1 /*- 2 * Copyright (c) 2001 Atsushi Onoe 3 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 16 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 17 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 18 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 19 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 20 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 21 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 22 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 23 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 24 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 25 */ 26 27 #include <sys/cdefs.h> 28 __FBSDID("$FreeBSD$"); 29 30 #include "opt_inet.h" 31 #include "opt_inet6.h" 32 #include "opt_wlan.h" 33 34 #include <sys/param.h> 35 #include <sys/systm.h> 36 #include <sys/mbuf.h> 37 #include <sys/kernel.h> 38 #include <sys/endian.h> 39 40 #include <sys/socket.h> 41 42 #include <net/bpf.h> 43 #include <net/ethernet.h> 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_llc.h> 47 #include <net/if_media.h> 48 #include <net/if_vlan_var.h> 49 50 #include <net80211/ieee80211_var.h> 51 #include <net80211/ieee80211_regdomain.h> 52 #ifdef IEEE80211_SUPPORT_SUPERG 53 #include <net80211/ieee80211_superg.h> 54 #endif 55 #ifdef IEEE80211_SUPPORT_TDMA 56 #include <net80211/ieee80211_tdma.h> 57 #endif 58 #include <net80211/ieee80211_wds.h> 59 #include <net80211/ieee80211_mesh.h> 60 61 #if defined(INET) || defined(INET6) 62 #include <netinet/in.h> 63 #endif 64 65 #ifdef INET 66 #include <netinet/if_ether.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #endif 70 #ifdef INET6 71 #include <netinet/ip6.h> 72 #endif 73 74 #include <security/mac/mac_framework.h> 75 76 #define ETHER_HEADER_COPY(dst, src) \ 77 memcpy(dst, src, sizeof(struct ether_header)) 78 79 /* unalligned little endian access */ 80 #define LE_WRITE_2(p, v) do { \ 81 ((uint8_t *)(p))[0] = (v) & 0xff; \ 82 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 83 } while (0) 84 #define LE_WRITE_4(p, v) do { \ 85 ((uint8_t *)(p))[0] = (v) & 0xff; \ 86 ((uint8_t *)(p))[1] = ((v) >> 8) & 0xff; \ 87 ((uint8_t *)(p))[2] = ((v) >> 16) & 0xff; \ 88 ((uint8_t *)(p))[3] = ((v) >> 24) & 0xff; \ 89 } while (0) 90 91 static int ieee80211_fragment(struct ieee80211vap *, struct mbuf *, 92 u_int hdrsize, u_int ciphdrsize, u_int mtu); 93 static void ieee80211_tx_mgt_cb(struct ieee80211_node *, void *, int); 94 95 #ifdef IEEE80211_DEBUG 96 /* 97 * Decide if an outbound management frame should be 98 * printed when debugging is enabled. This filters some 99 * of the less interesting frames that come frequently 100 * (e.g. beacons). 101 */ 102 static __inline int 103 doprint(struct ieee80211vap *vap, int subtype) 104 { 105 switch (subtype) { 106 case IEEE80211_FC0_SUBTYPE_PROBE_RESP: 107 return (vap->iv_opmode == IEEE80211_M_IBSS); 108 } 109 return 1; 110 } 111 #endif 112 113 /* 114 * Transmit a frame to the given destination on the given VAP. 115 * 116 * It's up to the caller to figure out the details of who this 117 * is going to and resolving the node. 118 * 119 * This routine takes care of queuing it for power save, 120 * A-MPDU state stuff, fast-frames state stuff, encapsulation 121 * if required, then passing it up to the driver layer. 122 * 123 * This routine (for now) consumes the mbuf and frees the node 124 * reference; it ideally will return a TX status which reflects 125 * whether the mbuf was consumed or not, so the caller can 126 * free the mbuf (if appropriate) and the node reference (again, 127 * if appropriate.) 128 */ 129 int 130 ieee80211_vap_pkt_send_dest(struct ieee80211vap *vap, struct mbuf *m, 131 struct ieee80211_node *ni) 132 { 133 struct ieee80211com *ic = vap->iv_ic; 134 struct ifnet *ifp = vap->iv_ifp; 135 int len, mcast; 136 137 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 138 (m->m_flags & M_PWR_SAV) == 0) { 139 /* 140 * Station in power save mode; pass the frame 141 * to the 802.11 layer and continue. We'll get 142 * the frame back when the time is right. 143 * XXX lose WDS vap linkage? 144 */ 145 if (ieee80211_pwrsave(ni, m) != 0) 146 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 147 ieee80211_free_node(ni); 148 149 /* 150 * We queued it fine, so tell the upper layer 151 * that we consumed it. 152 */ 153 return (0); 154 } 155 /* calculate priority so drivers can find the tx queue */ 156 if (ieee80211_classify(ni, m)) { 157 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 158 ni->ni_macaddr, NULL, 159 "%s", "classification failure"); 160 vap->iv_stats.is_tx_classify++; 161 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 162 m_freem(m); 163 ieee80211_free_node(ni); 164 165 /* XXX better status? */ 166 return (0); 167 } 168 /* 169 * Stash the node pointer. Note that we do this after 170 * any call to ieee80211_dwds_mcast because that code 171 * uses any existing value for rcvif to identify the 172 * interface it (might have been) received on. 173 */ 174 m->m_pkthdr.rcvif = (void *)ni; 175 mcast = (m->m_flags & (M_MCAST | M_BCAST)) ? 1: 0; 176 len = m->m_pkthdr.len; 177 178 BPF_MTAP(ifp, m); /* 802.3 tx */ 179 180 /* 181 * Check if A-MPDU tx aggregation is setup or if we 182 * should try to enable it. The sta must be associated 183 * with HT and A-MPDU enabled for use. When the policy 184 * routine decides we should enable A-MPDU we issue an 185 * ADDBA request and wait for a reply. The frame being 186 * encapsulated will go out w/o using A-MPDU, or possibly 187 * it might be collected by the driver and held/retransmit. 188 * The default ic_ampdu_enable routine handles staggering 189 * ADDBA requests in case the receiver NAK's us or we are 190 * otherwise unable to establish a BA stream. 191 */ 192 if ((ni->ni_flags & IEEE80211_NODE_AMPDU_TX) && 193 (vap->iv_flags_ht & IEEE80211_FHT_AMPDU_TX) && 194 (m->m_flags & M_EAPOL) == 0) { 195 int tid = WME_AC_TO_TID(M_WME_GETAC(m)); 196 struct ieee80211_tx_ampdu *tap = &ni->ni_tx_ampdu[tid]; 197 198 ieee80211_txampdu_count_packet(tap); 199 if (IEEE80211_AMPDU_RUNNING(tap)) { 200 /* 201 * Operational, mark frame for aggregation. 202 * 203 * XXX do tx aggregation here 204 */ 205 m->m_flags |= M_AMPDU_MPDU; 206 } else if (!IEEE80211_AMPDU_REQUESTED(tap) && 207 ic->ic_ampdu_enable(ni, tap)) { 208 /* 209 * Not negotiated yet, request service. 210 */ 211 ieee80211_ampdu_request(ni, tap); 212 /* XXX hold frame for reply? */ 213 } 214 } 215 216 /* 217 * XXX If we aren't doing AMPDU TX then we /could/ do 218 * fast-frames encapsulation, however right now this 219 * output logic doesn't handle that case. 220 * 221 * So we'll be limited to "fast-frames" xmit for non-11n STA 222 * and "no fast frames" xmit for 11n STAs. 223 * It'd be nice to eventually test fast-frames out by 224 * gracefully falling from failing A-MPDU transmission 225 * (driver says no, fail to negotiate it with peer) to 226 * using fast-frames. 227 * 228 * Note: we can actually put A-MSDU's inside an A-MPDU, 229 * so hopefully we can figure out how to make that particular 230 * combination work right. 231 */ 232 #ifdef IEEE80211_SUPPORT_SUPERG 233 else if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_NODE_FF)) { 234 m = ieee80211_ff_check(ni, m); 235 if (m == NULL) { 236 /* NB: any ni ref held on stageq */ 237 return (0); 238 } 239 } 240 #endif /* IEEE80211_SUPPORT_SUPERG */ 241 242 /* 243 * Grab the TX lock - serialise the TX process from this 244 * point (where TX state is being checked/modified) 245 * through to driver queue. 246 */ 247 IEEE80211_TX_LOCK(ic); 248 249 /* 250 * XXX make the encap and transmit code a separate function 251 * so things like the FF (and later A-MSDU) path can just call 252 * it for flushed frames. 253 */ 254 if (__predict_true((vap->iv_caps & IEEE80211_C_8023ENCAP) == 0)) { 255 /* 256 * Encapsulate the packet in prep for transmission. 257 */ 258 m = ieee80211_encap(vap, ni, m); 259 if (m == NULL) { 260 /* NB: stat+msg handled in ieee80211_encap */ 261 IEEE80211_TX_UNLOCK(ic); 262 ieee80211_free_node(ni); 263 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 264 return (ENOBUFS); 265 } 266 } 267 (void) ieee80211_parent_xmitpkt(ic, m); 268 269 /* 270 * Unlock at this point - no need to hold it across 271 * ieee80211_free_node() (ie, the comlock) 272 */ 273 IEEE80211_TX_UNLOCK(ic); 274 ic->ic_lastdata = ticks; 275 276 return (0); 277 } 278 279 280 281 /* 282 * Send the given mbuf through the given vap. 283 * 284 * This consumes the mbuf regardless of whether the transmit 285 * was successful or not. 286 * 287 * This does none of the initial checks that ieee80211_start() 288 * does (eg CAC timeout, interface wakeup) - the caller must 289 * do this first. 290 */ 291 static int 292 ieee80211_start_pkt(struct ieee80211vap *vap, struct mbuf *m) 293 { 294 #define IS_DWDS(vap) \ 295 (vap->iv_opmode == IEEE80211_M_WDS && \ 296 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY) == 0) 297 struct ieee80211com *ic = vap->iv_ic; 298 struct ifnet *ifp = vap->iv_ifp; 299 struct ieee80211_node *ni; 300 struct ether_header *eh; 301 302 /* 303 * Cancel any background scan. 304 */ 305 if (ic->ic_flags & IEEE80211_F_SCAN) 306 ieee80211_cancel_anyscan(vap); 307 /* 308 * Find the node for the destination so we can do 309 * things like power save and fast frames aggregation. 310 * 311 * NB: past this point various code assumes the first 312 * mbuf has the 802.3 header present (and contiguous). 313 */ 314 ni = NULL; 315 if (m->m_len < sizeof(struct ether_header) && 316 (m = m_pullup(m, sizeof(struct ether_header))) == NULL) { 317 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 318 "discard frame, %s\n", "m_pullup failed"); 319 vap->iv_stats.is_tx_nobuf++; /* XXX */ 320 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 321 return (ENOBUFS); 322 } 323 eh = mtod(m, struct ether_header *); 324 if (ETHER_IS_MULTICAST(eh->ether_dhost)) { 325 if (IS_DWDS(vap)) { 326 /* 327 * Only unicast frames from the above go out 328 * DWDS vaps; multicast frames are handled by 329 * dispatching the frame as it comes through 330 * the AP vap (see below). 331 */ 332 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_WDS, 333 eh->ether_dhost, "mcast", "%s", "on DWDS"); 334 vap->iv_stats.is_dwds_mcast++; 335 m_freem(m); 336 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 337 /* XXX better status? */ 338 return (ENOBUFS); 339 } 340 if (vap->iv_opmode == IEEE80211_M_HOSTAP) { 341 /* 342 * Spam DWDS vap's w/ multicast traffic. 343 */ 344 /* XXX only if dwds in use? */ 345 ieee80211_dwds_mcast(vap, m); 346 } 347 } 348 #ifdef IEEE80211_SUPPORT_MESH 349 if (vap->iv_opmode != IEEE80211_M_MBSS) { 350 #endif 351 ni = ieee80211_find_txnode(vap, eh->ether_dhost); 352 if (ni == NULL) { 353 /* NB: ieee80211_find_txnode does stat+msg */ 354 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 355 m_freem(m); 356 /* XXX better status? */ 357 return (ENOBUFS); 358 } 359 if (ni->ni_associd == 0 && 360 (ni->ni_flags & IEEE80211_NODE_ASSOCID)) { 361 IEEE80211_DISCARD_MAC(vap, IEEE80211_MSG_OUTPUT, 362 eh->ether_dhost, NULL, 363 "sta not associated (type 0x%04x)", 364 htons(eh->ether_type)); 365 vap->iv_stats.is_tx_notassoc++; 366 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 367 m_freem(m); 368 ieee80211_free_node(ni); 369 /* XXX better status? */ 370 return (ENOBUFS); 371 } 372 #ifdef IEEE80211_SUPPORT_MESH 373 } else { 374 if (!IEEE80211_ADDR_EQ(eh->ether_shost, vap->iv_myaddr)) { 375 /* 376 * Proxy station only if configured. 377 */ 378 if (!ieee80211_mesh_isproxyena(vap)) { 379 IEEE80211_DISCARD_MAC(vap, 380 IEEE80211_MSG_OUTPUT | 381 IEEE80211_MSG_MESH, 382 eh->ether_dhost, NULL, 383 "%s", "proxy not enabled"); 384 vap->iv_stats.is_mesh_notproxy++; 385 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 386 m_freem(m); 387 /* XXX better status? */ 388 return (ENOBUFS); 389 } 390 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 391 "forward frame from DS SA(%6D), DA(%6D)\n", 392 eh->ether_shost, ":", 393 eh->ether_dhost, ":"); 394 ieee80211_mesh_proxy_check(vap, eh->ether_shost); 395 } 396 ni = ieee80211_mesh_discover(vap, eh->ether_dhost, m); 397 if (ni == NULL) { 398 /* 399 * NB: ieee80211_mesh_discover holds/disposes 400 * frame (e.g. queueing on path discovery). 401 */ 402 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 403 /* XXX better status? */ 404 return (ENOBUFS); 405 } 406 } 407 #endif 408 409 /* 410 * We've resolved the sender, so attempt to transmit it. 411 */ 412 413 if (vap->iv_state == IEEE80211_S_SLEEP) { 414 /* 415 * In power save; queue frame and then wakeup device 416 * for transmit. 417 */ 418 ic->ic_lastdata = ticks; 419 if (ieee80211_pwrsave(ni, m) != 0) 420 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 421 ieee80211_free_node(ni); 422 ieee80211_new_state(vap, IEEE80211_S_RUN, 0); 423 return (0); 424 } 425 426 if (ieee80211_vap_pkt_send_dest(vap, m, ni) != 0) 427 return (ENOBUFS); 428 return (0); 429 #undef IS_DWDS 430 } 431 432 /* 433 * Start method for vap's. All packets from the stack come 434 * through here. We handle common processing of the packets 435 * before dispatching them to the underlying device. 436 * 437 * if_transmit() requires that the mbuf be consumed by this call 438 * regardless of the return condition. 439 */ 440 int 441 ieee80211_vap_transmit(struct ifnet *ifp, struct mbuf *m) 442 { 443 struct ieee80211vap *vap = ifp->if_softc; 444 struct ieee80211com *ic = vap->iv_ic; 445 446 /* 447 * No data frames go out unless we're running. 448 * Note in particular this covers CAC and CSA 449 * states (though maybe we should check muting 450 * for CSA). 451 */ 452 if (vap->iv_state != IEEE80211_S_RUN && 453 vap->iv_state != IEEE80211_S_SLEEP) { 454 IEEE80211_LOCK(ic); 455 /* re-check under the com lock to avoid races */ 456 if (vap->iv_state != IEEE80211_S_RUN && 457 vap->iv_state != IEEE80211_S_SLEEP) { 458 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 459 "%s: ignore queue, in %s state\n", 460 __func__, ieee80211_state_name[vap->iv_state]); 461 vap->iv_stats.is_tx_badstate++; 462 IEEE80211_UNLOCK(ic); 463 ifp->if_drv_flags |= IFF_DRV_OACTIVE; 464 m_freem(m); 465 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 466 return (ENETDOWN); 467 } 468 IEEE80211_UNLOCK(ic); 469 } 470 471 /* 472 * Sanitize mbuf flags for net80211 use. We cannot 473 * clear M_PWR_SAV or M_MORE_DATA because these may 474 * be set for frames that are re-submitted from the 475 * power save queue. 