transmit key to use in sending a multicast frame.
1449  * Multicast traffic always uses the group key which is installed as
1450  * the default tx key.
1451  */
1452 static __inline struct ieee80211_key *
1453 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1454 	struct ieee80211_node *ni)
1455 {
1456 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1457 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1458 		return NULL;
1459 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1460 }
1461 
1462 /*
1463  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1464  * If an error is encountered NULL is returned.  The caller is required
1465  * to provide a node reference and pullup the ethernet header in the
1466  * first mbuf.
1467  *
1468  * NB: Packet is assumed to be processed by ieee80211_classify which
1469  *     marked EAPOL frames w/ M_EAPOL.
1470  */
1471 struct mbuf *
1472 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1473     struct mbuf *m)
1474 {
1475 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1476 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1477 	struct ieee80211com *ic = ni->ni_ic;
1478 #ifdef IEEE80211_SUPPORT_MESH
1479 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1480 	struct ieee80211_meshcntl_ae10 *mc;
1481 	struct ieee80211_mesh_route *rt = NULL;
1482 	int dir = -1;
1483 #endif
1484 	struct ether_header eh;
1485 	struct ieee80211_frame *wh;
1486 	struct ieee80211_key *key;
1487 	struct llc *llc;
1488 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr, is_mcast;
1489 	ieee80211_seq seqno;
1490 	int meshhdrsize, meshae;
1491 	uint8_t *qos;
1492 	int is_amsdu = 0;
1493 
1494 	IEEE80211_TX_LOCK_ASSERT(ic);
1495 
1496 	is_mcast = !! (m->m_flags & (M_MCAST | M_BCAST));
1497 
1498 	/*
1499 	 * Copy existing Ethernet header to a safe place.  The
1500 	 * rest of the code assumes it's ok to strip it when
1501 	 * reorganizing state for the final encapsulation.
1502 	 */
1503 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1504 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1505 
1506 	/*
1507 	 * Insure space for additional headers.  First identify
1508 	 * transmit key to use in calculating any buffer adjustments
1509 	 * required.  This is also used below to do privacy
1510 	 * encapsulation work.  Then calculate the 802.11 header
1511 	 * size and any padding required by the driver.
1512 	 *
1513 	 * Note key may be NULL if we fall back to the default
1514 	 * transmit key and that is not set.  In that case the
1515 	 * buffer may not be expanded as needed by the cipher
1516 	 * routines, but they will/should discard it.
1517 	 */
1518 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1519 		if (vap->iv_opmode == IEEE80211_M_STA ||
1520 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1521 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1522 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1523 			key = ieee80211_crypto_getucastkey(vap, ni);
1524 		} else if ((vap->iv_opmode == IEEE80211_M_WDS) &&
1525 		    (! (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) {
1526 			/*
1527 			 * Use ucastkey for DWDS transmit nodes, multicast
1528 			 * or otherwise.
1529 			 *
1530 			 * This is required to ensure that multicast frames
1531 			 * from a DWDS AP to a DWDS STA is encrypted with
1532 			 * a key that can actually work.
1533 			 *
1534 			 * There's no default key for multicast traffic
1535 			 * on a DWDS WDS VAP node (note NOT the DWDS enabled
1536 			 * AP VAP, the dynamically created per-STA WDS node)
1537 			 * so encap fails and transmit fails.
1538 			 */
1539 			key = ieee80211_crypto_getucastkey(vap, ni);
1540 		} else {
1541 			key = ieee80211_crypto_getmcastkey(vap, ni);
1542 		}
1543 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1544 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1545 			    eh.ether_dhost,
1546 			    "no default transmit key (%s) deftxkey %u",
1547 			    __func__, vap->iv_def_txkey);
1548 			vap->iv_stats.is_tx_nodefkey++;
1549 			goto bad;
1550 		}
1551 	} else
1552 		key = NULL;
1553 	/*
1554 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1555 	 * frames so suppress use.  This may be an issue if other
1556 	 * ap's require all data frames to be QoS-encapsulated
1557 	 * once negotiated in which case we'll need to make this
1558 	 * configurable.
1559 	 *
1560 	 * Don't send multicast QoS frames.
1561 	 * Technically multicast frames can be QoS if all stations in the
1562 	 * BSS are also QoS.
1563 	 *
1564 	 * NB: mesh data frames are QoS, including multicast frames.
1565 	 */
1566 	addqos =
1567 	    (((is_mcast == 0) && (ni->ni_flags &
1568 	     (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))) ||
1569 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1570 	    (m->m_flags & M_EAPOL) == 0;
1571 
1572 	if (addqos)
1573 		hdrsize = sizeof(struct ieee80211_qosframe);
1574 	else
1575 		hdrsize = sizeof(struct ieee80211_frame);
1576 #ifdef IEEE80211_SUPPORT_MESH
1577 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1578 		/*
1579 		 * Mesh data frames are encapsulated according to the
1580 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1581 		 * o Group Addressed data (aka multicast) originating
1582 		 *   at the local sta are sent w/ 3-address format and
1583 		 *   address extension mode 00
1584 		 * o Individually Addressed data (aka unicast) originating
1585 		 *   at the local sta are sent w/ 4-address format and
1586 		 *   address extension mode 00
1587 		 * o Group Addressed data forwarded from a non-mesh sta are
1588 		 *   sent w/ 3-address format and address extension mode 01
1589 		 * o Individually Address data from another sta are sent
1590 		 *   w/ 4-address format and address extension mode 10
1591 		 */
1592 		is4addr = 0;		/* NB: don't use, disable */
1593 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1594 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1595 			KASSERT(rt != NULL, ("route is NULL"));
1596 			dir = IEEE80211_FC1_DIR_DSTODS;
1597 			hdrsize += IEEE80211_ADDR_LEN;
1598 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1599 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1600 				    vap->iv_myaddr)) {
1601 					IEEE80211_NOTE_MAC(vap,
1602 					    IEEE80211_MSG_MESH,
1603 					    eh.ether_dhost,
1604 					    "%s", "trying to send to ourself");
1605 					goto bad;
1606 				}
1607 				meshae = IEEE80211_MESH_AE_10;
1608 				meshhdrsize =
1609 				    sizeof(struct ieee80211_meshcntl_ae10);
1610 			} else {
1611 				meshae = IEEE80211_MESH_AE_00;
1612 				meshhdrsize =
1613 				    sizeof(struct ieee80211_meshcntl);
1614 			}
1615 		} else {
1616 			dir = IEEE80211_FC1_DIR_FROMDS;
1617 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1618 				/* proxy group */
1619 				meshae = IEEE80211_MESH_AE_01;
1620 				meshhdrsize =
1621 				    sizeof(struct ieee80211_meshcntl_ae01);
1622 			} else {
1623 				/* group */
1624 				meshae = IEEE80211_MESH_AE_00;
1625 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1626 			}
1627 		}
1628 	} else {
1629 #endif
1630 		/*
1631 		 * 4-address frames need to be generated for:
1632 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1633 		 * o packets sent through a vap marked for relaying
1634 		 *   (e.g. a station operating with dynamic WDS)
1635 		 */
1636 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1637 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1638 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1639 		if (is4addr)
1640 			hdrsize += IEEE80211_ADDR_LEN;
1641 		meshhdrsize = meshae = 0;
1642 #ifdef IEEE80211_SUPPORT_MESH
1643 	}
1644 #endif
1645 	/*
1646 	 * Honor driver DATAPAD requirement.
1647 	 */
1648 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1649 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1650 	else
1651 		hdrspace = hdrsize;
1652 
1653 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1654 		/*
1655 		 * Normal frame.
1656 		 */
1657 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1658 		if (m == NULL) {
1659 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1660 			goto bad;
1661 		}
1662 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1663 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1664 		llc = mtod(m, struct llc *);
1665 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1666 		llc->llc_control = LLC_UI;
1667 		llc->llc_snap.org_code[0] = 0;
1668 		llc->llc_snap.org_code[1] = 0;
1669 		llc->llc_snap.org_code[2] = 0;
1670 		llc->llc_snap.ether_type = eh.ether_type;
1671 	} else {
1672 #ifdef IEEE80211_SUPPORT_SUPERG
1673 		/*
1674 		 * Aggregated frame.  Check if it's for AMSDU or FF.
1675 		 *
1676 		 * XXX TODO: IEEE80211_NODE_AMSDU* isn't implemented
1677 		 * anywhere for some reason.  But, since 11n requires
1678 		 * AMSDU RX, we can just assume "11n" == "AMSDU".
1679 		 */
1680 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, "%s: called; M_FF\n", __func__);
1681 		if (ieee80211_amsdu_tx_ok(ni)) {
1682 			m = ieee80211_amsdu_encap(vap, m, hdrspace + meshhdrsize, key);
1683 			is_amsdu = 1;
1684 		} else {
1685 			m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1686 		}
1687 		if (m == NULL)
1688 #endif
1689 			goto bad;
1690 	}
1691 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1692 
1693 	M_PREPEND(m, hdrspace + meshhdrsize, IEEE80211_M_NOWAIT);
1694 	if (m == NULL) {
1695 		vap->iv_stats.is_tx_nobuf++;
1696 		goto bad;
1697 	}
1698 	wh = mtod(m, struct ieee80211_frame *);
1699 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1700 	*(uint16_t *)wh->i_dur = 0;
1701 	qos = NULL;	/* NB: quiet compiler */
1702 	if (is4addr) {
1703 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1704 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1705 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1706 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1707 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1708 	} else switch (vap->iv_opmode) {
1709 	case IEEE80211_M_STA:
1710 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1711 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1712 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1713 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1714 		break;
1715 	case IEEE80211_M_IBSS:
1716 	case IEEE80211_M_AHDEMO:
1717 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1718 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1719 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1720 		/*
1721 		 * NB: always use the bssid from iv_bss as the
1722 		 *     neighbor's may be stale after an ibss merge
1723 		 */
1724 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1725 		break;
1726 	case IEEE80211_M_HOSTAP:
1727 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1728 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1729 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1730 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1731 		break;
1732 #ifdef IEEE80211_SUPPORT_MESH
1733 	case IEEE80211_M_MBSS:
1734 		/* NB: offset by hdrspace to deal with DATAPAD */
1735 		mc = (struct ieee80211_meshcntl_ae10 *)
1736 		     (mtod(m, uint8_t *) + hdrspace);
1737 		wh->i_fc[1] = dir;
1738 		switch (meshae) {
1739 		case IEEE80211_MESH_AE_00:	/* no proxy */
1740 			mc->mc_flags = 0;
1741 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1742 				IEEE80211_ADDR_COPY(wh->i_addr1,
1743 				    ni->ni_macaddr);
1744 				IEEE80211_ADDR_COPY(wh->i_addr2,
1745 				    vap->iv_myaddr);
1746 				IEEE80211_ADDR_COPY(wh->i_addr3,
1747 				    eh.ether_dhost);
1748 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1749 				    eh.ether_shost);
1750 				qos =((struct ieee80211_qosframe_addr4 *)
1751 				    wh)->i_qos;
1752 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1753 				 /* mcast */
1754 				IEEE80211_ADDR_COPY(wh->i_addr1,
1755 				    eh.ether_dhost);
1756 				IEEE80211_ADDR_COPY(wh->i_addr2,
1757 				    vap->iv_myaddr);
1758 				IEEE80211_ADDR_COPY(wh->i_addr3,
1759 				    eh.ether_shost);
1760 				qos = ((struct ieee80211_qosframe *)
1761 				    wh)->i_qos;
1762 			}
1763 			break;
1764 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1765 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1766 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1767 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1768 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1769 			mc->mc_flags = 1;
1770 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1771 			    eh.ether_shost);
1772 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1773 			break;
1774 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1775 			KASSERT(rt != NULL, ("route is NULL"));
1776 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1777 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1778 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1779 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1780 			mc->mc_flags = IEEE80211_MESH_AE_10;
1781 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1782 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1783 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1784 			break;
1785 		default:
1786 			KASSERT(0, ("meshae %d", meshae));
1787 			break;
1788 		}
1789 		mc->mc_ttl = ms->ms_ttl;
1790 		ms->ms_seq++;
1791 		le32enc(mc->mc_seq, ms->ms_seq);
1792 		break;
1793 #endif
1794 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1795 	default:
1796 		goto bad;
1797 	}
1798 	if (m->m_flags & M_MORE_DATA)
1799 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1800 	if (addqos) {
1801 		int ac, tid;
1802 
1803 		if (is4addr) {
1804 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1805 		/* NB: mesh case handled earlier */
1806 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1807 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1808 		ac = M_WME_GETAC(m);
1809 		/* map from access class/queue to 11e header priorty value */
1810 		tid = WME_AC_TO_TID(ac);
1811 		qos[0] = tid & IEEE80211_QOS_TID;
1812 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1813 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1814 #ifdef IEEE80211_SUPPORT_MESH
1815 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1816 			qos[1] = IEEE80211_QOS_MC;
1817 		else
1818 #endif
1819 			qos[1] = 0;
1820 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS_DATA;
1821 
1822 		/*
1823 		 * If this is an A-MSDU then ensure we set the
1824 		 * relevant field.
