xref: /freebsd/sys/net80211/ieee80211_output.c (revision b54cfe0ae93eb56cf92d969fd76ba17e4ca36a32)
1 /*-
2  * Copyright (c) 2001 Atsushi Onoe
3  * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29 
30 #include "opt_inet.h"
31 #include "opt_inet6.h"
32 #include "opt_wlan.h"
33 
34 #include <sys/param.h>
35 #include <sys/systm.h>
36 #include <sys/mbuf.h>
37 #include <sys/kernel.h>
38 #include <sys/endian.h>
39 
40 #include <sys/socket.h>
41 
42 #include <net/bpf.h>
43 #include <net/ethernet.h>
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_llc.h>
47 #include <net/if_media.h>
48 #include <net/if_vlan_var.h>
49 
50 #include <net80211/ieee80211_var.h>
51 #include <net80211/ieee80211_regdomain.h>
52 #ifdef IEEE80211_SUPPORT_SUPERG
53 #include <net80211/ieee80211_superg.h>
54 #endif
55 #ifdef IEEE80211_SUPPORT_TDMA
56 #include <net80211/ieee80211_tdma.h>
57 #endif
58 #include <net80211/ieee80211_wds.h>
59 #include <net80211/ieee80211_mesh.h>
60 
61 #if defined(INET) || defined(INET6)
62 #include <netinet/in.h>
63 #endif
64 
65 #ifdef INET
66 #include <netinet/if_ether.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #endif
70 #ifdef INET6
71 #include <netinet/ip6.h>
72 #endif
73 
74 #include <security/mac/mac_framework.h>
75 
76 #define	ETHER_HEADER_COPY(dst, src) \
77 	memcpy(dst, src, sizeof(struct ether_header))
78 
79 /* unalligned little endian access */
80 #define LE_WRITE_2(p, v) do {				\
81 	((uint8_t *)(p))[0] = (v) & 0xff;		\
82 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
83 } while (0)
84 #define LE_WRITE_4(p, v) do {				\
85 	((uint8_t *)(p))[0] = (v) & 0xff;		\
86 	((uint8_t *)(p))[1] = ((v) >> 8) & 0xff;	\
87 	((uint8_t *)(p))[2] = ((v) >> 16) & 0xff;	\
88 	((uint8_t *)(p))[3] = ((v) >> 24) & 0xff;	\
89 } while (0)
90 
91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *,
92 	u_int hdrsize, u_int ciphdrsize, u_int mtu);
93 static	void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int);
94 
95 #ifdef IEEE80211_DEBUG
96 /*
97  * Decide if an outbound management frame should be
98  * printed when debugging is enabled.  This filters some
99  * of the less interesting frames that come frequently
100  * (e.g. beacons).
101  */
102 static __inline int
103 doprint(struct ieee80211vap *vap, int subtype)
104 {
105 	switch (subtype) {
106 	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
107 		return (vap->iv_opmode == IEEE80211_M_IBSS);
108 	}
109 	return 1;
110 }
111 #endif
112 
113 /*
114  * Transmit a frame to the given destination on the given VAP.
115  *
116  * It's up to the caller to figure out the details of who this
117  * is going to and resolving the node.
118  *
119  * This routine takes care of queuing it for power save,
120  * A-MPDU state stuff, fast-frames state stuff, encapsulation
121  * if required, then passing it up to the driver layer.
122  *
123  * This routine (for now) consumes the mbuf and frees the node
124  * reference; it ideally will return a TX status which reflects
125  * whether the mbuf was consumed or not, so the caller can
126  * free the mbuf (if appropriate) and the node reference (again,
127  * if appropriate.)
128  */
129 int
130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m,
131     struct ieee80211_node *ni)
132 {
133 	struct ieee80211com *ic = vap->iv_ic;
134 	struct ifnet *ifp = vap->iv_ifp;
135 	int len, mcast;
136 
137 	if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
138 	    (m->m_flags & M_PWR_SAV) == 0) {
139 		/*
140 		 * Station in power save mode; pass the frame
141 		 * to the 802.11 layer and continue.  We'll get
142 		 * the frame back when the time is right.
143 		 * XXX lose WDS vap linkage?
144 		 */
145 		if (ieee80211_pwrsave(ni, m) != 0)
146 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
147 		ieee80211_free_node(ni);
148 
149 		/*
150 		 * We queued it fine, so tell the upper layer
151 		 * that we consumed it.
152 		 */
153 		return (0);
154 	}
155 	/* calculate priority so drivers can find the tx queue */
156 	if (ieee80211_classify(ni, m)) {
157 		IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
158 		    ni->ni_macaddr, NULL,
159 		    "%s", "classification failure");
160 		vap->iv_stats.is_tx_classify++;
161 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
162 		m_freem(m);
163 		ieee80211_free_node(ni);
164 
165 		/* XXX better status? */
166 		return (0);
167 	}
168 	/*
169 	 * Stash the node pointer.  Note that we do this after
170 	 * any call to ieee80211_dwds_mcast because that code
171 	 * uses any existing value for rcvif to identify the
172 	 * interface it (might have been) received on.
173 	 */
174 	m->m_pkthdr.rcvif = (void *)ni;
175 	mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0;
176 	len = m->m_pkthdr.len;
177 
178 	BPF_MTAP(ifp, m);		/* 802.3 tx */
179 
180 	/*
181 	 * Check if A-MPDU tx aggregation is setup or if we
182 	 * should try to enable it.  The sta must be associated
183 	 * with HT and A-MPDU enabled for use.  When the policy
184 	 * routine decides we should enable A-MPDU we issue an
185 	 * ADDBA request and wait for a reply.  The frame being
186 	 * encapsulated will go out w/o using A-MPDU, or possibly
187 	 * it might be collected by the driver and held/retransmit.
188 	 * The default ic_ampdu_enable routine handles staggering
189 	 * ADDBA requests in case the receiver NAK's us or we are
190 	 * otherwise unable to establish a BA stream.
191 	 */
192 	if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) &&
193 	    (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) &&
194 	    (m->m_flags & M_EAPOL) == 0) {
195 		int tid = WME_AC_TO_TID(M_WME_GETAC(m));
196 		struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid];
197 
198 		ieee80211_txampdu_count_packet(tap);
199 		if (IEEE80211_AMPDU_RUNNING(tap)) {
200 			/*
201 			 * Operational, mark frame for aggregation.
202 			 *
203 			 * XXX do tx aggregation here
204 			 */
205 			m->m_flags |= M_AMPDU_MPDU;
206 		} else if (!IEEE80211_AMPDU_REQUESTED(tap) &&
207 		    ic->ic_ampdu_enable(ni, tap)) {
208 			/*
209 			 * Not negotiated yet, request service.
210 			 */
211 			ieee80211_ampdu_request(ni, tap);
212 			/* XXX hold frame for reply? */
213 		}
214 	}
215 
216 	/*
217 	 * XXX If we aren't doing AMPDU TX then we /could/ do
218 	 * fast-frames encapsulation, however right now this
219 	 * output logic doesn't handle that case.
220 	 *
221 	 * So we'll be limited to "fast-frames" xmit for non-11n STA
222 	 * and "no fast frames" xmit for 11n STAs.
223 	 * It'd be nice to eventually test fast-frames out by
224 	 * gracefully falling from failing A-MPDU transmission
225 	 * (driver says no, fail to negotiate it with peer) to
226 	 * using fast-frames.
227 	 *
228 	 * Note: we can actually put A-MSDU's inside an A-MPDU,
229 	 * so hopefully we can figure out how to make that particular
230 	 * combination work right.
231 	 */
232 #ifdef IEEE80211_SUPPORT_SUPERG
233 	else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) {
234 		m = ieee80211_ff_check(ni, m);
235 		if (m == NULL) {
236 			/* NB: any ni ref held on stageq */
237 			return (0);
238 		}
239 	}
240 #endif /* IEEE80211_SUPPORT_SUPERG */
241 
242 	/*
243 	 * Grab the TX lock - serialise the TX process from this
244 	 * point (where TX state is being checked/modified)
245 	 * through to driver queue.
246 	 */
247 	IEEE80211_TX_LOCK(ic);
248 
249 	/*
250 	 * XXX make the encap and transmit code a separate function
251 	 * so things like the FF (and later A-MSDU) path can just call
252 	 * it for flushed frames.
253 	 */
254 	if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) {
255 		/*
256 		 * Encapsulate the packet in prep for transmission.
257 		 */
258 		m = ieee80211_encap(vap, ni, m);
259 		if (m == NULL) {
260 			/* NB: stat+msg handled in ieee80211_encap */
261 			IEEE80211_TX_UNLOCK(ic);
262 			ieee80211_free_node(ni);
263 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
264 			return (ENOBUFS);
265 		}
266 	}
267 	(void) ieee80211_parent_xmitpkt(ic, m);
268 
269 	/*
270 	 * Unlock at this point - no need to hold it across
271 	 * ieee80211_free_node() (ie, the comlock)
272 	 */
273 	IEEE80211_TX_UNLOCK(ic);
274 	ic->ic_lastdata = ticks;
275 
276 	return (0);
277 }
278 
279 
280 
281 /*
282  * Send the given mbuf through the given vap.
283  *
284  * This consumes the mbuf regardless of whether the transmit
285  * was successful or not.
286  *
287  * This does none of the initial checks that ieee80211_start()
288  * does (eg CAC timeout, interface wakeup) - the caller must
289  * do this first.
290  */
291 static int
292 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m)
293 {
294 #define	IS_DWDS(vap) \
295 	(vap->iv_opmode == IEEE80211_M_WDS && \
296 	 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0)
297 	struct ieee80211com *ic = vap->iv_ic;
298 	struct ifnet *ifp = vap->iv_ifp;
299 	struct ieee80211_node *ni;
300 	struct ether_header *eh;
301 
302 	/*
303 	 * Cancel any background scan.
304 	 */
305 	if (ic->ic_flags & IEEE80211_F_SCAN)
306 		ieee80211_cancel_anyscan(vap);
307 	/*
308 	 * Find the node for the destination so we can do
309 	 * things like power save and fast frames aggregation.
310 	 *
311 	 * NB: past this point various code assumes the first
312 	 *     mbuf has the 802.3 header present (and contiguous).
313 	 */
314 	ni = NULL;
315 	if (m->m_len < sizeof(struct ether_header) &&
316 	   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
317 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
318 		    "discard frame, %s\n", "m_pullup failed");
319 		vap->iv_stats.is_tx_nobuf++;	/* XXX */
320 		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
321 		return (ENOBUFS);
322 	}
323 	eh = mtod(m, struct ether_header *);
324 	if (ETHER_IS_MULTICAST(eh->ether_dhost)) {
325 		if (IS_DWDS(vap)) {
326 			/*
327 			 * Only unicast frames from the above go out
328 			 * DWDS vaps; multicast frames are handled by
329 			 * dispatching the frame as it comes through
330 			 * the AP vap (see below).
331 			 */
332 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS,
333 			    eh->ether_dhost, "mcast", "%s", "on DWDS");
334 			vap->iv_stats.is_dwds_mcast++;
335 			m_freem(m);
336 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
337 			/* XXX better status? */
338 			return (ENOBUFS);
339 		}
340 		if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
341 			/*
342 			 * Spam DWDS vap's w/ multicast traffic.
343 			 */
344 			/* XXX only if dwds in use? */
345 			ieee80211_dwds_mcast(vap, m);
346 		}
347 	}
348 #ifdef IEEE80211_SUPPORT_MESH
349 	if (vap->iv_opmode != IEEE80211_M_MBSS) {
350 #endif
351 		ni = ieee80211_find_txnode(vap, eh->ether_dhost);
352 		if (ni == NULL) {
353 			/* NB: ieee80211_find_txnode does stat+msg */
354 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
355 			m_freem(m);
356 			/* XXX better status? */
357 			return (ENOBUFS);
358 		}
359 		if (ni->ni_associd == 0 &&
360 		    (ni->ni_flags & IEEE80211_NODE_ASSOCID)) {
361 			IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT,
362 			    eh->ether_dhost, NULL,
363 			    "sta not associated (type 0x%04x)",
364 			    htons(eh->ether_type));
365 			vap->iv_stats.is_tx_notassoc++;
366 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
367 			m_freem(m);
368 			ieee80211_free_node(ni);
369 			/* XXX better status? */
370 			return (ENOBUFS);
371 		}
372 #ifdef IEEE80211_SUPPORT_MESH
373 	} else {
374 		if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) {
375 			/*
376 			 * Proxy station only if configured.
377 			 */
378 			if (!ieee80211_mesh_isproxyena(vap)) {
379 				IEEE80211_DISCARD_MAC(vap,
380 				    IEEE80211_MSG_OUTPUT |
381 				    IEEE80211_MSG_MESH,
382 				    eh->ether_dhost, NULL,
383 				    "%s", "proxy not enabled");
384 				vap->iv_stats.is_mesh_notproxy++;
385 				if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
386 				m_freem(m);
387 				/* XXX better status? */
388 				return (ENOBUFS);
389 			}
390 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
391 			    "forward frame from DS SA(%6D), DA(%6D)\n",
392 			    eh->ether_shost, ":",
393 			    eh->ether_dhost, ":");
394 			ieee80211_mesh_proxy_check(vap, eh->ether_shost);
395 		}
396 		ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m);
397 		if (ni == NULL) {
398 			/*
399 			 * NB: ieee80211_mesh_discover holds/disposes
400 			 * frame (e.g. queueing on path discovery).
401 			 */
402 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
403 			/* XXX better status? */
404 			return (ENOBUFS);
405 		}
406 	}
407 #endif
408 
409 	/*
410 	 * We've resolved the sender, so attempt to transmit it.
411 	 */
412 
413 	if (vap->iv_state == IEEE80211_S_SLEEP) {
414 		/*
415 		 * In power save; queue frame and then  wakeup device
416 		 * for transmit.
417 		 */
418 		ic->ic_lastdata = ticks;
419 		if (ieee80211_pwrsave(ni, m) != 0)
420 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
421 		ieee80211_free_node(ni);
422 		ieee80211_new_state(vap, IEEE80211_S_RUN, 0);
423 		return (0);
424 	}
425 
426 	if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0)
427 		return (ENOBUFS);
428 	return (0);
429 #undef	IS_DWDS
430 }
431 
432 /*
433  * Start method for vap's.  All packets from the stack come
434  * through here.  We handle common processing of the packets
435  * before dispatching them to the underlying device.
436  *
437  * if_transmit() requires that the mbuf be consumed by this call
438  * regardless of the return condition.
439  */
440 int
441 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m)
442 {
443 	struct ieee80211vap *vap = ifp->if_softc;
444 	struct ieee80211com *ic = vap->iv_ic;
445 
446 	/*
447 	 * No data frames go out unless we're running.
448 	 * Note in particular this covers CAC and CSA
449 	 * states (though maybe we should check muting
450 	 * for CSA).
451 	 */
452 	if (vap->iv_state != IEEE80211_S_RUN &&
453 	    vap->iv_state != IEEE80211_S_SLEEP) {
454 		IEEE80211_LOCK(ic);
455 		/* re-check under the com lock to avoid races */
456 		if (vap->iv_state != IEEE80211_S_RUN &&
457 		    vap->iv_state != IEEE80211_S_SLEEP) {
458 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
459 			    "%s: ignore queue, in %s state\n",
460 			    __func__, ieee80211_state_name[vap->iv_state]);
461 			vap->iv_stats.is_tx_badstate++;
462 			IEEE80211_UNLOCK(ic);
463 			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
464 			m_freem(m);
465 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
466 			return (ENETDOWN);
467 		}
468 		IEEE80211_UNLOCK(ic);
469 	}
470 
471 	/*
472 	 * Sanitize mbuf flags for net80211 use.  We cannot
473 	 * clear M_PWR_SAV or M_MORE_DATA because these may
474 	 * be set for frames that are re-submitted from the
475 	 * power save queue.
476 	 *
477 	 * NB: This must be done before ieee80211_classify as
478 	 *     it marks EAPOL in frames with M_EAPOL.
479 	 */
480 	m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA);
481 
482 	/*
483 	 * Bump to the packet transmission path.
484 	 * The mbuf will be consumed here.
485 	 */
486 	return (ieee80211_start_pkt(vap, m));
487 }
488 
489 void
490 ieee80211_vap_qflush(struct ifnet *ifp)
491 {
492 
493 	/* Empty for now */
494 }
495 
496 /*
497  * 802.11 raw output routine.
498  *
499  * XXX TODO: this (and other send routines) should correctly
500  * XXX keep the pwr mgmt bit set if it decides to call into the
501  * XXX driver to send a frame whilst the state is SLEEP.
502  *
503  * Otherwise the peer may decide that we're awake and flood us
504  * with traffic we are still too asleep to receive!
505  */
506 int
507 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni,
508     struct mbuf *m, const struct ieee80211_bpf_params *params)
509 {
510 	struct ieee80211com *ic = vap->iv_ic;
511 	int error;
512 
513 	/*
514 	 * Set node - the caller has taken a reference, so ensure
515 	 * that the mbuf has the same node value that
516 	 * it would if it were going via the normal path.