476 * 477 * NB: This must be done before ieee80211_classify as 478 * it marks EAPOL in frames with M_EAPOL. 479 */ 480 m->m_flags &= ~(M_80211_TX - M_PWR_SAV - M_MORE_DATA); 481 482 /* 483 * Bump to the packet transmission path. 484 * The mbuf will be consumed here. 485 */ 486 return (ieee80211_start_pkt(vap, m)); 487 } 488 489 void 490 ieee80211_vap_qflush(struct ifnet *ifp) 491 { 492 493 /* Empty for now */ 494 } 495 496 /* 497 * 802.11 raw output routine. 498 * 499 * XXX TODO: this (and other send routines) should correctly 500 * XXX keep the pwr mgmt bit set if it decides to call into the 501 * XXX driver to send a frame whilst the state is SLEEP. 502 * 503 * Otherwise the peer may decide that we're awake and flood us 504 * with traffic we are still too asleep to receive! 505 */ 506 int 507 ieee80211_raw_output(struct ieee80211vap *vap, struct ieee80211_node *ni, 508 struct mbuf *m, const struct ieee80211_bpf_params *params) 509 { 510 struct ieee80211com *ic = vap->iv_ic; 511 int error; 512 513 /* 514 * Set node - the caller has taken a reference, so ensure 515 * that the mbuf has the same node value that 516 * it would if it were going via the normal path. 517 */ 518 m->m_pkthdr.rcvif = (void *)ni; 519 520 /* 521 * Attempt to add bpf transmit parameters. 522 * 523 * For now it's ok to fail; the raw_xmit api still takes 524 * them as an option. 525 * 526 * Later on when ic_raw_xmit() has params removed, 527 * they'll have to be added - so fail the transmit if 528 * they can't be. 529 */ 530 if (params) 531 (void) ieee80211_add_xmit_params(m, params); 532 533 error = ic->ic_raw_xmit(ni, m, params); 534 if (error) { 535 if_inc_counter(vap->iv_ifp, IFCOUNTER_OERRORS, 1); 536 ieee80211_free_node(ni); 537 } 538 return (error); 539 } 540 541 /* 542 * 802.11 output routine. This is (currently) used only to 543 * connect bpf write calls to the 802.11 layer for injecting 544 * raw 802.11 frames. 545 */ 546 int 547 ieee80211_output(struct ifnet *ifp, struct mbuf *m, 548 const struct sockaddr *dst, struct route *ro) 549 { 550 #define senderr(e) do { error = (e); goto bad;} while (0) 551 struct ieee80211_node *ni = NULL; 552 struct ieee80211vap *vap; 553 struct ieee80211_frame *wh; 554 struct ieee80211com *ic = NULL; 555 int error; 556 int ret; 557 558 if (ifp->if_drv_flags & IFF_DRV_OACTIVE) { 559 /* 560 * Short-circuit requests if the vap is marked OACTIVE 561 * as this can happen because a packet came down through 562 * ieee80211_start before the vap entered RUN state in 563 * which case it's ok to just drop the frame. This 564 * should not be necessary but callers of if_output don't 565 * check OACTIVE. 566 */ 567 senderr(ENETDOWN); 568 } 569 vap = ifp->if_softc; 570 ic = vap->iv_ic; 571 /* 572 * Hand to the 802.3 code if not tagged as 573 * a raw 802.11 frame. 574 */ 575 if (dst->sa_family != AF_IEEE80211) 576 return vap->iv_output(ifp, m, dst, ro); 577 #ifdef MAC 578 error = mac_ifnet_check_transmit(ifp, m); 579 if (error) 580 senderr(error); 581 #endif 582 if (ifp->if_flags & IFF_MONITOR) 583 senderr(ENETDOWN); 584 if (!IFNET_IS_UP_RUNNING(ifp)) 585 senderr(ENETDOWN); 586 if (vap->iv_state == IEEE80211_S_CAC) { 587 IEEE80211_DPRINTF(vap, 588 IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 589 "block %s frame in CAC state\n", "raw data"); 590 vap->iv_stats.is_tx_badstate++; 591 senderr(EIO); /* XXX */ 592 } else if (vap->iv_state == IEEE80211_S_SCAN) 593 senderr(EIO); 594 /* XXX bypass bridge, pfil, carp, etc. */ 595 596 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame_ack)) 597 senderr(EIO); /* XXX */ 598 wh = mtod(m, struct ieee80211_frame *); 599 if ((wh->i_fc[0] & IEEE80211_FC0_VERSION_MASK) != 600 IEEE80211_FC0_VERSION_0) 601 senderr(EIO); /* XXX */ 602 603 /* locate destination node */ 604 switch (wh->i_fc[1] & IEEE80211_FC1_DIR_MASK) { 605 case IEEE80211_FC1_DIR_NODS: 606 case IEEE80211_FC1_DIR_FROMDS: 607 ni = ieee80211_find_txnode(vap, wh->i_addr1); 608 break; 609 case IEEE80211_FC1_DIR_TODS: 610 case IEEE80211_FC1_DIR_DSTODS: 611 if (m->m_pkthdr.len < sizeof(struct ieee80211_frame)) 612 senderr(EIO); /* XXX */ 613 ni = ieee80211_find_txnode(vap, wh->i_addr3); 614 break; 615 default: 616 senderr(EIO); /* XXX */ 617 } 618 if (ni == NULL) { 619 /* 620 * Permit packets w/ bpf params through regardless 621 * (see below about sa_len). 622 */ 623 if (dst->sa_len == 0) 624 senderr(EHOSTUNREACH); 625 ni = ieee80211_ref_node(vap->iv_bss); 626 } 627 628 /* 629 * Sanitize mbuf for net80211 flags leaked from above. 630 * 631 * NB: This must be done before ieee80211_classify as 632 * it marks EAPOL in frames with M_EAPOL. 633 */ 634 m->m_flags &= ~M_80211_TX; 635 636 /* calculate priority so drivers can find the tx queue */ 637 /* XXX assumes an 802.3 frame */ 638 if (ieee80211_classify(ni, m)) 639 senderr(EIO); /* XXX */ 640 641 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 642 IEEE80211_NODE_STAT(ni, tx_data); 643 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 644 IEEE80211_NODE_STAT(ni, tx_mcast); 645 m->m_flags |= M_MCAST; 646 } else 647 IEEE80211_NODE_STAT(ni, tx_ucast); 648 /* NB: ieee80211_encap does not include 802.11 header */ 649 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, m->m_pkthdr.len); 650 651 IEEE80211_TX_LOCK(ic); 652 653 /* 654 * NB: DLT_IEEE802_11_RADIO identifies the parameters are 655 * present by setting the sa_len field of the sockaddr (yes, 656 * this is a hack). 657 * NB: we assume sa_data is suitably aligned to cast. 658 */ 659 ret = ieee80211_raw_output(vap, ni, m, 660 (const struct ieee80211_bpf_params *)(dst->sa_len ? 661 dst->sa_data : NULL)); 662 IEEE80211_TX_UNLOCK(ic); 663 return (ret); 664 bad: 665 if (m != NULL) 666 m_freem(m); 667 if (ni != NULL) 668 ieee80211_free_node(ni); 669 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 670 return error; 671 #undef senderr 672 } 673 674 /* 675 * Set the direction field and address fields of an outgoing 676 * frame. Note this should be called early on in constructing 677 * a frame as it sets i_fc[1]; other bits can then be or'd in. 678 */ 679 void 680 ieee80211_send_setup( 681 struct ieee80211_node *ni, 682 struct mbuf *m, 683 int type, int tid, 684 const uint8_t sa[IEEE80211_ADDR_LEN], 685 const uint8_t da[IEEE80211_ADDR_LEN], 686 const uint8_t bssid[IEEE80211_ADDR_LEN]) 687 { 688 #define WH4(wh) ((struct ieee80211_frame_addr4 *)wh) 689 struct ieee80211vap *vap = ni->ni_vap; 690 struct ieee80211_tx_ampdu *tap; 691 struct ieee80211_frame *wh = mtod(m, struct ieee80211_frame *); 692 ieee80211_seq seqno; 693 694 IEEE80211_TX_LOCK_ASSERT(ni->ni_ic); 695 696 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | type; 697 if ((type & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA) { 698 switch (vap->iv_opmode) { 699 case IEEE80211_M_STA: 700 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 701 IEEE80211_ADDR_COPY(wh->i_addr1, bssid); 702 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 703 IEEE80211_ADDR_COPY(wh->i_addr3, da); 704 break; 705 case IEEE80211_M_IBSS: 706 case IEEE80211_M_AHDEMO: 707 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 708 IEEE80211_ADDR_COPY(wh->i_addr1, da); 709 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 710 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 711 break; 712 case IEEE80211_M_HOSTAP: 713 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 714 IEEE80211_ADDR_COPY(wh->i_addr1, da); 715 IEEE80211_ADDR_COPY(wh->i_addr2, bssid); 716 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 717 break; 718 case IEEE80211_M_WDS: 719 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 720 IEEE80211_ADDR_COPY(wh->i_addr1, da); 721 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 722 IEEE80211_ADDR_COPY(wh->i_addr3, da); 723 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 724 break; 725 case IEEE80211_M_MBSS: 726 #ifdef IEEE80211_SUPPORT_MESH 727 if (IEEE80211_IS_MULTICAST(da)) { 728 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 729 /* XXX next hop */ 730 IEEE80211_ADDR_COPY(wh->i_addr1, da); 731 IEEE80211_ADDR_COPY(wh->i_addr2, 732 vap->iv_myaddr); 733 } else { 734 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 735 IEEE80211_ADDR_COPY(wh->i_addr1, da); 736 IEEE80211_ADDR_COPY(wh->i_addr2, 737 vap->iv_myaddr); 738 IEEE80211_ADDR_COPY(wh->i_addr3, da); 739 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, sa); 740 } 741 #endif 742 break; 743 case IEEE80211_M_MONITOR: /* NB: to quiet compiler */ 744 break; 745 } 746 } else { 747 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 748 IEEE80211_ADDR_COPY(wh->i_addr1, da); 749 IEEE80211_ADDR_COPY(wh->i_addr2, sa); 750 #ifdef IEEE80211_SUPPORT_MESH 751 if (vap->iv_opmode == IEEE80211_M_MBSS) 752 IEEE80211_ADDR_COPY(wh->i_addr3, sa); 753 else 754 #endif 755 IEEE80211_ADDR_COPY(wh->i_addr3, bssid); 756 } 757 *(uint16_t *)&wh->i_dur[0] = 0; 758 759 tap = &ni->ni_tx_ampdu[tid]; 760 if (tid != IEEE80211_NONQOS_TID && IEEE80211_AMPDU_RUNNING(tap)) 761 m->m_flags |= M_AMPDU_MPDU; 762 else { 763 if (IEEE80211_HAS_SEQ(type & IEEE80211_FC0_TYPE_MASK, 764 type & IEEE80211_FC0_SUBTYPE_MASK)) 765 seqno = ni->ni_txseqs[tid]++; 766 else 767 seqno = 0; 768 769 *(uint16_t *)&wh->i_seq[0] = 770 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 771 M_SEQNO_SET(m, seqno); 772 } 773 774 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) 775 m->m_flags |= M_MCAST; 776 #undef WH4 777 } 778 779 /* 780 * Send a management frame to the specified node. The node pointer 781 * must have a reference as the pointer will be passed to the driver 782 * and potentially held for a long time. If the frame is successfully 783 * dispatched to the driver, then it is responsible for freeing the 784 * reference (and potentially free'ing up any associated storage); 785 * otherwise deal with reclaiming any reference (on error). 786 */ 787 int 788 ieee80211_mgmt_output(struct ieee80211_node *ni, struct mbuf *m, int type, 789 struct ieee80211_bpf_params *params) 790 { 791 struct ieee80211vap *vap = ni->ni_vap; 792 struct ieee80211com *ic = ni->ni_ic; 793 struct ieee80211_frame *wh; 794 int ret; 795 796 KASSERT(ni != NULL, ("null node")); 797 798 if (vap->iv_state == IEEE80211_S_CAC) { 799 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 800 ni, "block %s frame in CAC state", 801 ieee80211_mgt_subtype_name[ 802 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 803 IEEE80211_FC0_SUBTYPE_SHIFT]); 804 vap->iv_stats.is_tx_badstate++; 805 ieee80211_free_node(ni); 806 m_freem(m); 807 return EIO; /* XXX */ 808 } 809 810 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 811 if (m == NULL) { 812 ieee80211_free_node(ni); 813 return ENOMEM; 814 } 815 816 IEEE80211_TX_LOCK(ic); 817 818 wh = mtod(m, struct ieee80211_frame *); 819 ieee80211_send_setup(ni, m, 820 IEEE80211_FC0_TYPE_MGT | type, IEEE80211_NONQOS_TID, 821 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 822 if (params->ibp_flags & IEEE80211_BPF_CRYPTO) { 823 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_AUTH, wh->i_addr1, 824 "encrypting frame (%s)", __func__); 825 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 826 } 827 m->m_flags |= M_ENCAP; /* mark encapsulated */ 828 829 KASSERT(type != IEEE80211_FC0_SUBTYPE_PROBE_RESP, ("probe response?")); 830 M_WME_SETAC(m, params->ibp_pri); 831 832 #ifdef IEEE80211_DEBUG 833 /* avoid printing too many frames */ 834 if ((ieee80211_msg_debug(vap) && doprint(vap, type)) || 835 ieee80211_msg_dumppkts(vap)) { 836 printf("[%s] send %s on channel %u\n", 837 ether_sprintf(wh->i_addr1), 838 ieee80211_mgt_subtype_name[ 839 (type & IEEE80211_FC0_SUBTYPE_MASK) >> 840 IEEE80211_FC0_SUBTYPE_SHIFT], 841 ieee80211_chan2ieee(ic, ic->ic_curchan)); 842 } 843 #endif 844 IEEE80211_NODE_STAT(ni, tx_mgmt); 845 846 ret = ieee80211_raw_output(vap, ni, m, params); 847 IEEE80211_TX_UNLOCK(ic); 848 return (ret); 849 } 850 851 /* 852 * Send a null data frame to the specified node. If the station 853 * is setup for QoS then a QoS Null Data frame is constructed. 854 * If this is a WDS station then a 4-address frame is constructed. 855 * 856 * NB: the caller is assumed to have setup a node reference 857 * for use; this is necessary to deal with a race condition 858 * when probing for inactive stations. Like ieee80211_mgmt_output 859 * we must cleanup any node reference on error; however we 860 * can safely just unref it as we know it will never be the 861 * last reference to the node. 862 */ 863 int 864 ieee80211_send_nulldata(struct ieee80211_node *ni) 865 { 866 struct ieee80211vap *vap = ni->ni_vap; 867 struct ieee80211com *ic = ni->ni_ic; 868 struct mbuf *m; 869 struct ieee80211_frame *wh; 870 int hdrlen; 871 uint8_t *frm; 872 int ret; 873 874 if (vap->iv_state == IEEE80211_S_CAC) { 875 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT | IEEE80211_MSG_DOTH, 876 ni, "block %s frame in CAC state", "null data"); 877 ieee80211_unref_node(&ni); 878 vap->iv_stats.is_tx_badstate++; 879 return EIO; /* XXX */ 880 } 881 882 if (ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) 883 hdrlen = sizeof(struct ieee80211_qosframe); 884 else 885 hdrlen = sizeof(struct ieee80211_frame); 886 /* NB: only WDS vap's get 4-address frames */ 887 if (vap->iv_opmode == IEEE80211_M_WDS) 888 hdrlen += IEEE80211_ADDR_LEN; 889 if (ic->ic_flags & IEEE80211_F_DATAPAD) 890 hdrlen = roundup(hdrlen, sizeof(uint32_t)); 891 892 m = ieee80211_getmgtframe(&frm, ic->ic_headroom + hdrlen, 0); 893 if (m == NULL) { 894 /* XXX debug msg */ 895 ieee80211_unref_node(&ni); 896 vap->iv_stats.is_tx_nobuf++; 897 return ENOMEM; 898 } 899 KASSERT(M_LEADINGSPACE(m) >= hdrlen, 900 ("leading space %zd", M_LEADINGSPACE(m))); 901 M_PREPEND(m, hdrlen, M_NOWAIT); 902 if (m == NULL) { 903 /* NB: cannot happen */ 904 ieee80211_free_node(ni); 905 return ENOMEM; 906 } 907 908 IEEE80211_TX_LOCK(ic); 909 910 wh = mtod(m, struct ieee80211_frame *); /* NB: a little lie */ 911 if (ni->ni_flags & IEEE80211_NODE_QOS) { 912 const int tid = WME_AC_TO_TID(WME_AC_BE); 913 uint8_t *qos; 914 915 ieee80211_send_setup(ni, m, 916 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_QOS_NULL, 917 tid, vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 918 919 if (vap->iv_opmode == IEEE80211_M_WDS) 920 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 921 else 922 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 923 qos[0] = tid & IEEE80211_QOS_TID; 924 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[WME_AC_BE].wmep_noackPolicy) 925 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 926 qos[1] = 0; 927 } else { 928 ieee80211_send_setup(ni, m, 929 IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA, 930 IEEE80211_NONQOS_TID, 931 vap->iv_myaddr, ni->ni_macaddr, ni->ni_bssid); 932 } 933 if (vap->iv_opmode != IEEE80211_M_WDS) { 934 /* NB: power management bit is never sent by an AP */ 935 if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && 936 vap->iv_opmode != IEEE80211_M_HOSTAP) 937 wh->i_fc[1] |= IEEE80211_FC1_PWR_MGT; 938 } 939 m->m_len = m->m_pkthdr.len = hdrlen; 940 m->m_flags |= M_ENCAP; /* mark encapsulated */ 941 942 M_WME_SETAC(m, WME_AC_BE); 943 944 IEEE80211_NODE_STAT(ni, tx_data); 945 946 IEEE80211_NOTE(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, ni, 947 "send %snull data frame on channel %u, pwr mgt %s", 948 ni->ni_flags & IEEE80211_NODE_QOS ? "QoS " : "", 949 ieee80211_chan2ieee(ic, ic->ic_curchan), 950 wh->i_fc[1] & IEEE80211_FC1_PWR_MGT ? "ena" : "dis"); 951 952 ret = ieee80211_raw_output(vap, ni, m, NULL); 953 IEEE80211_TX_UNLOCK(ic); 954 return (ret); 955 } 956 957 /* 958 * Assign priority to a frame based on any vlan tag assigned 959 * to the station and/or any Diffserv setting in an IP header. 