1825 		 */
1826 		if (is_amsdu)
1827 			qos[0] |= IEEE80211_QOS_AMSDU;
1828 
1829 		/*
1830 		 * XXX TODO TX lock is needed for atomic updates of sequence
1831 		 * numbers.  If the driver does it, then don't do it here;
1832 		 * and we don't need the TX lock held.
1833 		 */
1834 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1835 			/*
1836 			 * 802.11-2012 9.3.2.10 -
1837 			 *
1838 			 * If this is a multicast frame then we need
1839 			 * to ensure that the sequence number comes from
1840 			 * a separate seqno space and not the TID space.
1841 			 *
1842 			 * Otherwise multicast frames may actually cause
1843 			 * holes in the TX blockack window space and
1844 			 * upset various things.
1845 			 */
1846 			if (IEEE80211_IS_MULTICAST(wh->i_addr1))
1847 				seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1848 			else
1849 				seqno = ni->ni_txseqs[tid]++;
1850 
1851 			/*
1852 			 * NB: don't assign a sequence # to potential
1853 			 * aggregates; we expect this happens at the
1854 			 * point the frame comes off any aggregation q
1855 			 * as otherwise we may introduce holes in the
1856 			 * BA sequence space and/or make window accouting
1857 			 * more difficult.
1858 			 *
1859 			 * XXX may want to control this with a driver
1860 			 * capability; this may also change when we pull
1861 			 * aggregation up into net80211
1862 			 */
1863 			*(uint16_t *)wh->i_seq =
1864 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1865 			M_SEQNO_SET(m, seqno);
1866 		} else {
1867 			/* NB: zero out i_seq field (for s/w encryption etc) */
1868 			*(uint16_t *)wh->i_seq = 0;
1869 		}
1870 	} else {
1871 		/*
1872 		 * XXX TODO TX lock is needed for atomic updates of sequence
1873 		 * numbers.  If the driver does it, then don't do it here;
1874 		 * and we don't need the TX lock held.
1875 		 */
1876 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1877 		*(uint16_t *)wh->i_seq =
1878 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1879 		M_SEQNO_SET(m, seqno);
1880 
1881 		/*
1882 		 * XXX TODO: we shouldn't allow EAPOL, etc that would
1883 		 * be forced to be non-QoS traffic to be A-MSDU encapsulated.
1884 		 */
1885 		if (is_amsdu)
1886 			printf("%s: XXX ERROR: is_amsdu set; not QoS!\n",
1887 			    __func__);
1888 	}
1889 
1890 	/*
1891 	 * Check if xmit fragmentation is required.
1892 	 *
1893 	 * If the hardware does fragmentation offload, then don't bother
1894 	 * doing it here.
1895 	 */
1896 	if (IEEE80211_CONF_FRAG_OFFLOAD(ic))
1897 		txfrag = 0;
1898 	else
1899 		txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1900 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1901 		    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1902 		    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1903 
1904 	if (key != NULL) {
1905 		/*
1906 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1907 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1908 		 */
1909 		if ((m->m_flags & M_EAPOL) == 0 ||
1910 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1911 		     (vap->iv_opmode == IEEE80211_M_STA ?
1912 		      !IEEE80211_KEY_UNDEFINED(key) :
1913 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1914 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1915 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1916 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1917 				    eh.ether_dhost,
1918 				    "%s", "enmic failed, discard frame");
1919 				vap->iv_stats.is_crypto_enmicfail++;
1920 				goto bad;
1921 			}
1922 		}
1923 	}
1924 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1925 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1926 		goto bad;
1927 
1928 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1929 
1930 	IEEE80211_NODE_STAT(ni, tx_data);
1931 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1932 		IEEE80211_NODE_STAT(ni, tx_mcast);
1933 		m->m_flags |= M_MCAST;
1934 	} else
1935 		IEEE80211_NODE_STAT(ni, tx_ucast);
1936 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1937 
1938 	return m;
1939 bad:
1940 	if (m != NULL)
1941 		m_freem(m);
1942 	return NULL;
1943 #undef WH4
1944 #undef MC01
1945 }
1946 
1947 void
1948 ieee80211_free_mbuf(struct mbuf *m)
1949 {
1950 	struct mbuf *next;
1951 
1952 	if (m == NULL)
1953 		return;
1954 
1955 	do {
1956 		next = m->m_nextpkt;
1957 		m->m_nextpkt = NULL;
1958 		m_freem(m);
1959 	} while ((m = next) != NULL);
1960 }
1961 
1962 /*
1963  * Fragment the frame according to the specified mtu.
1964  * The size of the 802.11 header (w/o padding) is provided
1965  * so we don't need to recalculate it.  We create a new
1966  * mbuf for each fragment and chain it through m_nextpkt;
1967  * we might be able to optimize this by reusing the original
1968  * packet's mbufs but that is significantly more complicated.
1969  */
1970 static int
1971 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1972 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1973 {
1974 	struct ieee80211com *ic = vap->iv_ic;
1975 	struct ieee80211_frame *wh, *whf;
1976 	struct mbuf *m, *prev;
1977 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1978 	u_int hdrspace;
1979 
1980 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1981 	KASSERT(m0->m_pkthdr.len > mtu,
1982 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1983 
1984 	/*
1985 	 * Honor driver DATAPAD requirement.
1986 	 */
1987 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1988 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1989 	else
1990 		hdrspace = hdrsize;
1991 
1992 	wh = mtod(m0, struct ieee80211_frame *);
1993 	/* NB: mark the first frag; it will be propagated below */
1994 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1995 	totalhdrsize = hdrspace + ciphdrsize;
1996 	fragno = 1;
1997 	off = mtu - ciphdrsize;
1998 	remainder = m0->m_pkthdr.len - off;
1999 	prev = m0;
2000 	do {
2001 		fragsize = MIN(totalhdrsize + remainder, mtu);
2002 		m = m_get2(fragsize, IEEE80211_M_NOWAIT, MT_DATA, M_PKTHDR);
2003 		if (m == NULL)
2004 			goto bad;
2005 		/* leave room to prepend any cipher header */
2006 		m_align(m, fragsize - ciphdrsize);
2007 
2008 		/*
2009 		 * Form the header in the fragment.  Note that since
2010 		 * we mark the first fragment with the MORE_FRAG bit
2011 		 * it automatically is propagated to each fragment; we
2012 		 * need only clear it on the last fragment (done below).
2013 		 * NB: frag 1+ dont have Mesh Control field present.
2014 		 */
2015 		whf = mtod(m, struct ieee80211_frame *);
2016 		memcpy(whf, wh, hdrsize);
2017 #ifdef IEEE80211_SUPPORT_MESH
2018 		if (vap->iv_opmode == IEEE80211_M_MBSS)
2019 			ieee80211_getqos(wh)[1] &= ~IEEE80211_QOS_MC;
2020 #endif
2021 		*(uint16_t *)&whf->i_seq[0] |= htole16(
2022 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
2023 				IEEE80211_SEQ_FRAG_SHIFT);
2024 		fragno++;
2025 
2026 		payload = fragsize - totalhdrsize;
2027 		/* NB: destination is known to be contiguous */
2028 
2029 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
2030 		m->m_len = hdrspace + payload;
2031 		m->m_pkthdr.len = hdrspace + payload;
2032 		m->m_flags |= M_FRAG;
2033 
2034 		/* chain up the fragment */
2035 		prev->m_nextpkt = m;
2036 		prev = m;
2037 
2038 		/* deduct fragment just formed */
2039 		remainder -= payload;
2040 		off += payload;
2041 	} while (remainder != 0);
2042 
2043 	/* set the last fragment */
2044 	m->m_flags |= M_LASTFRAG;
2045 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
2046 
2047 	/* strip first mbuf now that everything has been copied */
2048 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
2049 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
2050 
2051 	vap->iv_stats.is_tx_fragframes++;
2052 	vap->iv_stats.is_tx_frags += fragno-1;
2053 
2054 	return 1;
2055 bad:
2056 	/* reclaim fragments but leave original frame for caller to free */
2057 	ieee80211_free_mbuf(m0->m_nextpkt);
2058 	m0->m_nextpkt = NULL;
2059 	return 0;
2060 }
2061 
2062 /*
2063  * Add a supported rates element id to a frame.
2064  */
2065 uint8_t *
2066 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
2067 {
2068 	int nrates;
2069 
2070 	*frm++ = IEEE80211_ELEMID_RATES;
2071 	nrates = rs->rs_nrates;
2072 	if (nrates > IEEE80211_RATE_SIZE)
2073 		nrates = IEEE80211_RATE_SIZE;
2074 	*frm++ = nrates;
2075 	memcpy(frm, rs->rs_rates, nrates);
2076 	return frm + nrates;
2077 }
2078 
2079 /*
2080  * Add an extended supported rates element id to a frame.
2081  */
2082 uint8_t *
2083 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
2084 {
2085 	/*
2086 	 * Add an extended supported rates element if operating in 11g mode.
2087 	 */
2088 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
2089 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
2090 		*frm++ = IEEE80211_ELEMID_XRATES;
2091 		*frm++ = nrates;
2092 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
2093 		frm += nrates;
2094 	}
2095 	return frm;
2096 }
2097 
2098 /*
2099  * Add an ssid element to a frame.
2100  */
2101 uint8_t *
2102 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
2103 {
2104 	*frm++ = IEEE80211_ELEMID_SSID;
2105 	*frm++ = len;
2106 	memcpy(frm, ssid, len);
2107 	return frm + len;
2108 }
2109 
2110 /*
2111  * Add an erp element to a frame.
2112  */
2113 static uint8_t *
2114 ieee80211_add_erp(uint8_t *frm, struct ieee80211vap *vap)
2115 {
2116 	struct ieee80211com *ic = vap->iv_ic;
2117 	uint8_t erp;
2118 
2119 	*frm++ = IEEE80211_ELEMID_ERP;
2120 	*frm++ = 1;
2121 	erp = 0;
2122 
2123 	/*
2124 	 * TODO:  This uses the global flags for now because
2125 	 * the per-VAP flags are fine for per-VAP, but don't
2126 	 * take into account which VAPs share the same channel
2127 	 * and which are on different channels.
2128 	 *
2129 	 * ERP and HT/VHT protection mode is a function of
2130 	 * how many stations are on a channel, not specifically
2131 	 * the VAP or global.  But, until we grow that status,
2132 	 * the global flag will have to do.
2133 	 */
2134 	if (ic->ic_flags_ext & IEEE80211_FEXT_NONERP_PR)
2135 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
2136 
2137 	/*
2138 	 * TODO: same as above; these should be based not
2139 	 * on the vap or ic flags, but instead on a combination
2140 	 * of per-VAP and channels.
2141 	 */
2142 	if (ic->ic_flags & IEEE80211_F_USEPROT)
2143 		erp |= IEEE80211_ERP_USE_PROTECTION;
2144 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
2145 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
2146 	*frm++ = erp;
2147 	return frm;
2148 }
2149 
2150 /*
2151  * Add a CFParams element to a frame.
2152  */
2153 static uint8_t *
2154 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
2155 {
2156 #define	ADDSHORT(frm, v) do {	\
2157 	le16enc(frm, v);	\
2158 	frm += 2;		\
2159 } while (0)
2160 	*frm++ = IEEE80211_ELEMID_CFPARMS;
2161 	*frm++ = 6;
2162 	*frm++ = 0;		/* CFP count */
2163 	*frm++ = 2;		/* CFP period */
2164 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
2165 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
2166 	return frm;
2167 #undef ADDSHORT
2168 }
2169 
2170 static __inline uint8_t *
2171 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
2172 {
2173 	memcpy(frm, ie->ie_data, ie->ie_len);
2174 	return frm + ie->ie_len;
2175 }
2176 
2177 static __inline uint8_t *
2178 add_ie(uint8_t *frm, const uint8_t *ie)
2179 {
2180 	memcpy(frm, ie, 2 + ie[1]);
2181 	return frm + 2 + ie[1];
2182 }
2183 
2184 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
2185 /*
2186  * Add a WME information element to a frame.