517 	 */
518 	m->m_pkthdr.rcvif = (void *)ni;
519 
520 	/*
521 	 * Attempt to add bpf transmit parameters.
522 	 *
523 	 * For now it's ok to fail; the raw_xmit api still takes
524 	 * them as an option.
525 	 *
526 	 * Later on when ic_raw_xmit() has params removed,
527 	 * they'll have to be added - so fail the transmit if
528 	 * they can't be.
529 	 */
530 	if (params)
531 		(void) ieee80211_add_xmit_params(m, params);
532 
533 	error = ic->ic_raw_xmit(ni, m, params);
534 	if (error) {
535 		if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1);
536 		ieee80211_free_node(ni);
537 	}
538 	return (error);
539 }
540 
541 /*
542  * 802.11 output routine. This is (currently) used only to
543  * connect bpf write calls to the 802.11 layer for injecting
544  * raw 802.11 frames.
545  */
546 int
547 ieee80211_output(struct ifnet *ifp, struct mbuf *m,
548 	const struct sockaddr *dst, struct route *ro)
549 {
550 #define senderr(e) do { error = (e); goto bad;} while (0)
551 	struct ieee80211_node *ni = NULL;
552 	struct ieee80211vap *vap;
553 	struct ieee80211_frame *wh;
554 	struct ieee80211com *ic = NULL;
555 	int error;
556 	int ret;
557 
558 	if (ifp->if_drv_flags & IFF_DRV_OACTIVE) {
559 		/*
560 		 * Short-circuit requests if the vap is marked OACTIVE
561 		 * as this can happen because a packet came down through
562 		 * ieee80211_start before the vap entered RUN state in
563 		 * which case it's ok to just drop the frame.  This
564 		 * should not be necessary but callers of if_output don't
565 		 * check OACTIVE.
566 		 */
567 		senderr(ENETDOWN);
568 	}
569 	vap = ifp->if_softc;
570 	ic = vap->iv_ic;
571 	/*
572 	 * Hand to the 802.3 code if not tagged as
573 	 * a raw 802.11 frame.
574 	 */
575 	if (dst->sa_family != AF_IEEE80211)
576 		return vap->iv_output(ifp, m, dst, ro);
577 #ifdef MAC
578 	error = mac_ifnet_check_transmit(ifp, m);
579 	if (error)
580 		senderr(error);
581 #endif
582 	if (ifp->if_flags & IFF_MONITOR)
583 		senderr(ENETDOWN);
584 	if (!IFNET_IS_UP_RUNNING(ifp))
585 		senderr(ENETDOWN);
586 	if (vap->iv_state == IEEE80211_S_CAC) {
587 		IEEE80211_DPRINTF(vap,
588 		    IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
589 		    "block %s frame in CAC state\n", "raw data");
590 		vap->iv_stats.is_tx_badstate++;
591 		senderr(EIO);		/* XXX */
592 	} else if (vap->iv_state == IEEE80211_S_SCAN)
593 		senderr(EIO);
594 	/* XXX bypass bridge, pfil, carp, etc. */
595 
596 	if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack))
597 		senderr(EIO);	/* XXX */
598 	wh = mtod(m, struct ieee80211_frame *);
599 	if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) !=
600 	    IEEE80211_FC0_VERSION_0)
601 		senderr(EIO);	/* XXX */
602 
603 	/* locate destination node */
604 	switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) {
605 	case IEEE80211_FC1_DIR_NODS:
606 	case IEEE80211_FC1_DIR_FROMDS:
607 		ni = ieee80211_find_txnode(vap, wh->i_addr1);
608 		break;
609 	case IEEE80211_FC1_DIR_TODS:
610 	case IEEE80211_FC1_DIR_DSTODS:
611 		if (m->m_pkthdr.len < sizeof(struct ieee80211_frame))
612 			senderr(EIO);	/* XXX */
613 		ni = ieee80211_find_txnode(vap, wh->i_addr3);
614 		break;
615 	default:
616 		senderr(EIO);	/* XXX */
617 	}
618 	if (ni == NULL) {
619 		/*
620 		 * Permit packets w/ bpf params through regardless
621 		 * (see below about sa_len).
622 		 */
623 		if (dst->sa_len == 0)
624 			senderr(EHOSTUNREACH);
625 		ni = ieee80211_ref_node(vap->iv_bss);
626 	}
627 
628 	/*
629 	 * Sanitize mbuf for net80211 flags leaked from above.
630 	 *
631 	 * NB: This must be done before ieee80211_classify as
632 	 *     it marks EAPOL in frames with M_EAPOL.
633 	 */
634 	m->m_flags &= ~M_80211_TX;
635 
636 	/* calculate priority so drivers can find the tx queue */
637 	/* XXX assumes an 802.3 frame */
638 	if (ieee80211_classify(ni, m))
639 		senderr(EIO);		/* XXX */
640 
641 	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
642 	IEEE80211_NODE_STAT(ni, tx_data);
643 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
644 		IEEE80211_NODE_STAT(ni, tx_mcast);
645 		m->m_flags |= M_MCAST;
646 	} else
647 		IEEE80211_NODE_STAT(ni, tx_ucast);
648 	/* NB: ieee80211_encap does not include 802.11 header */
649 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len);
650 
651 	IEEE80211_TX_LOCK(ic);
652 
653 	/*
654 	 * NB: DLT_IEEE802_11_RADIO identifies the parameters are
655 	 * present by setting the sa_len field of the sockaddr (yes,
656 	 * this is a hack).
657 	 * NB: we assume sa_data is suitably aligned to cast.
658 	 */
659 	ret = ieee80211_raw_output(vap, ni, m,
660 	    (const struct ieee80211_bpf_params *)(dst->sa_len ?
661 		dst->sa_data : NULL));
662 	IEEE80211_TX_UNLOCK(ic);
663 	return (ret);
664 bad:
665 	if (m != NULL)
666 		m_freem(m);
667 	if (ni != NULL)
668 		ieee80211_free_node(ni);
669 	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
670 	return error;
671 #undef senderr
672 }
673 
674 /*
675  * Set the direction field and address fields of an outgoing
676  * frame.  Note this should be called early on in constructing
677  * a frame as it sets i_fc[1]; other bits can then be or'd in.
678  */
679 void
680 ieee80211_send_setup(
681 	struct ieee80211_node *ni,
682 	struct mbuf *m,
683 	int type, int tid,
684 	const uint8_t sa[IEEE80211_ADDR_LEN],
685 	const uint8_t da[IEEE80211_ADDR_LEN],
686 	const uint8_t bssid[IEEE80211_ADDR_LEN])
687 {
688 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)wh)
689 	struct ieee80211vap *vap = ni->ni_vap;
690 	struct ieee80211_tx_ampdu *tap;
691 	struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *);
692 	ieee80211_seq seqno;
693 
694 	IEEE80211_TX_LOCK_ASSERT(ni->ni_ic);
695 
696 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type;
697 	if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) {
698 		switch (vap->iv_opmode) {
699 		case IEEE80211_M_STA:
700 			wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
701 			IEEE80211_ADDR_COPY(wh->i_addr1, bssid);
702 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
703 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
704 			break;
705 		case IEEE80211_M_IBSS:
706 		case IEEE80211_M_AHDEMO:
707 			wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
708 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
709 			IEEE80211_ADDR_COPY(wh->i_addr2, sa);
710 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
711 			break;
712 		case IEEE80211_M_HOSTAP:
713 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
714 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
715 			IEEE80211_ADDR_COPY(wh->i_addr2, bssid);
716 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
717 			break;
718 		case IEEE80211_M_WDS:
719 			wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
720 			IEEE80211_ADDR_COPY(wh->i_addr1, da);
721 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
722 			IEEE80211_ADDR_COPY(wh->i_addr3, da);
723 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
724 			break;
725 		case IEEE80211_M_MBSS:
726 #ifdef IEEE80211_SUPPORT_MESH
727 			if (IEEE80211_IS_MULTICAST(da)) {
728 				wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
729 				/* XXX next hop */
730 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
731 				IEEE80211_ADDR_COPY(wh->i_addr2,
732 				    vap->iv_myaddr);
733 			} else {
734 				wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
735 				IEEE80211_ADDR_COPY(wh->i_addr1, da);
736 				IEEE80211_ADDR_COPY(wh->i_addr2,
737 				    vap->iv_myaddr);
738 				IEEE80211_ADDR_COPY(wh->i_addr3, da);
739 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa);
740 			}
741 #endif
742 			break;
743 		case IEEE80211_M_MONITOR:	/* NB: to quiet compiler */
744 			break;
745 		}
746 	} else {
747 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
748 		IEEE80211_ADDR_COPY(wh->i_addr1, da);
749 		IEEE80211_ADDR_COPY(wh->i_addr2, sa);
750 #ifdef IEEE80211_SUPPORT_MESH
751 		if (vap->iv_opmode == IEEE80211_M_MBSS)
752 			IEEE80211_ADDR_COPY(wh->i_addr3, sa);
753 		else
754 #endif
755 			IEEE80211_ADDR_COPY(wh->i_addr3, bssid);
756 	}
757 	*(uint16_t *)&wh->i_dur[0] = 0;
758 
759 	tap = &ni->ni_tx_ampdu[tid];
760 	if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap))
761 		m->m_flags |= M_AMPDU_MPDU;
762 	else {
763 		if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK,
764 				      type & IEEE80211_FC0_SUBTYPE_MASK))
765 			seqno = ni->ni_txseqs[tid]++;
766 		else
767 			seqno = 0;
768 
769 		*(uint16_t *)&wh->i_seq[0] =
770 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
771 		M_SEQNO_SET(m, seqno);
772 	}
773 
774 	if (IEEE80211_IS_MULTICAST(wh->i_addr1))
775 		m->m_flags |= M_MCAST;
776 #undef WH4
777 }
778 
779 /*
780  * Send a management frame to the specified node.  The node pointer
781  * must have a reference as the pointer will be passed to the driver
782  * and potentially held for a long time.  If the frame is successfully
783  * dispatched to the driver, then it is responsible for freeing the
784  * reference (and potentially free'ing up any associated storage);
785  * otherwise deal with reclaiming any reference (on error).
786  */
787 int
788 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type,
789 	struct ieee80211_bpf_params *params)
790 {
791 	struct ieee80211vap *vap = ni->ni_vap;
792 	struct ieee80211com *ic = ni->ni_ic;
793 	struct ieee80211_frame *wh;
794 	int ret;
795 
796 	KASSERT(ni != NULL, ("null node"));
797 
798 	if (vap->iv_state == IEEE80211_S_CAC) {
799 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
800 		    ni, "block %s frame in CAC state",
801 			ieee80211_mgt_subtype_name[
802 			    (type & IEEE80211_FC0_SUBTYPE_MASK) >>
803 				IEEE80211_FC0_SUBTYPE_SHIFT]);
804 		vap->iv_stats.is_tx_badstate++;
805 		ieee80211_free_node(ni);
806 		m_freem(m);
807 		return EIO;		/* XXX */
808 	}
809 
810 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
811 	if (m == NULL) {
812 		ieee80211_free_node(ni);
813 		return ENOMEM;
814 	}
815 
816 	IEEE80211_TX_LOCK(ic);
817 
818 	wh = mtod(m, struct ieee80211_frame *);
819 	ieee80211_send_setup(ni, m,
820 	     IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID,
821 	     vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
822 	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
823 		IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1,
824 		    "encrypting frame (%s)", __func__);
825 		wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
826 	}
827 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
828 
829 	KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?"));
830 	M_WME_SETAC(m, params->ibp_pri);
831 
832 #ifdef IEEE80211_DEBUG
833 	/* avoid printing too many frames */
834 	if ((ieee80211_msg_debug(vap) && doprint(vap, type)) ||
835 	    ieee80211_msg_dumppkts(vap)) {
836 		printf("[%s] send %s on channel %u\n",
837 		    ether_sprintf(wh->i_addr1),
838 		    ieee80211_mgt_subtype_name[
839 			(type & IEEE80211_FC0_SUBTYPE_MASK) >>
840 				IEEE80211_FC0_SUBTYPE_SHIFT],
841 		    ieee80211_chan2ieee(ic, ic->ic_curchan));
842 	}
843 #endif
844 	IEEE80211_NODE_STAT(ni, tx_mgmt);
845 
846 	ret = ieee80211_raw_output(vap, ni, m, params);
847 	IEEE80211_TX_UNLOCK(ic);
848 	return (ret);
849 }
850 
851 /*
852  * Send a null data frame to the specified node.  If the station
853  * is setup for QoS then a QoS Null Data frame is constructed.
854  * If this is a WDS station then a 4-address frame is constructed.
855  *
856  * NB: the caller is assumed to have setup a node reference
857  *     for use; this is necessary to deal with a race condition
858  *     when probing for inactive stations.  Like ieee80211_mgmt_output
859  *     we must cleanup any node reference on error;  however we
860  *     can safely just unref it as we know it will never be the
861  *     last reference to the node.
862  */
863 int
864 ieee80211_send_nulldata(struct ieee80211_node *ni)
865 {
866 	struct ieee80211vap *vap = ni->ni_vap;
867 	struct ieee80211com *ic = ni->ni_ic;
868 	struct mbuf *m;
869 	struct ieee80211_frame *wh;
870 	int hdrlen;
871 	uint8_t *frm;
872 	int ret;
873 
874 	if (vap->iv_state == IEEE80211_S_CAC) {
875 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH,
876 		    ni, "block %s frame in CAC state", "null data");
877 		ieee80211_unref_node(&ni);
878 		vap->iv_stats.is_tx_badstate++;
879 		return EIO;		/* XXX */
880 	}
881 
882 	if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT))
883 		hdrlen = sizeof(struct ieee80211_qosframe);
884 	else
885 		hdrlen = sizeof(struct ieee80211_frame);
886 	/* NB: only WDS vap's get 4-address frames */
887 	if (vap->iv_opmode == IEEE80211_M_WDS)
888 		hdrlen += IEEE80211_ADDR_LEN;
889 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
890 		hdrlen = roundup(hdrlen, sizeof(uint32_t));
891 
892 	m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0);
893 	if (m == NULL) {
894 		/* XXX debug msg */
895 		ieee80211_unref_node(&ni);
896 		vap->iv_stats.is_tx_nobuf++;
897 		return ENOMEM;
898 	}
899 	KASSERT(M_LEADINGSPACE(m) >= hdrlen,
900 	    ("leading space %zd", M_LEADINGSPACE(m)));
901 	M_PREPEND(m, hdrlen, M_NOWAIT);
902 	if (m == NULL) {
903 		/* NB: cannot happen */
904 		ieee80211_free_node(ni);
905 		return ENOMEM;
906 	}
907 
908 	IEEE80211_TX_LOCK(ic);
909 
910 	wh = mtod(m, struct ieee80211_frame *);		/* NB: a little lie */
911 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
912 		const int tid = WME_AC_TO_TID(WME_AC_BE);
913 		uint8_t *qos;
914 
915 		ieee80211_send_setup(ni, m,
916 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL,
917 		    tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
918 
919 		if (vap->iv_opmode == IEEE80211_M_WDS)
920 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
921 		else
922 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
923 		qos[0] = tid & IEEE80211_QOS_TID;
924 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy)
925 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
926 		qos[1] = 0;
927 	} else {
928 		ieee80211_send_setup(ni, m,
929 		    IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA,
930 		    IEEE80211_NONQOS_TID,
931 		    vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid);
932 	}
933 	if (vap->iv_opmode != IEEE80211_M_WDS) {
934 		/* NB: power management bit is never sent by an AP */
935 		if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
936 		    vap->iv_opmode != IEEE80211_M_HOSTAP)
937 			wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT;
938 	}
939 	m->m_len = m->m_pkthdr.len = hdrlen;
940 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
941 
942 	M_WME_SETAC(m, WME_AC_BE);
943 
944 	IEEE80211_NODE_STAT(ni, tx_data);
945 
946 	IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni,
947 	    "send %snull data frame on channel %u, pwr mgt %s",
948 	    ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "",
949 	    ieee80211_chan2ieee(ic, ic->ic_curchan),
950 	    wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis");
951 
952 	ret = ieee80211_raw_output(vap, ni, m, NULL);
953 	IEEE80211_TX_UNLOCK(ic);
954 	return (ret);
955 }
956 
957 /*
958  * Assign priority to a frame based on any vlan tag assigned
959  * to the station and/or any Diffserv setting in an IP header.
960  * Finally, if an ACM policy is setup (in station mode) it's
961  * applied.
962  */
963 int
964 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m)
965 {
966 	const struct ether_header *eh = mtod(m, struct ether_header *);
967 	int v_wme_ac, d_wme_ac, ac;
968 
969 	/*
970 	 * Always promote PAE/EAPOL frames to high priority.
971 	 */
972 	if (eh->ether_type == htons(ETHERTYPE_PAE)) {
973 		/* NB: mark so others don't need to check header */
974 		m->m_flags |= M_EAPOL;
975 		ac = WME_AC_VO;
976 		goto done;
977 	}
978 	/*
979 	 * Non-qos traffic goes to BE.