960 * Finally, if an ACM policy is setup (in station mode) it's 961 * applied. 962 */ 963 int 964 ieee80211_classify(struct ieee80211_node *ni, struct mbuf *m) 965 { 966 const struct ether_header *eh = mtod(m, struct ether_header *); 967 int v_wme_ac, d_wme_ac, ac; 968 969 /* 970 * Always promote PAE/EAPOL frames to high priority. 971 */ 972 if (eh->ether_type == htons(ETHERTYPE_PAE)) { 973 /* NB: mark so others don't need to check header */ 974 m->m_flags |= M_EAPOL; 975 ac = WME_AC_VO; 976 goto done; 977 } 978 /* 979 * Non-qos traffic goes to BE. 980 */ 981 if ((ni->ni_flags & IEEE80211_NODE_QOS) == 0) { 982 ac = WME_AC_BE; 983 goto done; 984 } 985 986 /* 987 * If node has a vlan tag then all traffic 988 * to it must have a matching tag. 989 */ 990 v_wme_ac = 0; 991 if (ni->ni_vlan != 0) { 992 if ((m->m_flags & M_VLANTAG) == 0) { 993 IEEE80211_NODE_STAT(ni, tx_novlantag); 994 return 1; 995 } 996 if (EVL_VLANOFTAG(m->m_pkthdr.ether_vtag) != 997 EVL_VLANOFTAG(ni->ni_vlan)) { 998 IEEE80211_NODE_STAT(ni, tx_vlanmismatch); 999 return 1; 1000 } 1001 /* map vlan priority to AC */ 1002 v_wme_ac = TID_TO_WME_AC(EVL_PRIOFTAG(ni->ni_vlan)); 1003 } 1004 1005 /* XXX m_copydata may be too slow for fast path */ 1006 #ifdef INET 1007 if (eh->ether_type == htons(ETHERTYPE_IP)) { 1008 uint8_t tos; 1009 /* 1010 * IP frame, map the DSCP bits from the TOS field. 1011 */ 1012 /* NB: ip header may not be in first mbuf */ 1013 m_copydata(m, sizeof(struct ether_header) + 1014 offsetof(struct ip, ip_tos), sizeof(tos), &tos); 1015 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1016 d_wme_ac = TID_TO_WME_AC(tos); 1017 } else { 1018 #endif /* INET */ 1019 #ifdef INET6 1020 if (eh->ether_type == htons(ETHERTYPE_IPV6)) { 1021 uint32_t flow; 1022 uint8_t tos; 1023 /* 1024 * IPv6 frame, map the DSCP bits from the traffic class field. 1025 */ 1026 m_copydata(m, sizeof(struct ether_header) + 1027 offsetof(struct ip6_hdr, ip6_flow), sizeof(flow), 1028 (caddr_t) &flow); 1029 tos = (uint8_t)(ntohl(flow) >> 20); 1030 tos >>= 5; /* NB: ECN + low 3 bits of DSCP */ 1031 d_wme_ac = TID_TO_WME_AC(tos); 1032 } else { 1033 #endif /* INET6 */ 1034 d_wme_ac = WME_AC_BE; 1035 #ifdef INET6 1036 } 1037 #endif 1038 #ifdef INET 1039 } 1040 #endif 1041 /* 1042 * Use highest priority AC. 1043 */ 1044 if (v_wme_ac > d_wme_ac) 1045 ac = v_wme_ac; 1046 else 1047 ac = d_wme_ac; 1048 1049 /* 1050 * Apply ACM policy. 1051 */ 1052 if (ni->ni_vap->iv_opmode == IEEE80211_M_STA) { 1053 static const int acmap[4] = { 1054 WME_AC_BK, /* WME_AC_BE */ 1055 WME_AC_BK, /* WME_AC_BK */ 1056 WME_AC_BE, /* WME_AC_VI */ 1057 WME_AC_VI, /* WME_AC_VO */ 1058 }; 1059 struct ieee80211com *ic = ni->ni_ic; 1060 1061 while (ac != WME_AC_BK && 1062 ic->ic_wme.wme_wmeBssChanParams.cap_wmeParams[ac].wmep_acm) 1063 ac = acmap[ac]; 1064 } 1065 done: 1066 M_WME_SETAC(m, ac); 1067 return 0; 1068 } 1069 1070 /* 1071 * Insure there is sufficient contiguous space to encapsulate the 1072 * 802.11 data frame. If room isn't already there, arrange for it. 1073 * Drivers and cipher modules assume we have done the necessary work 1074 * and fail rudely if they don't find the space they need. 1075 */ 1076 struct mbuf * 1077 ieee80211_mbuf_adjust(struct ieee80211vap *vap, int hdrsize, 1078 struct ieee80211_key *key, struct mbuf *m) 1079 { 1080 #define TO_BE_RECLAIMED (sizeof(struct ether_header) - sizeof(struct llc)) 1081 int needed_space = vap->iv_ic->ic_headroom + hdrsize; 1082 1083 if (key != NULL) { 1084 /* XXX belongs in crypto code? */ 1085 needed_space += key->wk_cipher->ic_header; 1086 /* XXX frags */ 1087 /* 1088 * When crypto is being done in the host we must insure 1089 * the data are writable for the cipher routines; clone 1090 * a writable mbuf chain. 1091 * XXX handle SWMIC specially 1092 */ 1093 if (key->wk_flags & (IEEE80211_KEY_SWENCRYPT|IEEE80211_KEY_SWENMIC)) { 1094 m = m_unshare(m, M_NOWAIT); 1095 if (m == NULL) { 1096 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1097 "%s: cannot get writable mbuf\n", __func__); 1098 vap->iv_stats.is_tx_nobuf++; /* XXX new stat */ 1099 return NULL; 1100 } 1101 } 1102 } 1103 /* 1104 * We know we are called just before stripping an Ethernet 1105 * header and prepending an LLC header. This means we know 1106 * there will be 1107 * sizeof(struct ether_header) - sizeof(struct llc) 1108 * bytes recovered to which we need additional space for the 1109 * 802.11 header and any crypto header. 1110 */ 1111 /* XXX check trailing space and copy instead? */ 1112 if (M_LEADINGSPACE(m) < needed_space - TO_BE_RECLAIMED) { 1113 struct mbuf *n = m_gethdr(M_NOWAIT, m->m_type); 1114 if (n == NULL) { 1115 IEEE80211_DPRINTF(vap, IEEE80211_MSG_OUTPUT, 1116 "%s: cannot expand storage\n", __func__); 1117 vap->iv_stats.is_tx_nobuf++; 1118 m_freem(m); 1119 return NULL; 1120 } 1121 KASSERT(needed_space <= MHLEN, 1122 ("not enough room, need %u got %d\n", needed_space, MHLEN)); 1123 /* 1124 * Setup new mbuf to have leading space to prepend the 1125 * 802.11 header and any crypto header bits that are 1126 * required (the latter are added when the driver calls 1127 * back to ieee80211_crypto_encap to do crypto encapsulation). 1128 */ 1129 /* NB: must be first 'cuz it clobbers m_data */ 1130 m_move_pkthdr(n, m); 1131 n->m_len = 0; /* NB: m_gethdr does not set */ 1132 n->m_data += needed_space; 1133 /* 1134 * Pull up Ethernet header to create the expected layout. 1135 * We could use m_pullup but that's overkill (i.e. we don't 1136 * need the actual data) and it cannot fail so do it inline 1137 * for speed. 1138 */ 1139 /* NB: struct ether_header is known to be contiguous */ 1140 n->m_len += sizeof(struct ether_header); 1141 m->m_len -= sizeof(struct ether_header); 1142 m->m_data += sizeof(struct ether_header); 1143 /* 1144 * Replace the head of the chain. 1145 */ 1146 n->m_next = m; 1147 m = n; 1148 } 1149 return m; 1150 #undef TO_BE_RECLAIMED 1151 } 1152 1153 /* 1154 * Return the transmit key to use in sending a unicast frame. 1155 * If a unicast key is set we use that. When no unicast key is set 1156 * we fall back to the default transmit key. 1157 */ 1158 static __inline struct ieee80211_key * 1159 ieee80211_crypto_getucastkey(struct ieee80211vap *vap, 1160 struct ieee80211_node *ni) 1161 { 1162 if (IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)) { 1163 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1164 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1165 return NULL; 1166 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1167 } else { 1168 return &ni->ni_ucastkey; 1169 } 1170 } 1171 1172 /* 1173 * Return the transmit key to use in sending a multicast frame. 1174 * Multicast traffic always uses the group key which is installed as 1175 * the default tx key. 1176 */ 1177 static __inline struct ieee80211_key * 1178 ieee80211_crypto_getmcastkey(struct ieee80211vap *vap, 1179 struct ieee80211_node *ni) 1180 { 1181 if (vap->iv_def_txkey == IEEE80211_KEYIX_NONE || 1182 IEEE80211_KEY_UNDEFINED(&vap->iv_nw_keys[vap->iv_def_txkey])) 1183 return NULL; 1184 return &vap->iv_nw_keys[vap->iv_def_txkey]; 1185 } 1186 1187 /* 1188 * Encapsulate an outbound data frame. The mbuf chain is updated. 1189 * If an error is encountered NULL is returned. The caller is required 1190 * to provide a node reference and pullup the ethernet header in the 1191 * first mbuf. 1192 * 1193 * NB: Packet is assumed to be processed by ieee80211_classify which 1194 * marked EAPOL frames w/ M_EAPOL. 1195 */ 1196 struct mbuf * 1197 ieee80211_encap(struct ieee80211vap *vap, struct ieee80211_node *ni, 1198 struct mbuf *m) 1199 { 1200 #define WH4(wh) ((struct ieee80211_frame_addr4 *)(wh)) 1201 #define MC01(mc) ((struct ieee80211_meshcntl_ae01 *)mc) 1202 struct ieee80211com *ic = ni->ni_ic; 1203 #ifdef IEEE80211_SUPPORT_MESH 1204 struct ieee80211_mesh_state *ms = vap->iv_mesh; 1205 struct ieee80211_meshcntl_ae10 *mc; 1206 struct ieee80211_mesh_route *rt = NULL; 1207 int dir = -1; 1208 #endif 1209 struct ether_header eh; 1210 struct ieee80211_frame *wh; 1211 struct ieee80211_key *key; 1212 struct llc *llc; 1213 int hdrsize, hdrspace, datalen, addqos, txfrag, is4addr; 1214 ieee80211_seq seqno; 1215 int meshhdrsize, meshae; 1216 uint8_t *qos; 1217 1218 IEEE80211_TX_LOCK_ASSERT(ic); 1219 1220 /* 1221 * Copy existing Ethernet header to a safe place. The 1222 * rest of the code assumes it's ok to strip it when 1223 * reorganizing state for the final encapsulation. 1224 */ 1225 KASSERT(m->m_len >= sizeof(eh), ("no ethernet header!")); 1226 ETHER_HEADER_COPY(&eh, mtod(m, caddr_t)); 1227 1228 /* 1229 * Insure space for additional headers. First identify 1230 * transmit key to use in calculating any buffer adjustments 1231 * required. This is also used below to do privacy 1232 * encapsulation work. Then calculate the 802.11 header 1233 * size and any padding required by the driver. 1234 * 1235 * Note key may be NULL if we fall back to the default 1236 * transmit key and that is not set. In that case the 1237 * buffer may not be expanded as needed by the cipher 1238 * routines, but they will/should discard it. 1239 */ 1240 if (vap->iv_flags & IEEE80211_F_PRIVACY) { 1241 if (vap->iv_opmode == IEEE80211_M_STA || 1242 !IEEE80211_IS_MULTICAST(eh.ether_dhost) || 1243 (vap->iv_opmode == IEEE80211_M_WDS && 1244 (vap->iv_flags_ext & IEEE80211_FEXT_WDSLEGACY))) 1245 key = ieee80211_crypto_getucastkey(vap, ni); 1246 else 1247 key = ieee80211_crypto_getmcastkey(vap, ni); 1248 if (key == NULL && (m->m_flags & M_EAPOL) == 0) { 1249 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_CRYPTO, 1250 eh.ether_dhost, 1251 "no default transmit key (%s) deftxkey %u", 1252 __func__, vap->iv_def_txkey); 1253 vap->iv_stats.is_tx_nodefkey++; 1254 goto bad; 1255 } 1256 } else 1257 key = NULL; 1258 /* 1259 * XXX Some ap's don't handle QoS-encapsulated EAPOL 1260 * frames so suppress use. This may be an issue if other 1261 * ap's require all data frames to be QoS-encapsulated 1262 * once negotiated in which case we'll need to make this 1263 * configurable. 1264 * NB: mesh data frames are QoS. 1265 */ 1266 addqos = ((ni->ni_flags & (IEEE80211_NODE_QOS|IEEE80211_NODE_HT)) || 1267 (vap->iv_opmode == IEEE80211_M_MBSS)) && 1268 (m->m_flags & M_EAPOL) == 0; 1269 if (addqos) 1270 hdrsize = sizeof(struct ieee80211_qosframe); 1271 else 1272 hdrsize = sizeof(struct ieee80211_frame); 1273 #ifdef IEEE80211_SUPPORT_MESH 1274 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1275 /* 1276 * Mesh data frames are encapsulated according to the 1277 * rules of Section 11B.8.5 (p.139 of D3.0 spec). 1278 * o Group Addressed data (aka multicast) originating 1279 * at the local sta are sent w/ 3-address format and 1280 * address extension mode 00 1281 * o Individually Addressed data (aka unicast) originating 1282 * at the local sta are sent w/ 4-address format and 1283 * address extension mode 00 1284 * o Group Addressed data forwarded from a non-mesh sta are 1285 * sent w/ 3-address format and address extension mode 01 1286 * o Individually Address data from another sta are sent 1287 * w/ 4-address format and address extension mode 10 1288 */ 1289 is4addr = 0; /* NB: don't use, disable */ 1290 if (!IEEE80211_IS_MULTICAST(eh.ether_dhost)) { 1291 rt = ieee80211_mesh_rt_find(vap, eh.ether_dhost); 1292 KASSERT(rt != NULL, ("route is NULL")); 1293 dir = IEEE80211_FC1_DIR_DSTODS; 1294 hdrsize += IEEE80211_ADDR_LEN; 1295 if (rt->rt_flags & IEEE80211_MESHRT_FLAGS_PROXY) { 1296 if (IEEE80211_ADDR_EQ(rt->rt_mesh_gate, 1297 vap->iv_myaddr)) { 1298 IEEE80211_NOTE_MAC(vap, 1299 IEEE80211_MSG_MESH, 1300 eh.ether_dhost, 1301 "%s", "trying to send to ourself"); 1302 goto bad; 1303 } 1304 meshae = IEEE80211_MESH_AE_10; 1305 meshhdrsize = 1306 sizeof(struct ieee80211_meshcntl_ae10); 1307 } else { 1308 meshae = IEEE80211_MESH_AE_00; 1309 meshhdrsize = 1310 sizeof(struct ieee80211_meshcntl); 1311 } 1312 } else { 1313 dir = IEEE80211_FC1_DIR_FROMDS; 1314 if (!IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)) { 1315 /* proxy group */ 1316 meshae = IEEE80211_MESH_AE_01; 1317 meshhdrsize = 1318 sizeof(struct ieee80211_meshcntl_ae01); 1319 } else { 1320 /* group */ 1321 meshae = IEEE80211_MESH_AE_00; 1322 meshhdrsize = sizeof(struct ieee80211_meshcntl); 1323 } 1324 } 1325 } else { 1326 #endif 1327 /* 1328 * 4-address frames need to be generated for: 1329 * o packets sent through a WDS vap (IEEE80211_M_WDS) 1330 * o packets sent through a vap marked for relaying 1331 * (e.g. a station operating with dynamic WDS) 1332 */ 1333 is4addr = vap->iv_opmode == IEEE80211_M_WDS || 1334 ((vap->iv_flags_ext & IEEE80211_FEXT_4ADDR) && 1335 !IEEE80211_ADDR_EQ(eh.ether_shost, vap->iv_myaddr)); 1336 if (is4addr) 1337 hdrsize += IEEE80211_ADDR_LEN; 1338 meshhdrsize = meshae = 0; 1339 #ifdef IEEE80211_SUPPORT_MESH 1340 } 1341 #endif 1342 /* 1343 * Honor driver DATAPAD requirement. 