2187  */
2188 uint8_t *
2189 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme,
2190     struct ieee80211_node *ni)
2191 {
2192 	static const uint8_t oui[4] = { WME_OUI_BYTES, WME_OUI_TYPE };
2193 	struct ieee80211vap *vap = ni->ni_vap;
2194 
2195 	*frm++ = IEEE80211_ELEMID_VENDOR;
2196 	*frm++ = sizeof(struct ieee80211_wme_info) - 2;
2197 	memcpy(frm, oui, sizeof(oui));
2198 	frm += sizeof(oui);
2199 	*frm++ = WME_INFO_OUI_SUBTYPE;
2200 	*frm++ = WME_VERSION;
2201 
2202 	/* QoS info field depends upon operating mode */
2203 	switch (vap->iv_opmode) {
2204 	case IEEE80211_M_HOSTAP:
2205 		*frm = wme->wme_bssChanParams.cap_info;
2206 		if (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD)
2207 			*frm |= WME_CAPINFO_UAPSD_EN;
2208 		frm++;
2209 		break;
2210 	case IEEE80211_M_STA:
2211 		/*
2212 		 * NB: UAPSD drivers must set this up in their
2213 		 * VAP creation method.
2214 		 */
2215 		*frm++ = vap->iv_uapsdinfo;
2216 		break;
2217 	default:
2218 		*frm++ = 0;
2219 		break;
2220 	}
2221 
2222 	return frm;
2223 }
2224 
2225 /*
2226  * Add a WME parameters element to a frame.
2227  */
2228 static uint8_t *
2229 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme,
2230     int uapsd_enable)
2231 {
2232 #define	ADDSHORT(frm, v) do {	\
2233 	le16enc(frm, v);	\
2234 	frm += 2;		\
2235 } while (0)
2236 	/* NB: this works 'cuz a param has an info at the front */
2237 	static const struct ieee80211_wme_info param = {
2238 		.wme_id		= IEEE80211_ELEMID_VENDOR,
2239 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
2240 		.wme_oui	= { WME_OUI_BYTES },
2241 		.wme_type	= WME_OUI_TYPE,
2242 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
2243 		.wme_version	= WME_VERSION,
2244 	};
2245 	int i;
2246 
2247 	memcpy(frm, &param, sizeof(param));
2248 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
2249 	*frm = wme->wme_bssChanParams.cap_info;	/* AC info */
2250 	if (uapsd_enable)
2251 		*frm |= WME_CAPINFO_UAPSD_EN;
2252 	frm++;
2253 	*frm++ = 0;					/* reserved field */
2254 	/* XXX TODO - U-APSD bits - SP, flags below */
2255 	for (i = 0; i < WME_NUM_AC; i++) {
2256 		const struct wmeParams *ac =
2257 		       &wme->wme_bssChanParams.cap_wmeParams[i];
2258 		*frm++ = _IEEE80211_SHIFTMASK(i, WME_PARAM_ACI)
2259 		       | _IEEE80211_SHIFTMASK(ac->wmep_acm, WME_PARAM_ACM)
2260 		       | _IEEE80211_SHIFTMASK(ac->wmep_aifsn, WME_PARAM_AIFSN)
2261 		       ;
2262 		*frm++ = _IEEE80211_SHIFTMASK(ac->wmep_logcwmax,
2263 			    WME_PARAM_LOGCWMAX)
2264 		       | _IEEE80211_SHIFTMASK(ac->wmep_logcwmin,
2265 			    WME_PARAM_LOGCWMIN)
2266 		       ;
2267 		ADDSHORT(frm, ac->wmep_txopLimit);
2268 	}
2269 	return frm;
2270 #undef ADDSHORT
2271 }
2272 #undef WME_OUI_BYTES
2273 
2274 /*
2275  * Add an 11h Power Constraint element to a frame.
2276  */
2277 static uint8_t *
2278 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
2279 {
2280 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
2281 	/* XXX per-vap tx power limit? */
2282 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
2283 
2284 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
2285 	frm[1] = 1;
2286 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
2287 	return frm + 3;
2288 }
2289 
2290 /*
2291  * Add an 11h Power Capability element to a frame.
2292  */
2293 static uint8_t *
2294 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
2295 {
2296 	frm[0] = IEEE80211_ELEMID_PWRCAP;
2297 	frm[1] = 2;
2298 	frm[2] = c->ic_minpower;
2299 	frm[3] = c->ic_maxpower;
2300 	return frm + 4;
2301 }
2302 
2303 /*
2304  * Add an 11h Supported Channels element to a frame.
2305  */
2306 static uint8_t *
2307 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
2308 {
2309 	static const int ielen = 26;
2310 
2311 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
2312 	frm[1] = ielen;
2313 	/* XXX not correct */
2314 	memcpy(frm+2, ic->ic_chan_avail, ielen);
2315 	return frm + 2 + ielen;
2316 }
2317 
2318 /*
2319  * Add an 11h Quiet time element to a frame.
2320  */
2321 static uint8_t *
2322 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap, int update)
2323 {
2324 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
2325 
2326 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
2327 	quiet->len = 6;
2328 
2329 	/*
2330 	 * Only update every beacon interval - otherwise probe responses
2331 	 * would update the quiet count value.
2332 	 */
2333 	if (update) {
2334 		if (vap->iv_quiet_count_value == 1)
2335 			vap->iv_quiet_count_value = vap->iv_quiet_count;
2336 		else if (vap->iv_quiet_count_value > 1)
2337 			vap->iv_quiet_count_value--;
2338 	}
2339 
2340 	if (vap->iv_quiet_count_value == 0) {
2341 		/* value 0 is reserved as per 802.11h standerd */
2342 		vap->iv_quiet_count_value = 1;
2343 	}
2344 
2345 	quiet->tbttcount = vap->iv_quiet_count_value;
2346 	quiet->period = vap->iv_quiet_period;
2347 	quiet->duration = htole16(vap->iv_quiet_duration);
2348 	quiet->offset = htole16(vap->iv_quiet_offset);
2349 	return frm + sizeof(*quiet);
2350 }
2351 
2352 /*
2353  * Add an 11h Channel Switch Announcement element to a frame.
2354  * Note that we use the per-vap CSA count to adjust the global
2355  * counter so we can use this routine to form probe response
2356  * frames and get the current count.
2357  */
2358 static uint8_t *
2359 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
2360 {
2361 	struct ieee80211com *ic = vap->iv_ic;
2362 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
2363 
2364 	csa->csa_ie = IEEE80211_ELEMID_CSA;
2365 	csa->csa_len = 3;
2366 	csa->csa_mode = 1;		/* XXX force quiet on channel */
2367 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
2368 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
2369 	return frm + sizeof(*csa);
2370 }
2371 
2372 /*
2373  * Add an 11h country information element to a frame.
2374  */
2375 static uint8_t *
2376 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
2377 {
2378 
2379 	if (ic->ic_countryie == NULL ||
2380 	    ic->ic_countryie_chan != ic->ic_bsschan) {
2381 		/*
2382 		 * Handle lazy construction of ie.  This is done on
2383 		 * first use and after a channel change that requires
2384 		 * re-calculation.
2385 		 */
2386 		if (ic->ic_countryie != NULL)
2387 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
2388 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
2389 		if (ic->ic_countryie == NULL)
2390 			return frm;
2391 		ic->ic_countryie_chan = ic->ic_bsschan;
2392 	}
2393 	return add_appie(frm, ic->ic_countryie);
2394 }
2395 
2396 uint8_t *
2397 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
2398 {
2399 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
2400 		return (add_ie(frm, vap->iv_wpa_ie));
2401 	else {
2402 		/* XXX else complain? */
2403 		return (frm);
2404 	}
2405 }
2406 
2407 uint8_t *
2408 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2409 {
2410 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2411 		return (add_ie(frm, vap->iv_rsn_ie));
2412 	else {
2413 		/* XXX else complain? */
2414 		return (frm);
2415 	}
2416 }
2417 
2418 uint8_t *
2419 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2420 {
2421 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2422 		*frm++ = IEEE80211_ELEMID_QOS;
2423 		*frm++ = 1;
2424 		*frm++ = 0;
2425 	}
2426 
2427 	return (frm);
2428 }
2429 
2430 /*
2431  * ieee80211_send_probereq(): send a probe request frame with the specified ssid
2432  * and any optional information element data;  some helper functions as FW based
2433  * HW scans need some of that information passed too.
2434  */
2435 static uint32_t
2436 ieee80211_probereq_ie_len(struct ieee80211vap *vap, struct ieee80211com *ic)
2437 {
2438 	const struct ieee80211_rateset *rs;
2439 
2440 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2441 
2442 	/*
2443 	 * prreq frame format
2444 	 *	[tlv] ssid
2445 	 *	[tlv] supported rates
2446 	 *	[tlv] extended supported rates (if needed)
2447 	 *	[tlv] HT cap (optional)
2448 	 *	[tlv] VHT cap (optional)
2449 	 *	[tlv] WPA (optional)
2450 	 *	[tlv] user-specified ie's
2451 	 */
2452 	return ( 2 + IEEE80211_NWID_LEN
2453 	       + 2 + IEEE80211_RATE_SIZE
2454 	       + ((rs->rs_nrates > IEEE80211_RATE_SIZE) ?
2455 	           2 + (rs->rs_nrates - IEEE80211_RATE_SIZE) : 0)
2456 	       + (((vap->iv_opmode == IEEE80211_M_IBSS) &&
2457 		    (vap->iv_flags_ht & IEEE80211_FHT_HT)) ?
2458 	                sizeof(struct ieee80211_ie_htcap) : 0)
2459 #ifdef notyet
2460 	       + sizeof(struct ieee80211_ie_htinfo)	/* XXX not needed? */
2461 	       + sizeof(struct ieee80211_ie_vhtcap)
2462 #endif
2463 	       + ((vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) ?
2464 	           vap->iv_wpa_ie[1] : 0)
2465 	       + (vap->iv_appie_probereq != NULL ?
2466 		   vap->iv_appie_probereq->ie_len : 0)
2467 	);
2468 }
2469 
2470 int
2471 ieee80211_probereq_ie(struct ieee80211vap *vap, struct ieee80211com *ic,
2472     uint8_t **frmp, uint32_t *frmlen, const uint8_t *ssid, size_t ssidlen,
2473     bool alloc)
2474 {
2475 	const struct ieee80211_rateset *rs;
2476 	uint8_t	*frm;
2477 	uint32_t len;
2478 
2479 	if (!alloc && (frmp == NULL || frmlen == NULL))
2480 		return (EINVAL);
2481 
2482 	len = ieee80211_probereq_ie_len(vap, ic);
2483 	if (!alloc && len > *frmlen)
2484 		return (ENOBUFS);
2485 
2486 	/* For HW scans we usually do not pass in the SSID as IE. */
2487 	if (ssidlen == -1)
2488 		len -= (2 + IEEE80211_NWID_LEN);
2489 
2490 	if (alloc) {
2491 		frm = IEEE80211_MALLOC(len, M_80211_VAP,
2492 		    IEEE80211_M_WAITOK | IEEE80211_M_ZERO);
2493 		*frmp = frm;
2494 		*frmlen = len;
2495 	} else
2496 		frm = *frmp;
2497 
2498 	if (ssidlen != -1)
2499 		frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2500 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2501 	frm = ieee80211_add_rates(frm, rs);
2502 	frm = ieee80211_add_xrates(frm, rs);
2503 
2504 	/*
2505 	 * Note: we can't use bss; we don't have one yet.
2506 	 *
2507 	 * So, we should announce our capabilities
2508 	 * in this channel mode (2g/5g), not the
2509 	 * channel details itself.
2510 	 */
2511 	if ((vap->iv_opmode == IEEE80211_M_IBSS) &&
2512 	    (vap->iv_flags_ht & IEEE80211_FHT_HT)) {
2513 		struct ieee80211_channel *c;
2514 
2515 		/*
2516 		 * Get the HT channel that we should try upgrading to.
2517 		 * If we can do 40MHz then this'll upgrade it appropriately.
2518 		 */
2519 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2520 		    vap->iv_flags_ht);
2521 		frm = ieee80211_add_htcap_ch(frm, vap, c);
2522 	}
2523 
2524 	/*
2525 	 * XXX TODO: need to figure out what/how to update the
2526 	 * VHT channel.