980 	 */
981 	if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) {
982 		ac = WME_AC_BE;
983 		goto done;
984 	}
985 
986 	/*
987 	 * If node has a vlan tag then all traffic
988 	 * to it must have a matching tag.
989 	 */
990 	v_wme_ac = 0;
991 	if (ni->ni_vlan != 0) {
992 		 if ((m->m_flags & M_VLANTAG) == 0) {
993 			IEEE80211_NODE_STAT(ni, tx_novlantag);
994 			return 1;
995 		}
996 		if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) !=
997 		    EVL_VLANOFTAG(ni->ni_vlan)) {
998 			IEEE80211_NODE_STAT(ni, tx_vlanmismatch);
999 			return 1;
1000 		}
1001 		/* map vlan priority to AC */
1002 		v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan));
1003 	}
1004 
1005 	/* XXX m_copydata may be too slow for fast path */
1006 #ifdef INET
1007 	if (eh->ether_type == htons(ETHERTYPE_IP)) {
1008 		uint8_t tos;
1009 		/*
1010 		 * IP frame, map the DSCP bits from the TOS field.
1011 		 */
1012 		/* NB: ip header may not be in first mbuf */
1013 		m_copydata(m, sizeof(struct ether_header) +
1014 		    offsetof(struct ip, ip_tos), sizeof(tos), &tos);
1015 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1016 		d_wme_ac = TID_TO_WME_AC(tos);
1017 	} else {
1018 #endif /* INET */
1019 #ifdef INET6
1020 	if (eh->ether_type == htons(ETHERTYPE_IPV6)) {
1021 		uint32_t flow;
1022 		uint8_t tos;
1023 		/*
1024 		 * IPv6 frame, map the DSCP bits from the traffic class field.
1025 		 */
1026 		m_copydata(m, sizeof(struct ether_header) +
1027 		    offsetof(struct ip6_hdr, ip6_flow), sizeof(flow),
1028 		    (caddr_t) &flow);
1029 		tos = (uint8_t)(ntohl(flow) >> 20);
1030 		tos >>= 5;		/* NB: ECN + low 3 bits of DSCP */
1031 		d_wme_ac = TID_TO_WME_AC(tos);
1032 	} else {
1033 #endif /* INET6 */
1034 		d_wme_ac = WME_AC_BE;
1035 #ifdef INET6
1036 	}
1037 #endif
1038 #ifdef INET
1039 	}
1040 #endif
1041 	/*
1042 	 * Use highest priority AC.
1043 	 */
1044 	if (v_wme_ac > d_wme_ac)
1045 		ac = v_wme_ac;
1046 	else
1047 		ac = d_wme_ac;
1048 
1049 	/*
1050 	 * Apply ACM policy.
1051 	 */
1052 	if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) {
1053 		static const int acmap[4] = {
1054 			WME_AC_BK,	/* WME_AC_BE */
1055 			WME_AC_BK,	/* WME_AC_BK */
1056 			WME_AC_BE,	/* WME_AC_VI */
1057 			WME_AC_VI,	/* WME_AC_VO */
1058 		};
1059 		struct ieee80211com *ic = ni->ni_ic;
1060 
1061 		while (ac != WME_AC_BK &&
1062 		    ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm)
1063 			ac = acmap[ac];
1064 	}
1065 done:
1066 	M_WME_SETAC(m, ac);
1067 	return 0;
1068 }
1069 
1070 /*
1071  * Insure there is sufficient contiguous space to encapsulate the
1072  * 802.11 data frame.  If room isn't already there, arrange for it.
1073  * Drivers and cipher modules assume we have done the necessary work
1074  * and fail rudely if they don't find the space they need.
1075  */
1076 struct mbuf *
1077 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize,
1078 	struct ieee80211_key *key, struct mbuf *m)
1079 {
1080 #define	TO_BE_RECLAIMED	(sizeof(struct ether_header) - sizeof(struct llc))
1081 	int needed_space = vap->iv_ic->ic_headroom + hdrsize;
1082 
1083 	if (key != NULL) {
1084 		/* XXX belongs in crypto code? */
1085 		needed_space += key->wk_cipher->ic_header;
1086 		/* XXX frags */
1087 		/*
1088 		 * When crypto is being done in the host we must insure
1089 		 * the data are writable for the cipher routines; clone
1090 		 * a writable mbuf chain.
1091 		 * XXX handle SWMIC specially
1092 		 */
1093 		if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) {
1094 			m = m_unshare(m, M_NOWAIT);
1095 			if (m == NULL) {
1096 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1097 				    "%s: cannot get writable mbuf\n", __func__);
1098 				vap->iv_stats.is_tx_nobuf++; /* XXX new stat */
1099 				return NULL;
1100 			}
1101 		}
1102 	}
1103 	/*
1104 	 * We know we are called just before stripping an Ethernet
1105 	 * header and prepending an LLC header.  This means we know
1106 	 * there will be
1107 	 *	sizeof(struct ether_header) - sizeof(struct llc)
1108 	 * bytes recovered to which we need additional space for the
1109 	 * 802.11 header and any crypto header.
1110 	 */
1111 	/* XXX check trailing space and copy instead? */
1112 	if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) {
1113 		struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type);
1114 		if (n == NULL) {
1115 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT,
1116 			    "%s: cannot expand storage\n", __func__);
1117 			vap->iv_stats.is_tx_nobuf++;
1118 			m_freem(m);
1119 			return NULL;
1120 		}
1121 		KASSERT(needed_space <= MHLEN,
1122 		    ("not enough room, need %u got %d\n", needed_space, MHLEN));
1123 		/*
1124 		 * Setup new mbuf to have leading space to prepend the
1125 		 * 802.11 header and any crypto header bits that are
1126 		 * required (the latter are added when the driver calls
1127 		 * back to ieee80211_crypto_encap to do crypto encapsulation).
1128 		 */
1129 		/* NB: must be first 'cuz it clobbers m_data */
1130 		m_move_pkthdr(n, m);
1131 		n->m_len = 0;			/* NB: m_gethdr does not set */
1132 		n->m_data += needed_space;
1133 		/*
1134 		 * Pull up Ethernet header to create the expected layout.
1135 		 * We could use m_pullup but that's overkill (i.e. we don't
1136 		 * need the actual data) and it cannot fail so do it inline
1137 		 * for speed.
1138 		 */
1139 		/* NB: struct ether_header is known to be contiguous */
1140 		n->m_len += sizeof(struct ether_header);
1141 		m->m_len -= sizeof(struct ether_header);
1142 		m->m_data += sizeof(struct ether_header);
1143 		/*
1144 		 * Replace the head of the chain.
1145 		 */
1146 		n->m_next = m;
1147 		m = n;
1148 	}
1149 	return m;
1150 #undef TO_BE_RECLAIMED
1151 }
1152 
1153 /*
1154  * Return the transmit key to use in sending a unicast frame.
1155  * If a unicast key is set we use that.  When no unicast key is set
1156  * we fall back to the default transmit key.
1157  */
1158 static __inline struct ieee80211_key *
1159 ieee80211_crypto_getucastkey(struct ieee80211vap *vap,
1160 	struct ieee80211_node *ni)
1161 {
1162 	if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) {
1163 		if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1164 		    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1165 			return NULL;
1166 		return &vap->iv_nw_keys[vap->iv_def_txkey];
1167 	} else {
1168 		return &ni->ni_ucastkey;
1169 	}
1170 }
1171 
1172 /*
1173  * Return the transmit key to use in sending a multicast frame.
1174  * Multicast traffic always uses the group key which is installed as
1175  * the default tx key.
1176  */
1177 static __inline struct ieee80211_key *
1178 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap,
1179 	struct ieee80211_node *ni)
1180 {
1181 	if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE ||
1182 	    IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey]))
1183 		return NULL;
1184 	return &vap->iv_nw_keys[vap->iv_def_txkey];
1185 }
1186 
1187 /*
1188  * Encapsulate an outbound data frame.  The mbuf chain is updated.
1189  * If an error is encountered NULL is returned.  The caller is required
1190  * to provide a node reference and pullup the ethernet header in the
1191  * first mbuf.
1192  *
1193  * NB: Packet is assumed to be processed by ieee80211_classify which
1194  *     marked EAPOL frames w/ M_EAPOL.
1195  */
1196 struct mbuf *
1197 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni,
1198     struct mbuf *m)
1199 {
1200 #define	WH4(wh)	((struct ieee80211_frame_addr4 *)(wh))
1201 #define MC01(mc)	((struct ieee80211_meshcntl_ae01 *)mc)
1202 	struct ieee80211com *ic = ni->ni_ic;
1203 #ifdef IEEE80211_SUPPORT_MESH
1204 	struct ieee80211_mesh_state *ms = vap->iv_mesh;
1205 	struct ieee80211_meshcntl_ae10 *mc;
1206 	struct ieee80211_mesh_route *rt = NULL;
1207 	int dir = -1;
1208 #endif
1209 	struct ether_header eh;
1210 	struct ieee80211_frame *wh;
1211 	struct ieee80211_key *key;
1212 	struct llc *llc;
1213 	int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr;
1214 	ieee80211_seq seqno;
1215 	int meshhdrsize, meshae;
1216 	uint8_t *qos;
1217 
1218 	IEEE80211_TX_LOCK_ASSERT(ic);
1219 
1220 	/*
1221 	 * Copy existing Ethernet header to a safe place.  The
1222 	 * rest of the code assumes it's ok to strip it when
1223 	 * reorganizing state for the final encapsulation.
1224 	 */
1225 	KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!"));
1226 	ETHER_HEADER_COPY(&eh, mtod(m, caddr_t));
1227 
1228 	/*
1229 	 * Insure space for additional headers.  First identify
1230 	 * transmit key to use in calculating any buffer adjustments
1231 	 * required.  This is also used below to do privacy
1232 	 * encapsulation work.  Then calculate the 802.11 header
1233 	 * size and any padding required by the driver.
1234 	 *
1235 	 * Note key may be NULL if we fall back to the default
1236 	 * transmit key and that is not set.  In that case the
1237 	 * buffer may not be expanded as needed by the cipher
1238 	 * routines, but they will/should discard it.
1239 	 */
1240 	if (vap->iv_flags & IEEE80211_F_PRIVACY) {
1241 		if (vap->iv_opmode == IEEE80211_M_STA ||
1242 		    !IEEE80211_IS_MULTICAST(eh.ether_dhost) ||
1243 		    (vap->iv_opmode == IEEE80211_M_WDS &&
1244 		     (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY)))
1245 			key = ieee80211_crypto_getucastkey(vap, ni);
1246 		else
1247 			key = ieee80211_crypto_getmcastkey(vap, ni);
1248 		if (key == NULL && (m->m_flags & M_EAPOL) == 0) {
1249 			IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO,
1250 			    eh.ether_dhost,
1251 			    "no default transmit key (%s) deftxkey %u",
1252 			    __func__, vap->iv_def_txkey);
1253 			vap->iv_stats.is_tx_nodefkey++;
1254 			goto bad;
1255 		}
1256 	} else
1257 		key = NULL;
1258 	/*
1259 	 * XXX Some ap's don't handle QoS-encapsulated EAPOL
1260 	 * frames so suppress use.  This may be an issue if other
1261 	 * ap's require all data frames to be QoS-encapsulated
1262 	 * once negotiated in which case we'll need to make this
1263 	 * configurable.
1264 	 * NB: mesh data frames are QoS.
1265 	 */
1266 	addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) ||
1267 	    (vap->iv_opmode == IEEE80211_M_MBSS)) &&
1268 	    (m->m_flags & M_EAPOL) == 0;
1269 	if (addqos)
1270 		hdrsize = sizeof(struct ieee80211_qosframe);
1271 	else
1272 		hdrsize = sizeof(struct ieee80211_frame);
1273 #ifdef IEEE80211_SUPPORT_MESH
1274 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
1275 		/*
1276 		 * Mesh data frames are encapsulated according to the
1277 		 * rules of Section 11B.8.5 (p.139 of D3.0 spec).
1278 		 * o Group Addressed data (aka multicast) originating
1279 		 *   at the local sta are sent w/ 3-address format and
1280 		 *   address extension mode 00
1281 		 * o Individually Addressed data (aka unicast) originating
1282 		 *   at the local sta are sent w/ 4-address format and
1283 		 *   address extension mode 00
1284 		 * o Group Addressed data forwarded from a non-mesh sta are
1285 		 *   sent w/ 3-address format and address extension mode 01
1286 		 * o Individually Address data from another sta are sent
1287 		 *   w/ 4-address format and address extension mode 10
1288 		 */
1289 		is4addr = 0;		/* NB: don't use, disable */
1290 		if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) {
1291 			rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost);
1292 			KASSERT(rt != NULL, ("route is NULL"));
1293 			dir = IEEE80211_FC1_DIR_DSTODS;
1294 			hdrsize += IEEE80211_ADDR_LEN;
1295 			if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) {
1296 				if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate,
1297 				    vap->iv_myaddr)) {
1298 					IEEE80211_NOTE_MAC(vap,
1299 					    IEEE80211_MSG_MESH,
1300 					    eh.ether_dhost,
1301 					    "%s", "trying to send to ourself");
1302 					goto bad;
1303 				}
1304 				meshae = IEEE80211_MESH_AE_10;
1305 				meshhdrsize =
1306 				    sizeof(struct ieee80211_meshcntl_ae10);
1307 			} else {
1308 				meshae = IEEE80211_MESH_AE_00;
1309 				meshhdrsize =
1310 				    sizeof(struct ieee80211_meshcntl);
1311 			}
1312 		} else {
1313 			dir = IEEE80211_FC1_DIR_FROMDS;
1314 			if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) {
1315 				/* proxy group */
1316 				meshae = IEEE80211_MESH_AE_01;
1317 				meshhdrsize =
1318 				    sizeof(struct ieee80211_meshcntl_ae01);
1319 			} else {
1320 				/* group */
1321 				meshae = IEEE80211_MESH_AE_00;
1322 				meshhdrsize = sizeof(struct ieee80211_meshcntl);
1323 			}
1324 		}
1325 	} else {
1326 #endif
1327 		/*
1328 		 * 4-address frames need to be generated for:
1329 		 * o packets sent through a WDS vap (IEEE80211_M_WDS)
1330 		 * o packets sent through a vap marked for relaying
1331 		 *   (e.g. a station operating with dynamic WDS)
1332 		 */
1333 		is4addr = vap->iv_opmode == IEEE80211_M_WDS ||
1334 		    ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) &&
1335 		     !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr));
1336 		if (is4addr)
1337 			hdrsize += IEEE80211_ADDR_LEN;
1338 		meshhdrsize = meshae = 0;
1339 #ifdef IEEE80211_SUPPORT_MESH
1340 	}
1341 #endif
1342 	/*
1343 	 * Honor driver DATAPAD requirement.
1344 	 */
1345 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1346 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1347 	else
1348 		hdrspace = hdrsize;
1349 
1350 	if (__predict_true((m->m_flags & M_FF) == 0)) {
1351 		/*
1352 		 * Normal frame.
1353 		 */
1354 		m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m);
1355 		if (m == NULL) {
1356 			/* NB: ieee80211_mbuf_adjust handles msgs+statistics */
1357 			goto bad;
1358 		}
1359 		/* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */
1360 		m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
1361 		llc = mtod(m, struct llc *);
1362 		llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
1363 		llc->llc_control = LLC_UI;
1364 		llc->llc_snap.org_code[0] = 0;
1365 		llc->llc_snap.org_code[1] = 0;
1366 		llc->llc_snap.org_code[2] = 0;
1367 		llc->llc_snap.ether_type = eh.ether_type;
1368 	} else {
1369 #ifdef IEEE80211_SUPPORT_SUPERG
1370 		/*
1371 		 * Aggregated frame.