1344 */ 1345 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1346 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1347 else 1348 hdrspace = hdrsize; 1349 1350 if (__predict_true((m->m_flags & M_FF) == 0)) { 1351 /* 1352 * Normal frame. 1353 */ 1354 m = ieee80211_mbuf_adjust(vap, hdrspace + meshhdrsize, key, m); 1355 if (m == NULL) { 1356 /* NB: ieee80211_mbuf_adjust handles msgs+statistics */ 1357 goto bad; 1358 } 1359 /* NB: this could be optimized 'cuz of ieee80211_mbuf_adjust */ 1360 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 1361 llc = mtod(m, struct llc *); 1362 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 1363 llc->llc_control = LLC_UI; 1364 llc->llc_snap.org_code[0] = 0; 1365 llc->llc_snap.org_code[1] = 0; 1366 llc->llc_snap.org_code[2] = 0; 1367 llc->llc_snap.ether_type = eh.ether_type; 1368 } else { 1369 #ifdef IEEE80211_SUPPORT_SUPERG 1370 /* 1371 * Aggregated frame. 1372 */ 1373 m = ieee80211_ff_encap(vap, m, hdrspace + meshhdrsize, key); 1374 if (m == NULL) 1375 #endif 1376 goto bad; 1377 } 1378 datalen = m->m_pkthdr.len; /* NB: w/o 802.11 header */ 1379 1380 M_PREPEND(m, hdrspace + meshhdrsize, M_NOWAIT); 1381 if (m == NULL) { 1382 vap->iv_stats.is_tx_nobuf++; 1383 goto bad; 1384 } 1385 wh = mtod(m, struct ieee80211_frame *); 1386 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_DATA; 1387 *(uint16_t *)wh->i_dur = 0; 1388 qos = NULL; /* NB: quiet compiler */ 1389 if (is4addr) { 1390 wh->i_fc[1] = IEEE80211_FC1_DIR_DSTODS; 1391 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_macaddr); 1392 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1393 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1394 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, eh.ether_shost); 1395 } else switch (vap->iv_opmode) { 1396 case IEEE80211_M_STA: 1397 wh->i_fc[1] = IEEE80211_FC1_DIR_TODS; 1398 IEEE80211_ADDR_COPY(wh->i_addr1, ni->ni_bssid); 1399 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1400 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_dhost); 1401 break; 1402 case IEEE80211_M_IBSS: 1403 case IEEE80211_M_AHDEMO: 1404 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 1405 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1406 IEEE80211_ADDR_COPY(wh->i_addr2, eh.ether_shost); 1407 /* 1408 * NB: always use the bssid from iv_bss as the 1409 * neighbor's may be stale after an ibss merge 1410 */ 1411 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_bss->ni_bssid); 1412 break; 1413 case IEEE80211_M_HOSTAP: 1414 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1415 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1416 IEEE80211_ADDR_COPY(wh->i_addr2, ni->ni_bssid); 1417 IEEE80211_ADDR_COPY(wh->i_addr3, eh.ether_shost); 1418 break; 1419 #ifdef IEEE80211_SUPPORT_MESH 1420 case IEEE80211_M_MBSS: 1421 /* NB: offset by hdrspace to deal with DATAPAD */ 1422 mc = (struct ieee80211_meshcntl_ae10 *) 1423 (mtod(m, uint8_t *) + hdrspace); 1424 wh->i_fc[1] = dir; 1425 switch (meshae) { 1426 case IEEE80211_MESH_AE_00: /* no proxy */ 1427 mc->mc_flags = 0; 1428 if (dir == IEEE80211_FC1_DIR_DSTODS) { /* ucast */ 1429 IEEE80211_ADDR_COPY(wh->i_addr1, 1430 ni->ni_macaddr); 1431 IEEE80211_ADDR_COPY(wh->i_addr2, 1432 vap->iv_myaddr); 1433 IEEE80211_ADDR_COPY(wh->i_addr3, 1434 eh.ether_dhost); 1435 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, 1436 eh.ether_shost); 1437 qos =((struct ieee80211_qosframe_addr4 *) 1438 wh)->i_qos; 1439 } else if (dir == IEEE80211_FC1_DIR_FROMDS) { 1440 /* mcast */ 1441 IEEE80211_ADDR_COPY(wh->i_addr1, 1442 eh.ether_dhost); 1443 IEEE80211_ADDR_COPY(wh->i_addr2, 1444 vap->iv_myaddr); 1445 IEEE80211_ADDR_COPY(wh->i_addr3, 1446 eh.ether_shost); 1447 qos = ((struct ieee80211_qosframe *) 1448 wh)->i_qos; 1449 } 1450 break; 1451 case IEEE80211_MESH_AE_01: /* mcast, proxy */ 1452 wh->i_fc[1] = IEEE80211_FC1_DIR_FROMDS; 1453 IEEE80211_ADDR_COPY(wh->i_addr1, eh.ether_dhost); 1454 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1455 IEEE80211_ADDR_COPY(wh->i_addr3, vap->iv_myaddr); 1456 mc->mc_flags = 1; 1457 IEEE80211_ADDR_COPY(MC01(mc)->mc_addr4, 1458 eh.ether_shost); 1459 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1460 break; 1461 case IEEE80211_MESH_AE_10: /* ucast, proxy */ 1462 KASSERT(rt != NULL, ("route is NULL")); 1463 IEEE80211_ADDR_COPY(wh->i_addr1, rt->rt_nexthop); 1464 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 1465 IEEE80211_ADDR_COPY(wh->i_addr3, rt->rt_mesh_gate); 1466 IEEE80211_ADDR_COPY(WH4(wh)->i_addr4, vap->iv_myaddr); 1467 mc->mc_flags = IEEE80211_MESH_AE_10; 1468 IEEE80211_ADDR_COPY(mc->mc_addr5, eh.ether_dhost); 1469 IEEE80211_ADDR_COPY(mc->mc_addr6, eh.ether_shost); 1470 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1471 break; 1472 default: 1473 KASSERT(0, ("meshae %d", meshae)); 1474 break; 1475 } 1476 mc->mc_ttl = ms->ms_ttl; 1477 ms->ms_seq++; 1478 LE_WRITE_4(mc->mc_seq, ms->ms_seq); 1479 break; 1480 #endif 1481 case IEEE80211_M_WDS: /* NB: is4addr should always be true */ 1482 default: 1483 goto bad; 1484 } 1485 if (m->m_flags & M_MORE_DATA) 1486 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA; 1487 if (addqos) { 1488 int ac, tid; 1489 1490 if (is4addr) { 1491 qos = ((struct ieee80211_qosframe_addr4 *) wh)->i_qos; 1492 /* NB: mesh case handled earlier */ 1493 } else if (vap->iv_opmode != IEEE80211_M_MBSS) 1494 qos = ((struct ieee80211_qosframe *) wh)->i_qos; 1495 ac = M_WME_GETAC(m); 1496 /* map from access class/queue to 11e header priorty value */ 1497 tid = WME_AC_TO_TID(ac); 1498 qos[0] = tid & IEEE80211_QOS_TID; 1499 if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[ac].wmep_noackPolicy) 1500 qos[0] |= IEEE80211_QOS_ACKPOLICY_NOACK; 1501 #ifdef IEEE80211_SUPPORT_MESH 1502 if (vap->iv_opmode == IEEE80211_M_MBSS) 1503 qos[1] = IEEE80211_QOS_MC; 1504 else 1505 #endif 1506 qos[1] = 0; 1507 wh->i_fc[0] |= IEEE80211_FC0_SUBTYPE_QOS; 1508 1509 if ((m->m_flags & M_AMPDU_MPDU) == 0) { 1510 /* 1511 * NB: don't assign a sequence # to potential 1512 * aggregates; we expect this happens at the 1513 * point the frame comes off any aggregation q 1514 * as otherwise we may introduce holes in the 1515 * BA sequence space and/or make window accouting 1516 * more difficult. 1517 * 1518 * XXX may want to control this with a driver 1519 * capability; this may also change when we pull 1520 * aggregation up into net80211 1521 */ 1522 seqno = ni->ni_txseqs[tid]++; 1523 *(uint16_t *)wh->i_seq = 1524 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1525 M_SEQNO_SET(m, seqno); 1526 } 1527 } else { 1528 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 1529 *(uint16_t *)wh->i_seq = 1530 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1531 M_SEQNO_SET(m, seqno); 1532 } 1533 1534 1535 /* check if xmit fragmentation is required */ 1536 txfrag = (m->m_pkthdr.len > vap->iv_fragthreshold && 1537 !IEEE80211_IS_MULTICAST(wh->i_addr1) && 1538 (vap->iv_caps & IEEE80211_C_TXFRAG) && 1539 (m->m_flags & (M_FF | M_AMPDU_MPDU)) == 0); 1540 if (key != NULL) { 1541 /* 1542 * IEEE 802.1X: send EAPOL frames always in the clear. 1543 * WPA/WPA2: encrypt EAPOL keys when pairwise keys are set. 1544 */ 1545 if ((m->m_flags & M_EAPOL) == 0 || 1546 ((vap->iv_flags & IEEE80211_F_WPA) && 1547 (vap->iv_opmode == IEEE80211_M_STA ? 1548 !IEEE80211_KEY_UNDEFINED(key) : 1549 !IEEE80211_KEY_UNDEFINED(&ni->ni_ucastkey)))) { 1550 wh->i_fc[1] |= IEEE80211_FC1_PROTECTED; 1551 if (!ieee80211_crypto_enmic(vap, key, m, txfrag)) { 1552 IEEE80211_NOTE_MAC(vap, IEEE80211_MSG_OUTPUT, 1553 eh.ether_dhost, 1554 "%s", "enmic failed, discard frame"); 1555 vap->iv_stats.is_crypto_enmicfail++; 1556 goto bad; 1557 } 1558 } 1559 } 1560 if (txfrag && !ieee80211_fragment(vap, m, hdrsize, 1561 key != NULL ? key->wk_cipher->ic_header : 0, vap->iv_fragthreshold)) 1562 goto bad; 1563 1564 m->m_flags |= M_ENCAP; /* mark encapsulated */ 1565 1566 IEEE80211_NODE_STAT(ni, tx_data); 1567 if (IEEE80211_IS_MULTICAST(wh->i_addr1)) { 1568 IEEE80211_NODE_STAT(ni, tx_mcast); 1569 m->m_flags |= M_MCAST; 1570 } else 1571 IEEE80211_NODE_STAT(ni, tx_ucast); 1572 IEEE80211_NODE_STAT_ADD(ni, tx_bytes, datalen); 1573 1574 return m; 1575 bad: 1576 if (m != NULL) 1577 m_freem(m); 1578 return NULL; 1579 #undef WH4 1580 #undef MC01 1581 } 1582 1583 void 1584 ieee80211_free_mbuf(struct mbuf *m) 1585 { 1586 struct mbuf *next; 1587 1588 if (m == NULL) 1589 return; 1590 1591 do { 1592 next = m->m_nextpkt; 1593 m->m_nextpkt = NULL; 1594 m_freem(m); 1595 } while ((m = next) != NULL); 1596 } 1597 1598 /* 1599 * Fragment the frame according to the specified mtu. 1600 * The size of the 802.11 header (w/o padding) is provided 1601 * so we don't need to recalculate it. We create a new 1602 * mbuf for each fragment and chain it through m_nextpkt; 1603 * we might be able to optimize this by reusing the original 1604 * packet's mbufs but that is significantly more complicated. 1605 */ 1606 static int 1607 ieee80211_fragment(struct ieee80211vap *vap, struct mbuf *m0, 1608 u_int hdrsize, u_int ciphdrsize, u_int mtu) 1609 { 1610 struct ieee80211com *ic = vap->iv_ic; 1611 struct ieee80211_frame *wh, *whf; 1612 struct mbuf *m, *prev; 1613 u_int totalhdrsize, fragno, fragsize, off, remainder, payload; 1614 u_int hdrspace; 1615 1616 KASSERT(m0->m_nextpkt == NULL, ("mbuf already chained?")); 1617 KASSERT(m0->m_pkthdr.len > mtu, 1618 ("pktlen %u mtu %u", m0->m_pkthdr.len, mtu)); 1619 1620 /* 1621 * Honor driver DATAPAD requirement. 1622 */ 1623 if (ic->ic_flags & IEEE80211_F_DATAPAD) 1624 hdrspace = roundup(hdrsize, sizeof(uint32_t)); 1625 else 1626 hdrspace = hdrsize; 1627 1628 wh = mtod(m0, struct ieee80211_frame *); 1629 /* NB: mark the first frag; it will be propagated below */ 1630 wh->i_fc[1] |= IEEE80211_FC1_MORE_FRAG; 1631 totalhdrsize = hdrspace + ciphdrsize; 1632 fragno = 1; 1633 off = mtu - ciphdrsize; 1634 remainder = m0->m_pkthdr.len - off; 1635 prev = m0; 1636 do { 1637 fragsize = totalhdrsize + remainder; 1638 if (fragsize > mtu) 1639 fragsize = mtu; 1640 /* XXX fragsize can be >2048! */ 1641 KASSERT(fragsize < MCLBYTES, 1642 ("fragment size %u too big!", fragsize)); 1643 if (fragsize > MHLEN) 1644 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 1645 else 1646 m = m_gethdr(M_NOWAIT, MT_DATA); 1647 if (m == NULL) 1648 goto bad; 1649 /* leave room to prepend any cipher header */ 1650 m_align(m, fragsize - ciphdrsize); 1651 1652 /* 1653 * Form the header in the fragment. Note that since 1654 * we mark the first fragment with the MORE_FRAG bit 1655 * it automatically is propagated to each fragment; we 1656 * need only clear it on the last fragment (done below). 1657 * NB: frag 1+ dont have Mesh Control field present. 1658 */ 1659 whf = mtod(m, struct ieee80211_frame *); 1660 memcpy(whf, wh, hdrsize); 1661 #ifdef IEEE80211_SUPPORT_MESH 1662 if (vap->iv_opmode == IEEE80211_M_MBSS) { 1663 if (IEEE80211_IS_DSTODS(wh)) 1664 ((struct ieee80211_qosframe_addr4 *) 1665 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1666 else 1667 ((struct ieee80211_qosframe *) 1668 whf)->i_qos[1] &= ~IEEE80211_QOS_MC; 1669 } 1670 #endif 1671 *(uint16_t *)&whf->i_seq[0] |= htole16( 1672 (fragno & IEEE80211_SEQ_FRAG_MASK) << 1673 IEEE80211_SEQ_FRAG_SHIFT); 1674 fragno++; 1675 1676 payload = fragsize - totalhdrsize; 1677 /* NB: destination is known to be contiguous */ 1678 1679 m_copydata(m0, off, payload, mtod(m, uint8_t *) + hdrspace); 1680 m->m_len = hdrspace + payload; 1681 m->m_pkthdr.len = hdrspace + payload; 1682 m->m_flags |= M_FRAG; 1683 1684 /* chain up the fragment */ 1685 prev->m_nextpkt = m; 1686 prev = m; 1687 1688 /* deduct fragment just formed */ 1689 remainder -= payload; 1690 off += payload; 1691 } while (remainder != 0); 1692 1693 /* set the last fragment */ 1694 m->m_flags |= M_LASTFRAG; 1695 whf->i_fc[1] &= ~IEEE80211_FC1_MORE_FRAG; 1696 1697 /* strip first mbuf now that everything has been copied */ 1698 m_adj(m0, -(m0->m_pkthdr.len - (mtu - ciphdrsize))); 1699 m0->m_flags |= M_FIRSTFRAG | M_FRAG; 1700 1701 vap->iv_stats.is_tx_fragframes++; 1702 vap->iv_stats.is_tx_frags += fragno-1; 1703 1704 return 1; 1705 bad: 1706 /* reclaim fragments but leave original frame for caller to free */ 1707 ieee80211_free_mbuf(m0->m_nextpkt); 1708 m0->m_nextpkt = NULL; 1709 return 0; 1710 } 1711 1712 /* 1713 * Add a supported rates element id to a frame. 1714 */ 1715 uint8_t * 1716 ieee80211_add_rates(uint8_t *frm, const struct ieee80211_rateset *rs) 1717 { 1718 int nrates; 1719 1720 *frm++ = IEEE80211_ELEMID_RATES; 1721 nrates = rs->rs_nrates; 1722 if (nrates > IEEE80211_RATE_SIZE) 1723 nrates = IEEE80211_RATE_SIZE; 1724 *frm++ = nrates; 1725 memcpy(frm, rs->rs_rates, nrates); 1726 return frm + nrates; 1727 } 1728 1729 /* 1730 * Add an extended supported rates element id to a frame. 1731 */ 1732 uint8_t * 1733 ieee80211_add_xrates(uint8_t *frm, const struct ieee80211_rateset *rs) 1734 { 1735 /* 1736 * Add an extended supported rates element if operating in 11g mode. 1737 */ 1738 if (rs->rs_nrates > IEEE80211_RATE_SIZE) { 1739 int nrates = rs->rs_nrates - IEEE80211_RATE_SIZE; 1740 *frm++ = IEEE80211_ELEMID_XRATES; 1741 *frm++ = nrates; 1742 memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates); 1743 frm += nrates; 1744 } 1745 return frm; 1746 } 1747 1748 /* 1749 * Add an ssid element to a frame. 1750 */ 1751 uint8_t * 1752 ieee80211_add_ssid(uint8_t *frm, const uint8_t *ssid, u_int len) 1753 { 1754 *frm++ = IEEE80211_ELEMID_SSID; 1755 *frm++ = len; 1756 memcpy(frm, ssid, len); 1757 return frm + len; 1758 } 1759 1760 /* 1761 * Add an erp element to a frame. 1762 */ 1763 static uint8_t * 1764 ieee80211_add_erp(uint8_t *frm, struct ieee80211com *ic) 1765 { 1766 uint8_t erp; 1767 1768 *frm++ = IEEE80211_ELEMID_ERP; 1769 *frm++ = 1; 1770 erp = 0; 1771 if (ic->ic_nonerpsta != 0) 1772 erp |= IEEE80211_ERP_NON_ERP_PRESENT; 1773 if (ic->ic_flags & IEEE80211_F_USEPROT) 1774 erp |= IEEE80211_ERP_USE_PROTECTION; 1775 if (ic->ic_flags & IEEE80211_F_USEBARKER) 1776 erp |= IEEE80211_ERP_LONG_PREAMBLE; 1777 *frm++ = erp; 1778 return frm; 1779 } 1780 1781 /* 1782 * Add a CFParams element to a frame. 