2527 	 */
2528 #ifdef notyet
2529 	if (vap->iv_flags_vht & IEEE80211_FVHT_VHT) {
2530 		struct ieee80211_channel *c;
2531 
2532 		c = ieee80211_ht_adjust_channel(ic, ic->ic_curchan,
2533 		    vap->iv_flags_ht);
2534 		c = ieee80211_vht_adjust_channel(ic, c, vap->iv_flags_vht);
2535 		frm = ieee80211_add_vhtcap_ch(frm, vap, c);
2536 	}
2537 #endif
2538 
2539 	frm = ieee80211_add_wpa(frm, vap);
2540 	if (vap->iv_appie_probereq != NULL)
2541 		frm = add_appie(frm, vap->iv_appie_probereq);
2542 
2543 	if (!alloc) {
2544 		*frmp = frm;
2545 		*frmlen = len;
2546 	}
2547 
2548 	return (0);
2549 }
2550 
2551 int
2552 ieee80211_send_probereq(struct ieee80211_node *ni,
2553 	const uint8_t sa[IEEE80211_ADDR_LEN],
2554 	const uint8_t da[IEEE80211_ADDR_LEN],
2555 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2556 	const uint8_t *ssid, size_t ssidlen)
2557 {
2558 	struct ieee80211vap *vap = ni->ni_vap;
2559 	struct ieee80211com *ic = ni->ni_ic;
2560 	struct ieee80211_node *bss;
2561 	const struct ieee80211_txparam *tp;
2562 	struct ieee80211_bpf_params params;
2563 	struct mbuf *m;
2564 	uint8_t *frm;
2565 	uint32_t frmlen;
2566 	int ret;
2567 
2568 	bss = ieee80211_ref_node(vap->iv_bss);
2569 
2570 	if (vap->iv_state == IEEE80211_S_CAC) {
2571 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2572 		    "block %s frame in CAC state", "probe request");
2573 		vap->iv_stats.is_tx_badstate++;
2574 		ieee80211_free_node(bss);
2575 		return EIO;		/* XXX */
2576 	}
2577 
2578 	/*
2579 	 * Hold a reference on the node so it doesn't go away until after
2580 	 * the xmit is complete all the way in the driver.  On error we
2581 	 * will remove our reference.
2582 	 */
2583 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2584 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2585 		__func__, __LINE__,
2586 		ni, ether_sprintf(ni->ni_macaddr),
2587 		ieee80211_node_refcnt(ni)+1);
2588 	ieee80211_ref_node(ni);
2589 
2590 	/* See comments above for entire frame format. */
2591 	frmlen = ieee80211_probereq_ie_len(vap, ic);
2592 	m = ieee80211_getmgtframe(&frm,
2593 	    ic->ic_headroom + sizeof(struct ieee80211_frame), frmlen);
2594 	if (m == NULL) {
2595 		vap->iv_stats.is_tx_nobuf++;
2596 		ieee80211_free_node(ni);
2597 		ieee80211_free_node(bss);
2598 		return ENOMEM;
2599 	}
2600 
2601 	ret = ieee80211_probereq_ie(vap, ic, &frm, &frmlen, ssid, ssidlen,
2602 	    false);
2603 	KASSERT(ret == 0,
2604 	    ("%s: ieee80211_probereq_ie failed: %d\n", __func__, ret));
2605 
2606 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2607 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2608 	    ("leading space %zd", M_LEADINGSPACE(m)));
2609 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
2610 	if (m == NULL) {
2611 		/* NB: cannot happen */
2612 		ieee80211_free_node(ni);
2613 		ieee80211_free_node(bss);
2614 		return ENOMEM;
2615 	}
2616 
2617 	IEEE80211_TX_LOCK(ic);
2618 	ieee80211_send_setup(ni, m,
2619 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2620 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2621 	/* XXX power management? */
2622 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2623 
2624 	M_WME_SETAC(m, WME_AC_BE);
2625 
2626 	IEEE80211_NODE_STAT(ni, tx_probereq);
2627 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2628 
2629 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2630 	    "send probe req on channel %u bssid %s sa %6D da %6D ssid \"%.*s\"\n",
2631 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
2632 	    ether_sprintf(bssid),
2633 	    sa, ":",
2634 	    da, ":",
2635 	    ssidlen, ssid);
2636 
2637 	memset(&params, 0, sizeof(params));
2638 	params.ibp_pri = M_WME_GETAC(m);
2639 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2640 	params.ibp_rate0 = tp->mgmtrate;
2641 	if (IEEE80211_IS_MULTICAST(da)) {
2642 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2643 		params.ibp_try0 = 1;
2644 	} else
2645 		params.ibp_try0 = tp->maxretry;
2646 	params.ibp_power = ni->ni_txpower;
2647 	ret = ieee80211_raw_output(vap, ni, m, &params);
2648 	IEEE80211_TX_UNLOCK(ic);
2649 	ieee80211_free_node(bss);
2650 	return (ret);
2651 }
2652 
2653 /*
2654  * Calculate capability information for mgt frames.
2655  */
2656 uint16_t
2657 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2658 {
2659 	uint16_t capinfo;
2660 
2661 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2662 
2663 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2664 		capinfo = IEEE80211_CAPINFO_ESS;
2665 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2666 		capinfo = IEEE80211_CAPINFO_IBSS;
2667 	else
2668 		capinfo = 0;
2669 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2670 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2671 	if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2672 	    IEEE80211_IS_CHAN_2GHZ(chan))
2673 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2674 	if (vap->iv_flags & IEEE80211_F_SHSLOT)
2675 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2676 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2677 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2678 	return capinfo;
2679 }
2680 
2681 /*
2682  * Send a management frame.  The node is for the destination (or ic_bss
2683  * when in station mode).  Nodes other than ic_bss have their reference
2684  * count bumped to reflect our use for an indeterminant time.
2685  */
2686 int
2687 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2688 {
2689 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2690 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2691 	struct ieee80211vap *vap = ni->ni_vap;
2692 	struct ieee80211com *ic = ni->ni_ic;
2693 	struct ieee80211_node *bss = vap->iv_bss;
2694 	struct ieee80211_bpf_params params;
2695 	struct mbuf *m;
2696 	uint8_t *frm;
2697 	uint16_t capinfo;
2698 	int has_challenge, is_shared_key, ret, status;
2699 
2700 	KASSERT(ni != NULL, ("null node"));
2701 
2702 	/*
2703 	 * Hold a reference on the node so it doesn't go away until after
2704 	 * the xmit is complete all the way in the driver.  On error we
2705 	 * will remove our reference.
2706 	 */
2707 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2708 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2709 		__func__, __LINE__,
2710 		ni, ether_sprintf(ni->ni_macaddr),
2711 		ieee80211_node_refcnt(ni)+1);
2712 	ieee80211_ref_node(ni);
2713 
2714 	memset(&params, 0, sizeof(params));
2715 	switch (type) {
2716 	case IEEE80211_FC0_SUBTYPE_AUTH:
2717 		status = arg >> 16;
2718 		arg &= 0xffff;
2719 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2720 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2721 		    ni->ni_challenge != NULL);
2722 
2723 		/*
2724 		 * Deduce whether we're doing open authentication or
2725 		 * shared key authentication.  We do the latter if
2726 		 * we're in the middle of a shared key authentication
2727 		 * handshake or if we're initiating an authentication
2728 		 * request and configured to use shared key.
2729 		 */
2730 		is_shared_key = has_challenge ||
2731 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2732 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2733 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2734 
2735 		m = ieee80211_getmgtframe(&frm,
2736 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2737 			  3 * sizeof(uint16_t)
2738 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2739 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0));
2740 		if (m == NULL)
2741 			senderr(ENOMEM, is_tx_nobuf);
2742 
2743 		((uint16_t *)frm)[0] =
2744 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2745 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2746 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2747 		((uint16_t *)frm)[2] = htole16(status);/* status */
2748 
2749 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2750 			((uint16_t *)frm)[3] =
2751 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2752 			    IEEE80211_ELEMID_CHALLENGE);
2753 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2754 			    IEEE80211_CHALLENGE_LEN);
2755 			m->m_pkthdr.len = m->m_len =
2756 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2757 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2758 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2759 				    "request encrypt frame (%s)", __func__);
2760 				/* mark frame for encryption */
2761 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2762 			}
2763 		} else
2764 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2765 
2766 		/* XXX not right for shared key */
2767 		if (status == IEEE80211_STATUS_SUCCESS)
2768 			IEEE80211_NODE_STAT(ni, tx_auth);
2769 		else
2770 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2771 
2772 		if (vap->iv_opmode == IEEE80211_M_STA)
2773 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2774 				(void *) vap->iv_state);
2775 		break;
2776 
2777 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2778 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2779 		    "send station deauthenticate (reason: %d (%s))", arg,
2780 		    ieee80211_reason_to_string(arg));
2781 		m = ieee80211_getmgtframe(&frm,
2782 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2783 			sizeof(uint16_t));
2784 		if (m == NULL)
2785 			senderr(ENOMEM, is_tx_nobuf);
2786 		*(uint16_t *)frm = htole16(arg);	/* reason */
2787 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2788 
2789 		IEEE80211_NODE_STAT(ni, tx_deauth);
2790 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2791 
2792 		ieee80211_node_unauthorize(ni);		/* port closed */
2793 		break;
2794 
2795 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2796 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2797 		/*
2798 		 * asreq frame format
2799 		 *	[2] capability information
2800 		 *	[2] listen interval
2801 		 *	[6*] current AP address (reassoc only)
2802 		 *	[tlv] ssid
2803 		 *	[tlv] supported rates
2804 		 *	[tlv] extended supported rates
2805 		 *	[4] power capability (optional)
2806 		 *	[28] supported channels (optional)
2807 		 *	[tlv] HT capabilities
2808 		 *	[tlv] VHT capabilities
2809 		 *	[tlv] WME (optional)
2810 		 *	[tlv] Vendor OUI HT capabilities (optional)
2811 		 *	[tlv] Atheros capabilities (if negotiated)
2812 		 *	[tlv] AppIE's (optional)
2813 		 */
2814 		m = ieee80211_getmgtframe(&frm,
2815 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2816 			 sizeof(uint16_t)
2817 		       + sizeof(uint16_t)
2818 		       + IEEE80211_ADDR_LEN
2819 		       + 2 + IEEE80211_NWID_LEN
2820 		       + 2 + IEEE80211_RATE_SIZE
2821 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2822 		       + 4
2823 		       + 2 + 26
2824 		       + sizeof(struct ieee80211_wme_info)
2825 		       + sizeof(struct ieee80211_ie_htcap)
2826 		       + sizeof(struct ieee80211_ie_vhtcap)
2827 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2828 #ifdef IEEE80211_SUPPORT_SUPERG
2829 		       + sizeof(struct ieee80211_ath_ie)
2830 #endif
2831 		       + (vap->iv_appie_wpa != NULL ?
2832 				vap->iv_appie_wpa->ie_len : 0)
2833 		       + (vap->iv_appie_assocreq != NULL ?
2834 				vap->iv_appie_assocreq->ie_len : 0)
2835 		);
2836 		if (m == NULL)
2837 			senderr(ENOMEM, is_tx_nobuf);
2838 
2839 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2840 		    ("wrong mode %u", vap->iv_opmode));
2841 		capinfo = IEEE80211_CAPINFO_ESS;
2842 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2843 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2844 		/*
2845 		 * NB: Some 11a AP's reject the request when
2846 		 *     short preamble is set.
2847 		 */
2848 		if ((vap->iv_flags & IEEE80211_F_SHPREAMBLE) &&
2849 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2850 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2851 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2852 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2853 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2854 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2855 		    (vap->iv_flags & IEEE80211_F_DOTH))
2856 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2857 		*(uint16_t *)frm = htole16(capinfo);
2858 		frm += 2;
2859 
2860 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2861 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2862 						    bss->ni_intval));
2863 		frm += 2;
2864 
2865 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2866 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2867 			frm += IEEE80211_ADDR_LEN;
2868 		}
2869 
2870 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2871 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2872 		frm = ieee80211_add_rsn(frm, vap);
2873 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2874 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2875 			frm = ieee80211_add_powercapability(frm,
2876 			    ic->ic_curchan);
2877 			frm = ieee80211_add_supportedchannels(frm, ic);
2878 		}
2879 
2880 		/*
2881 		 * Check the channel - we may be using an 11n NIC with an
2882 		 * 11n capable station, but we're configured to be an 11b
2883 		 * channel.