1372 		 */
1373 		m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key);
1374 		if (m == NULL)
1375 #endif
1376 			goto bad;
1377 	}
1378 	datalen = m->m_pkthdr.len;		/* NB: w/o 802.11 header */
1379 
1380 	M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT);
1381 	if (m == NULL) {
1382 		vap->iv_stats.is_tx_nobuf++;
1383 		goto bad;
1384 	}
1385 	wh = mtod(m, struct ieee80211_frame *);
1386 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA;
1387 	*(uint16_t *)wh->i_dur = 0;
1388 	qos = NULL;	/* NB: quiet compiler */
1389 	if (is4addr) {
1390 		wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS;
1391 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr);
1392 		IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1393 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1394 		IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost);
1395 	} else switch (vap->iv_opmode) {
1396 	case IEEE80211_M_STA:
1397 		wh->i_fc[1] = IEEE80211_FC1_DIR_TODS;
1398 		IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid);
1399 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1400 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost);
1401 		break;
1402 	case IEEE80211_M_IBSS:
1403 	case IEEE80211_M_AHDEMO:
1404 		wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1405 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1406 		IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost);
1407 		/*
1408 		 * NB: always use the bssid from iv_bss as the
1409 		 *     neighbor's may be stale after an ibss merge
1410 		 */
1411 		IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid);
1412 		break;
1413 	case IEEE80211_M_HOSTAP:
1414 		wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1415 		IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1416 		IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid);
1417 		IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost);
1418 		break;
1419 #ifdef IEEE80211_SUPPORT_MESH
1420 	case IEEE80211_M_MBSS:
1421 		/* NB: offset by hdrspace to deal with DATAPAD */
1422 		mc = (struct ieee80211_meshcntl_ae10 *)
1423 		     (mtod(m, uint8_t *) + hdrspace);
1424 		wh->i_fc[1] = dir;
1425 		switch (meshae) {
1426 		case IEEE80211_MESH_AE_00:	/* no proxy */
1427 			mc->mc_flags = 0;
1428 			if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */
1429 				IEEE80211_ADDR_COPY(wh->i_addr1,
1430 				    ni->ni_macaddr);
1431 				IEEE80211_ADDR_COPY(wh->i_addr2,
1432 				    vap->iv_myaddr);
1433 				IEEE80211_ADDR_COPY(wh->i_addr3,
1434 				    eh.ether_dhost);
1435 				IEEE80211_ADDR_COPY(WH4(wh)->i_addr4,
1436 				    eh.ether_shost);
1437 				qos =((struct ieee80211_qosframe_addr4 *)
1438 				    wh)->i_qos;
1439 			} else if (dir == IEEE80211_FC1_DIR_FROMDS) {
1440 				 /* mcast */
1441 				IEEE80211_ADDR_COPY(wh->i_addr1,
1442 				    eh.ether_dhost);
1443 				IEEE80211_ADDR_COPY(wh->i_addr2,
1444 				    vap->iv_myaddr);
1445 				IEEE80211_ADDR_COPY(wh->i_addr3,
1446 				    eh.ether_shost);
1447 				qos = ((struct ieee80211_qosframe *)
1448 				    wh)->i_qos;
1449 			}
1450 			break;
1451 		case IEEE80211_MESH_AE_01:	/* mcast, proxy */
1452 			wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS;
1453 			IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost);
1454 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1455 			IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr);
1456 			mc->mc_flags = 1;
1457 			IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4,
1458 			    eh.ether_shost);
1459 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1460 			break;
1461 		case IEEE80211_MESH_AE_10:	/* ucast, proxy */
1462 			KASSERT(rt != NULL, ("route is NULL"));
1463 			IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop);
1464 			IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
1465 			IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate);
1466 			IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr);
1467 			mc->mc_flags = IEEE80211_MESH_AE_10;
1468 			IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost);
1469 			IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost);
1470 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1471 			break;
1472 		default:
1473 			KASSERT(0, ("meshae %d", meshae));
1474 			break;
1475 		}
1476 		mc->mc_ttl = ms->ms_ttl;
1477 		ms->ms_seq++;
1478 		LE_WRITE_4(mc->mc_seq, ms->ms_seq);
1479 		break;
1480 #endif
1481 	case IEEE80211_M_WDS:		/* NB: is4addr should always be true */
1482 	default:
1483 		goto bad;
1484 	}
1485 	if (m->m_flags & M_MORE_DATA)
1486 		wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1487 	if (addqos) {
1488 		int ac, tid;
1489 
1490 		if (is4addr) {
1491 			qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos;
1492 		/* NB: mesh case handled earlier */
1493 		} else if (vap->iv_opmode != IEEE80211_M_MBSS)
1494 			qos = ((struct ieee80211_qosframe *) wh)->i_qos;
1495 		ac = M_WME_GETAC(m);
1496 		/* map from access class/queue to 11e header priorty value */
1497 		tid = WME_AC_TO_TID(ac);
1498 		qos[0] = tid & IEEE80211_QOS_TID;
1499 		if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy)
1500 			qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK;
1501 #ifdef IEEE80211_SUPPORT_MESH
1502 		if (vap->iv_opmode == IEEE80211_M_MBSS)
1503 			qos[1] = IEEE80211_QOS_MC;
1504 		else
1505 #endif
1506 			qos[1] = 0;
1507 		wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS;
1508 
1509 		if ((m->m_flags & M_AMPDU_MPDU) == 0) {
1510 			/*
1511 			 * NB: don't assign a sequence # to potential
1512 			 * aggregates; we expect this happens at the
1513 			 * point the frame comes off any aggregation q
1514 			 * as otherwise we may introduce holes in the
1515 			 * BA sequence space and/or make window accouting
1516 			 * more difficult.
1517 			 *
1518 			 * XXX may want to control this with a driver
1519 			 * capability; this may also change when we pull
1520 			 * aggregation up into net80211
1521 			 */
1522 			seqno = ni->ni_txseqs[tid]++;
1523 			*(uint16_t *)wh->i_seq =
1524 			    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1525 			M_SEQNO_SET(m, seqno);
1526 		}
1527 	} else {
1528 		seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
1529 		*(uint16_t *)wh->i_seq =
1530 		    htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
1531 		M_SEQNO_SET(m, seqno);
1532 	}
1533 
1534 
1535 	/* check if xmit fragmentation is required */
1536 	txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold &&
1537 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
1538 	    (vap->iv_caps & IEEE80211_C_TXFRAG) &&
1539 	    (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0);
1540 	if (key != NULL) {
1541 		/*
1542 		 * IEEE 802.1X: send EAPOL frames always in the clear.
1543 		 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set.
1544 		 */
1545 		if ((m->m_flags & M_EAPOL) == 0 ||
1546 		    ((vap->iv_flags & IEEE80211_F_WPA) &&
1547 		     (vap->iv_opmode == IEEE80211_M_STA ?
1548 		      !IEEE80211_KEY_UNDEFINED(key) :
1549 		      !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) {
1550 			wh->i_fc[1] |= IEEE80211_FC1_PROTECTED;
1551 			if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) {
1552 				IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT,
1553 				    eh.ether_dhost,
1554 				    "%s", "enmic failed, discard frame");
1555 				vap->iv_stats.is_crypto_enmicfail++;
1556 				goto bad;
1557 			}
1558 		}
1559 	}
1560 	if (txfrag && !ieee80211_fragment(vap, m, hdrsize,
1561 	    key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold))
1562 		goto bad;
1563 
1564 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
1565 
1566 	IEEE80211_NODE_STAT(ni, tx_data);
1567 	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1568 		IEEE80211_NODE_STAT(ni, tx_mcast);
1569 		m->m_flags |= M_MCAST;
1570 	} else
1571 		IEEE80211_NODE_STAT(ni, tx_ucast);
1572 	IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen);
1573 
1574 	return m;
1575 bad:
1576 	if (m != NULL)
1577 		m_freem(m);
1578 	return NULL;
1579 #undef WH4
1580 #undef MC01
1581 }
1582 
1583 void
1584 ieee80211_free_mbuf(struct mbuf *m)
1585 {
1586 	struct mbuf *next;
1587 
1588 	if (m == NULL)
1589 		return;
1590 
1591 	do {
1592 		next = m->m_nextpkt;
1593 		m->m_nextpkt = NULL;
1594 		m_freem(m);
1595 	} while ((m = next) != NULL);
1596 }
1597 
1598 /*
1599  * Fragment the frame according to the specified mtu.
1600  * The size of the 802.11 header (w/o padding) is provided
1601  * so we don't need to recalculate it.  We create a new
1602  * mbuf for each fragment and chain it through m_nextpkt;
1603  * we might be able to optimize this by reusing the original
1604  * packet's mbufs but that is significantly more complicated.
1605  */
1606 static int
1607 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0,
1608 	u_int hdrsize, u_int ciphdrsize, u_int mtu)
1609 {
1610 	struct ieee80211com *ic = vap->iv_ic;
1611 	struct ieee80211_frame *wh, *whf;
1612 	struct mbuf *m, *prev;
1613 	u_int totalhdrsize, fragno, fragsize, off, remainder, payload;
1614 	u_int hdrspace;
1615 
1616 	KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?"));
1617 	KASSERT(m0->m_pkthdr.len > mtu,
1618 		("pktlen %u mtu %u", m0->m_pkthdr.len, mtu));
1619 
1620 	/*
1621 	 * Honor driver DATAPAD requirement.
1622 	 */
1623 	if (ic->ic_flags & IEEE80211_F_DATAPAD)
1624 		hdrspace = roundup(hdrsize, sizeof(uint32_t));
1625 	else
1626 		hdrspace = hdrsize;
1627 
1628 	wh = mtod(m0, struct ieee80211_frame *);
1629 	/* NB: mark the first frag; it will be propagated below */
1630 	wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG;
1631 	totalhdrsize = hdrspace + ciphdrsize;
1632 	fragno = 1;
1633 	off = mtu - ciphdrsize;
1634 	remainder = m0->m_pkthdr.len - off;
1635 	prev = m0;
1636 	do {
1637 		fragsize = totalhdrsize + remainder;
1638 		if (fragsize > mtu)
1639 			fragsize = mtu;
1640 		/* XXX fragsize can be >2048! */
1641 		KASSERT(fragsize < MCLBYTES,
1642 			("fragment size %u too big!", fragsize));
1643 		if (fragsize > MHLEN)
1644 			m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
1645 		else
1646 			m = m_gethdr(M_NOWAIT, MT_DATA);
1647 		if (m == NULL)
1648 			goto bad;
1649 		/* leave room to prepend any cipher header */
1650 		m_align(m, fragsize - ciphdrsize);
1651 
1652 		/*
1653 		 * Form the header in the fragment.  Note that since
1654 		 * we mark the first fragment with the MORE_FRAG bit
1655 		 * it automatically is propagated to each fragment; we
1656 		 * need only clear it on the last fragment (done below).
1657 		 * NB: frag 1+ dont have Mesh Control field present.
1658 		 */
1659 		whf = mtod(m, struct ieee80211_frame *);
1660 		memcpy(whf, wh, hdrsize);
1661 #ifdef IEEE80211_SUPPORT_MESH
1662 		if (vap->iv_opmode == IEEE80211_M_MBSS) {
1663 			if (IEEE80211_IS_DSTODS(wh))
1664 				((struct ieee80211_qosframe_addr4 *)
1665 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1666 			else
1667 				((struct ieee80211_qosframe *)
1668 				    whf)->i_qos[1] &= ~IEEE80211_QOS_MC;
1669 		}
1670 #endif
1671 		*(uint16_t *)&whf->i_seq[0] |= htole16(
1672 			(fragno & IEEE80211_SEQ_FRAG_MASK) <<
1673 				IEEE80211_SEQ_FRAG_SHIFT);
1674 		fragno++;
1675 
1676 		payload = fragsize - totalhdrsize;
1677 		/* NB: destination is known to be contiguous */
1678 
1679 		m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace);
1680 		m->m_len = hdrspace + payload;
1681 		m->m_pkthdr.len = hdrspace + payload;
1682 		m->m_flags |= M_FRAG;
1683 
1684 		/* chain up the fragment */
1685 		prev->m_nextpkt = m;
1686 		prev = m;
1687 
1688 		/* deduct fragment just formed */
1689 		remainder -= payload;
1690 		off += payload;
1691 	} while (remainder != 0);
1692 
1693 	/* set the last fragment */
1694 	m->m_flags |= M_LASTFRAG;
1695 	whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG;
1696 
1697 	/* strip first mbuf now that everything has been copied */
1698 	m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize)));
1699 	m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1700 
1701 	vap->iv_stats.is_tx_fragframes++;
1702 	vap->iv_stats.is_tx_frags += fragno-1;
1703 
1704 	return 1;
1705 bad:
1706 	/* reclaim fragments but leave original frame for caller to free */
1707 	ieee80211_free_mbuf(m0->m_nextpkt);
1708 	m0->m_nextpkt = NULL;
1709 	return 0;
1710 }
1711 
1712 /*
1713  * Add a supported rates element id to a frame.
1714  */
1715 uint8_t *
1716 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs)
1717 {
1718 	int nrates;
1719 
1720 	*frm++ = IEEE80211_ELEMID_RATES;
1721 	nrates = rs->rs_nrates;
1722 	if (nrates > IEEE80211_RATE_SIZE)
1723 		nrates = IEEE80211_RATE_SIZE;
1724 	*frm++ = nrates;
1725 	memcpy(frm, rs->rs_rates, nrates);
1726 	return frm + nrates;
1727 }
1728 
1729 /*
1730  * Add an extended supported rates element id to a frame.
1731  */
1732 uint8_t *
1733 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs)
1734 {
1735 	/*
1736 	 * Add an extended supported rates element if operating in 11g mode.
1737 	 */
1738 	if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
1739 		int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
1740 		*frm++ = IEEE80211_ELEMID_XRATES;
1741 		*frm++ = nrates;
1742 		memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
1743 		frm += nrates;
1744 	}
1745 	return frm;
1746 }
1747 
1748 /*
1749  * Add an ssid element to a frame.
1750  */
1751 uint8_t *
1752 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len)
1753 {
1754 	*frm++ = IEEE80211_ELEMID_SSID;
1755 	*frm++ = len;
1756 	memcpy(frm, ssid, len);
1757 	return frm + len;
1758 }
1759 
1760 /*
1761  * Add an erp element to a frame.
1762  */
1763 static uint8_t *
1764 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic)
1765 {
1766 	uint8_t erp;
1767 
1768 	*frm++ = IEEE80211_ELEMID_ERP;
1769 	*frm++ = 1;
1770 	erp = 0;
1771 	if (ic->ic_nonerpsta != 0)
1772 		erp |= IEEE80211_ERP_NON_ERP_PRESENT;
1773 	if (ic->ic_flags & IEEE80211_F_USEPROT)
1774 		erp |= IEEE80211_ERP_USE_PROTECTION;
1775 	if (ic->ic_flags & IEEE80211_F_USEBARKER)
1776 		erp |= IEEE80211_ERP_LONG_PREAMBLE;
1777 	*frm++ = erp;
1778 	return frm;
1779 }
1780 
1781 /*
1782  * Add a CFParams element to a frame.
1783  */
1784 static uint8_t *
1785 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic)
1786 {
1787 #define	ADDSHORT(frm, v) do {	\
1788 	LE_WRITE_2(frm, v);	\
1789 	frm += 2;		\
1790 } while (0)
1791 	*frm++ = IEEE80211_ELEMID_CFPARMS;
1792 	*frm++ = 6;
1793 	*frm++ = 0;		/* CFP count */
1794 	*frm++ = 2;		/* CFP period */
1795 	ADDSHORT(frm, 0);	/* CFP MaxDuration (TU) */
1796 	ADDSHORT(frm, 0);	/* CFP CurRemaining (TU) */
1797 	return frm;
1798 #undef ADDSHORT
1799 }
1800 
1801 static __inline uint8_t *
1802 add_appie(uint8_t *frm, const struct ieee80211_appie *ie)
1803 {
1804 	memcpy(frm, ie->ie_data, ie->ie_len);
1805 	return frm + ie->ie_len;
1806 }
1807 
1808 static __inline uint8_t *
1809 add_ie(uint8_t *frm, const uint8_t *ie)
1810 {
1811 	memcpy(frm, ie, 2 + ie[1]);
1812 	return frm + 2 + ie[1];
1813 }
1814 
1815 #define	WME_OUI_BYTES		0x00, 0x50, 0xf2
1816 /*
1817  * Add a WME information element to a frame.
1818  */
1819 uint8_t *
1820 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme)
1821 {
1822 	static const struct ieee80211_wme_info info = {
1823 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1824 		.wme_len	= sizeof(struct ieee80211_wme_info) - 2,
1825 		.wme_oui	= { WME_OUI_BYTES },
1826 		.wme_type	= WME_OUI_TYPE,
1827 		.wme_subtype	= WME_INFO_OUI_SUBTYPE,
1828 		.wme_version	= WME_VERSION,
1829 		.wme_info	= 0,
1830 	};
1831 	memcpy(frm, &info, sizeof(info));
1832 	return frm + sizeof(info);
1833 }
1834 
1835 /*
1836  * Add a WME parameters element to a frame.
1837  */
1838 static uint8_t *
1839 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme)
1840 {
1841 #define	SM(_v, _f)	(((_v) << _f##_S) & _f)
1842 #define	ADDSHORT(frm, v) do {	\
1843 	LE_WRITE_2(frm, v);	\
1844 	frm += 2;		\
1845 } while (0)
1846 	/* NB: this works 'cuz a param has an info at the front */
1847 	static const struct ieee80211_wme_info param = {
1848 		.wme_id		= IEEE80211_ELEMID_VENDOR,
1849 		.wme_len	= sizeof(struct ieee80211_wme_param) - 2,
1850 		.wme_oui	= { WME_OUI_BYTES },
1851 		.wme_type	= WME_OUI_TYPE,
1852 		.wme_subtype	= WME_PARAM_OUI_SUBTYPE,
1853 		.wme_version	= WME_VERSION,
1854 	};
1855 	int i;
1856 
1857 	memcpy(frm, &param, sizeof(param));
1858 	frm += __offsetof(struct ieee80211_wme_info, wme_info);
1859 	*frm++ = wme->wme_bssChanParams.cap_info;	/* AC info */
1860 	*frm++ = 0;					/* reserved field */
1861 	for (i = 0; i < WME_NUM_AC; i++) {
1862 		const struct wmeParams *ac =
1863 		       &wme->wme_bssChanParams.cap_wmeParams[i];
1864 		*frm++ = SM(i, WME_PARAM_ACI)
1865 		       | SM(ac->wmep_acm, WME_PARAM_ACM)
1866 		       | SM(ac->wmep_aifsn, WME_PARAM_AIFSN)
1867 		       ;
1868 		*frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX)
1869 		       | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN)
1870 		       ;
1871 		ADDSHORT(frm, ac->wmep_txopLimit);
1872 	}
1873 	return frm;
1874 #undef SM
1875 #undef ADDSHORT
1876 }
1877 #undef WME_OUI_BYTES
1878 
1879 /*
1880  * Add an 11h Power Constraint element to a frame.