1783 */ 1784 static uint8_t * 1785 ieee80211_add_cfparms(uint8_t *frm, struct ieee80211com *ic) 1786 { 1787 #define ADDSHORT(frm, v) do { \ 1788 LE_WRITE_2(frm, v); \ 1789 frm += 2; \ 1790 } while (0) 1791 *frm++ = IEEE80211_ELEMID_CFPARMS; 1792 *frm++ = 6; 1793 *frm++ = 0; /* CFP count */ 1794 *frm++ = 2; /* CFP period */ 1795 ADDSHORT(frm, 0); /* CFP MaxDuration (TU) */ 1796 ADDSHORT(frm, 0); /* CFP CurRemaining (TU) */ 1797 return frm; 1798 #undef ADDSHORT 1799 } 1800 1801 static __inline uint8_t * 1802 add_appie(uint8_t *frm, const struct ieee80211_appie *ie) 1803 { 1804 memcpy(frm, ie->ie_data, ie->ie_len); 1805 return frm + ie->ie_len; 1806 } 1807 1808 static __inline uint8_t * 1809 add_ie(uint8_t *frm, const uint8_t *ie) 1810 { 1811 memcpy(frm, ie, 2 + ie[1]); 1812 return frm + 2 + ie[1]; 1813 } 1814 1815 #define WME_OUI_BYTES 0x00, 0x50, 0xf2 1816 /* 1817 * Add a WME information element to a frame. 1818 */ 1819 uint8_t * 1820 ieee80211_add_wme_info(uint8_t *frm, struct ieee80211_wme_state *wme) 1821 { 1822 static const struct ieee80211_wme_info info = { 1823 .wme_id = IEEE80211_ELEMID_VENDOR, 1824 .wme_len = sizeof(struct ieee80211_wme_info) - 2, 1825 .wme_oui = { WME_OUI_BYTES }, 1826 .wme_type = WME_OUI_TYPE, 1827 .wme_subtype = WME_INFO_OUI_SUBTYPE, 1828 .wme_version = WME_VERSION, 1829 .wme_info = 0, 1830 }; 1831 memcpy(frm, &info, sizeof(info)); 1832 return frm + sizeof(info); 1833 } 1834 1835 /* 1836 * Add a WME parameters element to a frame. 1837 */ 1838 static uint8_t * 1839 ieee80211_add_wme_param(uint8_t *frm, struct ieee80211_wme_state *wme) 1840 { 1841 #define SM(_v, _f) (((_v) << _f##_S) & _f) 1842 #define ADDSHORT(frm, v) do { \ 1843 LE_WRITE_2(frm, v); \ 1844 frm += 2; \ 1845 } while (0) 1846 /* NB: this works 'cuz a param has an info at the front */ 1847 static const struct ieee80211_wme_info param = { 1848 .wme_id = IEEE80211_ELEMID_VENDOR, 1849 .wme_len = sizeof(struct ieee80211_wme_param) - 2, 1850 .wme_oui = { WME_OUI_BYTES }, 1851 .wme_type = WME_OUI_TYPE, 1852 .wme_subtype = WME_PARAM_OUI_SUBTYPE, 1853 .wme_version = WME_VERSION, 1854 }; 1855 int i; 1856 1857 memcpy(frm, ¶m, sizeof(param)); 1858 frm += __offsetof(struct ieee80211_wme_info, wme_info); 1859 *frm++ = wme->wme_bssChanParams.cap_info; /* AC info */ 1860 *frm++ = 0; /* reserved field */ 1861 for (i = 0; i < WME_NUM_AC; i++) { 1862 const struct wmeParams *ac = 1863 &wme->wme_bssChanParams.cap_wmeParams[i]; 1864 *frm++ = SM(i, WME_PARAM_ACI) 1865 | SM(ac->wmep_acm, WME_PARAM_ACM) 1866 | SM(ac->wmep_aifsn, WME_PARAM_AIFSN) 1867 ; 1868 *frm++ = SM(ac->wmep_logcwmax, WME_PARAM_LOGCWMAX) 1869 | SM(ac->wmep_logcwmin, WME_PARAM_LOGCWMIN) 1870 ; 1871 ADDSHORT(frm, ac->wmep_txopLimit); 1872 } 1873 return frm; 1874 #undef SM 1875 #undef ADDSHORT 1876 } 1877 #undef WME_OUI_BYTES 1878 1879 /* 1880 * Add an 11h Power Constraint element to a frame. 1881 */ 1882 static uint8_t * 1883 ieee80211_add_powerconstraint(uint8_t *frm, struct ieee80211vap *vap) 1884 { 1885 const struct ieee80211_channel *c = vap->iv_bss->ni_chan; 1886 /* XXX per-vap tx power limit? */ 1887 int8_t limit = vap->iv_ic->ic_txpowlimit / 2; 1888 1889 frm[0] = IEEE80211_ELEMID_PWRCNSTR; 1890 frm[1] = 1; 1891 frm[2] = c->ic_maxregpower > limit ? c->ic_maxregpower - limit : 0; 1892 return frm + 3; 1893 } 1894 1895 /* 1896 * Add an 11h Power Capability element to a frame. 1897 */ 1898 static uint8_t * 1899 ieee80211_add_powercapability(uint8_t *frm, const struct ieee80211_channel *c) 1900 { 1901 frm[0] = IEEE80211_ELEMID_PWRCAP; 1902 frm[1] = 2; 1903 frm[2] = c->ic_minpower; 1904 frm[3] = c->ic_maxpower; 1905 return frm + 4; 1906 } 1907 1908 /* 1909 * Add an 11h Supported Channels element to a frame. 1910 */ 1911 static uint8_t * 1912 ieee80211_add_supportedchannels(uint8_t *frm, struct ieee80211com *ic) 1913 { 1914 static const int ielen = 26; 1915 1916 frm[0] = IEEE80211_ELEMID_SUPPCHAN; 1917 frm[1] = ielen; 1918 /* XXX not correct */ 1919 memcpy(frm+2, ic->ic_chan_avail, ielen); 1920 return frm + 2 + ielen; 1921 } 1922 1923 /* 1924 * Add an 11h Quiet time element to a frame. 1925 */ 1926 static uint8_t * 1927 ieee80211_add_quiet(uint8_t *frm, struct ieee80211vap *vap) 1928 { 1929 struct ieee80211_quiet_ie *quiet = (struct ieee80211_quiet_ie *) frm; 1930 1931 quiet->quiet_ie = IEEE80211_ELEMID_QUIET; 1932 quiet->len = 6; 1933 if (vap->iv_quiet_count_value == 1) 1934 vap->iv_quiet_count_value = vap->iv_quiet_count; 1935 else if (vap->iv_quiet_count_value > 1) 1936 vap->iv_quiet_count_value--; 1937 1938 if (vap->iv_quiet_count_value == 0) { 1939 /* value 0 is reserved as per 802.11h standerd */ 1940 vap->iv_quiet_count_value = 1; 1941 } 1942 1943 quiet->tbttcount = vap->iv_quiet_count_value; 1944 quiet->period = vap->iv_quiet_period; 1945 quiet->duration = htole16(vap->iv_quiet_duration); 1946 quiet->offset = htole16(vap->iv_quiet_offset); 1947 return frm + sizeof(*quiet); 1948 } 1949 1950 /* 1951 * Add an 11h Channel Switch Announcement element to a frame. 1952 * Note that we use the per-vap CSA count to adjust the global 1953 * counter so we can use this routine to form probe response 1954 * frames and get the current count. 1955 */ 1956 static uint8_t * 1957 ieee80211_add_csa(uint8_t *frm, struct ieee80211vap *vap) 1958 { 1959 struct ieee80211com *ic = vap->iv_ic; 1960 struct ieee80211_csa_ie *csa = (struct ieee80211_csa_ie *) frm; 1961 1962 csa->csa_ie = IEEE80211_ELEMID_CSA; 1963 csa->csa_len = 3; 1964 csa->csa_mode = 1; /* XXX force quiet on channel */ 1965 csa->csa_newchan = ieee80211_chan2ieee(ic, ic->ic_csa_newchan); 1966 csa->csa_count = ic->ic_csa_count - vap->iv_csa_count; 1967 return frm + sizeof(*csa); 1968 } 1969 1970 /* 1971 * Add an 11h country information element to a frame. 1972 */ 1973 static uint8_t * 1974 ieee80211_add_countryie(uint8_t *frm, struct ieee80211com *ic) 1975 { 1976 1977 if (ic->ic_countryie == NULL || 1978 ic->ic_countryie_chan != ic->ic_bsschan) { 1979 /* 1980 * Handle lazy construction of ie. This is done on 1981 * first use and after a channel change that requires 1982 * re-calculation. 1983 */ 1984 if (ic->ic_countryie != NULL) 1985 IEEE80211_FREE(ic->ic_countryie, M_80211_NODE_IE); 1986 ic->ic_countryie = ieee80211_alloc_countryie(ic); 1987 if (ic->ic_countryie == NULL) 1988 return frm; 1989 ic->ic_countryie_chan = ic->ic_bsschan; 1990 } 1991 return add_appie(frm, ic->ic_countryie); 1992 } 1993 1994 uint8_t * 1995 ieee80211_add_wpa(uint8_t *frm, const struct ieee80211vap *vap) 1996 { 1997 if (vap->iv_flags & IEEE80211_F_WPA1 && vap->iv_wpa_ie != NULL) 1998 return (add_ie(frm, vap->iv_wpa_ie)); 1999 else { 2000 /* XXX else complain? */ 2001 return (frm); 2002 } 2003 } 2004 2005 uint8_t * 2006 ieee80211_add_rsn(uint8_t *frm, const struct ieee80211vap *vap) 2007 { 2008 if (vap->iv_flags & IEEE80211_F_WPA2 && vap->iv_rsn_ie != NULL) 2009 return (add_ie(frm, vap->iv_rsn_ie)); 2010 else { 2011 /* XXX else complain? */ 2012 return (frm); 2013 } 2014 } 2015 2016 uint8_t * 2017 ieee80211_add_qos(uint8_t *frm, const struct ieee80211_node *ni) 2018 { 2019 if (ni->ni_flags & IEEE80211_NODE_QOS) { 2020 *frm++ = IEEE80211_ELEMID_QOS; 2021 *frm++ = 1; 2022 *frm++ = 0; 2023 } 2024 2025 return (frm); 2026 } 2027 2028 /* 2029 * Send a probe request frame with the specified ssid 2030 * and any optional information element data. 2031 */ 2032 int 2033 ieee80211_send_probereq(struct ieee80211_node *ni, 2034 const uint8_t sa[IEEE80211_ADDR_LEN], 2035 const uint8_t da[IEEE80211_ADDR_LEN], 2036 const uint8_t bssid[IEEE80211_ADDR_LEN], 2037 const uint8_t *ssid, size_t ssidlen) 2038 { 2039 struct ieee80211vap *vap = ni->ni_vap; 2040 struct ieee80211com *ic = ni->ni_ic; 2041 const struct ieee80211_txparam *tp; 2042 struct ieee80211_bpf_params params; 2043 struct ieee80211_frame *wh; 2044 const struct ieee80211_rateset *rs; 2045 struct mbuf *m; 2046 uint8_t *frm; 2047 int ret; 2048 2049 if (vap->iv_state == IEEE80211_S_CAC) { 2050 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, ni, 2051 "block %s frame in CAC state", "probe request"); 2052 vap->iv_stats.is_tx_badstate++; 2053 return EIO; /* XXX */ 2054 } 2055 2056 /* 2057 * Hold a reference on the node so it doesn't go away until after 2058 * the xmit is complete all the way in the driver. On error we 2059 * will remove our reference. 2060 */ 2061 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2062 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2063 __func__, __LINE__, 2064 ni, ether_sprintf(ni->ni_macaddr), 2065 ieee80211_node_refcnt(ni)+1); 2066 ieee80211_ref_node(ni); 2067 2068 /* 2069 * prreq frame format 2070 * [tlv] ssid 2071 * [tlv] supported rates 2072 * [tlv] RSN (optional) 2073 * [tlv] extended supported rates 2074 * [tlv] WPA (optional) 2075 * [tlv] user-specified ie's 2076 */ 2077 m = ieee80211_getmgtframe(&frm, 2078 ic->ic_headroom + sizeof(struct ieee80211_frame), 2079 2 + IEEE80211_NWID_LEN 2080 + 2 + IEEE80211_RATE_SIZE 2081 + sizeof(struct ieee80211_ie_wpa) 2082 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2083 + sizeof(struct ieee80211_ie_wpa) 2084 + (vap->iv_appie_probereq != NULL ? 2085 vap->iv_appie_probereq->ie_len : 0) 2086 ); 2087 if (m == NULL) { 2088 vap->iv_stats.is_tx_nobuf++; 2089 ieee80211_free_node(ni); 2090 return ENOMEM; 2091 } 2092 2093 frm = ieee80211_add_ssid(frm, ssid, ssidlen); 2094 rs = ieee80211_get_suprates(ic, ic->ic_curchan); 2095 frm = ieee80211_add_rates(frm, rs); 2096 frm = ieee80211_add_rsn(frm, vap); 2097 frm = ieee80211_add_xrates(frm, rs); 2098 frm = ieee80211_add_wpa(frm, vap); 2099 if (vap->iv_appie_probereq != NULL) 2100 frm = add_appie(frm, vap->iv_appie_probereq); 2101 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2102 2103 KASSERT(M_LEADINGSPACE(m) >= sizeof(struct ieee80211_frame), 2104 ("leading space %zd", M_LEADINGSPACE(m))); 2105 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2106 if (m == NULL) { 2107 /* NB: cannot happen */ 2108 ieee80211_free_node(ni); 2109 return ENOMEM; 2110 } 2111 2112 IEEE80211_TX_LOCK(ic); 2113 wh = mtod(m, struct ieee80211_frame *); 2114 ieee80211_send_setup(ni, m, 2115 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ, 2116 IEEE80211_NONQOS_TID, sa, da, bssid); 2117 /* XXX power management? */ 2118 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2119 2120 M_WME_SETAC(m, WME_AC_BE); 2121 2122 IEEE80211_NODE_STAT(ni, tx_probereq); 2123 IEEE80211_NODE_STAT(ni, tx_mgmt); 2124 2125 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2126 "send probe req on channel %u bssid %s ssid \"%.*s\"\n", 2127 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(bssid), 2128 ssidlen, ssid); 2129 2130 memset(¶ms, 0, sizeof(params)); 2131 params.ibp_pri = M_WME_GETAC(m); 2132 tp = &vap->iv_txparms[ieee80211_chan2mode(ic->ic_curchan)]; 2133 params.ibp_rate0 = tp->mgmtrate; 2134 if (IEEE80211_IS_MULTICAST(da)) { 2135 params.ibp_flags |= IEEE80211_BPF_NOACK; 2136 params.ibp_try0 = 1; 2137 } else 2138 params.ibp_try0 = tp->maxretry; 2139 params.ibp_power = ni->ni_txpower; 2140 ret = ieee80211_raw_output(vap, ni, m, ¶ms); 2141 IEEE80211_TX_UNLOCK(ic); 2142 return (ret); 2143 } 2144 2145 /* 2146 * Calculate capability information for mgt frames. 2147 */ 2148 uint16_t 2149 ieee80211_getcapinfo(struct ieee80211vap *vap, struct ieee80211_channel *chan) 2150 { 2151 struct ieee80211com *ic = vap->iv_ic; 2152 uint16_t capinfo; 2153 2154 KASSERT(vap->iv_opmode != IEEE80211_M_STA, ("station mode")); 2155 2156 if (vap->iv_opmode == IEEE80211_M_HOSTAP) 2157 capinfo = IEEE80211_CAPINFO_ESS; 2158 else if (vap->iv_opmode == IEEE80211_M_IBSS) 2159 capinfo = IEEE80211_CAPINFO_IBSS; 2160 else 2161 capinfo = 0; 2162 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2163 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2164 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2165 IEEE80211_IS_CHAN_2GHZ(chan)) 2166 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2167 if (ic->ic_flags & IEEE80211_F_SHSLOT) 2168 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2169 if (IEEE80211_IS_CHAN_5GHZ(chan) && (vap->iv_flags & IEEE80211_F_DOTH)) 2170 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2171 return capinfo; 2172 } 2173 2174 /* 2175 * Send a management frame. The node is for the destination (or ic_bss 2176 * when in station mode). Nodes other than ic_bss have their reference 2177 * count bumped to reflect our use for an indeterminant time. 2178 */ 2179 int 2180 ieee80211_send_mgmt(struct ieee80211_node *ni, int type, int arg) 2181 { 2182 #define HTFLAGS (IEEE80211_NODE_HT | IEEE80211_NODE_HTCOMPAT) 2183 #define senderr(_x, _v) do { vap->iv_stats._v++; ret = _x; goto bad; } while (0) 2184 struct ieee80211vap *vap = ni->ni_vap; 2185 struct ieee80211com *ic = ni->ni_ic; 2186 struct ieee80211_node *bss = vap->iv_bss; 2187 struct ieee80211_bpf_params params; 2188 struct mbuf *m; 2189 uint8_t *frm; 2190 uint16_t capinfo; 2191 int has_challenge, is_shared_key, ret, status; 2192 2193 KASSERT(ni != NULL, ("null node")); 2194 2195 /* 2196 * Hold a reference on the node so it doesn't go away until after 2197 * the xmit is complete all the way in the driver. On error we 2198 * will remove our reference. 2199 */ 2200 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2201 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2202 __func__, __LINE__, 2203 ni, ether_sprintf(ni->ni_macaddr), 2204 ieee80211_node_refcnt(ni)+1); 2205 ieee80211_ref_node(ni); 2206 2207 memset(¶ms, 0, sizeof(params)); 2208 switch (type) { 2209 2210 case IEEE80211_FC0_SUBTYPE_AUTH: 2211 status = arg >> 16; 2212 arg &= 0xffff; 2213 has_challenge = ((arg == IEEE80211_AUTH_SHARED_CHALLENGE || 2214 arg == IEEE80211_AUTH_SHARED_RESPONSE) && 2215 ni->ni_challenge != NULL); 2216 2217 /* 2218 * Deduce whether we're doing open authentication or 2219 * shared key authentication. We do the latter if 2220 * we're in the middle of a shared key authentication 2221 * handshake or if we're initiating an authentication 2222 * request and configured to use shared key. 2223 */ 2224 is_shared_key = has_challenge || 2225 arg >= IEEE80211_AUTH_SHARED_RESPONSE || 2226 (arg == IEEE80211_AUTH_SHARED_REQUEST && 2227 bss->ni_authmode == IEEE80211_AUTH_SHARED); 2228 2229 m = ieee80211_getmgtframe(&frm, 2230 ic->ic_headroom + sizeof(struct ieee80211_frame), 2231 3 * sizeof(uint16_t) 2232 + (has_challenge && status == IEEE80211_STATUS_SUCCESS ? 