2884 		 */
2885 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2886 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2887 		    ni->ni_ies.htcap_ie != NULL &&
2888 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2889 			frm = ieee80211_add_htcap(frm, ni);
2890 		}
2891 
2892 		if ((vap->iv_flags_vht & IEEE80211_FVHT_VHT) &&
2893 		    IEEE80211_IS_CHAN_VHT(ni->ni_chan) &&
2894 		    ni->ni_ies.vhtcap_ie != NULL &&
2895 		    ni->ni_ies.vhtcap_ie[0] == IEEE80211_ELEMID_VHT_CAP) {
2896 			frm = ieee80211_add_vhtcap(frm, ni);
2897 		}
2898 
2899 		frm = ieee80211_add_wpa(frm, vap);
2900 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2901 		    ni->ni_ies.wme_ie != NULL)
2902 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme, ni);
2903 
2904 		/*
2905 		 * Same deal - only send HT info if we're on an 11n
2906 		 * capable channel.
2907 		 */
2908 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2909 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2910 		    ni->ni_ies.htcap_ie != NULL &&
2911 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2912 			frm = ieee80211_add_htcap_vendor(frm, ni);
2913 		}
2914 #ifdef IEEE80211_SUPPORT_SUPERG
2915 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2916 			frm = ieee80211_add_ath(frm,
2917 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2918 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2919 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2920 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2921 		}
2922 #endif /* IEEE80211_SUPPORT_SUPERG */
2923 		if (vap->iv_appie_assocreq != NULL)
2924 			frm = add_appie(frm, vap->iv_appie_assocreq);
2925 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2926 
2927 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2928 			(void *) vap->iv_state);
2929 		break;
2930 
2931 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2932 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2933 		/*
2934 		 * asresp frame format
2935 		 *	[2] capability information
2936 		 *	[2] status
2937 		 *	[2] association ID
2938 		 *	[tlv] supported rates
2939 		 *	[tlv] extended supported rates
2940 		 *	[tlv] HT capabilities (standard, if STA enabled)
2941 		 *	[tlv] HT information (standard, if STA enabled)
2942 		 *	[tlv] VHT capabilities (standard, if STA enabled)
2943 		 *	[tlv] VHT information (standard, if STA enabled)
2944 		 *	[tlv] WME (if configured and STA enabled)
2945 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2946 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2947 		 *	[tlv] Atheros capabilities (if STA enabled)
2948 		 *	[tlv] AppIE's (optional)
2949 		 */
2950 		m = ieee80211_getmgtframe(&frm,
2951 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2952 			 sizeof(uint16_t)
2953 		       + sizeof(uint16_t)
2954 		       + sizeof(uint16_t)
2955 		       + 2 + IEEE80211_RATE_SIZE
2956 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2957 		       + sizeof(struct ieee80211_ie_htcap) + 4
2958 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2959 		       + sizeof(struct ieee80211_ie_vhtcap)
2960 		       + sizeof(struct ieee80211_ie_vht_operation)
2961 		       + sizeof(struct ieee80211_wme_param)
2962 #ifdef IEEE80211_SUPPORT_SUPERG
2963 		       + sizeof(struct ieee80211_ath_ie)
2964 #endif
2965 		       + (vap->iv_appie_assocresp != NULL ?
2966 				vap->iv_appie_assocresp->ie_len : 0)
2967 		);
2968 		if (m == NULL)
2969 			senderr(ENOMEM, is_tx_nobuf);
2970 
2971 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2972 		*(uint16_t *)frm = htole16(capinfo);
2973 		frm += 2;
2974 
2975 		*(uint16_t *)frm = htole16(arg);	/* status */
2976 		frm += 2;
2977 
2978 		if (arg == IEEE80211_STATUS_SUCCESS) {
2979 			*(uint16_t *)frm = htole16(ni->ni_associd);
2980 			IEEE80211_NODE_STAT(ni, tx_assoc);
2981 		} else
2982 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2983 		frm += 2;
2984 
2985 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2986 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2987 		/* NB: respond according to what we received */
2988 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2989 			frm = ieee80211_add_htcap(frm, ni);
2990 			frm = ieee80211_add_htinfo(frm, ni);
2991 		}
2992 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2993 		    ni->ni_ies.wme_ie != NULL)
2994 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
2995 			    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
2996 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2997 			frm = ieee80211_add_htcap_vendor(frm, ni);
2998 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2999 		}
3000 		if (ni->ni_flags & IEEE80211_NODE_VHT) {
3001 			frm = ieee80211_add_vhtcap(frm, ni);
3002 			frm = ieee80211_add_vhtinfo(frm, ni);
3003 		}
3004 #ifdef IEEE80211_SUPPORT_SUPERG
3005 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
3006 			frm = ieee80211_add_ath(frm,
3007 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
3008 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
3009 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
3010 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
3011 #endif /* IEEE80211_SUPPORT_SUPERG */
3012 		if (vap->iv_appie_assocresp != NULL)
3013 			frm = add_appie(frm, vap->iv_appie_assocresp);
3014 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3015 		break;
3016 
3017 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
3018 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
3019 		    "send station disassociate (reason: %d (%s))", arg,
3020 		    ieee80211_reason_to_string(arg));
3021 		m = ieee80211_getmgtframe(&frm,
3022 			ic->ic_headroom + sizeof(struct ieee80211_frame),
3023 			sizeof(uint16_t));
3024 		if (m == NULL)
3025 			senderr(ENOMEM, is_tx_nobuf);
3026 		*(uint16_t *)frm = htole16(arg);	/* reason */
3027 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
3028 
3029 		IEEE80211_NODE_STAT(ni, tx_disassoc);
3030 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
3031 		break;
3032 
3033 	default:
3034 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
3035 		    "invalid mgmt frame type %u", type);
3036 		senderr(EINVAL, is_tx_unknownmgt);
3037 		/* NOTREACHED */
3038 	}
3039 
3040 	/* NB: force non-ProbeResp frames to the highest queue */
3041 	params.ibp_pri = WME_AC_VO;
3042 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
3043 	/* NB: we know all frames are unicast */
3044 	params.ibp_try0 = bss->ni_txparms->maxretry;
3045 	params.ibp_power = bss->ni_txpower;
3046 	return ieee80211_mgmt_output(ni, m, type, &params);
3047 bad:
3048 	ieee80211_free_node(ni);
3049 	return ret;
3050 #undef senderr
3051 #undef HTFLAGS
3052 }
3053 
3054 /*
3055  * Return an mbuf with a probe response frame in it.
3056  * Space is left to prepend and 802.11 header at the
3057  * front but it's left to the caller to fill in.
3058  */
3059 struct mbuf *
3060 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
3061 {
3062 	struct ieee80211vap *vap = bss->ni_vap;
3063 	struct ieee80211com *ic = bss->ni_ic;
3064 	const struct ieee80211_rateset *rs;
3065 	struct mbuf *m;
3066 	uint16_t capinfo;
3067 	uint8_t *frm;
3068 
3069 	/*
3070 	 * probe response frame format
3071 	 *	[8] time stamp
3072 	 *	[2] beacon interval
3073 	 *	[2] cabability information
3074 	 *	[tlv] ssid
3075 	 *	[tlv] supported rates
3076 	 *	[tlv] parameter set (FH/DS)
3077 	 *	[tlv] parameter set (IBSS)
3078 	 *	[tlv] country (optional)
3079 	 *	[3] power control (optional)
3080 	 *	[5] channel switch announcement (CSA) (optional)
3081 	 *	[tlv] extended rate phy (ERP)
3082 	 *	[tlv] extended supported rates
3083 	 *	[tlv] RSN (optional)
3084 	 *	[tlv] HT capabilities
3085 	 *	[tlv] HT information
3086 	 *	[tlv] VHT capabilities
3087 	 *	[tlv] VHT information
3088 	 *	[tlv] WPA (optional)
3089 	 *	[tlv] WME (optional)
3090 	 *	[tlv] Vendor OUI HT capabilities (optional)
3091 	 *	[tlv] Vendor OUI HT information (optional)
3092 	 *	[tlv] Atheros capabilities
3093 	 *	[tlv] AppIE's (optional)
3094 	 *	[tlv] Mesh ID (MBSS)
3095 	 *	[tlv] Mesh Conf (MBSS)
3096 	 */
3097 	m = ieee80211_getmgtframe(&frm,
3098 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
3099 		 8
3100 	       + sizeof(uint16_t)
3101 	       + sizeof(uint16_t)
3102 	       + 2 + IEEE80211_NWID_LEN
3103 	       + 2 + IEEE80211_RATE_SIZE
3104 	       + 7	/* max(7,3) */
3105 	       + IEEE80211_COUNTRY_MAX_SIZE
3106 	       + 3
3107 	       + sizeof(struct ieee80211_csa_ie)
3108 	       + sizeof(struct ieee80211_quiet_ie)
3109 	       + 3
3110 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3111 	       + sizeof(struct ieee80211_ie_wpa)
3112 	       + sizeof(struct ieee80211_ie_htcap)
3113 	       + sizeof(struct ieee80211_ie_htinfo)
3114 	       + sizeof(struct ieee80211_ie_wpa)
3115 	       + sizeof(struct ieee80211_wme_param)
3116 	       + 4 + sizeof(struct ieee80211_ie_htcap)
3117 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
3118 	       +  sizeof(struct ieee80211_ie_vhtcap)
3119 	       +  sizeof(struct ieee80211_ie_vht_operation)
3120 #ifdef IEEE80211_SUPPORT_SUPERG
3121 	       + sizeof(struct ieee80211_ath_ie)
3122 #endif
3123 #ifdef IEEE80211_SUPPORT_MESH
3124 	       + 2 + IEEE80211_MESHID_LEN
3125 	       + sizeof(struct ieee80211_meshconf_ie)
3126 #endif
3127 	       + (vap->iv_appie_proberesp != NULL ?
3128 			vap->iv_appie_proberesp->ie_len : 0)
3129 	);
3130 	if (m == NULL) {
3131 		vap->iv_stats.is_tx_nobuf++;
3132 		return NULL;
3133 	}
3134 
3135 	memset(frm, 0, 8);	/* timestamp should be filled later */
3136 	frm += 8;
3137 	*(uint16_t *)frm = htole16(bss->ni_intval);
3138 	frm += 2;
3139 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
3140 	*(uint16_t *)frm = htole16(capinfo);
3141 	frm += 2;
3142 
3143 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
3144 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
3145 	frm = ieee80211_add_rates(frm, rs);
3146 
3147 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
3148 		*frm++ = IEEE80211_ELEMID_FHPARMS;
3149 		*frm++ = 5;
3150 		*frm++ = bss->ni_fhdwell & 0x00ff;
3151 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
3152 		*frm++ = IEEE80211_FH_CHANSET(
3153 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3154 		*frm++ = IEEE80211_FH_CHANPAT(
3155 		    ieee80211_chan2ieee(ic, bss->ni_chan));
3156 		*frm++ = bss->ni_fhindex;
3157 	} else {
3158 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3159 		*frm++ = 1;
3160 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
3161 	}
3162 
3163 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3164 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3165 		*frm++ = 2;
3166 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3167 	}
3168 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3169 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3170 		frm = ieee80211_add_countryie(frm, ic);
3171 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3172 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
3173 			frm = ieee80211_add_powerconstraint(frm, vap);
3174 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3175 			frm = ieee80211_add_csa(frm, vap);
3176 	}
3177 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3178 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3179 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
3180 			if (vap->iv_quiet)
3181 				frm = ieee80211_add_quiet(frm, vap, 0);
3182 		}
3183 	}
3184 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
3185 		frm = ieee80211_add_erp(frm, vap);
3186 	frm = ieee80211_add_xrates(frm, rs);
3187 	frm = ieee80211_add_rsn(frm, vap);
3188 	/*
3189 	 * NB: legacy 11b clients do not get certain ie's.
3190 	 *     The caller identifies such clients by passing
3191 	 *     a token in legacy to us.  Could expand this to be
3192 	 *     any legacy client for stuff like HT ie's.
3193 	 */
3194 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3195 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3196 		frm = ieee80211_add_htcap(frm, bss);
3197 		frm = ieee80211_add_htinfo(frm, bss);
3198 	}
3199 	if (IEEE80211_IS_CHAN_VHT(bss->ni_chan) &&
3200 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3201 		frm = ieee80211_add_vhtcap(frm, bss);
3202 		frm = ieee80211_add_vhtinfo(frm, bss);
3203 	}
3204 	frm = ieee80211_add_wpa(frm, vap);
3205 	if (vap->iv_flags & IEEE80211_F_WME)
3206 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3207 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3208 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
3209 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
3210 	    legacy != IEEE80211_SEND_LEGACY_11B) {
3211 		frm = ieee80211_add_htcap_vendor(frm, bss);
3212 		frm = ieee80211_add_htinfo_vendor(frm, bss);
3213 	}
3214 #ifdef IEEE80211_SUPPORT_SUPERG
3215 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
3216 	    legacy != IEEE80211_SEND_LEGACY_11B)
3217 		frm = ieee80211_add_athcaps(frm, bss);
3218 #endif
3219 	if (vap->iv_appie_proberesp != NULL)
3220 		frm = add_appie(frm, vap->iv_appie_proberesp);
3221 #ifdef IEEE80211_SUPPORT_MESH
3222 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3223 		frm = ieee80211_add_meshid(frm, vap);
3224 		frm = ieee80211_add_meshconf(frm, vap);
3225 	}
3226 #endif
3227 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3228 
3229 	return m;
3230 }
3231 
3232 /*
3233  * Send a probe response frame to the specified mac address.