1881  */
1882 static uint8_t *
1883 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap)
1884 {
1885 	const struct ieee80211_channel *c = vap->iv_bss->ni_chan;
1886 	/* XXX per-vap tx power limit? */
1887 	int8_t limit = vap->iv_ic->ic_txpowlimit / 2;
1888 
1889 	frm[0] = IEEE80211_ELEMID_PWRCNSTR;
1890 	frm[1] = 1;
1891 	frm[2] = c->ic_maxregpower > limit ?  c->ic_maxregpower - limit : 0;
1892 	return frm + 3;
1893 }
1894 
1895 /*
1896  * Add an 11h Power Capability element to a frame.
1897  */
1898 static uint8_t *
1899 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c)
1900 {
1901 	frm[0] = IEEE80211_ELEMID_PWRCAP;
1902 	frm[1] = 2;
1903 	frm[2] = c->ic_minpower;
1904 	frm[3] = c->ic_maxpower;
1905 	return frm + 4;
1906 }
1907 
1908 /*
1909  * Add an 11h Supported Channels element to a frame.
1910  */
1911 static uint8_t *
1912 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic)
1913 {
1914 	static const int ielen = 26;
1915 
1916 	frm[0] = IEEE80211_ELEMID_SUPPCHAN;
1917 	frm[1] = ielen;
1918 	/* XXX not correct */
1919 	memcpy(frm+2, ic->ic_chan_avail, ielen);
1920 	return frm + 2 + ielen;
1921 }
1922 
1923 /*
1924  * Add an 11h Quiet time element to a frame.
1925  */
1926 static uint8_t *
1927 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap)
1928 {
1929 	struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm;
1930 
1931 	quiet->quiet_ie = IEEE80211_ELEMID_QUIET;
1932 	quiet->len = 6;
1933 	if (vap->iv_quiet_count_value == 1)
1934 		vap->iv_quiet_count_value = vap->iv_quiet_count;
1935 	else if (vap->iv_quiet_count_value > 1)
1936 		vap->iv_quiet_count_value--;
1937 
1938 	if (vap->iv_quiet_count_value == 0) {
1939 		/* value 0 is reserved as per 802.11h standerd */
1940 		vap->iv_quiet_count_value = 1;
1941 	}
1942 
1943 	quiet->tbttcount = vap->iv_quiet_count_value;
1944 	quiet->period = vap->iv_quiet_period;
1945 	quiet->duration = htole16(vap->iv_quiet_duration);
1946 	quiet->offset = htole16(vap->iv_quiet_offset);
1947 	return frm + sizeof(*quiet);
1948 }
1949 
1950 /*
1951  * Add an 11h Channel Switch Announcement element to a frame.
1952  * Note that we use the per-vap CSA count to adjust the global
1953  * counter so we can use this routine to form probe response
1954  * frames and get the current count.
1955  */
1956 static uint8_t *
1957 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap)
1958 {
1959 	struct ieee80211com *ic = vap->iv_ic;
1960 	struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm;
1961 
1962 	csa->csa_ie = IEEE80211_ELEMID_CSA;
1963 	csa->csa_len = 3;
1964 	csa->csa_mode = 1;		/* XXX force quiet on channel */
1965 	csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan);
1966 	csa->csa_count = ic->ic_csa_count - vap->iv_csa_count;
1967 	return frm + sizeof(*csa);
1968 }
1969 
1970 /*
1971  * Add an 11h country information element to a frame.
1972  */
1973 static uint8_t *
1974 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic)
1975 {
1976 
1977 	if (ic->ic_countryie == NULL ||
1978 	    ic->ic_countryie_chan != ic->ic_bsschan) {
1979 		/*
1980 		 * Handle lazy construction of ie.  This is done on
1981 		 * first use and after a channel change that requires
1982 		 * re-calculation.
1983 		 */
1984 		if (ic->ic_countryie != NULL)
1985 			IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE);
1986 		ic->ic_countryie = ieee80211_alloc_countryie(ic);
1987 		if (ic->ic_countryie == NULL)
1988 			return frm;
1989 		ic->ic_countryie_chan = ic->ic_bsschan;
1990 	}
1991 	return add_appie(frm, ic->ic_countryie);
1992 }
1993 
1994 uint8_t *
1995 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap)
1996 {
1997 	if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL)
1998 		return (add_ie(frm, vap->iv_wpa_ie));
1999 	else {
2000 		/* XXX else complain? */
2001 		return (frm);
2002 	}
2003 }
2004 
2005 uint8_t *
2006 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap)
2007 {
2008 	if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL)
2009 		return (add_ie(frm, vap->iv_rsn_ie));
2010 	else {
2011 		/* XXX else complain? */
2012 		return (frm);
2013 	}
2014 }
2015 
2016 uint8_t *
2017 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni)
2018 {
2019 	if (ni->ni_flags & IEEE80211_NODE_QOS) {
2020 		*frm++ = IEEE80211_ELEMID_QOS;
2021 		*frm++ = 1;
2022 		*frm++ = 0;
2023 	}
2024 
2025 	return (frm);
2026 }
2027 
2028 /*
2029  * Send a probe request frame with the specified ssid
2030  * and any optional information element data.
2031  */
2032 int
2033 ieee80211_send_probereq(struct ieee80211_node *ni,
2034 	const uint8_t sa[IEEE80211_ADDR_LEN],
2035 	const uint8_t da[IEEE80211_ADDR_LEN],
2036 	const uint8_t bssid[IEEE80211_ADDR_LEN],
2037 	const uint8_t *ssid, size_t ssidlen)
2038 {
2039 	struct ieee80211vap *vap = ni->ni_vap;
2040 	struct ieee80211com *ic = ni->ni_ic;
2041 	const struct ieee80211_txparam *tp;
2042 	struct ieee80211_bpf_params params;
2043 	struct ieee80211_frame *wh;
2044 	const struct ieee80211_rateset *rs;
2045 	struct mbuf *m;
2046 	uint8_t *frm;
2047 	int ret;
2048 
2049 	if (vap->iv_state == IEEE80211_S_CAC) {
2050 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni,
2051 		    "block %s frame in CAC state", "probe request");
2052 		vap->iv_stats.is_tx_badstate++;
2053 		return EIO;		/* XXX */
2054 	}
2055 
2056 	/*
2057 	 * Hold a reference on the node so it doesn't go away until after
2058 	 * the xmit is complete all the way in the driver.  On error we
2059 	 * will remove our reference.
2060 	 */
2061 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2062 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2063 		__func__, __LINE__,
2064 		ni, ether_sprintf(ni->ni_macaddr),
2065 		ieee80211_node_refcnt(ni)+1);
2066 	ieee80211_ref_node(ni);
2067 
2068 	/*
2069 	 * prreq frame format
2070 	 *	[tlv] ssid
2071 	 *	[tlv] supported rates
2072 	 *	[tlv] RSN (optional)
2073 	 *	[tlv] extended supported rates
2074 	 *	[tlv] WPA (optional)
2075 	 *	[tlv] user-specified ie's
2076 	 */
2077 	m = ieee80211_getmgtframe(&frm,
2078 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2079 	       	 2 + IEEE80211_NWID_LEN
2080 	       + 2 + IEEE80211_RATE_SIZE
2081 	       + sizeof(struct ieee80211_ie_wpa)
2082 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2083 	       + sizeof(struct ieee80211_ie_wpa)
2084 	       + (vap->iv_appie_probereq != NULL ?
2085 		   vap->iv_appie_probereq->ie_len : 0)
2086 	);
2087 	if (m == NULL) {
2088 		vap->iv_stats.is_tx_nobuf++;
2089 		ieee80211_free_node(ni);
2090 		return ENOMEM;
2091 	}
2092 
2093 	frm = ieee80211_add_ssid(frm, ssid, ssidlen);
2094 	rs = ieee80211_get_suprates(ic, ic->ic_curchan);
2095 	frm = ieee80211_add_rates(frm, rs);
2096 	frm = ieee80211_add_rsn(frm, vap);
2097 	frm = ieee80211_add_xrates(frm, rs);
2098 	frm = ieee80211_add_wpa(frm, vap);
2099 	if (vap->iv_appie_probereq != NULL)
2100 		frm = add_appie(frm, vap->iv_appie_probereq);
2101 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2102 
2103 	KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame),
2104 	    ("leading space %zd", M_LEADINGSPACE(m)));
2105 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2106 	if (m == NULL) {
2107 		/* NB: cannot happen */
2108 		ieee80211_free_node(ni);
2109 		return ENOMEM;
2110 	}
2111 
2112 	IEEE80211_TX_LOCK(ic);
2113 	wh = mtod(m, struct ieee80211_frame *);
2114 	ieee80211_send_setup(ni, m,
2115 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ,
2116 	     IEEE80211_NONQOS_TID, sa, da, bssid);
2117 	/* XXX power management? */
2118 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2119 
2120 	M_WME_SETAC(m, WME_AC_BE);
2121 
2122 	IEEE80211_NODE_STAT(ni, tx_probereq);
2123 	IEEE80211_NODE_STAT(ni, tx_mgmt);
2124 
2125 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2126 	    "send probe req on channel %u bssid %s ssid \"%.*s\"\n",
2127 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid),
2128 	    ssidlen, ssid);
2129 
2130 	memset(&params, 0, sizeof(params));
2131 	params.ibp_pri = M_WME_GETAC(m);
2132 	tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)];
2133 	params.ibp_rate0 = tp->mgmtrate;
2134 	if (IEEE80211_IS_MULTICAST(da)) {
2135 		params.ibp_flags |= IEEE80211_BPF_NOACK;
2136 		params.ibp_try0 = 1;
2137 	} else
2138 		params.ibp_try0 = tp->maxretry;
2139 	params.ibp_power = ni->ni_txpower;
2140 	ret = ieee80211_raw_output(vap, ni, m, &params);
2141 	IEEE80211_TX_UNLOCK(ic);
2142 	return (ret);
2143 }
2144 
2145 /*
2146  * Calculate capability information for mgt frames.
2147  */
2148 uint16_t
2149 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan)
2150 {
2151 	struct ieee80211com *ic = vap->iv_ic;
2152 	uint16_t capinfo;
2153 
2154 	KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode"));
2155 
2156 	if (vap->iv_opmode == IEEE80211_M_HOSTAP)
2157 		capinfo = IEEE80211_CAPINFO_ESS;
2158 	else if (vap->iv_opmode == IEEE80211_M_IBSS)
2159 		capinfo = IEEE80211_CAPINFO_IBSS;
2160 	else
2161 		capinfo = 0;
2162 	if (vap->iv_flags & IEEE80211_F_PRIVACY)
2163 		capinfo |= IEEE80211_CAPINFO_PRIVACY;
2164 	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2165 	    IEEE80211_IS_CHAN_2GHZ(chan))
2166 		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2167 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
2168 		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2169 	if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH))
2170 		capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2171 	return capinfo;
2172 }
2173 
2174 /*
2175  * Send a management frame.  The node is for the destination (or ic_bss
2176  * when in station mode).  Nodes other than ic_bss have their reference
2177  * count bumped to reflect our use for an indeterminant time.
2178  */
2179 int
2180 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg)
2181 {
2182 #define	HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT)
2183 #define	senderr(_x, _v)	do { vap->iv_stats._v++; ret = _x; goto bad; } while (0)
2184 	struct ieee80211vap *vap = ni->ni_vap;
2185 	struct ieee80211com *ic = ni->ni_ic;
2186 	struct ieee80211_node *bss = vap->iv_bss;
2187 	struct ieee80211_bpf_params params;
2188 	struct mbuf *m;
2189 	uint8_t *frm;
2190 	uint16_t capinfo;
2191 	int has_challenge, is_shared_key, ret, status;
2192 
2193 	KASSERT(ni != NULL, ("null node"));
2194 
2195 	/*
2196 	 * Hold a reference on the node so it doesn't go away until after
2197 	 * the xmit is complete all the way in the driver.  On error we
2198 	 * will remove our reference.
2199 	 */
2200 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2201 		"ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2202 		__func__, __LINE__,
2203 		ni, ether_sprintf(ni->ni_macaddr),
2204 		ieee80211_node_refcnt(ni)+1);
2205 	ieee80211_ref_node(ni);
2206 
2207 	memset(&params, 0, sizeof(params));
2208 	switch (type) {
2209 
2210 	case IEEE80211_FC0_SUBTYPE_AUTH:
2211 		status = arg >> 16;
2212 		arg &= 0xffff;
2213 		has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE ||
2214 		    arg == IEEE80211_AUTH_SHARED_RESPONSE) &&
2215 		    ni->ni_challenge != NULL);
2216 
2217 		/*
2218 		 * Deduce whether we're doing open authentication or
2219 		 * shared key authentication.  We do the latter if
2220 		 * we're in the middle of a shared key authentication
2221 		 * handshake or if we're initiating an authentication
2222 		 * request and configured to use shared key.
2223 		 */
2224 		is_shared_key = has_challenge ||
2225 		     arg >= IEEE80211_AUTH_SHARED_RESPONSE ||
2226 		     (arg == IEEE80211_AUTH_SHARED_REQUEST &&
2227 		      bss->ni_authmode == IEEE80211_AUTH_SHARED);
2228 
2229 		m = ieee80211_getmgtframe(&frm,
2230 			  ic->ic_headroom + sizeof(struct ieee80211_frame),
2231 			  3 * sizeof(uint16_t)
2232 			+ (has_challenge && status == IEEE80211_STATUS_SUCCESS ?
2233 				sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0)
2234 		);
2235 		if (m == NULL)
2236 			senderr(ENOMEM, is_tx_nobuf);
2237 
2238 		((uint16_t *)frm)[0] =
2239 		    (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED)
2240 		                    : htole16(IEEE80211_AUTH_ALG_OPEN);
2241 		((uint16_t *)frm)[1] = htole16(arg);	/* sequence number */
2242 		((uint16_t *)frm)[2] = htole16(status);/* status */
2243 
2244 		if (has_challenge && status == IEEE80211_STATUS_SUCCESS) {
2245 			((uint16_t *)frm)[3] =
2246 			    htole16((IEEE80211_CHALLENGE_LEN << 8) |
2247 			    IEEE80211_ELEMID_CHALLENGE);
2248 			memcpy(&((uint16_t *)frm)[4], ni->ni_challenge,
2249 			    IEEE80211_CHALLENGE_LEN);
2250 			m->m_pkthdr.len = m->m_len =
2251 				4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN;
2252 			if (arg == IEEE80211_AUTH_SHARED_RESPONSE) {
2253 				IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2254 				    "request encrypt frame (%s)", __func__);
2255 				/* mark frame for encryption */
2256 				params.ibp_flags |= IEEE80211_BPF_CRYPTO;
2257 			}
2258 		} else
2259 			m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t);
2260 
2261 		/* XXX not right for shared key */
2262 		if (status == IEEE80211_STATUS_SUCCESS)
2263 			IEEE80211_NODE_STAT(ni, tx_auth);
2264 		else
2265 			IEEE80211_NODE_STAT(ni, tx_auth_fail);
2266 
2267 		if (vap->iv_opmode == IEEE80211_M_STA)
2268 			ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2269 				(void *) vap->iv_state);
2270 		break;
2271 
2272 	case IEEE80211_FC0_SUBTYPE_DEAUTH:
2273 		IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni,
2274 		    "send station deauthenticate (reason %d)", arg);
2275 		m = ieee80211_getmgtframe(&frm,
2276 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2277 			sizeof(uint16_t));
2278 		if (m == NULL)
2279 			senderr(ENOMEM, is_tx_nobuf);
2280 		*(uint16_t *)frm = htole16(arg);	/* reason */
2281 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2282 
2283 		IEEE80211_NODE_STAT(ni, tx_deauth);
2284 		IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg);
2285 
2286 		ieee80211_node_unauthorize(ni);		/* port closed */
2287 		break;
2288 
2289 	case IEEE80211_FC0_SUBTYPE_ASSOC_REQ:
2290 	case IEEE80211_FC0_SUBTYPE_REASSOC_REQ:
2291 		/*
2292 		 * asreq frame format
2293 		 *	[2] capability information
2294 		 *	[2] listen interval
2295 		 *	[6*] current AP address (reassoc only)
2296 		 *	[tlv] ssid
2297 		 *	[tlv] supported rates
2298 		 *	[tlv] extended supported rates
2299 		 *	[4] power capability (optional)
2300 		 *	[28] supported channels (optional)
2301 		 *	[tlv] HT capabilities
2302 		 *	[tlv] WME (optional)
2303 		 *	[tlv] Vendor OUI HT capabilities (optional)
2304 		 *	[tlv] Atheros capabilities (if negotiated)
2305 		 *	[tlv] AppIE's (optional)
2306 		 */
2307 		m = ieee80211_getmgtframe(&frm,
2308 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2309 			 sizeof(uint16_t)
2310 		       + sizeof(uint16_t)
2311 		       + IEEE80211_ADDR_LEN
2312 		       + 2 + IEEE80211_NWID_LEN
2313 		       + 2 + IEEE80211_RATE_SIZE
2314 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2315 		       + 4
2316 		       + 2 + 26
2317 		       + sizeof(struct ieee80211_wme_info)
2318 		       + sizeof(struct ieee80211_ie_htcap)
2319 		       + 4 + sizeof(struct ieee80211_ie_htcap)
2320 #ifdef IEEE80211_SUPPORT_SUPERG
2321 		       + sizeof(struct ieee80211_ath_ie)
2322 #endif
2323 		       + (vap->iv_appie_wpa != NULL ?