2233 sizeof(uint16_t)+IEEE80211_CHALLENGE_LEN : 0) 2234 ); 2235 if (m == NULL) 2236 senderr(ENOMEM, is_tx_nobuf); 2237 2238 ((uint16_t *)frm)[0] = 2239 (is_shared_key) ? htole16(IEEE80211_AUTH_ALG_SHARED) 2240 : htole16(IEEE80211_AUTH_ALG_OPEN); 2241 ((uint16_t *)frm)[1] = htole16(arg); /* sequence number */ 2242 ((uint16_t *)frm)[2] = htole16(status);/* status */ 2243 2244 if (has_challenge && status == IEEE80211_STATUS_SUCCESS) { 2245 ((uint16_t *)frm)[3] = 2246 htole16((IEEE80211_CHALLENGE_LEN << 8) | 2247 IEEE80211_ELEMID_CHALLENGE); 2248 memcpy(&((uint16_t *)frm)[4], ni->ni_challenge, 2249 IEEE80211_CHALLENGE_LEN); 2250 m->m_pkthdr.len = m->m_len = 2251 4 * sizeof(uint16_t) + IEEE80211_CHALLENGE_LEN; 2252 if (arg == IEEE80211_AUTH_SHARED_RESPONSE) { 2253 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2254 "request encrypt frame (%s)", __func__); 2255 /* mark frame for encryption */ 2256 params.ibp_flags |= IEEE80211_BPF_CRYPTO; 2257 } 2258 } else 2259 m->m_pkthdr.len = m->m_len = 3 * sizeof(uint16_t); 2260 2261 /* XXX not right for shared key */ 2262 if (status == IEEE80211_STATUS_SUCCESS) 2263 IEEE80211_NODE_STAT(ni, tx_auth); 2264 else 2265 IEEE80211_NODE_STAT(ni, tx_auth_fail); 2266 2267 if (vap->iv_opmode == IEEE80211_M_STA) 2268 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2269 (void *) vap->iv_state); 2270 break; 2271 2272 case IEEE80211_FC0_SUBTYPE_DEAUTH: 2273 IEEE80211_NOTE(vap, IEEE80211_MSG_AUTH, ni, 2274 "send station deauthenticate (reason %d)", arg); 2275 m = ieee80211_getmgtframe(&frm, 2276 ic->ic_headroom + sizeof(struct ieee80211_frame), 2277 sizeof(uint16_t)); 2278 if (m == NULL) 2279 senderr(ENOMEM, is_tx_nobuf); 2280 *(uint16_t *)frm = htole16(arg); /* reason */ 2281 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2282 2283 IEEE80211_NODE_STAT(ni, tx_deauth); 2284 IEEE80211_NODE_STAT_SET(ni, tx_deauth_code, arg); 2285 2286 ieee80211_node_unauthorize(ni); /* port closed */ 2287 break; 2288 2289 case IEEE80211_FC0_SUBTYPE_ASSOC_REQ: 2290 case IEEE80211_FC0_SUBTYPE_REASSOC_REQ: 2291 /* 2292 * asreq frame format 2293 * [2] capability information 2294 * [2] listen interval 2295 * [6*] current AP address (reassoc only) 2296 * [tlv] ssid 2297 * [tlv] supported rates 2298 * [tlv] extended supported rates 2299 * [4] power capability (optional) 2300 * [28] supported channels (optional) 2301 * [tlv] HT capabilities 2302 * [tlv] WME (optional) 2303 * [tlv] Vendor OUI HT capabilities (optional) 2304 * [tlv] Atheros capabilities (if negotiated) 2305 * [tlv] AppIE's (optional) 2306 */ 2307 m = ieee80211_getmgtframe(&frm, 2308 ic->ic_headroom + sizeof(struct ieee80211_frame), 2309 sizeof(uint16_t) 2310 + sizeof(uint16_t) 2311 + IEEE80211_ADDR_LEN 2312 + 2 + IEEE80211_NWID_LEN 2313 + 2 + IEEE80211_RATE_SIZE 2314 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2315 + 4 2316 + 2 + 26 2317 + sizeof(struct ieee80211_wme_info) 2318 + sizeof(struct ieee80211_ie_htcap) 2319 + 4 + sizeof(struct ieee80211_ie_htcap) 2320 #ifdef IEEE80211_SUPPORT_SUPERG 2321 + sizeof(struct ieee80211_ath_ie) 2322 #endif 2323 + (vap->iv_appie_wpa != NULL ? 2324 vap->iv_appie_wpa->ie_len : 0) 2325 + (vap->iv_appie_assocreq != NULL ? 2326 vap->iv_appie_assocreq->ie_len : 0) 2327 ); 2328 if (m == NULL) 2329 senderr(ENOMEM, is_tx_nobuf); 2330 2331 KASSERT(vap->iv_opmode == IEEE80211_M_STA, 2332 ("wrong mode %u", vap->iv_opmode)); 2333 capinfo = IEEE80211_CAPINFO_ESS; 2334 if (vap->iv_flags & IEEE80211_F_PRIVACY) 2335 capinfo |= IEEE80211_CAPINFO_PRIVACY; 2336 /* 2337 * NB: Some 11a AP's reject the request when 2338 * short premable is set. 2339 */ 2340 if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) && 2341 IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan)) 2342 capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE; 2343 if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan) && 2344 (ic->ic_caps & IEEE80211_C_SHSLOT)) 2345 capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME; 2346 if ((ni->ni_capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) && 2347 (vap->iv_flags & IEEE80211_F_DOTH)) 2348 capinfo |= IEEE80211_CAPINFO_SPECTRUM_MGMT; 2349 *(uint16_t *)frm = htole16(capinfo); 2350 frm += 2; 2351 2352 KASSERT(bss->ni_intval != 0, ("beacon interval is zero!")); 2353 *(uint16_t *)frm = htole16(howmany(ic->ic_lintval, 2354 bss->ni_intval)); 2355 frm += 2; 2356 2357 if (type == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) { 2358 IEEE80211_ADDR_COPY(frm, bss->ni_bssid); 2359 frm += IEEE80211_ADDR_LEN; 2360 } 2361 2362 frm = ieee80211_add_ssid(frm, ni->ni_essid, ni->ni_esslen); 2363 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2364 frm = ieee80211_add_rsn(frm, vap); 2365 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2366 if (capinfo & IEEE80211_CAPINFO_SPECTRUM_MGMT) { 2367 frm = ieee80211_add_powercapability(frm, 2368 ic->ic_curchan); 2369 frm = ieee80211_add_supportedchannels(frm, ic); 2370 } 2371 2372 /* 2373 * Check the channel - we may be using an 11n NIC with an 2374 * 11n capable station, but we're configured to be an 11b 2375 * channel. 2376 */ 2377 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2378 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2379 ni->ni_ies.htcap_ie != NULL && 2380 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_HTCAP) { 2381 frm = ieee80211_add_htcap(frm, ni); 2382 } 2383 frm = ieee80211_add_wpa(frm, vap); 2384 if ((ic->ic_flags & IEEE80211_F_WME) && 2385 ni->ni_ies.wme_ie != NULL) 2386 frm = ieee80211_add_wme_info(frm, &ic->ic_wme); 2387 2388 /* 2389 * Same deal - only send HT info if we're on an 11n 2390 * capable channel. 2391 */ 2392 if ((vap->iv_flags_ht & IEEE80211_FHT_HT) && 2393 IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2394 ni->ni_ies.htcap_ie != NULL && 2395 ni->ni_ies.htcap_ie[0] == IEEE80211_ELEMID_VENDOR) { 2396 frm = ieee80211_add_htcap_vendor(frm, ni); 2397 } 2398 #ifdef IEEE80211_SUPPORT_SUPERG 2399 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) { 2400 frm = ieee80211_add_ath(frm, 2401 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2402 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2403 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2404 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2405 } 2406 #endif /* IEEE80211_SUPPORT_SUPERG */ 2407 if (vap->iv_appie_assocreq != NULL) 2408 frm = add_appie(frm, vap->iv_appie_assocreq); 2409 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2410 2411 ieee80211_add_callback(m, ieee80211_tx_mgt_cb, 2412 (void *) vap->iv_state); 2413 break; 2414 2415 case IEEE80211_FC0_SUBTYPE_ASSOC_RESP: 2416 case IEEE80211_FC0_SUBTYPE_REASSOC_RESP: 2417 /* 2418 * asresp frame format 2419 * [2] capability information 2420 * [2] status 2421 * [2] association ID 2422 * [tlv] supported rates 2423 * [tlv] extended supported rates 2424 * [tlv] HT capabilities (standard, if STA enabled) 2425 * [tlv] HT information (standard, if STA enabled) 2426 * [tlv] WME (if configured and STA enabled) 2427 * [tlv] HT capabilities (vendor OUI, if STA enabled) 2428 * [tlv] HT information (vendor OUI, if STA enabled) 2429 * [tlv] Atheros capabilities (if STA enabled) 2430 * [tlv] AppIE's (optional) 2431 */ 2432 m = ieee80211_getmgtframe(&frm, 2433 ic->ic_headroom + sizeof(struct ieee80211_frame), 2434 sizeof(uint16_t) 2435 + sizeof(uint16_t) 2436 + sizeof(uint16_t) 2437 + 2 + IEEE80211_RATE_SIZE 2438 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2439 + sizeof(struct ieee80211_ie_htcap) + 4 2440 + sizeof(struct ieee80211_ie_htinfo) + 4 2441 + sizeof(struct ieee80211_wme_param) 2442 #ifdef IEEE80211_SUPPORT_SUPERG 2443 + sizeof(struct ieee80211_ath_ie) 2444 #endif 2445 + (vap->iv_appie_assocresp != NULL ? 2446 vap->iv_appie_assocresp->ie_len : 0) 2447 ); 2448 if (m == NULL) 2449 senderr(ENOMEM, is_tx_nobuf); 2450 2451 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2452 *(uint16_t *)frm = htole16(capinfo); 2453 frm += 2; 2454 2455 *(uint16_t *)frm = htole16(arg); /* status */ 2456 frm += 2; 2457 2458 if (arg == IEEE80211_STATUS_SUCCESS) { 2459 *(uint16_t *)frm = htole16(ni->ni_associd); 2460 IEEE80211_NODE_STAT(ni, tx_assoc); 2461 } else 2462 IEEE80211_NODE_STAT(ni, tx_assoc_fail); 2463 frm += 2; 2464 2465 frm = ieee80211_add_rates(frm, &ni->ni_rates); 2466 frm = ieee80211_add_xrates(frm, &ni->ni_rates); 2467 /* NB: respond according to what we received */ 2468 if ((ni->ni_flags & HTFLAGS) == IEEE80211_NODE_HT) { 2469 frm = ieee80211_add_htcap(frm, ni); 2470 frm = ieee80211_add_htinfo(frm, ni); 2471 } 2472 if ((vap->iv_flags & IEEE80211_F_WME) && 2473 ni->ni_ies.wme_ie != NULL) 2474 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2475 if ((ni->ni_flags & HTFLAGS) == HTFLAGS) { 2476 frm = ieee80211_add_htcap_vendor(frm, ni); 2477 frm = ieee80211_add_htinfo_vendor(frm, ni); 2478 } 2479 #ifdef IEEE80211_SUPPORT_SUPERG 2480 if (IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS)) 2481 frm = ieee80211_add_ath(frm, 2482 IEEE80211_ATH_CAP(vap, ni, IEEE80211_F_ATHEROS), 2483 ((vap->iv_flags & IEEE80211_F_WPA) == 0 && 2484 ni->ni_authmode != IEEE80211_AUTH_8021X) ? 2485 vap->iv_def_txkey : IEEE80211_KEYIX_NONE); 2486 #endif /* IEEE80211_SUPPORT_SUPERG */ 2487 if (vap->iv_appie_assocresp != NULL) 2488 frm = add_appie(frm, vap->iv_appie_assocresp); 2489 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2490 break; 2491 2492 case IEEE80211_FC0_SUBTYPE_DISASSOC: 2493 IEEE80211_NOTE(vap, IEEE80211_MSG_ASSOC, ni, 2494 "send station disassociate (reason %d)", arg); 2495 m = ieee80211_getmgtframe(&frm, 2496 ic->ic_headroom + sizeof(struct ieee80211_frame), 2497 sizeof(uint16_t)); 2498 if (m == NULL) 2499 senderr(ENOMEM, is_tx_nobuf); 2500 *(uint16_t *)frm = htole16(arg); /* reason */ 2501 m->m_pkthdr.len = m->m_len = sizeof(uint16_t); 2502 2503 IEEE80211_NODE_STAT(ni, tx_disassoc); 2504 IEEE80211_NODE_STAT_SET(ni, tx_disassoc_code, arg); 2505 break; 2506 2507 default: 2508 IEEE80211_NOTE(vap, IEEE80211_MSG_ANY, ni, 2509 "invalid mgmt frame type %u", type); 2510 senderr(EINVAL, is_tx_unknownmgt); 2511 /* NOTREACHED */ 2512 } 2513 2514 /* NB: force non-ProbeResp frames to the highest queue */ 2515 params.ibp_pri = WME_AC_VO; 2516 params.ibp_rate0 = bss->ni_txparms->mgmtrate; 2517 /* NB: we know all frames are unicast */ 2518 params.ibp_try0 = bss->ni_txparms->maxretry; 2519 params.ibp_power = bss->ni_txpower; 2520 return ieee80211_mgmt_output(ni, m, type, ¶ms); 2521 bad: 2522 ieee80211_free_node(ni); 2523 return ret; 2524 #undef senderr 2525 #undef HTFLAGS 2526 } 2527 2528 /* 2529 * Return an mbuf with a probe response frame in it. 2530 * Space is left to prepend and 802.11 header at the 2531 * front but it's left to the caller to fill in. 2532 */ 2533 struct mbuf * 2534 ieee80211_alloc_proberesp(struct ieee80211_node *bss, int legacy) 2535 { 2536 struct ieee80211vap *vap = bss->ni_vap; 2537 struct ieee80211com *ic = bss->ni_ic; 2538 const struct ieee80211_rateset *rs; 2539 struct mbuf *m; 2540 uint16_t capinfo; 2541 uint8_t *frm; 2542 2543 /* 2544 * probe response frame format 2545 * [8] time stamp 2546 * [2] beacon interval 2547 * [2] cabability information 2548 * [tlv] ssid 2549 * [tlv] supported rates 2550 * [tlv] parameter set (FH/DS) 2551 * [tlv] parameter set (IBSS) 2552 * [tlv] country (optional) 2553 * [3] power control (optional) 2554 * [5] channel switch announcement (CSA) (optional) 2555 * [tlv] extended rate phy (ERP) 2556 * [tlv] extended supported rates 2557 * [tlv] RSN (optional) 2558 * [tlv] HT capabilities 2559 * [tlv] HT information 2560 * [tlv] WPA (optional) 2561 * [tlv] WME (optional) 2562 * [tlv] Vendor OUI HT capabilities (optional) 2563 * [tlv] Vendor OUI HT information (optional) 2564 * [tlv] Atheros capabilities 2565 * [tlv] AppIE's (optional) 2566 * [tlv] Mesh ID (MBSS) 2567 * [tlv] Mesh Conf (MBSS) 2568 */ 2569 m = ieee80211_getmgtframe(&frm, 2570 ic->ic_headroom + sizeof(struct ieee80211_frame), 2571 8 2572 + sizeof(uint16_t) 2573 + sizeof(uint16_t) 2574 + 2 + IEEE80211_NWID_LEN 2575 + 2 + IEEE80211_RATE_SIZE 2576 + 7 /* max(7,3) */ 2577 + IEEE80211_COUNTRY_MAX_SIZE 2578 + 3 2579 + sizeof(struct ieee80211_csa_ie) 2580 + sizeof(struct ieee80211_quiet_ie) 2581 + 3 2582 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 2583 + sizeof(struct ieee80211_ie_wpa) 2584 + sizeof(struct ieee80211_ie_htcap) 2585 + sizeof(struct ieee80211_ie_htinfo) 2586 + sizeof(struct ieee80211_ie_wpa) 2587 + sizeof(struct ieee80211_wme_param) 2588 + 4 + sizeof(struct ieee80211_ie_htcap) 2589 + 4 + sizeof(struct ieee80211_ie_htinfo) 2590 #ifdef IEEE80211_SUPPORT_SUPERG 2591 + sizeof(struct ieee80211_ath_ie) 2592 #endif 2593 #ifdef IEEE80211_SUPPORT_MESH 2594 + 2 + IEEE80211_MESHID_LEN 2595 + sizeof(struct ieee80211_meshconf_ie) 2596 #endif 2597 + (vap->iv_appie_proberesp != NULL ? 2598 vap->iv_appie_proberesp->ie_len : 0) 2599 ); 2600 if (m == NULL) { 2601 vap->iv_stats.is_tx_nobuf++; 2602 return NULL; 2603 } 2604 2605 memset(frm, 0, 8); /* timestamp should be filled later */ 2606 frm += 8; 2607 *(uint16_t *)frm = htole16(bss->ni_intval); 2608 frm += 2; 2609 capinfo = ieee80211_getcapinfo(vap, bss->ni_chan); 2610 *(uint16_t *)frm = htole16(capinfo); 2611 frm += 2; 2612 2613 frm = ieee80211_add_ssid(frm, bss->ni_essid, bss->ni_esslen); 2614 rs = ieee80211_get_suprates(ic, bss->ni_chan); 2615 frm = ieee80211_add_rates(frm, rs); 2616 2617 if (IEEE80211_IS_CHAN_FHSS(bss->ni_chan)) { 2618 *frm++ = IEEE80211_ELEMID_FHPARMS; 2619 *frm++ = 5; 2620 *frm++ = bss->ni_fhdwell & 0x00ff; 2621 *frm++ = (bss->ni_fhdwell >> 8) & 0x00ff; 2622 *frm++ = IEEE80211_FH_CHANSET( 2623 ieee80211_chan2ieee(ic, bss->ni_chan)); 2624 *frm++ = IEEE80211_FH_CHANPAT( 2625 ieee80211_chan2ieee(ic, bss->ni_chan)); 2626 *frm++ = bss->ni_fhindex; 2627 } else { 2628 *frm++ = IEEE80211_ELEMID_DSPARMS; 2629 *frm++ = 1; 2630 *frm++ = ieee80211_chan2ieee(ic, bss->ni_chan); 2631 } 2632 2633 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2634 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2635 *frm++ = 2; 2636 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2637 } 2638 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2639 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2640 frm = ieee80211_add_countryie(frm, ic); 2641 if (vap->iv_flags & IEEE80211_F_DOTH) { 2642 if (IEEE80211_IS_CHAN_5GHZ(bss->ni_chan)) 2643 frm = ieee80211_add_powerconstraint(frm, vap); 2644 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2645 frm = ieee80211_add_csa(frm, vap); 2646 } 2647 if (vap->iv_flags & IEEE80211_F_DOTH) { 2648 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2649 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2650 if (vap->iv_quiet) 2651 frm = ieee80211_add_quiet(frm, vap); 2652 } 2653 } 2654 if (IEEE80211_IS_CHAN_ANYG(bss->ni_chan)) 2655 frm = ieee80211_add_erp(frm, ic); 2656 frm = ieee80211_add_xrates(frm, rs); 2657 frm = ieee80211_add_rsn(frm, vap); 2658 /* 2659 * NB: legacy 11b clients do not get certain ie's. 2660 * The caller identifies such clients by passing 2661 * a token in legacy to us. Could expand this to be 2662 * any legacy client for stuff like HT ie's. 2663 */ 2664 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2665 legacy != IEEE80211_SEND_LEGACY_11B) { 2666 frm = ieee80211_add_htcap(frm, bss); 2667 frm = ieee80211_add_htinfo(frm, bss); 2668 } 2669 frm = ieee80211_add_wpa(frm, vap); 2670 if (vap->iv_flags & IEEE80211_F_WME) 2671 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2672 if (IEEE80211_IS_CHAN_HT(bss->ni_chan) && 2673 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT) && 2674 legacy != IEEE80211_SEND_LEGACY_11B) { 2675 frm = ieee80211_add_htcap_vendor(frm, bss); 2676 frm = ieee80211_add_htinfo_vendor(frm, bss); 2677 } 2678 #ifdef IEEE80211_SUPPORT_SUPERG 2679 if ((vap->iv_flags & IEEE80211_F_ATHEROS) && 2680 legacy != IEEE80211_SEND_LEGACY_11B) 2681 frm = ieee80211_add_athcaps(frm, bss); 2682 #endif 2683 if (vap->iv_appie_proberesp != NULL) 2684 frm = add_appie(frm, vap->iv_appie_proberesp); 2685 #ifdef IEEE80211_SUPPORT_MESH 2686 if (vap->iv_opmode == IEEE80211_M_MBSS) { 2687 frm = ieee80211_add_meshid(frm, vap); 2688 frm = ieee80211_add_meshconf(frm, vap); 2689 } 2690 #endif 2691 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 2692 2693 return m; 2694 } 2695 2696 /* 2697 * Send a probe response frame to the specified mac address. 