3234  * This does not go through the normal mgt frame api so we
3235  * can specify the destination address and re-use the bss node
3236  * for the sta reference.
3237  */
3238 int
3239 ieee80211_send_proberesp(struct ieee80211vap *vap,
3240 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
3241 {
3242 	struct ieee80211_node *bss = vap->iv_bss;
3243 	struct ieee80211com *ic = vap->iv_ic;
3244 	struct mbuf *m;
3245 	int ret;
3246 
3247 	if (vap->iv_state == IEEE80211_S_CAC) {
3248 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
3249 		    "block %s frame in CAC state", "probe response");
3250 		vap->iv_stats.is_tx_badstate++;
3251 		return EIO;		/* XXX */
3252 	}
3253 
3254 	/*
3255 	 * Hold a reference on the node so it doesn't go away until after
3256 	 * the xmit is complete all the way in the driver.  On error we
3257 	 * will remove our reference.
3258 	 */
3259 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
3260 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
3261 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
3262 	    ieee80211_node_refcnt(bss)+1);
3263 	ieee80211_ref_node(bss);
3264 
3265 	m = ieee80211_alloc_proberesp(bss, legacy);
3266 	if (m == NULL) {
3267 		ieee80211_free_node(bss);
3268 		return ENOMEM;
3269 	}
3270 
3271 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3272 	KASSERT(m != NULL, ("no room for header"));
3273 
3274 	IEEE80211_TX_LOCK(ic);
3275 	ieee80211_send_setup(bss, m,
3276 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
3277 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
3278 	/* XXX power management? */
3279 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
3280 
3281 	M_WME_SETAC(m, WME_AC_BE);
3282 
3283 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
3284 	    "send probe resp on channel %u to %s%s\n",
3285 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
3286 	    legacy ? " <legacy>" : "");
3287 	IEEE80211_NODE_STAT(bss, tx_mgmt);
3288 
3289 	ret = ieee80211_raw_output(vap, bss, m, NULL);
3290 	IEEE80211_TX_UNLOCK(ic);
3291 	return (ret);
3292 }
3293 
3294 /*
3295  * Allocate and build a RTS (Request To Send) control frame.
3296  */
3297 struct mbuf *
3298 ieee80211_alloc_rts(struct ieee80211com *ic,
3299 	const uint8_t ra[IEEE80211_ADDR_LEN],
3300 	const uint8_t ta[IEEE80211_ADDR_LEN],
3301 	uint16_t dur)
3302 {
3303 	struct ieee80211_frame_rts *rts;
3304 	struct mbuf *m;
3305 
3306 	/* XXX honor ic_headroom */
3307 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3308 	if (m != NULL) {
3309 		rts = mtod(m, struct ieee80211_frame_rts *);
3310 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3311 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
3312 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3313 		*(u_int16_t *)rts->i_dur = htole16(dur);
3314 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
3315 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
3316 
3317 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
3318 	}
3319 	return m;
3320 }
3321 
3322 /*
3323  * Allocate and build a CTS (Clear To Send) control frame.
3324  */
3325 struct mbuf *
3326 ieee80211_alloc_cts(struct ieee80211com *ic,
3327 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
3328 {
3329 	struct ieee80211_frame_cts *cts;
3330 	struct mbuf *m;
3331 
3332 	/* XXX honor ic_headroom */
3333 	m = m_gethdr(IEEE80211_M_NOWAIT, MT_DATA);
3334 	if (m != NULL) {
3335 		cts = mtod(m, struct ieee80211_frame_cts *);
3336 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
3337 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
3338 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3339 		*(u_int16_t *)cts->i_dur = htole16(dur);
3340 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
3341 
3342 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
3343 	}
3344 	return m;
3345 }
3346 
3347 /*
3348  * Wrapper for CTS/RTS frame allocation.
3349  */
3350 struct mbuf *
3351 ieee80211_alloc_prot(struct ieee80211_node *ni, const struct mbuf *m,
3352     uint8_t rate, int prot)
3353 {
3354 	struct ieee80211com *ic = ni->ni_ic;
3355 	struct ieee80211vap *vap = ni->ni_vap;
3356 	const struct ieee80211_frame *wh;
3357 	struct mbuf *mprot;
3358 	uint16_t dur;
3359 	int pktlen, isshort;
3360 
3361 	KASSERT(prot == IEEE80211_PROT_RTSCTS ||
3362 	    prot == IEEE80211_PROT_CTSONLY,
3363 	    ("wrong protection type %d", prot));
3364 
3365 	wh = mtod(m, const struct ieee80211_frame *);
3366 	pktlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
3367 	isshort = (vap->iv_flags & IEEE80211_F_SHPREAMBLE) != 0;
3368 	dur = ieee80211_compute_duration(ic->ic_rt, pktlen, rate, isshort)
3369 	    + ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3370 
3371 	if (prot == IEEE80211_PROT_RTSCTS) {
3372 		/* NB: CTS is the same size as an ACK */
3373 		dur += ieee80211_ack_duration(ic->ic_rt, rate, isshort);
3374 		mprot = ieee80211_alloc_rts(ic, wh->i_addr1, wh->i_addr2, dur);
3375 	} else
3376 		mprot = ieee80211_alloc_cts(ic, vap->iv_myaddr, dur);
3377 
3378 	return (mprot);
3379 }
3380 
3381 static void
3382 ieee80211_tx_mgt_timeout(void *arg)
3383 {
3384 	struct ieee80211vap *vap = arg;
3385 
3386 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3387 	    "vap %p mode %s state %s flags %#x & %#x\n", vap,
3388 	    ieee80211_opmode_name[vap->iv_opmode],
3389 	    ieee80211_state_name[vap->iv_state],
3390 	    vap->iv_ic->ic_flags, IEEE80211_F_SCAN);
3391 
3392 	IEEE80211_LOCK(vap->iv_ic);
3393 	if (vap->iv_state != IEEE80211_S_INIT &&
3394 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
3395 		/*
3396 		 * NB: it's safe to specify a timeout as the reason here;
3397 		 *     it'll only be used in the right state.
3398 		 */
3399 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
3400 			IEEE80211_SCAN_FAIL_TIMEOUT);
3401 	}
3402 	IEEE80211_UNLOCK(vap->iv_ic);
3403 }
3404 
3405 /*
3406  * This is the callback set on net80211-sourced transmitted
3407  * authentication request frames.
3408  *
3409  * This does a couple of things:
3410  *
3411  * + If the frame transmitted was a success, it schedules a future
3412  *   event which will transition the interface to scan.
3413  *   If a state transition _then_ occurs before that event occurs,
3414  *   said state transition will cancel this callout.
3415  *
3416  * + If the frame transmit was a failure, it immediately schedules
3417  *   the transition back to scan.
3418  */
3419 static void
3420 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
3421 {
3422 	struct ieee80211vap *vap = ni->ni_vap;
3423 	enum ieee80211_state ostate = (enum ieee80211_state)(uintptr_t)arg;
3424 
3425 	/*
3426 	 * Frame transmit completed; arrange timer callback.  If
3427 	 * transmit was successfully we wait for response.  Otherwise
3428 	 * we arrange an immediate callback instead of doing the
3429 	 * callback directly since we don't know what state the driver
3430 	 * is in (e.g. what locks it is holding).  This work should
3431 	 * not be too time-critical and not happen too often so the
3432 	 * added overhead is acceptable.
3433 	 *
3434 	 * XXX what happens if !acked but response shows up before callback?
3435 	 */
3436 	if (vap->iv_state == ostate) {
3437 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
3438 		    "ni %p mode %s state %s arg %p status %d\n", ni,
3439 		    ieee80211_opmode_name[vap->iv_opmode],
3440 		    ieee80211_state_name[vap->iv_state], arg, status);
3441 
3442 		callout_reset(&vap->iv_mgtsend,
3443 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
3444 			ieee80211_tx_mgt_timeout, vap);
3445 	}
3446 }
3447 
3448 static void
3449 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
3450 	struct ieee80211_node *ni)
3451 {
3452 	struct ieee80211vap *vap = ni->ni_vap;
3453 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3454 	struct ieee80211com *ic = ni->ni_ic;
3455 	struct ieee80211_rateset *rs = &ni->ni_rates;
3456 	uint16_t capinfo;
3457 
3458 	/*
3459 	 * beacon frame format
3460 	 *
3461 	 * TODO: update to 802.11-2012; a lot of stuff has changed;
3462 	 * vendor extensions should be at the end, etc.
3463 	 *
3464 	 *	[8] time stamp
3465 	 *	[2] beacon interval
3466 	 *	[2] cabability information
3467 	 *	[tlv] ssid
3468 	 *	[tlv] supported rates
3469 	 *	[3] parameter set (DS)
3470 	 *	[8] CF parameter set (optional)
3471 	 *	[tlv] parameter set (IBSS/TIM)
3472 	 *	[tlv] country (optional)
3473 	 *	[3] power control (optional)
3474 	 *	[5] channel switch announcement (CSA) (optional)
3475 	 * XXX TODO: Quiet
3476 	 * XXX TODO: IBSS DFS
3477 	 * XXX TODO: TPC report
3478 	 *	[tlv] extended rate phy (ERP)
3479 	 *	[tlv] extended supported rates
3480 	 *	[tlv] RSN parameters
3481 	 * XXX TODO: BSSLOAD
3482 	 * (XXX EDCA parameter set, QoS capability?)
3483 	 * XXX TODO: AP channel report
3484 	 *
3485 	 *	[tlv] HT capabilities
3486 	 *	[tlv] HT information
3487 	 *	XXX TODO: 20/40 BSS coexistence
3488 	 * Mesh:
3489 	 * XXX TODO: Meshid
3490 	 * XXX TODO: mesh config
3491 	 * XXX TODO: mesh awake window
3492 	 * XXX TODO: beacon timing (mesh, etc)
3493 	 * XXX TODO: MCCAOP Advertisement Overview
3494 	 * XXX TODO: MCCAOP Advertisement
3495 	 * XXX TODO: Mesh channel switch parameters
3496 	 * VHT:
3497 	 * XXX TODO: VHT capabilities
3498 	 * XXX TODO: VHT operation
3499 	 * XXX TODO: VHT transmit power envelope
3500 	 * XXX TODO: channel switch wrapper element
3501 	 * XXX TODO: extended BSS load element
3502 	 *
3503 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3504 	 *	[tlv] WPA parameters
3505 	 *	[tlv] WME parameters
3506 	 *	[tlv] Vendor OUI HT capabilities (optional)
3507 	 *	[tlv] Vendor OUI HT information (optional)
3508 	 *	[tlv] Atheros capabilities (optional)
3509 	 *	[tlv] TDMA parameters (optional)
3510 	 *	[tlv] Mesh ID (MBSS)
3511 	 *	[tlv] Mesh Conf (MBSS)
3512 	 *	[tlv] application data (optional)
3513 	 */
3514 
3515 	memset(bo, 0, sizeof(*bo));
3516 
3517 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
3518 	frm += 8;
3519 	*(uint16_t *)frm = htole16(ni->ni_intval);
3520 	frm += 2;
3521 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3522 	bo->bo_caps = (uint16_t *)frm;
3523 	*(uint16_t *)frm = htole16(capinfo);
3524 	frm += 2;
3525 	*frm++ = IEEE80211_ELEMID_SSID;
3526 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
3527 		*frm++ = ni->ni_esslen;
3528 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
3529 		frm += ni->ni_esslen;
3530 	} else
3531 		*frm++ = 0;
3532 	frm = ieee80211_add_rates(frm, rs);
3533 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
3534 		*frm++ = IEEE80211_ELEMID_DSPARMS;
3535 		*frm++ = 1;
3536 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
3537 	}
3538 	if (ic->ic_flags & IEEE80211_F_PCF) {
3539 		bo->bo_cfp = frm;
3540 		frm = ieee80211_add_cfparms(frm, ic);
3541 	}
3542 	bo->bo_tim = frm;
3543 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
3544 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
3545 		*frm++ = 2;
3546 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
3547 		bo->bo_tim_len = 0;
3548 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3549 	    vap->iv_opmode == IEEE80211_M_MBSS) {
3550 		/* TIM IE is the same for Mesh and Hostap */
3551 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
3552 
3553 		tie->tim_ie = IEEE80211_ELEMID_TIM;
3554 		tie->tim_len = 4;	/* length */
3555 		tie->tim_count = 0;	/* DTIM count */
3556 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
3557 		tie->tim_bitctl = 0;	/* bitmap control */
3558 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
3559 		frm += sizeof(struct ieee80211_tim_ie);
3560 		bo->bo_tim_len = 1;
3561 	}
3562 	bo->bo_tim_trailer = frm;
3563 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
3564 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
3565 		frm = ieee80211_add_countryie(frm, ic);
3566 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3567 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
3568 			frm = ieee80211_add_powerconstraint(frm, vap);
3569 		bo->bo_csa = frm;
3570 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
3571 			frm = ieee80211_add_csa(frm, vap);
3572 	} else
3573 		bo->bo_csa = frm;
3574 
3575 	bo->bo_quiet = NULL;
3576 	if (vap->iv_flags & IEEE80211_F_DOTH) {
3577 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3578 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) &&
3579 		    (vap->iv_quiet == 1)) {
3580 			/*
3581 			 * We only insert the quiet IE offset if
3582 			 * the quiet IE is enabled.  Otherwise don't
3583 			 * put it here or we'll just overwrite
3584 			 * some other beacon contents.