2324 				vap->iv_appie_wpa->ie_len : 0)
2325 		       + (vap->iv_appie_assocreq != NULL ?
2326 				vap->iv_appie_assocreq->ie_len : 0)
2327 		);
2328 		if (m == NULL)
2329 			senderr(ENOMEM, is_tx_nobuf);
2330 
2331 		KASSERT(vap->iv_opmode == IEEE80211_M_STA,
2332 		    ("wrong mode %u", vap->iv_opmode));
2333 		capinfo = IEEE80211_CAPINFO_ESS;
2334 		if (vap->iv_flags & IEEE80211_F_PRIVACY)
2335 			capinfo |= IEEE80211_CAPINFO_PRIVACY;
2336 		/*
2337 		 * NB: Some 11a AP's reject the request when
2338 		 *     short premable is set.
2339 		 */
2340 		if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
2341 		    IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
2342 			capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
2343 		if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) &&
2344 		    (ic->ic_caps & IEEE80211_C_SHSLOT))
2345 			capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
2346 		if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) &&
2347 		    (vap->iv_flags & IEEE80211_F_DOTH))
2348 			capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT;
2349 		*(uint16_t *)frm = htole16(capinfo);
2350 		frm += 2;
2351 
2352 		KASSERT(bss->ni_intval != 0, ("beacon interval is zero!"));
2353 		*(uint16_t *)frm = htole16(howmany(ic->ic_lintval,
2354 						    bss->ni_intval));
2355 		frm += 2;
2356 
2357 		if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) {
2358 			IEEE80211_ADDR_COPY(frm, bss->ni_bssid);
2359 			frm += IEEE80211_ADDR_LEN;
2360 		}
2361 
2362 		frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen);
2363 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2364 		frm = ieee80211_add_rsn(frm, vap);
2365 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2366 		if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) {
2367 			frm = ieee80211_add_powercapability(frm,
2368 			    ic->ic_curchan);
2369 			frm = ieee80211_add_supportedchannels(frm, ic);
2370 		}
2371 
2372 		/*
2373 		 * Check the channel - we may be using an 11n NIC with an
2374 		 * 11n capable station, but we're configured to be an 11b
2375 		 * channel.
2376 		 */
2377 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2378 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2379 		    ni->ni_ies.htcap_ie != NULL &&
2380 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) {
2381 			frm = ieee80211_add_htcap(frm, ni);
2382 		}
2383 		frm = ieee80211_add_wpa(frm, vap);
2384 		if ((ic->ic_flags & IEEE80211_F_WME) &&
2385 		    ni->ni_ies.wme_ie != NULL)
2386 			frm = ieee80211_add_wme_info(frm, &ic->ic_wme);
2387 
2388 		/*
2389 		 * Same deal - only send HT info if we're on an 11n
2390 		 * capable channel.
2391 		 */
2392 		if ((vap->iv_flags_ht & IEEE80211_FHT_HT) &&
2393 		    IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2394 		    ni->ni_ies.htcap_ie != NULL &&
2395 		    ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) {
2396 			frm = ieee80211_add_htcap_vendor(frm, ni);
2397 		}
2398 #ifdef IEEE80211_SUPPORT_SUPERG
2399 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) {
2400 			frm = ieee80211_add_ath(frm,
2401 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2402 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2403 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2404 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2405 		}
2406 #endif /* IEEE80211_SUPPORT_SUPERG */
2407 		if (vap->iv_appie_assocreq != NULL)
2408 			frm = add_appie(frm, vap->iv_appie_assocreq);
2409 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2410 
2411 		ieee80211_add_callback(m, ieee80211_tx_mgt_cb,
2412 			(void *) vap->iv_state);
2413 		break;
2414 
2415 	case IEEE80211_FC0_SUBTYPE_ASSOC_RESP:
2416 	case IEEE80211_FC0_SUBTYPE_REASSOC_RESP:
2417 		/*
2418 		 * asresp frame format
2419 		 *	[2] capability information
2420 		 *	[2] status
2421 		 *	[2] association ID
2422 		 *	[tlv] supported rates
2423 		 *	[tlv] extended supported rates
2424 		 *	[tlv] HT capabilities (standard, if STA enabled)
2425 		 *	[tlv] HT information (standard, if STA enabled)
2426 		 *	[tlv] WME (if configured and STA enabled)
2427 		 *	[tlv] HT capabilities (vendor OUI, if STA enabled)
2428 		 *	[tlv] HT information (vendor OUI, if STA enabled)
2429 		 *	[tlv] Atheros capabilities (if STA enabled)
2430 		 *	[tlv] AppIE's (optional)
2431 		 */
2432 		m = ieee80211_getmgtframe(&frm,
2433 			 ic->ic_headroom + sizeof(struct ieee80211_frame),
2434 			 sizeof(uint16_t)
2435 		       + sizeof(uint16_t)
2436 		       + sizeof(uint16_t)
2437 		       + 2 + IEEE80211_RATE_SIZE
2438 		       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2439 		       + sizeof(struct ieee80211_ie_htcap) + 4
2440 		       + sizeof(struct ieee80211_ie_htinfo) + 4
2441 		       + sizeof(struct ieee80211_wme_param)
2442 #ifdef IEEE80211_SUPPORT_SUPERG
2443 		       + sizeof(struct ieee80211_ath_ie)
2444 #endif
2445 		       + (vap->iv_appie_assocresp != NULL ?
2446 				vap->iv_appie_assocresp->ie_len : 0)
2447 		);
2448 		if (m == NULL)
2449 			senderr(ENOMEM, is_tx_nobuf);
2450 
2451 		capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2452 		*(uint16_t *)frm = htole16(capinfo);
2453 		frm += 2;
2454 
2455 		*(uint16_t *)frm = htole16(arg);	/* status */
2456 		frm += 2;
2457 
2458 		if (arg == IEEE80211_STATUS_SUCCESS) {
2459 			*(uint16_t *)frm = htole16(ni->ni_associd);
2460 			IEEE80211_NODE_STAT(ni, tx_assoc);
2461 		} else
2462 			IEEE80211_NODE_STAT(ni, tx_assoc_fail);
2463 		frm += 2;
2464 
2465 		frm = ieee80211_add_rates(frm, &ni->ni_rates);
2466 		frm = ieee80211_add_xrates(frm, &ni->ni_rates);
2467 		/* NB: respond according to what we received */
2468 		if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) {
2469 			frm = ieee80211_add_htcap(frm, ni);
2470 			frm = ieee80211_add_htinfo(frm, ni);
2471 		}
2472 		if ((vap->iv_flags & IEEE80211_F_WME) &&
2473 		    ni->ni_ies.wme_ie != NULL)
2474 			frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2475 		if ((ni->ni_flags & HTFLAGS) == HTFLAGS) {
2476 			frm = ieee80211_add_htcap_vendor(frm, ni);
2477 			frm = ieee80211_add_htinfo_vendor(frm, ni);
2478 		}
2479 #ifdef IEEE80211_SUPPORT_SUPERG
2480 		if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS))
2481 			frm = ieee80211_add_ath(frm,
2482 				IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS),
2483 				((vap->iv_flags & IEEE80211_F_WPA) == 0 &&
2484 				 ni->ni_authmode != IEEE80211_AUTH_8021X) ?
2485 				vap->iv_def_txkey : IEEE80211_KEYIX_NONE);
2486 #endif /* IEEE80211_SUPPORT_SUPERG */
2487 		if (vap->iv_appie_assocresp != NULL)
2488 			frm = add_appie(frm, vap->iv_appie_assocresp);
2489 		m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2490 		break;
2491 
2492 	case IEEE80211_FC0_SUBTYPE_DISASSOC:
2493 		IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni,
2494 		    "send station disassociate (reason %d)", arg);
2495 		m = ieee80211_getmgtframe(&frm,
2496 			ic->ic_headroom + sizeof(struct ieee80211_frame),
2497 			sizeof(uint16_t));
2498 		if (m == NULL)
2499 			senderr(ENOMEM, is_tx_nobuf);
2500 		*(uint16_t *)frm = htole16(arg);	/* reason */
2501 		m->m_pkthdr.len = m->m_len = sizeof(uint16_t);
2502 
2503 		IEEE80211_NODE_STAT(ni, tx_disassoc);
2504 		IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg);
2505 		break;
2506 
2507 	default:
2508 		IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni,
2509 		    "invalid mgmt frame type %u", type);
2510 		senderr(EINVAL, is_tx_unknownmgt);
2511 		/* NOTREACHED */
2512 	}
2513 
2514 	/* NB: force non-ProbeResp frames to the highest queue */
2515 	params.ibp_pri = WME_AC_VO;
2516 	params.ibp_rate0 = bss->ni_txparms->mgmtrate;
2517 	/* NB: we know all frames are unicast */
2518 	params.ibp_try0 = bss->ni_txparms->maxretry;
2519 	params.ibp_power = bss->ni_txpower;
2520 	return ieee80211_mgmt_output(ni, m, type, &params);
2521 bad:
2522 	ieee80211_free_node(ni);
2523 	return ret;
2524 #undef senderr
2525 #undef HTFLAGS
2526 }
2527 
2528 /*
2529  * Return an mbuf with a probe response frame in it.
2530  * Space is left to prepend and 802.11 header at the
2531  * front but it's left to the caller to fill in.
2532  */
2533 struct mbuf *
2534 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy)
2535 {
2536 	struct ieee80211vap *vap = bss->ni_vap;
2537 	struct ieee80211com *ic = bss->ni_ic;
2538 	const struct ieee80211_rateset *rs;
2539 	struct mbuf *m;
2540 	uint16_t capinfo;
2541 	uint8_t *frm;
2542 
2543 	/*
2544 	 * probe response frame format
2545 	 *	[8] time stamp
2546 	 *	[2] beacon interval
2547 	 *	[2] cabability information
2548 	 *	[tlv] ssid
2549 	 *	[tlv] supported rates
2550 	 *	[tlv] parameter set (FH/DS)
2551 	 *	[tlv] parameter set (IBSS)
2552 	 *	[tlv] country (optional)
2553 	 *	[3] power control (optional)
2554 	 *	[5] channel switch announcement (CSA) (optional)
2555 	 *	[tlv] extended rate phy (ERP)
2556 	 *	[tlv] extended supported rates
2557 	 *	[tlv] RSN (optional)
2558 	 *	[tlv] HT capabilities
2559 	 *	[tlv] HT information
2560 	 *	[tlv] WPA (optional)
2561 	 *	[tlv] WME (optional)
2562 	 *	[tlv] Vendor OUI HT capabilities (optional)
2563 	 *	[tlv] Vendor OUI HT information (optional)
2564 	 *	[tlv] Atheros capabilities
2565 	 *	[tlv] AppIE's (optional)
2566 	 *	[tlv] Mesh ID (MBSS)
2567 	 *	[tlv] Mesh Conf (MBSS)
2568 	 */
2569 	m = ieee80211_getmgtframe(&frm,
2570 		 ic->ic_headroom + sizeof(struct ieee80211_frame),
2571 		 8
2572 	       + sizeof(uint16_t)
2573 	       + sizeof(uint16_t)
2574 	       + 2 + IEEE80211_NWID_LEN
2575 	       + 2 + IEEE80211_RATE_SIZE
2576 	       + 7	/* max(7,3) */
2577 	       + IEEE80211_COUNTRY_MAX_SIZE
2578 	       + 3
2579 	       + sizeof(struct ieee80211_csa_ie)
2580 	       + sizeof(struct ieee80211_quiet_ie)
2581 	       + 3
2582 	       + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
2583 	       + sizeof(struct ieee80211_ie_wpa)
2584 	       + sizeof(struct ieee80211_ie_htcap)
2585 	       + sizeof(struct ieee80211_ie_htinfo)
2586 	       + sizeof(struct ieee80211_ie_wpa)
2587 	       + sizeof(struct ieee80211_wme_param)
2588 	       + 4 + sizeof(struct ieee80211_ie_htcap)
2589 	       + 4 + sizeof(struct ieee80211_ie_htinfo)
2590 #ifdef IEEE80211_SUPPORT_SUPERG
2591 	       + sizeof(struct ieee80211_ath_ie)
2592 #endif
2593 #ifdef IEEE80211_SUPPORT_MESH
2594 	       + 2 + IEEE80211_MESHID_LEN
2595 	       + sizeof(struct ieee80211_meshconf_ie)
2596 #endif
2597 	       + (vap->iv_appie_proberesp != NULL ?
2598 			vap->iv_appie_proberesp->ie_len : 0)
2599 	);
2600 	if (m == NULL) {
2601 		vap->iv_stats.is_tx_nobuf++;
2602 		return NULL;
2603 	}
2604 
2605 	memset(frm, 0, 8);	/* timestamp should be filled later */
2606 	frm += 8;
2607 	*(uint16_t *)frm = htole16(bss->ni_intval);
2608 	frm += 2;
2609 	capinfo = ieee80211_getcapinfo(vap, bss->ni_chan);
2610 	*(uint16_t *)frm = htole16(capinfo);
2611 	frm += 2;
2612 
2613 	frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen);
2614 	rs = ieee80211_get_suprates(ic, bss->ni_chan);
2615 	frm = ieee80211_add_rates(frm, rs);
2616 
2617 	if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) {
2618 		*frm++ = IEEE80211_ELEMID_FHPARMS;
2619 		*frm++ = 5;
2620 		*frm++ = bss->ni_fhdwell & 0x00ff;
2621 		*frm++ = (bss->ni_fhdwell >> 8) & 0x00ff;
2622 		*frm++ = IEEE80211_FH_CHANSET(
2623 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2624 		*frm++ = IEEE80211_FH_CHANPAT(
2625 		    ieee80211_chan2ieee(ic, bss->ni_chan));
2626 		*frm++ = bss->ni_fhindex;
2627 	} else {
2628 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2629 		*frm++ = 1;
2630 		*frm++ = ieee80211_chan2ieee(ic, bss->ni_chan);
2631 	}
2632 
2633 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2634 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2635 		*frm++ = 2;
2636 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2637 	}
2638 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2639 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2640 		frm = ieee80211_add_countryie(frm, ic);
2641 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2642 		if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan))
2643 			frm = ieee80211_add_powerconstraint(frm, vap);
2644 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2645 			frm = ieee80211_add_csa(frm, vap);
2646 	}
2647 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2648 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2649 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2650 			if (vap->iv_quiet)
2651 				frm = ieee80211_add_quiet(frm, vap);
2652 		}
2653 	}
2654 	if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan))
2655 		frm = ieee80211_add_erp(frm, ic);
2656 	frm = ieee80211_add_xrates(frm, rs);
2657 	frm = ieee80211_add_rsn(frm, vap);
2658 	/*
2659 	 * NB: legacy 11b clients do not get certain ie's.
2660 	 *     The caller identifies such clients by passing
2661 	 *     a token in legacy to us.  Could expand this to be
2662 	 *     any legacy client for stuff like HT ie's.
2663 	 */
2664 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2665 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2666 		frm = ieee80211_add_htcap(frm, bss);
2667 		frm = ieee80211_add_htinfo(frm, bss);
2668 	}
2669 	frm = ieee80211_add_wpa(frm, vap);
2670 	if (vap->iv_flags & IEEE80211_F_WME)
2671 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2672 	if (IEEE80211_IS_CHAN_HT(bss->ni_chan) &&
2673 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) &&
2674 	    legacy != IEEE80211_SEND_LEGACY_11B) {
2675 		frm = ieee80211_add_htcap_vendor(frm, bss);
2676 		frm = ieee80211_add_htinfo_vendor(frm, bss);
2677 	}
2678 #ifdef IEEE80211_SUPPORT_SUPERG
2679 	if ((vap->iv_flags & IEEE80211_F_ATHEROS) &&
2680 	    legacy != IEEE80211_SEND_LEGACY_11B)
2681 		frm = ieee80211_add_athcaps(frm, bss);
2682 #endif
2683 	if (vap->iv_appie_proberesp != NULL)
2684 		frm = add_appie(frm, vap->iv_appie_proberesp);
2685 #ifdef IEEE80211_SUPPORT_MESH
2686 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
2687 		frm = ieee80211_add_meshid(frm, vap);
2688 		frm = ieee80211_add_meshconf(frm, vap);
2689 	}
2690 #endif
2691 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
2692 
2693 	return m;
2694 }
2695 
2696 /*
2697  * Send a probe response frame to the specified mac address.