2698 * This does not go through the normal mgt frame api so we 2699 * can specify the destination address and re-use the bss node 2700 * for the sta reference. 2701 */ 2702 int 2703 ieee80211_send_proberesp(struct ieee80211vap *vap, 2704 const uint8_t da[IEEE80211_ADDR_LEN], int legacy) 2705 { 2706 struct ieee80211_node *bss = vap->iv_bss; 2707 struct ieee80211com *ic = vap->iv_ic; 2708 struct ieee80211_frame *wh; 2709 struct mbuf *m; 2710 int ret; 2711 2712 if (vap->iv_state == IEEE80211_S_CAC) { 2713 IEEE80211_NOTE(vap, IEEE80211_MSG_OUTPUT, bss, 2714 "block %s frame in CAC state", "probe response"); 2715 vap->iv_stats.is_tx_badstate++; 2716 return EIO; /* XXX */ 2717 } 2718 2719 /* 2720 * Hold a reference on the node so it doesn't go away until after 2721 * the xmit is complete all the way in the driver. On error we 2722 * will remove our reference. 2723 */ 2724 IEEE80211_DPRINTF(vap, IEEE80211_MSG_NODE, 2725 "ieee80211_ref_node (%s:%u) %p<%s> refcnt %d\n", 2726 __func__, __LINE__, bss, ether_sprintf(bss->ni_macaddr), 2727 ieee80211_node_refcnt(bss)+1); 2728 ieee80211_ref_node(bss); 2729 2730 m = ieee80211_alloc_proberesp(bss, legacy); 2731 if (m == NULL) { 2732 ieee80211_free_node(bss); 2733 return ENOMEM; 2734 } 2735 2736 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 2737 KASSERT(m != NULL, ("no room for header")); 2738 2739 IEEE80211_TX_LOCK(ic); 2740 wh = mtod(m, struct ieee80211_frame *); 2741 ieee80211_send_setup(bss, m, 2742 IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP, 2743 IEEE80211_NONQOS_TID, vap->iv_myaddr, da, bss->ni_bssid); 2744 /* XXX power management? */ 2745 m->m_flags |= M_ENCAP; /* mark encapsulated */ 2746 2747 M_WME_SETAC(m, WME_AC_BE); 2748 2749 IEEE80211_DPRINTF(vap, IEEE80211_MSG_DEBUG | IEEE80211_MSG_DUMPPKTS, 2750 "send probe resp on channel %u to %s%s\n", 2751 ieee80211_chan2ieee(ic, ic->ic_curchan), ether_sprintf(da), 2752 legacy ? " <legacy>" : ""); 2753 IEEE80211_NODE_STAT(bss, tx_mgmt); 2754 2755 ret = ieee80211_raw_output(vap, bss, m, NULL); 2756 IEEE80211_TX_UNLOCK(ic); 2757 return (ret); 2758 } 2759 2760 /* 2761 * Allocate and build a RTS (Request To Send) control frame. 2762 */ 2763 struct mbuf * 2764 ieee80211_alloc_rts(struct ieee80211com *ic, 2765 const uint8_t ra[IEEE80211_ADDR_LEN], 2766 const uint8_t ta[IEEE80211_ADDR_LEN], 2767 uint16_t dur) 2768 { 2769 struct ieee80211_frame_rts *rts; 2770 struct mbuf *m; 2771 2772 /* XXX honor ic_headroom */ 2773 m = m_gethdr(M_NOWAIT, MT_DATA); 2774 if (m != NULL) { 2775 rts = mtod(m, struct ieee80211_frame_rts *); 2776 rts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2777 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_RTS; 2778 rts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2779 *(u_int16_t *)rts->i_dur = htole16(dur); 2780 IEEE80211_ADDR_COPY(rts->i_ra, ra); 2781 IEEE80211_ADDR_COPY(rts->i_ta, ta); 2782 2783 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_rts); 2784 } 2785 return m; 2786 } 2787 2788 /* 2789 * Allocate and build a CTS (Clear To Send) control frame. 2790 */ 2791 struct mbuf * 2792 ieee80211_alloc_cts(struct ieee80211com *ic, 2793 const uint8_t ra[IEEE80211_ADDR_LEN], uint16_t dur) 2794 { 2795 struct ieee80211_frame_cts *cts; 2796 struct mbuf *m; 2797 2798 /* XXX honor ic_headroom */ 2799 m = m_gethdr(M_NOWAIT, MT_DATA); 2800 if (m != NULL) { 2801 cts = mtod(m, struct ieee80211_frame_cts *); 2802 cts->i_fc[0] = IEEE80211_FC0_VERSION_0 | 2803 IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_CTS; 2804 cts->i_fc[1] = IEEE80211_FC1_DIR_NODS; 2805 *(u_int16_t *)cts->i_dur = htole16(dur); 2806 IEEE80211_ADDR_COPY(cts->i_ra, ra); 2807 2808 m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame_cts); 2809 } 2810 return m; 2811 } 2812 2813 static void 2814 ieee80211_tx_mgt_timeout(void *arg) 2815 { 2816 struct ieee80211vap *vap = arg; 2817 2818 IEEE80211_LOCK(vap->iv_ic); 2819 if (vap->iv_state != IEEE80211_S_INIT && 2820 (vap->iv_ic->ic_flags & IEEE80211_F_SCAN) == 0) { 2821 /* 2822 * NB: it's safe to specify a timeout as the reason here; 2823 * it'll only be used in the right state. 2824 */ 2825 ieee80211_new_state_locked(vap, IEEE80211_S_SCAN, 2826 IEEE80211_SCAN_FAIL_TIMEOUT); 2827 } 2828 IEEE80211_UNLOCK(vap->iv_ic); 2829 } 2830 2831 /* 2832 * This is the callback set on net80211-sourced transmitted 2833 * authentication request frames. 2834 * 2835 * This does a couple of things: 2836 * 2837 * + If the frame transmitted was a success, it schedules a future 2838 * event which will transition the interface to scan. 2839 * If a state transition _then_ occurs before that event occurs, 2840 * said state transition will cancel this callout. 2841 * 2842 * + If the frame transmit was a failure, it immediately schedules 2843 * the transition back to scan. 2844 */ 2845 static void 2846 ieee80211_tx_mgt_cb(struct ieee80211_node *ni, void *arg, int status) 2847 { 2848 struct ieee80211vap *vap = ni->ni_vap; 2849 enum ieee80211_state ostate = (enum ieee80211_state) arg; 2850 2851 /* 2852 * Frame transmit completed; arrange timer callback. If 2853 * transmit was successfuly we wait for response. Otherwise 2854 * we arrange an immediate callback instead of doing the 2855 * callback directly since we don't know what state the driver 2856 * is in (e.g. what locks it is holding). This work should 2857 * not be too time-critical and not happen too often so the 2858 * added overhead is acceptable. 2859 * 2860 * XXX what happens if !acked but response shows up before callback? 2861 */ 2862 if (vap->iv_state == ostate) { 2863 callout_reset(&vap->iv_mgtsend, 2864 status == 0 ? IEEE80211_TRANS_WAIT*hz : 0, 2865 ieee80211_tx_mgt_timeout, vap); 2866 } 2867 } 2868 2869 static void 2870 ieee80211_beacon_construct(struct mbuf *m, uint8_t *frm, 2871 struct ieee80211_node *ni) 2872 { 2873 struct ieee80211vap *vap = ni->ni_vap; 2874 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 2875 struct ieee80211com *ic = ni->ni_ic; 2876 struct ieee80211_rateset *rs = &ni->ni_rates; 2877 uint16_t capinfo; 2878 2879 /* 2880 * beacon frame format 2881 * [8] time stamp 2882 * [2] beacon interval 2883 * [2] cabability information 2884 * [tlv] ssid 2885 * [tlv] supported rates 2886 * [3] parameter set (DS) 2887 * [8] CF parameter set (optional) 2888 * [tlv] parameter set (IBSS/TIM) 2889 * [tlv] country (optional) 2890 * [3] power control (optional) 2891 * [5] channel switch announcement (CSA) (optional) 2892 * [tlv] extended rate phy (ERP) 2893 * [tlv] extended supported rates 2894 * [tlv] RSN parameters 2895 * [tlv] HT capabilities 2896 * [tlv] HT information 2897 * XXX Vendor-specific OIDs (e.g. Atheros) 2898 * [tlv] WPA parameters 2899 * [tlv] WME parameters 2900 * [tlv] Vendor OUI HT capabilities (optional) 2901 * [tlv] Vendor OUI HT information (optional) 2902 * [tlv] Atheros capabilities (optional) 2903 * [tlv] TDMA parameters (optional) 2904 * [tlv] Mesh ID (MBSS) 2905 * [tlv] Mesh Conf (MBSS) 2906 * [tlv] application data (optional) 2907 */ 2908 2909 memset(bo, 0, sizeof(*bo)); 2910 2911 memset(frm, 0, 8); /* XXX timestamp is set by hardware/driver */ 2912 frm += 8; 2913 *(uint16_t *)frm = htole16(ni->ni_intval); 2914 frm += 2; 2915 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 2916 bo->bo_caps = (uint16_t *)frm; 2917 *(uint16_t *)frm = htole16(capinfo); 2918 frm += 2; 2919 *frm++ = IEEE80211_ELEMID_SSID; 2920 if ((vap->iv_flags & IEEE80211_F_HIDESSID) == 0) { 2921 *frm++ = ni->ni_esslen; 2922 memcpy(frm, ni->ni_essid, ni->ni_esslen); 2923 frm += ni->ni_esslen; 2924 } else 2925 *frm++ = 0; 2926 frm = ieee80211_add_rates(frm, rs); 2927 if (!IEEE80211_IS_CHAN_FHSS(ni->ni_chan)) { 2928 *frm++ = IEEE80211_ELEMID_DSPARMS; 2929 *frm++ = 1; 2930 *frm++ = ieee80211_chan2ieee(ic, ni->ni_chan); 2931 } 2932 if (ic->ic_flags & IEEE80211_F_PCF) { 2933 bo->bo_cfp = frm; 2934 frm = ieee80211_add_cfparms(frm, ic); 2935 } 2936 bo->bo_tim = frm; 2937 if (vap->iv_opmode == IEEE80211_M_IBSS) { 2938 *frm++ = IEEE80211_ELEMID_IBSSPARMS; 2939 *frm++ = 2; 2940 *frm++ = 0; *frm++ = 0; /* TODO: ATIM window */ 2941 bo->bo_tim_len = 0; 2942 } else if (vap->iv_opmode == IEEE80211_M_HOSTAP || 2943 vap->iv_opmode == IEEE80211_M_MBSS) { 2944 /* TIM IE is the same for Mesh and Hostap */ 2945 struct ieee80211_tim_ie *tie = (struct ieee80211_tim_ie *) frm; 2946 2947 tie->tim_ie = IEEE80211_ELEMID_TIM; 2948 tie->tim_len = 4; /* length */ 2949 tie->tim_count = 0; /* DTIM count */ 2950 tie->tim_period = vap->iv_dtim_period; /* DTIM period */ 2951 tie->tim_bitctl = 0; /* bitmap control */ 2952 tie->tim_bitmap[0] = 0; /* Partial Virtual Bitmap */ 2953 frm += sizeof(struct ieee80211_tim_ie); 2954 bo->bo_tim_len = 1; 2955 } 2956 bo->bo_tim_trailer = frm; 2957 if ((vap->iv_flags & IEEE80211_F_DOTH) || 2958 (vap->iv_flags_ext & IEEE80211_FEXT_DOTD)) 2959 frm = ieee80211_add_countryie(frm, ic); 2960 if (vap->iv_flags & IEEE80211_F_DOTH) { 2961 if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) 2962 frm = ieee80211_add_powerconstraint(frm, vap); 2963 bo->bo_csa = frm; 2964 if (ic->ic_flags & IEEE80211_F_CSAPENDING) 2965 frm = ieee80211_add_csa(frm, vap); 2966 } else 2967 bo->bo_csa = frm; 2968 2969 if (vap->iv_flags & IEEE80211_F_DOTH) { 2970 bo->bo_quiet = frm; 2971 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 2972 (vap->iv_flags_ext & IEEE80211_FEXT_DFS)) { 2973 if (vap->iv_quiet) 2974 frm = ieee80211_add_quiet(frm,vap); 2975 } 2976 } else 2977 bo->bo_quiet = frm; 2978 2979 if (IEEE80211_IS_CHAN_ANYG(ni->ni_chan)) { 2980 bo->bo_erp = frm; 2981 frm = ieee80211_add_erp(frm, ic); 2982 } 2983 frm = ieee80211_add_xrates(frm, rs); 2984 frm = ieee80211_add_rsn(frm, vap); 2985 if (IEEE80211_IS_CHAN_HT(ni->ni_chan)) { 2986 frm = ieee80211_add_htcap(frm, ni); 2987 bo->bo_htinfo = frm; 2988 frm = ieee80211_add_htinfo(frm, ni); 2989 } 2990 frm = ieee80211_add_wpa(frm, vap); 2991 if (vap->iv_flags & IEEE80211_F_WME) { 2992 bo->bo_wme = frm; 2993 frm = ieee80211_add_wme_param(frm, &ic->ic_wme); 2994 } 2995 if (IEEE80211_IS_CHAN_HT(ni->ni_chan) && 2996 (vap->iv_flags_ht & IEEE80211_FHT_HTCOMPAT)) { 2997 frm = ieee80211_add_htcap_vendor(frm, ni); 2998 frm = ieee80211_add_htinfo_vendor(frm, ni); 2999 } 3000 #ifdef IEEE80211_SUPPORT_SUPERG 3001 if (vap->iv_flags & IEEE80211_F_ATHEROS) { 3002 bo->bo_ath = frm; 3003 frm = ieee80211_add_athcaps(frm, ni); 3004 } 3005 #endif 3006 #ifdef IEEE80211_SUPPORT_TDMA 3007 if (vap->iv_caps & IEEE80211_C_TDMA) { 3008 bo->bo_tdma = frm; 3009 frm = ieee80211_add_tdma(frm, vap); 3010 } 3011 #endif 3012 if (vap->iv_appie_beacon != NULL) { 3013 bo->bo_appie = frm; 3014 bo->bo_appie_len = vap->iv_appie_beacon->ie_len; 3015 frm = add_appie(frm, vap->iv_appie_beacon); 3016 } 3017 #ifdef IEEE80211_SUPPORT_MESH 3018 if (vap->iv_opmode == IEEE80211_M_MBSS) { 3019 frm = ieee80211_add_meshid(frm, vap); 3020 bo->bo_meshconf = frm; 3021 frm = ieee80211_add_meshconf(frm, vap); 3022 } 3023 #endif 3024 bo->bo_tim_trailer_len = frm - bo->bo_tim_trailer; 3025 bo->bo_csa_trailer_len = frm - bo->bo_csa; 3026 m->m_pkthdr.len = m->m_len = frm - mtod(m, uint8_t *); 3027 } 3028 3029 /* 3030 * Allocate a beacon frame and fillin the appropriate bits. 3031 */ 3032 struct mbuf * 3033 ieee80211_beacon_alloc(struct ieee80211_node *ni) 3034 { 3035 struct ieee80211vap *vap = ni->ni_vap; 3036 struct ieee80211com *ic = ni->ni_ic; 3037 struct ifnet *ifp = vap->iv_ifp; 3038 struct ieee80211_frame *wh; 3039 struct mbuf *m; 3040 int pktlen; 3041 uint8_t *frm; 3042 3043 /* 3044 * beacon frame format 3045 * [8] time stamp 3046 * [2] beacon interval 3047 * [2] cabability information 3048 * [tlv] ssid 3049 * [tlv] supported rates 3050 * [3] parameter set (DS) 3051 * [8] CF parameter set (optional) 3052 * [tlv] parameter set (IBSS/TIM) 3053 * [tlv] country (optional) 3054 * [3] power control (optional) 3055 * [5] channel switch announcement (CSA) (optional) 3056 * [tlv] extended rate phy (ERP) 3057 * [tlv] extended supported rates 3058 * [tlv] RSN parameters 3059 * [tlv] HT capabilities 3060 * [tlv] HT information 3061 * [tlv] Vendor OUI HT capabilities (optional) 3062 * [tlv] Vendor OUI HT information (optional) 3063 * XXX Vendor-specific OIDs (e.g. Atheros) 3064 * [tlv] WPA parameters 3065 * [tlv] WME parameters 3066 * [tlv] TDMA parameters (optional) 3067 * [tlv] Mesh ID (MBSS) 3068 * [tlv] Mesh Conf (MBSS) 3069 * [tlv] application data (optional) 3070 * NB: we allocate the max space required for the TIM bitmap. 