3585 			 */
3586 			if (vap->iv_quiet) {
3587 				bo->bo_quiet = frm;
3588 				frm = ieee80211_add_quiet(frm,vap, 0);
3589 			}
3590 		}
3591 	}
3592 
3593 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
3594 		bo->bo_erp = frm;
3595 		frm = ieee80211_add_erp(frm, vap);
3596 	}
3597 	frm = ieee80211_add_xrates(frm, rs);
3598 	frm = ieee80211_add_rsn(frm, vap);
3599 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
3600 		frm = ieee80211_add_htcap(frm, ni);
3601 		bo->bo_htinfo = frm;
3602 		frm = ieee80211_add_htinfo(frm, ni);
3603 	}
3604 
3605 	if (IEEE80211_IS_CHAN_VHT(ni->ni_chan)) {
3606 		frm = ieee80211_add_vhtcap(frm, ni);
3607 		bo->bo_vhtinfo = frm;
3608 		frm = ieee80211_add_vhtinfo(frm, ni);
3609 		/* Transmit power envelope */
3610 		/* Channel switch wrapper element */
3611 		/* Extended bss load element */
3612 	}
3613 
3614 	frm = ieee80211_add_wpa(frm, vap);
3615 	if (vap->iv_flags & IEEE80211_F_WME) {
3616 		bo->bo_wme = frm;
3617 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme,
3618 		    !! (vap->iv_flags_ext & IEEE80211_FEXT_UAPSD));
3619 	}
3620 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
3621 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
3622 		frm = ieee80211_add_htcap_vendor(frm, ni);
3623 		frm = ieee80211_add_htinfo_vendor(frm, ni);
3624 	}
3625 
3626 #ifdef IEEE80211_SUPPORT_SUPERG
3627 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3628 		bo->bo_ath = frm;
3629 		frm = ieee80211_add_athcaps(frm, ni);
3630 	}
3631 #endif
3632 #ifdef IEEE80211_SUPPORT_TDMA
3633 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3634 		bo->bo_tdma = frm;
3635 		frm = ieee80211_add_tdma(frm, vap);
3636 	}
3637 #endif
3638 	if (vap->iv_appie_beacon != NULL) {
3639 		bo->bo_appie = frm;
3640 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3641 		frm = add_appie(frm, vap->iv_appie_beacon);
3642 	}
3643 
3644 	/* XXX TODO: move meshid/meshconf up to before vendor extensions? */
3645 #ifdef IEEE80211_SUPPORT_MESH
3646 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3647 		frm = ieee80211_add_meshid(frm, vap);
3648 		bo->bo_meshconf = frm;
3649 		frm = ieee80211_add_meshconf(frm, vap);
3650 	}
3651 #endif
3652 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3653 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3654 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3655 }
3656 
3657 /*
3658  * Allocate a beacon frame and fillin the appropriate bits.
3659  */
3660 struct mbuf *
3661 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3662 {
3663 	struct ieee80211vap *vap = ni->ni_vap;
3664 	struct ieee80211com *ic = ni->ni_ic;
3665 	struct ifnet *ifp = vap->iv_ifp;
3666 	struct ieee80211_frame *wh;
3667 	struct mbuf *m;
3668 	int pktlen;
3669 	uint8_t *frm;
3670 
3671 	/*
3672 	 * Update the "We're putting the quiet IE in the beacon" state.
3673 	 */
3674 	if (vap->iv_quiet == 1)
3675 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3676 	else if (vap->iv_quiet == 0)
3677 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3678 
3679 	/*
3680 	 * beacon frame format
3681 	 *
3682 	 * Note: This needs updating for 802.11-2012.
3683 	 *
3684 	 *	[8] time stamp
3685 	 *	[2] beacon interval
3686 	 *	[2] cabability information
3687 	 *	[tlv] ssid
3688 	 *	[tlv] supported rates
3689 	 *	[3] parameter set (DS)
3690 	 *	[8] CF parameter set (optional)
3691 	 *	[tlv] parameter set (IBSS/TIM)
3692 	 *	[tlv] country (optional)
3693 	 *	[3] power control (optional)
3694 	 *	[5] channel switch announcement (CSA) (optional)
3695 	 *	[tlv] extended rate phy (ERP)
3696 	 *	[tlv] extended supported rates
3697 	 *	[tlv] RSN parameters
3698 	 *	[tlv] HT capabilities
3699 	 *	[tlv] HT information
3700 	 *	[tlv] VHT capabilities
3701 	 *	[tlv] VHT operation
3702 	 *	[tlv] Vendor OUI HT capabilities (optional)
3703 	 *	[tlv] Vendor OUI HT information (optional)
3704 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3705 	 *	[tlv] WPA parameters
3706 	 *	[tlv] WME parameters
3707 	 *	[tlv] TDMA parameters (optional)
3708 	 *	[tlv] Mesh ID (MBSS)
3709 	 *	[tlv] Mesh Conf (MBSS)
3710 	 *	[tlv] application data (optional)
3711 	 * NB: we allocate the max space required for the TIM bitmap.
3712 	 * XXX how big is this?
3713 	 */
3714 	pktlen =   8					/* time stamp */
3715 		 + sizeof(uint16_t)			/* beacon interval */
3716 		 + sizeof(uint16_t)			/* capabilities */
3717 		 + 2 + ni->ni_esslen			/* ssid */
3718 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3719 	         + 2 + 1				/* DS parameters */
3720 		 + 2 + 6				/* CF parameters */
3721 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3722 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3723 		 + 2 + 1				/* power control */
3724 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3725 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3726 		 + 2 + 1				/* ERP */
3727 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3728 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3729 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3730 		 /* XXX conditional? */
3731 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3732 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3733 		 + sizeof(struct ieee80211_ie_vhtcap)/* VHT caps */
3734 		 + sizeof(struct ieee80211_ie_vht_operation)/* VHT info */
3735 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3736 			sizeof(struct ieee80211_wme_param) : 0)
3737 #ifdef IEEE80211_SUPPORT_SUPERG
3738 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3739 #endif
3740 #ifdef IEEE80211_SUPPORT_TDMA
3741 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3742 			sizeof(struct ieee80211_tdma_param) : 0)
3743 #endif
3744 #ifdef IEEE80211_SUPPORT_MESH
3745 		 + 2 + ni->ni_meshidlen
3746 		 + sizeof(struct ieee80211_meshconf_ie)
3747 #endif
3748 		 + IEEE80211_MAX_APPIE
3749 		 ;
3750 	m = ieee80211_getmgtframe(&frm,
3751 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3752 	if (m == NULL) {
3753 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3754 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3755 		vap->iv_stats.is_tx_nobuf++;
3756 		return NULL;
3757 	}
3758 	ieee80211_beacon_construct(m, frm, ni);
3759 
3760 	M_PREPEND(m, sizeof(struct ieee80211_frame), IEEE80211_M_NOWAIT);
3761 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3762 	wh = mtod(m, struct ieee80211_frame *);
3763 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3764 	    IEEE80211_FC0_SUBTYPE_BEACON;
3765 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3766 	*(uint16_t *)wh->i_dur = 0;
3767 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3768 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3769 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3770 	*(uint16_t *)wh->i_seq = 0;
3771 
3772 	return m;
3773 }
3774 
3775 /*
3776  * Update the dynamic parts of a beacon frame based on the current state.
3777  */
3778 int
3779 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3780 {
3781 	struct ieee80211vap *vap = ni->ni_vap;
3782 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3783 	struct ieee80211com *ic = ni->ni_ic;
3784 	int len_changed = 0;
3785 	uint16_t capinfo;
3786 	struct ieee80211_frame *wh;
3787 	ieee80211_seq seqno;
3788 
3789 	IEEE80211_LOCK(ic);
3790 	/*
3791 	 * Handle 11h channel change when we've reached the count.
3792 	 * We must recalculate the beacon frame contents to account
3793 	 * for the new channel.  Note we do this only for the first
3794 	 * vap that reaches this point; subsequent vaps just update
3795 	 * their beacon state to reflect the recalculated channel.
3796 	 */
3797 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3798 	    vap->iv_csa_count == ic->ic_csa_count) {
3799 		vap->iv_csa_count = 0;
3800 		/*
3801 		 * Effect channel change before reconstructing the beacon
3802 		 * frame contents as many places reference ni_chan.
3803 		 */
3804 		if (ic->ic_csa_newchan != NULL)
3805 			ieee80211_csa_completeswitch(ic);
3806 		/*
3807 		 * NB: ieee80211_beacon_construct clears all pending
3808 		 * updates in bo_flags so we don't need to explicitly
3809 		 * clear IEEE80211_BEACON_CSA.
3810 		 */
3811 		ieee80211_beacon_construct(m,
3812 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3813 
3814 		/* XXX do WME aggressive mode processing? */
3815 		IEEE80211_UNLOCK(ic);
3816 		return 1;		/* just assume length changed */
3817 	}
3818 
3819 	/*
3820 	 * Handle the quiet time element being added and removed.
3821 	 * Again, for now we just cheat and reconstruct the whole
3822 	 * beacon - that way the gap is provided as appropriate.
3823 	 *
3824 	 * So, track whether we have already added the IE versus
3825 	 * whether we want to be adding the IE.
3826 	 */
3827 	if ((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) &&
3828 	    (vap->iv_quiet == 0)) {
3829 		/*
3830 		 * Quiet time beacon IE enabled, but it's disabled;
3831 		 * recalc
3832 		 */
3833 		vap->iv_flags_ext &= ~IEEE80211_FEXT_QUIET_IE;
3834 		ieee80211_beacon_construct(m,
3835 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3836 		/* XXX do WME aggressive mode processing? */
3837 		IEEE80211_UNLOCK(ic);
3838 		return 1;		/* just assume length changed */
3839 	}
3840 
3841 	if (((vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE) == 0) &&
3842 	    (vap->iv_quiet == 1)) {
3843 		/*
3844 		 * Quiet time beacon IE disabled, but it's now enabled;
3845 		 * recalc
3846 		 */
3847 		vap->iv_flags_ext |= IEEE80211_FEXT_QUIET_IE;
3848 		ieee80211_beacon_construct(m,
3849 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3850 		/* XXX do WME aggressive mode processing? */
3851 		IEEE80211_UNLOCK(ic);
3852 		return 1;		/* just assume length changed */
3853 	}
3854 
3855 	wh = mtod(m, struct ieee80211_frame *);
3856 
3857 	/*
3858 	 * XXX TODO Strictly speaking this should be incremented with the TX
3859 	 * lock held so as to serialise access to the non-qos TID sequence
3860 	 * number space.
3861 	 *
3862 	 * If the driver identifies it does its own TX seqno management then
3863 	 * we can skip this (and still not do the TX seqno.)
3864 	 */
3865 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3866 	*(uint16_t *)&wh->i_seq[0] =
3867 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3868 	M_SEQNO_SET(m, seqno);
3869 
3870 	/* XXX faster to recalculate entirely or just changes? */
3871 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3872 	*bo->bo_caps = htole16(capinfo);
3873 
3874 	if (vap->iv_flags & IEEE80211_F_WME) {
3875 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3876 
3877 		/*
3878 		 * Check for aggressive mode change.  When there is
3879 		 * significant high priority traffic in the BSS
3880 		 * throttle back BE traffic by using conservative
3881 		 * parameters.  Otherwise BE uses aggressive params
3882 		 * to optimize performance of legacy/non-QoS traffic.