2698  * This does not go through the normal mgt frame api so we
2699  * can specify the destination address and re-use the bss node
2700  * for the sta reference.
2701  */
2702 int
2703 ieee80211_send_proberesp(struct ieee80211vap *vap,
2704 	const uint8_t da[IEEE80211_ADDR_LEN], int legacy)
2705 {
2706 	struct ieee80211_node *bss = vap->iv_bss;
2707 	struct ieee80211com *ic = vap->iv_ic;
2708 	struct ieee80211_frame *wh;
2709 	struct mbuf *m;
2710 	int ret;
2711 
2712 	if (vap->iv_state == IEEE80211_S_CAC) {
2713 		IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss,
2714 		    "block %s frame in CAC state", "probe response");
2715 		vap->iv_stats.is_tx_badstate++;
2716 		return EIO;		/* XXX */
2717 	}
2718 
2719 	/*
2720 	 * Hold a reference on the node so it doesn't go away until after
2721 	 * the xmit is complete all the way in the driver.  On error we
2722 	 * will remove our reference.
2723 	 */
2724 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE,
2725 	    "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n",
2726 	    __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr),
2727 	    ieee80211_node_refcnt(bss)+1);
2728 	ieee80211_ref_node(bss);
2729 
2730 	m = ieee80211_alloc_proberesp(bss, legacy);
2731 	if (m == NULL) {
2732 		ieee80211_free_node(bss);
2733 		return ENOMEM;
2734 	}
2735 
2736 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
2737 	KASSERT(m != NULL, ("no room for header"));
2738 
2739 	IEEE80211_TX_LOCK(ic);
2740 	wh = mtod(m, struct ieee80211_frame *);
2741 	ieee80211_send_setup(bss, m,
2742 	     IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP,
2743 	     IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid);
2744 	/* XXX power management? */
2745 	m->m_flags |= M_ENCAP;		/* mark encapsulated */
2746 
2747 	M_WME_SETAC(m, WME_AC_BE);
2748 
2749 	IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS,
2750 	    "send probe resp on channel %u to %s%s\n",
2751 	    ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da),
2752 	    legacy ? " <legacy>" : "");
2753 	IEEE80211_NODE_STAT(bss, tx_mgmt);
2754 
2755 	ret = ieee80211_raw_output(vap, bss, m, NULL);
2756 	IEEE80211_TX_UNLOCK(ic);
2757 	return (ret);
2758 }
2759 
2760 /*
2761  * Allocate and build a RTS (Request To Send) control frame.
2762  */
2763 struct mbuf *
2764 ieee80211_alloc_rts(struct ieee80211com *ic,
2765 	const uint8_t ra[IEEE80211_ADDR_LEN],
2766 	const uint8_t ta[IEEE80211_ADDR_LEN],
2767 	uint16_t dur)
2768 {
2769 	struct ieee80211_frame_rts *rts;
2770 	struct mbuf *m;
2771 
2772 	/* XXX honor ic_headroom */
2773 	m = m_gethdr(M_NOWAIT, MT_DATA);
2774 	if (m != NULL) {
2775 		rts = mtod(m, struct ieee80211_frame_rts *);
2776 		rts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2777 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS;
2778 		rts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2779 		*(u_int16_t *)rts->i_dur = htole16(dur);
2780 		IEEE80211_ADDR_COPY(rts->i_ra, ra);
2781 		IEEE80211_ADDR_COPY(rts->i_ta, ta);
2782 
2783 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts);
2784 	}
2785 	return m;
2786 }
2787 
2788 /*
2789  * Allocate and build a CTS (Clear To Send) control frame.
2790  */
2791 struct mbuf *
2792 ieee80211_alloc_cts(struct ieee80211com *ic,
2793 	const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur)
2794 {
2795 	struct ieee80211_frame_cts *cts;
2796 	struct mbuf *m;
2797 
2798 	/* XXX honor ic_headroom */
2799 	m = m_gethdr(M_NOWAIT, MT_DATA);
2800 	if (m != NULL) {
2801 		cts = mtod(m, struct ieee80211_frame_cts *);
2802 		cts->i_fc[0] = IEEE80211_FC0_VERSION_0 |
2803 			IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS;
2804 		cts->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2805 		*(u_int16_t *)cts->i_dur = htole16(dur);
2806 		IEEE80211_ADDR_COPY(cts->i_ra, ra);
2807 
2808 		m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts);
2809 	}
2810 	return m;
2811 }
2812 
2813 static void
2814 ieee80211_tx_mgt_timeout(void *arg)
2815 {
2816 	struct ieee80211vap *vap = arg;
2817 
2818 	IEEE80211_LOCK(vap->iv_ic);
2819 	if (vap->iv_state != IEEE80211_S_INIT &&
2820 	    (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) {
2821 		/*
2822 		 * NB: it's safe to specify a timeout as the reason here;
2823 		 *     it'll only be used in the right state.
2824 		 */
2825 		ieee80211_new_state_locked(vap, IEEE80211_S_SCAN,
2826 			IEEE80211_SCAN_FAIL_TIMEOUT);
2827 	}
2828 	IEEE80211_UNLOCK(vap->iv_ic);
2829 }
2830 
2831 /*
2832  * This is the callback set on net80211-sourced transmitted
2833  * authentication request frames.
2834  *
2835  * This does a couple of things:
2836  *
2837  * + If the frame transmitted was a success, it schedules a future
2838  *   event which will transition the interface to scan.
2839  *   If a state transition _then_ occurs before that event occurs,
2840  *   said state transition will cancel this callout.
2841  *
2842  * + If the frame transmit was a failure, it immediately schedules
2843  *   the transition back to scan.
2844  */
2845 static void
2846 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status)
2847 {
2848 	struct ieee80211vap *vap = ni->ni_vap;
2849 	enum ieee80211_state ostate = (enum ieee80211_state) arg;
2850 
2851 	/*
2852 	 * Frame transmit completed; arrange timer callback.  If
2853 	 * transmit was successfuly we wait for response.  Otherwise
2854 	 * we arrange an immediate callback instead of doing the
2855 	 * callback directly since we don't know what state the driver
2856 	 * is in (e.g. what locks it is holding).  This work should
2857 	 * not be too time-critical and not happen too often so the
2858 	 * added overhead is acceptable.
2859 	 *
2860 	 * XXX what happens if !acked but response shows up before callback?
2861 	 */
2862 	if (vap->iv_state == ostate) {
2863 		callout_reset(&vap->iv_mgtsend,
2864 			status == 0 ? IEEE80211_TRANS_WAIT*hz : 0,
2865 			ieee80211_tx_mgt_timeout, vap);
2866 	}
2867 }
2868 
2869 static void
2870 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm,
2871 	struct ieee80211_node *ni)
2872 {
2873 	struct ieee80211vap *vap = ni->ni_vap;
2874 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
2875 	struct ieee80211com *ic = ni->ni_ic;
2876 	struct ieee80211_rateset *rs = &ni->ni_rates;
2877 	uint16_t capinfo;
2878 
2879 	/*
2880 	 * beacon frame format
2881 	 *	[8] time stamp
2882 	 *	[2] beacon interval
2883 	 *	[2] cabability information
2884 	 *	[tlv] ssid
2885 	 *	[tlv] supported rates
2886 	 *	[3] parameter set (DS)
2887 	 *	[8] CF parameter set (optional)
2888 	 *	[tlv] parameter set (IBSS/TIM)
2889 	 *	[tlv] country (optional)
2890 	 *	[3] power control (optional)
2891 	 *	[5] channel switch announcement (CSA) (optional)
2892 	 *	[tlv] extended rate phy (ERP)
2893 	 *	[tlv] extended supported rates
2894 	 *	[tlv] RSN parameters
2895 	 *	[tlv] HT capabilities
2896 	 *	[tlv] HT information
2897 	 * XXX Vendor-specific OIDs (e.g. Atheros)
2898 	 *	[tlv] WPA parameters
2899 	 *	[tlv] WME parameters
2900 	 *	[tlv] Vendor OUI HT capabilities (optional)
2901 	 *	[tlv] Vendor OUI HT information (optional)
2902 	 *	[tlv] Atheros capabilities (optional)
2903 	 *	[tlv] TDMA parameters (optional)
2904 	 *	[tlv] Mesh ID (MBSS)
2905 	 *	[tlv] Mesh Conf (MBSS)
2906 	 *	[tlv] application data (optional)
2907 	 */
2908 
2909 	memset(bo, 0, sizeof(*bo));
2910 
2911 	memset(frm, 0, 8);	/* XXX timestamp is set by hardware/driver */
2912 	frm += 8;
2913 	*(uint16_t *)frm = htole16(ni->ni_intval);
2914 	frm += 2;
2915 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
2916 	bo->bo_caps = (uint16_t *)frm;
2917 	*(uint16_t *)frm = htole16(capinfo);
2918 	frm += 2;
2919 	*frm++ = IEEE80211_ELEMID_SSID;
2920 	if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) {
2921 		*frm++ = ni->ni_esslen;
2922 		memcpy(frm, ni->ni_essid, ni->ni_esslen);
2923 		frm += ni->ni_esslen;
2924 	} else
2925 		*frm++ = 0;
2926 	frm = ieee80211_add_rates(frm, rs);
2927 	if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) {
2928 		*frm++ = IEEE80211_ELEMID_DSPARMS;
2929 		*frm++ = 1;
2930 		*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
2931 	}
2932 	if (ic->ic_flags & IEEE80211_F_PCF) {
2933 		bo->bo_cfp = frm;
2934 		frm = ieee80211_add_cfparms(frm, ic);
2935 	}
2936 	bo->bo_tim = frm;
2937 	if (vap->iv_opmode == IEEE80211_M_IBSS) {
2938 		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
2939 		*frm++ = 2;
2940 		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
2941 		bo->bo_tim_len = 0;
2942 	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
2943 	    vap->iv_opmode == IEEE80211_M_MBSS) {
2944 		/* TIM IE is the same for Mesh and Hostap */
2945 		struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm;
2946 
2947 		tie->tim_ie = IEEE80211_ELEMID_TIM;
2948 		tie->tim_len = 4;	/* length */
2949 		tie->tim_count = 0;	/* DTIM count */
2950 		tie->tim_period = vap->iv_dtim_period;	/* DTIM period */
2951 		tie->tim_bitctl = 0;	/* bitmap control */
2952 		tie->tim_bitmap[0] = 0;	/* Partial Virtual Bitmap */
2953 		frm += sizeof(struct ieee80211_tim_ie);
2954 		bo->bo_tim_len = 1;
2955 	}
2956 	bo->bo_tim_trailer = frm;
2957 	if ((vap->iv_flags & IEEE80211_F_DOTH) ||
2958 	    (vap->iv_flags_ext & IEEE80211_FEXT_DOTD))
2959 		frm = ieee80211_add_countryie(frm, ic);
2960 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2961 		if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan))
2962 			frm = ieee80211_add_powerconstraint(frm, vap);
2963 		bo->bo_csa = frm;
2964 		if (ic->ic_flags & IEEE80211_F_CSAPENDING)
2965 			frm = ieee80211_add_csa(frm, vap);
2966 	} else
2967 		bo->bo_csa = frm;
2968 
2969 	if (vap->iv_flags & IEEE80211_F_DOTH) {
2970 		bo->bo_quiet = frm;
2971 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
2972 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) {
2973 			if (vap->iv_quiet)
2974 				frm = ieee80211_add_quiet(frm,vap);
2975 		}
2976 	} else
2977 		bo->bo_quiet = frm;
2978 
2979 	if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) {
2980 		bo->bo_erp = frm;
2981 		frm = ieee80211_add_erp(frm, ic);
2982 	}
2983 	frm = ieee80211_add_xrates(frm, rs);
2984 	frm = ieee80211_add_rsn(frm, vap);
2985 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) {
2986 		frm = ieee80211_add_htcap(frm, ni);
2987 		bo->bo_htinfo = frm;
2988 		frm = ieee80211_add_htinfo(frm, ni);
2989 	}
2990 	frm = ieee80211_add_wpa(frm, vap);
2991 	if (vap->iv_flags & IEEE80211_F_WME) {
2992 		bo->bo_wme = frm;
2993 		frm = ieee80211_add_wme_param(frm, &ic->ic_wme);
2994 	}
2995 	if (IEEE80211_IS_CHAN_HT(ni->ni_chan) &&
2996 	    (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) {
2997 		frm = ieee80211_add_htcap_vendor(frm, ni);
2998 		frm = ieee80211_add_htinfo_vendor(frm, ni);
2999 	}
3000 #ifdef IEEE80211_SUPPORT_SUPERG
3001 	if (vap->iv_flags & IEEE80211_F_ATHEROS) {
3002 		bo->bo_ath = frm;
3003 		frm = ieee80211_add_athcaps(frm, ni);
3004 	}
3005 #endif
3006 #ifdef IEEE80211_SUPPORT_TDMA
3007 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3008 		bo->bo_tdma = frm;
3009 		frm = ieee80211_add_tdma(frm, vap);
3010 	}
3011 #endif
3012 	if (vap->iv_appie_beacon != NULL) {
3013 		bo->bo_appie = frm;
3014 		bo->bo_appie_len = vap->iv_appie_beacon->ie_len;
3015 		frm = add_appie(frm, vap->iv_appie_beacon);
3016 	}
3017 #ifdef IEEE80211_SUPPORT_MESH
3018 	if (vap->iv_opmode == IEEE80211_M_MBSS) {
3019 		frm = ieee80211_add_meshid(frm, vap);
3020 		bo->bo_meshconf = frm;
3021 		frm = ieee80211_add_meshconf(frm, vap);
3022 	}
3023 #endif
3024 	bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer;
3025 	bo->bo_csa_trailer_len = frm - bo->bo_csa;
3026 	m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *);
3027 }
3028 
3029 /*
3030  * Allocate a beacon frame and fillin the appropriate bits.
3031  */
3032 struct mbuf *
3033 ieee80211_beacon_alloc(struct ieee80211_node *ni)
3034 {
3035 	struct ieee80211vap *vap = ni->ni_vap;
3036 	struct ieee80211com *ic = ni->ni_ic;
3037 	struct ifnet *ifp = vap->iv_ifp;
3038 	struct ieee80211_frame *wh;
3039 	struct mbuf *m;
3040 	int pktlen;
3041 	uint8_t *frm;
3042 
3043 	/*
3044 	 * beacon frame format
3045 	 *	[8] time stamp
3046 	 *	[2] beacon interval
3047 	 *	[2] cabability information
3048 	 *	[tlv] ssid
3049 	 *	[tlv] supported rates
3050 	 *	[3] parameter set (DS)
3051 	 *	[8] CF parameter set (optional)
3052 	 *	[tlv] parameter set (IBSS/TIM)
3053 	 *	[tlv] country (optional)
3054 	 *	[3] power control (optional)
3055 	 *	[5] channel switch announcement (CSA) (optional)
3056 	 *	[tlv] extended rate phy (ERP)
3057 	 *	[tlv] extended supported rates
3058 	 *	[tlv] RSN parameters
3059 	 *	[tlv] HT capabilities
3060 	 *	[tlv] HT information
3061 	 *	[tlv] Vendor OUI HT capabilities (optional)
3062 	 *	[tlv] Vendor OUI HT information (optional)
3063 	 * XXX Vendor-specific OIDs (e.g. Atheros)
3064 	 *	[tlv] WPA parameters
3065 	 *	[tlv] WME parameters
3066 	 *	[tlv] TDMA parameters (optional)
3067 	 *	[tlv] Mesh ID (MBSS)
3068 	 *	[tlv] Mesh Conf (MBSS)
3069 	 *	[tlv] application data (optional)
3070 	 * NB: we allocate the max space required for the TIM bitmap.
3071 	 * XXX how big is this?