3071 * XXX how big is this? 3072 */ 3073 pktlen = 8 /* time stamp */ 3074 + sizeof(uint16_t) /* beacon interval */ 3075 + sizeof(uint16_t) /* capabilities */ 3076 + 2 + ni->ni_esslen /* ssid */ 3077 + 2 + IEEE80211_RATE_SIZE /* supported rates */ 3078 + 2 + 1 /* DS parameters */ 3079 + 2 + 6 /* CF parameters */ 3080 + 2 + 4 + vap->iv_tim_len /* DTIM/IBSSPARMS */ 3081 + IEEE80211_COUNTRY_MAX_SIZE /* country */ 3082 + 2 + 1 /* power control */ 3083 + sizeof(struct ieee80211_csa_ie) /* CSA */ 3084 + sizeof(struct ieee80211_quiet_ie) /* Quiet */ 3085 + 2 + 1 /* ERP */ 3086 + 2 + (IEEE80211_RATE_MAXSIZE - IEEE80211_RATE_SIZE) 3087 + (vap->iv_caps & IEEE80211_C_WPA ? /* WPA 1+2 */ 3088 2*sizeof(struct ieee80211_ie_wpa) : 0) 3089 /* XXX conditional? */ 3090 + 4+2*sizeof(struct ieee80211_ie_htcap)/* HT caps */ 3091 + 4+2*sizeof(struct ieee80211_ie_htinfo)/* HT info */ 3092 + (vap->iv_caps & IEEE80211_C_WME ? /* WME */ 3093 sizeof(struct ieee80211_wme_param) : 0) 3094 #ifdef IEEE80211_SUPPORT_SUPERG 3095 + sizeof(struct ieee80211_ath_ie) /* ATH */ 3096 #endif 3097 #ifdef IEEE80211_SUPPORT_TDMA 3098 + (vap->iv_caps & IEEE80211_C_TDMA ? /* TDMA */ 3099 sizeof(struct ieee80211_tdma_param) : 0) 3100 #endif 3101 #ifdef IEEE80211_SUPPORT_MESH 3102 + 2 + ni->ni_meshidlen 3103 + sizeof(struct ieee80211_meshconf_ie) 3104 #endif 3105 + IEEE80211_MAX_APPIE 3106 ; 3107 m = ieee80211_getmgtframe(&frm, 3108 ic->ic_headroom + sizeof(struct ieee80211_frame), pktlen); 3109 if (m == NULL) { 3110 IEEE80211_DPRINTF(vap, IEEE80211_MSG_ANY, 3111 "%s: cannot get buf; size %u\n", __func__, pktlen); 3112 vap->iv_stats.is_tx_nobuf++; 3113 return NULL; 3114 } 3115 ieee80211_beacon_construct(m, frm, ni); 3116 3117 M_PREPEND(m, sizeof(struct ieee80211_frame), M_NOWAIT); 3118 KASSERT(m != NULL, ("no space for 802.11 header?")); 3119 wh = mtod(m, struct ieee80211_frame *); 3120 wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | 3121 IEEE80211_FC0_SUBTYPE_BEACON; 3122 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; 3123 *(uint16_t *)wh->i_dur = 0; 3124 IEEE80211_ADDR_COPY(wh->i_addr1, ifp->if_broadcastaddr); 3125 IEEE80211_ADDR_COPY(wh->i_addr2, vap->iv_myaddr); 3126 IEEE80211_ADDR_COPY(wh->i_addr3, ni->ni_bssid); 3127 *(uint16_t *)wh->i_seq = 0; 3128 3129 return m; 3130 } 3131 3132 /* 3133 * Update the dynamic parts of a beacon frame based on the current state. 3134 */ 3135 int 3136 ieee80211_beacon_update(struct ieee80211_node *ni, struct mbuf *m, int mcast) 3137 { 3138 struct ieee80211vap *vap = ni->ni_vap; 3139 struct ieee80211_beacon_offsets *bo = &vap->iv_bcn_off; 3140 struct ieee80211com *ic = ni->ni_ic; 3141 int len_changed = 0; 3142 uint16_t capinfo; 3143 struct ieee80211_frame *wh; 3144 ieee80211_seq seqno; 3145 3146 IEEE80211_LOCK(ic); 3147 /* 3148 * Handle 11h channel change when we've reached the count. 3149 * We must recalculate the beacon frame contents to account 3150 * for the new channel. Note we do this only for the first 3151 * vap that reaches this point; subsequent vaps just update 3152 * their beacon state to reflect the recalculated channel. 3153 */ 3154 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA) && 3155 vap->iv_csa_count == ic->ic_csa_count) { 3156 vap->iv_csa_count = 0; 3157 /* 3158 * Effect channel change before reconstructing the beacon 3159 * frame contents as many places reference ni_chan. 3160 */ 3161 if (ic->ic_csa_newchan != NULL) 3162 ieee80211_csa_completeswitch(ic); 3163 /* 3164 * NB: ieee80211_beacon_construct clears all pending 3165 * updates in bo_flags so we don't need to explicitly 3166 * clear IEEE80211_BEACON_CSA. 3167 */ 3168 ieee80211_beacon_construct(m, 3169 mtod(m, uint8_t*) + sizeof(struct ieee80211_frame), ni); 3170 3171 /* XXX do WME aggressive mode processing? */ 3172 IEEE80211_UNLOCK(ic); 3173 return 1; /* just assume length changed */ 3174 } 3175 3176 wh = mtod(m, struct ieee80211_frame *); 3177 seqno = ni->ni_txseqs[IEEE80211_NONQOS_TID]++; 3178 *(uint16_t *)&wh->i_seq[0] = 3179 htole16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 3180 M_SEQNO_SET(m, seqno); 3181 3182 /* XXX faster to recalculate entirely or just changes? */ 3183 capinfo = ieee80211_getcapinfo(vap, ni->ni_chan); 3184 *bo->bo_caps = htole16(capinfo); 3185 3186 if (vap->iv_flags & IEEE80211_F_WME) { 3187 struct ieee80211_wme_state *wme = &ic->ic_wme; 3188 3189 /* 3190 * Check for agressive mode change. When there is 3191 * significant high priority traffic in the BSS 3192 * throttle back BE traffic by using conservative 3193 * parameters. Otherwise BE uses agressive params 3194 * to optimize performance of legacy/non-QoS traffic. 3195 */ 3196 if (wme->wme_flags & WME_F_AGGRMODE) { 3197 if (wme->wme_hipri_traffic > 3198 wme->wme_hipri_switch_thresh) { 3199 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3200 "%s: traffic %u, disable aggressive mode\n", 3201 __func__, wme->wme_hipri_traffic); 3202 wme->wme_flags &= ~WME_F_AGGRMODE; 3203 ieee80211_wme_updateparams_locked(vap); 3204 wme->wme_hipri_traffic = 3205 wme->wme_hipri_switch_hysteresis; 3206 } else 3207 wme->wme_hipri_traffic = 0; 3208 } else { 3209 if (wme->wme_hipri_traffic <= 3210 wme->wme_hipri_switch_thresh) { 3211 IEEE80211_DPRINTF(vap, IEEE80211_MSG_WME, 3212 "%s: traffic %u, enable aggressive mode\n", 3213 __func__, wme->wme_hipri_traffic); 3214 wme->wme_flags |= WME_F_AGGRMODE; 3215 ieee80211_wme_updateparams_locked(vap); 3216 wme->wme_hipri_traffic = 0; 3217 } else 3218 wme->wme_hipri_traffic = 3219 wme->wme_hipri_switch_hysteresis; 3220 } 3221 if (isset(bo->bo_flags, IEEE80211_BEACON_WME)) { 3222 (void) ieee80211_add_wme_param(bo->bo_wme, wme); 3223 clrbit(bo->bo_flags, IEEE80211_BEACON_WME); 3224 } 3225 } 3226 3227 if (isset(bo->bo_flags, IEEE80211_BEACON_HTINFO)) { 3228 ieee80211_ht_update_beacon(vap, bo); 3229 clrbit(bo->bo_flags, IEEE80211_BEACON_HTINFO); 3230 } 3231 #ifdef IEEE80211_SUPPORT_TDMA 3232 if (vap->iv_caps & IEEE80211_C_TDMA) { 3233 /* 3234 * NB: the beacon is potentially updated every TBTT. 3235 */ 3236 ieee80211_tdma_update_beacon(vap, bo); 3237 } 3238 #endif 3239 #ifdef IEEE80211_SUPPORT_MESH 3240 if (vap->iv_opmode == IEEE80211_M_MBSS) 3241 ieee80211_mesh_update_beacon(vap, bo); 3242 #endif 3243 3244 if (vap->iv_opmode == IEEE80211_M_HOSTAP || 3245 vap->iv_opmode == IEEE80211_M_MBSS) { /* NB: no IBSS support*/ 3246 struct ieee80211_tim_ie *tie = 3247 (struct ieee80211_tim_ie *) bo->bo_tim; 3248 if (isset(bo->bo_flags, IEEE80211_BEACON_TIM)) { 3249 u_int timlen, timoff, i; 3250 /* 3251 * ATIM/DTIM needs updating. If it fits in the 3252 * current space allocated then just copy in the 3253 * new bits. Otherwise we need to move any trailing 3254 * data to make room. Note that we know there is 3255 * contiguous space because ieee80211_beacon_allocate 3256 * insures there is space in the mbuf to write a 3257 * maximal-size virtual bitmap (based on iv_max_aid). 3258 */ 3259 /* 3260 * Calculate the bitmap size and offset, copy any 3261 * trailer out of the way, and then copy in the 3262 * new bitmap and update the information element. 3263 * Note that the tim bitmap must contain at least 3264 * one byte and any offset must be even. 3265 */ 3266 if (vap->iv_ps_pending != 0) { 3267 timoff = 128; /* impossibly large */ 3268 for (i = 0; i < vap->iv_tim_len; i++) 3269 if (vap->iv_tim_bitmap[i]) { 3270 timoff = i &~ 1; 3271 break; 3272 } 3273 KASSERT(timoff != 128, ("tim bitmap empty!")); 3274 for (i = vap->iv_tim_len-1; i >= timoff; i--) 3275 if (vap->iv_tim_bitmap[i]) 3276 break; 3277 timlen = 1 + (i - timoff); 3278 } else { 3279 timoff = 0; 3280 timlen = 1; 3281 } 3282 if (timlen != bo->bo_tim_len) { 3283 /* copy up/down trailer */ 3284 int adjust = tie->tim_bitmap+timlen 3285 - bo->bo_tim_trailer; 3286 ovbcopy(bo->bo_tim_trailer, 3287 bo->bo_tim_trailer+adjust, 3288 bo->bo_tim_trailer_len); 3289 bo->bo_tim_trailer += adjust; 3290 bo->bo_erp += adjust; 3291 bo->bo_htinfo += adjust; 3292 #ifdef IEEE80211_SUPPORT_SUPERG 3293 bo->bo_ath += adjust; 3294 #endif 3295 #ifdef IEEE80211_SUPPORT_TDMA 3296 bo->bo_tdma += adjust; 3297 #endif 3298 #ifdef IEEE80211_SUPPORT_MESH 3299 bo->bo_meshconf += adjust; 3300 #endif 3301 bo->bo_appie += adjust; 3302 bo->bo_wme += adjust; 3303 bo->bo_csa += adjust; 3304 bo->bo_quiet += adjust; 3305 bo->bo_tim_len = timlen; 3306 3307 /* update information element */ 3308 tie->tim_len = 3 + timlen; 3309 tie->tim_bitctl = timoff; 3310 len_changed = 1; 3311 } 3312 memcpy(tie->tim_bitmap, vap->iv_tim_bitmap + timoff, 3313 bo->bo_tim_len); 3314 3315 clrbit(bo->bo_flags, IEEE80211_BEACON_TIM); 3316 3317 IEEE80211_DPRINTF(vap, IEEE80211_MSG_POWER, 3318 "%s: TIM updated, pending %u, off %u, len %u\n", 3319 __func__, vap->iv_ps_pending, timoff, timlen); 3320 } 3321 /* count down DTIM period */ 3322 if (tie->tim_count == 0) 3323 tie->tim_count = tie->tim_period - 1; 3324 else 3325 tie->tim_count--; 3326 /* update state for buffered multicast frames on DTIM */ 3327 if (mcast && tie->tim_count == 0) 3328 tie->tim_bitctl |= 1; 3329 else 3330 tie->tim_bitctl &= ~1; 3331 if (isset(bo->bo_flags, IEEE80211_BEACON_CSA)) { 3332 struct ieee80211_csa_ie *csa = 3333 (struct ieee80211_csa_ie *) bo->bo_csa; 3334 3335 /* 3336 * Insert or update CSA ie. If we're just starting 3337 * to count down to the channel switch then we need 3338 * to insert the CSA ie. Otherwise we just need to 3339 * drop the count. The actual change happens above 3340 * when the vap's count reaches the target count. 3341 */ 3342 if (vap->iv_csa_count == 0) { 3343 memmove(&csa[1], csa, bo->bo_csa_trailer_len); 3344 bo->bo_erp += sizeof(*csa); 3345 bo->bo_htinfo += sizeof(*csa); 3346 bo->bo_wme += sizeof(*csa); 3347 #ifdef IEEE80211_SUPPORT_SUPERG 3348 bo->bo_ath += sizeof(*csa); 3349 #endif 3350 #ifdef IEEE80211_SUPPORT_TDMA 3351 bo->bo_tdma += sizeof(*csa); 3352 #endif 3353 #ifdef IEEE80211_SUPPORT_MESH 3354 bo->bo_meshconf += sizeof(*csa); 3355 #endif 3356 bo->bo_appie += sizeof(*csa); 3357 bo->bo_csa_trailer_len += sizeof(*csa); 3358 bo->bo_quiet += sizeof(*csa); 3359 bo->bo_tim_trailer_len += sizeof(*csa); 3360 m->m_len += sizeof(*csa); 3361 m->m_pkthdr.len += sizeof(*csa); 3362 3363 ieee80211_add_csa(bo->bo_csa, vap); 3364 } else 3365 csa->csa_count--; 3366 vap->iv_csa_count++; 3367 /* NB: don't clear IEEE80211_BEACON_CSA */ 3368 } 3369 if (IEEE80211_IS_CHAN_DFS(ic->ic_bsschan) && 3370 (vap->iv_flags_ext & IEEE80211_FEXT_DFS) ){ 3371 if (vap->iv_quiet) 3372 ieee80211_add_quiet(bo->bo_quiet, vap); 3373 } 3374 if (isset(bo->bo_flags, IEEE80211_BEACON_ERP)) { 3375 /* 3376 * ERP element needs updating. 3377 */ 3378 (void) ieee80211_add_erp(bo->bo_erp, ic); 3379 clrbit(bo->bo_flags, IEEE80211_BEACON_ERP); 3380 } 3381 #ifdef IEEE80211_SUPPORT_SUPERG 3382 if (isset(bo->bo_flags, IEEE80211_BEACON_ATH)) { 3383 ieee80211_add_athcaps(bo->bo_ath, ni); 3384 clrbit(bo->bo_flags, IEEE80211_BEACON_ATH); 3385 } 3386 #endif 3387 } 3388 if (isset(bo->bo_flags, IEEE80211_BEACON_APPIE)) { 3389 const struct ieee80211_appie *aie = vap->iv_appie_beacon; 3390 int aielen; 3391 uint8_t *frm; 3392 3393 aielen = 0; 3394 if (aie != NULL) 3395 aielen += aie->ie_len; 3396 if (aielen != bo->bo_appie_len) { 3397 /* copy up/down trailer */ 3398 int adjust = aielen - bo->bo_appie_len; 3399 ovbcopy(bo->bo_tim_trailer, bo->bo_tim_trailer+adjust, 3400 bo->bo_tim_trailer_len); 3401 bo->bo_tim_trailer += adjust; 3402 bo->bo_appie += adjust; 3403 bo->bo_appie_len = aielen; 3404 3405 len_changed = 1; 3406 } 3407 frm = bo->bo_appie; 3408 if (aie != NULL) 3409 frm = add_appie(frm, aie); 3410 clrbit(bo->bo_flags, IEEE80211_BEACON_APPIE); 3411 } 3412 IEEE80211_UNLOCK(ic); 3413 3414 return len_changed; 3415 } 3416 3417 /* 3418 * Do Ethernet-LLC encapsulation for each payload in a fast frame 3419 * tunnel encapsulation. The frame is assumed to have an Ethernet 3420 * header at the front that must be stripped before prepending the 3421 * LLC followed by the Ethernet header passed in (with an Ethernet 3422 * type that specifies the payload size). 3423 */ 3424 struct mbuf * 3425 ieee80211_ff_encap1(struct ieee80211vap *vap, struct mbuf *m, 3426 const struct ether_header *eh) 3427 { 3428 struct llc *llc; 3429 uint16_t payload; 3430 3431 /* XXX optimize by combining m_adj+M_PREPEND */ 3432 m_adj(m, sizeof(struct ether_header) - sizeof(struct llc)); 3433 llc = mtod(m, struct llc *); 3434 llc->llc_dsap = llc->llc_ssap = LLC_SNAP_LSAP; 3435 llc->llc_control = LLC_UI; 3436 llc->llc_snap.org_code[0] = 0; 3437 llc->llc_snap.org_code[1] = 0; 3438 llc->llc_snap.org_code[2] = 0; 3439 llc->llc_snap.ether_type = eh->ether_type; 3440 payload = m->m_pkthdr.len; /* NB: w/o Ethernet header */ 3441 3442 M_PREPEND(m, sizeof(struct ether_header), M_NOWAIT); 3443 if (m == NULL) { /* XXX cannot happen */ 3444 IEEE80211_DPRINTF(vap, IEEE80211_MSG_SUPERG, 3445 "%s: no space for ether_header\n", __func__); 3446 vap->iv_stats.is_tx_nobuf++; 3447 return NULL; 3448 } 3449 ETHER_HEADER_COPY(mtod(m, void *), eh); 3450 mtod(m, struct ether_header *)->ether_type = htons(payload); 3451 return m; 3452 } 3453 3454 /* 3455 * Complete an mbuf transmission. 3456 * 3457 * For now, this simply processes a completed frame after the 3458 * driver has completed it's transmission and/or retransmission. 3459 * It assumes the frame is an 802.11 encapsulated frame. 3460 * 3461 * Later on it will grow to become the exit path for a given frame 3462 * from the driver and, depending upon how it's been encapsulated 3463 * and already transmitted, it may end up doing A-MPDU retransmission, 3464 * power save requeuing, etc. 3465 * 3466 * In order for the above to work, the driver entry point to this 3467 * must not hold any driver locks. Thus, the driver needs to delay 3468 * any actual mbuf completion until it can release said locks. 3469 * 3470 * This frees the mbuf and if the mbuf has a node reference, 3471 * the node reference will be freed. 3472 */ 3473 void 3474 ieee80211_tx_complete(struct ieee80211_node *ni, struct mbuf *m, int status) 3475 { 3476 3477 if (ni != NULL) { 3478 struct ifnet *ifp = ni->ni_vap->iv_ifp; 3479 3480 if (status == 0) { 3481 if_inc_counter(ifp, IFCOUNTER_OBYTES, m->m_pkthdr.len); 3482 if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1); 3483 if (m->m_flags & M_MCAST) 3484 if_inc_counter(ifp, IFCOUNTER_OMCASTS, 1); 3485 } else 3486 if_inc_counter(ifp, IFCOUNTER_OERRORS, 1); 3487 if (m->m_flags & M_TXCB) 3488 ieee80211_process_callback(ni, m, status); 3489 ieee80211_free_node(ni); 3490 } 3491 m_freem(m); 3492 } 3493