3883 		 */
3884 		if (wme->wme_flags & WME_F_AGGRMODE) {
3885 			if (wme->wme_hipri_traffic >
3886 			    wme->wme_hipri_switch_thresh) {
3887 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3888 				    "%s: traffic %u, disable aggressive mode\n",
3889 				    __func__, wme->wme_hipri_traffic);
3890 				wme->wme_flags &= ~WME_F_AGGRMODE;
3891 				ieee80211_wme_updateparams_locked(vap);
3892 				wme->wme_hipri_traffic =
3893 					wme->wme_hipri_switch_hysteresis;
3894 			} else
3895 				wme->wme_hipri_traffic = 0;
3896 		} else {
3897 			if (wme->wme_hipri_traffic <=
3898 			    wme->wme_hipri_switch_thresh) {
3899 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3900 				    "%s: traffic %u, enable aggressive mode\n",
3901 				    __func__, wme->wme_hipri_traffic);
3902 				wme->wme_flags |= WME_F_AGGRMODE;
3903 				ieee80211_wme_updateparams_locked(vap);
3904 				wme->wme_hipri_traffic = 0;
3905 			} else
3906 				wme->wme_hipri_traffic =
3907 					wme->wme_hipri_switch_hysteresis;
3908 		}
3909 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3910 			(void) ieee80211_add_wme_param(bo->bo_wme, wme,
3911 			  vap->iv_flags_ext & IEEE80211_FEXT_UAPSD);
3912 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3913 		}
3914 	}
3915 
3916 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3917 		ieee80211_ht_update_beacon(vap, bo);
3918 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3919 	}
3920 #ifdef IEEE80211_SUPPORT_TDMA
3921 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3922 		/*
3923 		 * NB: the beacon is potentially updated every TBTT.
3924 		 */
3925 		ieee80211_tdma_update_beacon(vap, bo);
3926 	}
3927 #endif
3928 #ifdef IEEE80211_SUPPORT_MESH
3929 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3930 		ieee80211_mesh_update_beacon(vap, bo);
3931 #endif
3932 
3933 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3934 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3935 		struct ieee80211_tim_ie *tie =
3936 			(struct ieee80211_tim_ie *) bo->bo_tim;
3937 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3938 			u_int timlen, timoff, i;
3939 			/*
3940 			 * ATIM/DTIM needs updating.  If it fits in the
3941 			 * current space allocated then just copy in the
3942 			 * new bits.  Otherwise we need to move any trailing
3943 			 * data to make room.  Note that we know there is
3944 			 * contiguous space because ieee80211_beacon_allocate
3945 			 * insures there is space in the mbuf to write a
3946 			 * maximal-size virtual bitmap (based on iv_max_aid).
3947 			 */
3948 			/*
3949 			 * Calculate the bitmap size and offset, copy any
3950 			 * trailer out of the way, and then copy in the
3951 			 * new bitmap and update the information element.
3952 			 * Note that the tim bitmap must contain at least
3953 			 * one byte and any offset must be even.
3954 			 */
3955 			if (vap->iv_ps_pending != 0) {
3956 				timoff = 128;		/* impossibly large */
3957 				for (i = 0; i < vap->iv_tim_len; i++)
3958 					if (vap->iv_tim_bitmap[i]) {
3959 						timoff = i &~ 1;
3960 						break;
3961 					}
3962 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3963 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3964 					if (vap->iv_tim_bitmap[i])
3965 						break;
3966 				timlen = 1 + (i - timoff);
3967 			} else {
3968 				timoff = 0;
3969 				timlen = 1;
3970 			}
3971 
3972 			/*
3973 			 * TODO: validate this!
3974 			 */
3975 			if (timlen != bo->bo_tim_len) {
3976 				/* copy up/down trailer */
3977 				int adjust = tie->tim_bitmap+timlen
3978 					   - bo->bo_tim_trailer;
3979 				ovbcopy(bo->bo_tim_trailer,
3980 				    bo->bo_tim_trailer+adjust,
3981 				    bo->bo_tim_trailer_len);
3982 				bo->bo_tim_trailer += adjust;
3983 				bo->bo_erp += adjust;
3984 				bo->bo_htinfo += adjust;
3985 				bo->bo_vhtinfo += adjust;
3986 #ifdef IEEE80211_SUPPORT_SUPERG
3987 				bo->bo_ath += adjust;
3988 #endif
3989 #ifdef IEEE80211_SUPPORT_TDMA
3990 				bo->bo_tdma += adjust;
3991 #endif
3992 #ifdef IEEE80211_SUPPORT_MESH
3993 				bo->bo_meshconf += adjust;
3994 #endif
3995 				bo->bo_appie += adjust;
3996 				bo->bo_wme += adjust;
3997 				bo->bo_csa += adjust;
3998 				bo->bo_quiet += adjust;
3999 				bo->bo_tim_len = timlen;
4000 
4001 				/* update information element */
4002 				tie->tim_len = 3 + timlen;
4003 				tie->tim_bitctl = timoff;
4004 				len_changed = 1;
4005 			}
4006 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
4007 				bo->bo_tim_len);
4008 
4009 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
4010 
4011 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
4012 				"%s: TIM updated, pending %u, off %u, len %u\n",
4013 				__func__, vap->iv_ps_pending, timoff, timlen);
4014 		}
4015 		/* count down DTIM period */
4016 		if (tie->tim_count == 0)
4017 			tie->tim_count = tie->tim_period - 1;
4018 		else
4019 			tie->tim_count--;
4020 		/* update state for buffered multicast frames on DTIM */
4021 		if (mcast && tie->tim_count == 0)
4022 			tie->tim_bitctl |= 1;
4023 		else
4024 			tie->tim_bitctl &= ~1;
4025 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
4026 			struct ieee80211_csa_ie *csa =
4027 			    (struct ieee80211_csa_ie *) bo->bo_csa;
4028 
4029 			/*
4030 			 * Insert or update CSA ie.  If we're just starting
4031 			 * to count down to the channel switch then we need
4032 			 * to insert the CSA ie.  Otherwise we just need to
4033 			 * drop the count.  The actual change happens above
4034 			 * when the vap's count reaches the target count.
4035 			 */
4036 			if (vap->iv_csa_count == 0) {
4037 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
4038 				bo->bo_erp += sizeof(*csa);
4039 				bo->bo_htinfo += sizeof(*csa);
4040 				bo->bo_vhtinfo += sizeof(*csa);
4041 				bo->bo_wme += sizeof(*csa);
4042 #ifdef IEEE80211_SUPPORT_SUPERG
4043 				bo->bo_ath += sizeof(*csa);
4044 #endif
4045 #ifdef IEEE80211_SUPPORT_TDMA
4046 				bo->bo_tdma += sizeof(*csa);
4047 #endif
4048 #ifdef IEEE80211_SUPPORT_MESH
4049 				bo->bo_meshconf += sizeof(*csa);
4050 #endif
4051 				bo->bo_appie += sizeof(*csa);
4052 				bo->bo_csa_trailer_len += sizeof(*csa);
4053 				bo->bo_quiet += sizeof(*csa);
4054 				bo->bo_tim_trailer_len += sizeof(*csa);
4055 				m->m_len += sizeof(*csa);
4056 				m->m_pkthdr.len += sizeof(*csa);
4057 
4058 				ieee80211_add_csa(bo->bo_csa, vap);
4059 			} else
4060 				csa->csa_count--;
4061 			vap->iv_csa_count++;
4062 			/* NB: don't clear IEEE80211_BEACON_CSA */
4063 		}
4064 
4065 		/*
4066 		 * Only add the quiet time IE if we've enabled it
4067 		 * as appropriate.
4068 		 */
4069 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
4070 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
4071 			if (vap->iv_quiet &&
4072 			    (vap->iv_flags_ext & IEEE80211_FEXT_QUIET_IE)) {
4073 				ieee80211_add_quiet(bo->bo_quiet, vap, 1);
4074 			}
4075 		}
4076 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
4077 			/*
4078 			 * ERP element needs updating.
4079 			 */
4080 			(void) ieee80211_add_erp(bo->bo_erp, vap);
4081 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
4082 		}
4083 #ifdef IEEE80211_SUPPORT_SUPERG
4084 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
4085 			ieee80211_add_athcaps(bo->bo_ath, ni);
4086 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
4087 		}
4088 #endif
4089 	}
4090 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
4091 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
4092 		int aielen;
4093 		uint8_t *frm;
4094 
4095 		aielen = 0;
4096 		if (aie != NULL)
4097 			aielen += aie->ie_len;
4098 		if (aielen != bo->bo_appie_len) {
4099 			/* copy up/down trailer */
4100 			int adjust = aielen - bo->bo_appie_len;
4101 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
4102 				bo->bo_tim_trailer_len);
4103 			bo->bo_tim_trailer += adjust;
4104 			bo->bo_appie += adjust;
4105 			bo->bo_appie_len = aielen;
4106 
4107 			len_changed = 1;
4108 		}
4109 		frm = bo->bo_appie;
4110 		if (aie != NULL)
4111 			frm  = add_appie(frm, aie);
4112 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
4113 	}
4114 	IEEE80211_UNLOCK(ic);
4115 
4116 	return len_changed;
4117 }
4118 
4119 /*
4120  * Do Ethernet-LLC encapsulation for each payload in a fast frame
4121  * tunnel encapsulation.  The frame is assumed to have an Ethernet
4122  * header at the front that must be stripped before prepending the
4123  * LLC followed by the Ethernet header passed in (with an Ethernet
4124  * type that specifies the payload size).
4125  */
4126 struct mbuf *
4127 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
4128 	const struct ether_header *eh)
4129 {
4130 	struct llc *llc;
4131 	uint16_t payload;
4132 
4133 	/* XXX optimize by combining m_adj+M_PREPEND */
4134 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
4135 	llc = mtod(m, struct llc *);
4136 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
4137 	llc->llc_control = LLC_UI;
4138 	llc->llc_snap.org_code[0] = 0;
4139 	llc->llc_snap.org_code[1] = 0;
4140 	llc->llc_snap.org_code[2] = 0;
4141 	llc->llc_snap.ether_type = eh->ether_type;
4142 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
4143 
4144 	M_PREPEND(m, sizeof(struct ether_header), IEEE80211_M_NOWAIT);
4145 	if (m == NULL) {		/* XXX cannot happen */
4146 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
4147 			"%s: no space for ether_header\n", __func__);
4148 		vap->iv_stats.is_tx_nobuf++;
4149 		return NULL;
4150 	}
4151 	ETHER_HEADER_COPY(mtod(m, void *), eh);
4152 	mtod(m, struct ether_header *)->ether_type = htons(payload);
4153 	return m;
4154 }
4155 
4156 /*
4157  * Complete an mbuf transmission.
4158  *
4159  * For now, this simply processes a completed frame after the
4160  * driver has completed it's transmission and/or retransmission.
4161  * It assumes the frame is an 802.11 encapsulated frame.
4162  *
4163  * Later on it will grow to become the exit path for a given frame
4164  * from the driver and, depending upon how it's been encapsulated
4165  * and already transmitted, it may end up doing A-MPDU retransmission,
4166  * power save requeuing, etc.
4167  *
4168  * In order for the above to work, the driver entry point to this
4169  * must not hold any driver locks.  Thus, the driver needs to delay
4170  * any actual mbuf completion until it can release said locks.
4171  *
4172  * This frees the mbuf and if the mbuf has a node reference,
4173  * the node reference will be freed.
4174  */
4175 void
4176 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
4177 {
4178 
4179 	if (ni != NULL) {
4180 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
4181 
4182 		if (status == 0) {
4183 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
4184 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
4185 			if (m->m_flags & M_MCAST)
4186 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
4187 		} else
4188 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
4189 		if (m->m_flags & M_TXCB) {
4190 			IEEE80211_DPRINTF(ni->ni_vap, IEEE80211_MSG_STATE | IEEE80211_MSG_DEBUG,
4191 			   "ni %p vap %p mode %s state %s m %p status %d\n", ni, ni->ni_vap,
4192 			   ieee80211_opmode_name[ni->ni_vap->iv_opmode],
4193 			   ieee80211_state_name[ni->ni_vap->iv_state], m, status);
4194 			ieee80211_process_callback(ni, m, status);
4195 		}
4196 		ieee80211_free_node(ni);
4197 	}
4198 	m_freem(m);
4199 }
4200