3072 	 */
3073 	pktlen =   8					/* time stamp */
3074 		 + sizeof(uint16_t)			/* beacon interval */
3075 		 + sizeof(uint16_t)			/* capabilities */
3076 		 + 2 + ni->ni_esslen			/* ssid */
3077 	         + 2 + IEEE80211_RATE_SIZE		/* supported rates */
3078 	         + 2 + 1				/* DS parameters */
3079 		 + 2 + 6				/* CF parameters */
3080 		 + 2 + 4 + vap->iv_tim_len		/* DTIM/IBSSPARMS */
3081 		 + IEEE80211_COUNTRY_MAX_SIZE		/* country */
3082 		 + 2 + 1				/* power control */
3083 		 + sizeof(struct ieee80211_csa_ie)	/* CSA */
3084 		 + sizeof(struct ieee80211_quiet_ie)	/* Quiet */
3085 		 + 2 + 1				/* ERP */
3086 	         + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE)
3087 		 + (vap->iv_caps & IEEE80211_C_WPA ?	/* WPA 1+2 */
3088 			2*sizeof(struct ieee80211_ie_wpa) : 0)
3089 		 /* XXX conditional? */
3090 		 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */
3091 		 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */
3092 		 + (vap->iv_caps & IEEE80211_C_WME ?	/* WME */
3093 			sizeof(struct ieee80211_wme_param) : 0)
3094 #ifdef IEEE80211_SUPPORT_SUPERG
3095 		 + sizeof(struct ieee80211_ath_ie)	/* ATH */
3096 #endif
3097 #ifdef IEEE80211_SUPPORT_TDMA
3098 		 + (vap->iv_caps & IEEE80211_C_TDMA ?	/* TDMA */
3099 			sizeof(struct ieee80211_tdma_param) : 0)
3100 #endif
3101 #ifdef IEEE80211_SUPPORT_MESH
3102 		 + 2 + ni->ni_meshidlen
3103 		 + sizeof(struct ieee80211_meshconf_ie)
3104 #endif
3105 		 + IEEE80211_MAX_APPIE
3106 		 ;
3107 	m = ieee80211_getmgtframe(&frm,
3108 		ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen);
3109 	if (m == NULL) {
3110 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY,
3111 			"%s: cannot get buf; size %u\n", __func__, pktlen);
3112 		vap->iv_stats.is_tx_nobuf++;
3113 		return NULL;
3114 	}
3115 	ieee80211_beacon_construct(m, frm, ni);
3116 
3117 	M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT);
3118 	KASSERT(m != NULL, ("no space for 802.11 header?"));
3119 	wh = mtod(m, struct ieee80211_frame *);
3120 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
3121 	    IEEE80211_FC0_SUBTYPE_BEACON;
3122 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
3123 	*(uint16_t *)wh->i_dur = 0;
3124 	IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr);
3125 	IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr);
3126 	IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid);
3127 	*(uint16_t *)wh->i_seq = 0;
3128 
3129 	return m;
3130 }
3131 
3132 /*
3133  * Update the dynamic parts of a beacon frame based on the current state.
3134  */
3135 int
3136 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast)
3137 {
3138 	struct ieee80211vap *vap = ni->ni_vap;
3139 	struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off;
3140 	struct ieee80211com *ic = ni->ni_ic;
3141 	int len_changed = 0;
3142 	uint16_t capinfo;
3143 	struct ieee80211_frame *wh;
3144 	ieee80211_seq seqno;
3145 
3146 	IEEE80211_LOCK(ic);
3147 	/*
3148 	 * Handle 11h channel change when we've reached the count.
3149 	 * We must recalculate the beacon frame contents to account
3150 	 * for the new channel.  Note we do this only for the first
3151 	 * vap that reaches this point; subsequent vaps just update
3152 	 * their beacon state to reflect the recalculated channel.
3153 	 */
3154 	if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) &&
3155 	    vap->iv_csa_count == ic->ic_csa_count) {
3156 		vap->iv_csa_count = 0;
3157 		/*
3158 		 * Effect channel change before reconstructing the beacon
3159 		 * frame contents as many places reference ni_chan.
3160 		 */
3161 		if (ic->ic_csa_newchan != NULL)
3162 			ieee80211_csa_completeswitch(ic);
3163 		/*
3164 		 * NB: ieee80211_beacon_construct clears all pending
3165 		 * updates in bo_flags so we don't need to explicitly
3166 		 * clear IEEE80211_BEACON_CSA.
3167 		 */
3168 		ieee80211_beacon_construct(m,
3169 		    mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni);
3170 
3171 		/* XXX do WME aggressive mode processing? */
3172 		IEEE80211_UNLOCK(ic);
3173 		return 1;		/* just assume length changed */
3174 	}
3175 
3176 	wh = mtod(m, struct ieee80211_frame *);
3177 	seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++;
3178 	*(uint16_t *)&wh->i_seq[0] =
3179 		htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
3180 	M_SEQNO_SET(m, seqno);
3181 
3182 	/* XXX faster to recalculate entirely or just changes? */
3183 	capinfo = ieee80211_getcapinfo(vap, ni->ni_chan);
3184 	*bo->bo_caps = htole16(capinfo);
3185 
3186 	if (vap->iv_flags & IEEE80211_F_WME) {
3187 		struct ieee80211_wme_state *wme = &ic->ic_wme;
3188 
3189 		/*
3190 		 * Check for agressive mode change.  When there is
3191 		 * significant high priority traffic in the BSS
3192 		 * throttle back BE traffic by using conservative
3193 		 * parameters.  Otherwise BE uses agressive params
3194 		 * to optimize performance of legacy/non-QoS traffic.
3195 		 */
3196 		if (wme->wme_flags & WME_F_AGGRMODE) {
3197 			if (wme->wme_hipri_traffic >
3198 			    wme->wme_hipri_switch_thresh) {
3199 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3200 				    "%s: traffic %u, disable aggressive mode\n",
3201 				    __func__, wme->wme_hipri_traffic);
3202 				wme->wme_flags &= ~WME_F_AGGRMODE;
3203 				ieee80211_wme_updateparams_locked(vap);
3204 				wme->wme_hipri_traffic =
3205 					wme->wme_hipri_switch_hysteresis;
3206 			} else
3207 				wme->wme_hipri_traffic = 0;
3208 		} else {
3209 			if (wme->wme_hipri_traffic <=
3210 			    wme->wme_hipri_switch_thresh) {
3211 				IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME,
3212 				    "%s: traffic %u, enable aggressive mode\n",
3213 				    __func__, wme->wme_hipri_traffic);
3214 				wme->wme_flags |= WME_F_AGGRMODE;
3215 				ieee80211_wme_updateparams_locked(vap);
3216 				wme->wme_hipri_traffic = 0;
3217 			} else
3218 				wme->wme_hipri_traffic =
3219 					wme->wme_hipri_switch_hysteresis;
3220 		}
3221 		if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) {
3222 			(void) ieee80211_add_wme_param(bo->bo_wme, wme);
3223 			clrbit(bo->bo_flags, IEEE80211_BEACON_WME);
3224 		}
3225 	}
3226 
3227 	if (isset(bo->bo_flags,  IEEE80211_BEACON_HTINFO)) {
3228 		ieee80211_ht_update_beacon(vap, bo);
3229 		clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO);
3230 	}
3231 #ifdef IEEE80211_SUPPORT_TDMA
3232 	if (vap->iv_caps & IEEE80211_C_TDMA) {
3233 		/*
3234 		 * NB: the beacon is potentially updated every TBTT.
3235 		 */
3236 		ieee80211_tdma_update_beacon(vap, bo);
3237 	}
3238 #endif
3239 #ifdef IEEE80211_SUPPORT_MESH
3240 	if (vap->iv_opmode == IEEE80211_M_MBSS)
3241 		ieee80211_mesh_update_beacon(vap, bo);
3242 #endif
3243 
3244 	if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
3245 	    vap->iv_opmode == IEEE80211_M_MBSS) {	/* NB: no IBSS support*/
3246 		struct ieee80211_tim_ie *tie =
3247 			(struct ieee80211_tim_ie *) bo->bo_tim;
3248 		if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) {
3249 			u_int timlen, timoff, i;
3250 			/*
3251 			 * ATIM/DTIM needs updating.  If it fits in the
3252 			 * current space allocated then just copy in the
3253 			 * new bits.  Otherwise we need to move any trailing
3254 			 * data to make room.  Note that we know there is
3255 			 * contiguous space because ieee80211_beacon_allocate
3256 			 * insures there is space in the mbuf to write a
3257 			 * maximal-size virtual bitmap (based on iv_max_aid).
3258 			 */
3259 			/*
3260 			 * Calculate the bitmap size and offset, copy any
3261 			 * trailer out of the way, and then copy in the
3262 			 * new bitmap and update the information element.
3263 			 * Note that the tim bitmap must contain at least
3264 			 * one byte and any offset must be even.
3265 			 */
3266 			if (vap->iv_ps_pending != 0) {
3267 				timoff = 128;		/* impossibly large */
3268 				for (i = 0; i < vap->iv_tim_len; i++)
3269 					if (vap->iv_tim_bitmap[i]) {
3270 						timoff = i &~ 1;
3271 						break;
3272 					}
3273 				KASSERT(timoff != 128, ("tim bitmap empty!"));
3274 				for (i = vap->iv_tim_len-1; i >= timoff; i--)
3275 					if (vap->iv_tim_bitmap[i])
3276 						break;
3277 				timlen = 1 + (i - timoff);
3278 			} else {
3279 				timoff = 0;
3280 				timlen = 1;
3281 			}
3282 			if (timlen != bo->bo_tim_len) {
3283 				/* copy up/down trailer */
3284 				int adjust = tie->tim_bitmap+timlen
3285 					   - bo->bo_tim_trailer;
3286 				ovbcopy(bo->bo_tim_trailer,
3287 				    bo->bo_tim_trailer+adjust,
3288 				    bo->bo_tim_trailer_len);
3289 				bo->bo_tim_trailer += adjust;
3290 				bo->bo_erp += adjust;
3291 				bo->bo_htinfo += adjust;
3292 #ifdef IEEE80211_SUPPORT_SUPERG
3293 				bo->bo_ath += adjust;
3294 #endif
3295 #ifdef IEEE80211_SUPPORT_TDMA
3296 				bo->bo_tdma += adjust;
3297 #endif
3298 #ifdef IEEE80211_SUPPORT_MESH
3299 				bo->bo_meshconf += adjust;
3300 #endif
3301 				bo->bo_appie += adjust;
3302 				bo->bo_wme += adjust;
3303 				bo->bo_csa += adjust;
3304 				bo->bo_quiet += adjust;
3305 				bo->bo_tim_len = timlen;
3306 
3307 				/* update information element */
3308 				tie->tim_len = 3 + timlen;
3309 				tie->tim_bitctl = timoff;
3310 				len_changed = 1;
3311 			}
3312 			memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff,
3313 				bo->bo_tim_len);
3314 
3315 			clrbit(bo->bo_flags, IEEE80211_BEACON_TIM);
3316 
3317 			IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER,
3318 				"%s: TIM updated, pending %u, off %u, len %u\n",
3319 				__func__, vap->iv_ps_pending, timoff, timlen);
3320 		}
3321 		/* count down DTIM period */
3322 		if (tie->tim_count == 0)
3323 			tie->tim_count = tie->tim_period - 1;
3324 		else
3325 			tie->tim_count--;
3326 		/* update state for buffered multicast frames on DTIM */
3327 		if (mcast && tie->tim_count == 0)
3328 			tie->tim_bitctl |= 1;
3329 		else
3330 			tie->tim_bitctl &= ~1;
3331 		if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) {
3332 			struct ieee80211_csa_ie *csa =
3333 			    (struct ieee80211_csa_ie *) bo->bo_csa;
3334 
3335 			/*
3336 			 * Insert or update CSA ie.  If we're just starting
3337 			 * to count down to the channel switch then we need
3338 			 * to insert the CSA ie.  Otherwise we just need to
3339 			 * drop the count.  The actual change happens above
3340 			 * when the vap's count reaches the target count.
3341 			 */
3342 			if (vap->iv_csa_count == 0) {
3343 				memmove(&csa[1], csa, bo->bo_csa_trailer_len);
3344 				bo->bo_erp += sizeof(*csa);
3345 				bo->bo_htinfo += sizeof(*csa);
3346 				bo->bo_wme += sizeof(*csa);
3347 #ifdef IEEE80211_SUPPORT_SUPERG
3348 				bo->bo_ath += sizeof(*csa);
3349 #endif
3350 #ifdef IEEE80211_SUPPORT_TDMA
3351 				bo->bo_tdma += sizeof(*csa);
3352 #endif
3353 #ifdef IEEE80211_SUPPORT_MESH
3354 				bo->bo_meshconf += sizeof(*csa);
3355 #endif
3356 				bo->bo_appie += sizeof(*csa);
3357 				bo->bo_csa_trailer_len += sizeof(*csa);
3358 				bo->bo_quiet += sizeof(*csa);
3359 				bo->bo_tim_trailer_len += sizeof(*csa);
3360 				m->m_len += sizeof(*csa);
3361 				m->m_pkthdr.len += sizeof(*csa);
3362 
3363 				ieee80211_add_csa(bo->bo_csa, vap);
3364 			} else
3365 				csa->csa_count--;
3366 			vap->iv_csa_count++;
3367 			/* NB: don't clear IEEE80211_BEACON_CSA */
3368 		}
3369 		if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) &&
3370 		    (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){
3371 			if (vap->iv_quiet)
3372 				ieee80211_add_quiet(bo->bo_quiet, vap);
3373 		}
3374 		if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) {
3375 			/*
3376 			 * ERP element needs updating.
3377 			 */
3378 			(void) ieee80211_add_erp(bo->bo_erp, ic);
3379 			clrbit(bo->bo_flags, IEEE80211_BEACON_ERP);
3380 		}
3381 #ifdef IEEE80211_SUPPORT_SUPERG
3382 		if (isset(bo->bo_flags,  IEEE80211_BEACON_ATH)) {
3383 			ieee80211_add_athcaps(bo->bo_ath, ni);
3384 			clrbit(bo->bo_flags, IEEE80211_BEACON_ATH);
3385 		}
3386 #endif
3387 	}
3388 	if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) {
3389 		const struct ieee80211_appie *aie = vap->iv_appie_beacon;
3390 		int aielen;
3391 		uint8_t *frm;
3392 
3393 		aielen = 0;
3394 		if (aie != NULL)
3395 			aielen += aie->ie_len;
3396 		if (aielen != bo->bo_appie_len) {
3397 			/* copy up/down trailer */
3398 			int adjust = aielen - bo->bo_appie_len;
3399 			ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust,
3400 				bo->bo_tim_trailer_len);
3401 			bo->bo_tim_trailer += adjust;
3402 			bo->bo_appie += adjust;
3403 			bo->bo_appie_len = aielen;
3404 
3405 			len_changed = 1;
3406 		}
3407 		frm = bo->bo_appie;
3408 		if (aie != NULL)
3409 			frm  = add_appie(frm, aie);
3410 		clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE);
3411 	}
3412 	IEEE80211_UNLOCK(ic);
3413 
3414 	return len_changed;
3415 }
3416 
3417 /*
3418  * Do Ethernet-LLC encapsulation for each payload in a fast frame
3419  * tunnel encapsulation.  The frame is assumed to have an Ethernet
3420  * header at the front that must be stripped before prepending the
3421  * LLC followed by the Ethernet header passed in (with an Ethernet
3422  * type that specifies the payload size).
3423  */
3424 struct mbuf *
3425 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m,
3426 	const struct ether_header *eh)
3427 {
3428 	struct llc *llc;
3429 	uint16_t payload;
3430 
3431 	/* XXX optimize by combining m_adj+M_PREPEND */
3432 	m_adj(m, sizeof(struct ether_header) - sizeof(struct llc));
3433 	llc = mtod(m, struct llc *);
3434 	llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP;
3435 	llc->llc_control = LLC_UI;
3436 	llc->llc_snap.org_code[0] = 0;
3437 	llc->llc_snap.org_code[1] = 0;
3438 	llc->llc_snap.org_code[2] = 0;
3439 	llc->llc_snap.ether_type = eh->ether_type;
3440 	payload = m->m_pkthdr.len;		/* NB: w/o Ethernet header */
3441 
3442 	M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT);
3443 	if (m == NULL) {		/* XXX cannot happen */
3444 		IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG,
3445 			"%s: no space for ether_header\n", __func__);
3446 		vap->iv_stats.is_tx_nobuf++;
3447 		return NULL;
3448 	}
3449 	ETHER_HEADER_COPY(mtod(m, void *), eh);
3450 	mtod(m, struct ether_header *)->ether_type = htons(payload);
3451 	return m;
3452 }
3453 
3454 /*
3455  * Complete an mbuf transmission.
3456  *
3457  * For now, this simply processes a completed frame after the
3458  * driver has completed it's transmission and/or retransmission.
3459  * It assumes the frame is an 802.11 encapsulated frame.
3460  *
3461  * Later on it will grow to become the exit path for a given frame
3462  * from the driver and, depending upon how it's been encapsulated
3463  * and already transmitted, it may end up doing A-MPDU retransmission,
3464  * power save requeuing, etc.
3465  *
3466  * In order for the above to work, the driver entry point to this
3467  * must not hold any driver locks.  Thus, the driver needs to delay
3468  * any actual mbuf completion until it can release said locks.
3469  *
3470  * This frees the mbuf and if the mbuf has a node reference,
3471  * the node reference will be freed.
3472  */
3473 void
3474 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status)
3475 {
3476 
3477 	if (ni != NULL) {
3478 		struct ifnet *ifp = ni->ni_vap->iv_ifp;
3479 
3480 		if (status == 0) {
3481 			if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len);
3482 			if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3483 			if (m->m_flags & M_MCAST)
3484 				if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1);
3485 		} else
3486 			if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3487 		if (m->m_flags & M_TXCB)
3488 			ieee80211_process_callback(ni, m, status);
3489 		ieee80211_free_node(ni);
3490 	}
3491 	m_freem(m);
3492 }
3493